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ABSTRACT 

Tiffany Lyn Breger: Estimating the Impacts of Interventions on Non-AIDS Risk Factors in Observational 

HIV Cohorts 

(Under the direction of Stephen R. Cole) 

Non-AIDS risk factors contribute to persisting health disparities between people with HIV and 

the general population in the current era of effective combination antiretroviral therapy (ART). However, 

the optimal combination of interventions used in conjunction with ART to improve long-term outcomes 

remains unclear. In Aim 1, we used the parametric g-computation estimator to estimate the effects of 

combined interventions on non-AIDS risk factors on the risk of all-cause mortality among 1016 ART-

naïve women enrolled in the Women’s Interagency HIV Study (WIHS) between 1998 and 2017. Modeled 

interventions on alcohol and smoking combined with prompt initiation of modern ART decreased the 8-

year risk of mortality compared to intervening solely on ART. Strategies that eliminated these non-AIDS 

risk factors achieved greater improvements in survival than strategies that reduced the prevalence of 

alcohol and smoking based on the expected efficacy of existing, real-world interventions.  

In Aim 2, we developed and validated two-stage g-computation estimators that leverage partially 

observed information in the full study sample with complete exposure information available in a subset. 

Using a hypothetical cohort simulated to represent women with HIV enrolled in waves 2-4 of the WIHS, 

we illustrated a two-stage extrapolation g-computation estimator of the population average treatment 

effect and two-stage inverse probability weighted and exposure imputation g-computation estimators for 

the population average intervention effect. In 10,000 Monte Carlo simulations, two-stage approaches 

approximated the true values of the parameters of interest, considerably reduced bias and root mean 

squared error, and improved 95% confidence limit coverage compared to the naïve g-computation 

estimator fit to complete cases.  
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While modern ART has transformed the prognosis of HIV to a manageable chronic condition, 

non-AIDS risk factors remain significant contributors to early mortality. Our results suggest that 

interventions targeting alcohol and smoking may further reduce the risk of mortality. Achieving optimal 

health outcomes, however, will require more efficacious interventions as well as evaluation of 

interventions on other non-AIDS-related exposures that may not be completely measured in existing 

cohorts. While missing data threaten validity and precision, proposed two-stage g-computation estimators 

can be used to make progress in the face of these challenges.  
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CHAPTER 1: INTRODUCTION 

 
 
A.  Moving Beyond Antiretroviral Therapy: Intervention Portfolios Among People with HIV  

Health disparities persist between people with human immunodeficiency virus (HIV) and the 

general population. Though acquired immunodeficiency syndrome (AIDS)-related mortality has 

dramatically declined in the United States (US) since the availability of highly effective combination 

antiretroviral therapy (ART), other causes of morbidity and mortality disproportionately affect those with 

HIV.1–4 Compared to the general US population, those with HIV experience a higher prevalence of 

comorbidities including hypertension,5 cardiovascular disease,6–9 diabetes,5,10 liver disease,11,12 and 

pulmonary disease.13–15 Up to 65% of people with HIV experience the co-occurrence of 2 or more chronic 

conditions (i.e., multimorbidity).16 In addition to this high burden of comorbidities, people with HIV 

experience accelerated aging with an onset of multimorbidity occurring a decade earlier than those 

without HIV.17–19 Consequently, the widespread adoption of ART has not closed the gap in survival for 

people with HIV who continue to die from non-AIDS causes 8 to 9 years earlier than those without 

HIV.20–22 

Further improvements in the health status and survival of people with HIV will require greater 

attention to non-AIDS risk factors. Cigarette smoking, substance use, and chronic inflammation are 

highly prevalent among HIV-positive populations and may contribute to a larger proportion of excess 

morbidity and mortality in the modern ART era. In a nationally representative US survey, over 40% of 

adults with HIV reported current smoking, compared to 20% of the general population.23 The proportion 

of adults with HIV reporting any alcohol consumption in the last month has ranged from 40-53% in US 

based cohorts, with an estimated prevalence of heavy drinking twice that of the general population.24–27 

Additionally, chronic inflammation persists even after successful viral suppression and might increase the 
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risk of cardiovascular disease as people live longer with HIV.28–30 

Cigarette smoking and alcohol are important risk factors for many chronic conditions in the 

general population. Both smoking and heavy alcohol use have been associated with elevated risks of 

hypertension,31 cardiovascular disease,31 and liver disease.32,33 Furthermore, smoking and alcohol increase 

inflammation, which is a known marker of early mortality.34–36 In addition to cigarette smoking being an 

established risk factor for pulmonary diseases,37,38 it has also been identified as a risk factor for Type 2 

diabetes.39,40  

While tobacco, alcohol, and inflammation are recognized as significant risk factors in the general 

population, their adverse effects may be more pronounced among those with HIV. Several studies have 

reported a higher risk of respiratory tract infections, chronic obstructive pulmonary disease, and lung 

cancer among smokers with HIV, suggesting a synergistic relationship between cigarette smoking and 

HIV infection.15,41–46 In the Veterans Aging Cohort Study, HIV status appeared to interact with alcohol 

consumption in increasing the risk of adverse health outcomes among men; those with HIV experienced 

an increased risk of physiologic injury and mortality at lower thresholds of alcohol consumption than 

their HIV-negative counterparts.47 With people now less likely to die of AIDS and living longer with HIV 

in the modern ART era, these non-AIDS risk factors are becoming important determinants of excess 

morbidity and mortality. 

Though there have been calls for a more comprehensive approach to HIV care management, 

several limitations to the evidence base have impeded public health action. First, existing observational 

studies have primarily focused on quantifying the magnitude of the relationship between specific non-

AIDS risk factors and mortality. Considerable effects have been reported in select populations, including 

a two-fold increase in mortality with smoking,42 a 40% higher hazard of mortality associated with heavy 

alcohol consumption,27 and a 2.6-2.7-fold higher odds of mortality associated with fibrinogen and C-

reactive protein inflammatory markers.48 However, it is not possible to infer from these studies the 

potential reduction in mortality that would be achieved by interventions that combine prompt initiation of 

modern ART with the elimination or reduction of the prevalence of these risk factors relative to the status 
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quo.46,49–51 The estimated effect of a risk factor on an outcome cannot be interpreted as the effect of 

intervening on that risk factor given potential unmeasured, indirect effects of the intervention on the 

outcome and imperfect intervention efficacy.52 

While randomized controlled interventions targeting non-AIDS risk factors have demonstrated 

some promising results they have largely been conducted among those without HIV. 

Immunocompromised health status is a common exclusion criteria in trials which has led to an existing 

evidence base that is more applicable to relatively healthy, non-pregnant adult populations. In a meta-

analysis of smoking cessation randomized interventions, nicotine replacement therapy treatments, 

bupropion, varenicline, and cytisine demonstrated efficacy in quitting rates.53 However, these 

interventions may have differing effects among those with HIV, or in some cases, be inadvisable. For 

example, in several studies varenicline has been associated with increased psychiatric symptoms among 

those with depression54 – a comorbidity that is extremely common among those with HIV.55 Furthermore, 

pharmacological based interventions may not be appropriate for women of reproductive age, particularly 

if pregnancy is likely. The U.S. Preventive Services Task Force has declared that there is insufficient 

evidence to evaluate the benefits versus harms of pharmaceutical smoking cessation aids during 

pregnancy.56 

Most alcohol consumption interventions have also been conducted among non-generalizable 

study populations. Some cognitive-behavioral therapy and pharmacological-based interventions have 

demonstrated efficacy in short-term reductions in alcohol consumption as well as lower rates of relapse.57–

59 However, studies have been conducted primarily among those with alcohol dependence or alcohol 

consumption levels far beyond the national recommended safe limits.  

Studies of similar interventions among people with HIV have either been absent or enrolled 

small, highly selective (often majority male) samples of HIV-positive individuals and evaluated only 

short-term effects. In behavioral smoking cessation trials,60 interventions have been highly variable and 

endpoints have typically been smoking cessation at 6 or 12 months, making it difficult to draw 

conclusions about the long-term real-world effectiveness of various strategies. Trials evaluating the 
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efficacy of interventions targeting alcohol use have been conducted among high risk groups and yielded 

mixed results;61 no studies have evaluated the impact of lowering alcohol consumption to national 

recommended limits among the majority of those who consume alcohol but are not classified as heavy 

drinkers. Similar to the challenge of randomized controlled trials outside of HIV settings, women are 

often underrepresented in trials of interventions on non-AIDS-related risk factors. 

Further evidence of the real-world effectiveness of existing interventions among those with HIV 

is necessary to guide clinical decision making. However, even in observational HIV cohorts in which 

collected exposure and risk factor information may enable a more accurate depiction of the experience of 

those with HIV in the US and improve target validity,62 women are underrepresented. Many existing 

studies have been restricted to men or are conducted in cohorts that include an overwhelming majority of 

men. The Veteran’s Aging Cohort Study is composed of 97% men which made it necessary to restrict to 

men while studying the interaction between HIV and alcohol consumption on physiologic injury and 

mortality.47 No analogous study has been conducted among women with HIV. Other large cohorts of 

HIV-positive individuals in the US, such as the CFAR Network of Integrated Clinical Systems, are 

composed of over 80% men.63 Thus, results from studies conducted in these cohorts are not necessarily 

generalizable to women with HIV who experience a different distribution of risk factors than men with 

HIV5 and may also experience differing intervention efficacy. Yet women with HIV experience far 

greater multimorbidity5 and have seen less improvement in life expectancy with ART than men with 

HIV20 which makes it imperative to study multiple interventions on non-AIDS risk factors in this group 

using information collected in HIV cohorts that have enrolled large samples of women.  

Few studies to date, however, have looked at effects of sets of interventions or compared 

interventions targeting different risk factors in a given population of HIV-positive individuals either 

generally or among HIV-positive women specifically. In both randomized trials and observational cohort 

settings, researchers have often focused on estimating the effect of a particular intervention in isolation, or 

less frequently, the effect of a pair of interventions.64,65 However, given the clustering of several risk 

factors and comorbidities among those with HIV (especially women), information about more 
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comprehensive intervention strategies is important. It is possible that improvements in survival may 

require more than one intervention. For example, those who quit smoking but still engage in regular, 

heavy drinking may not experience a substantial delay in mortality that would otherwise be observed by 

intervening on both risk factors together. Synergistic relationships between interventions might also exist, 

with early intervention on more than one risk factor yielding a greater improvement in clinical outcomes 

than intervening on each risk factor separately. Comparisons of intervention combinations are critical to 

clinicians and policymakers in prioritizing strategies for comprehensive HIV care management.  

Traditional study approaches cannot provide clinicians and policymakers with estimates of the 

potential improvements in outcomes among those with HIV that can be achieved by various combined 

interventions. Ideally, a factorial randomized trial would be conducted to evaluate sets of interventions on 

multiple risk factors. In light of constrained resources, the large sample size and length of follow-up 

period required preclude these studies from being conducted. While observational studies offer a plethora 

of longitudinal data on an often less selective study population, confounding is a major concern due to 

nonrandomized treatment. Additionally, standard approaches using multivariable regression models to 

address confounding fail to provide valid estimates in the presence of time-varying confounders66 and 

often do not give covariate marginal effects. 

Recent advances in statistical software and causal inference methods offer a unique opportunity 

to leverage observational data to quantify the impact of potential intervention portfolios (i.e., 

combinations of interventions). Marginal structural models, most commonly estimated with inverse 

probability of treatment weights, can appropriately control time-varying confounding and provide 

estimates of causal effects when sufficient conditions are met.66 However, inverse probability of treatment 

weighting is not always conducive to providing estimates of intervention contrasts,49,51 especially when 

multiple, combined interventions are being assessed. The parametric g-computation estimator is a 

particularly flexible estimator of the parameters of a marginal structural model which can be used to 

estimate population-level effects of various changes to exposure distributions.49,51,67,68 Because the 

estimator is fully parametric, it can achieve improved efficiency compared to inverse probability 
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weighting in some settings.64,68 Recent illustrations of its application using available statistical software 

packages have now made it a viable analytic tool.46,65,68–75 

B.  Development and Assessment of Novel Statistical Methods: A Brief History  

Causal inference methods are increasingly applied to observational data to answer pressing 

research questions and guide clinical decision making. For both HIV-positive populations and other 

vulnerable groups, there is an urgency to identify and rigorously evaluate interventions that can improve 

patient health outcomes. Randomized controlled trials are costly, inefficient, and infeasible in many 

settings. Consequently, causal inference methods play an important role in providing answers to these 

questions. Examples have demonstrated that under a set of “identification” assumptions, these methods 

can be applied to existing observational data to yield results comparable to those that would be obtained 

with a randomized controlled trial.66,68,75,76 

The parametric g-computation estimator is one such causal inference method that is likely to 

become a more popular approach to assessing potential impacts of interventions. Until recently, a major 

barrier to the adoption of the parametric g-computation estimator was the absence of examples of its 

implementation using available statistical software. However, a PubMed search reveals that since 

Taubman et al. provided an illustration in 2009,69 there have been 75 published studies using this 

estimator in analyses. Given the unique flexibility of the parametric g-computation estimator and 

additional guidance published in 201268 and 2014,71 it will likely become a more common analytic choice. 

Approaches to implement the parametric g-computation estimator in analyses assume complete 

exposure information; yet, missing data are extremely common in epidemiologic research.77 In previous 

studies using HIV observational data, this has not presented a substantial problem. This is due to the fact 

that in many instances to date, the research question has focused on ART based interventions.68,73,78 

Because many existing observational HIV cohorts were established to study the natural and treated 

progression of HIV, ART information tends to be very well measured with few missing data.   

However, with persisting health disparities between ART-treated people with HIV and the 

general population, attention is shifting to evaluating impacts of interventions on non-AIDS risk factors. 
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Further improvements in the health outcomes and survival of people with HIV will require more 

comprehensive interventions that additionally target non-AIDS risk factors; yet, sparsely collected data on 

non-ART exposures in existing observational data sources leaves investigators without validated 

approaches to quantify such intervention effects.  

In both existing HIV cohorts as well as other observational studies, exposure information may be 

missing by design or missing for unknown reasons. Missing data may occur by design when data 

collection is expensive or was only performed on a subset of the cohort. For example, the Women’s 

Interagency HIV Study has additional detailed biomarker and behavioral data collected on a sample of 

cohort members as part of previous and ongoing substudies. (See: http://statepiaps.jhsph.edu/wihs/invest-

info/dossier.pdf) Additionally, linkages to claims databases or electronic medical records can provide 

more detailed exposure information but may only be possible for a subset of the cohort due to cost or 

other barriers such as only being able to link records for people who are in regular care. To avoid loss of 

efficiency and potential threats to the validity of results,77,79–81 investigators need guidance regarding 

approaches that may be used to address missing data in the parametric g-computation framework. 

Neyman introduced two-stage study sampling designs as an approach to improve accuracy of 

estimators when information on a particular variable may be difficult or costly to measure among the total 

population of interest.82 “Two-stage” study designs have since been illustrated using standard regression 

models to recover valuable information from partially observed cases, particularly in the context of case-

control and case-cohort data.80,83–87 While such study designs have improved the accuracy of regression 

coefficients estimated under various missing data structures, these parameters do not approximate the 

population-level intervention effects needed to inform policy.49–51,88 Importantly, existing two-stage 

methods have not been adapted to compare counterfactual outcome distributions using the parametric g-

computation estimator when exposure is partially missing. As a result, parametric g-computation 

estimator analyses have been limited to 1) address questions in which exposure information is always 

complete, limiting the types of questions that can be answered (particularly in regards to non-AIDS risk 

factors); 2) include only individuals with complete exposure information, reducing external validity of 

http://statepiaps.jhsph.edu/wihs/invest-info/dossier.pdf
http://statepiaps.jhsph.edu/wihs/invest-info/dossier.pdf


8 

findings; or 3) use ad-hoc methods to account for missing data which have not been systematically 

validated for g-computation. 

New extensions to rigorous counterfactual-based approaches will be imperative to leverage 

underused observational data to evaluate and compare interventions on non-AIDS risk factors. 

Furthermore, such approaches are necessary to guide efficient, cost-effective design of future studies that 

have the potential to improve healthcare delivery strategies and ultimately reduce the burden of morbidity 

and early mortality among those with HIV.  
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CHAPTER 2: STATEMENT OF SPECIFIC AIMS 

 
 
A.  Overview 

The overall objectives of this work were to 1) leverage observational data and novel quantitative 

methods to estimate the impact of combined interventions to delay mortality among women with HIV and 

2) refine these methods to accommodate missing exposure information that is likely to hamper crucial 

future studies of interventions on non-AIDS risk factors. To meet these objectives, we carried out the 

following specific aims using longitudinal data from HIV-positive women participating in the Women’s 

Interagency HIV Study (WIHS)89–91– the largest ongoing interval cohort of HIV-positive women in the 

United States. 

B.  Aim 1  

We aimed to estimate the effects of alcohol consumption and smoking cessation interventions 

combined with prompt initiation of ART in the modern treatment era on the 8-year cumulative incidence 

of all-cause mortality in the WIHS between 1998 and 2017 using the parametric g-computation algorithm. 

Our goal was to use this approach to estimate the risks of all-cause mortality under two sets of 

intervention portfolios (i.e., combined interventions) where Set A interventions were specified as the 

elimination of these non-AIDS risk factors and Set B interventions were specified as the reduction in the 

prevalence of these non-AIDS risk factors based on the expected efficacy of existing, real-world 

interventions. We further aimed to estimate the impact of each intervention portfolio compared to an 

intervention only on prompt initiation of ART in the modern era using risk differences and ratios.  

Hypothesis: We hypothesized that interventions on non-AIDS risk factors in addition to prompt 

initiation of ART would reduce the risk of all-cause mortality and that interventions that eliminated, 
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rather than reduced the prevalence of, non-AIDS risk factors would achieve the greatest improvements in 

survival.  

Rationale: There is a high prevalence of smoking and alcohol consumption in the WIHS91–94 and 

other HIV-positive populations,23,24,95 both of which are known risk factors for mortality and have 

potentially more pronounced adverse effects among those with HIV.15,41–45,47 With ART-treated HIV-

positive individuals now less likely to die from AIDS, these non-AIDS risk factors may contribute to a 

greater proportion of excess morbidity and mortality. Consequently, eliminating or reducing the 

prevalence of smoking and alcohol consumption may improve survival in the modern ART era. Because 

eliminating risk factors assumes interventions with 100% efficacy and no side effects52 and existing 

interventions have much lower efficacy, the smaller reduction in the prevalence of smoking and alcohol 

consumption with real-world interventions will likely have attenuated effects on survival.      

C.  Aim 2 

We aimed to develop, validate, and illustrate approaches to constructing two-stage g-computation 

estimators of the total population-level treatment and intervention effects in the presence of missing 

exposure information. Using a simulation study design and a hypothetical cohort simulated to represent 

HIV-positive women enrolled in the WIHS, our goal was to validate the following two-stage estimators. 

For the estimator of the average treatment effect, our goal was to construct and validate a two-stage 

extrapolation approach in which conditional probabilities are estimated from parametric models fit to a 

subset of study participants with complete exposure data; in the second stage, conditional probabilities are 

directly extrapolated to the full cohort. For the estimators of the average intervention effect, our goal was 

to construct and validate two-stage inverse probability weighted g-computation and exposure imputation 

g-computation approaches. We further aimed to compare the performance of each of the proposed 

estimators in terms of bias, standard error, 95% confidence limit coverage, and root mean squared error. 

