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ABSTRACT 

Julia Veronica DiFiore: Examining the Biological Functions of the H3K36 Methylation States in 
Transcription Regulation and the Post-Translational Modification Landscape of Set2 

(Under the direction of Brian D. Strahl) 

To package DNA, eukaryotes fold and compact DNA into chromatin. The fundamental 

building block of chromatin is the nucleosome, which plays a crucial role in DNA accessibility. 

The unstructured N-terminal tails of histones can be post-translationally modified with chemical 

moieties such as acetylation and methylation, amongst others. These post-translational 

modifications (PTMs) can serve as binding sites for proteins that alter chromatin structure or 

affect the interactions between histones and DNA, thus making the DNA more or less 

accessible to other cellular machinery. Additionally, other proteins in the cell can be post-

translationally modified with similar chemical moieties, which can alter their enzymatic activity, 

create binding sites for other proteins, or other outcomes. The role of PTMs in regulating cellular 

processes underscores their importance and the need to understand their function and 

regulation. One important chromatin-modifying enzyme in Saccharomyces cerevisiae is Set2, 

which is the sole enzyme that catalyzes mono-, di-, and trimethylation on lysine 36 on histone 

H3 (H3K36). Set2 and H3K36 methylation (H3K36me) are functionally important in transcription 

elongation, DNA damage repair, and mRNA spicing. However, most work examining Set2 and 

H3K36me was completed in wild-type cells or those completely lacking Set2 and H3K36me. 

Thus, our understanding of the functions of the different H3K36me states is incomplete. 

Similarly, while Set2-mediated methylation has been well studied, no studies have examined 

any PTMs on Set2 and their functional significance. Utilizing biochemical, genetic, and genomic 

assays, this work uncovers the unique and shared roles for the H3K36me states in a variety of 

cellular contexts. Importantly, H3K36me1/2 and H3K36me3 appear to have redundant roles in 
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repressing aberrant transcription during nutrient stress, thus providing flexibility during dynamic 

processes. Additional evidence demonstrates that Set2 is post-translationally modified and 

those PTMs have functional significance. Furthermore, the human homolog of Set2, SETD2, 

catalyzes H3K36me3 and robust evidence demonstrates that SETD2 is mutated in human 

cancers. Additional data presented in this work uncovers some of the structural and functional 

similarities and differences between Set2 and SETD2. Overall, the work presented here will 

further our understanding of Set2 and H3K36me in transcription, development, and disease.
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CHAPTER 1 – INTRODUCTION 

The enormous diversity observed in the natural world underscores the complexity of life 

and has long pushed us to better understand its origins. Toward that end, in 1865, Gregor 

Mendel completed his studies on plant hybridization and decades later, the results would be 

recognized as foundational genetic principles (Mendel, 1901). Mendel’s work and those who 

rediscovered it at the beginning of the 20th century founded the basis for understanding life, its 

diversity, and who we are at a molecular level (De Castro, 2016). Seminal work throughout the 

first half of the 20th century established a molecule called deoxyribonucleic acid (DNA) as the 

blueprint for all life on earth and the material that was responsible for passing traits from one 

generation to the next. Subsequent research established the “Central Dogma” of molecular 

biology, stating that DNA is transcribed into another molecule, ribonucleic acid (RNA), which is 

then translated into functional units called protein. However, recent discoveries have challenged 

this dogma and given us a more nuanced view of molecular biology and life itself (Gayon, 

2016). Continued research will no doubt answer many of today’s questions and raise more for 

future generations to grapple with. 

The importance and complexity of DNA bring about several problems for all organisms. 

First, this immense amount of genetic information must be stored in an extremely small space: 

the nucleus of the cell. For humans, this entails storing over two meters of DNA into a nucleus 

that is ten µm in diameter. How is that level of compaction achieved? Molecular mechanisms 

must also exist to faithfully replicate DNA, repair any damage that occurs to it, as well as access 

DNA at the appropriate times for growth, repair, and other activities necessary for survival. And 

finally, all these processes must be coordinated so as to not interfere with each other. The 

work contained in this dissertation will focus on mechanisms for accessing DNA and how that 
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access is regulated through post-translational modifications (PTMs) on histone and non-histone 

proteins. 

 

Histone Code Hypothesis 

In order to package DNA, cells fold it into a higher order structure called chromatin. The 

basic unit of chromatin is the nucleosome, made up of two copies each of histones H2A, H2B, 

H3, and H4 with 147 base pairs of DNA wrapped around it (Luger et al., 1997). Histones can be 

post-translationally modified with chemical groups such as acetylation, methylation, 

phosphorylation, and ubiquitination, amongst others (Rothbart and Strahl, 2014). Many of these 

PTMs occur on the flexible histone tails, but some are found on the histone fold or globular 

domains (Cosgrove et al., 2004). These PTMs are functionally important in allowing or 

preventing cellular machinery to access DNA during cellular processes like transcription, 

replication, DNA damage repair, amongst others. 

For years, it was thought that chromatin simply acted as a physical barrier to DNA-

templated processes and organized DNA to fit into the nucleus. Beginning in the 1960s with the 

discovery of histone acetylation by Vincent Allfrey, evidence began to emerge that chemical 

modifications can affect DNA-histone contacts (Allfrey et al., 1964). For example, lysine 

acetylation changes histone tail from positively charged to neutral, therefore disrupted the binding 

with negatively charged DNA. Later, phosphorylation on serine 10 of histone H3 (H3S10) was 

shown to be important for two opposing functions: chromosome condensation during mitosis and 

chromatin decompaction in transcription (Bradbury, 1992; Mahadevan et al., 1991). This 

observation led to the proposal of the “histone code hypothesis,” which stated that chemical 

modifications on histones might form a code that direct specific functions on their own or in 

combination with other modifications (Strahl and Allis, 2000). In the last twenty years, numerous 

examples demonstrate the ability of histone modifications to alter chromatin structure and affect 

downstream biological outcomes.  
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Histone Lysine Methylation 

One of the most well studied histone PTMs is lysine methylation. Since the detection of 

methylation on lysine 4 of histone H3 and the subsequent identification of SUV39H1 as the first 

lysine specific histone methyltransferase, methods have rapidly improved to detect histone 

lysine methylation, identify histone methyltransferases (HMT), and study their biological 

functions (Rea et al., 2000; Strahl et al., 1999). Histone lysine methylation is found on histone 

H3 at lysines 4, 9, 14, 18, 23, 27, 36, and 79, along with histone H4 at lysine 20 (Wozniak and 

Strahl, 2014). HMTs catalyze methylation at these residues by transferring a methyl group from 

the cofactor S-adenosyl-L-methionine (SAM) to the amino group of the lysine residue (Dillon et 

al., 2005). Each HMT has a specific lysine residue they target for methylation as well as 

specificity for how many methyl groups they add to the target lysine (mono-, di-, or 

trimethylation) (Black et al., 2012). Unlike acetylation, methylation does not change the charge 

of the lysine residue and is thought to primarily function as a way to recruit chromatin-modifying 

proteins (Beaver and Waters, 2016). By serving as a binding site for other proteins, histone 

lysine methylation has a diverse set of functions, particularly in gene transcription. 

To precisely control gene transcription, different forms of histone lysine methylation are 

found in distinct regions of the genome (Weiner et al., 2015). Actively transcribed genes are 

marked by H3K4 methylation at their promoters, H3K36 methylation in the gene body, particularly 

at the 3’ region, and H3K79 methylation throughout the gene body. In contrast, H3K9 methylation 

and H3K27 methylation are generally found at repressed genes (Wozniak and Strahl, 2014). The 

placement of these marks is controlled by the recruitment of their methyltransferase to distinct 

regions of the genome. Once the marks are catalyzed, reader proteins can bind and carry out 

their function. In addition to their precise localization, lysine methylation is removed to ensure 

proper genomic architecture is maintained (Gardner et al., 2011).  
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Set2 and H3K36 Methylation in Transcription 

Regulation of Set2 and H3K36 Methylation 

In Saccharomyces cerevisiae (hereafter, budding yeast), Set2 is the sole H3K36 

methyltransferase and catalyzes mono-, di-, and trimethylation (H3K36me1/2/3) in actively 

transcribed genes (Strahl et al., 2002). In multicellular organisms, such as Caenorhabditis 

elegans, Drosophila melanogaster, and humans, there are multiple enzymes that catalyze 

H3K36me. In D. melanogaster and humans, certain enzymes are specific for H3K36me1 and 

H3K36me2, while the Set2 homologs in those organisms catalyze only H3K36me3 in vivo 

(Venkatesh and Workman, 2013). Nevertheless, budding yeast serves as an excellent model 

system for Set2 and H3K36me since the loss (set2∆) or mutation of one enzyme can alter 

H3K36me globally and the consequent changes can be studied. 

Set2 catalyzes H3K36me in actively transcribed genes and is targeted there in part 

through its interaction with the phosphorylated serine 2 and serine 5 on the C-terminal domain 

(CTD) of RNA polymerase II (RNAPII) (Li et al., 2003; Xiao et al., 2003; Youdell et al., 2008). 

While serine 5 is phosphorylated at the promoter by Kin28, serine 2 phosphorylation depends 

on Ctk1 and Bur1 (Zaborowska et al., 2016). Loss of Ctk1 results in reduced Set2 protein levels 

and loss of H3K36me (Chu et al., 2006; Fuchs et al., 2012; Youdell et al., 2008). Similarly, bur1 

mutants have reduced H3K36me3 (Chu et al., 2006). Another protein that is important for Set2 

regulation is the histone chaperone Spt6, which also associates with the phosphorylated CTD of 

RNAPII (Bortvin and Winston, 1996; Diebold et al., 2010; Sun et al., 2010). Critically, the 

association of Spt6 with the CTD stabilizes Ctk1 protein levels and Ctk1 and serine 2 

phosphorylation also maintain Spt6 protein levels (Dronamraju and Strahl, 2014). Moreover, in 

spt6-1004 mutants, there is no detectable Set2 or H3K36me (Youdell et al., 2008).  

In addition to regulation by transcriptional machinery, contacts on the nucleosome itself 

affect Set2 and H3K36me. A recent cryo-EM structure of Set2 in Chaetomium thermophilum 

shows extensive contacts with H3 αN, H3 tail, and H2A C-terminal tail in order to position Set2 
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over H3K36. Furthermore, the associated with SET (AWS) domain (discussed below) interacts 

with H2BK120ub, which increases Set2 activity on nucleosomes (Bilokapic and Halic, 2019). 

Overall, a network of transcriptional machinery and key nucleosomal contacts are important for 

targeting Set2 and H3K36me to the correct genomic locations, maintaining normal protein 

levels, and positioning the enzyme over its substrate. 

 

Set2 Protein Structure 

Set2 contains several, well-defined protein domains (Figure 1.1). Two of the most crucial 

domains to Set2 function are the catalytic SET domain and the Set2 Rpb1 Interacting (SRI) 

domain. The catalytic SET domain is responsible for methylating H3K36. It is located at the N-

terminus and is flanked by the associated with SET (AWS) domain and the post-SET (PS) 

domains (Strahl et al., 2002). Both the AWS and PS domains contain three conserved cysteines 

that coordinate zinc near the active site and are necessary for catalysis (Cheng et al., 2005). 

The SRI domain is located at the C-terminus of Set2. It is necessary for binding to the 

phosphorylated serine 2 and serine 5 residues on the CTD of RNAPII during transcriptional 

elongation (Kizer et al., 2005). Without the SRI domain, Set2 cannot catalyze H3K36me3 and 

only low levels of H3K36me2 are present (McDaniel et al., 2017). Interestingly, in the absence 

of the SRI domain, Set2 is still recruited to gene bodies, indicating that other mechanisms work 

along with the SRI domain to recruit Set2 to genes (Youdell et al., 2008). 

Several other domains also contribute to Set2 function. The H4 interacting domain, 

located at the extreme N-terminus, is important for nucleosomal binding, specifically contacting 

H4K44. In the absence of H4 binding, Set2 cannot catalyze H3K36me2 or H3K36me3, likely 

due to improper positioning and decreased residence time over the nucleosome (Du et al., 

2008). In the middle of Set2, there is the auto-inhibitory domain (AID). The AID antagonizes the 

SET and SRI domains to control the catalytic activity of Set2 and ensure H3K36me is correctly 

localized in gene bodies (Wang et al., 2015). Lastly, Set2 contains two protein-protein binding 



 

6 

domains, the WW domain and the coiled-coil (CC) domain. Both are located between the AID 

and the SRI domain, however, there are no known functions for either of these domains in 

budding yeast. The WW domain is named for two conserved tryptophans (W) and tends to bind 

to proline-rich regions in other proteins (Sudol et al., 1995). Thus, the WW domain could 

mediate non-histone interactions of Set2. CC domains are often involved with subunit 

oligomerization and phosphorylation within the domain can modulate its binding ability 

(Burkhard et al., 2001). Consequently, the CC domain in Set2 could be functionally relevant for 

oligomerizing Set2 and dynamically regulated by phosphorylation. 

 

H3K36 Methylation Interacting Proteins 

H3K36 methylation acts as a binding site for several chromatin-modifying enzymes and 

prevents the binding of a histone chaperone (Figure 1.2). The known proteins that bind to 

H3K36me bind through either a PWWP or chromo domain, which are common reader domains 

of lysine methylation (Rona et al., 2016; Yap and Zhou, 2011; Yun et al., 2011). Overall, the 

combined function of the H3K36 effector proteins is to create a hypoacetylated environment 

after RNAPII-mediated transcription and prevent aberrant transcriptional events (Venkatesh and 

Workman, 2013). 

One protein that cannot bind in the presence of H3K36me is Asf1, a histone chaperone 

that contributes to the deposition of H3K56ac by Rtt109 (Tsubota et al., 2007). H3K56ac is 

associated with histone exchange, particularly over promoters (Williams et al., 2008). However, 

Asf1 cannot bind to peptides that are di- or trimethylated at H3K36, which likely contributes to 

suppressing histone exchange and maintaining a hypoacetylated chromatin environment in the 

wake of RNAPII (Venkatesh et al., 2012). 

A crucial protein that binds to H3K36me is Eaf3 and it is part of the Rpd3S histone 

deacetylases complex (HDAC), which also includes Rpd3, Rco1, Sin3, and Ume1 (Carrozza et 

al., 2005). Eaf3 binds to H3K36me2 and H3K36me3 through its chromodomain and 
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allosterically activates Rpd3 to remove H3 and H4 acetylation (Carrozza et al., 2005; Joshi and 

Struhl, 2005; Keogh et al., 2005; Merker et al., 2008; Ruan et al., 2015). Additionally, binding by 

the PHD of Rco1 to unmodified H3 helps target Rpd3S to gene bodies (Li et al., 2007; McDaniel 

et al., 2016). Overall, the Rpd3S complex creates a hypoacetylated environment to prevent 

aberrant transcription from initiating within gene bodies.  

Another important protein that can bind H3K36me is Ioc4, which is part of the Isw1b 

ATP-dependent chromatin-remodeling complex (Vary et al., 2003). Through its PWWP domain, 

Ioc4 binds to H3K36me3 in vivo and H3K36me3 and H3K36me2 in vitro. By associating with 

H3K36me, Ioc4 localizes Isw1b to sites of active transcription to reposition nucleosomes (Maltby 

et al., 2012; Smolle et al., 2012). Isw1b nucleosome remodeling activity helps position 

nucleosomes to be an appropriate substrate for Rpd3S HDAC activity and create a 

hypoacetylated chromatin environment (Lee et al., 2013).  

The most recently discovered protein that binds to H3K36me is Pdp3 and it is part of the 

NuA3 HAT complex, which also includes Sas3, Yng1, Taf14, Eaf6, and Nto1 (Gilbert et al., 

2014). Pdp3 binds to H3K36me3 through its PWWP domain and targets NuA3 to gene bodies 

(Gilbert et al., 2014; Martin et al., 2017). It is intriguing that H3K36me recruits both a HDAC 

(Rpd3S) and HAT (NuA4) complex to actively transcribed genes. One possibility is that the 

HDAC and HAT work in context-dependent manners. NuA3 is targeted to sites with both 

H3K36me3 and H3K4me1/2/3 through the PWWP domain of Pdp3 and the PHD of Yng1, 

respectively (Martin et al., 2017). Therefore, sites with both H3K36me3 and H3K4me1/2/3 would 

be more prone to HAT activity, while HDAC activity would be more prevalent at sites lacking the 

combinatorial marking preferred by NuA3. Overall, the precise regulation of histone PTMs 

through combinatorial histone marks supports the idea of the histone code hypothesis. 
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Cryptic Transcription 

A well-documented function for Set2 and H3K36 methylation is to prevent cryptic 

transcription. When normal chromatin architecture is disrupted, transcription can initiate from 

intragenic regions instead of canonical promoter regions (Kaplan et al., 2003). Cryptic 

transcripts typically arise from nucleosome free regions (NFRs) and can be transcribed in the 

sense or antisense direction (Neil et al., 2009; Xu et al., 2009). Several classes of cryptic 

transcripts have been defined, including cryptic unstable transcripts (CUTs), stable unannotated 

transcripts (SUTs), and Xrn1-sensitive unstable transcripts (XUTs). CUTs are rapidly degraded 

by the exosome or cytoplasmic decay pathways. CUTs were first detected in exosome mutants 

(rrp6∆) and later detected in 5’-to-3’ exonuclease mutants (xrn1∆) and cytoplasmic decapping 

mutants (dcp1∆ or dcp2∆) (Thompson and Parker, 2007; Wyers et al., 2005). Later, a specific 

class of transcripts degraded by Xrn1 was defined as XUTs (van Dijk et al., 2011). The rapid 

detection and degradation of these transcripts suggest they may have a negative effect on 

cellular processes. In contrast, SUTs are more resistant to decay mechanisms and are 

detectable in wild-type cells (Xu et al., 2009). Overall, cryptic transcripts are widespread in the 

budding yeast genome and differ in their sensitivity to degradation pathways. 

 In addition to the rapid degradation of cryptic transcripts, there are several mechanisms 

to suppress their transcription. In particular, Set2 and H3K36me recruit the Rpd3S HDAC to 

create a hypoacetylated environment in the wake of RNAPII and prevent additional polymerases 

and transcription factors from binding and initiating transcription from intragenic regions 

(Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005; Li et al., 2007). Importantly, 

the nucleosomes must be properly spaced for Rpd3S to bind and activate its deacetylase 

activity. To accomplish this, Isw1b binds to H3K36me and remodels the nucleosomes so they 

are properly spaced for Rpd3S and the complex can bind to its preferred substrate (Lee et al., 

2013). Additionally, H3K36me prevents the histone chaperone Asf1 from binding and thereby 

suppresses Rtt109-dependent H3K56ac and histone exchange (Venkatesh et al., 2012). These 
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mechanisms have been mostly studied in set2∆ cells and the contributions of individual 

H3K36me states is still not well understood (Figure 1.3). 

          While Set2 and H3K36me play a critical role in preventing cryptic transcription, there are 

other important factors that repress cryptic transcription. Spt6 is a histone chaperone that binds 

H3/H4 dimers and requires H2A/H2B-binding FACT to reassemble nucleosomes after 

transcription by RNAPII (Bortvin and Winston, 1996; Mccullough et al., 2015). Cryptic transcripts 

were first identified in an spt6-1004 mutant and subsequently observed in other mutant strains, 

including SPT16, a member of the FACT complex. spt6-1004 strains showed increased MNase 

sensitivity compared to wild-type, indicating a depletion of histones, altered chromatin structure, 

or both (Kaplan et al., 2003). Future work revealed that spt6 mutants had decreased 

nucleosome occupancy at the 5’ ends of genes and increased cryptic transcription from these 

regions compared to wild-type (Dronamraju et al., 2018). FACT and Spt6 also work together to 

prevent the promoter-specific histone variant H2A.Z from being incorporated into gene bodies 

and promoting cryptic transcription (Jeronimo et al., 2015). In addition to Spt6 and FACT 

complex members, a genome-wide screen identified 50 genes that were important for 

repressing cryptic transcription. Most of these genes included histones, chromatin modifying 

proteins, and transcription elongation factors (Cheung et al., 2008). Robust evidence 

demonstrates that chromatin structure is a key regulatory step in repressing cryptic transcription 

and its misregulation contributes to aberrant transcription. 

While improving sequencing technologies have allowed for the detection of cryptic 

transcripts and a mechanistic understanding of how they arise, the function of cryptic transcripts 

remains unclear (Churchman and Weissman, 2011; Nielsen et al., 2019). Recently, a group of 

transcripts that is suppressed exclusively by Set2 and H3K36 methylation were identified and 

defined as SRATs. These transcripts were detected in wild-type cells, but they were more 

abundant in set2∆ cells; however, their function was not identified (Venkatesh et al., 2016). 

Another study showed that during carbon source shifting, the Set2 and Rpd3S pathway is 
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important for repressing transcription at certain genes. Interestingly, most genes regulated by 

the Set2 and Rpd3S pathway have an overlapping lncRNA over their promoter. The 

transcription of the lncRNA brings Set2, H3K36me, and Rpd3S to the gene and contributes to 

its repression (Kim et al., 2016). Similarly, work from our lab found that under nutrient 

deprivation conditions, set2∆ cells produced cryptic transcripts whose presence was correlated 

with decreased sense transcription at corresponding genes (McDaniel et al., 2017). In 

accordance with a decrease in sense transcription, others detected decreased protein 

abundance for genes whose promoters overlap with a SUT (Huber et al., 2016). Such evidence 

suggests that cryptic transcription may function in the cellular response to stress and regulate 

transcript and protein abundance, but more work is needed to better understand the relationship 

between cryptic transcription and stress response. Interestingly, some cryptic transcripts appear 

to be translated, however the function of these truncated polypeptides is still not understood 

(Cheung et al., 2008; Wei et al., 2019). Overall, cryptic transcripts can expand the yeast 

transcriptome and proteome and future work focusing on their functionality will be key in 

understanding the significance of this phenomenon. 

 

Additional Functions in Budding Yeast and Set2 Homologs 

Additional Functions in Budding Yeast 

In addition to transcription elongation, Set2 and H3K36me have functions in DNA 

damage repair, the cell cycle, aging, and mRNA splicing. Set2 and H3K36me function in the 

early stages of checkpoint activation and require the interaction with RNAPII to function at sites 

of DNA damage (Jha and Strahl, 2014; Winsor et al., 2013). In the absence of Set2 and 

H3K36me, cells are sensitive to phleomycin, a double strand break (DSB) inducing agent, and 

also show reduced γ-H2A.X, increased H4 acetylation, and increased H3 and Htz1 retention at 

DSB sites. The altered chromatin structure found at DSB sites makes set2∆ cells more prone to 

homologous recombination (HR) than non-homologous end joining (NHEJ). (Jha and Strahl, 
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2014). Future work examining the possibility that H3K36me recruits specific repair machinery 

will further our understanding of Set2 and H3K36me in DNA damage response. 

          During the cell cycle, Set2 and H3K36me function to repress cryptic transcription at cell 

cycle genes. Repressing cryptic transcription and thereby preventing transcriptional interference 

ensures that the cell cycle genes are properly expressed. However, in set2∆ and K36A strains, 

cells show delayed progression through G1 and rapidly progress through S phase. Interestingly, 

Set2 and H3K36me3 are most abundant during G2/M and targeted for destruction during M 

phase, with evidence suggesting that the APC/CCDC20 complex degrades Set2 (Dronamraju et 

al., 2017). Similar to its function in repressing cryptic transcription during carbon source shifting 

and nutrient stress, Set2 and H3K36me also contribute to maintaining the precise transcriptional 

programming of the cell cycle (Dronamraju et al., 2017; Kim et al., 2016; McDaniel et al., 2017). 

Global chromatin alterations have been linked to aging, including changes to H3K36me. 

An overarching model is that reduced nucleosome occupancy contributes to expression of 

genes that are normally repressed (Hu et al., 2014). Interestingly, cells with H3K36 mutants 

(H3K36R or H3K36E) or set2∆ displayed a decreased life span, while cells lacking the H3K36 

demthylase, Rph1, had an increased life span. The decreased longevity in H3K36me deficient 

and set2∆ cells was attributed to the increased acetylation across gene bodies, thus more open 

chromatin environment, and increased cryptic transcription found in those cells (Sen et al., 

2015). Overall, the role of Set2 and H3K36me in maintaining a proper chromatin environment 

and repressing cryptic transcription serves as an important mechanism in aging. 

When looking at splicing defects in set2∆ cells, there is decreased splicing efficiency, 

which relies on the interaction between Set2 and RNAPII (Leung et al., 2019; Sorenson et al., 

2016). Additionally, some evidence suggests that Eaf3 bound to H3K36me recruits splicing 

factors Prp45 and Prp19 to actively transcribed genes (Leung et al., 2019). While less than 5% 

of genes have introns in budding yeast, those genes account for 30% of transcripts (Ares et al., 

1999). Since H3K36me occurs co-transcriptionally, its involvement in splicing is not surprising, 
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and better mechanistic insight into how it interacts with and recruits the spliceosome will 

improve our understanding of the combined roles of chromatin, transcription, and splicing in 

gene expression. 

 

Schizosaccharomyces pombe 

Schizosaccharomyces pombe, or fission yeast, is a distant cousin to budding yeast. It is 

considered a more ancient yeast species since fewer evolutionary changes occurred in fission 

yeast than budding yeast since diverging from their common ancestor. Overall, more genes are 

conserved between fission yeast and mammals than between budding yeast and mammals. 

The similarities and differences between budding yeast and fission yeast provide valuable 

evolutionary insight. Conserved mechanisms between the two species indicate a mechanism 

that is likely conserved across eukaryotes, while differences between the two suggest more 

diversity in other eukarytoes (Hoffman et al., 2015). In fission yeast, as in budding yeast, Set2 is 

the sole enzyme responsible for H3K36me1/2/3 and binds to phosphorylated serine 2 on the 

RNAPII CTD through its SRI domain (Kizer et al., 2005; Strahl et al., 2002; Suzuki et al., 2016). 

Likewise, Set2 and H3K36me influence DSB repair choice in fission yeast, tipping the balance 

in favor of NHEJ. However, data in fission yeast suggests that H3K36me peaks in S/G2 of the 

cell cycle and Set2 protein levels are constant throughout (Pai et al., 2014). The difference in 

cell cycle regulation is intriguing, especially considering the human homolog, SETD2, is 

regulated similarly to budding yeast Set2 (discussed below) (Dronamraju et al., 2017). 