Hypothesis: We hypothesized that when exposure information is not missing completely at 

random, the naïve g-computation algorithm fit to complete cases will provide biased estimates of absolute 

and relative risks in the population of interest; however, the two-stage extrapolation g-computation 
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estimator will provide unbiased estimates of the absolute and relative risks for an “always treated” and 

“never treated” population, provided all covariates predicting both missingness and the outcome are 

included in models. Similarly, the two-stage inverse probability weighted and exposure imputation g-

computation estimators will provide unbiased estimates of risks for an “always treated” population 

compared to the population under the “natural treatment course” (i.e., no imposed intervention). 

Rationale: When exposure information is missing not at random, absolute and relative risks 

estimated from those with complete information will not necessarily equal those that would have been 

observed among the full cohort of interest. Two-stage g-computation approaches that leverage available 

covariate and outcome information from all individuals, including those with missing exposure 

information, will improve precision and consistency, as has been illustrated in other analytic 

settings.80,83,84,96 Because the inverse-probability weighted and exposure imputation g-computation 

approaches include a model for the exposure, the outcome distribution under the natural treatment course 

can be recovered. 
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CHAPTER 3: METHODS 

 
 
A.  Overview 

This chapter presents the study design, data source, assessment of measures, and statistical 

methods as they relate to Aims 1 and 2. The chapter is organized as follows. Section A presents a brief 

overview of the parametric g-computation algorithm – the approach that is used in Aim 1 analyses to 

estimate the effects of interventions on non-AIDS risk factors and extended in Aim 2 to accommodate 

missing exposure information when estimating treatment and intervention effects. In Section B, we 

outline the study sample, variable measurement, and analyses for Aim 1. In Section C, we outline the 

study design, developed estimators, and analyses for Aim 2.  

A1.  Parametric G-computation Estimator of the Parametric Generalized-Formula  

In this document, we make the following distinction between the terminology “g-formula” and 

the “parametric g-computation estimator.” We use “g-formula” to refer to an equation that is used to 

express the observed data distribution as the distribution of the data that would have been observed under 

an alternative treatment plan. We use “parametric g-computation estimator” to refer to a parametric 

estimator of the g-formula equation. We also use “algorithm” interchangeably with “estimator.”  

The parametric g-computation formula estimator67 is a recently illustrated approach68,69,71,78,97–99 to 

estimating the parameters of a marginal structural model. Analogous to an inverse probability of 

treatment weighted (IPTW) estimator of the parameters of a marginal structural model,66,76,100 the g-

computation estimator is a generalization of standardization. In longitudinal observational study settings 

subject to time-varying confounding, both IPTW and g-computation estimators can provide valid 

estimates of the total treatment effect that would otherwise be biased with the use of traditional regression 

estimators.67,101  
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Three particular advantages of the parametric g-computation estimator are its flexibility in 

estimating population-level effects of realistic changes to exposure distributions,46,49,51,65,74,102,103 ability to 

estimate effects of interventions that depend on the natural value of exposure,104,105 and efficiency in 

quantifying impacts of multiple interventions.69,105 Whereas the IPTW estimator has been widely used to 

obtain contrasts of an “always treated” versus “never treated” population, this is often not representative 

of the scenarios that policymakers are considering.49,51 For example, in deciding whether more resources 

should be allocated to smoking cessation interventions, the alternative to targeting more smokers for 

treatment is not “take away treatment from all smokers”; rather, it is more likely that the alternative is 

“maintain the status quo.” The parametric g-computation estimator can easily be specified to provide such 

contrasts. The extended parametric g-computation estimator can also be used to specify interventions that 

involve changes to exposure that depend on the natural value of exposure that would be observed if 

intervention were discontinued immediately before measurement.104,105 An example of an intervention 

that depends on the natural value of exposure is “intervene to eliminate depression with probability 66% 

if depression occurs without intervening immediately before this timepoint.”64 Finally, while the IPTW 

estimator can become inefficient when estimating multiple joint interventions, the g-computation 

estimator relies on more parametric models, and consequently, may maintain a higher level of 

efficiency.64,106  

A2.  Identification Conditions   

Under a sufficient set of conditions, the g-computation formula re-expresses the distribution of 

the data under the observed treatment (i.e., the factual) as the distribution of the data that would have been 

observed under a potentially alternative treatment (i.e., the counterfactual). Mathematically, this can be 

written in a simplified, time-fixed setting as shown below where the left-hand side of the equation 

represents the observed expectation, the right-hand side represents the counterfactual expectation, random 

variables are denoted with uppercase letters, realizations of those variables are denoted with lowercase 

letters, the outcome is denoted Y, the treatment is denoted A, and covariates are denoted W. 
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  ∑𝐸(𝑌 = 𝑦|𝐴 = 𝑎,𝑊 = 𝑤)𝑃(𝑊 = 𝑤) = 𝐸{𝑌(𝑎) = 𝑦}   

𝑤

 

The identification conditions are as follows: 

     1)  No measurement error of treatment, covariates, or outcome.107 More specifically, we assume 

that the treatment and outcome are measured without error while covariates might be 

mismeasured but that the observed covariate values are those that inform the treatment plan. 

For example, a laboratory measurement of CD4 cell count might be 220 for a patient whose 

true CD4 cell count is 235; however, the 220 value the clinician sees is the value that is used 

to determine whether or not to initiate ART.   

     2)  Counterfactual consistency (also described as treatment version irrelevance and no 

interference).108,109 If the observed treatment of patient i is equal to the treatment of interest 

(i.e., 𝐴𝑖 = 𝑎), then the observed outcome of patient i is equal to the outcome that would have 

been observed if treatment was set to the treatment of interest (i.e., 𝑌𝑖 = 𝑌𝑖(𝑎)).  

     3)  Conditional exchangeability or no unmeasured confounding.110 The probability of treatment 

conditional on a set of covariates is independent of the potential outcome (i.e., 

𝑃(𝐴 = 𝑎|𝑊 = 𝑤, 𝑌(𝑎)) = 𝑃(𝐴 = 𝑎|𝑊 = 𝑤)).    

     4)  Positivity, also described as the experimental treatment assignment assumption.111 The 

conditional probability of receiving treatment is nonzero within all strata of covariates (i.e., 

𝑃(𝐴 = 𝑎|𝑊 = 𝑤) > 0). 

     5)  Correct specification of parametric models.    

B.  Aim 1: Interventions on Non-AIDS Risk Factors among Women with HIV 

The overall goal of Aim 1 was to use the parametric g-computation estimator to quantify the 

impact of combined interventions on non-AIDS risk factors and prompt initiation of modern ART on the 

risk of all-cause mortality in the Women’s Interagency HIV Study. 
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B1.  Data Source and Study Population  

The Women’s Interagency HIV Study (WIHS) is an ongoing, multisite prospective cohort study 

of HIV-positive and HIV-negative women in the US.89–91 Though the WIHS was initially established in 

1993 to study the progression of HIV infection in women,89 its research focus has since expanded to other 

areas including aging, behavioral and social health determinants, comorbidities, and epidemiologic 

methods.91 As shown in Figure 3.1, the WIHS includes 10 consortia of contributing sites, 6 of which 

began in 1994 (Bronx/Manhattan, NY; Brooklyn, NY; Chicago, IL; Los Angeles/Southern CA/Hawaii; 

San Francisco/Bay Area, CA; Washington, DC) and 4 of which were added in 2013 (Atlanta, GA; 

Birmingham, AL/Jackson, MS; Chapel Hill, NC; Miami, FL). The Baltimore, MD site has served as the 

data coordinating center since 1997. 

 

Figure 3.1. Women’s Interagency HIV Study and data coordinating center sites. 

 
Source: https://wihs.gumc.georgetown.edu/aboutwihs/partnersites 

 

Women with HIV and women at risk of acquiring HIV were enrolled during 4 recruitment waves 

(Wave 1: 1994-1995; Wave 2: 2001-2002; Wave 3: 2011-2012; Wave 4: 2013-2015) and have since been 

followed at visits every 6 months. Women were recruited from a wide range of clinical, research, and 

community outreach sites which has improved representation of women with HIV, especially those who 

are not in regular HIV care and are harder to reach.89 Because of its recruitment strategies, the WIHS has 

an age and racial/ethnic distribution that is representative of women with HIV in the US;91 it is the largest 

https://wihs.gumc.georgetown.edu/aboutwihs/partnersites
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and longest ongoing prospective cohort study of women with HIV in the US. In other large clinical 

cohorts of people with HIV in the US, women (especially non-White women) are a small minority, 

limiting generalizability among this population. Thus, the WIHS is one of the leading cohorts for studies 

among women with HIV in the US.  

WIHS participants attend study visits every 6 months, during which they contribute extensive 

demographic, medical history, medication use, health service utilization, and behavioral data through in 

person interviews. During visits, participants also undergo clinical examination including vital sign 

measurements, anthropometric measurements, and a gynecological exam. Blood, urine, and 

cervicovaginal swab samples are collected. Data from study visits are supplemented with medical record 

abstractions and linkages to cancer and death registries. 

B2.  Study Inclusion and Exclusion Criteria 

Since 1994, the WIHS has enrolled 4982 women, 3703 of whom were HIV-positive at baseline or 

seroconverted over follow-up. Eligibility for Aim 1 of the proposed study was restricted to HIV-positive 

women with a study visit on, or after, 1 April 1998 and who had not previously initiated ART (N=1033). 

The analysis baseline for each woman was defined as the woman’s first HIV-positive WIHS study visit 

on, or after, 1 April 1998. For women enrolled in Wave 1 (1994-1995), the analysis baseline date 

occurred after the date at which they entered the WIHS. For women enrolled in all other waves, the 

analysis baseline date was equal to the WIHS entry date if they were HIV-seropositive at entry; 

otherwise, it occurred after their WIHS entry date if they seroconverted over follow-up. 

We defined the baseline visit as occurring on, or after, 1 April 1998 because our research 

questions were relevant to the calendar period in which highly effective, triple therapy combination ART 

was widely available. It was after the introduction of these regimens in 1997112 that AIDS-related 

morbidity and mortality most significantly declined. Thus, we focused on the calendar period from 1998 

onward since this is when women initiating ART would be most likely to initiate triple combination 

regimens as opposed to less effective 2-drug therapy. The beginning of 6-month intervals for WIHS study 
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visits occur on 1 April and 1 October each year – hence, the inclusion of visits occurring at/after 1 April 

1998. All follow-up visits after each woman’s analysis baseline date were included.  

Women who had already initiated 3-drug combination ART prior to the analysis baseline date 

were not included. This was to accommodate a new-user design in regards to ART treatment.113 In 

observational study settings, new-user designs are recommended to eliminate biases that arise when 

prevalent users are included in analyses. Namely, new-user designs prevent survivor bias in regards to 

prevalent users that survive early periods of pharmacotherapy and bias resulting from confounders that 

are affected (i.e., mediated) by the treatment.   

Among 1033 HIV-positive combination ART-naïve women with a study visit on/after 1 April 

1998, we excluded 2% of the sample for missing information on key baseline variables. We excluded 

women with missing baseline information on depression (n=17), alcohol consumption (n=9), and 

smoking status (n=8). In the remaining sample of 1016 HIV-positive women, we imputed 5 (0.5%) 

missing baseline CD4 counts and 18 (1.8%) missing baseline viral load counts by simulation from log 

normal distributions with mean and standard deviation equal to that of the observed WIHS sample at 

baseline. The final sample for analysis included N=1016 HIV-positive, combination ART-naïve, women. 

B3.  Exposures and Outcome  

Information on ART, alcohol consumption, and smoking exposures have been collected on WIHS 

participants via in-depth interviews at all baseline and follow-up visits. Combination ART is determined 

using a definition based on Department of Health and Human Services/Kaiser Panel guidelines.114 

Women are considered to be on combination ART if they report use of 3+ antiretroviral drugs, one of 

which is a protease inhibitor (PI), a non-nucleoside reverse transcriptase inhibitor (NNRTI), an integrase 

inhibitor (II), or an entry inhibitor (EI). During interviews, women also reported the number of drinks 

consumed on average per week and smoking status since the last visit.  

The WIHS has confirmed deaths through medical records, state death certificates, and the 

National Death Index Plus (NDI+) for all women who have been enrolled in the WIHS. State death 

certificate data are available from 1994 until state death registry queries were discontinued in 2015. NDI+ 
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data are available from 2000 until present. In both state and national death registries, data include the date 

and location of death as well as the International Classification Diseases (ICD) codes for the underlying 

and contributing causes of death. Our outcome of interest was all-cause mortality and was defined as a 

documented death from any cause.   

B4.  Interventions  

Our primary objective was to estimate the risk115,116 of all cause-mortality in the WIHS under 

hypothetical intervention portfolios (i.e., intervention combinations) targeting prompt initiation of modern 

ART, alcohol, and smoking. In our base scenario (Portfolio 1), we considered an intervention solely on 

prompt initiation of modern ART to represent the “status quo” in regards to the current recommended 

healthcare guidelines among people with HIV. We defined modern ART as combination ART initiated 

on/after 1 October 2001. This date coincides with the period after which tenofovir had been approved and 

became a common drug in combination ART regimens.114 “Prompt” initiation was defined as initiation of 

ART by 6 months of baseline (i.e., being on ART at the first follow-up visit). This definition was 

influenced by the structure of the WIHS as an interval cohort with exposure status documented at the time 

of each 6-month follow-up visit. Because ART initiation dates are documented as the first WIHS study 

visit date at which an individual reported being on ART, it was not possible to decipher the exact point at 

which the individual initiated ART in the period between the last ART-naïve study visit and the next 

follow-up.    

In our other three scenarios, we considered portfolios combining prompt initiation of modern 

ART with: an intervention on alcohol (Portfolio 2), an intervention on smoking (Portfolio 3), and 

interventions on both alcohol and smoking (Portfolio 4). Specifically, we defined interventions on non-

AIDS risk factors in two ways. Set A intervention portfolios were those that combined prompt initiation 

of modern ART with near elimination of alcohol consumption and/or smoking whereas Set B portfolios 

were those that combined prompt initiation of modern ART with realistic reductions in the prevalence of 

alcohol consumption and/or smoking based on the expected efficacy of real-world interventions.  
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Set A intervention portfolios were defined as follows. Portfolio 2A was an intervention to 

eliminate alcohol consumption of over 1 drink per week among women without an indication of hepatitis 

C virus (HCV) and eliminate all alcohol consumption among women with an indication of HCV. HCV 

status was determined based on bloodwork performed on all WIHS participants at baseline. If women 

were positive for HCV antibody, they received testing for HCV RNA to determine whether the infection 

was active. Here, we defined an indication of HCV to be a positive antibody test and a positive or missing 

HCV RNA test. We chose a limit of 1 drink per week instead of complete abstinence among those 

without HCV due to potential protective effects of alcohol at low levels117 but did not define the 

intervention to increase drinking among those who were already abstainers. Because alcohol is 

particularly harmful for those with hepatitis C infection,118 the intervention dictated complete abstinence 

from alcohol for these women. Portfolio 3A was defined as an intervention to eliminate smoking among 

all smokers. Finally, Portfolio 4A was an intervention that imposed both alcohol elimination and smoking 

cessation strategies.   

Set B intervention portfolios combining prompt initiation of modern ART with realistic 

reductions in the prevalence of alcohol consumption and/or smoking were defined as follows. Portfolio 

2B combined prompt initiation of modern ART with an intervention to reduce alcohol consumption of 

over 3 drinks per week to a 3 drink per week limit among those without an indication of HCV. While 

current guidelines classify alcohol consumption of over 7 drinks per week for women as “heavy drinking” 

beyond safe limits,119 they refer to the general population and are not specific to those with HIV. Thus, to 

account for recent evidence suggesting that those with HIV are adversely impacted by alcohol at lower 

thresholds of consumption than the general population,47 we considered women consuming over 3 drinks 

per week for this intervention.  

For those with an indication of HCV at baseline, we based our intervention on a brief alcohol 

treatment program.120 The intervention was conducted among patients reporting current drinking when 

they entered a Veterans Administration HCV clinic. Patients received brief alcohol counseling by trained 

HCV clinicians that included assessment of alcohol use, feedback regarding personal risk, education 
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regarding the interaction between alcohol and HCV on liver fibrosis and effects of alcohol on antiviral 

treatment, and advice regarding changes to consumption. Patients had a follow-up visit 4 to 8 weeks later 

with a psychiatric clinical nurse specialist at which they were provided cognitive-behavioral therapy 

techniques and motivational enhancement therapy for coping with cravings and preventing relapse. 

Among those who received the intervention, 36% achieved abstinence and 26% achieved >50% reduction 

in drinking levels after 8 months of follow-up.120 Thus, we defined our intervention among those with an 

indication of HCV at baseline as a 0.36 probability of quitting alcohol, 0.26 probability of reducing 

consumption by 50%, and 0.38 probability of no change in alcohol consumption levels. 

Portfolio 3B was defined as a behavioral smoking cessation intervention described by Hoffman et 

al121 and tested in the WIHS. The intervention consisted of stage-based Transtheoretical model (TTM) 

tailored health communications on smoking cessation delivered via computer expert systems in waiting 

rooms at primary care clinics. The intervention was delivered at baseline, 3 months, and 6 months. 

Participants also received audiotapes relevant to their stage of change. At six months, 16.3% of 

participants had quit smoking. Thus, we defined our intervention among smokers as a 0.16 probability of 

quitting smoking.  

The combination of the alcohol and smoking cessation interventions described above was defined 

as Portfolio 4B.    

B5.  Covariates of Interest  

Demographic, laboratory, and risk factor data collected during WIHS semi-annual study visits 

were included in models as potential confounders. We selected covariates based on hypothesized 

relationships between the interventions and the outcome depicted by causal diagrams.122 A simplified 

version of the causal diagram used to select time-fixed and time-varying confounders is shown in Figure 

3.2. While the figure includes all exposures, it does not depict interactions between exposures. Time-fixed 

confounders included baseline age, race, level of education, history of injection drug use (IDU), prior 

exposure to 2-drug antiretroviral therapy, wave of WIHS enrollment, CD4 cell count, viral load, and 

smoking status. To simplify the representation of these relationships, the full set of time-fixed 
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confounders is shown in the figure though various elements from this set functioned as subsets of 

confounding variables for each exposure. Time-varying covariates included CD4 count, viral load, and 

depression.  

We also considered a time-updated measure of visit number, interactions between time and each 

of the exposures (i.e., ART, alcohol, smoking) and interactions between exposures.  

 
Figure 3.2. Causal Diagram of ART, Non-AIDS Risk Factors, and Mortality.*  

 

* Relevant exposures are displayed in green, time-fixed and time-varying confounders are shown in blue, 

and the outcome is shown in red.  
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B6.  Treatment Decision Design  

The overall analytic goal of Aim 1 was to use rich, longitudinal data collected from the WIHS to 

obtain estimates of the potential reductions in the cumulative incidence of mortality that could be 

achieved by multiple interventions on non-AIDS risk factors. A defined set of criteria was used to 

determine eligibility for intervention among each WIHS participant at each study visit, with analyses 

structured in the format of a treatment decision design.123 The treatment decision design is a 

generalization of the new-user design113 which anchors a cohort’s follow-up to times at which treatment 

decisions are made. While all WIHS participants meeting the inclusion criteria defined in Section B2 

were eligible for inclusion in the analysis sample, only WIHS participants with a specific risk factor at a 

given visit were considered eligible for the intervention at that visit. We used semi-annual study visits to 

represent the timepoints at which intervention decisions were made. At each visit, women’s risk factor 

information was used to determine eligibility for each intervention as described below.  

ART:  Because all women in the analysis sample were ART-naïve at baseline, they were all 

considered eligible for the intervention on prompt initiation of ART in the modern treatment era. Thus, all 

women were eligible to initiate ART by the first follow-up visit. Once women initiated ART, they were 

assumed to remain on ART and were no longer considered for ART initiation at later semi-annual visits.  

Alcohol reduction: Both HCV status and alcohol consumption levels determined eligibility for the 

alcohol reduction intervention. Specifically, women with an indication of HCV at baseline were eligible 

for the alcohol intervention if they reported consumption of any alcohol at a given visit. Women without 

an indication of HCV at baseline were considered for the alcohol elimination intervention (Portfolio 2A) 

if they reported consumption of over 1 drink per week and for the alcohol reduction intervention 

(Portfolio 2B) if they reported consumption of over 3 drinks per week at a given visit. Women could 

receive this intervention multiple times.  

Smoking cessation: Women reporting current smoking at a study visit were considered eligible at 

that visit as well as at all subsequent visits at which smoking was reported. Thus, women could receive 

this intervention multiple times. 
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B7.  Notation and Parameters of Interest  

Let uppercase letters denote random variables and lowercase letters denote potential realizations 

of those variables. Let 𝑖 index 1, …, 1016 women in our study sample, 𝑗 index 1, …, 𝐽 completed visits 

of follow-up, and 𝑌𝑖𝑗 represent an indicator of death for woman 𝑖 at time 𝑗. The maximum number of 

follow-up visits is 𝐽 = 16; as WIHS visits occur every 6 months, this corresponds to 8 years of follow-up 

since study baseline. We use 𝐴𝑖𝑗 to represent a binary indicator of antiretroviral therapy (ART) treatment, 

𝐷𝑖𝑗 to represent categorical indicators for average drinking level per week since the last study visit and 𝑆𝑖𝑗  

to represent a binary indicator of smoking. We use 𝒁𝑖𝑗  to represent a vector of time-varying covariates for 

woman 𝑖 measured at time 𝑗 (i.e., CD4 count, detectable viral load, and depression) and 𝑾𝑖𝑗 to represent 

a vector of time-fixed demographic and clinical characteristics for woman 𝑖 measured at baseline (i.e., 𝑗 =

0). The vector 𝑾𝑖𝑗 includes baseline age, race, level of education, history of injection drug use (IDU), 

prior exposure to dual therapy zidovudine (AZT), wave of WIHS enrollment, CD4 count, viral load, and 

smoking status. Finally, we use 𝐶𝑖𝑗  to represent a binary indicator of being censored due to being lost to 

follow-up which we defined as having two consecutive missed WIHS visits. All women were 

administratively censored after a maximum of 8 years of completed follow-up due to sparse data at later 

time points. To accommodate sporadic missing data for time-varying covariates and exposures in the 

observed data, we used a last observation carried forward approach.  

At each timepoint 𝑗, the temporal ordering of variables is: 𝑾𝑖𝑗; 𝐶𝑖𝑗; 𝑌𝑖𝑗; 𝐴𝑖𝑗, 𝐷𝑖𝑗 , 𝑆𝑖𝑗; 𝒁𝑖𝑗. The 

values of the time-fixed covariates 𝑾𝑖𝑗 remain constant for each woman throughout the study period so 

that for a given woman 𝑖, 𝒘𝑖0 = 𝒘𝑖1 =. . . = 𝒘𝑖𝐽. Among those who remained uncensored and alive by 

visit 𝑗 (i.e., 𝐶𝑖𝑗 = 𝑌𝑖𝑗 = 0), values of ART (i.e., 𝐴𝑖𝑗), drinking level (i.e., 𝐷𝑖𝑗), and smoking (i.e., 𝑆𝑖𝑗) were 

measured based on self-report corresponding to the 6-month period between 𝑗 − 1 and 𝑗.  

It should be noted that while exposures to ART, drinking level, and smoking occurred between 

𝑗 − 1 and 𝑗, they were only documented at time 𝑗 due to the nature of the WIHS as an interval cohort. It is 

unknown from the observed data whether, among those who die before a given follow-up visit, there was 
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a change in exposure status in the time period between the last follow-up visit at which they remained 

alive (and uncensored) and their death date. ART initiation dates are recorded as the first WIHS visit date 

at which individuals report having initiated ART, while death dates are recorded as actual dates of death. 

Therefore, we assume that those who had not initiated ART at the last visit at which they remained alive 

and uncensored did not do so before a death occurring before the next scheduled follow-up visit. 

Similarly, we assume drinking and smoking status did not change between the last visit at which women 

remained alive and uncensored and their death. Or rather, in both cases, we assume that any change in 

ART, drinking, or smoking between the last follow-up visit and a death occurring less than 6 months later 

was too short of an exposure period to notably affect the risk of death.     

Among those who remain alive and uncensored at time 𝑗, measured values of time-varying 

covariates (i.e., 𝒁𝑖𝑗) correspond to real time, or nearly real time, measures at 𝑗. Specifically, CD4 cell 

count and viral load were measured by laboratory tests conducted at the time of the WIHS visit. 

Depression was measured by a validated questionnaire124 that asked women to report symptoms 

experienced during the last week. In the remaining text we suppress subscript 𝑖.  

The cumulative incidence of mortality in the WIHS under the observed exposure history (i.e., no 

intervention on ART initiation or non-AIDS risk factors) at time 𝑗 can be expressed as Equation 1: 

𝐹(𝑗) = ∑∑∑∑∑∑

{
 
 
 
 

 
 
 
 
𝑃(𝑌𝑘+1 = 1|𝐴̅𝑘 = �̅�𝑘 , �̅�𝑘 = �̅�𝑘 , 𝑆�̅� = �̅�𝑘 , �̅�𝑘 = �̅�𝑘 ,𝑾𝑘 = 𝒘𝑘 , 𝐶�̅� =  �̅�𝑘 = 0) ×

∏

[
 
 
 
 
 
 
 
𝑓(𝒁𝑚|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� = �̅�𝑚 = 0) ×

𝑃(𝑆𝑚 = 𝑠𝑚|�̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐷𝑚 = 𝑑𝑚|�̅�𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐴𝑚 = 𝑎𝑚|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� = �̅�𝑚 = 0) ×

𝑃(𝑌𝑚 = 0|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅�−1 = �̅�𝑚−1 = 0) ×

𝑓(𝑾𝑚) × ]
 
 
 
 
 
 
 

𝑘

𝑚=0

 }
 
 
 
 

 
 
 
 

𝑗

𝑘=0𝒘𝑗�̅�𝑗�̅�𝑗�̅�𝑗�̅�𝑗

 

The cumulative incidence of mortality in the WIHS under universal, prompt initiation of ART in 

the modern treatment era can be expressed by adapting the above equation to set 𝐴 = 1. Specifically, this 

indicator represents initiation of therapy by the time of the first follow-up visit (i.e., 𝐴 = 0 for all women 

at 𝑗 = 0 and 𝐴 = 1 for all women at 𝑗 = 1 and all visits thereafter). This is akin to an intent-to-treat 

analysis in which we assume that, once therapy is initiated, it is continued throughout the study period. It 

should be noted that women enrolled in the WIHS prior to 1 October 2001 and set to initiate ART by the 
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follow-up visit could not have initiated modern ART. This is based on our definition of modern ART 

initiation as initiation of ART on, or after, 1 October 2001 (the period after which tenofovir had been 

approved and became a common drug in combination ART regimens).114 However, we used observed 

exposure information from those in the modern treatment era to extrapolate modern ART to this earlier 

time period. The adapted equation is written as Equation 2: 

𝐹𝑎
𝑔
(𝑗)     = ∑∑∑∑∑

{
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, �̅�𝑘 = �̅�𝑘 , 𝑆�̅� = �̅�𝑘 ,𝑾𝑘 = 𝒘𝑘 , 𝐶�̅� = �̅�𝑘 = 0) ×

∏

[
 
 
 
 
 
 
𝑓(𝒁𝑚|𝐴̅𝑚−1

𝑔
= �̅�𝑚−1

𝑔
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𝑃(𝑆𝑚 = 𝑠𝑚|�̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐷𝑚 = 𝑑𝑚|�̅�𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� = �̅�𝑚 = 0) ×

                                                                1 ×
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𝑓(𝑾𝑚) ]
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𝑗

𝑘=0𝒘𝑗�̅�𝑗�̅�𝑗�̅�𝑗

 

where we use superscript 𝑔 to convey that the value of 𝐴 is being set according to the intervention plan. 

Equation 2 can be further adapted to express the cumulative incidence of mortality in the WIHS 

under universal, prompt initiation of ART in the modern treatment era combined with various 

interventions on alcohol consumption and/or smoking. Because these interventions depend on the natural 

value of alcohol consumption and smoking, this requires use of the extended version of the parametric g-

computation estimator.104,105 This facilitates the expression of interventions that are implemented based on 

the values of alcohol and smoking that would be observed if intervention were discontinued immediately 

before measurement at time 𝑗. The incidence function under these additional interventions can be 

expressed with the extended parametric g-formula as Equation 3:   

𝐹(𝑎,𝑑,𝑠)
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We use superscript 𝑔 to convey that the values of 𝐷 and 𝑆 (i.e., alcohol consumption and 

smoking) are being set according to the intervention plan while we use an asterisk to denote the values 

that would be observed if the intervention plan were discontinued immediately before measurement of 
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these variables. The value �̅�𝑗
𝑔

 is set to 1 across all 𝑗 ≥ 1 for each set of intervention portfolios while the 

values of �̅�𝑗
𝑔

 and �̅�𝑗
𝑔

 are set according to the plans described in Section B4. 

B8.  Implementation of Parametric G-computation 

We used the parametric g-computation estimator67–69,71,72,78,99,105 to estimate the equations in 

Section B7. Namely, we estimated the 8-year cumulative incidence of all-cause mortality under the 

natural course, the 8-year cumulative incidence of all-cause mortality under prompt initiation of modern 

ART, and the 8-year cumulative incidences of all-cause mortality under each set of intervention 

portfolios. Furthermore, we estimated the 8-year risk differences and ratios contrasting each intervention 

portfolio to an intervention solely on prompt initiation of modern ART. The steps to using the g-

computation estimator to parametrically estimate the g-computation formula have been previously 

described.68,69,71 Briefly, we implemented g-computation in our setting as follows. 

Steps 1 – 3:  First, we fit pooled person-visit logistic and linear models to the observed data 

across all visits 𝑗 ≥ 1 to estimate the conditional probability or density of each exposure, time-varying 

covariate, and outcome. Specifically, we fit models for ART initiation, alcohol consumption, smoking, 

CD4 cell count, viral load, depression, and death. Second, we estimated conditional probabilities or 

densities from these models. Third, we drew a large Monte Carlo sample of 𝑁 = 100,000 women at 

baseline (i.e., 𝑗 = 0)  with replacement. 

Step 4: We used the estimated conditional probabilities or densities and observed values of 

exposures and covariates at the baseline visit to simulate the values of exposures, covariates, and 

outcomes in the temporal order they would have occurred at 𝑗 = 1 by drawing values from a Bernoulli 

distribution in the case of binary variables and multinomial distributions in the case of categorical 

variables. We then used the estimated conditional probabilities or densities and simulated values of 

exposures, covariates, and outcomes at 𝑗 = 1 to simulate the values of these variables at 𝑗 = 2, continuing 

this process for a maximum of 16 follow-up visits to ultimately generate a dataset representing the 
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outcome distribution under the natural course (Equation 1 in Section B7). By natural course, we mean no 

intervention (i.e., no manipulation of treatment status).  

To achieve this, we first fit intercept only models to the pooled person-visit data for each time-

varying covariate, exposure, and outcome with indicator variables for visit number as the only predictor. 

We then compared the distribution of each variable at each visit in the Monte Carlo dataset with the 

distribution of each variable at each visit in the original WIHS dataset. Further complexity was then 

incorporated into each of the models by adding relevant covariates (e.g., hypothesized confounders, 

predictors of the dependent variable) and interactions and adapting functional forms. After each 

specification of the set of models, conditional probabilities or densities were estimated and saved from 

each model, a Monte Carlo sample of size 100,000 was drawn from the baseline data with replacement, 

follow-up data were generated at each follow-up visit from the saved conditional probabilities or 

densities, and the distribution of variables in the Monte Carlo dataset were compared with the distribution 

in the WIHS dataset using figures and summary statistics (e.g., frequencies, mean/median/standard 

deviation). We also assessed interaction terms using Likelihood Ratio Tests for interaction.  

We estimated the cumulative incidence of mortality at each time point using the complement of 

the Kaplan-Meier125 (product-limit) estimator of the survival function. The estimator can be expressed as:  

�̂�(𝑗) =∏(1−
𝑑𝑘
𝑛𝑘
)

𝑗

𝑘=1

 

where 𝑑𝑘 denotes the number of deaths at discrete time 𝑘, 𝑛𝑘 denotes the number at risk at discrete time 

𝑘, and �̂�(𝑗) denotes the estimated survival at time 𝑗.  

If parametric models are correctly specified, the cumulative incidence of mortality estimated in 

the Monte Carlo dataset under the natural course (i.e., no intervention on exposures) should be equivalent 

to the cumulative incidence of mortality observed in the WIHS dataset. Similarly, the distribution of each 

exposure and time-varying covariate in the Monte Carlo sample should be equivalent to the distributions 
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in the observed WIHS data. Discrepancies can arise from improper model specification as well as finite 

sample bias resulting from sparse data.   

Thus, to improve model fit, we repeated the above Steps 1 – 4 using flexible specifications of 

continuous and categorical variables, interaction terms, and various sets of covariates for each model until 

we 1) had included all hypothesized confounders relevant to each exposure, and 2) were able to replicate 

distributions observed in the WIHS sample in the Monte Carlo sample. The variables and models that 

were selected for final analyses are described in Appendix A of the Supplemental Text. 

Step 5: Once we were able to replicate the empirical distribution of covariates and outcome in the 

Monte Carlo sample, we used the finalized models to simulate outcomes under the interventions of 

interest. We repeated Steps 1 – 4, altering exposure values according to the defined interventions and 

simulated follow-up data using the saved conditional probabilities or densities.  

Step 6: We estimated the cumulative risk of all-cause mortality at each follow-up visit in each 

dataset using the complement of the Kaplan-Meier125 (product-limit) estimator of the survival function. 

We censored all women at a maximum of 16 follow-up visits (i.e., 8 years of follow-up) due to sparse 

data at later time points. We output the cumulative risks at each timepoint and concatenated datasets. To 

quantify the impact of scaling up interventions on non-AIDS risk factors, we contrasted the estimated risk 

of all-cause mortality under each intervention portfolio with the estimated risk under intervening on 

prompt initiation of ART in the modern treatment era alone using risk differences and risk ratios.   

Step 7: We repeated the above steps on 1000 nonparametric bootstrap126 samples to obtain 

standard errors calculated as the standard deviation of point estimates across bootstraps. We used standard 

errors to calculate 95% confidence intervals. 

C.  Aim 2: Development and Implementation of Two-Stage G-computation Estimators  

The overall goal of Aim 2 was to develop and assess two-stage g-computation estimators of 

treatment and intervention effects in a given HIV cohort when exposure information is missing for a 

subset of the sample.  
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C1.  Motivating Example 

The primary example for our development and assessment of two-stage g-computation estimators 

focused on a simplified time-fixed scenario. In the first part of the scenario, interest was in obtaining 

unbiased estimates of the covariate vector 𝑾 standardized risk of an outcome 𝑌 in an HIV cohort under 

scenarios in which the entire cohort did not receive versus did receive a harmful treatment 𝐴. This 

parameter is known as the average treatment effect.46,49,88,103 In the second part of the scenario, interest 

was in obtaining unbiased estimates of the covariate vector 𝑾 standardized risk of an outcome 𝑌 in the 

HIV cohort under a scenario in which an intervention removed treatment 𝐴 versus treatment practices 

remained the same (i.e., the natural course or status quo). This parameter is known as the average 

intervention effect.46,49,51,88,103 More specifically, it represents a special case of an generalized intervention 

effect in which the intervention is 100% efficacious.51  

While it is straightforward to implement the parametric g-computation estimator to obtain 

estimates of these parameters when data are complete, this is no longer the case when faced with partially 

missing exposure information. If estimates are desired for the total study population but treatment status 

is only observed on a subset (i.e., where 𝑅 = 1) complications arise, especially if there are other variables 

associated with the outcome that additionally influence whether or not treatment status is observed; in 

other words, if there exists a variable 𝑍 associated with both 𝑅 and 𝑌. 

To concretize this scenario, we considered a hypothetical study in which the objectives were to 

estimate the average treatment and intervention effects46,49,51,88,103 of opioid prescription duration in the 

Women’s Interagency HIV Study (WIHS) on the 12-month risk of hospitalization/emergency room visit 

or death from any cause. Opioids are prescribed at a higher rate among those with HIV127 whom already 

experience a higher prevalence of substance abuse and addiction.55 Initial opioid prescribing practices 

influence long-term opioid use128 with duration of initial prescription being the strongest predictor of 

opioid use disorder and overdose.129 Thus, it is reasonable that investigators might be interested in 

outcomes under various opioid duration prescribing strategies among those with HIV who receive opioid 

prescriptions. Therefore, we considered a case in which our goal was to estimate the average treatment 
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effect of shortening versus lengthening the duration of initial opioid prescriptions among all women and 

the average intervention effect of shortening the duration of initial prescriptions versus status quo 

prescribing practices.  

C2.  Study Data 

We based our example on a hypothetical cohort simulated to represent HIV-positive women 

enrolled in the WIHS (described in Section B1). We created our dataset such that the full sample size was 

equal to the number of HIV-positive women enrolled in waves 2-4 of WIHS (i.e., 𝑁 = 1623) and the 

incidence of hospitalization/emergency room visit or death over 12 months was similar to that observed in 

a sample of outcome data from the most recent wave of enrollees and which has been reported in previous 

HIV studies130 (i.e., approximately 30%).  

While information on opioid use has been collected on WIHS participants, this information has 

primarily been based on self-reported use of illicit or recreational drugs. Because our objective was to 

estimate the effect of a clinical intervention in which guidelines dictate that physicians shorten the period 

over which initial opioid prescriptions are provided, we considered a scenario in which it was possible to 

supplement the existing WIHS cohort data with linkages to electronic medical record databases to obtain 

detailed dosage and duration information for individuals receiving prescriptions. Theoretically, this could 

be done for the WIHS, but data linkages are expensive and often cannot be performed for the entire study 

sample. Thus, it is more likely that only a sample of linkages would be performed. Specifically, we 

considered a case in which it was possible to link prescription information for a nonrandom subset of 30% 

of the simulated cohort, particularly members receiving HIV care at 10 clinics proximal to the WIHS 

sites.   

A causal diagram122 for our research scenario is shown in Chapter 5, Figure 5.1. Receipt of an 

initial long duration opioid prescription at baseline (i.e., 𝐴) increases the risk of emergency room/hospital 

visit or death by 12 months (i.e., 𝑌). History of substance use (i.e., 𝑊) represents one potential 

confounder increasing the probability of receiving an initial long duration prescription and the risk of 

emergency room/hospital visit or death. Not receiving regular HIV care (i.e., 𝑍), while not a confounder 
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and therefore often omitted from the causal diagram, decreases the probability of having observed 

exposure information (i.e., 𝑅 = 1) from linked electronic medical records and also increases the risk of 

hospitalization or death (i.e., 𝑌). 