Interestingly, Set2 and H3K36me were implicated in the DNA replication checkpoint pathway, 

but recent data indicates that cells lacking Set2 and H3K36me are capable of normal DNA 

replication checkpoint signaling (Kim et al., 2008; Pai et al., 2017). Instead, H3K36me in fission 

yeast seems to be important for MBF complex binding, which controls the expression of genes 

important for the G1/S transition (Pai et al., 2017). Overall, the similarities and differences 
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between fission and budding yeast continue to better our understanding of the molecular 

mechanisms regulated by Set2 and H3K36me. 

 

Caenorhabditis elegans 

In Caenorhabditis elegans, there is no longer a single enzyme that catalyzes H3K36me, 

but two: MET-1 and MES-4. MET-1 catalyzes H3K36me co-transcriptionally, while MES-4 does 

not require an association with RNAPII and is important for germline development (Andersen 

and Horvitz, 2007; Bender et al., 2006; Furuhashi et al., 2010; Rechtsteiner et al., 2010). 

Previously, it was thought that only MET-1 was capable of generating H3K36me3, but recent 

evidence demonstrates that MES-4 can also catalyze H3K36me3. MES-4 is the major 

H3K36me3 methyltransferase in early embryos and requires the H3K36me3 transmitted to the 

progeny by the sperm and oocyte for its recruitment, thus establishing a mechanism for the 

epigenetic memory of H3K36me3 across generations (Kreher et al., 2018). Genome-wide 

analysis shows that H3K36me3 is enriched over exons, a pattern that is similar to humans 

(discussed below) (Kolasinska-Zwierz et al., 2009). Additionally, C. elegans is one of the 

premiere model systems for studying development and aging because of their short life span 

and ability to produce many progeny (Corsi et al., 2015). Multiple studies observed shorter 

lifespans in C. elegans that have decreased H3K36me3 levels (Pu et al., 2015; Sen et al., 

2015). Mechanistically, it appears that H3K36me3 acts to prevent cryptic transcription and 

maintain proper gene expression, similar to budding yeast (Sen et al., 2015). Continued work in 

C. elegans will help elucidate the function of H3K36me in multicellular organisms, particularly in 

splicing, aging, and epigenetic memory. 

 

Drosophila melanogaster 

Drosophila melanogaster has long been a powerful model organism due to their easily 

manipulated genomes and short life span, making them particularly compelling model systems 
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for development and cell biology (Hales et al., 2015). In Drosophila, like in C. elegans, there are 

two enzymes that catalyze H3K36me. Mes-4 catalyzes H3K36me1 and H3K36me2, while 

dSet2, the homolog of budding yeast Set2, catalyzes H3K36me3 (Venkatesh and Workman, 

2013). dSet2 and H3K36me3 is required for proper development and like in budding yeast, it 

associates with the hyperphosphorylated CTD of RNAPII (Bell et al., 2007; Stabell et al., 2007). 

In H3K36R mutants, there is an increase in H4 acetylation, but no cryptic transcripts detected, 

indicating differences in how cryptic transcription in metazoans is regulated compared to 

budding yeast. Interestingly, evidence suggests that H3K36me is important post-

transcriptionally and functions in proper mRNA maturation (Meers et al., 2017). Another function 

of H3K36me in Drosophila that is distinct from its function in budding yeast is in recruiting the 

MSL complex to the male X chromosome for dosage compensation (Larschan et al., 2007). A 

recently developed histone gene replacement platform in Drosophila is an excellent system to 

study the function of specific histone residues and will help continue to increase our knowledge 

of H3K36me in metazoans (McKay et al., 2015). 

 

Humans and Cancer Relevance 

In humans, there are several enzymes that catalyze H3K36me, underscoring the 

increased complexity of gene regulation in multicellular metazoans. NSD1, NSD2, NSD3, 

SETMAR, SMYD2, and ASH1L catalyze H3K36me1 and H3K36me2, while SETD2 catalyzes 

H3K36me3 (McDaniel and Strahl, 2017). SETD2 is the human homolog of yeast Set2 and was 

initially identified in a yeast two-hybrid screen for interacting partners of huntingtin protein 

(Faber et al., 1998; Sun et al., 2005). Like other Set2 homologs, SETD2 interacts with the 

hyperphosphorylated CTD of RNAPII and is important during development (Hu et al., 2010; Sun 

et al., 2005). Since its identification, SETD2 has been linked to many cellular processes, such 

as splicing, DNA repair, and cell cycle regulation, amongst others. 
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 Given the well-established role for H3K36me3 in transcription, it is not surprising that 

H3K36me3 is also important for splicing. The first evidence of its role in splicing came from 

examining alternative splicing of the FGFR2 gene in human cells. Exon IIIb of FGFR2 is 

included in PNT2 cells and exon IIIc is excluded, while the opposite occurs in hMSCs; exon IIIb 

is excluded and exon IIIc is included. The PTB protein regulates the alternative splicing of 

FGFR2 by binding to silencing elements around exon IIIb and ensuring its exclusion. 

Interestingly, H3K36me3 was enriched at the FGFR2 gene in hMSCs, cells where exon IIIb is 

excluded. When SETD2 was overexpressed and H3K36me3 levels increased, there was 

increased exon IIIb exclusion, establishing a causal relationship between H3K36me3 and 

alternative splicing (Luco et al., 2010). Additionally, in tumor cells with mutated SETD2 and 

reduced H3K36me3, there was increased intron retention (Simon et al., 2014). The exact 

mechanism for H3K36me3 in splicing is not known. H3K36me3 may recruit MRG15, the human 

homolog of Eaf3, to splice sites which may in turn recruit other proteins for splicing (Luco et al., 

2010). Tumor cells with mutated SETD2 had changes in chromatin accessibility in addition to 

splicing defects, suggesting the ability of H3K36me3 to recruit chromatin remodelers may also 

contribute to its role in splicing (Simon et al., 2014). 

 Several studies have demonstrated a function for SETD2 and H3K36me3 in DNA 

damage repair pathways and the cell cycle. During mismatch repair (MMR), the mismatch 

recognition protein hMutSα binds to H3K36me3 through its PWWP domain. Cells with 

decreased SETD2 compared to wild-type have microsatellite instability, which is common in 

certain forms of cancers (Li et al., 2013). Additionally, H3K36me3 can recruit LEDGF, CtlP, and 

RAD51, which are critical for end resection during in HR (Carvalho et al., 2014; Kanu et al., 

2015; Pfister et al., 2014). The involvement of SETD2 with HR is intriguing, considering the role 

of budding yeast Set2 in promoting NHEJ over HR (Jha and Strahl, 2014). However, in the cell 

cycle, SETD2 exhibits a conserved function with budding yeast Set2. SETD2 protein levels are 

highest in G2/M and lowest in G1 and S phase. Additionally, SETD2 is important for 
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transcriptional regulation of cell cycle genes and targeted by APC/C for destruction (Dronamraju 

et al., 2017). 

 In addition to its functions in splicing, DNA repair, and the cell cycle, SETD2 has been 

implicated in a variety of other cellular processes. Both de novo DNA methyltransferases, 

DNMT3a and DNMT3b, bind H3K36me3 through their PWWP domains (Dhayalan et al., 2010; 

Rondelet et al., 2016). In vitro work and studies in mouse stem cells demonstrate that DNMT3a 

and DMNT3b activity is increased by binding to H3K36me3 and targets the enzymes to gene 

bodies (Baubec et al., 2015; Dhayalan et al., 2010; Morselli et al., 2015). Interestingly, 

methylation by DNMT3b represses cryptic transcription and depends upon recruitment and 

activation by H3K36me3 (Neri et al., 2017). Another silencing mechanism that SETD2 is 

functionally related to is PRC2-mediated gene repression. The Tudor domain of PCL1 can bind 

H3K36me3 and recruit PRC2, the enzyme responsible for H3K27me3 and transcriptional 

repression at many developmental loci (Cai et al., 2013). Recent work in mice has also shown 

that SETD2 and H3K36me3 are necessary for lymphocyte development and V(D)J 

recombination (Ji et al., 2019). Finally, in addition to its role in methylating H3K36, SETD2 has 

been connected to tubulin methylation and cytoskeleton reorganization (Park et al., 2016). All of 

these functions underscore the importance of SETD2 and H3K36me3 in maintaining genomic 

integrity. 

With SETD2 and H3K36me3 playing an integral role in many cellular functions, it is no 

surprise that SETD2 is loss or mutated in many forms of cancer. SETD2 mutations in cancer 

were first observed in clear cell renal cell carcinoma (ccRCC) (Dalgliesh et al., 2010). SETD2 is 

located on chromosome 3p and one allele of chromosome 3p is frequently loss in ccRCC. Along 

with SETD2, VHL, PBRM1, and BAP1 are located on chromosome 3p and the combined 

chromosomal loss, inactivation of VHL, and mutation in a chromatin-modifying enzyme 

characterizes many ccRCC tumors (Duns et al., 2012; Gerlinger et al., 2012; The Cancer 

Genome Atlas, 2013; Zbar et al., 1987). In addition to ccRCC, SETD2 mutations are found in a 
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myriad of cancers, including lung adenocarcinoma, endometriod carcinoma, and hematopoietic 

cancers, amongst others (Jiang et al., 2018; Li et al., 2016; Yuan et al., 2017; Zhu et al., 2014). 

In addition to the loss or mutation of SETD2, mutations to H3K36 have recently emerged in 

several types of cancer. Initially, a lysine to methionine (H3K36M) mutation was identified and 

characterized in chondroblastomas, a type of bone cancer. Tumors with H3K36M showed a 

global decrease in H3K36me2 and H3K36me3 along with a redistribution of H3K27me3 and 

PRC1/PRC2-mediated silencing. While only 1 allele out of the 32 encoding for H3K36 was 

mutated to H3K36M, the mutation acted as a dominant-negative by trapping SETD2 and 

inhibiting its methyltransferase activity (Fang et al., 2016; Lu et al., 2016). Based on the crystal 

structure of the SETD2 catalytic domain bound to H3K36M peptide, conformational changes in 

the PS domain contribute to the increased association with H3K36M and decreased enzymatic 

activity (Yang et al., 2016; Zhang et al., 2017). In addition to chondroblastoma, H3K36M 

mutations are observed in pediatric soft tissue sarcoma and head and neck squamous cell 

carcinoma (Lu et al., 2016; Papillon-Cavanagh et al., 2017). Continued efforts to understand 

how H3K36M mutations contribute to cancer development will likely reveal similar mechanisms 

as cancers with SETD2 mutations. 

Despite the lack of mechanistic understanding of how SETD2 and H3K36m3 contribute 

to tumorigenesis, their functions in transcription, DNA repair, and the cell cycle have already 

been implicated. Approximately 25% of genes expressed in one cohort of ccRCC tumors had 

RNA processing defects (Simon et al., 2014). Transcriptional data from The Cancer Genome 

Atlas demonstrates that transcriptional read-through (transcription occurring past the 3’ 

termination site) is common in tumors with SETD2 mutations and correlates with worse patient 

outcomes. Read-through transcription can interfere with transcription of the neighboring gene 

and create RNA chimeras, thus interfering with normal gene expression (Grosso et al., 2015). 

H3K36M mutations redistribute PRC1 and suppresses gene expression (Lu et al., 2016). At 

sites of DNA damage, ccRCC and ALL cells failed to properly load repair machinery and lose 
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important checkpoint activation signaling (Carvalho et al., 2014; Kanu et al., 2015; Mar et al., 

2017). Additionally, cell cycle genes are improperly expressed when SETD2 and H3K36me3 are 

absent in a variety of tumors (Dominguez et al., 2016). Examining the interplay of transcription, 

DNA repair, and cell cycle regulation by SETD2 and H3K36me3 will be critical in understanding 

their contributions to cancer development. 

 

Non-histone PTMs and their Biological Functions 

PTMs on non-histone proteins have important biological functions. Cellular processes 

such as transcription, the cell cycle, and DNA repair rely on non-histone PTMs for proper 

activation, recruitment, and destruction of key proteins involved (Biggar et al., 2017; Duan and 

Walther, 2015; Narita et al., 2019). As discussed above, phosphorylation on the CTD of RNAPII 

regulates the recruitment of transcriptional machinery. Without proper CTD phosphorylation, key 

proteins are not recruited and normal gene expression cannot occur (Zaborowska et al., 2016). 

Interestingly, advances in mass spectrometry have revealed that chromatin-modifying enzymes 

are also post-translationally modified (Biggar et al., 2017). Furthermore, changes to the PTMs 

on chromatin-modifying enzymes have already been associated with disease (Habibian and 

Ferguson, 2019).  

Three well-studied PTMs on non-histone proteins include methylation, acetylation, and 

phosphorylation. Methylation and acetylation are found on lysine and arginine residues, while 

phosphorylation occurs on serine, threonine, and tyrosine residues (Buuh et al., 2017). The 

PTMs contribute to their enzymatic activity, protein stability, and subcellular localization, 

amongst other functions (Biggar and Li, 2015; Narita et al., 2019; Ubersax and Ferrell, 2007). 

Several examples have recently emerged, such as Gcn4 acetylation of Rsc4 preventing Rsc4 

from binding to its normal substrate and carrying out its remodeling function to phosphorylation 

of NuA4 and its role in DNA damage repair (Cheng et al., 2018; VanDemark et al., 2007). The 
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interplay between non-histone PTMs, transcription, and other cellular processes is a key 

regulatory feature across organisms. 

 

Concluding Remarks and Contributions of This Work 

Since the proposal of the Histone Code Hypothesis, significant progress has been made 

toward understanding how histone PTMs function in a variety of cellular processes. 

Furthermore, studies focused on non-histone PTMs have also increased our understanding of 

cell signaling and gene expression regulation. A well-studied methyltransferase, Set2, and its 

catalytic product, H3K36me, are conserved from yeast to humans, thus underscoring their 

importance in transcriptional regulation and other cellular processes. While substantial progress 

has been made in understanding the functions of Set2 and H3K36me, various questions remain 

unanswered. Many studies of Set2 and H3K36me take place in the context of wild-type or set2∆ 

cells; however there has not been a comprehensive examination of the different H3K36me 

states and their functions. In Chapter 2, I describe biochemical, genetic, and genomic assays 

that elucidate the unique and shared functions of the H3K36me states. Furthermore, no studies 

have examined the PTMs that occur on Set2 and how those affect Set2 function. In Chapter 3, I 

present biochemical and phenotypic data that provides evidence for PTMs on Set2 and their 

functions. As discussed earlier in this Chapter, the human homolog of Set2, SETD2, is 

commonly mutated in cancer, particularly ccRCC. In Appendix A, I present data highlighting the 

similarities and differences between Set2 and SETD2 in their structure and function. Finally, 

Chapter 4 discusses the contributions of this work in the larger context of transcriptional 

regulation and future experiments that will increase our understanding of Set2 and H3K36me. 

Overall, the work of this dissertation provides new insight into the regulation and function of 

Set2 and H3K36me. 
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Figures 

 

Figure 1.1: Set2 Domain Map 

The H4 interacting domain is at the N-terminus (green). The catalytic domain is comprised of 
the Associated with SET domain (AWS, yellow), the SET domain (tan), and the Post-SET 
domain (PS, orange). In the middle of the protein is the autoinhibitory domain (blue). In the C-
terminus, there are three protein-protein interacting domains, including the WW domain (red), 
the coiled-coiled domain (teal), and the Set2 Rpb1 Interacting domain (SRI, purple). 
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Figure 1.2: H3K36 Methylation Interacting Proteins 

Rpd3S (green), Isw1b (pink), and NuA3b (blue) complexes bind to H3K36me (yellow) and carry 
out their respective functions on nucleosomes. Asf1 (purple) cannot bind to nucleosomes 
marked with H3K36me. 
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Figure 1.3: Schematic of Cryptic Transcription in wild-type and set2∆ 

In wild-type cells, transcription starts from the canonical 5’ promoter and is repressed from 
within gene bodies. In set2∆ cells, cryptic transcription is observed and can occur bidirectionally 
from within the gene body. 
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CHAPTER 2 – UNIQUE AND SHARED ROLES FOR HISTONE H3K36 
METHYLATION IN TRANSCRIPTION REGULATION FUNCTIONS 

 

Summary 

Set2 co-transcriptionally methylates lysine 36 of histone H3 (H3K36), producing mono-, 

di-, and trimethylation (H3K36me1/2/3). These modifications recruit or repel chromatin effector 

proteins important for transcriptional fidelity, mRNA splicing, and DNA repair. However, it was 

not known whether the different methylation states of H3K36 have distinct biological functions. 

We used engineered forms of Set2 that produced different methyl states to identify unique and 

shared functions for H3K36 modifications. Although H3K36me1/2 and H3K36me3 were 

functionally redundant in many SET2 deletion phenotypes, H3K36me3 had a unique function 

related to Bur1 kinase activity and FACT complex function. Further, during nutrient stress, either 

H3K36me1/2 or H3K36me3 repressed high levels of histone acetylation and cryptic transcription 

that arises from within genes. Our findings uncover the potential for regulation of diverse 

chromatin functions by different H3K36 methylation states. 

 

Introduction 

Histone post-translational modifications affect a great variety of DNA-templated 

processes. Methylation, acetylation, and other modifications are added to histones by 

chromatin-modifying enzymes (Rothbart and Strahl, 2014; Soshnev et al., 2016). These 

chemical modifications can alter histone-DNA contacts and they often serve as docking sites for 

effector proteins. The coordinated effort of histone modifications, chromatin-modifying enzymes, 

and effector proteins helps RNA polymerase II (RNAPII) to gain access to DNA for transcription, 
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replication, and DNA repair (Papamichos-Chronakis and Peterson, 2013; Smolle and Workman, 

2013). A similar coordinated effort is employed to make the genome unreachable by RNAPII at 

appropriate times to prevent aberrant transcription. 

Set2 is a chromatin-modifying enzyme that contributes to prevention of inappropriate 

transcription. Set2 methylates histone H3 at lysine 36 (H3K36) (McDaniel and Strahl, 2017; 

Strahl et al., 2002; Venkatesh and Workman, 2013). In Saccharomyces cerevisiae (hereafter, 

budding yeast), Set2 is responsible for all forms of H3K36 methylation, mono-, di-, and 

trimethylation. Set2 binds to the C-terminal domain (CTD) of transcribing RNAPII and catalyzes 

H3K36 methylation (H3K36me) in actively transcribed genes (Kizer et al., 2005; Xiao et al., 

2003). H3K36me provides docking sites for several proteins, such as Rpd3S, a histone 

deacetylase complex, and Isw1b, a nucleosome remodeler. Rpd3S is recruited to chromatin by 

the PHD fingers in Rco1 and the activity of Rpd3S is stimulated by binding of the Eaf3 

chromodomain to H3K36me2 (Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005; 

Li et al., 2007; McDaniel et al., 2016; Ruan et al., 2015). Additionally, Isw1b associates with 

chromatin by way of the Ioc4 PWWP domain binding to H3K36me3 (Maltby et al., 2012; Smolle 

et al., 2012). Collectively, these processes ensure transcriptional fidelity by preventing 

transcription initiation from within gene bodies, a process known as cryptic transcription. 

In the absence of Set2 and H3K36me, both sense and antisense cryptic transcription 

occur across the genome. Cryptic transcription tends to be a consequence of bi-directional 

transcriptional events at cryptic promoters within gene bodies (Carrozza et al., 2005; 

Churchman and Weissman, 2011; Joshi and Struhl, 2005; Lickwar et al., 2009; Neil et al., 2009; 

Xu et al., 2009). Precisely how cryptic sites become accessible in SET2 deletion mutants 

(set2∆) is not fully understood; however, a lack of Set2-mediated H3K36me results in increased 

histone exchange along with increased histone acetylation – both phenomena that may promote 

recruitment of RNAPII initiation factors and chromatin remodelers such as RSC that promote 

chromatin disruption (Li et al., 2007; Pattenden et al., 2010; Smolle et al., 2012; Venkatesh et 
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al., 2012). From a functional standpoint, cryptic transcription in the absence of Set2 does not 

result in significant growth defects when examined in nutrient-rich medium, although cell cycle 

progression is partially disrupted (Dronamraju et al., 2018; Kim et al., 2016; Lenstra et al., 2011; 

McDaniel et al., 2017; Venkatesh et al., 2016). In contrast, during nutrient deprivation or carbon 

source shifting, cryptic antisense transcription can occur at a level sufficient to impair normal 

transcription and lead to improper gene expression and poor cell growth (Kim et al., 2016; 

McDaniel et al., 2017).  

Although the functions of Set2 and H3K36 methylation have been studied intensely, 

there are no studies that have thoroughly interrogated which functions of Set2 are directed by 

the different (mono- di-, and tri-) H3K36 methylation states. Previous reports suggest that 

H3K36me3 is dispensable for suppression of cryptic transcription (Hacker et al., 2016; Li et al., 

2009; Youdell et al., 2008). In contrast, set2 mutants that harbor only H3K36me1 exhibit cryptic 

transcription, suggesting that the main functions of H3K36 methylation occur through 

H3K36me2 (Hacker et al., 2016). However, it is not known whether H3K36me3 function is 

unique or overlapping with the other H3K36me states.  

In this study, we engineered the SET domain of Set2 so that it performed only 

H3K36me1, H3K36me1/2, or H3K36me3, thus affording a unique opportunity to interrogate the 

functions of different methylation states. We found that Set2 that generated H3K36me3 and 

H3K36me1/2 can act redundantly to rescue several canonical phenotypes associated with 

set2∆, e.g., caffeine sensitivity and DNA damage response. In contrast, Set2 that generated 

only low levels of H3K36me1 did not rescue set2∆ phenotypes. However, only H3K36me3 

rescued other set2∆ phenotypes, e.g., bur1∆ or spt16-11 bypass. Intriguingly, strains that 

produced either H3K36me1/2 or H3K36me3 could largely suppress cryptic transcription during 

nutrient stress. Approximately 60% of the identified cryptic transcript initiation sites contained a 

degenerate TATA box motif, a fact that suggested how those sites become susceptible to 

cryptic transcription in the absence of H3K36me. Additionally, H3K36me1/2 or H3K36me3 could 



 

26 

function to ensure proper levels of H3K27ac and H3K56ac in genes, pointing to a potential 

mechanism for preventing inappropriate transcriptional initiation by control of nucleosome 

remodeling and histone exchange. In sum, our data provide key evidence for the independent 

and overlapping functions of H3K36me1/2 and H3K36me3 in chromatin biology and in 

transcriptional regulation. 

 

Results 

Phe/Tyr Switch in Set2 separates H3K36 Methylation States in vitro 

Although previous studies have assessed the effects of losing or limiting H3K36 

methylation, no study has comprehensively examined the individual functions of each H3K36 

methylation state produced by Set2. To create a system in which we could control production of 

H3K36 methylation states, we employed a structural mutagenesis approach for Set2 based on 

the Phe/Tyr switch phenomenon that alters the SET domain lysine-binding pocket (Cheng et al., 

2005; Collins et al., 2005). Briefly, two well-positioned aromatic residues within the SET domain 

(a phenylalanine [Phe, F] and a tyrosine [Tyr, Y]) can be switched to the opposite aromatic 

residue to control the size of the catalytic domain. An F to Y mutation creates steric hindrance in 

the active site with lysine trimethylation, thereby limiting the enzyme to only mono- and 

dimethylation. However, a Y to F change creates more space and promotes the catalysis of 

trimethylation. In Set2, Y149 and F234 were predicted to comprise the Phe/Tyr switch (Cheng et 

al., 2005; Collins et al., 2005) (Figure 2.1A).  

To determine whether Set2 Y149 and F234 can function as a Phe/Tyr switch, we 

created a structural model of the Set2 SET domain by using MODELLER and the crystal 

structure of SETD2 (PDB ID 5JLB) as the template (Webb and Sali, 2016; Yang et al., 2016). 

The template and alignment were the top hit generated by I-TASSER (Zhang, 2008). The model 

confirmed that Y149 and F234 are part of the lysine-binding pocket (Figure 1B, left panel) and 
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configured to enable Set2 to mono-, di-, and trimethylate H3K36. We then investigated this 

model for the effect of deploying the Phe/Tyr switch. Modeling showed that the Y149F mutation 

opened the SET domain binding pocket and eliminated hydrogen bonding between the hydroxyl 

group of tyrosine and H3K36me (Figure 2.1B, middle panel). These changes would permit rapid 

rotation of the target lysine in the presence of S-adenosylmethionine (SAM) and likely increase 

the potential for higher methylation states on H3K36. Conversely, the F234Y substitution 

created steric hindrance between the tyrosine hydroxyl group and the target lysine, thus 

suggesting that this mutant would limit H3K36me3 (Figure 2.1B, right panel). These findings are 

consistent with these residues encompassing a working Phe/Tyr switch in Set2. 

Lastly, we measured the effect of the Phe/Tyr switch on Set2 enzymatic activity. We 

performed histone methyltransferase (HMT) activity assays with recombinant Set2 (wild-type, 

set2-Y149F, and set2-F234Y ), SAM, and recombinant Xenopus nucleosomes; methylation 

states were detected by Western blot analysis with antibodies specific to the three modifications 

(Figures 2.1C and 2.1D). We found that set2-Y149F catalyzed predominately H3K36me3, 

whereas set2-F234Y catalyzed H3K36me1 and H3K36me2 (Figure 2.1D). Overall, these results 

demonstrated that the SET domain of Set2 contains a functional Phe/Tyr switch that can be 

used to produce specific H3K36 methylation states. 

 

Phe/Tyr Switch Mutations in Set2 are Tools to Separate H3K36 Methylation States in vivo 

To test the effect of the Set2 Phe/Tyr switch on H3K36 methylation in vivo, we generated 

yeast strains harboring endogenous set2-Y149F or set2-F234Y mutations. For controls, we 

included a set2∆ strain and a catalytic domain mutant strain (set2-H199L) that was capable of 

producing only low levels of H3K36me1 in vivo (Hacker et al., 2016; Jha and Strahl, 2014). The 

set2-Y149F mutation predominately resulted in H3K36me3 and a low level of H3K36me1 

(Figure 2A). In contrast, the set2-F234Y mutation limited Set2 methylation to H3K36me1/2 
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(Figure 2.2A). As previously described, the absence of Set2 resulted in complete loss of H3K36 

methylation and the catalytic domain mutant, set2-H199L, showed only a low level of 

H3K36me1 (Figure 2.2A and Figure 2.3A). The SET domain mutations did not alter the amount 

of Set2 protein (Figure 2.2B), however, global H3K36 methylation differed from wild-type. The 

set2-Y149F mutant had an average of 56% of the wild-type H3K36me3 (Figure 2.2C). set2-

F234Y showed an H3K36me2 signal similar to wild-type (93%), but a 5-fold increase in 

H3K36me1 (Figures 2.2D and 2.2E). set2-H199L had a reduced H3K36me1 signal compared 

with wild-type. Overall, these results confirmed that the Phe/Tyr switch in Set2 functioned in vivo 

and, although global H3K36me levels varied from wild-type, we could largely control different 

methylation states. 