According to this scenario, we generated 𝑛 = 1 to 1623 independent and identically distributed 

sets {𝑊, 𝐴, 𝑍, 𝑅, 𝑌𝑎=0, 𝑌𝑎=1, 𝑌}𝑛 representing the 𝑁 = 1623 members in the full population of interest. 𝐴 

represents exposure to long (i.e., 𝐴 = 1) versus short (i.e., 𝐴 = 0) duration of opioid prescription; 𝑊 

represents history of substance use (history: 𝑊 = 1; no history: 𝑊 = 0); 𝑍 represents lack of engagement 

in regular HIV care (lack of engagement: 𝑍 = 1; engagement: 𝑍 = 0); 𝑅 represents observed exposure 

information (i.e., selection into the sample of complete cases, 𝑅 = 1 ); 𝑌𝑎=0 represents the potential 

outcome for emergency room visit or death under short term opioid exposure; 𝑌𝑎=1 represents the 

potential outcome for emergency room visit or death under long term opioid exposure; and 𝑌 represents 

the factual outcome for emergency room visit or death given the exposure received.  

For each record, covariate values were simulated in SAS 9.4 in the following order:  

     𝑊  drawn from a Bernoulli distribution with a marginal prevalence of 0.44 

 i.e., w = rand("BERNOULLI",0.44);   

     𝑍   drawn from a Bernoulli distribution with a marginal prevalence of 0.4 

 z = rand("BERNOULLI",0.4);  

     𝑅   drawn from a Bernoulli distribution as a function of 𝑍 and with a marginal prevalence of 0.3  

r = rand("Bernoulli",1/(1+exp(-(-log(1/0.26-1)-log(8)*z+log(8)*0.4))));   

     𝑌𝑎=0  drawn from a Bernoulli distribution as a function of 𝑊and 𝑍 and with a marginal incidence of 

0.19 

y0 = rand("BERNOULLI",1/(1+exp(-(-log(1/.19-1)-log(1.5)*0.44+log(1.5)*w1-

log(1.5)*0.4+log(1.5)*z))));    

     𝑌𝑎=1  drawn from a Bernoulli distribution as a function of 𝑊and 𝑍 and with a marginal incidence of 

0.37 
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y1 = rand("BERNOULLI",1/(1+exp(-(-log(1/.35-1)-log(1.5)*0.44+log(1.5)*w1-

log(10)*0.4+log(10)*z))));  

     𝐴  drawn from a Bernoulli distribution as a function of 𝑊 and with a marginal prevalence of 0.6 

a = rand("BERNOULLI",1/(1+exp(-(-log(1/.6-1)-log(2)*0.44+log(2)*w1))));  

     𝑌  set according to realized value 𝑎 

 if a then y=y1; else y=y0;  

The potential outcomes 𝑌𝑎=0 and 𝑌𝑎=1 were generated as a way of directly setting the truth by 

which to evaluate the performance of estimators. Setting observed 𝑌 to 𝑌1 or 𝑌0 according to observed 𝑎 

is an application of the consistency assumption (discussed in Chapter 3, Section A2). The true risks and 

risk differences were determined using the potential outcomes 𝑌𝑎=1, 𝑌𝑎=0, and 𝑌 from the full cohort 

prior to imposing missing exposure information. 

C3.  Estimators 

Let 𝐴 denote a binary time-fixed exposure, 𝑾 denote a vector of confounders, 𝑌 denote an 

outcome, uppercase letters denote random variables, and lowercase letters denote possible values of 

variables or constants. To simplify notation, we assume 𝑾 to be a finite dimension vector of categorical 

covariates. When the vector includes continuous covariates equations are written as integrals. The 

expected value of the potential outcome 𝑌𝑎 under a time-fixed exposure plan 𝑎 can be written as,  

(C3.1)      𝐸[𝑌𝑎] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘)𝑃(𝑾 = 𝒘) 

𝒘

 

where we define 𝐸[𝑌𝑎=1] as the expected outcome distribution under a plan in which the full study 

sample receives exposure and 𝐸[𝑌𝑎=0] as the expected outcome distribution under a plan in which the 

full study sample does not receive exposure. The expected value of the outcome under the natural course 

(i.e., observed exposure plan) can be written as, 

(C3.2)      𝐸[𝑌] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘)𝑃(𝐴 = 𝑎|𝑾 = 𝒘)𝑃(𝑾 = 𝒘).

𝒘,𝑎
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The process of estimating the above g-formula expressions by g-computation has been described in detail 

in the literature68,69,71,98 and was reviewed in the application in Aim 1 (Chapter 3, Section B8). As a brief 

review as it applies to this simplified time-fixed setting, exposure and covariate conditional probabilities 

or densities of the outcome are estimated from models fit to the full study sample, a large Monte Carlo 

sample is drawn from the original study population at baseline, exposure values for each individual in the 

Monte Carlo sample are set according to the exposure plan, and outcomes are simulated in the Monte 

Carlo sample using the set exposure value 𝑎, realized covariate values 𝒘, and conditional probabilities 

that were estimated in the first step. To obtain the outcome distribution in the total study population, 

outcomes are summed across the population’s distribution of 𝒘. It is standard practice to estimate the 

outcome distribution under the natural course with g-computation regardless of whether it is a parameter 

of interest; comparison of the observed natural course to the g-computation simulated natural course is 

used as a check on model specification prior to using the models to simulate outcome distributions under 

altered exposure plans.  

When exposure plan information for some participants is missing, missing data prohibit the use of 

the above approach. Instead, under an assumption that patients with (i.e., 𝑅 = 1) and without (i.e., 𝑅 = 0) 

complete exposure information are exchangeable within levels of confounders 𝑊, investigators often use 

a complete case analysis. Under this assumption, the g-formula equations for the potential outcome under 

exposure plan 𝑎 and under the natural course can be written as: 

  (C3.3)      𝐸[𝑌𝑎] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘,𝑅 = 1)𝑃(𝑾 = 𝒘,𝑅 = 1) 

𝒘

 

  (C3.4)      𝐸[𝑌] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘,𝑅 = 1)𝑃(𝐴 = 𝑎|𝑾 = 𝒘,𝑅 = 1)𝑃(𝑾 = 𝒘,𝑅 = 1).

𝒘,𝑎

 

The estimation of conditional outcome probabilities or densities is restricted to the subsample with 

observed exposure (i.e., complete information), and the outcome distribution is summed over the 

distribution of 𝒘 among those with complete information. However, 𝐸[𝑌𝑎|𝑊 = 𝑤] will only be 
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approximated by 𝐸[𝑌𝑎|𝑊 = 𝑤, 𝑅 = 1] if exposure information is missing completely at random or 

missing at random given the vector of confounders 𝑾. 

Two-stage g-computation estimator of average treatment effect 𝐸[𝑌𝑎=0 − 𝑌𝑎=1]  

We proposed a g-computation extrapolation estimator of the average treatment effect which 

combines partial information on the full study sample with complete information on the subset of 

participants with observed exposure. We rewrite the g-formula to 1) include 𝒁 in our outcome model, 

where 𝒁 is a vector of covariates associated with 𝑅 and 𝑌 that allows us to meet the assumption that 

presence of exposure information is independent of 𝑌 given 𝑾 and 𝒁 (i.e., 𝐸[𝑌𝑎|𝑎,𝒘, 𝒛] = 

𝐸[𝑌𝑎|𝑎,𝒘, 𝒛, 𝑅 = 1]), and 2) sum outcomes over the joint distribution of 𝑾 and 𝒁 instead of only 𝑾 in 

the subset with complete exposure information. The g-computation extrapolation estimator is written as: 

(C3.5)      �̂�𝑒𝑥𝑡[𝑌
0 − 𝑌1] = 

 ∑�̂�(𝑌 = 1|𝐴 = 0,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

 

−∑�̂�(𝑌 = 1|𝐴 = 1,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

. 

Stage 1 consists of estimating �̂�(𝑌 = 1|𝐴 = 𝑎,𝑾 = 𝒘,𝒁 = 𝒛,𝑅 = 1) from a logistic model fit to 

complete cases; stage 2 consists of (a) simulating outcomes under plans 𝑎 = 0 and 𝑎 = 1 among Monte 

Carlo resamples taken from the full population (i.e., not only sampling complete cases) and then (b) 

summing over the full population’s joint distribution of 𝒘 and 𝒛. We obtain the average treatment effect 

by taking the difference �̂�[𝑌0 − 𝑌1].  

Two-stage g-computation estimators of average intervention effect 𝐸[𝑌𝑎=0 − 𝑌] 

The risk under the natural course is estimated by additionally summing over the full population’s 

distribution of observed exposure. Because the intervention effect contrasts the outcome distribution 

under an altered exposure distribution to the outcome distribution under the observed exposure 

distribution, an additional step is needed when exposure status is missing for a subset of the sample and 

the outcome distribution differs among the subset with observed information versus the full sample. 
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Similarly, this is needed for interventions that depend on the natural value of exposure104 such as for the 

effect estimated by Lesko et al.64 in which intervening on depression depended on the natural value (i.e., 

observed level) of depressive symptoms. 

We proposed two-stage inverse probability-weighted (IPW) and exposure imputation g-

computation estimators of the average intervention effect. As with the extrapolation g-computation 

estimator, IPW and imputation g-computation include 𝒁 in the outcome model as well as the additional 

model specified for missing data. 

IPW g-computation estimator: 

(C3.6)      �̂�𝐼𝑃𝑊[𝑌
0 − 𝑌] = 

∑[
�̂�(𝑌 = 1|𝐴 = 0,  𝑾= 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛|𝑅 = 1)

�̂�(𝑅 = 1|𝑾 = 𝒘,𝒁 = 𝒛)
]

𝒘,𝒛

− ∑ [
�̂�(𝑌 = 1|𝐴 = 𝑎,  𝑾= 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝐴 = 𝑎|𝑾 = 𝒘,𝒁 = 𝒛, 𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛|𝑅 = 1)

�̂�(𝑅 = 1|𝑾 = 𝒘,𝒁 = 𝒛)
] .  

𝒘,𝒛,𝑎

 

Stage 1 consists of estimating the probability of being a complete case (i.e., �̂�(𝑅 = 1│𝑾 =

𝒘,𝒁 = 𝒛))131 in the full population in addition to estimating �̂�(𝑌 = 1|𝐴 = 𝑎,𝑾 = 𝒘,𝒁 = 𝒛, 𝑅 = 1) in 

the complete cases as in the extrapolation approach. In stage 2, we (a) simulate outcomes setting 𝑎 = 0 

and 𝐴 = 𝑎 under the observed exposure value among Monte Carlo resamples taken from the complete 

cases, (b) weight simulated outcomes by the inverse probability of being a complete case, (c) and sum 

over the joint distribution of 𝑾 and 𝒁 in the complete cases.  

Exposure imputation g-computation estimator: 

(C3.7)      �̂�𝑖𝑚𝑝𝑢𝑡𝑒[𝑌
0 − 𝑌] = 

∑�̂�(𝑌 = 1|𝐴 = 0,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

 

− ∑ �̂�(𝑌 = 1|𝐴 = 𝑎,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝐴∗ = 𝑎|𝑾 = 𝒘,𝒁 = 𝒛)�̂�(𝑾 = 𝒘,𝒁 = 𝒛)

𝒘,𝒛,𝑎
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where 𝑎 denotes the realized value of observed exposure or imputed exposure (where missing). A 

separate model is specified in stage 1 to estimate the conditional probability of exposure among those 

with complete information, (i.e., �̂�(𝐴 = 1|𝑾 = 𝒘,𝒁 = 𝒛, 𝑌 = 𝑦,  𝑅 = 1)); in stage 2, (a) values of 

exposure are imputed for each woman with missing exposure information in the Monte Carlo resamples 

taken from the full population using the conditional probabilities estimated in stage 1, and (b) outcomes 

are simulated under the full joint distribution of imputed or observed 𝑎∗, 𝒘, and 𝒛. Because no values for 

𝑎 are imputed when 𝑎 is set to 0, the first part of the equation for 𝑌0 in equation C3.7 is identical to that 

of the extrapolation approach in C3.5. 

C4.  Statistical Analyses  

We used proposed two-stage g-computation estimators as well as the naïve, complete case g-

computation estimator to estimate parameters of interest in our simulated cohort of 1623 HIV-positive 

women. In our generated cohort, we set exposure to missing where 𝑅 = 0. We fit the following logistic 

model for the outcome among complete cases to estimate the conditional probability of 

hospital/emergency room visit or death at 12-months �̂�(𝑌 = 1|𝐴 = 𝑎,  𝑊 = 𝑤, 𝑍 = 𝑧,  𝑅 = 1) = 

𝑒𝑥𝑝𝑖𝑡(𝛼0 + 𝛼1𝑎 + 𝛼2𝑤 + 𝛼3𝑧), where 𝑒𝑥𝑝𝑖𝑡 = exp(𝛼) /[1 + exp(𝛼)]. We used a Firth correction132 to 

improve model convergence. We also fit the following logistic model for the probability of being a 

complete case (i.e., having complete prescription duration information) �̂�(𝑅 = 1|𝑊 = 𝑤, 𝑍 = 𝑧) = 

𝑒𝑥𝑝𝑖𝑡(𝜏0 + 𝜏1𝑤 + 𝜏2𝑧) and took the inverse of the probability for the complete case weight.131 Finally, 

we fit the following logistic model for the conditional probability of receiving a long duration opioid 

prescription for >7 days �̂�(𝐴 = 1|𝑊 = 𝑤, 𝑍 = 𝑧) = 𝑒𝑥𝑝𝑖𝑡(𝛿0 + 𝛿1𝑤 + 𝛿2𝑧). 

After saving the estimated conditional probabilities, we took a Monte Carlo sample of size 10,000 

of the full cohort. In the Monte Carlo sample, we used the two-stage extrapolation, inverse probability 

weighted, and exposure imputation g-computation estimators to estimate the 12-month probability of 

hospital/emergency room visit or death if all women were to receive short duration opioid prescriptions 

for ≤7 days (i.e., �̂�[𝑌𝑎=0] and if all women were to receive long duration opioid prescriptions for >7 
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days (i.e., �̂�[𝑌𝑎=1] ). We contrasted these two estimates to obtain risk differences for the average 

treatment effect. We additionally used the two-stage inverse probability weighted and exposure 

imputation g-computation estimators to estimate the risk if prescription practices were to remain 

unchanged (i.e., �̂�[𝑌]) and the average intervention effect if all women received short duration opioid 

prescriptions versus the status quo. We estimated the standard error based on the standard deviation of 

200 nonparametric bootstrap resamples to obtain 95% confidence intervals.126 We accounted for error in 

the estimation of inverse probability weights and exposure imputation by performing these steps within 

the bootstrap samples.  

To assess estimator performance, we repeated analyses in 10,000 simulation trials to compute 

bias, standard error, root mean squared error, and confidence limit coverage. We defined bias as the 

difference between the value of the parameters of interest estimated with each approach and the true value 

of the parameters of interest obtained from the potential outcomes prior to imposing missing data. 

Standard errors of the risks, risk differences, and bias were calculated based on the standard deviation of 

the point estimates of the values for these parameters across all trials. The root mean squared error was 

calculated as the square root of the estimated sum of the squared bias and variance. 95% confidence limit 

coverage was defined as the proportion of times the 95% confidence limit trapped the true parameter 

value across the 10,000 simulation experiments.  

To further assess the operating characteristics of proposed estimators, we repeated 10,000 

simulation trials under varying sample conditions and analogously estimated bias, standard error, root 

mean squared error, and confidence limit coverage in these settings. We varied the percentage of 

complete exposure data in 5% increments from 10-90% to assess the robustness of estimators to the 

proportion of missing data as well as to determine the point at which the naïve g-computation estimator fit 

to complete cases may be minimally biased. We also repeated simulation trials excluding the covariate 𝑍 

from the outcome model to test our hypothesis that all two-stage estimators would require the inclusion of 

this covariate in the outcome model in addition to standard confounders. We simulated data under the null 

treatment and intervention effects to confirm estimators were valid (i.e., we simulated the risk under 
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shortened, lengthened, and natural course opioid durations to be equal so that the risk differences for the 

average treatment and intervention effects were 0). In another scenario, we simulated missing data 

independent of 𝑍 so that data would be missing completely at random. This was to test our hypothesis that 

the standard g-computation estimator would be unbiased in this restrictive setting. We increased the 

strength of modification of the treatment and intervention effects by 𝑍 to assess whether there would be a 

greater improvement in bias with two-stage g-computation estimators over the standard g-computation 

estimator in these cases. Finally, in small samples sizes, large proportions of missing data are likely to 

create issues of data sparsity. Because our base scenario included a cohort of 1623 women and small 

proportions of completely observed exposure, we wanted to assess whether any potential bias in estimates 

may be due to finite samples. Thus, we repeated trials in an increased cohort size of 7500 women to 

assess the operating characteristics of estimators in settings without possible violations in positivity.  

 



 

 39 

CHAPTER 4: ALL-CAUSE MORTALITY UNDER MODELED INTERVENTIONS ON 

ANTIRETROVIRAL THERAPY, ALCOHOL, AND SMOKING AMONG HIV-POSITIVE 

WOMEN IN THE UNITED STATES, 1998 – 2017 

 
 
A.  Overview 

People with HIV experience a higher prevalence of multimorbidity, accelerated aging, and 

decreased survival compared to the general US population despite two decades of effective antiretroviral 

therapy (ART). Yet, the improvement in survival that may be achieved by targeting non-AIDS risk 

factors among those who initiated antiretroviral therapy (ART) remains unclear.  

Leveraging observational data from 1016 HIV-positive women participating in the Women’s 

Interagency HIV Study between 1998 and 2017, we estimated the mortality risk under modeled 

interventions targeting alcohol consumption and smoking with ART initiation. We used parametric g-

computation to estimate effects of combining ART with interventions eliminating or reducing the 

prevalence of alcohol and/or smoking compared to an intervention solely on universal initiation of ART 

in the modern treatment era.  

Among 1016 women at baseline, 59% reported smoking and 23% reported consuming over 3 

drinks per week. The observed 8-year risk of mortality was 22.5% compared to an estimated 10.4% (95% 

CI: 6.3, 14.5) risk under universal initiation of ART in the modern treatment era. The 8-year risk 

differences contrasting universal initiation of modern ART and elimination of non-AIDS risk factors, with 

intervening on ART alone, were -0.5% (95% CI: -1.2, 0.3) with near elimination of alcohol, -1.8% (95% 

CI: -3.6, 0) with 100% smoking cessation, and -2.0% (95% CI: -3.9, -0.2) with both. Under interventions 

where the probability of abstaining from alcohol or quitting smoking was less than 1, reflecting the reality 

that interventions rarely eliminate exposures entirely, reductions in the 8-year risks of mortality were less 

pronounced but still suggested improvements in survival compared to intervening on ART alone.  
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While modern ART has transformed the prognosis of HIV to a manageable chronic condition, 

smoking and alcohol remain significant contributors to early mortality. Interventions that target these risk 

factors, particularly smoking, may further reduce the risk of mortality, but more efficacious interventions 

are needed. 

B.  Introduction 

Non-AIDS causes of morbidity and mortality disproportionately affect those with HIV, despite 

two decades of effective antiretroviral therapy (ART).1–4 Compared to the general US population, people 

with HIV experience a higher prevalence of multimorbidity,16 accelerated aging,17–19 and decreased life 

expectancy, dying from non-AIDS causes 8 to 9 years earlier than those without HIV.18,20,21 Thus, further 

improvements in the health status and survival of those with HIV will require greater attention to non-

AIDS risk factors. 