Because some of our downstream genetic analyses would require expression of SET2 

from plasmids, we also examined the effect of the set2 mutants in two exogenous expression 

systems: expression of SET2 and the set2 mutants from their native promoter and 

overexpression of the same genes from the ADH1 promoter. Western blot analyses for H3K36 

methylation in these two systems revealed two important finings. First, the set2-Y149F and set2-

F234Y mutants, regardless of expression system, recapitulated the initial in vivo findings that 

the Phe/Tyr switch could control the methylation states of H3K36 (Figure 2.3B). Second, and 

surprisingly, overexpression of SET2 via the ADH1 promoter resulted in robust overexpression 

of Set2 protein compared with expression from its endogenous promoter, yet global H3K36 

methylation levels in the wild-type or set2 mutants were similar to or lower than normal. Thus, 

although it was possible to greatly overexpress Set2, the amount of methylation that Set2 can 

produce on chromatin must have a limit, perhaps due to a finite number of Set2 binding sites on 

the CTD of RNAPII, restricted histone accessibility, limited SAM availability, or a combination of 

these factors. 

Overall, these results were consistent with the in vitro data and they demonstrated that 

the Phe/Tyr switch mutants were specific for performing predominately H3K36me3 or 
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H3K36me1/2. These provided tools to examine in vivo the functions of different methylation 

states of H3K36. 

 

Distinct Methylated Forms of H3K36 are Deposited within or near Transcribed Regions of 
Genes 
 

We next asked whether the set2 mutants still deposited H3K36me within or near the 

coding regions of genes in a manner consistent with its known localization and function 

(Pokholok et al., 2005; Rao et al., 2005; Weiner et al., 2015). We first confirmed by co-

immunoprecipitation that the set2 mutants still associated normally with phosphorylated RNAPII 

(Figure 2.3C). Consistent with RNAPII association, ChIP-qPCR of all H3K36me forms in the 

set2 mutants confirmed that they were deposited within or near the coding regions of several 

loci tested (STE11, PMA1, and TDH3, see Figures 2.4A, 2.4E, and 2.4I). Additionally, the 

H3K36me states detected by ChIP-qPCR were consistent with the aforesaid in vitro HMT and 

Western blot assays (Figures 2.1C and 2.2A). 

Closer comparison of the differently methylated H3K36 forms with wild-type revealed 

several key observations. As shown in Figures 2.4B, 2.4F, and 2.4J, there were no significant 

differences in the H3K36me3 levels between wild-type and set2-Y149F at all loci tested. 

However, for H3K36me2, we observed differences between wild-type and set2-F234Y at STE11 

and PMA1. A significantly higher H3K36me2 level was detected in the middle of STE11 in set2-

F234Y (Figure 2.4C), whereas, at PMA1, a significantly higher H3K36me2 level was detected 

across the entire gene body (Figure 2.4G). In contrast, we did not detect any significant 

difference in H3K36me2 levels between set2-F234Y and wild-type at TDH3 (Figure 2.4K). As 

expected from the high H3K36me1 Western blot signal, set2-F234Y had significantly higher 

levels of H3K36me1 in the 3’ end of STE11 and across the entirety of PMA1 and TDH3 

compared with wild-type (Figures 2.4D, 2.4H, and 2.4L). Finally, although global levels of 

H3K36me1 were lower in set2-H199L, we observed nearly wild-type levels of H3K36me1 in 
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set2-H199L at the loci examined. At STE1, we did not find significant differences in H3K36me1 

between set2-H199L and wild-type (Figure 2.4D and Figure 2.5). However, at PMA1, there was 

significantly more H3K36me1 deposited by set2-H199L in the gene body (Figure 2.4H Figure 

2.5D). In contrast, we detected less H3K36me1 at the 5’ end of TDH3 in set2-H199L compared 

with wild-type, although the rest of that locus did not show a significant difference between the 

mutant and wild-type. Overall, these results established that the levels of H3K36me in the set2 

mutants differed from wild-type at certain loci, but the results further confirmed the specificity of 

the set2 mutants and indicated that differentially methylated forms of H3K36 were localized 

within or near the bodies of transcribed genes. 

 

H3K36me1/2 and H3K36me3 Function Redundantly in Some Cellular Contexts 

To determine whether the different forms of H3K36me are responsible for distinct 

biological outcomes, we examined the sensitivity of set2 methylation mutants to drugs that 

affect set2∆ cell growth. We tested caffeine (a TOR1C and MAP kinase inhibitor), rapamycin (a 

TOR1C inhibitor), phleomycin (a double-strand break-inducing agent), and 6-azauracil (6-AU, a 

transcriptional elongation inhibitor) (Jha and Strahl, 2014; Kizer et al., 2005; McDaniel et al., 

2017). Like previous work, we found that set2∆ and set2-H199L mutant cells were sensitive to 

caffeine, rapamycin, and phleomycin, and they were resistant to 6-AU (Figures 2.6A and 2.6B 

and Table 2.1). Intriguingly, similar to wild-type, the set2-Y149F and set2-F234Y mutants 

rescued the drug-induced growth defects from caffeine, rapamycin, and phleomycin (Figure 

2.6A and Table 2.1). However, only set2-Y149F was as sensitive to 6AU as wild-type, with set2-

F234Y having an intermediary phenotype between wild-type and set2∆ (Figure 2.6B). Thus, in 

some cellular contexts, such as TORC1 signaling and double-strand break repair, H3K36me3 

and H3K36me1/2 were functionally redundant, and a low level of H3K36me1 alone could not 

suffice. 
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Genetic Interactions of SET2 with BUR1 and SPT16 Reveal Unique Functions for 
H3K36me1/2 and H3K36me3 

In addition to phenotypes of set2∆ cells challenged with drugs, deletion of SET2 

bypasses the lethal or slow growth phenotypes associated with the inactivation or deletion of 

members of the BUR kinase and FACT complexes (Biswas et al., 2006; Chu et al., 2006; Keogh 

et al., 2003). Both complexes regulate aspects of transcription; the BUR kinase complex 

promotes RNAPII elongation and the FACT complex is responsible for nucleosome disruption 

and reassembly. Cells lacking BUR1 (bur1∆) are not viable, but they survive when SET2 is also 

deleted (bur1∆ set2∆). Likewise, cells harboring the FACT mutant allele spt16-11 grow 

extremely slow at 34°C, and deletion of Set2 bypasses this phenotype. Therefore, we examined 

our set2 methylation mutants to determine whether the different H3K36me states would bypass 

the bur1∆ and spt16-11 phenotypes. We confirmed that the presence of set2∆ in the bur1∆ or 

spt16-11 cells rescued the lethal or slow growth phenotypes, whereas exogenously expressed 

wild-type SET2 did not rescue growth (Figures 2.6C and 2.6D and Table 2.1). Surprisingly, cells 

containing the set2-Y149F allele that catalyzed only H3K36me3 phenocopied wild-type Set2, 

whereas the set2-F234Y and set2-H199L alleles that catalyzed H3K36me1/2 or low levels of 

H3K36me1, respectively, phenocopied the set2∆ cells (Figures 2.6C and 2.6D and Table 2.1). 

Thus, these findings indicated that H3K36me3 has a function distinct from H3K36me2 and 

H3K36me1 in relation to Bur1 kinase activity and FACT complex function. 

 

H3K36me1/2 and H3K36me3 Have Unique and Shared Functions in Repressing Cryptic 
Transcription at Reporter Loci 

An extensively documented phenotype of set2∆ cells is the appearance of sense and 

antisense cryptic transcripts that arise from intragenic regions (McDaniel and Strahl, 2017). 

Although our studies and others have revealed that H3K36me3 is dispensable for preventing 

cryptic transcription (Hacker et al., 2016; Li et al., 2009; Youdell et al., 2008), it was not known 

whether H3K36me3 alone can support suppression of cryptic transcription in the absence of 
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H3K36me1/2. To answer this question, we used two reporter genes, FLO8 and STE11, that 

each have internal cryptic initiation sites (CIS) and the HIS3 gene integrated out-of-frame and 

downstream of the CIS. When the FLO8 and STE11 loci are transcribed from canonical 

promoters, HIS3 is not transcribed in-frame, and the cells cannot survive on media lacking 

histidine (Silva et al., 2012; Wang et al., 2015). However, when cryptic transcription occurs at 

the CIS, HIS3 is transcribed in-frame, and cells survive without histidine (Figure 2.6E and 2.6F). 

Thus, we first confirmed that cells with wild-type SET2 suppressed cryptic transcription and did 

not grow on media lacking histidine, whereas set2∆ cells did not suppress cryptic transcription at 

either locus (Figures 2.6G and 2.6H and Table 1). At the FLO8 locus, which was under the GAL 

promoter and constitutively expressed in cells growing on galactose-containing media, both 

H3K36me3 and H3K36me1/2 were sufficient to suppress cryptic transcription similar to wild-

type SET2 (Figure 2.6G and Table 2.1). Surprisingly, at the STE11 locus, expressed from its 

native promoter and at a lower level than FLO8, only H3K36me3 prevented cryptic transcription, 

whereas cells with H3K36me1/2 or a low level of H3K36me1 did not suppress (Figure 2.6H and 

Table 2.1). Thus, at STE11, H3K36me3 alone is sufficient to suppress cryptic transcription. 

Additionally, these results suggested that H3K36me3 and H3K36me1/2 have different, but 

sometimes overlapping, functions in preventing cryptic transcription. Particularly, highly and 

lowly expressed genes may have different requirements for H3K36me. 

 

During Nutrient Deprivation, H3K36me1/2 or H3K36me3 Prevent Antisense Transcription 

Having established that different forms of H3K36me are necessary to repress cryptic 

transcription at specific loci, we examined this fact globally. Previous work from our lab 

demonstrated that robust bidirectional cryptic transcription occurs at 439 genes in set2∆ cells 

during nutrient deprivation (McDaniel et al., 2017). We used this system as a tool to learn the 

genome-wide requirement of the different H3K36me states to prevent cryptic transcription. We 
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performed stranded RNA-seq at 0 and 60 minutes following nutrient deprivation in wild-type, 

set2∆, set2-Y149F, set2-F234Y, and set2-H199L cells. We examined sense and antisense 

transcriptional signals in the genomic regions that surround the high- and intermediate-

confidence cryptic initiation sites of the aforesaid 439 genes. After 60 minutes of nutrient 

deprivation, we observed a global increase in sense and antisense transcription surrounding the 

CIS in set2∆ and set2-H199L cells (Figure 2.7A). Interestingly, cryptic transcription was not 

completely repressed in set2-Y149F or set2-F234Y; both mutants showed a slight increase in 

antisense transcription upstream of the CIS compared with wild-type (Figure 2.7A). When we 

separated the CIS-containing genes based on gene expression levels, we observed that set2-

Y149F or set2-F234Y repressed sense and antisense cryptic transcription similar to wild-type in 

highly and lowly expressed genes (Figure 2.8A). In contrast, set2∆ and set2-H199L did not 

repress any form of cryptic transcription in highly or lowly expressed genes (Figure 2.8A). 

Importantly, we verified that nutrient deprivation did not alter existence of the H3K36 methylation 

states catalyzed by the set2 mutants (Figure 2.7A). These results revealed that H3K36me1/2 or 

H3K36me3 can function to prevent cryptic transcription genome-wide and low levels of 

H3K36me1 do not have a large part in repressing cryptic transcription. 

 Next, we wanted to further characterize the antisense transcription that occurred in the 

set2 mutants. We previously showed that, in set2∆, 92 of 121 high-confidence CISs exhibited 

robust antisense transcription that extended to the transcription start-site. Here, we found that, 

relative to wild-type, set2∆ and set2-H199L cells exhibited increased antisense signal that 

extended to the transcription start site, irrespective of gene length, whereas this was rarely 

observed in set2-Y149F and set2-F234Y cells or when comparing wild-type replicates (Figure 

2.7B and Figure 2.8B). Previously, we had suggested that, by extending into gene promoter 

regions, this antisense transcription interfered with and reduced sense transcription (McDaniel 

et al., 2017). To examine this idea for the set2 mutants, we compared the sense and antisense 

transcriptional signals between wild-type and each of the set2 mutants, focusing specifically on 



 

34 

the regions between the CIS and transcription start sites. Any signal in these regions should 

reflect normal sense transcription and cryptic antisense transcription, but not cryptic sense 

transcription because cryptic sense transcription would only occur downstream of the CIS. 

Indeed, we frequently observed decreases in sense transcription and concomitant increases in 

antisense transcription, with the strongest effects on both strands occurring in set2∆ and set2-

H199L cells (Figure 2.7C). The effects observed here were more pronounced than the effects 

we observed between two wild-type replicates compared as a control (Figure 2.8C). Moreover, 

many of the same genes exhibited similar effects for all the set2 mutants, particularly, set2∆, 

set2-H199L, and set2-F234Y cells (Figure 2.7D). Together, these data suggested that, during 

nutrient deprivation, H3K36me1/2 or H3K36me3 suppresses cryptic antisense transcription, 

which appears to drive the downregulation of sense transcription from certain CIS-containing 

genes.  

 Lastly, we wondered whether the sequences surrounding the CIS harbored any 

particular sequence motifs that may explain why cryptic transcription initiates there and not 

elsewhere. We searched the sequences ±100 bp of the 439 high- and intermediate-confidence 

CIS and found a significant enrichment of a (T/C)AAT motif, which may represent a degenerate 

TATA box element (Figure 2.7E) (Basehoar et al., 2004; Lubliner et al., 2013). We did not 

observe this motif for a random sampling of 439 low-confidence CIS (Figure 2.8D). Therefore, 

these data suggested that cryptic transcription may initiate from TATA-like elements, but their 

suppression requires H3K36me1/2 or H3K36me3. Mechanistically, H3K36me1/2 and 

H3K36me3 may be capable of recruiting HDACs and preventing histone exchange to maintain a 

repressive chromatin environment near these TATA-like elements. 
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Alteration of Global H3K27ac and H3K56ac in set2 Methylation Mutants 

Given the ability of H3K36me1/2 and H3K36me3 to suppress antisense transcription 

during nutrient stress, we next sought to determine whether these methylation states would also 

suppress the co-transcriptional histone acetylation associated with the appearance of cryptic 

transcripts (Carrozza et al., 2005; Du and Briggs, 2010; Joshi and Struhl, 2005). H3K36 

methylation limits co-transcriptional histone acetylation in two main ways, by recruitment and 

activation of the Rpd3S deacetylation complex that removes H3 and H4 N-terminal tail 

acetylation (e.g., H3K27ac) and by the ability of H3K36me to repel the histone exchange factor 

Asf1, which helps deposit the histone exchange-associated mark H3K56ac (Merker et al., 2008; 

Venkatesh et al., 2012; Williams et al., 2008). Before evaluating the effects of the set2 mutants 

on histone acetylation, we first examined whether nutrient stress affected the amounts of Set2 

protein or degrees of H3K36 methylation. The set2 mutants showed only a slight reduction in 

Set2 protein levels after nutrient stress, but they maintained their H3K36 methylation specificity 

(Figure 2.9A and Figures 2.10A-D). Interestingly, global H3K36me1 levels were about equal 

under normal growth conditions and nutrient stress, whereas H3K36me2 and H3K36me3 

increased after nutrient stress in set2-F234Y and set2-Y149F, respectively. 

Examination of global H3K27ac levels in wild-type and our set2 mutants revealed 

several interesting observations. Under normal growth conditions, H3K27ac levels were higher 

in set2∆ and the set2 mutants compared to wild-type (Figures 2.9A and 2.9B). Global H3K27ac 

levels remained steady in wild-type cells after nutrient stress and H3K27ac level in set2-Y149F, 

set2-F234Y , and set2-H199L decreased to that of wild-type. In contrast, H3K27ac levels 

remained high in set2∆ strains after nutrient depletion. These results were consistent with the 

known function of Set2-dependent H3K36 methylation in recruiting and stimulating the activity of 

the Rpd3S histone deacetylase complex. 

When looking at H3K56ac, most strains had similar levels in normal growth conditions, 

with set2-F234Y showing a slightly lower level (Figures 2.9A and 2.9C). Intriguingly, wild-type 
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and set2-Y149F showed close to a 50% reduction in H3K56ac after nutrient stress. However, 

set2∆, set2-F234Y, and set2-H199L did not show a similar reduction in H3K56ac. Thus, the data 

suggests that during nutrient stress, H3K36me3 functions to reduce global H3K56ac levels 

because only strains containing H3K36me3 had reduced H3K56ac. 

 

H3K36me1/2 and H3K36me3 are Important for Proper H3K27ac and H3K56ac Localization 

After investigating the global effects on H3K27ac and H3K56ac levels during nutrient 

stress, we next sought to determine how the localization of these histone acetylation events 

would be affected in wild-type and our set2 mutants. Using ChIP-qPCR, we examined H3K27ac 

and H3K56ac at STE11 and SPB4 in wild-type, set2∆, set2-Y149F, set2-F234Y , and set2-

H199L strains before and after nutrient stress. Both loci showed nutrient stress-induced cryptic 

transcription in our RNA-seq data set and both genes produced cryptic transcripts as assayed 

by Northern blot (Cheung et al., 2008; McDaniel et al., 2017). On the basis of the lengths of 

cryptic transcripts detected in the RNA-seq data, we designed qPCR primers to cover the 

predicted CIS (for STE11, primer set 4; for SPB4, primer set 5) and other locations across the 

genes (Figures 2.11A and 2.11F and Figures 2.12A and 2.12F). 

When examining H3K27ac localization, we found several differences between the set2 

mutants. In set2∆, there were higher H3K27ac levels compared to wild-type near the CIS of 

STE11 and SPB4 in the 3’ regions of STE11, particularly after nutrient stress (Figures 2.11B 

and 2.11G). These data were consistent with previous reports that, in the absence of H3K36 

methylation, Rpd3S was unable to deacetylate nucleosomes (Drouin et al., 2010; Govind et al., 

2010). In contrast, for set2-Y149F and set2-F234Y, changes in H3K27ac were different at 

STE11 and SPB4. At STE11 after nutrient stress, both set2-Y149F and set2-F234Y had 

significantly higher H3K27ac compared with wild-type near the CIS and immediately 3’ (Figures 

2.11C and 2.11D). However, at SPB4, H3K27ac levels in both mutants were nearly identical to 
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wild-type before and after nutrient stress (Figures 2.11H and 2.11I). One commonality in set2-

Y149F and set2-F234Y was the significantly lower H3K27ac levels compared to wild-type at the 

promoter before nutrient stress. Similarly, set2-H199L had significantly reduced H3K27ac at the 

promoter regions of STE11 and SPB4 before nutrient stress (Figure 2.11E and 2.11J). However, 

the changes in H3K27ac near the promoter may be due to Rpd3L and Set3C recruitment, as 

those complexes localize to 5’ ends of genes (Kim et al., 2012; Shi et al., 2007; Wang et al., 

2011). Nonetheless, in set2-H199L, H3K27ac levels were higher near the CIS of STE11 and 3’ 

regions of both genes, particularly in STE11. These results demonstrated that, in certain 

contexts, H3K36me1/2 or H3K36me3 can ensure proper H3K27ac levels in gene bodies to 

repress cryptic transcription. 

The set2 mutants also showed clear differences in H3K56ac localization before and after 

nutrient stress. In set2∆, there were significantly higher H3K56ac levels compared with wild-type 

near the CIS and in the 3’ regions of STE11 and SPB4, particularly after nutrient stress (Figures 

2.12B and 2.12G). Interestingly, we also found higher levels of H3K56ac near the CIS of STE11 

under normal growth conditions. This observation suggested that, in the absence of H3K36 

methylation, sites near TATA-like elements are prone to histone exchange, and this exchange is 

exacerbated during nutrient stress. In contrast, set2-Y149F and set2-F234Y generally showed 

similar levels of H3K56ac compared to wild-type near the CIS and in the 3’ regions of STE11 

and SPB4 (Figures 2.12C, 2.12D, 2.12H, and 2.12I). However, there were significant differences 

in each mutant in the upstream noncoding, promoter, and promoter proximal regions; both set2-

Y149F and set2-F234Y had decreased H3K56ac signals compared with wild-type. Although 

set2-H199L showed robust cryptic transcription, there were no significant differences in 

H3K56ac compared to wild-type near the CIS or in the 3’ coding regions, suggesting that 

alteration of something other than histone exchange was responsible for the appearance of 

cryptic transcription at these loci during nutrient stress (Figures 2.12E and 2.12J). Taken 
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together, these data supported a model in which H3K36me1/2 or H3K36me3 can ensure proper 

H3K56ac levels in gene bodies and repress histone exchange. 

 

Discussion 

During transcriptional elongation, Set2 catalyzes H3K36me1, H3K36me2, and 

H3K36me3 and suppresses cryptic transcription (Kim et al., 2016; McDaniel and Strahl, 2017; 

Venkatesh et al., 2016). However, it was unclear whether the three methylation states of H3K36 

have distinct biological functions and which methyl state(s) is important for suppression of 

cryptic transcription. We have demonstrated that H3K36me1/2 and H3K36me3 have unique and 

shared functions, particularly regarding suppression of antisense transcription. By taking 

advantage of a functional Phe/Tyr switch in the SET domain of Set2, we controlled the 

methylation products generated by this enzyme and established the in vivo functions of different 

H3K36 methylation states. We observed that in, certain cellular contexts, such as rescuing the 

set2∆ phenotype caused by absence of the Bur1 kinase or Spt16 of the FACT complex, 

H3K36me1/2 and H3K36me3 had distinct activities. However, in other contexts, such as 

sensitivity to caffeine, rapamycin, and phleomycin, H3K36me1/2 and H3K36me3 were 

functionally equivalent. Similarly, in nutrient stress, H3K36me1/2 or H3K36me3 suppressed 

antisense cryptic transcription from within gene bodies. Without H3K36me1/2 or H3K36me3, we 

observed antisense cryptic transcription across the genome, and many loci also had decreases 

in sense transcription, in agreement with previous findings (McDaniel et al., 2017). We also 

found evidence of a degenerate TATA box motif in loci with CIS, suggesting that DNA sequence 

contributes to the sensitivity of these sites to cryptic transcription. Mechanistically, H3K36me1/2 

and H3K36me3 have an important function in ensuring proper levels of H3K27ac and H3K56ac 

in genes, particularly during nutrient stress. By maintaining proper histone acetylation levels 

within genes, cells prevent inappropriate nucleosome remodeling and histone exchange that 
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likely governs cryptic initiation events (Pattenden et al., 2010). Overall, these findings reveal 

different functions of the H3K36 methylation states in a diverse set of transcriptional programs. 

Our study shows that, in certain cellular contexts, H3K36me1/2 and H3K36me3 are 

interchangeable, thus providing flexibility to dynamic processes. This equivalency may exist 

partly because Eaf3 and Ioc4 bind to both H3K36me2 and H3K36me3, as previously shown by 

in vitro assays (Carrozza et al., 2005; Joshi and Struhl, 2005; Li et al., 2009; Maltby et al., 

2012). Additionally, both H3K36me2 and H3K36me3 peptides are refractory to Asf1 binding 

(Venkatesh et al., 2012). The recruitment or repelling of these effector proteins by sites with 

either H3K36me2 or H3K36me3 maintains a proper transcriptional response in certain contexts, 

even in the absence of one of those marks. Although previous data supported a model wherein 

H3K36me3 was dispensable for certain cellular processes, particularly suppression of cryptic 

transcription, it was counterintuitive that the cell would use energy to catalyze an unnecessary 

mark (Hacker et al., 2016; Li et al., 2009; Youdell et al., 2008). Our findings suggest that, 

instead of H3K36me3 being dispensable, it often has a redundant function with H3K36me1/2, 

thus affording the cell flexibility, particularly in response to stress. 

However, our study provides evidence that, in certain contexts, H3K36me3 has a unique 

function for which the other H3K36me forms cannot substitute. Particularly, H3K36me1/2, but 

not H3K36me3, genetically interacted with Bur1 and Spt16. With Bur1 acting upstream of Set2 

during transcription, it is unclear how Bur1 activity relates to specific H3K36me states. For the 

FACT complex, in vitro results indicated that Spt16 can bind H3K36me2 peptides, but not 

H3K36me3, peptides (Venkatesh et al., 2012). Perhaps nucleosomes with H3K36me3 are 

refractory to FACT binding, which may have protected wild-type and set2-Y149F cells from 

FACT-dependent nucleosome remodeling. Further work to ascertain how H3K36me3 functions 

in the Bur1 pathway and in FACT complex-mediated nucleosome exchange will further highlight 

how specific histone modifications facilitate distinct processes, as proposed by the histone code 

hypothesis (Strahl and Allis, 2000).  
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We were unable to ascribe a function for H3K36me1 in any of the Set2 phenotypes that 

we examined. This lack of functionality may have been because the low levels of H3K36me1 

observed in set2-H199L were not enough to elicit an activity or there simply was no function for 

H3K36me1 in these phenotypes; we cannot distinguish between these possibilities. Notably, all 

known reader domains of H3K36me interact with H3K36me2 and H3K36me3, not H3K36me1 

(McDaniel and Strahl, 2017). Pryde et al. (2009) suggested that H3K36me1 recruits the 

replication factor Cdc45 to origins. We did not interrogate this particular activity, thus, we cannot 

rule out that H3K36me1 may function in replication. H3K36me1 may be targeted by a yet-to-be 

identified reader that functions in origin activity.  

Interestingly, we identified an enriched sequence motif that resembles a degenerate 

TATA box, within 100 bp of almost 60% of high- and intermediate-scoring CIS. Although these 

sites were identified previously, it was not known what predisposed them to cryptic initiation 

events, as many of the loci are neither linked directly to nor highly transcribed during the nutrient 

stress response (McDaniel et al., 2017). Possibly, the degenerate TATA sequence motif, which 

is similar to A/T-rich promoter sequences, contributes to initiation of transcription at these loci. In 

addition to the DNA sequence, our work suggests that the chromatin architecture determines 

whether cryptic transcription can initiate at these sites. We observed that H3K36me1/2 and 

H3K36me3 are important in maintaining proper H3K27ac and H3K56ac levels at two sites of 

cryptic transcription. These results connect initiation of cryptic transcription to known Set2 

functions – Rpd3S recruitment and activation and repelling Asf1 – and provide mechanistic 

understanding of how Set2-mediated H3K36me prevents cryptic transcription. 