Cigarette smoking, heavy alcohol consumption, and chronic inflammation are highly prevalent 

among those with HIV and may contribute to a large proportion of excess mortality.23,25–28,30,133,134 Studies 

suggest a synergistic relationship between cigarette smoking and HIV infection15,41–44,46 as well as an 

increased risk of physiologic injury and mortality at lower thresholds of alcohol consumption among 

those with HIV.47 Yet, the improvement in long-term outcomes that may be achieved by targeting non-

AIDS risk factors along with prompt initiation of modern ART regimens remains unclear. 

Here, we estimate the 8-year risks of all-cause mortality in the Women’s Interagency HIV Study 

(WIHS) under proposed interventions that combine 1) prompt initiation of ART in the modern treatment 

era with 2) alcohol reduction, 3) smoking cessation, and 4) both alcohol reduction and smoking cessation. 

We quantify the improvement in survival that may be achieved by each intervention combination 

compared to intervention on prompt ART initiation alone.  

C.  Methods 

C1.  Study Sample 

The Women’s Interagency HIV Study (WIHS) is an ongoing, multisite prospective cohort study 

of HIV-positive and HIV-negative women in the United States.89–91 The WIHS includes 10 consortia of 
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contributing sites (Bronx/Manhattan, NY; Brooklyn, NY; Chicago, IL; Los Angeles/Southern 

CA/Hawaii; San Francisco/Bay Area, CA; Washington, DC; Atlanta, GA; Birmingham, AL/Jackson, MS; 

Chapel Hill, NC; Miami, FL). Women were enrolled during 4 recruitment waves (1994-1995, 2001-2002, 

2011-2012, and 2013-2015) and have since been followed every 6 months for documentation of 

sociodemographic information, risk behaviors, lab measurements, medications, physical exams, and 

clinical events. Since 1994, the WIHS has enrolled 4982 women, 3703 of whom were HIV-positive at 

baseline or seroconverted over follow-up. Institutional review boards at each WIHS site approved the 

WIHS and all women provided written informed consent for participation. 

Eligibility for analysis was restricted to HIV-positive women with a study visit on, or after, 1 

April 1998, and who had not previously initiated combination ART (N=1033). We excluded 2% with 

missing baseline information on depression (n=17), alcohol consumption (n=9), and smoking status 

(n=8). In the remaining sample of 1016 HIV-positive women, we imputed 5 (0.5%) missing baseline CD4 

counts and 18 (1.8%) missing baseline viral load counts by simulation from log normal distributions with 

mean and standard deviation equal to that of the observed WIHS sample at baseline. The final sample for 

analysis included N=1016 HIV-positive, combination ART-naïve, women. This analysis was deemed 

exempt from review by the Office of Human Research Ethics at the University of North Carolina-Chapel 

Hill.  

C2.  Exposures and Outcome 

Information on ART, alcohol consumption, and smoking has been collected on WIHS 

participants via in-depth interviews at baseline and follow-up visits. Combination ART is determined 

using a definition based on Department of Health and Human Services/Kaiser Panel guidelines.114 

Participants are considered to be on combination ART if they report use of 3+ antiretroviral drugs, one of 

which is a protease inhibitor (PI), a non-nucleoside reverse transcriptase inhibitor (NNRTI), an integrase 

inhibitor (II), or an entry inhibitor (EI). Here, we defined modern ART as combination ART initiated 

on/after 1 October 2001. This date coincides with the period after which tenofovir had been approved and 
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became a common drug in combination ART regimens.114 During interviews, participants also reported 

the number of drinks consumed on average per week and smoking status since the last visit.  

The outcome of interest was death due to any cause. The WIHS confirms deaths for all women 

who have been enrolled in the cohort through regular queries of state death certificates and the National 

Death Index Plus.  

C3.  Intervention Portfolios 

Our primary objective was to estimate the risk115,116 of all cause-mortality in the WIHS under 

hypothetical intervention portfolios (i.e., intervention combinations) targeting ART, alcohol, and 

smoking. In our base scenario (Portfolio 1), we considered an intervention that solely targeted prompt 

initiation of modern ART, where “prompt” initiation was defined as initiation of ART by the first follow-

up visit (i.e., 6 months after the baseline visit). In our three other scenarios, we considered portfolios 

combining prompt initiation of modern ART with an intervention on: alcohol (Portfolio 2), smoking 

(Portfolio 3), and both alcohol and smoking (Portfolio 4). Specifically, we defined interventions on non-

AIDS risk factors in two ways. Set A intervention portfolios combined ART with near elimination of 

alcohol consumption and/or smoking whereas Set B intervention portfolios combined ART with realistic 

reductions in the prevalence of alcohol consumption and/or smoking based on the expected efficacy of 

real-world interventions.  

Set A intervention portfolios were defined as follows. Portfolio 2A was an intervention to 

eliminate alcohol consumption of over 1 drink per week among women without hepatitis C virus and 

eliminate all alcohol consumption among women with hepatitis C virus (i.e., positive antibody and 

positive or missing RNA status at baseline). We chose a limit of 1 drink per week instead of complete 

abstinence due to potential protective effects117 of alcohol at low levels but did not define the intervention 

to increase drinking among those who were already abstainers. Because alcohol is particularly harmful for 

those with hepatitis C infection,118 the intervention dictated complete abstinence from alcohol for these 

women. Portfolio 3A was defined as an intervention to eliminate smoking among all smokers. Finally, 
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Portfolio 4A was an intervention that imposed both near alcohol elimination and smoking cessation 

strategies.   

Set B intervention portfolios to reduce, rather than eliminate, non-AIDS risk factors were 

specified to facilitate estimation of generalized intervention contrasts51 and were defined as follows. 

Portfolio 2B combined prompt initiation of modern ART with an intervention to reduce alcohol 

consumption of over 3 drinks per week to a 3 drink per week limit among those without hepatitis C virus. 

This limit was chosen to account for recent evidence suggesting that those with HIV are adversely 

impacted by alcohol at lower thresholds of consumption than the general population.47 Consequently, 

current guidelines119 that classify alcohol consumption of over 7 drinks per week for women in the 

general population as “heavy drinking” beyond safe limits are likely too lenient for those with HIV. For 

those with hepatitis C virus at baseline, we based our intervention on a brief alcohol treatment program 

that resulted in alcohol abstinence among 36% of participants and >50% reduction in drinking levels 

among 26% of participants.120 Portfolio 3B was defined as a behavioral smoking cessation intervention 

tested by Hoffman et al.121 in which smokers had a 0.16 probability of quitting by 6 months. The 

combination of the alcohol and smoking cessation interventions described above was defined as Portfolio 

4B.    

C4.  Analyses 

We used the parametric g-computation algorithm,67–69,71,73,75,98,104,105 a generalization of 

standardization, to estimate the mortality risk under each intervention portfolio. Under a sufficient set of 

conditions,107–109,111,135 this approach re-expresses the mortality distribution under the observed 

treatments/exposures as the mortality distribution that would be observed under the intervention 

portfolios. Technical details are provided in the supplement. Briefly, we specified pooled logistic and 

linear person-visit models to estimate the probability or density of each exposure (i.e., antiretroviral 

therapy, level of alcohol consumption, smoking status), time-varying covariate (i.e., CD4 count, 

detectable viral load, depression), and outcome (i.e., mortality) conditional on observed values of 

covariates at each time period. Time-fixed covariates included baseline age, race, CD4 count, viral load, 
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education, history of injection drug use, WIHS recruitment wave, and prior exposure to 2-drug 

antiretroviral therapy.  

For all analyses, we estimated the mortality risk using the complement of the Kaplan-Meier125 

survival function and administratively censored women at 8 years of follow-up due to sparse data at later 

time points. We used risk differences and ratios to quantify the impact of jointly targeting non-AIDS risk 

factors by comparing the 8-year risks of mortality under each portfolio to the 8-year risk of mortality with 

an intervention on prompt initiation of modern ART alone. We estimated 95% confidence intervals from 

the standard deviation of 1000 nonparametric bootstrap resamples.126 

D.  Results 

Among 1016 HIV-positive women in the WIHS, the median age at study entry was 38 

[Interquartile Range (IQR): 32, 45], median CD4 cells/mm3 was 452 [IQR: 273, 655], and median log10 

viral load copies/mL was 3.6 [IQR: 2.8, 4.4] (Table 4.1). Almost 70% of the cohort was Black, half 

reported depressive symptoms, 33% had a history of injection drug use, and 33% had evidence of 

hepatitis C virus. The smoking prevalence was 59% with an additional 15% of women reporting former 

smoking. Nearly half the study population abstained from alcohol consumption while 23% reported 

consuming over 3 drinks on average per week, the majority of whom were heavy drinkers (i.e., 

consuming over 7 drinks per week). The 8-year risk of all-cause mortality under the observed initiation of 

ART and no additional intervention on non-AIDS risk factors was 22.5% (Figure 4.1).   

The risk of all-cause mortality was 10.4% (95% CI: 6.3, 14.5) under an intervention on prompt 

initiation of modern ART alone. Figure 4.2 displays the 8-year risk functions of all-cause mortality under 

interventions that combined prompt initiation of modern ART with near elimination (Panel A) or 

reduction (Panel B) of alcohol and smoking; numerical results are presented in Tables 2 and 3 

respectively. Overall, the risk of all-cause mortality was lower under each intervention combining prompt 

initiation of modern ART with interventions on non-AIDS risk factors than under prompt initiation of 

modern ART alone. In both elimination and reduction strategies, interventions that targeted smoking were 

more beneficial than those that targeted alcohol consumption.  
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The risk of all-cause mortality by 8 years was 9.9% (95% CI: 5.9, 14.0) with near elimination of 

alcohol consumption, 8.6% (95% CI: 5.1, 12.1) with 100% smoking cessation, and 8.4% (95% CI: 4.3, 

11.9) with near elimination of both alcohol and smoking (Figure 4.2, Panel A; Table 4.2). Targeting 

smoking cessation led to a -1.8% (95% CI: -3.6, 0; Risk Ratio [RR]: 0.83; 95% CI: 0.64, 1.0) reduction in 

the 8-year risk of mortality while targeting both alcohol and smoking risk behaviors led to a -2.0% (95% 

CI: -3.9, -0.2) reduction (RR: 0.81; 95% CI: 0.62, 0.99).  

Results were attenuated with more realistic reductions in alcohol and smoking based on the 

efficacy of existing interventions (Figure 4.2, Panel B; Table 4.3). The 8-year risk of mortality was 10.1% 

(95% CI: 6.1, 14.2) with alcohol reduction, 9.5% (95% CI: 5.8, 13.3) with reduction in the smoking 

prevalence, and 9.3% (95% CI: 5.2, 13.0) with both alcohol and smoking reduction interventions. The 

combined alcohol and smoking reduction intervention reduced the risk of mortality by -1.1% (95% CI:  

-2.1, -0.1) (RR: 0.89; 95% CI: 0.81, 0.98).  

E.  Discussion 

Proposed interventions on non-AIDS risk factors notably reduced the estimated risk of all-cause 

mortality among HIV-positive women enrolled in the WIHS. All interventions that eliminated or reduced 

alcohol consumption and/or smoking improved survival compared to intervening only on prompt 

initiation of ART during the modern treatment era, though confidence intervals for alcohol interventions 

did not exclude the null. Strategies that eliminated rather than reduced alcohol and smoking achieved the 

greatest decreases in the 8-year risk of all-cause mortality. Nearly eliminating alcohol and smoking 

reduced the 8-year risk of mortality by 20%. 

While modern ART has transformed the prognosis of HIV to a manageable chronic condition, 

non-AIDS risk factors remain significant contributors to early mortality. Yet, it has been unclear what 

long-term improvements in survival may be achieved by interventions that combine initiation of ART 

with interventions on non-AIDS risk factors. Two recent studies used observational data from the WIHS 

to evaluate the reduction in the mortality risk that may be achieved by combining ART with depression 

treatment74 and combining ART with treatment of hepatitis C infection.65 Using the parametric g-
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computation algorithm to estimate the risks of mortality under modeled interventions, the authors 

demonstrated improved survival in both settings.  

Similar to depression and hepatitis C infection, alcohol consumption and smoking are common 

non-AIDS risk factors among people with HIV. The estimated prevalence of smoking and heavy alcohol 

use in those with HIV is over twice as high as in the general population.23,24 Furthermore, these risk 

factors have especially pronounced adverse effects among those with HIV,42,47 decrease the likelihood of 

viral suppression,136,137 and negatively impact adherence to HIV treatment.137,138 However, survival under 

interventions combining initiation of ART in the modern treatment era with interventions on alcohol 

and/or smoking have not been assessed or compared to determine which strategies should be prioritized.  

Our finding that interventions on smoking in combination with modern ART achieved greater 

reductions in the 8-year risk of mortality than interventions on alcohol in combination with modern ART 

is likely influenced by the large proportion of smokers compared to drinkers in the WIHS. At baseline, 

there were over 2.5 times as many women reporting smoking than alcohol consumption of over 3 drinks 

per week. In fact, smoking was more common than consuming any alcohol or over 1 drink per week (59% 

versus 51% or 34%). Thus, interventions that reduced or eliminated smoking in the WIHS affected a 

greater proportion of the study sample than those that nearly eliminated or reduced drinking. In other HIV 

cohorts with varying distributions of these risk factors, the impacts of interventions eliminating or 

reducing smoking versus alcohol may differ. However, in the US HIV clinical setting, smoking is more 

common than at-risk alcohol use among HIV patients.139 

While interventions on smoking as opposed to alcohol consumption in the WIHS achieved the 

greatest reductions in the mortality risk by 8 years, this finding was not consistent across the entire 

follow-up period. For interventions reducing the prevalence of alcohol and/or smoking, risks of all-cause 

mortality under each portfolio were similar for the first two years. After this time point, interventions on 

smoking (or both smoking and alcohol) combined with prompt initiation of modern ART progressively 

reduced the risk of mortality compared to intervening on modern ART alone. While the intervention on 

alcohol combined with ART increasingly improved survival over the remaining follow-up period, this 
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improvement was more modest. For interventions eliminating alcohol and smoking, the elimination of 

alcohol appeared slightly more effective during the first two years, after which the estimated risks of 

mortality progressively diverged to reveal greater improvements in survival with interventions on 

smoking (or both smoking and alcohol) than with interventions on alcohol use. It is possible that smoking 

cessation may take a longer time to affect the risk of mortality than changes in alcohol consumption. 

Thus, while eliminating or reducing alcohol may convey similar short-term benefits in the WIHS, 

smoking cessation is critical to achieve optimal long-term outcomes.  

Though all intervention portfolios reduced the risk of all-cause mortality in the WIHS, near 

elimination of alcohol and/or smoking resulted in a two times greater reduction in the mortality risk as 

compared to interventions reflecting more realistic reductions in the prevalence of risk factors. Risks 

estimated under elimination strategies offer a promising benchmark for the improvements in survival that 

may be achieved by interventions with 100% efficacy. However, perfectly efficacious interventions 

against smoking and alcohol use do not currently exist.  

Therefore, we estimated risks under Set B intervention portfolios to provide a more realistic view 

of what may be achieved with existing interventions.46,49–51 The reduction in alcohol consumption and 

smoking prevalence that we modeled in the WIHS was based on efficacy estimates from actual 

interventions assessed in trials. The smoking cessation strategy we modeled in the WIHS was based on a 

computer expert system behavioral intervention delivered in physician waiting rooms that achieved only a 

0.16 probability of smoking cessation by 6 months.121 Yet, the low probability of sustained smoking 

cessation is similar to that estimated in other behavioral and nicotine replacement therapy studies60,140 and 

highlights the need for more efficacious smoking cessation interventions among those with HIV. 

We modeled the expected efficacy of alcohol reduction among those with hepatitis C virus based 

on a brief counseling intervention conducted in a hepatitis C clinic.120 While the intervention achieved 

reductions in alcohol consumption among 62% of participants, it was not tested specifically among those 

with HIV. For those with HIV but not hepatitis C virus, most trials have been conducted among those 

with an indication of alcohol dependency or hazardous levels of consumption well beyond the national 
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recommended safe limits.141–143 However, with potential for physiologic injury and increased mortality at 

lower thresholds of alcohol consumption among those with HIV,47 it is necessary to reassess safe limits 

for this population and evaluate interventions tailored to reduce lower levels of drinking.  

We made several assumptions in our analyses, including no measurement error of exposures, 

covariates, or outcome;107 counterfactual consistency;108,144 no unmeasured confounding;135 positivity;111 

and correct specification of parametric models for g-computation. Information on alcohol and smoking 

were self-reported in the WIHS, and as such, may be underreported. In practice though, the provision of 

alcohol and smoking cessation interventions will likely depend on self-report of these risk behaviors. 

Unmeasured confounding is always a threat to observational studies; however, the rich data collected by 

the WIHS allowed us to address key baseline and time-varying confounders. In our models, we improved 

positivity (i.e., nonzero probability of exposures within all strata of covariates) by careful selection of 

covariates, functional form, and interaction terms to avoid cells with sparse data. We assessed 

specification of parametric models by comparisons of the modeled data distribution to that observed in 

the WIHS cohort (Figure 4.3). For alcohol and smoking interventions, we assumed no relevant side 

effects on risk of mortality through pathways other than those we modeled.52 Further, due to the nature of 

the WIHS as an interval cohort with measures of ART, alcohol, and smoking documented at 6-month 

follow-up visits among those who remain alive, we assumed that any change in exposure necessitated at 

least a 6-month period to affect the risk of mortality.   

Finally, there are several noteworthy strengths of our study. The WIHS is the largest interval 

cohort of HIV-positive women in the United States. Many studies conducted among those with HIV have 

been restricted to men or cohorts that are over 75-80% men such as the United States CFAR Network of 

Integrated Clinical Systems (https://www.uab.edu/cnics/).63 However, women experience a different 

distribution of non-AIDS risk factors than men, including a higher prevalence of multimorbidity.5 

Evaluating the impact of interventions on non-AIDS risk factors among this group is necessary to 

improve health outcomes and prevent disparities from growing.50,51 We also used the WIHS to compare 

multiple sets of interventions on non-AIDS risk factors. Few studies have examined sets of interventions 
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or compared interventions targeting different risk factors in a given HIV-positive population. Given the 

clustering of comorbidities among those with HIV, comparisons of interventions are critical to prioritize 

strategies for improved healthcare delivery.  

F.  Conclusion 

Closing the remaining gap in the health status and survival of those with HIV in the modern ART 

era requires comprehensive approaches to HIV care management. Interventions that target smoking and 

alcohol may achieve significant reductions in the mortality risk of women with HIV who have received 

combination ART. To fully recognize these improvements, more efficacious interventions may be 

necessary, particularly to achieve higher proportions of smoking cessation.   
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Table 4.1. Characteristics of 1,016 HIV-positive combination antiretroviral therapy (ART) naïve women 

in the Women’s Interagency HIV Study (WIHS) at analysis baseline.  

Characteristics   

No. of women  1,016 

Age, y, median [IQR] 38 [32, 45] 

CD4 count, cells/mm3, median [IQR] a 452 [273, 655] 

Viral load, log10 copies/mL, median [IQR] b 3.6 [2.8, 4.4] 

AIDS-defining illness   323 (31.8) 

Average alcohol consumption  

     Abstain 496 (48.8) 

     1 drink per week 174 (17.1) 

     2-3 drinks per week 117 (11.5) 

     4-7 drinks per week 81 (8.0) 

     7+ drinks per week c 148 (14.6) 

Black race  696 (68.5) 

Depressive symptoms d 513 (50.5) 

Education   

     Less than high school 381 (37.5) 

     High school graduate 328 (32.3) 

     Some college 307 (30.2) 

Hepatitis C virus e 333 (32.8) 

Hypertension f  257 (25.5) 

Injection drug use history  338 (33.3) 

Smoking status  

     Current 595 (58.6) 

     Former 155 (15.3) 

Data are presented as No. (%) unless otherwise specified.  
a Missing for 4 women. 
b Missing for 16 women. 
c Above national recommended safe limits. 
d Score >16 on the Center for Epidemiologic Studies Depression    

  Scale (CES-D).  
e Antibody positive and RNA positive or missing RNA value. 
f Any indication of hypertension defined as systolic blood pressure >140,   

  diastolic blood pressure >90, self-report of hypertension, or use of anti-  

  hypertensive medications. 
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Table 4.2. Risk of all-cause mortality under hypothetical intervention portfolios to eliminate non-AIDS 
risk factors among 1,016 HIV-positive, combination ART-naïve women enrolled in the Women’s 

Interagency HIV Study, 1998 – 2017. 

Intervention  5-year risk, % 8-year risk, % 
Risk Ratio 

(8 years)  

Risk Difference 

(8 years) 

 
Natural course ART 

initiation  
 13.6 22.5   

(1) 
Prompt initiation of modern 

ART a  
 7.4 (4.7, 10.1) 10.4 (6.3, 14.5) 1.00  0.0  

(2a) 
Strategy 1 & alcohol 

elimination b 
 7.1 (4.3, 9.8) 9.9 (5.9, 14.0) 0.95 (0.88, 1.02) -0.5 (-1.2, 0.3) 

(3a) 
Strategy 1 & 100% smoking 

cessation 
 6.3 (3.7, 8.9) 8.6 (5.1, 12.1) 0.83 (0.64, 1.00) -1.8 (-3.6, 0.0) 

(4a) All of the above  6.3 (3.5, 8.8) 8.4 (4.3, 11.9) 0.81 (0.62, 0.99) -2.0 (-3.9, -0.2) 

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus. 
a Prompt initiation of modern ART was defined as initiation of ART in the treatment era after which tenofovir was 

available and within 6 months of the analysis baseline.   
b The alcohol elimination intervention was specified as eliminating alcohol consumption >1 drink per week 

among women without hepatitis C virus and complete abstinence among women with hepatitis C virus.  

 
 

Table 4.3. Risk of all-cause mortality under hypothetical intervention portfolios to reduce the prevalence 

of non-AIDS risk factors among 1,016 HIV-positive, combination ART-naïve women enrolled in the 

Women’s Interagency HIV Study, 1998 – 2017. 

Intervention  5-year risk, % 8-year risk, % 
Risk Ratio 

(8 years)  

Risk Difference 

(8 years) 

 
Natural course ART 

initiation  
 13.6  22.5    

(1) 
Prompt initiation of modern 

ART a  
 7.4 (4.7, 10.1) 10.4 (6.3, 14.5) 1.00  0.0  

(2b) 
Strategy 1 & alcohol 

reduction b   
 7.3 (4.6, 10.0) 10.1 (6.1, 14.2) 0.98 (0.92, 1.03) -0.3 (-0.9, 0.3) 

(3b) 
Strategy 1 & smoking 
cessation c 

 6.9 (4.3, 9.5) 9.5 (5.8, 13.3) 0.91 (0.84, 0.99) -0.9 (-1.7, -0.1) 

(4b) All of the above   6.9 (4.1, 9.4) 9.3 (5.2, 13.0) 0.89 (0.81, 0.98) -1.1 (-2.1, -0.1) 

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus.  
a Prompt initiation of modern ART was defined as initiation of ART in the treatment era after which tenofovir 

was available and within 6 months of the analysis baseline.   
b The alcohol reduction intervention was defined as reducing alcohol intake to 3 drinks per week among those 

without hepatitis C virus; among those with hepatitis C virus, the intervention was defined as a 0.36 probability 

of abstaining from alcohol, 0.26 probability of reducing drinking levels by 50%, and a 0.38 probability of no 
change in alcohol consumption based on the intervention described by Dieperink et al.120  
c The smoking cessation intervention was defined as a 0.16 probability of quitting smoking by the next follow-up 

visit based on the intervention described by Hoffman et al.121 
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Figure 4.1. Risk of all-cause mortality under four antiretroviral therapy initiation strategies in the 

Women's Interagency HIV Study, 1998 – 2017. 
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Figure 4.2. Risk of all-cause mortality under hypothetical interventions to eliminate (Panel A) or reduce (Panel B) the prevalence of non-AIDS risk 

factors in the Women's Interagency HIV Study, 1998 – 2017. 
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Figure 4.3. Observed versus g-computation simulated cumulative incidence of all-cause mortality under 
the natural course of antiretroviral therapy initiation among 1016 HIV-positive women enrolled in the 

Women's Interagency HIV Study between 1998 – 2017, 200 bootstrap samples of observed data. 
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CHAPTER 5: TWO-STAGE G-COMPUTATION: EVALUATING TREATMENT AND 

INTERVENTION IMPACTS IN OBSERVATIONAL COHORTS WHEN EXPOSURE 

INFORMATION IS PARTLY MISSING 

 
 
A.  Overview  

A barrier to implementing the g-computation algorithm to evaluate average treatment effects and 

intervention impacts using observational data is that the approach assumes complete information on 

exposures. We develop two-stage g-computation estimators that leverage partially observed information 

on the full study sample and complete exposure information on a subset. In a hypothetical cohort of 1623 

HIV-positive women with 30% complete opioid prescription information, we illustrate a two-stage 

extrapolation g-computation estimator for the average treatment effect of shortening versus lengthening 

the duration of all opioid prescriptions; we further illustrate two-stage inverse probability weighted and 

exposure imputation g-computation estimators for the average intervention effect of shortening the 

duration of all prescriptions versus the status quo. Two-stage extrapolation g-computation approximated 

the true -18.6% risk difference for the average treatment effect while two-stage inverse probability 

weighted and exposure imputation g-computation estimators approximated the true -10.4% risk difference 

for the average intervention effect. For both parameters, g-computation fit to the subset of complete cases 

was biased. In 10,000 Monte Carlo simulations, two-stage approaches considerably reduced bias and 

mean squared error and improved 95% confidence limit coverage. While missing data threaten validity 

and precision, proposed two-stage g-computation designs can be used to make progress in the face of 

these challenges.  

B.  Introduction  

The generalized computation formula algorithm67 (g-formula) is increasingly applied to 

observational data to answer pressing public health questions, especially when conducting a randomized 
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controlled trial may be costly, inefficient, or infeasible. Under a set of conditions,107,109–111,145 the g-

formula re-expresses the data distribution under the observed (or factual) exposure plan as the distribution 

that would have been observed under an alternative (or counterfactual) exposure plan. Recent papers have 

illustrated how the g-formula can be estimated parametrically using available statistical 

software,68,69,71,73,98 with applications highlighting the versatility of the g-formula in estimating both: 1) 

the “treatment/exposure effect” (i.e., a contrast of the average outcome distribution when the full 

population is exposed versus unexposed) and 2) “intervention effects” (i.e., contrasts of the population 

average outcome distribution under a realistic change in the exposure distribution versus no 

change).46,49,88,103 Intervention effect estimates are particularly important to inform clinical guidelines and 

policy decisions.50,51  

Applications of the parametric g-formula assume complete information on exposures, but missing 

data are extensive in observational studies.77,81 A key barrier to implementing this powerful analytic tool 

in many research settings is the lack of high quality data on exposures or interventions in the entire study 

sample. Exposures may not be observed in the full sample when information is costly or difficult to 

measure on everyone, data linkages are only performed for a subset, or information collected has changed 

across time or study sites.  

As Lash and Schisterman noted in their call for “New Designs for New Epidemiology,” 

answering important scientific questions in settings with constrained resources and fragmented real-world 

data requires novel study designs.146 Two-stage sampling designs formalized by Neyman82 and developed 

in traditional regression analyses80,83–87,96 have improved efficiency and validity of estimators when 

information on an important variable is incomplete among the total sample; however, analogous 

extensions for comparing counterfactual outcome distributions with the parametric g-computation 

algorithm when exposure is partially missing have yet to be developed.  

Here, we extend two-stage analytic design and missing data methods to develop two-stage g-

computation estimators of the average treatment and intervention effects that leverage exposure 

information on a subset of participants along with covariate information observed for the full study 
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sample. We propose and implement estimators in an example motivated by a hypothetical HIV-positive 

cohort in which information on exposure to the candidate intervention is only available for a subset. We 

assess the operating characteristics of the proposed estimators with simulation and evaluate estimators 

under varied sample conditions.     

C.  Methods 

C1.  Motivating Example Data 

Our objectives are to estimate the average treatment and intervention effects46,49,88,103 of opioid 

prescription duration among HIV-positive women on the 12-month risk of emergency room/hospital visit 

or death from any cause. Specifically, our goal is to estimate the average treatment effect of shortening 

versus lengthening the duration of initial opioid prescriptions among all women and the average 

intervention effect of shortening the duration of initial prescriptions versus status quo prescribing 

practices. To illustrate two-stage estimation of parameters, we base our example on a hypothetical cohort 

simulated to represent HIV-positive women enrolled in the Women’s Interagency HIV Study (WIHS). 89–

91 The WIHS is a United States-based prospective interval cohort study of HIV-positive and HIV-negative 

women enrolled beginning in 1994 and followed at semiannual study visits for behavioral and clinical 

data. We created our dataset such that the full sample size was equal to the number of HIV-positive 

women enrolled in Waves 2 – 4 of the WIHS (i.e., 𝑁 = 1623) and the incidence of emergency 

room/hospital visit or death over 12 months was similar to that observed in a sample of outcome data 

from the most recent wave of enrollees and which has been reported in previous HIV studies130 (i.e., 

approximately 30%).  

While information on opioid use has been collected on WIHS participants, this information has 

primarily been based on self-reported use of illicit or recreational drugs. Our objective is to estimate the 

effect of a clinical intervention in which guidelines dictate that physicians shorten the period over which 

initial opioid prescriptions are provided. Linkages to electronic medical record databases could provide 

detailed dosage and duration information for individuals receiving prescriptions; however, because data 

linkages are expensive and often cannot be performed for the entire study sample, we consider a scenario 
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in which it is possible to link prescription information for a nonrandom subset of 30% of the simulated 

cohort, particularly members receiving HIV care at 10 clinics proximal to the WIHS sites.   

A causal diagram122 for our research scenario shown in Figure 5.1 guided our generation of data 

for analyses. Receipt of an initial long duration opioid prescription at baseline (i.e., 𝐴) increases the risk 

of emergency room/hospital visit or death over 12-months (i.e., 𝑌). History of substance use (i.e., 𝑊) 

represents one potential confounder increasing the probability of receiving an initial long duration 

prescription and the risk of emergency room/hospital visit or death. Not receiving regular HIV care (i.e., 

𝑍), while not a confounder and therefore often omitted from the causal diagram, decreases the probability 

of having observed exposure information (i.e., 𝑅 = 1) from linked electronic medical records and also 

increases the risk of hospitalization or death (i.e., 𝑌). Complete details on the data generation process are 

available in Appendix B of the Technical Supplement. 

C2.  G-computation  

Let 𝐴 denote a binary time-fixed exposure, 𝑾 denote a vector of confounders, 𝑌 denote an 

outcome, uppercase letters denote random variables, and lowercase letters denote possible values of 

variables or constants. To simplify notation, we assume 𝑾 to be a finite dimension vector of categorical 

covariates; in practice, the vector may include continuous covariates in which case the equations would be 

rewritten as integrals. The expected value of the potential outcome 𝑌𝑎 under a time-fixed exposure plan 𝑎 

can be written as,  

(2.1)      𝐸[𝑌𝑎] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘)𝑃(𝑾 = 𝒘) 

𝒘

 

where we define 𝐸[𝑌𝑎=1] as the expected outcome distribution under a plan in which the full study 

sample receives exposure and 𝐸[𝑌𝑎=0] as the expected outcome distribution under a plan in which 

exposure is removed from the full study sample. The expected value of the outcome under the natural 

course (i.e., observed exposure plan) can be written as, 

(2.2)      𝐸[𝑌] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘)𝑃(𝐴 = 𝑎|𝑾 = 𝒘)𝑃(𝑾 = 𝒘).

𝒘,𝑎
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The process of estimating the above expressions (referred to as the g-formula) by g-computation 

has been described in detail.68,69,71,98 Briefly, this is performed by first estimating the conditional 

probabilities or densities of the outcome given exposure and confounders from models fit to the full study 

sample. Next, a large Monte Carlo sample is drawn from the original study population. The exposure 

values for each individual in the Monte Carlo sample are set according to the exposure plan. Then, 

outcomes are simulated in the Monte Carlo sample using the set exposure value 𝑎, realized covariate 

values 𝒘, and conditional probabilities that were estimated in the first step. For each individual, the 

exposure value set by plan 𝑎 may differ from the observed exposure value. Finally, outcomes are summed 

across the distribution of 𝒘. In special cases, the Monte Carlo simulation step may be avoided.70 It is 

standard practice to estimate the outcome distribution under the natural course with g-computation 

regardless of whether it is a parameter of interest; comparison of the observed natural course to the g-

computation simulated natural course is used as a check on model specification prior to using the models 

to simulate outcome distributions under altered exposure plans.  

When exposure plan information for some participants is missing, missing data prohibit the use of 

the above approach. Instead, under an assumption that patients with (i.e., 𝑅 = 1) and without (i.e., 𝑅 = 0) 

complete exposure information are exchangeable within levels of confounders 𝑊, investigators often use 

a complete case analysis. Under this assumption, the g-formula equations for the potential outcome under 

exposure plan 𝑎 and under the natural course can be written as: 

(2.3)      𝐸[𝑌𝑎] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾 = 𝒘,𝑅 = 1)𝑃(𝑾 = 𝒘,𝑅 = 1) 

𝒘

 

(2.4)     𝐸[𝑌] =∑𝐸(𝑌|𝐴 = 𝑎,  𝑾= 𝒘,𝑅 = 1)𝑃(𝐴 = 𝑎|𝑾 = 𝒘,𝑅 = 1)𝑃(𝑾 = 𝒘,𝑅 = 1).

𝒘,𝑎

 

The estimation of conditional outcome probabilities or densities is restricted to the subsample 

with observed exposure (i.e., complete information), and the outcome distribution is summed over the 

distribution of 𝒘 among those with complete information. However, 𝐸[𝑌𝑎|𝑊 = 𝑤] will only be 
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approximated by 𝐸[𝑌𝑎|𝑊 = 𝑤, 𝑅 = 1] if exposure information is missing completely at random or 

missing at random given the vector of confounders 𝑾. 

C3.  Two-stage G-computation Estimator of Average Treatment Effect 𝑬[𝒀𝒂=𝟎 − 𝒀𝒂=𝟏]  

We propose a g-computation extrapolation estimator of the average treatment effect which 

combines partial information on the full study sample with complete information on the subset of 

participants with observed exposure. We rewrite the g-formula to 1) include 𝒁 in our outcome model, 

where 𝒁 is a vector of covariates associated with 𝑅 and 𝑌 that allows us to meet a weaker assumption that 

presence of exposure information is independent of 𝑌 given 𝑾 and 𝒁 (i.e., 𝐸[𝑌𝑎|𝑎,𝒘, 𝒛] = 

𝐸[𝑌𝑎|𝑎,𝒘, 𝒛, 𝑅 = 1]), and 2) sum outcomes over the joint distribution of 𝑾and 𝒁 instead of only 𝑾 in 

the subset with complete exposure information. The g-computation extrapolation estimator is written as: 

(3.1)      �̂�𝑒𝑥𝑡[𝑌
0 − 𝑌1] = 

∑�̂�(𝑌 = 1|𝐴 = 0,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

 

−∑�̂�(𝑌 = 1|𝐴 = 1,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

. 

Stage 1 consists of estimating �̂�(𝑌 = 1|𝐴 = 𝑎,𝑾 = 𝒘,𝒁 = 𝒛,𝑅 = 1) from a logistic model fit to 

complete cases; stage 2 consists of (a) simulating outcomes under plans 𝑎 = 0 and 𝑎 = 1 among Monte 

Carlo resamples taken from the full population (i.e., not only sampling complete cases) and then (b) 

summing over the full population’s joint distribution of 𝒘 and 𝒛. We obtain the average treatment effect 

by taking the difference �̂�[𝑌0 − 𝑌1].  

C4.  Two-stage G-computation Estimators of Average Intervention Effect 𝑬[𝒀𝒂=𝟎 − 𝒀] 

The risk under the natural course is estimated by additionally summing over the full population’s 

distribution of observed exposure. Because the intervention effect contrasts the outcome distribution 

under an altered exposure distribution to the outcome distribution under the observed exposure 

distribution, an additional step is needed when exposure status is missing for a subset of the sample and 

the outcome distribution differs among the subset with observed information versus the full sample. 
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Similarly, this is needed for interventions that depend on the natural value of exposure104 such as for the 

effect estimated by Lesko et al.64 in which intervening on depression depended on the natural value (i.e., 

observed level) of depressive symptoms. 

We propose two-stage inverse probability-weighted (IPW) and imputation g-computation 

estimators of the average intervention effect. As with the extrapolation g-computation estimator, IPW and 

imputation g-computation include 𝒁 in the outcome model as well as the additional model specified for 

missing data. 

The IPW g-computation estimator is written as: 

(4.1)      �̂�𝐼𝑃𝑊[𝑌
0 − 𝑌] = 

∑[
�̂�(𝑌 = 1|𝐴 = 0,  𝑾= 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛|𝑅 = 1)

�̂�(𝑅 = 1|𝑾 = 𝒘,𝒁 = 𝒛)
]

𝒘,𝒛

−  ∑ [
�̂�(𝑌 = 1|𝐴 = 𝑎,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝐴 = 𝑎|𝑾 = 𝒘,𝒁 = 𝒛, 𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛|𝑅 = 1)

�̂�(𝑅 = 1|𝑾 = 𝒘,𝒁 = 𝒛)
] .  

𝒘,𝒛,𝑎

 

Stage 1 consists of estimating the probability of being a complete case (i.e., �̂�(𝑅 = 1│𝑾 =

𝒘,𝒁 = 𝒛))131 in the full population in addition to estimating �̂�(𝑌 = 1|𝐴 = 𝑎,𝑾 = 𝒘,𝒁 = 𝒛, 𝑅 = 1) in 

the complete cases as in the extrapolation approach. In stage 2, we (a) simulate outcomes setting 𝑎 = 0 

and 𝐴 = 𝑎 under the observed exposure value among Monte Carlo resamples taken from the complete 

cases, (b) weight simulated outcomes by the inverse probability of being a complete case, (c) and sum 

over the joint distribution of 𝑾 and 𝒁 in the complete cases.  

The imputation g-computation estimator is written as: 

(4.2)      �̂�𝑖𝑚𝑝𝑢𝑡𝑒[𝑌
0 − 𝑌] = 

 ∑�̂�(𝑌 = 1|𝐴 = 0,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝑾 = 𝒘,𝒁 = 𝒛) 

𝒘,𝒛

 

− ∑ �̂�(𝑌 = 1|𝐴 = 𝑎,  𝑾 = 𝒘,𝒁 = 𝒛,  𝑅 = 1)�̂�(𝐴∗ = 𝑎|𝑾 = 𝒘,𝒁 = 𝒛)�̂�(𝑾 = 𝒘,𝒁 = 𝒛)

𝒘,𝒛,𝑎
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where 𝑎 denotes the realized value of observed exposure or imputed exposure (where missing). A 

separate model is specified in stage 1 to estimate the conditional probability of exposure among those 

with complete information, (i.e., �̂�(𝐴 = 1|𝑾 = 𝒘,𝒁 = 𝒛, 𝑌 = 𝑦,  𝑅 = 1)); in stage 2, (a) values of 

exposure are imputed for each woman with missing exposure information in the Monte Carlo resamples 

taken from the full population using the conditional probabilities estimated in stage 1, and (b) outcomes 

are simulated under the full joint distribution of imputed or observed 𝑎∗, 𝒘, and 𝒛. Because no values for 

𝑎 are imputed when 𝑎 is set to 0, the first part of the equation for 𝑌0 in equation 5.1 is identical to that of 

the extrapolation approach in 3.1. 