There is robust evidence that different methylation states at other histone lysine 

residues, such as H3K4, H3K9, and H3K27, have unique functions, but this information was 

lacking for H3K36 (Hyun et al., 2017). We have investigated the functions of different H3K36 

methylation states in vivo, particularly H3K36me3. Many studies have examined the 

consequences of the complete absence of H3K36me or the absence of one or more methylation 
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states, however there has been no comprehensive analysis of the function of each H3K36 

methylation state (Gopalakrishnan et al., 2019; Leung et al., 2019; McDaniel and Strahl, 2017). 

The distinct activities of H3K36 methylation in certain contexts and interchangeable functions in 

others presented in this study advances our understanding of how H3K36me contributes to 

transcriptional control, particularly in repressing cryptic transcription during the nutrient stress 

response. Our findings establish a foundation for elucidating mechanisms for how the H3K36me 

states contribute to a variety of cellular processes conserved across eukaryotes that are 

important for gene expression, development, and disease. 

 

Materials and Methods 

Yeast Strains and Plasmids 

Yeast strains were created using Delitto Perfetto (Stuckey and Storici, 2013) or the PCR 

Toolbox (Janke et al., 2004). Yeast strains used in this study are listed in Table 2.2 and were 

created using the primers in Table 2.3. To construct the FLAG-tagged wild-type Set2 plasmid for 

the baculovirus system, the SET2 ORF was generated by standard PCR reaction from genomic 

DNA and subcloned into XhoI/NotI digested pBL532 (a derivative of pBacPAK8 that contains an 

N-terminal HIS Tag and FLAG tag separated by a TEV protease digestion site). All other 

plasmids were created using site-directed mutagenesis (Agilent) with the primers in Table 2.3. 

Plasmids used in this study are listed in Table 2.4. 

Alignment and Molecular Modeling 

The SETD2 crystal structure (Yang et al., 2016) was isolated from the Protein Data Bank 

(PDB ID 5JLB) and served as a template for I-TASSER modeling of Set2 (Zhang, 2008). Set2 

was visualized in PyMOL, and mutations were modeled with MODELLER (Webb and Sali, 

2016). 
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Western Blotting 

All strains were grown to saturation in YPD before being diluted to an OD600 of 0.2 and 

grown to OD600 ~1 in YPD at 30°C. For nutrient deprivation experiments, cells were isolated, 

washed with water, and resuspended in SD media (Cheung et al., 2008). Ten ODs of cells were 

collected at each time point and Western blotting was performed after extraction of proteins by 

TCA lysis (Keogh et al., 2006a, 2006b). Lysates were separated by SDS-PAGE, transferred to 

PVDF membrane, and probed overnight at 4°C with Set2 (in-house), G6PDH (Sigma A9521-

1VL), H3K36me1 (abcam 9048), H2K36me2 (in-house), H3K36me3 (abcam 9050), H3K27ac 

(Active Motif, 39133), H3K56ac (Active Motif, 39281), H3 C-terminal (EpiCypher 13-0001), or 

RNAPII CTD phospho Ser2 (Active Motif 61083) primary antibodies. Membranes were washed 

in TBS (Tris-buffered saline)-Tween (50 mM Tris-HCl, 150 mM NaCl, and 0.5% Tween 20). 

Membranes were incubated with HRP-conjugated anti-rabbit (GE Healthcare NA934V; 

1:10,000) or HRP-conjugated anti-rat (Jackson ImmunoResearch 312-036-045; 1:10,000) 

antibody and probed with ECL Prime (GE Healthcare). Immunoblots were quantified with 

ImageJ software for two or more independent biological replicates. 

Recombinant Protein Purification from Baculovirus Expression System 

Ten mL of wild-type Set2, set2-Y149F , or set2-F234Y P2 virus was inoculated into 100 

mL freshly conditioned Sf21 cells (1x106 cells/mL), supplemented with 10% FBS, 1% P/S, and 

cultured at 27°C for 48 hours. Cells were collected by centrifugation at 3,000 rpm for 5 minutes 

in a table-top centrifuge and washed with 10 mL 1x PBS buffer. Cell pellets were lysed in 10 mL 

BV-lysis buffer (50 mM HEPES pH 7.9, 500 mM NaCl, 10% glycerol, 2mM MgCl2 and 0.2% 

Triton) on ice for 30 minutes. The lysates were clarified by ultracentrifugation (Beckman 50.2 Ti 

40,000 rpm) for 30 minutes. Flag beads (200 µl, Sigma) were added to the supernatant and 

incubated at 4°C for at least 2 hours. After incubation, beads were washed three times with 10 

mL BV-lysis buffer and eluted with 600 µl of FLAG-elution buffer (50 mM HEPES pH 7.9, 100 
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mM NaCl, 2 mM MgCl2, 0.02% NP40; 10% glycerol) containing 500 µg/mL of 3xFlag peptide. 

Elutions were concentrated with a 10-kD cut-off concentrator (Amicon). 

Histone Methyltransferase Assay 

Standard HMT reactions were performed in a 40 µl system containing 1x HMT buffer (50 

mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM MgCl2, 2 mM DTT, 5% glycerol), 4 µg or 3-fold serial 

dilution of recombinant Set2 protein, 4 µg of Xenopus recombinant nucleosomes supplemented 

with 10 µM unlabeled S-adenosylmethionine (Sigma) (Li et al., 2003). Reactions were incubated 

at 30oC for 1 hour. Immunoblots were performed with antibodies against H3K36me3 (abcam 

9050), H3K36me2 (abcam 9049), and H3K36me1 (abcam 9048) to detect specific histone 

methylation states. 

Co-immunoprecipitation 

All strains were grown to saturation in SC-Leu before being diluted to an OD600 of 0.4 

and grown to OD600 ~2.0 in 100 mL of SC-Leu at 30°C. The cells were pelleted and washed with 

30 mL of distilled H2O. The pellets were resuspended in 500 µl of Extraction Buffer (Kizer et al., 

2005) and split equally into two tubes. Glass beads (BioSpec Products) were added to bring the 

total volume to 1 mL and samples were vortexed for 10 min at 4°C. Lysates were collected into 

fresh tubes via centrifugation, and the lysates were cleared at max speed for 15 min at 4°C. 

Protein concentration was measured via Bradford assay (Bio-Rad). A 25 µl aliquot was used for 

input and 1 mg/mL of protein was incubated overnight in 600 µl of Extraction Buffer at 4°C with 

5 µl of HA antibody (Bethyl). Antibody was conjugated to 40 µl Protein A Agarose beads 

(Roche) for 2 hours at 4°C before being washed with Extraction Buffer and eluted with 50 µl of 

1x SDS buffer. Samples were heated at 95°C for 5 minutes and loaded onto an 8% SDS-PAGE 

gel. Data are representative of two independent biological replicates. 
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Chromatin Immunoprecipiration and Real-Time PCR 

Yeast strains were grown to saturation in YPD before being diluted to an OD600 of 0.2 

and grown to an OD600 of ~1 at 30°C. For nutrient deprivation experiments, cells were isolated, 

washed with water, and resuspended in SD media (Cheung et al., 2008). Fifty ODs of cells were 

collected at each time point and ChIP was performed as described with modifications (Ahn et 

al., 2009). For precipitation of proteins, 2 ul of H3K36me1 (abcam 9048), H2K36me2 (Active 

Motif 39255), H3K36me3 (abcam 9050), H3K27ac (Active Motif, 39133), H3K56ac (Active Motif, 

39281), or H3 C-terminal (EpiCyphe, 13-0001) was used and IgG (Cell Signaling 2729) was the 

negative control. DNA was eluted in 30 µl of elution buffer (Zymo) and diluted 1:20. Two µl of 

the diluted DNA was subjected to qPCR using SYBR Green (Bio-Rad) and primers described in 

Table 2.3. Data are represented as the mean percent input values ± standard error of the mean 

(SEM) from two or more biological replicates with technical duplicates. 

Spotting Assays 

Yeast strains were grown at 30°C to saturation and diluted to an OD600 of 0.5 prior to 

spotting 5-fold serial dilutions on plates at 30°C or 34°C, as indicated, for 2-4 days. For the Bur1 

growth assay, BUR1 deletion shuffle strains were grown on media lacking uracil to maintain the 

wild-type BUR1 plasmid before plating on media containing the 5-fluroorotic acid (5-FOA). All 

experiments were performed at least three times. 

RNA-seq Library Preparation and Sequencing 

Yeast strains were grown to saturation in YPD before being diluted to an OD600 of 0.2 

and grown to an OD600 of ~1 at 30°C. Cells were isolated, washed with water, and resuspended 

in SD media (Cheung et al., 2008). Ten ODs of cells were collected at each time point and RNA 

was isolated by acid phenol (Ambion/Thermo Fisher Scientific) extraction. Five µg RNA was 

treated with DNase (Promega) and purified (RNeasy column, QIAGEN). Two and a half µg of 

the purified RNA was processed with yeast-specific rRNA depletion beads (Illumina). Strand-
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specific bar-coded sequencing libraries were then prepared (TruSeq Stranded Total RNA 

Library Preparation Kit, Illumina). Libraries were pooled and sequenced across two lanes (Hi-

Seq 4000, Illumina). Data are representative of three independent biological replicates. 

Sequencing Alignment and Analysis 

Reads were trimmed and filtered of adapter sequences using cutadapt, and required to 

have at least 90% of bases with quality scores exceeding 20. Reads were aligned to the 

reference yeast genome (sacCer3) using STAR. Sense and anti-sense reads were analyzed 

separately (Dobin et al., 2013). Coverage across genomic features was computed using 

BEDtools (Quinlan and Hall, 2010). Significantly enriched motifs were discovered using 

HOMER, with CIS ± 100bp as foreground and the 100 bp flanking sequence on either side as 

background (Heinz et al., 2010). As a control, we randomly selected 439 low-confidence CIS 

and repeated the motif analysis. Signal was normalized to total sequencing depth and biological 

replicates were averaged where appropriate. 
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Tables 

Table 2.1: Summary of set2 Mutant Phenotypes 

 Caffeine 
Sensitivity 

Rapamycin 
Sensitivity 

Phleomycin 
Sensitivity 

6AU 
Resistance 

bur1∆ 
Bypass 

spt16-
11 

Bypass 

Cryptic 
Initiation 

Wild-
type 

- - - - - - - 

set2∆ + + + + + + + 
set2-
Y149F  

- - - - - - - 

set2-
F234Y  

- - - +/- - - - 

set2-
H199L  

+ + + + + + + 

 
A minus (-) indicates wild-type phenotype and a plus (+) indicates set2∆ phenotype. A 
plus/minus (+/-) indicates an intermediary phenotype. 
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Table 2.2: Yeast Strains and Genotypes 

Name Genotype Reference 
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Open Biosystems 
BY4742 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 Open Biosystems 
YSM244 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 

set2∆::NAT 
McDaniel et al., 2017 

YJD21 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 set2-
Y149F  

This study 

YJD22 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 set2-
F234Y  

This study 

YJD23 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 set2-
H199L  

This study 

YSB788 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
bur1::HIS3 lys2∆202 (pRS316-Bur1) 

M.C. Keogh et al., 2003 

YSB1003 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
bur1::HIS3 lys2∆202 set2::KanMX (pRS316-
Bur1) 

Michael Christopher Keogh 
et al., 2005 

DY7230 MATa ade2 can1 his3 lue2 lys2 met15 ura3 
spt16-11  

Voth et al., 2014 

YSM174 MATa ade2 can1 his3 leu2 lys2 met15 ura3 
spt16-11 set2::HYGRO 

This study 

KLY78 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
KanMX6::GAL1pr-flo8::HIS3 lys2-128δ 

Nourani, Robert, & Winston, 
2006 

YSM138 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
KanMX6::GAL1pr-flo8::HIS3 lys2-128δ 
set2::NatMX 

This study 

YBL860 MATa his3Δ1, leu2Δ0 met15Δ0 ura3Δ0 STE11 
-1870::HIS3  

Wang et al., 2015 

YBL861 MATa his3Δ1, leu2Δ0 met15Δ0 ura3Δ0 
set2Δ::HYGRO STE11 -1870::HIS3  

Wang et al., 2015 
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Table 2.3: List of Primers 

Name Sequence Target Source 
oJD08 CGATCACCTCACCTTTGAACTCGTAAATGAA

CTGG 
Forward primer 
set2-Y149F site 
directed 
mutagenesis 

This study 

oJD09 CCAGTTCATTTACGAGTTCAAAGGTGAGGTG
ATCG 

Reverse primer 
set2-Y149F site 
directed 
mutagenesis 

This study 

oJD10 CATAACGATCCACATTATAATCATAAGTGATT
TCCTCACCTTTTAAAATTTTTCTT 

Forward primer 
set2-F234Y site 
directed 
mutagenesis 

This study 

oJD11 AAGAAAAATTTTAAAAGGTGAGGAAATCACTT
ATGATTATAATGTGGATCGTTATG 

Reverse primer 
set2-F234Y site 
directed 
mutagenesis 

This study 

H199LFor GGCCAGATTTTGCAATCTCTCTTGCAGCCCC
AATG 

Forward primer 
set2-H199L site 
directed 
mutagenesis 

This study 

H199LRev CATTGGGGCTGCAAGAGAGATTGCAAAATCT
GGCC 

Reverse primer 
set2-H199L site 
directed 
mutagenesis 

This study 

oJD24 GAGCCGAACAGGACATAGAAGCCAACCAGT
TCATTTACGAGAGCTCGTTTTCGACACTGG 

set2-Y149F P.1 
for Delitto 
Perfetto 

This study 

oJD25 AACCTATCTCTAAATTCCATCTCCTCGATCA
CCTCACCTT TCCTTACCATTAAGTTGATC 

set2-Y149F P.2 
for Delitto 
Perfetto 

This study 

oJD26 TATTTGCTCAAAGAAAAATTTTAAAAGGTGA
GGAAATCACGAGCTCGTTTTCGACACTGG 

set2-F234Y P.1 
for Delitto 
Perfetto 

This study 

oJD27 CATTTCTGAGCTTGAGCACCATAACGATCC
ACATTATAATTCCTTACCATTAAGTTGATC 

set2-F234Y P.2 
for Delitto 
Perfetto 

This study 

oJD28 GAGCCGAACAGGACATAGAAGCCAACCAG
TTCATTTACGAGTTTAAAGGTGAGGTGATC
GAGGAGATGGAATTTAGAGATAGGTT 

set2-Y149F IRO 
for Delitto 
Perfetto 

This study 

oJD29 TATTTGCTCAAAGAAAAATTTTAAAAGGTGA
GGAAATCACTTACGATTATAATGTGGATCGT
TATGGTGCTCAAGCTCAGAAATG 

set2-F234Y IRO 
for Delitto 
Perfetto 

This study 

oJD38 TTGACGCCACAATAAAGGGTTCGTTGGCCA
GATTTTGCAATTTGTCTTGCAGCCCCAATGC
ATATGTTAATAAATGGGTTGTTAA 

set2-H199L IRO 
for Delitto 
Perfetto 

This study 

oJD45 GGAGAATTCATTGACGCCACAATAAAGGGT
TCGTTGGCCAGATTTTGCAAGAGCTCGTTT

set2-H199L P.1 
for Delitto 

This study 
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TCGACACTGG Perfetto 
oJD46 TAGCTTATCCTTAACAACCCATTTATTAACA

TATGCATTGGGGCTGCAAGTCCTTACCATT
AAGTTGATC 

set2-H199L P.2 
for Delitto 
Perfetto 

This study 

oJD69 ATCTTGCACTGGGTCTTACG STE11 ChIP This study 
oJD70 AGGAAAAGTTGGGCGAGAATC STE11 ChIP This study 
oJD71 CATGGAACAGACACAAACAGC STE11 ChIP This study 
oJD72 TGCACAAAAGGTAAATCGTTGG STE11 ChIP This study 
oJD73 CGGATTGAACAGGTGAATAGATTG STE11 ChIP This study 
oJD74 AGCGGAACCATCGTTTAAGAT STE11 ChIP This study 
oJD75 CCCACAGACAACAATAAACAAGC STE11 ChIP This study 
oJD76 GCTGTAAAGCATCAACCATCTTT STE11 ChIP This study 
oJD77 GATATCAAAGGTTGCGTAAAAATTACTG STE11 ChIP This study 
oJD78 GCAGTAGTAGCGGTCTGTTTG STE11 ChIP This study 
oJD79 CTAGTGCCCTTGAATTGCTG STE11 ChIP This study 
oJD80 AATCGGCCAGAGCACTTTAG STE11 ChIP This study 
oJD81 CTCATACCCCTGGAATAAAATCAAG STE11 ChIP This study 
oJD82 GAAAGGCCTGTTTCTTCGTG STE11 ChIP This study 
PMA1  CCCTCGTTCACAGAAAGTCTGAAGAAG PMA1 ChIP Grzechnik, 

Gdula, & 
Proudfoot, 
2015 

PMA2 GGAGCATAAGCGGTACCCACC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA3 CCCCAGCTAGTTAAAGAAAATCATTGAAAA
G 

PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA4 CTTAGCAGGCTTTTCTTGAGTTGGC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA5 GTACGGTTTGAATCAAATGGCTG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA6 CACAGATAACACCGAAATCGACCC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA7 CGATCAATCTGCTATTACTGGTG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA8 CCAAAGCAGCAGCTCTACCAACGAAAG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 
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PMA9 CTTGGGTCTATGGATTGCTATTTTGG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 0 CTTGGTAGGTTCCATTTAACGGGCTTTGG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 1 TGGTGGTTTCTACTACGAAATGTCC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 2 TGATTAAATGCTACTTCAACAGGATTAGG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 3 GCCAACAAGAATAAGCCGCTTATTTCC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 4 CAAATAAAACAACCAGCTTCGGTGTGTG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 5 GCCTCCGCGAAATACCTTTACTGATTTTG PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

PMA1 6 AACTGAGTCATCTAGAGTAATGACGC PMA1 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH1 CACAACCTCAATGGAGTGATGC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH2 GGGGAATAATTTCAGGGAACTGG TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH3  TTAGAGTTGCTATTAACGGTTTCGG TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH4 CATCGTGGGAAACTTCACCAGC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH5 CTTGTACCACCAACTGTTTGGC TDH3 ChIP Grzechnik, 
Gdula, & 
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Proudfoot, 
2015 

THD6 ATGGGATGATGTTACCGGAAGC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH7 GAAGACGCTGTTGTCTCCTCTG TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH8 AAGCCTTGGCAACGTGTTCAAC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH9 CTATTTTAATGACATTTTCGATTCATTG TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH10 CCAAAATTATTAAGAGCGCCTCC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH11 GCCTATAAATCATGCCTATATTTGCG TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

TDH12 CCGCGGGAATCTGTGTATATTAC TDH3 ChIP Grzechnik, 
Gdula, & 
Proudfoot, 
2015 

oJD119 TGTTATCCTCGATGTGCTGGA SPB4 ChIP This study 
oJD120 AGCGATTTCAACAGGTACCAA SPB4 ChIP This study 
oJD121 TGAGCTGAGCCCATTGATTTG SPB4 ChIP This study 
oJD122 GCTTGGACTGGAGTCATGGT SPB4 ChIP This study 
oJD123 TCCACTCGTTAATTATTGCTCCA SPB4 ChIP This study 
oJD124 AGTACCAACCAGGAGCTGAC SPB4 ChIP This study 
oJD125 TCAAACATCGGCAAGGACAA SPB4 ChIP This study 
oJD126 GCTGGATGACGAGATCAACG SPB4 ChIP This study 
oJD127 ACTCAAATCATTCCGCAACTTCA SPB4 ChIP This study 
oJD128 GGATCGACCAACCAATTCCC SPB4 ChIP This study 
oJD129 TCAGCATGTACTTGTAACAGGA SPB4 ChIP This study 
oJD130 TGTGCCATCTACTCACACTCA SPB4 ChIP This study 
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Table 2.4: List of Plasmids 

Name Features Description Reference 
pCORE kanMX4, 

KIURA3, Amp 
CORE plasmid for 
Delitto Perfetto 

Stuckey & Storici, 
2013 

pBL532-Set2-Flag Amp SET2-Flag This study 
pBL532-set2-Y149F -Flag Amp set2-Y149F -Flag This study 
pBL532-set2-F234Y -Flag Amp set2-F234Y -Flag This study 
pRS415 CEN6_ARS4, 

LEU2, Amp 
Empty Vector Mumberg, Mailer, & 

Funk, 1995 
pRS415-Set2-HA CEN6_ARS4, 

LEU2, Amp 
SET2-HA Du et al., 2008 

pJD01 CEN6_ARS4, 
LEU2, Amp 

set2-Y149F -HA This study 

pJD02 CEN6_ARS4, 
LEU2, Amp 

set2-F234Y -HA This study 

pJD03 CEN6_ARS4, 
LEU2, Amp 

set2-H199L -HA This study 

p416 CEN6_ARS4, 
URA3, Amp 

Empty Vector Mumberg et al., 
1995 

p416-ADH1-Set2 CEN6_ARS4, 
URA3, Amp 

SET2-Flag Brian D Strahl et al., 
2002 

pJD04 CEN6_ARS4, 
URA3, Amp 

set2-Y149F -3xFlag This study 

pJD05 CEN6_ARS4, 
URA3, Amp 

set2-F234Y -3xFlag This study 

pJD06 CEN6_ARS4, 
URA3, Amp 

set2-H199L -3xFlag This study 

pRS316 Bur1 CEN6_ARS4, 
URA3, Amp 

BUR1  M.C. Keogh et al., 
2003 
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Figures 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1:4Phe/Tyr Switch in Set2 Separates H3K36 Methylation States in vitro 
 
A. Domain map of Set2 with the Y149 and F234 residues of the Phe/Tyr switch highlighted. The 
catalytic region of Set2 is composed of the associated with SET (AWS), catalytic SET domain, 
and post-SET (PS). The autoinhibitory domain (AID) regulates catalytic activity. The C-terminus 
of Set2 has protein-protein interaction domains, like the coiled-coiled (CC), WW, and Set2-Rpb1 
(SRI) protein-protein interaction domain. B. Model of Set2 SET domain (yellow) bound to H3 
peptide (slate) and SAM (yellow, white, blue, and red spheres) with locations of the F234 (light 
purple) and Y149 (dark purple) that form the Phe/Tyr switch highlighted. H3K36 is green with 
methylation shown in white, light pink, and dark pink. Orange spheres are zinc ions necessary 
for catalysis. C. Coomassie staining of recombinant Set2 and Phe/Tyr switch mutant proteins. 
D. Western blots of in vitro histone methyltransferase (HMT) assays using the indicated 
antibodies. In vitro HMT assays were performed with an equal amount of recombinant Set2 and 
Phe/Tyr switch mutant proteins from insect cells, recombinant Xenopus nucleosomes, and co-
factor S-adenosylmethionine (SAM). HeLa LON (long oligonucleosomes) were used as a 
positive control for Western blotting. 
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Figure 2.2:5Phe/Tyr Switch Mutations in Set2 are Tools to Separate H3K36 Methylation 
States in vivo 

A. Western blots of yeast strains probed with Set2 and different H3K36 methylation antibodies. 
S = short exposure and L = long exposure. G6PDH and H3 served as loading controls. B. 
Quantification of Set2 normalized to G6PDH in the indicated strains. Data for mutants were 
normalized relative to BY4742. C-E. Quantification of H3K36me3 (C), H3K36me2 (D), and 
H3K36me1 (E) normalized to H3 in the indicated strains. H3K36me1 was quantified using the 
short exposure Western blot. Measurement for all mutants were normalized BY4742. Each bar 
graph is representative of mean ± SEM of two or more independent biological replicates with a 
representative replicate shown in (A). 
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Figure 2.3:6set2 Mutatns Differentially Methylate H3K36 and Interact with RNAPII 

A. Western blots of indicated strains probed with Set2 and different H3K36 methylation 
antibodies. H3 and G6PDH served as loading controls B. Western blots of indicated strains 
transformed with plasmids that expressed SET2 from its native promoter or overexpressed 
SET2 from the ADH1 promoter and probed with Set2 and different H3K36 methylation 
antibodies. Loading controls were H3 and G6PDH. C. Co-immunoprecipitation showing 
interaction of set2 mutants and serine 2 phosphorylated form of RNAPII. Set2 was 
immunoprecipitated by anti-HA antibody. G6PDH served as a loading control. 
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Figure 2.4:7Distinct Methylated Forms of H3K36 are Deposited within or near Transcribed 
Regions of Genes 
 
A. Schematic of STE11 with amplicons indicated below. B-D. ChIP analysis of H3K36me3, 
H3K36me2, and H3K36me1 across STE11 in the indicated strains. The legend in (B) is 
representative for all the data presented in the Figure. E. Schematic of PMA1 with amplicons 
indicated below. F-H. ChIP analysis of H3K36me3, H3K36me2, and H3K36me1 across PMA1 in 
the indicated strains. I. Schematic of TDH3 with amplicons indicated below. J-L. ChIP analysis 
of H3K36me3, H3K36me2, and H3K36me1 across TDH3 in the indicated strains. Data 
represented as mean ± SEM of three independent biological replicates. Student’s t-test was 
used to obtain p-values. Asterisks indicate significance (* p<0.05; ** p<0.01); non-significant 
comparisons not shown. All qPCR primers are listed in Table 2.3. 
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Figure 2.5:8H3K36me1 is Deposited within or near Transcribed Regions of Genes 

A. Schematic of STE11 with amplicons indicated below. B. ChIP analysis of H3K36me1 across 
STE11 in the indicated strains. C. Schematic of PMA1 with amplicons indicated below. D. ChIP 
analysis of H3K36me1 across PMA1 in the indicated strains. E. Schematic of TDH3 with 
amplicons indicated below. F. ChIP analysis of H3K36me1 across TDH3 in the indicated strains. 
Data represented as mean ± SEM of three independent biological replicates. Student’s t-test 
was used to obtain p-values. Asterisks indicate significance (* p<0.05); non-significant 
comparisons are not shown. All qPCR primers are listed in Table 2.3. 
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Figure 2.6:9H3K36me1/2 and H3K36me3 have Unique Phenotypes in Some Cellular 
Contexts 