C5.  Analyses of Example Cohort 

We used proposed two-stage g-computation estimators as well as the naïve, complete case g-

computation estimator to estimate parameters of interest among our simulated cohort of 1623 HIV-

positive women. We estimated 12-month absolute risks of emergency room/hospital visit or death if all 

women were to receive short duration opioid prescriptions for ≤7 days (i.e., �̂�[𝑌𝑎=0] if all women were 

to receive long duration opioid prescriptions for >7 days (i.e., �̂�[𝑌𝑎=1] ), and if prescription practices 

were to remain unchanged (i.e., �̂�[𝑌]). We estimated risk differences contrasting the average treatment 

effect if all women received short duration versus long duration opioid prescriptions as well as the 

average intervention effect if all women received short duration opioid prescriptions versus the status quo.  

Because two-stage IPW and imputation g-computation can also estimate the average treatment 

effect, we used them in addition to the extrapolation estimator to compare approaches. In all analyses, we 

used a Firth correction132 to improve model convergence. We estimated the standard error based on the 

standard deviation of 200 nonparametric bootstrap resamples to obtain 95% confidence intervals.126 To 

propagate the error in the estimation of IP weights and exposure imputation, weight estimation and 

imputation were performed within bootstrap resamples. 
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C6.  Simulation Experiments 

To assess estimator operating characteristics, we repeated analyses of the example cohort in 

10,000 simulation experiments performed under the same conditions. Additionally, we varied the 

percentage of complete exposure data from 10-90%. Using the proposed g-computation approaches, we 

estimated absolute risks and risk differences as the average point estimate across the 10,000 experiments. 

The true risks and risk differences were determined using the potential outcomes 𝑌𝑎=1, 𝑌𝑎=0, and 𝑌 from 

the full cohort prior to imposing missing exposure information. Bias was defined as the difference 

between the estimated and true risk or risk difference. Root mean squared error was computed as the 

square root of the sum of the squared bias and variance. 95% confidence limit coverage was defined as 

the proportion of times the 95% confidence limit trapped the true parameter value across the 10,000 

simulation experiments. 

Furthermore, we conducted 10,000 simulation experiments on four cohorts generated under 

scenarios in which all but one of the conditions remained the same as in our motivating example. In the 

first scenario, to confirm that estimators are valid, we simulated the cohort under the null opioid treatment 

and intervention effects, meaning that the risk under shortened, lengthened, and natural course opioid 

durations were equal and the risk differences were 0. In the second scenario, we generated the cohort 

under a case in which opioid information was missing completely at random to confirm standard g-

computation works in this restrictive setting. In the third scenario, to assess performance of two-stage 

versus complete case approaches in the presence of strong modification, we generated the cohort under a 

case in which there was stronger modification of the opioid intervention effect by 𝑍 than in the base case. 

Finally, in the fourth scenario, to minimize finite sample bias, we increased the cohort size from 1,623 to 

7,500 women.  

D.  Results 

D1.  Motivating Example Cohort 

Table 5.1 presents the observed and complete data from one draw of 1623 HIV-positive women 

from our simulation experiments, of whom 30% (n = 512) had complete information on opioid 
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prescription duration. In the full cohort and the sample with complete exposure data, about 46% of 

women had a prior history of substance use. The prevalence of substance use history was higher among 

those receiving long duration versus short duration opioid prescriptions (53% versus 34%). About 42% of 

the full cohort was not engaged in regular HIV care compared to only 14% of those with complete data, 

due to lack of engagement in regular HIV care decreasing the likelihood of successful prescription record 

linkages. The 12-month risk of emergency room/hospital visit or death was higher in the full cohort 

(31%) compared to the sample with complete data (21%). 

Table 5.2 presents the 12-month risks and risk differences for emergency room/hospital visit or 

death estimated by each of the g-computation approaches. The true risk of emergency room visit or death 

was 38.9% if all women received long duration opioid prescriptions, 20.3% if all women received short 

duration opioid prescriptions, and 30.7% under the natural course (i.e., status quo) in which 60% of 

women received long duration prescriptions and 40% received short duration prescriptions. Estimates 

obtained with the naïve complete case g-computation approach were biased downward and did not 

include the true value in the 95% confidence limits with the exception of the absolute risk under short 

duration prescriptions. The IPW and imputation g-computation estimators addressed missing values of 

opioid prescription duration to recover the risk under the natural course.  

D2.  Simulation Experiments 

We repeated simulation and analyses of a cohort of 1623 HIV-positive women in 10,000 

experiments. Figure 5.2 displays the risk differences estimated across 10,000 simulation experiments with 

30% complete opioid prescription data. The true risk difference contrasting the provision of short duration 

versus long duration opioid prescriptions to all women (i.e., the average treatment effect) was -18.1%. All 

two-stage g-computation approaches except the complete case g-computation estimator yielded valid 

estimates. The IPW and imputation estimators, which can additionally be used to estimate the average 

intervention effect, performed well in estimating the true -11.1% reduction in the risk of emergency 

room/hospital visit or death.  
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The additional models specified for two-stage estimators of the average treatment effect resulted 

in larger standard errors than the complete case approach (Extrapolation SE: 5.1; IPW SE: 5.2; Imputation 

SE: 5.1; Complete Case SE: 3.7; Table 5.3a) as did the IPW and imputation g-computation estimators of 

the average intervention effect (IPW SE: 3.4; Imputation SE: 3.3; Complete Case SE: 2.3; Table 5.3b); 

however, root mean squared error was lower with two-stage estimation of the average treatment and 

intervention effects due to the large reduction in bias achieved by these estimators; confidence limit 

coverage was 94%. Two-stage approaches yielded estimates that were less biased than those from the 

complete case approach across all levels of complete data, and standard error decreased with increasing 

percentage of complete data (Figures 5.3 and 5.4).  

Two-stage approaches performed well under the four scenarios incorporating null treatment and 

intervention effects, data missing completely at random, strong effect measure modification by 𝑍, and 

large sample size (Tables 5.4a and 5.4b). When data were missing completely at random, the complete 

case g-computation estimator yielded valid estimates of the average treatment and intervention risk 

differences as expected, though there was a slight improvement in standard error with two-stage 

approaches as a result of the additional covariate information leveraged from the full sample. In all other 

scenarios, the complete case g-computation estimator failed to provide valid estimates.   

E.  Discussion   

In our hypothetical HIV-positive cohort and varied simulation scenarios, two-stage g-

computation estimators successfully leveraged completely observed exposure information on a subset of 

the cohort along with partially observed information on the full sample to provide valid population-level 

estimates of parameters of interest. Analogous to existing two-stage sampling designs for traditional 

regression estimators of conditional parameters,86,87,96 two-stage g-computation estimators of risks and 

risk differences reduced bias compared to the traditional g-computation estimator fit to complete cases.   

In all two-stage g-computation approaches, we included the covariate 𝑍 in the outcome model. 

Although 𝑍 was not a confounder, it was a predictor of complete information and the outcome. 

Consequently, conditioning on 𝑍 in the outcome model was necessary for d-separation of completeness 
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and the outcome,147 as well as the models for IPW or exposure imputation to take into account the missing 

information.148 When 𝑍 was left out of the outcome model, all two-stage approaches failed to provide 

unbiased effect estimates (Appendix B of the Supplemental Text; aFigure 1). Planning of studies should 

therefore include data collection on not only potential confounders but also additional covariates that are 

likely to predict both the outcome and having complete exposure.  

It should be noted that we correctly specified IPW and imputation models for missing data in our 

simulation experiments. In determining which approach to use to estimate the average intervention effect, 

it will be important to consider one’s ability to correctly model either the mechanism of complete 

information (for IPW) or the missing exposure values (for imputation). In practice, investigators might 

have better insight into one of these models. In validation studies relying on protocols for sampling a 

subset of the full population for improved exposure measurement, knowledge of the sampling mechanism 

can be leveraged in IPW. Alternatively, in circumstances where treatment is measured haphazardly, it 

might be easier to specify the imputation model.  

Although two-stage approaches reduced bias across all levels of complete exposure data 

compared to the complete case estimator of average treatment and intervention effects, point estimates for 

the risk differences were not unbiased at lower percentages of complete data. This is likely due to finite 

sample bias imposed by the sample conditions of our simulation scenario. Bias decreased with decreasing 

percentage of missing data, and this pattern was less pronounced with a larger cohort size of 𝑁 = 7500 

(Appendix B of the Supplemental Text; aFigure 2). Nonetheless, even at low percentages of complete 

data in the original cohort of 𝑁 = 1,623, two-stage approaches dramatically reduced bias compared to the 

complete case approach.    

Because we generated our original cohort of 𝑁 = 1623 with a 40% (𝑛 = 649) prevalence of short 

duration prescriptions and a 19% (𝑛 = 123) marginal risk of the outcome in this group, the number of 

observed events became small at low percentages of complete data (e.g., 10% complete data: about 12 

events; 20% complete data: about 25 events; 30% complete data: about 37 events). Thus, in some of these 

scenarios, we had fewer than 10 events per variable in the model. Though we used a Firth correction132 to 
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improve model convergence, consideration of the number of events within strata of exposure and 

covariates is important in analyses and might be used to motivate sampling designs that enrich for the 

outcome and covariates needed to ensure positivity. The covariates used to define these sampling designs 

would then become a part of the vector 𝒁 used to address partially observed data in two-stage g-

computation estimation of parameters of interest. Further exploration of finite-sample properties of 

complete case and two-stage g-computation estimators would guide investigators in best practices for 

study planning and design.   

We estimated a special case of an intervention effect in which it was possible to shorten the 

duration of initial opioid prescriptions among all HIV-positive women.51 An example of an intervention 

that achieves this might be a change in electronic medical systems that prohibits physicians from 

submitting an opioid prescription for a patient that exceeds 7 days. However, in many clinical and public 

health policy settings, it might not be possible or desirable to completely eliminate an exposure through 

intervention. For example, in our study, we might also consider the same intervention to prohibit 

prescriptions exceeding 7 days but modified with an option for the physician to override this if patients 

are receiving the prescription for recovery from a specific type of surgical procedure. In this type of 

targeted dynamic intervention,51 we could similarly use two-stage IPW or imputation g-computation 

estimators to recover the risk of the outcome under interventions that eliminate exposure among specific 

subgroups.  

Finally, the proposed two-stage g-computation approaches for missing information are also 

methods to estimate the g-formula for generalizability.149–152 The causal structure considered in this paper 

is identical to that which is considered in generalizability studies; the subset of those with complete 

information in our example (i.e., 𝑅 = 1) is akin to those selected for the study (i.e., 𝑆 = 1), while those 

with partially observed information in the full sample are akin to those with partially observed 

information in the target population. Therefore, two-stage designs could be applied to generalize 

estimated effects from a study sample to a target population of interest if information on the context (i.e., 

𝑾 and 𝒁) is available.      
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F.  Conclusion 

Advancements in methods and available statistical software programs as well as increasing access 

to fragmented, real-world data provide new opportunities to answer pressing public health questions 

among vulnerable populations. While missing data threaten validity and precision of estimates, two-stage 

study sampling designs have been employed in traditional regression analyses to overcome these 

challenges. Our study demonstrates that such designs can be extended to parametric g-computation 

estimation to quantify impacts of potential interventions and make progress in the face of these 

complexities. 
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Figure 5.1. Causal diagram used to generate a hypothetical cohort of 1,623 HIV-positive women where 𝐴 

represents initial opioid prescription duration, 𝑌 represents emergency room visit or death from any 

cause, 𝑊 represents history of substance use, 𝑍 represents not being established in regular HIV care, and 

𝑅 is an indicator of having observed opioid prescription information with 𝑅 = 1 indicating observed 

status and, therefore, selection into the sample of complete cases.    
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Figure 5.2. Risk difference estimated by g-computation approach contrasting provision of short duration versus long duration opioid prescriptions 
(Panel A) and provision of short duration prescriptions versus the status quo prescribing practice (Panel B) among 1,623 HIV-positive women with 

30% complete opioid information, 10,000 simulation experiments. 
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Figure 5.3. Bias (Panel A) and standard error (Panel B) for the average treatment effect of shortening versus lengthening opioid prescription 
duration among 1,623 HIV-positive women estimated by g-computation approach to address missing opioid data, 10,000 simulation experiments 

with complete opioid data varying from 10-90%.    
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Figure 5.4. Bias (Panel A) and standard error (Panel B) for the average intervention effect of shortening opioid prescription duration versus the 
status quo prescribing practice among 1,623 HIV-positive women estimated by g-computation approach to address missing opioid data, 10,000 

simulation experiments with complete opioid data varying from 10-90%.    
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Table 5.1. Observed and complete data for a simulated cohort of 1,623 HIV-positive women. a 

Characteristic 

Full Cohort   Sample with Complete Exposure Data 

Overall 

(N = 1,623) 

  Overall  

(n = 512) 

Opioid RX 7+ days  

(n = 337) 
Opioid RX ≤7 days 

(n = 175)  

No. % No. % No. % No. % 

Substance use history 747 46.0  238  46.5 178 52.8 60  34.3 

Not receiving regular 

HIV care 

674 41.5    70  13.7  41 12.3 29  16.6 

Emergency room visit 

or death  

498 30.7  109  21.3  83 24.6 26  14.9 

a One draw from our simulation scenario when complete opioid information is available for 30% of the cohort. 

 

 
Table 5.2. Estimates of the twelve-month risks (95% confidence intervals)a of emergency room visit or 

death in a cohort of 1,623 HIV-positive women, by g-computation approach to address missing opioid 

information. b 

Prescription duration Truth Complete Case Extrapolation IPW Imputation 

Absolute risks, %      

    >7 days 38.9 24.6 (20.4, 28.9) 39.2 (32.6, 45.8) 39.1 (32.1, 46.1) 39.2 (32.6, 45.8)  

   ≤7 days 20.3 17.2 (11.3, 23.1) 20.7 (12.9, 28.5) 20.2 (12.6, 27.9) 20.7 (12.9, 28.5) 

   Status quo 30.7 21.6 (18.1, 25.0) -- 30.4 (24.6, 36.3) 30.7 (25.9, 36.1) 

Risk differences, %      

   ≤7 vs. >7 days  -18.6 -7.4 (-14.6, -0.2) -18.5 (-28.4, -8.6) -18.9 (-28.6, -9.2) -18.5 (-28.4, -8.6) 

   ≤7 days vs. status    

quo 

-10.4 -4.4 (-9.4, 0.7) -- -10.2 (-16.6, -3.8) -10.3 (-16.8, -3.9) 

Abbreviations: IPW, inverse-probability weighting. 
a Standard error calculated as the standard deviation of the point estimate across 200 nonparametric bootstrap 

samples. 
b Based on one draw from our simulation scenario with the study characteristics provided in Table 1 and where 

complete opioid information is available for 30% of the cohort. 
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Table 5.3a. Performance of g-computation approaches addressing missing data to estimate average treatment effect of shortening versus 

lengthening opioid prescription duration among a cohort of 1,623 HIV-positive women, 10,000 simulation experiments. a 

 Complete Case Extrapolation IPW Imputation 

 Estimate Monte Carlo 

error 

Estimate Monte Carlo 

error 

Estimate Monte Carlo 

error 

Estimate Monte Carlo 

error 

Bias b 12.4 (0.037) 0.8 (0.052) 0.9 (0.053) 0.8 (0.052) 

Standard deviation of bias c 3.7  5.2  5.3  5.2  

Average standard error d 3.7 (0.003) 5.1 (0.005) 5.2 (0.005) 5.1 (0.005) 

Mean squared error e 1.8 (0.010) 0.5 (0.004) 0.6 (0.004) 0.5 (0.004) 

Root mean squared error f 13.0 (0.036) 7.0 (0.022) 7.1 (0.023) 7.0 (0.022) 

Confidence limit coverage g 8.0  94.2  94.1  94.2  

Abbreviations: IPW, inverse-probability weighting. 
a Complete opioid information is available for 30% of the cohort. 
b Defined as the difference between the estimated and true risk difference. 
c  Defined as the standard deviation of the bias across 10,000 simulation experiments. 
d Defined as the standard error based on the standard deviation from 200 nonparametric bootstrap resamples averaged across 10,000 simulation experiments.  
e Defined as the sum of the squared bias and variance. 
f Defined as the square root of the sum of the squared bias and variance. 
g Defined as the proportion of times the 95% confidence limit trapped the true parameter value across the 10,000 simulation trials. 
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Table 5.3b. Performance of g-computation approaches addressing missing data to estimate average intervention effect of shortening opioid 

prescription duration relative to the status quo among a cohort of 1,623 HIV-positive women, 10,000 simulation experiments. a 

 Complete Case IPW Imputation 

 Estimate Monte Carlo 

error 

Estimate Monte Carlo 

error 

Estimate Monte Carlo 

error 

Bias b 7.4  (0.023) 0.5  (0.034) 0.5  (0.034) 

Standard deviation of bias c 2.3   3.4   3.4   

Average standard error d 2.3 (0.002) 3.4 (0.004) 3.3 (0.003) 

Mean squared error e 0.7  (0.004) 0.2  (0.002) 0.2  (0.002) 

Root mean squared error f 7.8  (0.022) 4.7  (0.015) 4.5  (0.014) 

Confidence limit coverage g 9.9  93.7  93.6  

Abbreviations: IPW, inverse-probability weighting. 
a Complete opioid information is available for 30% of the cohort. Extrapolation approach is not shown because only the average treatment effect is estimated 

with this approach.  
b Defined as the difference between the estimated and true risk difference. 
c  Defined as the standard deviation of the bias across 10,000 simulation experiments. 
d Defined as the standard error based on the standard deviation from 200 nonparametric bootstrap resamples averaged across 10,000 simulation experiments.  
e Defined as the sum of the squared bias and variance. 
f Defined as the square root of the sum of the squared bias and variance. 
g Defined as the proportion of times the 95% confidence limit trapped the true parameter value across the 10,000 simulation trials. 
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Table 5.4a. Performance of g-computation estimators of the average treatment effect under varied sample conditions with 30% complete opioid 

information.   