A. Five-fold serial dilutions of BY4742, set2∆, and set2 mutant strains plated on YPD or YPD 
containing caffeine (15 mM), rapamycin (25 nM), or phleomycin (10 ug/mL). B. Five-fold serial 
dilutions of BY4742, set2∆, and set2 mutant strains plated on SC-Ura containing DMSO or 200 
µg/mL 6AU. C. Five-fold serial dilutions of BY4741, bur1∆ , and set2 mutant strains plated on 
SC-Ura-Leu or SC-Ura-Leu containing 5-FOA. D. Five-fold serial dilutions of W303, spt16-11, 
and set2 mutant strains plated on SC-Leu and incubated at 25°C or 34°C. E. Schematic of 
FLO8 -HIS3 fusion gene reporter to detect cryptic transcription. F. Schematic of STE11 -HIS3 
fusion gene reporter to detect cryptic transcription. G. Five-fold serial dilutions of indicated wild-
type, set2∆, and set2 mutant strains plated on SC-Ura, SC-Ura-His with 2% galactose, or SC-
Ura-His. All spotting assays were repeated three times and the images shown are 
representative of the data. 
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Figure 2.7:10Function of H3K36 Methylation States in Cryptic Transcription Regulation 

A. Sense and antisense normalized transcriptional signal (reads per million mapped) across 439 
high- (blue) and intermediate- (red) confidence cryptic initiation sites (CIS) defined previously. 
Signal was averaged across three independent biological replicates and plotted for 0 min (top) 
and 60 min (bottom) following nutrient deprivation for each genetic model. The minimum value 
for each line was adjusted to zero (y axis) to adjust for subtle differences in baseline expression 
and to focus on the position and range in magnitude of signal (see McDaniel et al., 2017). B. 
Heatmap of antisense transcription, plotted as the difference in antisense signal between set2 
mutant and wild-type (mutant–WT) at 60 min following nutrient deprivation. Normalized signal is 
plotted for 92 genes shown previously to have antisense transcription between the CIS and 
transcription start site. Darker gray indicates more antisense signal in mutant than in wild-type. 
Regions outside of the gene body are masked blue. C. Scatterplot of sense and antisense 
signal differences (mutant–wild-type) in the mean per-base coverage over the gene regions 
between the CIS and transcription start site, for the 439 high- and intermediate-confidence CIS. 
Each point represents the CIS of a given gene; points that extend into the upper-left quadrant 
indicate decrease in sense transcription (relative to wild-type) and a concomitant increase in 
antisense transcription. The percentage of all 439 genes falling in this quadrant is supplied in 
the top left of each panel. D. UpSet plot showing overlaps for genes in the upper-left quadrants 
of C. One hundred and forty-three genes exhibited this antisense skew relative to wild-type in all 
four Set2 models. E. Significantly enriched sequence motifs discovered in the 100 bp 
surrounding the 439 CIS, requiring at least 2-fold enrichment relative to local background 
sequence.  
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Figure 2.8:11Activity of H3K36 Methylation States in Cryptic Transcription Regulation 

A. Sense and antisense normalized transcriptional signal (reads per million mapped) across 439 
high- (blue) and intermediate- (red) confidence cryptic initiation sites (CIS) defined previously, 
separated by high (top) or low (bottom) gene expression. Signal was averaged across three 
independent biological replicates and plotted for 0min (top) and 60min (bottom) following 
nutrient deprivation for each genetic model. High or low expression was defined as the top or 
bottom 25% of genes based on their expression in wild-type. The minimum value for each line 
was adjusted to zero (y axis) to adjust for subtle differences in baseline expression and focus on 
the position and range in magnitude of signal, as in Mcdaniel et al., 2017. B. Heatmap of anti-
sense transcription, plotted as the difference in antisense signal between two wild-type 
replicates (WT rep3–WT rep1) at 60 min following nutrient deprivation. Normalized signal is 
plotted for the 92 genes that were previously shown to have antisense transcription between the 
CIS and transcription start site. Darker gray indicates more anti-sense signal in WT rep3 
compared to WT rep1. Regions outside of the gene body are masked blue. C. Scatterplot of 
sense and antisense signal differences (WT replicate 1– WT replicate 3) in the gene regions 
between the CIS and transcription start site, for 439 high- and intermediate-confidence CIS. 
Each point represents the CIS of a given gene; points that extend into the upper-left quadrant 
indicate decrease in sense transcription (relative to wild-type) with a concomitant increase in 
antisense transcription. The percentage of all 439 genes falling in this quadrant is supplied in 
the top left. D. Significantly enriched sequence motifs discovered in the 100 bp surrounding 439 
randomly-selected low-confidence CIS, requiring at least 2-fold enrichment relative to local 
background sequence. 
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Figure 2.9:12Alteration of Global H3K27ac and H3K56ac in set2 Methylation Mutants 

A. Western blots of indicated strains probed with Set2, H3K36me1, H3K36me2, H3K36me3, 
H3K27ac, and H3K56ac antibodies. G6PDH and H3 served as loading controls. B-C. 
Quantification of H3K27ac (B) and H3K56ac (C) normalized to H3. All measurements are 
normalized relative to BY4742 at 0 minutes. Each bar graph is representative of mean ± SEM of 
two or more independent biological replicates with a representative replicate shown in (A). 
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Figure 2.10:13Set2 and H3K36 Methylation Levels are Similar at 0 and 60 Minutes after 
Nutrient Deprivation 
 
A. Quantification of Set2 normalized to G6PDH in indicated strains. All strains were quantified 
relative to BY4742 at 0 minutes. B-D. Quantification of H3K36me1 (B), H3K36me2 (C), and 
H3K36me3 (D) normalized to H3 in the indicated strains. H3K36me1 was quantified using the 
short exposure Western blot. All strains were quantifed relative to BY4742 at 0 minutes. Each 
bar graph is representative of two or more independent biological replicates with a 
representative replicate shown in Figure 2.9A. 
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Figure 2.11:14H3K36me1/2 and H3K36me3 are Important for Proper H3K27ac Localization 

A. Schematic of STE11 with amplicons indicated below. Predicted cryptic initiation site (CIS) 
located within primer set 4. B-E. ChIP analysis of H3K27ac across STE11 in the indicated 
strains and time points. F. Schematic of SPB4 with amplicons indicated below. Predicted cryptic 
initiation site (CIS) located within primer set 3. G-J. ChIP analysis of H3K27ac across SPB4 in 
the indicated strains and time points. Data represented as mean ± SEM of two independent 
biological replicates. Student’s t-test was used to obtain p-values. Asterisks indicate significance 
(* p<0.05; ** p<0.01); non-significant comparisons are not shown. All qPCR primers are listed in 
Table 2.3. 



 

67 

 

 

B 

C 

D 

E 

G 

H 

I 

J 

* * 
* 

* 

* 
* * * 

** * * 

* 

*  

** * 

* 

A F SPB4 

1 2 6 3 5 4 

1 1821 
STE11 

1 2 3 4 5 6 7 

1 2154 

* 

* 

* 

* 

* 

* 

* 

* 

* 

** * 

* 

CIS	 CIS	



 

68 

Figure 2.12:15H3K26me1/2 and H3K36me3 are Important for Proper H3K56ac Localization 

A. Schematic of STE11 with amplicons indicated below. Predicted cryptic initiation site (CIS) 
located within primer set 4. B-E. ChIP analysis of H3K56ac across STE11 in the indicated 
strains and time points. F. Schematic of SPB4 with amplicons indicated below. Predicted cryptic 
initiation site (CIS) located within primer set 3. G-J. ChIP analysis of H3K56ac across SPB4 in 
the indicated strains and time points. Data represented as mean ± SEM of two independent 
biological replicates. Student’s t-test was used to obtain p-values. Asterisks indicate significance 
(* p<0.05; ** p<0.01); non-significant comparisons are not shown. All qPCR primers are listed in 
Table 2.3. 
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CHAPTER 3 – MODIFYING A MODIFIER: DISSECTING THE POST-
TRANSLATIONAL MODIFICATION LANDSCAPE OF SET2 

 

Summary 

Set2 is a histone methyltransferase that methylates lysine 36 of histone H3 (H3K36) in 

the wake of RNA polymerase II. While H3K36 methylation (H3K36me) functions in transcription 

elongation, mRNA splicing, and DNA repair, it was not known if Set2 itself was post-

translationally modified and if those modifications had biological functions. We used mass 

spectrometry and public databases to identify sites of methylation, acetylation, and 

phosphorylation on Set2. Biochemical and phenotypic analyses revealed that mutating 

individual sites of methylation and acetylation on Set2 does not result in obvious phenotypes, as 

measured by cryptic transcription initiation and transcription elongation assays. However, 

individually mutating three serine residues at the extreme N-terminus of Set2 that are predicted 

to be phosphorylated affect Set2 protein levels, but not H3K36me. Interestingly, of the six 

identified sites of serine phosphorylation on Set2, all of them have predicted kinases related to 

the cell cycle. Additionally, individually mutating each of these sites affects transcription 

elongation and DNA repair functions of Set2. Our results provide evidence that Set2 is post-

translationally modified and sites of serine phosphorylation are functionally important. 

 

Introduction 

Protein post-translational modifications (PTMs) play a critical function in many cellular 

processes. While histone PTMs have been extensively studied, non-histone PTMs have 

recently emerged as important regulators of transcription, enzymatic activity, and protein 
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stability, among other functions (Biggar and Li, 2015; Narita et al., 2019; Ubersax and Ferrell, 

2007). PTMs, such as methylation, acetylation, and phosphorylation, are found on thousands of 

non-histone proteins across many species (Duan and Walther, 2015). Analogous to how mRNA 

alternative splicing increases the potential products of one gene, PTMs expand the functional 

proteome. Perturbation of non-histone PTMs can have dire consequences for the cell, such as 

aberrant gene expression and improper cellular signaling, which can ultimately lead to cancer 

and other diseases (Biggar and Li, 2015; Narita et al., 2019; Pawson and Scott, 2005). 

However, many non-histone PTMs and their functions remain poorly characterized.  

Lysine methylation and acetylation are PTMs that have recently emerged as important 

regulators of cellular function. With advances in mass-spectrometry, many sites of lysine 

methylation and acetylation have been identified on non-histone proteins, in particular 

chromatin-modifying enzymes. When these enzymes are methylated or acetylated, their protein 

interactions or activity can change (Biggar and Li, 2015). For example, in mice and humans, 

G9a automethylates itself, which serves as a binding site for HP1 proteins (Chin et al., 2007; 

Sampath et al., 2007). In Saccharomyces cerevisiae (hereafter, budding yeast), Rsc4 is 

acetylated by Gcn5, which inhibits normal Rsc4 binding to H3K14ac (VanDemark et al., 2007). 

Overall, the varied effects of lysine methylation and acetylation on chromatin-modifying 

enzymes in different organisms provide another layer of regulation to DNA-templated 

processes. 

An additional and more established PTM is phosphorylation. In eukaryotes, serine, 

threonine, and tyrosine residues are phosphorylated and are important in signal transduction 

and regulating protein-protein interactions, amongst other activities (Pawson and Scott, 2005). 

Phosphorylated proteins are commonly at the center of protein networks and have more protein-

protein interactions than non-phosphorylated proteins (Duan and Walther, 2015). Several 

phosphorylation-mediated protein-protein interactions involving chromatin-modifying enzymes 

have recently been demonstrated to be crucial for maintaining gene expression. Casein kinase 
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II phosphorylation of Spt6 mediates the Spt6-Spn1 interaction (Dronamraju et al., 2018). 

Without the Spt6-Spn1 interaction, nucleosome occupancy is disrupted and cryptic transcription 

occurs. Additionally, phosphorylation of the NuA4 complex is necessary for its interaction with 

the MRX complex during DNA damage repair (Cheng et al., 2018). Once NuA4 is recruited to 

sites of DNA damage via its MRX interaction, it acetylates the DNA and recruits Rpa1. The 

effect of phosphorylation in regulating the activity of chromatin-modifying enzymes 

demonstrates the importance of understanding the crosstalk between cell signaling and gene 

expression. 

One enzyme with a critical role in gene expression is Set2, which is a histone 

methyltransferase. In budding yeast, it is the sole enzyme responsible for H3K36 methylation 

(mono-, di-, and trimethylation) (Strahl et al., 2002). During transcriptional elongation, Set2 

associates with the phosphorylated C-terminal domain of RNA polymerase II and catalyzes 

H3K36 methylation (H3K36me) in gene bodies (Kizer et al., 2005). The downstream 

consequences of the histone modification deposited by Set2 are well studied and include the 

activation of the histone deacetylase complex (HDAC) Rpd3S, recruitment of the nucleosome 

remodeling complex Isw1b, and repelling the histone chaperone Asf1 (McDaniel and Strahl, 

2017; Venkatesh and Workman, 2013). Taken together, these mechanisms help maintain 

chromatin integrity during gene transcription. However, little is known about the PTMs on Set2 

itself and how those PTMs may affect the regulation and function of Set2. Other chromatin 

modifying enzymes, such as Rsc4 and Spt6 have biologically significant PTMs, therefore the 

PTMs on Set2 may also play an important function in its biology (Dronamraju et al., 2018; 

VanDemark et al., 2007). 

In this report, we identified several residues on Set2 that are methylated, acetylated, or 

phosphorylated and examined their functional significance. While nine lysine residues were 

identified as potential sites of methylation and/or acetylation, individually mutating these 

residues so they could no longer be modified did not affect Set2 protein abundance or 
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H3K36me. Additionally, strains with the set2 lysine point mutants phenocopied wild-type in 

spotting assays testing cryptic transcription suppression, transcriptional elongation, and DNA 

damage repair. In contrast, several sites of serine phosphorylation were identified and had 

functional consequences. set2-S6A and set2-S8A showed decreased Set2 protein levels 

compared to wild-type, while set2-S10A had increased Set2 protein levels. Interestingly, 

H3K36me was unaffected in all set2 serine point mutants, suggesting changes in functions 

unrelated to H3K36 methylation. Furthermore, the individual set2 serine point mutants could 

repress cryptic transcription, but showed transcription elongation defects on 6AU as well as a 

defect in DNA damage repair as assayed by phleomycin sensitivity. Taken together, these data 

provide evidence that Set2 is post-translationally modified and sites of serine phosphorylation 

are functionally important. 

 

Results 

Lysine Residues on Set2 are Methylated and Acetylated 

The downstream consequences of the histone modification laid down by Set2 are well 

characterized, however, little is known about the PTMs on Set2 itself. In order to better 

understand the PTM landscape of Set2 and how these sites may affect Set2 regulation and 

function, we took an unbiased approach and used mass spectrometry to identify modified 

residues on Set2. Using MUD-PIT, we identified nine residues that are methylated or acetylated 

(Table 3.1). These residues are distributed across the enzyme, with four residues occupying the 

catalytic region, two in the AID, one in the coiled-coiled domain, and two in unstructured regions 

of the protein (Figure 3.1A). Out of the nine modified residues, four were identified as sites of 

dimethylation. Because trimethylation and acetylation have the same spectral count, another 

four sites were identified as trimethylation/acetylation and one site was identified as 

dimethylation and trimethylation/acetylation. Overall, these results demonstrated that Set2 is 
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post-translationally modified with methylation and potentially acetylation at several residues 

across the enzyme. 

 

set2 Lysine Point Mutants Do Not Affect Set2 Protein Abundance or H3K36 Methylation 

To test the effect of methylation and acetylation PTMs on Set2 and H3K36me in vivo, we 

generated plasmids with a lysine to alanine point mutation for each of the residues identified in 

Table 1 and transformed them into a strain completely lacking SET2 (set2∆). For controls, we 

included a set2∆ strain, which produces no H3K36me, and a set2∆ strain rescued with wild-type 

SET2. Western blot analysis of Set2 and H3K36me in the set2 lysine point mutants revealed 

that these strains produced Set2 and H3K36me to wild-type levels (Figure 3.1B). Overall, these 

results established that individual sites of lysine methylation and acetylation on Set2 do not 

affect global Set2 or H3K36me levels. 

 

set2 Lysine Point Mutants Do Not Affect Set2 Function in Certain Cellular Contexts 

While global Set2 and H3K36me levels were unaffected by the set2 lysine point mutants, 

we wanted to determine if the mutations affected Set2 function. To test this, we examined the 

set2 lysine mutants under a variety of conditions. One phenotype we tested was the ability of 

set2 lysine mutants to repress cryptic transcription, which is one of the most studied Set2 

phenotypes. Without Set2 and H3K36me, cryptic transcripts arise from within gene bodies and 

can affect normal gene expression (McDaniel et al., 2017). To see if this occurred in the set2 

lysine mutants, we used the FLO8 reporter, which has an internal cryptic initiation site (CIS) and 

the HIS3 gene integrated out-of-frame downstream of the CIS. When transcription occurs from 

the canonical FLO8 start site, HIS3 is not transcribed and cells cannot grow on media lacking 

histidine. However, if transcription starts from the CIS, then HIS3 is transcribed and cells can 

grow on media lacking histidine (Figure 3.2A) (Silva et al., 2012). Additionally, we examined the 

sensitivity of the set2 lysine mutants to 6-azauracil (6AU, a transcriptional elongation inhibitor) 
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(Kizer et al., 2005). As shown previously, set2∆ cells were unable to repress cryptic transcription 

and resistant to 6AU (Figures 3.2B and 3.2C). In contrast, under all conditions tested, the set2 

lysine point mutants phenocopied wild-type Set2 (Figures 3.2B and 3.2C). Together, these 

results indicate that individual sites of lysine methylation and acetylation are not functionally 

relevant for cryptic transcription repression or transcriptional elongation. 

 

Predicted Phosphorylation Sites are Found on Set2 

In addition to the MUD-PIT analysis, we did additional mass spectrometry for 

phosphorylation sites. Through this analysis, three sites of serine phosphorylation were 

identified as the N-terminus of Set2, at residues S6, S8, and S10 (Figures 3.3A and 3.3C). We 

also took advantage of bioinformatic analysis through BioGRID and Eukaryotic Linear Motif 

Recourse (ELM), which curate information about protein PTMs and functional short linear motifs 

(Gouw et al., 2018; Oughtred et al., 2018). BioGRID predicted serine phosphorylation residues 

at S6, S8, and S10, in accordance with the mass spectrometry data, as well as phosphorylation 

at residue S522, which is found in the region between the WW and coiled-coiled domain (Figure 

3.3B and 3.3C). ELM identified S357 in the AID as part of a Plk1 phosphorylation motif 

(DDDSLRH) and S726 at the C-terminus of Set2 as part of a Gsk3 phosphorylation motif 

(RMSSPPPS) (Figures 3.3B and 3.3C). We were particularly interested in residues S357 and 

S726 and their connection to cell-cycle genes since S6, S8, S10, and S522 were all identified in 

a screen for potential Cdk1 target sites, a major cell-cycle regulator (Holt et al., 2009). Overall, 

these results demonstrate that several serine residues on Set2 are phosphorylated and may 

have functionally important roles. 

 

set2 Serine Point Mutants Affect Set2 Protein Abundance, but not H3K36 Methylation 

We next wanted to examine how the loss of serine phosphorylation on Set2 would affect 

Set2 and H3K36me in vivo. Thus, we generated plasmids with a serine to alanine point mutation 
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for each of the residues previously identified and transformed them into a set2∆ strain. As 

controls, we included a set2∆ strain and set2∆ rescued with wild-type SET2. Interestingly, the 

set2-S6A and set2-S8A mutants had decreased Set2 protein levels compared to wild-type and 

set2-S10A had increased Set2 protein levels, but H3K36me was similar to wild-type in all three 

set2 serine point mutants (Figure 3.3D). In contrast, set2-S357A, set2-S522A, and set2-S726A 

all had Set2 and H3K36me protein levels similar to wild-type (Figure 3.3D). Overall, these 

results demonstrate that the N-terminal serine residues and their predicted phosphorylation are 

functionally important for maintaining wild-type levels of Set2 protein in the cell. 

 

set2 Serine Point Mutants Repress Cryptic Transcription at Reporter Loci but Have 
Transcriptional Elongation and DNA Double Strand Break Repair Defects 

We next wanted to determine if the predicted sites of serine phosphorylation had 

functional significance, particularly the residues that when mutated to alanine affected Set2 

protein levels. Similar to the set2 lysine point mutants, we tested the set2 serine point muants’ 

ability to repress cryptic transcription at the FLO8 locus and their sensitivity to 6AU and 

phleomycin (Jha and Strahl, 2014; Kizer et al., 2005; Silva et al., 2012). All set2 serine point 

mutants were able to repress cryptic transcription at the FLO8 locus, which is consistent with 

previous data that when wild-type levels of H3K36me are present, cells are able to repress 

cryptic transcription (Figures 3.4A and 3.4B). In contrast, all set2 serine point mutants show 

some resistance to 6AU, displaying an intermediary phenotype between resistant set2∆ cells 

and sensitive wild-type cells (Figure 3.4C). Finally, all set2 serine point mutants were sensitive 

to phleomycin, like set2∆ (Figure 3.4D). Overall, these results indicate that serine 

phosphorylation does not play a functional role in repressing cryptic transcription, but it is 

important for transcriptional elongation and DNA double strand break repair. 
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Discussion 

Set2 is a histone methyltransferase with important transcription regulation functions. 

However, it was unknown if any PTMs were present on Set2 itself and if those modifications had 

functional significance. Through mass-spectrometry and bioinformatics analysis, we identified 

sites of lysine methylation and acetylation and serine phosphorylation on Set2. Further 

biochemical analysis revealed that individual lysine point mutants did not affect Set2 protein 

abundance, H3K36me, or some known functions of Set2. However, three serines at the N-

terminus of Set2 showed functional importance in maintaining wild-type Set2 protein levels. 

Additionally, mutating predicted sites of serine phosphorylation across Set2 affected its 

transcriptional elongation function and repair DNA double-strand breaks. Overall, these data 

demonstrate the functional significance of PTMs on Set2. 

 While our data provide evidence for phospho-serine regulation dependent mechanisms 

of Set2, additional work is needed to elucidate the specific mechanism. Importantly, identifying 

the kinase will provide clues about the function of phosphorylation on Set2. A screen looking for 

Cdk1 (also called Cdc28) phosphorylation sites in budding yeast identified S6, S8, and S10 on 

Set2 as potential targets and another study demonstrated that Set2 protein abundance is 

highest in G2/M (Dronamraju et al., 2017; Holt et al., 2009). Thus, Cdk1 could phosphorylate 

Set2 during that time to regulate Set2 function. Additionally, the sensitivity of the set2 serine 

mutants to phleomycin suggests a connection to the already established role of Set2 in DSB 

repair (Jha and Strahl, 2014). Interestingly, set2-S6A and set2-S8A were highly abundant and 

set2-S10A was lowly abundant compared to wild-type, but H3K36me levels were similar to wild-

type in all three mutants. One possible explanation is that set2-S6A and set2-S8A might be 

hypoactive, while set2-S10A is hyperactive. Alternatively, Set2 serine phosphorylation could be 

unrelated to Set2 enzymatic activity and its main purpose could be to create a binding site for 

protein interaction. Future studies examining cell-cycle dependent functions of Set2 
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phosphorylation, enzymatic assays, and identifying potential protein interactions would provide 

insight into the role of serine phosphorylation on Set2. 

 While the individual set2 lysine point mutants did not show any functional consequences 

in the biochemical and phenotypic assays tested, a combination of modifications on those sites 

could be important for Set2 regulation and function. Modeling the 3D structure or solving the 

crystal structure of Set2 would allow for a more throughout analysis of these residues and how 

their conformation in 3D space might suggest logical combinations to test. Additionally, 

identifying the enzymes responsible for methylation and acetylation of Set2 could provide clues 

as to their functionality. One possibility is that Set2 automethylates itself to regulate its function. 

Recently, an auto-inhibitory domain (AID) was identified in Set2 and demonstrated to function 

along with the SRI domain to control Set2 substrate specificity (Wang et al., 2015). 

Automethylation could work together with the AID and SRI to ensure proper H3K36me 

throughout the genome, similar to how Gcn5 acetylation of Rsc4 controls H3K14ac (VanDemark 

et al., 2007). Alternatively, other enzymes could methylate or acetylate Set2 to modulate its 

function. Examining the Set2 protein sequence for sequences that are similar to motifs that 

other methyltransferases and acetyltransferases target would suggest enzymes for further 

investigation. In addition to potentially modulating its enzymatic activity, methylation or 

acetylation of Set2 could serve as protein binding sites or stabilize the Set2 protein. 

 Emerging data demonstrate that PTMs on chromatin-modifying enzymes are functionally 

important, but this evidence was lacking for Set2 (Biggar and Li, 2015; Narita et al., 2019; 

Ubersax and Ferrell, 2007). We identified and examined sites of methylation, acetylation, and 

phosphorylation and found functional significance for three sites of serine phosphorylation on 

Set2. Our findings establish the groundwork for elucidating the mechanism establishing these 

PTMs and how they affect cellular processes. 
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Materials and Methods 

Yeast Strains and Plasmids 

Yeast strains were created using the PCR Toolbox (Janke et al., 2004). Yeast strains used in 

this study are listed in Table 3.2. All plasmids were created using site-directed mutagenesis 

(Agilent) with the primers in Table 3.3. Plasmids used in this study are listed in Table 3.4. 

Mass Spectrometry 

TAP tagged full-length Set2 and set2-1-618 were purified from BY4741 cells and analyzed via 

MudPIT for methylation and acetylation (Washburn et al., 2001). To identify phosphorylated 

residues, 32P-labeled Set2 samples were trypsinized, purified by LC-MS, and characterized by 

MALDI-TOF spectrometry (Ficarro et al., 2002). 

Database Searching 

SET2 (YJL168C) was queried in BioGRID version 3.5 to identify phospho-serine sites (Oughtred 

et al., 2018). SET2_YEAST (UniProt P46995) was queried in ELM and S357 was identified as 

part of a polo-like kinase (Plk) recognition motif (DDDSLRH) and S726 was identified as part of 

a Gsk3 recognition motif (SASTRMSS) (Gouw et al., 2018). 

Western Blotting 

All strains were grown to saturation in SC-Ura before being diluted to an OD600 of 0.1 and grown 

to OD600 ~1 in SC-Ura at 30°C. Ten ODs of cells were collected and Western blotting was 

performed after protein extraction by SUMEB lysis (Jha and Strahl, 2014). Lysates were 

separated by SDS-PAGE, transferred to PVDF membrane, and probed overnight at 4°C with 

Set2 (in-house), G6PDH (Sigma A9521-1VL), H3K36me1 (abcam 9048), H2K36me2 (Active 

Motif 39255), H3K36me3 (abcam 9050), or H3 C-terminal (EpiCypher 13-0001). Membranes 

were washed in TBS (Tris-buffered saline)-Tween (50 mM Tris-HCl, 150 mM NaCl, and 0.5% 

Tween 20). Membranes were incubated with HRP-conjugated anti-rabbit (GE Healthcare 

NA934V; 1:10,000) antibody and probed with ECL Prime (GE Healthcare). 
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Spotting Assays 

Yeast strains were grown at 30°C to saturation in SC-Ura and diluted to an OD600 of 0.5 prior to 

spotting 5-fold serial dilutions on plates at 30°C for 2-4 days. All experiments were performed in 

technical triplicate. 
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Tables 

Table 3.1:5Lysine Residues on Set2 are Methylated and Acetylated 

Residue Post-Translational Modification Domain Location 
K117 Dimethylation AWS 
K126 Dimethylation SET 
K228 Acetylation/Trimethylation SET 
K247 Acetylation/Trimethylation PS 
K376 Dimethylation AID 
K376 Acetylation/Trimethylation AID 
K438 Acetylation/Trimethylation AID 
K447 Dimethylation AID 
K530 Acetylation/Trimethylation  
K584 Acetylation/Trimethylation CC 

 
Summary of residues identified by MudPIT analysis to be methylated and/or acetylated on Set2 
and their domain location. 

 
Table 3.2:6List of Yeast Strains and Genotypes 

Name Genotype Reference 
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Open Biosystems 
BY4742 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 Open Biosystems 
BY4741 Set2-
TAP 

MATa leu2Δ0 met15Δ0 ura3Δ0 SET2-
TAP::HIS 

Dharmacon 

BY4741 set2-
1-618-TAP 

MATa leu2Δ0 met15Δ0 ura3Δ0 set2-1-618-
TAP::HIS 

This study 

Set2D MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 
set2::KanMX6 

Xiao et al., 2003 

KLY78 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
KanMX6::GAL1pr-flo8::HIS3 lys2-128δ 

Nourani, Robert, & Winston, 
2006 

YSM138 MATalpha ura3-52 leu2∆1 trp1∆63 his3∆200 
KanMX6::GAL1pr-flo8::HIS3 lys2-128δ 
set2::NatMX 

This study 
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Table 3.3:7List of Primers 

Name Sequence Target Source 
K117AF GGCTATCGGAGCGTACTGCGCCTTTT

GAAATCTCTGATTTTG 
Forward primer set2-
K117A for site 
directed mutagenesis 

This study 

K117AR CAAAATCAGAGATTTCAAAAGGCGCA
GTACGCTCCGATAGCC 

Reverse primer set2-
K117A for site 
directed mutagenesis 

This study 

Set2K126AF GAAGCAGTACGCTCCGATAGCCATAT
TTGCAACAAAGCATAAAGGTT 

Forward primer set2-
K126A for site 
directed mutagenesis 

This study 

Set2K126AR 
 

AACCTTTATGCTTTGTTGCAAATATGG
CTATCGGAGCGTACTGCTTC 

Reverse primer set2-
K126A for site 
directed mutagenesis 

This study 

Set2K228AF 
 

AAGTGATTTCCTCACCTGCTAAAATTT
TTCTTTGAGCAAATATTCCCATGCG 

Forward primer set2-
K228A for site 
directed mutagenesis 

This study 

Set2K228AR 
 

CGCATGGGAATATTTGCTCAAAGAAA
AATTTTAGCAGGTGAGGAAATCACT 

Reverse primer set2-
K228A for site 
directed mutagenesis 

This study 

Set2K247AF 
 

TATGGTGCTCAAGCTCAGGCATGCTA
CTGTGAGGAGCC 

Forward primer set2-
K247A for site 
directed mutagenesis 

This study 

Set2K247AR 
 

GGCTCCTCACAGTAGCATGCCTGAG
CTTGAGCACCATA 

Reverse primer set2-
K247A for site 
directed mutagenesis 

This study 

Set2K438AF 
 

ACTCTCCCTGCAAAGTTTCCATTTTTA
GCGCCAAACTGCGATG 

Forward primer set2-
K438A for site 
directed mutagenesis 

This study 

Set2K438AR 
 

CATCGCAGTTTGGCGCTAAAAATGGA
AACTTTGCAGGGAGAGT 

Reverse primer set2-
K438A for site 
directed mutagenesis 
Delitto Perfetto 

This study 

Set2K530AF 
 

AAGCGCCAGGCGTTGCTGGTATTCC
ACTGCTACTCG 

Forward primer set2-
K530A for site 
directed mutagenesis 

This study 

Set2K530AR 
 

CGAGTAGCAGTGGAATACCAGCAAC
GCCTGGCGCTT 
 

Reverse primer set2-
K530A for site 
directed mutagenesis 

This study 

Set2K584AF 
 

CAAAAGCTAAAGCTTGAGAATGAAAG
AGCAAGCGTTTTGGAGGATATTATAG
C 

Forward primer set2-
K584A for site 
directed mutagenesis 

This study 

Set2K584AR 
 

GCTATAATATCCTCCAAAACGCTTGC
TCTTTCATTCTCAAGCTTTAGCTTTTG 

Reverse primer set2-
K584A for site 
directed mutagenesis 

This study 

S726AFor 
 

CATCAACAAGGATGTCTGCTCCTCCA
CCTTCAACA 

Forward primer set2-
S726A for site 
directed mutagenesis 

This study 

S726ARev TGTTGAAGGTGGAGGAGCAGACATC Reverse primer set2- This study 
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CTTGTTGATG S726A for site 
directed mutagenesis 

K376AF 
 

CTGAGGTTGTTCCGTGATAAACAATG
CAAGCATTTTGCTAAAACAGGTGTAA 

Forward primer set2-
K376A for site 
directed mutagenesis 

This study 

K376AR TTACACCTGTTTTAGCAAAATGCTTG
CATTGTTTATCACGGAACAACCTCAG 
 

Reverse primer set2-
K376A for site 
directed mutagenesis 

This study 

S357A_For GATAGCCTGATGACGAAGAGCGTCA
TCATCGATAGTAAAAA 

Forward primer set2-
S357A for site 
directed mutagenesis 

This study 

S357A_Rev TTTTTACTATCGATGATGACGCTCTTC
GTCATCAGGCTATC 

Reverse primer set2-
S357A for site 
directed mutagenesis 

This study 

S522A_For ACTGCTACTCGGAGCATTTACTTGTG
TATTTGACCTTGAAC 

Forward primer set2-
S522A for site 
directed mutagenesis 

This study 

S522A_Rev GTTCAAGGTCAAATACACAAGTAAAT
GCTCCGAGTAGCAGT 

Reverse primer set2-
S522A for site 
directed mutagenesis 

This study 

S6A_For CGACGCACTCACAGCTTGGTTCTTCG
ACATGATCACGT 

Forward primer set2-
S6A for site directed 
mutagenesis 

This study 

S6A_Rev ACGTGATCATGTCGAAGAACCAAGCT
GTGAGTGCGTCG 

Reverse primer set2-
S6A for site directed 
mutagenesis 

This study 

S8A_For TTTTTCATCTTCCGACGCAGCCACAC
TTTGGTTCTTCGAC 

Forward primer set2-
S8A for site directed 
mutagenesis 

This study 

S8A_Rev GTCGAAGAACCAAAGTGTGGCTGCG
TCGGAAGATGAAAAA 

Reverse primer set2-
S8A for site directed 
mutagenesis 

This study 

JDS10A_F ATTTCTTTTTCATCTTCCGCCGCACTC
ACACTTTGGTTC 

Forward primer set2-
S10A for site directed 
mutagenesis 

This study 

JDS10A_R GAACCAAAGTGTGAGTGCGGCGGAA
GATGAAAAAGAAAT 

Reverse primer set2-
S10A for site directed 
mutagenesis 

This study 
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Table 3.4:8List of Plasmids 

Name Features Description Reference 

pRS416 CEN6_ARS4, 
URA3, Amp 

Empty Vector Sikorski and Hieter, 
1989 

pRS416-Set2-3xFlag CEN6_ARS4, 
URA3, Amp 

SET2-3xFlag Du et al., 2008 

pRS416 Set2 (K117A) CEN6_ARS4, 
URA3, Amp 

set2-K117A-3xFlag This study 

pRS416 Set2 (K126A) CEN6_ARS4, 
URA3, Amp 

set2-K126A-3xFlag This study 

pRS416 Set2 (K228A) CEN6_ARS4, 
URA3, Amp 

set2-K228A-3xFlag This study 

pRS416 Set2 (K247A) CEN6_ARS4, 
URA3, Amp 

set2-K247A-3xFlag This study 

pRS416 Set2 (K376A) CEN6_ARS4, 
URA3, Amp 

set2-K376A-3xFlag This study 

pRS416 Set2 (K438A) CEN6_ARS4, 
URA3, Amp 

set2-K438A-3xFlag This study 

pRS416 Set2 (K447A) CEN6_ARS4, 
URA3, Amp 

set2-K447A-3xFlag This study 

pRS416 Set2 (K530A) CEN6_ARS4, 
URA3, Amp 

set2-K530A-3xFlag This study 

pRS416 Set2 (K584A) CEN6_ARS4, 
URA3, Amp 

set2-K584A-3xFlag This study 

pRS416 Set2 (S6A) CEN6_ARS4, 
URA3, Amp 

set2-S6A-3xFlag This study 

pRS416 Set2 (S8A) CEN6_ARS4, 
URA3, Amp 

set2-S8A-3xFlag This study 

pRS416 Set2 (S10A) CEN6_ARS4, 
URA3, Amp 

set2-S10A-3xFlag This study 

pRS416 Set2 (S357A) CEN6_ARS4, 
URA3, Amp 

set2-S357A-3xFlag This study 

pRS416 Set2 (S522A) CEN6_ARS4, 
URA3, Amp 

set2-S522A-3xFlag This study 

pRS416 Set2 (S726A) CEN6_ARS4, 
URA3, Amp 

set2-S726A-3xFlag This study 
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Figures 

 

 
Figure 3.1:16set2 Lysine Point Mutants Do Not Affect Set2 Protein Abundance or H3K36 
Methylation 
 

A. Domain map of Set2 with the sites of methylation and/or acetylation switch highlighted. The 
catalytic region of Set2 is composed of the associated with SET (AWS), catalytic SET domain, 
and post-SET (PS). The autoinhibitory domain (AID) regulates catalytic activity. The C-terminus 
of Set2 has protein-protein interaction domains, like the coiled-coiled (CC), WW, and Set2-Rpb1 
(SRI) protein-protein interaction domain. Sites in red were detected as dimethylated, sites in 
blue were detected as trimethylated or acetylated, and the site in blue and red stripes was 
detected as dimethylated and trimethylated or acetylated. B. Western blots of yeast strains 
transformed with indicated plasmids and probed with Set2 and different H3K36 methylation 
antibodies. G6PDH and H3 served as loading controls. 
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Figure 3.2:17set2 Lysine Point Mutatns Do Not Affect Set2 Function in Certain Cellular 
Contexts 

A. Schematic of FLO8 -HIS3 fusion gene reporter to detect cryptic transcription. B. Five-fold 
serial dilutions of indicated wild-type, set2∆, SET2 rescue, and set2 lysine mutant strains plated 
on SC-Ura or SC-Ura-His with 2% galactose. C. Five-fold serial dilutions of set2∆, SET2 rescue, 
and set2 lysine mutant strains plated on SC-Ura or SC-Ura with 6-AU (200 µg/mL). 
Figure 3.3: Predicted Phosphorylation Sites are Found on Set2 and set2 Serine Point Mutants 
Affect Set2 Protein Abundance, but not H3K36 Methylation 
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Figure 3.3:18Predicted Phosphorylation Sites are Found on Set2 and set2 Serine Point 
Mutants Affect Set2 Protein Abundance, but not H3K36 Methylation 

A. Trypsinized samples of 32P-labeled Set2 were purified by LC-MS and characterized by 
MALDI-TOF spectrometry. One protein in the N-terminus of Set2 was found to be 
phosphorylated ∆=80amu). B. Summary of residues identified by MS, BioGRID, and ELM to be 
phosphorylated on Set2 and their domain location. C. Domain map of Set2 with the sites of 
methylation and/or acetylation switch highlighted. The catalytic region of Set2 is composed of 
the associated with SET (AWS), catalytic SET domain, and post-SET (PS). The autoinhibitory 
domain (AID) regulates catalytic activity. The C-terminus of Set2 has protein-protein interaction 
domains, like the coiled-coiled (CC), WW, and Set2-Rpb1 (SRI) protein-protein interaction 
domain. Sites in red were detected by MS and BioGRID, the site in blue was detected by 
BioGRID, and the sites in gray were detected by ELM. D. Western blots of yeast strains 
transformed with indicated plasmids and probed with Set2 and different H3K36 methylation 
antibodies. G6PDH and H3 served as loading controls. 
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Figure 3.4:19set2 Serine Point Mutants Repress Cryptic Transcription at Reporter Loci and 
Have Transcriptional Elongation and DNA Double Strand Repair Defects 

A. Schematic of FLO8 -HIS3 fusion gene reporter to detect cryptic transcription. B. Five-fold 
serial dilutions of indicated wild-type, set2∆, SET2 rescue, and set2 serine mutant strains plated 
on SC-Ura or SC-Ura-His with 2% galactose. C. Five-fold serial dilutions of set2∆, SET2 rescue, 
and set2 serine mutant strains plated on SC-Ura or SC-Ura with 6-AU (200 µg/mL). D. Five-fold 
serial dilutions of set2∆, SET2 rescue, and set2 serine mutant strains plated on SC-Ura or SC-
Ura with phleomycin (30 µg/mL).  
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CHAPTER 4 – CONCLUSIONS AND FUTURE DIRECTIONS 

 

H3K36me States Work Redundantly to Repress Cryptic Transcription During Nutrient 
Stress 

One of the major findings of this work is that H3K36me1/2 and H3K36me3 are 

redundant in their ability to repress cryptic transcription during nutrient stress. Previous work 

examining the functions of the different H3K36me states in cryptic transcription focused on cells 

completely lacking H3K36me or those that only have H3K36me1 or H3K36me1/2. In that 

context, cells with H3K36me1/2 were still able to repress cryptic transcription and H3K36me3 

was considered dispensable (Hacker et al., 2016; Li et al., 2009; Youdell et al., 2008). However, 

by utilizing the Phe/Tyr switch in the Set2 SET domain, we created a mutant (set2-Y149F ) that 

predominately performed H3K36me3 in vivo. Thus, the set2-Y149F mutant allowed us to study 

the contributions of H3K36me3 alone. Combined with set2-F234Y and set2-H199L , which 

catalyze H3K36me1/2 and H3K36me1, respectively, we comprehensively examined the 

functions of the different H3K36me states in various cellular processes, particular repressing 

cryptic transcription after nutrient stress. 

The redundancy of H3K36me1/2 and H3K26me3 may provide flexibility to the cell when 

responding to nutrient stress. During a time when the cell must rapidly change its transcriptional 

programming, it would be advantageous for multiple histone modifications to have shared 

functions. The shared functionality provides more opportunities for other critical chromatin-

modifying enzymes to perform their normal activity. Previous in vitro studies demonstrated that 

Eaf3 and Ioc4 bind H3K36me2 and H3K36me3 peptides (Carrozza et al., 2005; Joshi and 

Struhl, 2005; Li et al., 2009; Maltby et al., 2012). Structural analysis of the Eaf3 chromodomain 



 

90 

shows that it is part of a group of chromodomains that lack a carboxylate group, thus allowing it 

to bind to mono-, di-, and trimethylated lysines (Xu et al., 2008). While there is no detailed 

structural data for the PWWP domain of Ioc4, other PWWP domains have been shown to bind 

H3K36me2 and H3K36me3 (Rona et al., 2016). The in vivo data presented in this work aligns 

with the previous in vitro results and structural analyses, thus supporting a model where Eaf3 

and Ioc4 can bind H3K36me1/2 and H3K36me3 to carry out their deacetylating and nucleosome 

remodeling activities, respectively. Similarly, H3K36me2 and H3K36me3 peptides were poor 

binding substrates for Asf1 (Venkatesh et al., 2012). While Asf1 does not make any contacts 

with H3K36 when it forms a heterotrimeric complex with the H3/H4 heterodimer during 

nucleosome exchange, other factors may influence its inability to bind nucleosomes containing 

H3K36me (English et al., 2006). Overall, the redundancy of H3K36me1/2 and H3K36me3 in 

suppressing cryptic transcription during nutrient stress prevents aberrant gene expression and 

allows the cell to successfully respond to its environment. 

While wild-type, set2-Y149F , and set2-F234Y strains are able to similarly repress cryptic 

transcription in response to nutrient stress, overall changes to their chromatin architecture 

remain unknown. ChIP-qPCR presented in this work suggests that set2-Y149F has similar 

H3K36me3 distribution as wild-type and set2-F234Y generally distributes H3K36me2 similarly to 

wild-type, but future ChIP-seq studies examining the distribution of the H3K36me states before 

and after nutrient stress will be needed to provide further insight into their redundancy. 

Furthermore, set2-F234Y deposits significantly more H3K36me1 than wild-type and determining 

how this extra monomethylation is deposited genome wide could provide insight into the 

function of H3K36me1. Additionally, examining other histone PTMs and their correlation with 

H3K36me would provide a better understanding of how histone PTMs contribute to repressing 

cryptic transcription. In particular, examining the genome-wide distribution of H3K56ac and 

H3K27ac. As detected by ChIP-qPCR, wild-type, set2-Y149F , and set2-F234Y generally had 

similar levels of these acyl marks near CISs, but this remains to be tested genome-wide. Also, 
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examining promoter-associated histone PTMs, such as H3K4mes, H3K18ac, and Htz1 and their 

distribution near CISs would provide insight into what promoter features, if any, contribute to 

transcriptional initiation (Rando and Winston, 2012; Sadeh et al., 2016). 

Interestingly, Western blot analysis indicated that before nutrient stress, there is 

approximately 50% less H3K36me3 present in set2-Y149F than wild-type. However, after 

nutrient stress, there are similar levels of H3K36me3 presented in set2-Y149F and wild-type. 

Quantitative mass spectrometry measuring the total levels of each H3K36me state in the 

different mutants would allow for improved characterization of the mutants and insight into how 

much H3K36me is required to suppress cryptic transcription (Noberini et al., 2016; Zheng et al., 

2016). Likewise, directly assessing chromatin accessibility in the wild-type and set2 mutants 

would show how nucleosome positioning affects cryptic transcription. Previous work in ccRCC 

tumor samples demonstrated that regions with increased chromatin accessibility in SETD2 

mutants overlapped with regions where H3K36me3 was normally found (Simon et al., 2014). 

Additionally, studies in budding yeast showed that cryptic transcripts often arise from NFRs (Neil 

et al., 2009; Xu et al., 2009). Using FAIRE-seq or MNase-seq and examining nucleosome 

occupancy in wild-type and set2 mutants would further our understanding of H3K36me, 

nucleosome occupancy, and cryptic transcription. 

Further lines of inquiry that remain unaddressed are if cryptic transcription occurs during 

other forms of stress, if the same CISs are affected, and if the same mechanisms control 

repression. Since all forms of stress require the cell to rapidly adjust its transcriptional 

programming, and thus their chromatin architecture, it stands to reason that cryptic transcription 

occurs during heat stress, oxidative stress, and osmotic stress, amongst others. Intriguingly, 

another analysis of cryptic transcription during nutrient stress saw that many genes with CISs 

were not connected to nutrient response (McDaniel et al., 2017). Thus, similar CISs could be 

affected during different types of stress. However, certain CISs may be more prone to utilization 

depending on how the chromatin architecture is disrupted. Similar to how different classes of 
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cryptic transcripts have been established based on their sensitivity to degradation pathways, 

certain CISs may be associated with defects in particular chromatin modifying enzymes (van 

Dijk et al., 2011; Thompson and Parker, 2007; Wyers et al., 2005; Xu et al., 2009). One class of 

cryptic transcripts that arise in set2∆ cells under normal growth conditions has been classified 

as Set2-repressed antisense transcripts, or SRATs (Venkatesh et al., 2016). Other distinct 

classes of cryptic transcripts may be identified in the future in spt6 mutants, FACT complex 

mutants, amongst others. Establishing the interplay between stress and chromatin-modifying 

enzymes and how that affects transcription will provide insight into important regulatory 

mechanisms. 

 

H3K36me3 Has a Unique Function Related to Bur1 and Spt16 

While H3K36me1/2 and H3K36me3 were redundant in repressing cryptic transcription 

during nutrient stress, H3K36me3 had a unique function related to Bur1 and Spt16 that 

H3K36me1/2 could not compensate. While Bur1 is an essential kinase and contributes to serine 

2 phosphorylation on the RNAPII CTD, bur1∆ set2∆ cells can survive (Chu et al., 2006). The 

observation that cells lacking both Bur1 and Set2 can survive led to the idea that Bur1 and Set2 

have opposing functions in transcription elongation, but there is still no clear understanding of 

their opposing roles. Intriguingly, previous studies demonstrate that bur1 mutants lack 

H3K36me3 (Chu et al., 2006). In this work, bur1∆ set2-Y149F , which predominately performs 

H3K36me3, resulted in cells being unable to survive, phenocopying bur1∆ cells. Perhaps 

H3K36me3 has a role that is antagonistic to Bur1 activity. However, the H3K36me3 status of 

these cells was not confirmed. Another possibility is that bur1∆ set2-Y149F cells do not have 

any H3K36me3 and therefore no H3K36me at all. Such a finding would indicate that bur1∆ set2-

Y149F cells have the same H3K36me status as bur1∆ set2∆, yet the strains have different 

phenotypes. In that case, something other than H3K36me could be contributing to the observed 
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phenotypic differences. Future work characterizing the H3K36me status of the strains harboring 

bur1∆ combined with different set2 mutants will be critical in furthering our understanding of the 

relationship between Bur1 and H3K36me. 

Spt16 is part of the FACT complex and is responsible for nucleosome reorganization 

(Belotserkovskaya et al., 2003). Previous in vitro data suggests that H3K36me3 peptides are 

poor binding substrates for Spt16, while Spt16 can bind to unmodified H3 and H3K36me2 

peptides (Venkatesh et al., 2012). In contrast, in vivo results show that set2∆ cells have similar 

Spt16 occupancy as wild-type at the ARG1 and ADH1 loci (Pathak et al., 2018). Thus, it 

remains unclear how H3K36me3 specifically affects Spt16 binding and function. Future work 

examining how Spt16 occupancy is affected genome-wide in the presence or absence of 

different forms of H3K36me will be critical to elucidating the relationship between FACT and 

H3K36me. Additionally, histone exchange assays with the set2 mutants presented in this study 

will reveal how the different H3K36me forms affect histone exchange. The initial work that 

connected Set2 to histone exchange was done with wild-type and set2∆ cells, thus limiting our 

understanding of H3K36me and its involvement in nucleosome exchange (Venkatesh et al., 

2012). Also, establishing if Set2 and Spt16 or other members of the FACT complex directly 

interact would provide further insight into their relationship. Using photocrosslinking, Cucinotta 

et al., 2019 demonstrates that Spt16 specifically contacts the acidic patch on H2A. A similar 

technique could be used for the residues near H3K36 to determine how that region interacts 

with other chromatin-modifying enzymes like Spt16. Overall, a variety of data connects Set2 and 

Spt16 function and a mechanistic understanding of their relationship will provide insight into 

nucleosome reorganization and its influence on chromatin structure. 
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Set2 Post-Translational Modifications Affect Its Protein Abundance, Transcriptional 
Elongation Role, and Ability to Repair DNA Double Stranded Break 

Another major contribution of this work is the identification of PTMs on Set2 and how 

they impact Set2 abundance and function. While the sites of lysine methylation and acetylation 

did not show individual functional significance, three sites of serine phosphorylation at the N-

terminus of Set2 were important for maintaining wild-type Set2 protein levels. Interestingly, 

despite dramatic changes in Set2 protein abundance in set2-S6A, set2-S8A, and set2-S10A, all 

mutants had similar H3K36me levels to wild-type. While none of the putatively phosphorylated 

serine residues appear to play a role in repressing cryptic transcription, they do show functional 

importance during transcriptional elongation and DNA DSB repair. 

 The identification of phospho-serine sites on Set2 provides exciting potential for 

uncovering key regulatory mechanisms of the Set2 protein. While much is known regarding the 

role of Set2 in transcriptional elongation, there is little understanding about how Set2 is recruited 

to chromatin or roles outside of histone lysine methylation. Since the H3K36me levels of all set2 

serine mutants are similar to wild-type, it appears that Set2 recruitment to chromatin is 

unaffected by the loss of serine phosphorylation. However, the wild-type levels of H3K36me 

despite the decreased Set2 protein levels in set2-S6A and set2-S8A and increased Set2 protein 

levels in set2-S10A suggests that the catalytic activity of Set2 is affected. Future work 

measuring the enzymatic activity of set2-S6A, set2-S8A, and set2-S10A would determine if 

these mutants are hypo- or hyperactive. If the enzymatic activity of the set2 N-terminal serine 

mutants is altered, then steady state levels of H3K36me appear the same as wild-type, but the 

temporal regulation could be altered, thus contributing to the transcriptional elongation defects 

observed on the 6AU assays. Using a recently developed light-activated nuclear shuttle (LANS) 

system, Set2 protein could be shuttled from the cytoplasm into the nucleus and the changes in 

H3K36me observed over time (Lerner et al., 2018). Additionally, the N-terminal serines were 

initially identified as putative phosphorylation sites in a screen for Cdk1 (also called Cdc28) 
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targets (Holt et al., 2009). Along with the established role for Set2 in cell cycle regulation, the 

phosphorylation sites could be critical for recruiting or binding to specific cell cycle proteins that 

help stabilize Set2 protein levels (Dronamraju et al., 2017). Finally, the phleomycin sensitivity 

detected in all the set2 serine mutants points to a function in DSB repair (Jha and Strahl, 2014). 

Overall, the serine phosphorylation on Set2 could be connected to several known roles of Set2 

and contribute to previously unknown regulatory mechanisms. 

 The single set2 lysine point mutants did not have any functional significance in regulating 

Set2 or H3K36me levels or in the phenotypic assays tested, but there is still more to explore in 

regards to their functionality. One possibility is that the modifications work in combination rather 

than alone. However, a 3D model or crystal structure of Set2 would be necessary to determine 

logical combinations to test based on their conformation in 3D space. Another intriguing idea is 

that Set2 automethylates itself. Automethylation, combined with the recently discovered AID and 

its relationships to the SET and SRI domains, could be important for protein stability and 

enzymatic regulation (Wang et al., 2015). One challenge in testing for Set2 automethylation is 

the lack of a true Set2 catalytic dead mutant in vivo. While set2-H199L lacks H3K36me3 and 

H3K36me2, it does still perform low levels of H3K36me1, thus making it an insufficient negative 

control. Continued mutational analysis to find a true Set2 catalytic dead mutant will be the first 

step towards identifying a possible automethylation mechanism. In addition to automethylation, 

other proteins could methylate or acetylate Set2. While challenging to identify them, sequence 

analysis for motifs of known methyltransferases and acetyltransferases could provide insight 

into potential modifiers. Finally, the sites of methylation and acetylation could serve as binding 

sites for other proteins. Identifying such an interaction could provide further insight into the role 

of Set2 in transcription, DNA DSB repair, or its other functions. Overall, lysine methylation and 

acetylation provides intriguing possibilities to test and improve our understanding of Set2 

regulation and function. 
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Final Thoughts 

Substantial efforts have been made to elucidate the molecular mechanisms 

underpinning the diversity of the natural world. From Mendel to today, we have collectively 

amassed a great body of knowledge describing how cells store, utilize, and repair their genetic 

material. While some of these processes are different across organisms, many of the 

fundamental principles are conserved. Thus, I hope that the work presented here will provide 

the basis for future discoveries across species. Nevertheless, the findings of this dissertation 

have contributed, even in the smallest of ways, toward better understanding how genetic 

material is accessed and utilized. It is only through this incremental increase in knowledge that 

we can fully appreciate the diversity of the natural world and the complexity of life. 
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APPENDIX A – STRUCTURE/FUNCTION ANALYSIS OF RECURRENT MUTATIONS 
IN SETD2 REVEALS A CRITICAL AND CONSERVED ROLE FOR A SET DOMAIN 

RESIDUE IN MAINTAINING PROTEIN STABILITY AND H3K36 TRIMETHYLATION1 
 

Summary 

The yeast Set2 histone methyltransferase is a critical enzyme that plays a number of key 

roles in gene transcription and DNA repair. Recently, the human homologue, SETD2, was found 

to be recurrently mutated in a significant percentage of renal cell carcinomas (RCCs), raising 

the possibility that the activity of SETD2 is tumor suppressive. Using budding yeast and human 

cell line model systems, we examined the functional significance of two evolutionarily conserved 

residues in SETD2 that are recurrently mutated in human cancers. While one of these mutations 

(R2510H), located in the Set2 Rpb1 interaction (SRI) domain, did not result in an observable 

defect in SETD2 enzymatic function, a second mutation in the catalytic domain of this enzyme 

(R1625C) resulted in a complete loss of H3K36me3. This mutant showed unchanged thermal 

stability as compared to the wild type protein, but diminished binding to the histone H3 tail. 

Surprisingly, mutation of the conserved residue in Set2 (R195C) similarly resulted in a complete 

loss of H3K36me3, but did not affect H3K36me2 or functions associated with H3K36me2 in 

yeast. Collectively, these data imply a critical role for R1625 in maintaining the protein 

interaction with H3 and specific H3K36me3 function of this enzyme, which is conserved from 

yeast to humans. They also may provide a refined biochemical explanation for how H3K36me3 

loss leads to genomic instability and cancer. 

 

 

 

                                                
1Portions of this chapter were adapted from Hacker, K.E., Fahey, C.C., Shinsky, S.A., Chiang, Y.J., 
DiFiore, J.V., Jha, D.K., Vo, A.H., Shavit, J.A., Davis, I.J., Strahl, B.D., Rathmell, W.K. (2016). 
Structure/Function Analysis of Recurrent Mutations in SETD2 Reveals a Critical and Conserved Role for 
a SET Domain Residue in Maintaining Protein Stability and H3K36 Trimethylation. Journal of Biological 
Chemistry 291, 21283-21295. 
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Introduction 

Cancer is increasingly characterized by alterations in chromatin-modifying enzymes 

(Cancer Genome Atlas Research Network, 2013). SETD2, a non-redundant histone H3 lysine 

36 (H3K36) methyltransferase, has been found to be mutated in a growing list of tumor types, 

most notably in clear cell renal cell carcinoma (ccRCC), but also in high-grade gliomas, breast 

cancer, bladder cancer and acute lymphoblastic leukemia (ALL) (Cancer Genome Atlas 

Research Network, 2013, 2014; Dalgliesh et al., 2010; Duns et al., 2010; Edmunds et al., 2008; 

Fontebasso et al., 2013; Mar et al., 2014; Al Sarakbi et al., 2009; Zhang et al., 2012; Zhu et al., 

2014). Recent studies exploring intratumor heterogeneity in ccRCC identified distinct mutations 

in SETD2 from spatially distinct subsections of an individual tumor, suggesting that mutation of 

SETD2 is a critical and selected event in ccRCC cancer progression (Gerlinger et al., 2012). 

Mutations in SETD2 are predominantly inactivating, such as early nonsense or frameshift 

mutations, which lead to non-functional protein and global loss of H3K36me3 (Dalgliesh et al., 

2010; Gerlinger et al., 2012; Simon et al., 2014). Missense mutations tend to cluster in two 

domains: the SET domain, which catalyzes H3K36 trimethylation (H3K36me3, and the SRI 

domain, which mediates the interaction between SETD2 and the hyperphosphorylated form of 

RNA Polymerase II (RNAPII) (Cancer Genome Atlas Research Network, 2013; Dalgliesh et al., 

2010; Simon et al., 2014; Sun et al., 2005; Wagner and Carpenter, 2012). 

SETD2, and its yeast counterpart, Set2, both associate with RNAPII in a co-

transcriptional manner (Kizer et al., 2005; Sun et al., 2005; Yoh et al., 2008). In yeast, Set2 

mediates all H3K36 methylation states (H3K36me1/me2/me3) and regulates the recruitment of 

chromatin-remodeling enzymes (Isw1b) and a histone deacetylase (Rpd3) that functions to keep 

gene bodies deacetylated, thereby maintaining a more compact chromatin structure that is more 

resistant to inappropriate and bi-directional transcription (Carrozza et al., 2005; Li et al., 2009; 

Lickwar et al., 2009; Quan and Hartzog, 2009; Smolle et al., 2012). The Set2/SETD2 pathway is 

also important for DNA repair in both yeast and humans, as well as for proper mRNA splicing 
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(Aymard et al., 2014; Carvalho et al., 2014; Daugaard et al., 2012; Fnu et al., 2011; Kanu et al., 

2015; Luco et al., 2010; Pfister et al., 2014; Simon et al., 2014; Sorenson et al., 2016). Although 

yeast Set2 can mediate all forms of H3K36 methylation, SETD2 only trimethylates H3K36 (Sun 

et al., 2005). Other methyltransferses (e.g., NSD2 and ASH1L) mediate mono- and 

dimethylation, indicating an increased complexity of H3K36 regulation in higher eukaryotes 

(Wagner and Carpenter, 2012). Consistent with a more diverse role, H3K36me3 recruits a 

variety of effector proteins in addition to those that are recruited in yeast, including DNMT3b, 

which regulates gene body methylation, LEDGF, which functions in DNA repair, and ZMYND11, 

which regulates co-transcriptional splicing and transcription elongation (Dhayalan et al., 2010; 

Guo et al., 2014; Pradeepa et al., 2012; Wen et al., 2014).  

 The structural and functional similarities between SETD2 and Set2 provide an 

exceptional opportunity in which existing assays in S. cerevisiae can be applied to investigate 

the functional consequences of SETD2 mutations reported in human cancer. In this work, we 

characterized cancer-associated SETD2 mutations that occur at evolutionarily conserved 

residues in functionally important domains (i.e., the SET and SRI domains). We discovered that 

a missense mutation in the SET domain of SETD2 (R1625C) altered the capacity of this mutant 

to engage H3, leading to reduced protein stability, and a complete loss of H3K36me3. Strikingly, 

the same mutation in yeast Set2 (R195C) resulted in an identical effect on H3K36me3, but not 

H3K36me1 or H3K36me2 levels (or biological outcomes associated with these lower 

methylation states). Further biological studies in human cells revealed that loss of H3K36me3 in 

the R1625C mutant leads to DNA repair defects, thereby revealing a greater understanding of 

how this recurrent mutation likely leads to a loss of SETD2 tumor suppressive activity. 
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Results 

SETD2 and Set2 Share a High Degree of Structural and Sequence Homology at their SET 
and SRI Domains 

SETD2 and Set2 share significant structural and functional homology. SETD2 

demonstrates strong sequence conservation at all of the annotated functional domains present 

in yeast Set2: AWS (associated with SET) 42%, SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) 

56%, PS (Post SET) 59%, coiled-coil 33%, WW 26%, and SRI (Set2 Rpb1 Interacting) 35% 

(Figure A.1A). Given this similarity, we compared the structure of the SETD2 and Set2 SET 

domains to identify highly conserved residues for further study. The structure of the SET domain 

in SETD2 has been solved by crystallography whereas the SET domain of Set2 was predicted 

here using I-TASSER (Roy et al., 2010; Yang et al., 2014, 2015; Zhang, 2008; Zheng et al., 

2012). When the predicted structure of the Set2 SET domain was aligned with the crystal 

structure of the SETD2 SET domain, the structures were strikingly similar (Figure A.1B). We 

then examined the conservation of amino acids previously reported to be mutated in human 

ccRCC across six organisms (H. sapiens, D. melanogaster, S. cerevisiae, M. musculus, X. 

tropicalis, and D. rerio) (Cancer Genome Atlas Research Network, 2013; Dalgliesh et al., 2010; 

Gerlinger et al., 2012; Simon et al., 2014). Seven of the nine ccRCC mutations occur at 

residues that are conserved across all model organisms (Figure A.1C). Additionally, three of 

these seven mutations occur in a region previously identified to act as the catalytic site for lysine 

methylation (Sun et al., 2005). One of these mutations, R1625C, is found in a location that is 

adjacent to the S-adenosylmethionine (SAM) binding site in the structure, and thus would be 

predicted to impact catalytic activity (Figure A.1B). This residue is the most common site of 

missense mutation reported in both CBioPortal and COSMIC (Cerami et al., 2012; Forbes et al., 

2008; Gao et al., 2013). The specific arginine to cysteine mutation is found in both glioma and 

ccRCC (Cancer Genome Atlas Research Network, 2013; Fontebasso et al., 2013). Significantly, 

mutation of the corresponding residue in S. cerevisiae is known to affect Set2 catalytic activity 
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(Jha and Strahl, 2014). Given its location and mutation frequency, we chose this mutation for 

further analysis.  

We then examined sequence and structural conservation of the SRI domain and location 

of ccRCC-associated missense mutations. In contrast to the SET domain, primary sequence of 

the SRI domain is less conserved across model organisms (Figure A.1D). However, the aligned 

crystal structures of yeast and human SRI domains display structural conservation (Figure 

A.1E) (Li et al., 2005; Vojnic et al., 2006). In particular, the predicted site of SETD2 and RNAPII 

interaction was previously suggested to be the concave surface between alpha helix 1 (1) and 

alpha helix 2 (2) (Li et al., 2005). The physical relationship of these helices appears conserved 

between Set2 and SETD2. We therefore selected the R2510 residue for further study, as this 

amino acid is recurrently mutated (R2510H, R2510L) in ccRCC and is predicted to be important 

for SETD2-RNAPII interaction by in vitro peptide interaction assays (Cancer Genome Atlas 

Research Network, 2013; Li et al., 2005; Simon et al., 2014). 

 

SET domain mutation destabilizes SETD2 in Cells 

To establish a human cell system in which to study the function of SETD2 mutants, we 

generated SETD2 deficient cells (SETD2Δ). TAL effector nucleases (TALEN) targeting exon 3 

of SETD2 were introduced into two immortalized kidney cell lines (human SV-40 immortalized 

proximal tubule kidney cells (HKC) and 293T) (Cermak et al., 2011; Racusen et al., 1997; 

Sander et al., 2011). Individual clones of TALEN-treated cells were isolated and loss of 

H3K36me3 was demonstrated by immunocytochemistry (Figure A.2A). We verified inactivation 

of both alleles of SETD2 via Sanger sequencing. Representative allelic sequencing is shown 

(Figure 2B). 

We then exogenously expressed a truncated wild-type FLAG-tagged form of SETD2 

(amino acids 1323-2564; tSETD2), which includes all known functional domains. The R1625C 

or R2510H mutants were generated in tSETD2. Relative to tSETD2 and R2510H, R1625C 
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protein levels were reduced (Figure A.2C). R1625C mutant mRNA levels were also less 

abundant (Figure A.2D). We examined protein stability after treatment with the protein synthesis 

inhibitor cycloheximide. The R1625C protein demonstrated a significantly shorter half-life 

compared to that of wild-type (Figure A.2E). In contrast, the half-life of the R2510H mutant was 

unchanged (Figure A.2E). These data suggest that the decreased protein level of the R1625C 

SET domain mutant results from both decreased RNA and a shortened protein half-life. 

Histone H3 Lysine 36 Trimethylation is Linked to SETD2 Mutational Status 

We interrogated H3K36 methylation status in cells transiently transfected with either 

tSETD2 or the mutants, R1625C and R2510H. Using immunocytochemistry (ICC) we found that 

transfection of tSETD2 resulted in global restoration of H3K36me3 (Figure A.2F), demonstrating 

that the N-terminus is not required for catalytic activity of SETD2. Transfection of R1625C (SET 

domain) mutant construct failed to restore H3K36me3. In contrast, expression of the R2510H 

SRI mutant globally restored H3K36me3.  

We next examined the H3K36 methylation status by western blot analysis. Consistent 

with findings from ICC, SETD2Δ cells show complete loss of H3K36me3. Trimethylation was 

restored to wild-type levels by expression of either the tSETD2 or the SRI mutant. In contrast, 

the SET domain mutant failed to trimethylate H3K36 (Figure A.2G). Monomethylation 

(H3K36me1) and dimethylation (H3K36me2) were unaffected by SETD2 loss or expression of 

SETD2 variants (Figure A.2G). These results are in agreement with the findings that SETD2 is 

the exclusive H3K36 trimethyltransferase in mammalian cells. 

 We then asked whether expression of either tSETD2 or R2510H restored H3K36me3 to 

levels similar to wild-type cells at specific loci. H3K36me3 levels have been shown to increase 

along the gene body with preference for exons (Kolasinska-Zwierz et al., 2009). Using ChIP-

qPCR, we examined the H3K36me3 levels at multiple exons of two genes, CDK2 and MYC, 

which had previously been described (Carvalho et al., 2013). As expected, SETD2Δ cells 

displayed low H3K36me3 levels at all sites. (Figure A.2H). Expression of tSETD2 recapitulated 
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the previously described pattern for H3K36me3 in wild-type cells at both CDK2 and MYC, with 

higher signal at exons 5 and 6 relative to exon 1 in CDK2, and in exons 2 and 3 relative to exon 

1 in MYC (Carvalho et al., 2013). Cells expressing the R1625C SET domain mutant displayed 

loss of H3K36me3 at levels similar to that of SETD2Δ cells. Finally, expression of the R2510H 

mutant also showed greater signal at later exons, indicating that this point mutation restores not 

only the levels of methylation, but the spatial placement of these methyl marks on actively 

transcribed genes. 

 

The SETD2 R1625C Variant is Enzymatically Inactive in vitro and has Diminished 
Substrate Binding 

Given the R1625C SETD2 variant is associated with loss of H3K36me3 in cells, we 

asked whether the R1625C mutation disrupts the methyltransferase activity of SETD2 in vitro. 

To do this, we expressed and purified from bacteria a wild-type or R1625C mutated fragment of 

SETD2 (residues 1345-1711) containing the SET domain. Both the wild-type and the R1625C 

SET domain constructs yielded soluble proteins that were >90% pure as assessed by SDS-

PAGE (Figure A.3A). Methyltransferase activity was then assessed using a radiometric assay 

with chicken oligo-nucleosomes as the substrate. Whereas wild-type SETD2 displayed robust 

activity, the R1625C variant displayed little enzymatic activity over the no enzyme control 

(Figure A.3B).  

 We next sought to determine why the R1625C variant is catalytically inactive. We first 

considered whether this mutation results in a misfolded protein, thereby inactivating the SET 

domain. We compared the circular dichroism (CD) spectra of the wild-type SETD2 with the 

R1625C variant. The CD spectra in the low UV range (185-260nm) of the wild-type and the 

R1625C variant were nearly indistinguishable, suggesting that the R1625C substitution does not 

alter the secondary structure of the SET domain (Figure A.3C). To determine if the R1625C 

variant alters the thermal stability of the SET domain, we monitored the CD signal at the 207 nm 
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peak over a temperature range from 20-95°C. Both the wild-type and the R1625C variant 

showed highly similar thermal melt curves with a melting temperature (Tm) of approximately 

55°C (Figure A.3D). Together, these results suggest that the loss of catalytic activity observed 

for the R1625C variant is not due to protein misfolding or reduced thermal stability.  

Structural analysis of the SETD2 SET domain shows that R1625 is positioned within the 

active site, opposite the SAM binding pocket, and is located about 7Å away from the sulfur 

group of S-adenosyl-homocysteine (SAH) (Figure A.3E). While substitution of R1625 with 

cysteine would not be expected to directly disrupt SAM binding, the R1625 side chain engages 

in three hydrogen bonds with the backbone carbonyl oxygens of A1617 and T1618 (Figure 

A.3E). Substituting cysteine for R1625 using in silico mutagenesis showed that every possibly 

cysteine rotamer would cause steric clashes. The cysteine side chain would not recapitulate the 

hydrogen bonding network of R1625 when oriented in the same direction as the R1625 side 

chain observed in the crystal structure (Figure A.3F). Although no structure of the SETD2 SET 

domain ternary complex containing histone H3 is available, the location of R1625 in close 

proximity to, but opposite the SAM binding pocket suggests that R1625 may directly or indirectly 

engage H3 or may maintain local structural integrity that aids substrate binding.  

To determine if the R1625C variant has altered substrate binding, we performed peptide 

pull-down experiments using histone H3 peptides that were unmodified, or methylated at K36. 

The pull-down experiments showed that the R1625C variant associated with all of the histone 

peptides to a lesser degree compared to the wild-type SETD2 SET domain, suggesting that the 

R1625C substitution weakens substrate binding (Figure A.3G). Taken together, our results 

suggest that the R1625C substitution impairs enzymatic activity by reducing substrate binding, 

which is likely a consequence of fine structural disturbances induced by loss of the R1625 

hydrogen bonding network within the active site. 
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Domain-Specific Mutations in Yeast Set2 Separate Roles of H3K36 Methylation States 

To further explore the functional significance of ccRCC-associated mutations, we took 

advantage of several well-characterized phenotypic assays in S. cerevisiae. Using set2Δ cells, 

which are devoid of all H3K36 methylation (Jha and Strahl, 2014), we created strains that either 

contained vector alone, or strains that exogenously express either wild-type or mutated forms of 

Set2. Mutant forms of Set2 included the homologous SETD2 SET domain mutant (R195C), the 

homologous SETD2 SRI mutant (K663L), or a control SET domain mutant (H199L) previously 

characterized to disrupt both tri- and di- methylation, while retaining monomethylation activity 

(Jha and Strahl, 2014). As expected, Set2 loss resulted in the complete absence of mono-, di-, 

and trimethylation of H3K36, which was rescued upon addition of wild-type SET2 (Figure A.4A). 

As previously shown, the H199L mutant only restored monomethylation. In contrast, while the 

K663L mutant restored all H3K36 methylation states, the R195C only restored H3K36 mono- 

and dimethylation. Intriguingly, the restoration of H3K36 mono- and dimethylation by the R195C 

mutant mimics the status of SETD2 deficient human cells (i.e., both have a selective loss of 

H3K36me3). Since the SETD2 R1625C mutant demonstrated decreased protein stability in 

human cells, we examined protein levels of the R195C mutant in the yeast cells. Following 

cycloheximide treatment we observed decreased protein levels of the R195C mutant relative to 

wild-type Set2, particularly at 3 hours post-treatment. This effect was rescued by treatment with 

the proteosome inhibitor MG132 (Figure A.4B). This suggests that, like in humans, the R195C 

variant is less stable than wildtype in yeast cells.  

 Loss of Set2 has been implicated in various phenotypes in S. cerevisiae, including 

transcription elongation defects, cryptic initiation and sensitivity to DNA damaging agents (Jha 

and Strahl, 2014). We asked whether the R195C Set2 mutant would be associated with any of 

these phenotypes. To examine transcriptional elongation, we performed a spotting assay in the 

presence of the transcription elongation inhibitor 6-Azauracil (6-AU). This assay has been 

previously used to assay for the presence of transcriptional elongation defects in yeast (Kizer et 
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al., 2005). As expected, wild-type yeast were sensitive to 6-AU (200 µg/mL), whereas set2Δ 

cells were resistant to this drug (Figure A.4C) (Kizer et al., 2005). While expression of wild-type 

SET2 restored sensitivity to 6-AU, the H199L mutant did not. The R195C and K663L mutants 

behaved similar to wild-type Set2. These data suggest that H3K36me2 is primarily responsible 

for the sensitivity to inhibitors of transcriptional elongation. 

 Cryptic initiation has been previously associated with Set2 loss (Lickwar et al., 2009). 

We therefore assessed the effects of our Set2 mutations in a cryptic transcription reporter 

assay. This assay monitors the growth of yeast cells that contain the HIS3 gene with a cryptic 

start-site that exists in the FLO8 gene. Importantly, the cryptic start site is out of frame when the 

5’ promoter is used and a functional transcript is only produced if the 3’ cryptic start site is 

utilized. In this setting, cryptic transcription results in expression of HIS3, which can restore 

growth in medium lacking histidine. Consistent with previous results, loss of Set2 permits growth 

in the absence of histidine (Figure A.4D) (Lickwar et al., 2009). No growth was observed in the 

cells expressing the R195C or K663L mutants. However, cell growth occurred in the presence 

of the H199L mutant (Figure A.4D). These data indicate that trimethylation is dispensable for 

preventing cryptic initiation, whereas dimethylation is required to suppress this phenotype. 

 Recent studies have demonstrated that yeast lacking Set2 cannot properly activate the 

DNA-damage checkpoint (Jha and Strahl, 2014; Pai et al., 2014). To determine if the RCC-

associated SET domain mutation impacts this phenotype, we assessed the impact of the Set2 

point mutants on growth in the presence of phleomycin, a double-strand break-inducing agent. 

As expected, set2Δ cells displayed increased sensitivity to phleomycin relative to Set2 wild-type 

yeast (Figure A.4E). set2Δ cells expressing either wild-type Set2 or the R195C or K663L 

mutants showed similar sensitivity as the wild-type rescue. However, yeast expressing the 

H199L mutant showed a similar level of sensitivity as the set2Δ cells (Figure A.4E). Taken 

together, these data indicate that the cellular phenotypes associated with Set2 loss in yeast are 
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associated with H3K36me2, and that H3K36me3 is dispensable for these activities (summarized 

in Figure A.4F). 

 

Human Kidney Cells Display an H3K36 Trimethylation-Dependent DNA Damage 
Response 

Because of the exclusivity of SETD2 in mediating trimethlyation in human cells, we 

studied similar phenotypes to those examined in yeast in human cells that express ccRCC-

relevant mutants. We first examined the effect of the transcriptional elongation inhibitor 5,6-

Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) on cell survival. DRB inhibits CDK9, which 

results in premature termination of transcription (Zhu-Yr et al., 1997). Assessing viability at 12 

hour time points for 3 days, we observed that DRB-associated toxicity did not differ between 

SETD2 wild-type and SETD2Δ cells (Figure A.5A).  

Several recent studies have examined the effect of SETD2 loss in human cells on the 

response to DNA damage (Aymard et al., 2014; Carvalho et al., 2014; Daugaard et al., 2012; 

Kanu et al., 2015; Pfister et al., 2014). To further explore the role of H3K36me3 in the DNA 

damage response, we irradiated HKC cells to 2 gray and then performed immunofluorescence 

for γH2A.X, a marker of DNA damage. At 30 minutes post irradiation, γH2A.X foci were seen in 

all cell types at similar levels (Figure A.5B). In untransfected and in control transfected wild-type 

cells, the number of foci greatly decreased by 1 hour and largely resolved by 4 hours. However, 

in SETD2∆ cells, the number of γH2A.X foci remained elevated at both 1 hour and 4 hours. 

Expression of tSETD2 in SETD2Δ cells led to resolution of foci at time points similar to wild-type 

cells. Cells expressing the SRI mutant, R2510H, also showed rapid foci resolution. However, 

foci persisted in cells expressing the R1625C mutant (Figure A.5B). Quantification of these 

results demonstrated that both SETD2Δ cells and R1625C expressing cells had a significantly 

higher percentage of cells with greater than 10 foci compared with the other conditions (Figure 

A.5C).  
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 We quantified γH2A.X by immunoblotting, enabling us to account for changes in total 

protein and histone levels. These studies were performed in 293T cells, as additional validation 

of results in HKC cells. As observed with HKC cells, regardless of SETD2 status, 293T cells 

showed increased total γH2A.X at 30 minutes post irradiation (Figure A.5D). By 4 hours γH2A.X 

levels returned to baseline in cells with H3K36 trimethylation (WT, tSETD2, R2510H). However, 

elevated levels of γH2A.X were observed in cells lacking H3K36me3 associated with SETD2 

loss or R1625C expression. Finally, we examined the effect of irradiation on viability using a 

colony formation assay. The fraction of surviving colonies did not differ between SETD2 wild-

type and SETD2Δ cells (Figure A.5E). Overall, these findings demonstrate that SETD2-

mediated H3K36me3 is coupled to the efficient resolution of double-strand breaks. 

Corresponding to results in yeast, loss of trimethylation is not associated with enhanced 

sensitivity due to inhibition of transcriptional elongation or from DNA damage. 

 

Discussion 

In an effort to explore the function of missense mutations identified in human cancers, 

we examined several recurrent mutations that occur at evolutionarily conserved residues in 

yeast and human cell lines. The striking homology between SETD2 and Set2 creates an 

opportunity to compare the effects of mutations while taking advantage of the strengths of each 

model system. Indeed, a recent study also modeled cancer mutations in yeast, highlighting the 

utility and power of yeast to be a robust model system to aid in human protein analyses (Sun et 

al., 2016). In this paper, we investigated how two highly conserved SETD2 residues that are 

commonly mutated in cancer affect the functions of this enzyme. Limited studies have explored 

the potential roles that SETD2 loss may play in cancer development. We found that mutation of 

the SET domain, but not the SRI domain, resulted in effects in the human and yeast assays. 

Specifically, we identified R1625C as a critical mutation that impacted SETD2 enzymatic activity 

and protein stability in cells –an effect also noted when this mutation was modeled in yeast 
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Set2. Loss of H3K36me3 in human cells also led to defects in DNA repair, indicating a potential 

mechanism by which SETD2 functions as a tumor suppressor. To our knowledge, this study is 

the first to dissect the impact of cancer-associated mutations in SETD2, and further validate 

using yeast as a model to complement human cell analyses.  

 A key discovery emerged from the study of the R1625C mutant. In contrast to the human 

R1625C variant which was catalytically inactive in vitro, the homologous substitution in yeast 

Set2 led to an uncoupling of di- and trimethylating activities. This suggests that this residue may 

be important for the specific trimethylating activity of the enzyme. Moreover, many substrate 

binding interactions govern stability. Thus, the reduced protein stability (in the absence of other 

thermal instability) may reflect a structural role that differentiates mono-, di-, and trimethylating 

activity. Because of this unique mode of regulation, the R195C mutation allowed us to examine 

the functions specifically associated with the trimethylated state of H3K36 in cells (i.e., impaired 

transcriptional elongation, cryptic initiation, and impaired survival in the face of DNA damage). 

Consistent with other reports that examined cryptic initiation, we found that H3K36me3 is 

dispensable whereas H3K36me1/me2 is required to suppress cryptic initiation, as well as for 

transcription elongation and DNA damage survival phenotypes (Li et al., 2009; Youdell et al., 

2008). In contrast, the SET domain mutation in SETD2 had a similar impact on H3K36me3 

levels but resulted in a clear DNA damage response phenotype.  

 These studies offer a rationale for differences in observed phenotypes in SETD2 

deficient human cells associated with Set2 loss in yeast, including cryptic initiation and impaired 

transcriptional elongation. However, impaired response to DNA damage, as we observed, has 

been reported for both mammalian systems and Set2 in yeast, linking this feature with H3K36 

trimethylation. The yH2A.X results suggest that resolution of DNA strand breaks in human cells 

requires H3K36me3. Due to the presence of multiple H3K36 dimethylating enzymes in 

mammalian cells, absence of H3K36me2 is rarely encountered in human models.). H3K36me2 

is induced by ionizing radiation and improves association of early DNA repair components with 
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an induced break, and improved repair by non-homologous end joining (NHEJ) in human cells 

(Fnu et al., 2011). Although our data show that the resolution of strand breaks, as measured by 

clearance of γH2A.X foci, was delayed in the absence of H3K36me3, our data also shows that 

H3K36me3 loss does not affect viability after radiation in mammalian cells. Thus, loss of 

dimethylation may convey a sensitivity to DNA damage that is not present in the absence of 

SETD2 trimethylating activity. It is important to consider that multiple factors may influence cell 

death in transformed cells. However, these distinct findings in yeast and mammalian systems 

indicate a complex level of regulation of DNA repair mediated by the histone code at H3 lysine 

36. Multiple studies have concluded that the loss of SETD2 confers a variety of types of 

genomic instability, ranging from microsatellite instability to impairment of NHEJ (Awwad and 

Ayoub, 2015; Li et al., 2013; Pai et al., 2014). Our data agree with these results. 

Through modeling disease-relevant SETD2 mutations, we were able to gain insight into 

H3K36me3 function and dissect the roles of H3K36 dimethylation and trimethylation. Future 

studies will further explore the roles of the SETD2 SRI domain and examine the effects of 

additional mutations, and will further define the role of SETD2 loss in the development of kidney 

cancer and other tumor types. 

 

Materials and Methods 

Modeling SETD2 and Set2 

The primary protein sequences of Set2 from Saccharomyces cerevisiae and SETD2 from Homo 

sapiens were compared via BLAST alignment analysis and the percentage of homology 

between annotated domains was determined using the percentage overlap of the BLAST-

aligned regions. The primary sequences of the SET and SRI domains of the enzyme 

responsible for H3K36 methylation from H. sapiens, S. cerevisiae, X. tropicalis, D. 

melanogaster, D. rerio, and M. musculus were aligned using ClustalOmega, and annotated with 

reported SETD2 mutations in ccRCC (Cancer Genome Atlas Research Network, 2013; 



 

111 

Dalgliesh et al., 2010; Gerlinger et al., 2012; Sievers et al., 2011; Simon et al., 2014). The 

structure of the SETD2 SET domain, SETD2 SRI domain and Set2 SRI domain haves been 

previously reported reported (Li et al., 2005; Vojnic et al., 2006; Zheng et al., 2012). To predict 

the structure of the yeast SET domain, the amino acid sequence (UniProtKB, P46995) was 

submitted to I-TASSER using the default parameters (Roy et al., 2010; Yang et al., 2014, 2015; 

Zhang, 2008). The ribbon structures were aligned using the align command in the PyMOL 

Molecular Graphics System (Schrödinger, LLC, 2015). 

Mammalian Cell Lines Transfections and Phenotypic Assays 

293T human embryonic kidney cells were generously provided by Dr. Jenny Ting, Chapel Hill, 

NC. The SV-40 transformed human renal tubule epithelial cell line (referred to as HKC) was 

obtained from Dr. Lorraine Racusen, Baltimore, MD (Racusen et al., 1997). A pair of vectors 

containing TAL effector nucleases (TALENs) targeting exon 3 of SETD2 was generated using 

the REAL (Restriction Enzyme And Ligation) assembly method. Component plasmids were 

obtained from Addgene (www.addgene.org/talengineering/talenkit/). Briefly, target sites were 

selected and TALENs designed using Zifit (http://zifit.partners.org/ZiFiT/), followed by assembly 

(Sander et al., 2011). The TALEN target sequences are: 5'-TCATGTAACATCCAGGCC -3' and 

5'-ACAGCAGTAGCATCTCCA-3'.  

An expression construct containing a N-terminal truncated form of SETD2 (amino acids 

1323 to 2564; tSETD2) was sequence-optimized for expression in human cells, tagged with the 

FLAG sequence on the C-terminus, and synthesized by Life Technologies. tSETD2 was 

specifically used as it modelss the yeast protein in domain structure, and expression of full-

length SETD2 was technically unfeasible. tSETD2 was subcloned into the pINDUCER20 

vector(58). Disease-relevant SETD2 mutations were introduced into the tSETD2 pINDUCER20 

construct using the QuikChange II Site-Directed Mutagenesis Kit according to the 

manufacturer’s instructions (Agilent Technologies). Mutations were verified through direct DNA 

sequence analysis. 
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293T and HKC human renal cells were transfected with the TALEN constructs, tSETD2 

construct, and mutation constructs using Amaxa® cell Line Nucleofector® Kit V (Lonza). For the 

protein stability assay, cycloheximide (100 ng/mL) was applied to cells 72 hours post-

transfection. For the 5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) transcription 

inhibition assay, 1000 cells/well were plated in triplicate on a 96 well plate and treated with 

100uM DRB for 72 hours, with viability being measured every 12 hours by Cell Titer Glo 

(Promega). 

Sequencing and Allelic Analysis 

DNA was extracted and the SETD2 TALEN target site was PCR-amplified (primers: 5'-

ACAGGGACGACAGAAGGTGTCATT-3' and 5'-ACTGGTGCTGGTGATGAGAGTGTT-3'), 

sequenced (Applied Biosystems 3730xl Genetic Analyzers, Life Technologies) and analyzed 

(Sequencher DNA analysis software version 5.0, Gene Codes Corporation). Allelic analysis was 

performed by subcloning individual PCR products (TOPO TA Cloning® Kit, 45-0641, Life 

Technologies). DNA from individual clones was PCR amplified, sequenced and analyzed as 

described above. 

Immunoblot Analysis 

To isolate mammalian cellular proteins, cells were lysed in Mammalian Protein Extraction 

Reagent (M-PER; Pierce Biotechnology) supplemented with Complete Mini Protease Inhibitor 

Cocktail (Roche). Histones were extracted using an overnight acid extraction protocol (Abcam). 

For yeast immunoblots, asynchronously grown mid-log (0.6-0.8 OD) phase cultures were lysed 

by SUMEB using glass beads methods described on the Gottschling Lab website 

(http://labs.fhcrc.org/gottschling/Yeast%20Protocols/pprep.html). 

Antibodies 

Antibodies used include: SETD2 (HPA042451, Sigma-Aldrich, St. Louis, MO), Ku80 (ab3107, 

Abcam), H3K36me3 (ab9050, Abcam), total H3 (Abcam, ab10799; Epicypher, 13-0001), 

H3K36me2 (39255, Active Motif), H3K36me1 (ab9048, Abcam), γH2AX (ab2893; Abcam), GST 



 

113 

(EpiCypher # 13-0022), and Set2 (raised in Strahl lab). Secondary antibodies used in human 

studies were anti-mouse and anti-rabbit IRDye Secondary Antibodies from LI-COR Biosciences 

(Lincoln, NE). HRP-conjugated donkey anti-Rabbit secondary antibody was used (Amersham) 

for yeast studies. Human antibodies were detected using the Odyssey IR imager (LICOR 

Biosciences) and densitometry analysis was performed using ImageStudio Ver2.0. The yeast 

immunoblots were developed using ECL-Prime (Amersham) and densitrometry analysis was 

done using ImageJ (NIH). 

Immunocytochemistry 

Cells were fixed with 4% para-formaldehyde for 15 minutes and permeabilized using 0.25% 

Triton X-100 in PBS. Endogenous peroxidase activity was blocked by incubation in 1% H2O2. 

Cells were then blocked in 5% bovine serum albumin followed by incubation in primary 

antibody. The Vectastain ABC Kit (PK6101, Vector Laboratories) was used for secondary 

antibody and HRP conjugation followed by the DAB peroxidase substrate kit (SK-3100, Vector 

Laboratories) and hematoxylin staining. 

Chromatin Immunoprecipitation 

Cells were fixed in 1% formaldehyde for 10 minutes, quenched with 125 mM glycine treatment, 

and homogenized in hypotonic solution (10 mM Tris pH 7.4; 15mM NaCl; 60mM KCl; 1mM 

EDTA; 0.1% NP-40; 5% sucrose; 1x protease inhibitors). Nuclei were separated by 

centrifugation through a sucrose pad (10mM Tris pH 7.4; 15mM NaCl; 60mM KCl; 10% sucrose; 

1x protease inhibitors) then resuspended in ChIPs buffer (10mM Tris pH 7.4; 100mM NaCl; 

60mM KCl; 1mM EDTA; 0.1% NP-40; 1x protease inhibitors, 0.05% SDS) and sonicated to 

obtain DNA between 200 bp to 1 kb. DNA was immunoprecipitated with H3K36me3 antibody 

prebound to protein A/G beads. Immunoprecipitated complexes were washed, RNAse and 

Proteinase K treated, and protein-DNA cross-links were reversed by overnight incubation at 

65°C. 
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Quantitative RT-PCR 

Total RNA was extracted using the Qiagen RNeasy mini kit. cDNA was made from total RNA 

using random primers and Superscript II Reverse Transcriptase reagents (Invitrogen). 

Expression and Purification of Human SETD2 

An E. coli codon-optimized synthetic gene corresponding to human SETD2 (UniProtKB ID 

Q9BYW2) residues 1345-1711 followed by a stop codon was cloned into the pGEX-6P-2 

expression vector (GE Healthcare) using standard procedures. The protein was expressed in 

soluBL21 (DE3) (Amsbio) cells by growing cells in Terrific Broth II media (MP Biomedicals) at 

37°C until an 0D600 of ~0.6 then chilling the cells for 30 minutes at 4°C before inducing them 

with 1mM IPTG in the presence of 25 µM ZnCl2 for 20 hours at 16°C. Cells were harvested by 

centrifugation and pellets were flash frozen in liquid nitrogen. For purification, thawed cell pellets 

were resuspended in binding buffer (50mM Tris pH 7.3, 300mM NaCl, 4mM dithiothreitol (DTT), 

10% glycerol and 1 µM ZnCl2) supplemented with 1 Complete mini-EDTA-Free Protease 

Inhibitor Tablet (Roche), 0.1mM phenylmethane sulfonyl fluoride (PMSF), 0.5mg/mL chicken 

egg lysozyme, and 0.2 % (v/v) Triton X-100 and incubated on ice for 45 minutes, then lysed with 

sonication and clarified by centrifugation. Clarified lysates were diluted 1:2 with binding buffer 

and applied to a 5mL glutathione agarose gravity flow column (pre-equilibrated with 10 column 

volumes (CV) of binding buffer) at a flow rate ~ 0.5mL/min at 4°C. The bound protein was 

washed with 10CV of binding buffer then eluted from the column with 35 mLs of elution buffer 

(50mM Tris pH 8.0, 300mM NaCl, 4mM DTT, 10% glycerol, and 10mM reduced L-glutathione). 

The eluted protein was mixed with Precision Protease (GE Healthcare) and exhaustively 

dialyzed against binding buffer, without ZnCl2, over the course of 20 hours at 4°C. The cleaved 

protein sample was applied to a pre-equilibrated 5mL glutathione agarose gravity flow column at 

a flow rate ~ 0.5mL/min at 4°C and the flow-through was collected and concentrated using an 

Amicon-Ultra 15 concentrator (Millipore). The Bradford Assay and and SDS-PAGE analysis 

were used to determine the quantity and purity of the protein samples respectively. The SETD2 
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R1625C mutant was generated by site-directed mutagenesis using the QuickChange Kit 

(Agilent), and expressed and purified as described above. Note: a small amount of GST-SETD2 

WT and R1625C was not treated with Precision Protease, but was extensively dialyzed against 

binding buffer then used for peptide pull-down experiments (see below). 

Histone Methyltransferase Assays 

HMT assays were preformed by incubating wild type SETD2 or the R1625C variant at a final 

concentration of 500nM with 1 µg of chicken oligo-nucleosomes (EpiCypher), and 1 µCi 3H-

AdoMet (PerkinElmer Life Sciences) in a buffer containing 50mM HEPES pH 8.0, 150mM NaCl, 

2.5mM MgCl2, 1µM ZnCl2, and 2.5% glycerol, for 16 hours at room temperature (total reaction 

volume was 20µL). The reactions were quenched with 0.5% TFA then spotted onto Whatman 

filter paper, air dried and washed 4 times with ~200 mLs of a sodium bicarbonate (pH 9.0) 

solution, air dried again and added to liquid scintillation vials containing 5 mLs of Ultima Gold F 

(PerkinElmer Life Sciences). Samples were counted for 1 minute each using an all-purpose 

Beckman Coulter liquid scintillation counter in 3H mode. A reaction without enzyme was used 

as the negative control and to determine background counts. 

Circular Diochroism Spectroscopy 

For CD experiments, proteins were exhaustively dialyzed into a buffer containing 20mM sodium 

phosphate (pH 7.0), 150mM sodium fluoride (NaF), and 0.2mM tris(2-carboxyethyl)phosphine 

(TCEP) at 4°C. CD spectra were collected using a 0.1cm quartz cuvette and a Chirascan Plus 

instrument (Applied Photophysics Inc.) at 20 °C over the wavelength range 185-260nm with a 

step size of 0.5nm. A sample of the buffer was collected over the same wavelength scan and 

absorbance values were subtracted from the final datasets. Each sample was scanned three 

times and the final plots represent the average scan with the CD signal (in milidegrees) 

converted to molar ellipticity ([Θ]). For thermal melt curves, the CD absorbance at 207nm was 

collected over the temperature range from 20-95°C with 1°C temperature ramping and a 
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temperature tolerance range set to 0.2°C. Proteins were diluted to 0.25mg/mL for all CD data 

collection (protein stock concentrations determined by A280). 

Peptide Pull-Downs 

A total of 50pmols of GST tagged-wild type SETD2 or the R1625C variant was incubated with 

500pmols of each biotinylated histone peptide for 1 hour at 4°C in peptide binding buffer (50mM 

Tris pH 8.0, 300mM NaCl, 0.1% NP-40) supplemented with 2mM Dithiothreitol (DTT) and 1 µM 

ZnCl2. Following incubation, the protein-peptide mixture was incubated with streptavidin coated 

magnetic beads (Pierce), pre-equilibrated with peptide binding buffer, for 1 additional hour at 

4°C. The beads were washed 3 times with peptide binding buffer and bound complexes were 

eluted with 1x SDS loading buffer, resolved via SDS-PAGE and transferred to a PVDF 

membrane. The membrane was probed with anti-GST antibody diluted to 1:4000 in 5% BSA in 

PBS-T. The peptides contained the budding yeast histone H3 residues 27-45 and were mono-, 

di-, or trimethylated at Lys36. In this region, the human and budding yeast H3 sequences differ 

by an Ala to Ser substitution at residue 31 and by an Arg to Lys substitution at residue 42. 

Yeast Growth Assays 

Parental yeast strains were transformed with indicated plasmids, and were grown to saturation 

in appropriate selection medium. Saturated cultures were diluted to an OD600 of 0.5 and 5-fold 

serially diluted and plated with or without 6-azauracil (6-AU) or plated with or without 

phleomycin; pictures were taken 2-3 days after spotting. Similarly, strains with integrated cryptic 

initiation cassette (as shown in Figure A.3) were serially diluted and plated on SC-Ura-His plates 

with or without galactose for 3 days to detect growth. Growth on SC–Ura acted as a control for 

equivalent growth for all the strains. 

Immunofluorescence Staining for γH2A.X 

HKC cells were cultured for 16-18 hours followed by 2 Gy radiation (RS 2000 Biological 

Research Irradiator), fixed for 15 minutes in 4% paraformaldehyde, washed with cold PBS, and 

permeabilized (0.25% Triton X-100 in PBS) for 10 minutes. After blocking with 1% hydrogen 
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peroxide then 5% BSA, cells were incubated with anti-γH2AX (1:500) at 4⁰C overnight. Cells 

were washed using PBST and incubated with goat anti-rabbit IgG (1:500) Cy5 1h at RT. After 

washing, cells were counterstained using DAPI. Fluorescence signals were visualized using 

confocal microscopy (LSM 700, Zeiss) and number of foci per cell were analyzed using Zen 

(LSM 700, Zeiss). 5 images per coverslip (total 15 images) were collected in three independent 

experiments. For the radiation colony formation assay, cells were diluted to a single cell 

suspension and 300 cells were plated on a 10 cm plate. Plates were irradiated at 0, 37, 75, 150 

and 300 rads, allowed to grow for 10 days then stained with crystal violet. Colonies were 

counted manually. 
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Figures 

 

Figure A.1:20SETD2 and yeast Set2 show high sequence and structural conservation 

A. Comparison of SETD2 and yeast Set2 (ySet2) annotated protein structure. Percentage of 
conserved residues within the BLAST aligned domain sequence is indicated. Annotated 
domains include: AWS: Associated with SET, SET: Su(var)3-9, Enhancer-of-zeste, Trithorax, 
PS: Post-SET, CC: Coiled-Coil, LCR: Low Charge Region, WW: conserved Trp residues, SRI: 
Set2 Rpb1 interacting. Numbers represent percent conservation. B. Alignment of human SET 
domain crystal structure (blue) with I-TASSER protein structure prediction for yeast SET domain 
(yellow). N-terminus is marked in green, C-terminus is marked in pink, and residues mutated are 
shown as sticks. C. Partial SET domain sequence alignment across multiple species. Amino 
acids 1612-1673 of human SET domain (amino acids 1550-1667) are shown. Residues mutated 
in ccRCC are in red and marked with an asterisk. The arrow indicates R1625, the residue 
mutated for study. The black box indicates residues previously shown to be an important 
catalytic site. Residues that are conserved across species are indicated in green. D. SRI 
domain sequence alignment across multiple species. Residues mutated in ccRCC are in red 
and marked with an asterisk. The arrow indicates R2510, the residue mutated for study. 
Residues that are conserved across species are indicated in green. E. Alignment of human SRI 
domain crystal structure (blue) with yeast SRI domain crystal structure (yellow). N-terminus is 
marked in green, C-terminus is marked in pink, and residues mutated are shown as sticks. 
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Figure A.2:21ccRCC specific mutations in SETD2 have separate effects on H3K36me3 

A. Immunocytochemistry of HKC SETD2 wild-type (top) and SETD2Δ cells for H3K36me3. B. 
Sanger sequencing results of TALEN target sequence in exon 3 of SETD2. Two allelic variants 
in one HKC SETD2Δ clone are represented. C. Immunoblot displaying protein expression level 
72 hours after transfection in 293T cells. Ku80 acts as a loading control. D. Average 
quantification SETD2/Ku80 over the hours of 12 hours following cycloheximide treatment in 
three independent western blots (left). Average half-life of mutant SETD2 proteins (right). E. 
Average RNA levels of tSETD2, R1625C, or R2510H, as determined by qPCR for tSETD2 
levels. F. Anti-H3K36me3 immunocytochemistry on HKC cells at 72 hours post-transfection 
following reintroduction of GFP, wild-type tSETD2, R1625C, or R2510H. G. Anti-H3K36 
methylation immunoblot displaying levels of methylation levels at 72 hours post-transfection 
following reintroduction of GFP, wild-type tSETD2, R1625C or R2510H. Quantification of 
H3K36me3/H3 levels is shown beneath blot. H. ChIP-qPCR displaying H3K36me3 levels at 
exonic locations in CDK2 (left) and Myc (right), displayed as ChIP signal/Input. Error bars 
represent standard error. Significance comparisons were made to SETD2 inactive + GFP. 
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Figure A.3:22The SETD2 R1625C variant is catalytically inactive and has reduced 
substrate-binding capacity 

A. Coomassie Blue stained SDS-PAGE gel of 1µg of purified wild type or R1625C variant 
SETD2 construct containing amino acids 1345-1711 (42kDa). Precision Plus Protein standards 
(BioRad) are annotated. B. Radiometric histone methyltransferaes assays comparing the 
catalytic activity of the wild type and R1625C variant when chicken olido-nucleosomes were the 
substrate. The amount of 3H-methyl incorporated is quantified as counts per minute (CPM) and 
error bars represent the standard error of the mean (n=3). A reaction without enzyme served as 
a negative control. C. Circular Diochroism (CD) absorbance spectra (plotted as the molar 
ellipticity ([Θ]) as a function of wavelength) comparing the secondary structure of wild type 
SETD2 (black) and the R1625C variant (purple). D. Thermal melt curves showing the change in 
CD absorbance at 207nm over the temperature range from 20-95°C for wild type SETD2 (black) 
and the R1625C variant (purple). E. Structural analysis of R1625. The crystal structure of the 
SETD2 SET domain (show in tan) bound to S-adenosyl-L-homocystein (SAH, shown in green) 
near the active site. Hydrogen bonds are shown as gray dashed lines (PDB code 4H12). F. In 
silico mutagenesis analysis (performed in PyMOL, Schrodinger Inc.)). The distances between 
the R1625C thiol and the carbonyl oxygens of A1617 and T1618 were measured in PyMOL 
(yellow dashed lines). G. Peptide pull-down assays comparing the binding of the wild type and 
the R1625C variant to the indicated histone H3 peptides. All peptides were biotinylated at the C-
terminus and were either unmodified, or mono- (me1), di- (me2) or trimethylated (me3) at K36. 
Streptavidin coated magnetic beads without peptide served as the negative control. 
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Figure A.4:23Modeling of ccRCC specific mutations in Set2 results in separate effects 
based on H3K36me status 

A. Anti-H3K36me immunoblots displaying levels of methylation in set2Δ yeast cells, as well as 
yeast with the indicated Set2 mutation. Quantification of H3K36me3/H3 is shown as a bar 
graph. B. Western results for Set2 and R195C protein levels after treatment with cyclohexamide 
(100µg/mL) and MG132 (75µM). C. 6-Azauracil (6-AU) treatment of wild-type or set2∆ yeast 
cells expressing the indicated Set2 mutations. D. Phleomycin treatment of wild-type or set2∆ 
yeast cells expressing the indicated Set2 mutations. E. Cryptic initiation assay of wild-type or 
set2∆ yeast cells expressing the indicated Set2 mutations. 
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Figure A.5:24H3K36me3 loss delays γH2A.X foci resolution after DNA damage but does not 
alter viability 

A. Surviving fraction of cells at 12, 24, 36, 48, and 72 hours post treatment with 100 µM 5,6-
Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB). Fraction was determined compared to an 
untreated control. Error bars represent standard deviation of triplicate treatments. B. γH2AX foci 
formation at 0, 0.5, 1 and 4 hours after irradiation (2Gy) in HKC wild-type or SETD2-inactivated 
cells transfected with GFP, tSETD2, R1625C mutant or R2510H mutant. The nuclei were 
visualized by DAPI staining. Representative immunofluorescence images are shown; scale bar 
at 10 µm. At least 5 fields were taken from each condition and four independent experiments 
were performed. C. Percentage of HKC cells with more than 10 γH2AX foci per cell at 0, 0.5, 1, 
and 4 hours after irradiation (2Gy). Error bars represent standard error. *p<0.05, **p<0.01, (two-
sided t-test, comparison to HKC wild-type). D. Immunoblot analysis for the expression of γH2AX 
and H3 (loading control) from the 293 wild-type or SETD2-inactivated cells transfected with 
GFP, tSETD2, SET domain R1625C mutant or SRI domain R2510H mutant. The cells were 
irradiated by 2 Gy, and histones were acid-extracted at various time points. Average 
quantification of γH2AX/H3 after irradiation in three independent western blots Error bars 
represent standard error. *p<0.05, **p<0.01, ***p<0.001 (two-sided t-test, comparison to 293 
wild-type + GFP). E. Radiation foci formation assay. Surviving fraction represents ratio of 
treatment (37, 75, 150, 300 rads) to 0 rad comparison. Error bars represent standard deviation 
of triplicate results. 
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