Parameter 
Null Intervention Effect a Missing Completely at Random b 

Truth CC Extrap IPW Impute Truth CC Extrap IPW Impute 

Risks           

  >7 days 30.5 18.0 30.9 30.5 30.6 37.9 37.9 38.0 38.0 38.0 

  ≤7 days 30.5 28.3 30.6 30.8 30.9 19.4 19.8 19.9 19.9 19.9 

Risk difference           

≤7 vs >7 days 0.0 10.3 0.3 0.3 0.3 -18.6 -18.3 -18.1 -18.1 -18.1 

Performance e           

Bias f  10.3 0.3 0.4 0.3  0.3 0.5 0.5 0.5 

STD of bias  g  3.9 5.6 5.6 5.6  4.4 4.2 4.2 4.2 

Average SE  h  3.9 5.6 5.6 5.6  4.3 4.1 4.1 4.1 

MSE  i  1.4 0.6 0.6 0.6  0.4 0.3 0.3 0.3 

RMSE  j  11.2 7.6 7.6 7.6  5.9 5.6 5.6 5.6 

Coverage k  24.6 94.4 94.5 94.4  94.5 94.6 94.6 94.6 
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Table 5.4a (continued) 

Parameter 
Increased Effect Measure Modification c Increased Sample Size d 

Truth CC Extrap IPW Impute Truth CC Extrap IPW Impute 

Risks           

  >7 days 37.9 23.9 37.9 37.9 37.9 37.9 23.9 37.9 37.9 37.9 

  ≤7 days 19.7 22.7 19.9 19.9 19.9 19.4 17.7 19.5 19.5 19.5 

Risk difference           

≤7 vs >7 days -18.2 -1.3 -18.0 -18.0 -18.0 -18.5 -6.3 -18.4 -18.3 -18.4 

Performance e           

Bias f  16.9 0.2 0.2 0.2  12.3 0.2 0.2 0.2 

STD of bias  g  1.8 2.3 2.6 2.3  1.8 2.5 2.6 2.5 

Average SE  h  1.8 2.3 2.6 2.3  1.7 2.4 2.6 2.4 

MSE  i  2.9 0.1 0.1 0.1  1.6 0.1 0.1 0.1 

RMSE  j  17.0 3.2 3.5 3.2  12.4 3.3 3.5 3.3 

Coverage k  0.0 94.7 95.1 94.7  0.0 94.2 94.6 94.2 

Abbreviations: CC, complete case; Extrap., extrapolation; IPW, inverse-probability weighting; STD, standard deviation; SE, standard error; MSE, mean squared error; RMSE, 

root mean squared error. 
a Cohort of 1,623 HIV-positive women where shortening duration of opioid prescription has no effect on 12-month risk of emergency room/hospital visit or death. 
b Cohort of 1,623 HIV-positive women where opioid information is missing completely at random. 
c Cohort of 1,623 HIV-positive women where the presence of covariate 𝑍 (which also influences the probability of complete information and the outcome) modifies the 

relationship between opioid duration and the outcome in opposite directions; 𝑍 increases risk of outcome for those with long duration opioid prescriptions and decreases the 
outcome for those with short duration opioid prescriptions.    
d Cohort of 7,500 HIV-positive women. 
e Presented for estimates of the risk difference quantifying the effect of shortening opioid prescriptions among all women versus lengthening prescriptions among all women. 
f Defined as the difference between the estimated and true risk difference. 
g Defined as the standard deviation of the bias across 10,000 simulation experiments. . 
h Defined as the standard error based on the deviation from 200 nonparametric bootstrap resamples averaged across 10,000 simulation experiments. 
i Defined as the sum of the squared bias and variance. 
j Defined as the square root of the sum of the squared bias and variance. 
k Defined as the proportion of times the 95% confidence limit trapped the true parameter value across the 10,000 simulation trials. 
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Table 5.4b. Performance of g-computation estimators of the average intervention effect under varied sample conditions with 30% complete opioid 

information. a  

Parameter 
Null Intervention Effect b Missing Completely at Random c 

Truth Complete Case IPW Imputation Truth Complete Case IPW Imputation 

Risks         

  ≤7 days 30.5 28.3 30.8 30.9 19.4 19.8 19.9 19.9 

  Status quo 30.5 22.0 30.5 30.6 30.5 30.7 30.7 30.8 

Risk differences         

≤7 vs status quo 0.0 6.3 0.3 0.3 -11.1 -10.9 -10.8 -10.8 

Performance f         

Bias g  -8.4 0.1 0.1  0.2 0.3 0.3 

STD of bias  h  2.4 3.5 3.5  2.7 2.7 2.6 

Average SE  i  2.5 3.5 3.5  2.7 2.6 2.6 

MSE  j  0.1 0.2 0.2   0.1  0.1  0.1 

RMSE  k  6.8 4.7 4.7  3.7 3.6 3.5 

Coverage l  27.4 95.0 94.9  94.6 94.7 94.6 
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Table 5.4b (continued) 

Parameter 
Increased Effect Measure Modification d Increased Sample Size e 

Truth Complete Case IPW Imputation Truth Complete Case IPW Imputation 

Risks         

  ≤7 days 19.7 22.7 19.0 19.0 19.4 17.7 19.5 19.5 

  Status quo 30.6 23.4 30.6 30.7 30.5 21.4 30.5 30.5 

Risk differences         

≤7 vs status quo -10.9 -0.7 -10.7 -10.7 -11.1 -3.8 -10.9 -11.0 

Performance f         

Bias g  10.2 0.2 0.2  7.3 0.1 0.1 

STD of bias  h  1.1 1.8 1.6  1.1 1.8 1.6 

Average SE  i  1.1 1.8 1.5  1.1 1.7 1.6 

MSE  j  1.1 0.1 0.0  0.6 0.1 0.1 

RMSE  k  10.2 2.4 2.1  7.4 2.4 2.1 

Coverage l  0.0 94.6 94.5  0.0 94.4 94.2 

Abbreviations: IPW, inverse-probability weighting; STD, standard deviation; SE, standard error; MSE, mean squared error; RMSE, root mean squared error. 
a Extrapolation approach is not shown because only the average treatment effect is estimated with this approach.  
b Cohort of 1,623 HIV-positive women where shortening duration of opioid prescription has no effect on 12-month risk of emergency room/hospital visit or death. 
c Cohort of 1,623 HIV-positive women where opioid information is missing completely at random. 
d Cohort of 1,623 HIV-positive women where the presence of covariate 𝑍 (which also influences the probability of complete information and the outcome) modifies the 

relationship between opioid duration and the outcome in opposite directions; 𝑍 increases risk of outcome for those with long duration opioid prescriptions and decreases the 
outcome for those with short duration opioid prescriptions.    
e Cohort of 7,500 HIV-positive women. 
f Presented for estimates of the risk difference quantifying the effect of shortening opioid prescriptions relative to the status quo. 
g Defined as the difference between the estimated and true risk difference. 
h Defined as the standard deviation of the bias across 10,000 simulation experiments. . 
i Defined as the standard error based on the deviation from 200 nonparametric bootstrap resamples averaged across 10,000 simulation experiments. 
j Defined as the sum of the squared bias and variance. 
k Defined as the square root of the sum of the squared bias and variance. 
l Defined as the proportion of times the 95% confidence limit trapped the true parameter value across the 10,000 simulation trials. 



 

 80 

CHAPTER 6: DISCUSSION 

 
 
A.  Overview of Key Findings  

The overall objectives of this work were to 1) use novel quantitative methods to estimate the 

long-term impact of combined interventions on non-AIDS risk factors among women with HIV and 2) 

develop two-stage approaches to estimate treatment and intervention effects from observational HIV data 

when exposure information is partially missing.  

A1.  Aim 1 

In Aim 1 we were able to use the parametric g-computation algorithm and nearly two decades of 

observational data collected in the WIHS to estimate the risks of all-cause mortality that would be 

observed under combined interventions on non-AIDS risk factors. Much attention to date has focused on 

evaluating ART-based interventions without considering intervention portfolios that more 

comprehensively address the complex health threats experienced by those with HIV. Yet, ART treated 

individuals with HIV still face greater health disparities and a higher burden of comorbidities than the 

general population.1–4 With 65% of those with HIV estimated to be affected by 2 or more chronic 

conditions,16 morbidity solely attributable to HIV is the exception, not the norm. Thus, evaluating the 

long-term impacts of interventions on non-AIDS risk factors is critical to the development of improved 

healthcare delivery guidelines among those with HIV. 

We estimated the risks of mortality in the WIHS under interventions on alcohol and smoking 

combined with prompt initiation of ART in the modern treatment era. We estimated risks under 

interventions (nearly) eliminating each of these risk factors as well as risks under more realistic 

interventions that reduced the prevalence of these risk factors based on the expected efficacy of existing 

interventions. To quantify the impact of additionally targeting non-AIDS risk factors compared to status 
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quo healthcare delivery among those with HIV, we compared the risk of mortality under each intervention 

portfolio with the risk of mortality under an intervention on prompt initiation of modern ART alone using 

risk differences and ratios. 

Our results suggest that while the risk of all-cause mortality in the WIHS dramatically decreases 

with prompt initiation of modern ART, further reductions in the mortality risk are possible with 

interventions on non-AIDS risk factors. We specifically evaluated the effects of interventions on alcohol 

and smoking because previous research has shown more pronounced adverse effects of these factors 

among those with HIV.15,41–47 Additionally, detailed information on alcohol and smoking has been 

systematically collected in the WIHS since its outset which offers an ideal opportunity for leveraging rich, 

longitudinal data from a generalizable study population to evaluate potential intervention effects. 

The 8-year risk of all-cause mortality was lowest under interventions on smoking as opposed to 

interventions on alcohol. This was unsurprising given that the prevalence of smoking in the WIHS is 

much higher than that of alcohol use. Additionally, whereas the adverse effects of smoking on morbidity 

and mortality among populations with HIV are strong,41 the effects of various levels of alcohol 

consumption among those with HIV, particularly women, are not as well-understood. It is possible that 

the effects of alcohol consumption levels among women with HIV varies by characteristics other than 

HCV status. 

While all sets of intervention portfolios suggested improved survival in the WIHS, we found that 

sets that eliminated rather than reduced the prevalence of non-AIDS risk factors were most effective. This 

was particularly evident for the intervention on smoking. The intervention that combined universal 

initiation of modern ART with elimination of smoking (which assumes an intervention with 100% 

efficacy) reduced the 8-year risk of mortality by 18% compared to an intervention on modern ART 

initiation alone. However, the intervention that combined universal initiation of modern ART with a real-

world behavioral smoking cessation intervention reduced the 8-year risk of mortality by 9%. The main 

reason for this difference is that the existing intervention has only a 0.16 probability of achieving smoking 
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cessation. Yet, this is more representative of the expected efficacy of many other existing smoking 

cessation interventions.  

Overall, our findings from Aim 1 suggest that noteworthy improvements in survival may be 

achieved with interventions targeting alcohol and smoking risk behaviors among women with HIV. To 

obtain the best outcomes, however, more efficacious interventions are needed. Additionally, interventions 

targeting other non-AIDS risk factors should be considered and may more significantly reduce the risk of 

all-cause mortality as compared to interventions on alcohol.  

A2.  Aim 2 

In Aim 2 we used missing data theory and two-stage study design approaches to develop two-

stage g-computation estimators of the average treatment and intervention effects that can be used in the 

presence of missing exposure information. With attention shifting to more comprehensive healthcare 

delivery strategies among those with HIV, existing observational cohorts will continue to be an important 

source of information for generalizable and cost-effective studies of interventions on non-AIDS risk 

factors. For example, it is likely that future studies will entail intervention trials nested in existing cohorts 

or enhancing previously collected cohort data with data from other sources to form hybrid study designs. 

While the parametric g-computation algorithm is a powerful tool in using observational data to estimate 

intervention effects in a population of interest, it requires adaptations to accommodate challenges that will 

arise with missing and imperfectly measured data in these situations. 

We developed and validated an extrapolation g-computation estimator of the average treatment 

effect and two-stage inverse probability weighted and exposure imputation g-computation estimators of 

the average intervention effect in a simulation study motivated by the WIHS. We considered a 

hypothetical scenario in which the goal was to estimate the effect of opioid prescription duration on the 

12-month risk of hospital/emergency room visit or death in the WIHS, supplementing existing WIHS data 

with electronic medical record linkages to obtain prescription information for a sample of WIHS 

participants in regular HIV care. To illustrate and validate the two-stage approaches, we applied 

estimators in a cohort simulated to represent 1623 women in the WIHS in 10,000 Monte Carlo simulation 
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trials. We varied the percentage of missing opioid prescription information from 10-90% and examined 

additional scenarios in which there was a null treatment effect, data were missing completely at random, 

there was increased effect measure modification, and there was an increased sample size. To assess 

operating characteristics of approaches, we estimated bias, average standard error, root mean squared 

error, and confidence limit coverage.  

Our results suggest that all two-stage estimators explored have good operating characteristics in 

the presence of missing exposure information compared to a naïve g-computation estimator fit to the 

sample with complete data. The two-stage extrapolation g-computation estimator of the average treatment 

effect was unbiased across all scenarios. While the average standard error was higher than that of the 

complete case analysis, the reduction in bias resulted in a smaller root mean squared error. The two-stage 

extrapolation estimator also approached the nominal 95% confidence limit coverage. Similarly, the two-

stage inverse probability and exposure imputation g-computation estimators of the average intervention 

effect were unbiased, had increased average standard error but decreased root mean squared error, and 

approached nominal 95% confidence limit coverage.  

Overall, our findings in Aim 2 demonstrate that naïve g-computation estimators fit to complete 

cases can lead to significantly biased results in the presence of missing exposure information but two-

stage g-computation estimators can overcome this limitation. It is possible to leverage complete covariate 

and outcome data on the total study population of interest along with partially observed exposure 

information to estimate average treatment and intervention effects. This presents new avenues for cost-

effective, efficient study designs of non-AIDS-related interventions necessary to answer pressing 

questions regarding optimal healthcare delivery among those with HIV in the modern ART era.  

B.  Limitations  

There are important limitations of our work. In Aim 1, these include imperfect measures and 

variable definitions as well as potential violations in modeling assumptions. Aim 2 was primarily limited 

by the structure of our simulation design.  
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First, it should be noted that when estimating the effects of interventions on non-AIDS risk 

factors in the WIHS in Aim 1, we used self-reported alcohol and smoking information. Alcohol 

consumption and smoking status is reported by WIHS participants during semi-annual study visits and 

may be subject to measurement error. Due to social desirability bias, it is possible that WIHS participants 

may underreport alcohol and smoking. This may lead to underestimating alcohol use and smoking in the 

WIHS in which case we would have intervened on fewer women than should have actually received 

interventions based on their true risk factor status. However, in practice, it is the potentially mismeasured 

self-reported risk factor information that clinicians will likely use to make intervention decisions.  

Second, there were three main limitations specific to our interventions on alcohol use. Among 

those with HCV, alcohol interventions were based on HCV status at baseline. Clinicians might be more 

likely to use HCV status over time to make decisions about alcohol consumption at each time point. We 

used baseline measures of HCV, because data were available for most WIHS participants at this visit. 

However, future studies will likely benefit from accounting for HCV clearance or new infections.  

Additionally, our specified interventions on alcohol consumption among those without HCV 

relied on a somewhat arbitrary limit of alcohol consumption. National recommended safe limits for 

women are no more than 7 drinks per week and no more than 3 drinks in one day.119 In men with HIV, 

however, lower thresholds of alcohol consumption result in higher risk of physiologic injury and 

mortality than those without HIV.47 Analogous studies are absent for women, but we considered that they 

may similarly be adversely affected by alcohol at lower thresholds of consumption than those dictated by 

national recommendations for the general population. In sensitivity analyses, we assessed alternate cut 

points but more restrictive limits did not meaningfully change results. Future research will be needed to 

define appropriate alcohol consumption limits for both men and women with HIV.  

Finally, the interventions we modeled to reduce the prevalence of alcohol consumption were less 

well-defined than the intervention on smoking. We used the expected efficacy of an alcohol reduction 

intervention among those with HCV, but these results were from a small sample of patients at HCV 

clinics and was not specific to women with HIV.120 Because alcohol interventions are typically conducted 
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among those with more severe alcohol dependency, there was little information regarding the efficacy of 

interventions to lower drinking among those without as extreme consumption levels. Thus, for those 

without HCV, we modeled a hypothetical intervention in which it was possible to limit drinking to 3 

drinks per week among all women reporting higher levels of consumption.  

Third, our definition of prompt initiation of modern ART was broader than would have been 

ideal. Because WIHS is an interval cohort and visits occur semi-annually, we needed to define “prompt” 

initiation as initiation occurring by the first follow-up visit. This is a crude measure of time to ART 

initiation, but we could not further distinguish time to initiation because initiation dates in the WIHS are 

recorded as the first date observed to be on ART while under WIHS study. Currently, research is focusing 

on “immediate” or “rapid” ART initiation strategies in which timing of ART initiation occurs within days 

or weeks of HIV diagnosis.153–155 This is likely a more relevant window and would have been considered 

had data been available. Furthermore, we defined “modern ART” as initiation of ART at/after 1 October 

2001 (the period after which tenofovir had been approved and became a common drug in combination 

ART regimens).114 This is analogous to an intent-to-treat design in which we assume individuals initiating 

ART in this time period initiated modern ART regimens. We did not specifically assess whether regimens 

contained tenofovir, so it is possible that not all women initiating ART during this period initiated modern 

regimens.  

Fourth, we assumed a set of sufficient conditions for parametric g-computation estimation of the 

effect of interventions on mortality in the WIHS which may have been violated to some extent. We 

assumed consistency which is often described as no interference and no treatment version relevance.108,109 

Consistency entails that the risk of mortality for WIHS participants who were observed to receive the 

intervention of interest is equal to the risk of mortality that would be observed if the intervention status 

was set to the value of interest. For example, the risk of mortality for women who were observed to 

promptly initiate ART in the modern treatment era is equal to the risk of mortality for women if they had 

not “naturally” promptly initiated ART in the modern treatment era but, rather, were set to do so.  
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Interference is not a concern in this setting as it is unlikely a woman’s intervention portfolio (e.g., 

receiving the smoking cessation intervention combined with modern ART initiation) would affect another 

woman’s risk of mortality. In evaluating the potential for treatment version relevance, we need to 

consider whether varying versions of the intervention have differing effects on mediating variables and 

outcomes. In regards to prompt initiation of modern ART, there might be some treatment version 

relevance that is masked by our crude definition of ART timing. For example, initiating ART within 1 

month versus 5 months of study entry likely has differing impacts on time-varying covariates (e.g., CD4 

count and viral load) and outcomes. Because we cannot distinguish between these timing strategies, 

however, our intervention represents an ART initiation time that is averaged over unobserved initiation 

times. This may limit generalizability to a setting in which the distribution of unobserved initiation times 

is different. 

With smoking and alcohol interventions, assessing consistency is more complicated because we 

used efficacy estimates from outside of the WIHS. Thus, we needed to make a further assumption that 

there are no indirect pathways between the intervention and outcome that do not pass through the 

exposure52 (i.e., the intervention exclusion restriction assumption); or, if there are indirect pathways, they 

are appropriately modeled. For the smoking intervention, we assumed that the behavioral intervention did 

not have effects on variables other than smoking status. For the alcohol intervention, we assumed that the 

intervention did not have effects on variables other than alcohol intake (though we did allow changes in 

alcohol intake to effect smoking status). However, we tried to select interventions that had minimal 

effects on indirect pathways to mortality. Smoking and alcohol interventions that include more intensive 

cognitive behavioral therapies or pharmacotherapies were likely to have greater potential for violations of 

the intervention exclusion restriction assumption.    

In using the parametric g-computation algorithm we also assumed conditional exchangeability 

(i.e., no unmeasured confounding or selection bias).110 Unmeasured confounding is always a threat to 

observational studies. In our setting, there was likely a greater threat to conditional exchangeability for 

smoking and alcohol interventions than for ART initiation. Because guidelines for smoking and 
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especially alcohol reduction interventions are less well-defined than those for ART initiation in HIV 

populations, it is possible uncontrolled confounding remains. However, the rich data collected by the 

WIHS allowed us to address key baseline and time-varying confounders that would not otherwise have 

been possible to account for in clinical settings. In evaluating the potential for selection bias, it is 

important to consider those who were eligible for our study analysis but were excluded for missing 

baseline information. As those excluded represented only 2% of the eligible sample, any differences 

between those included and excluded likely have minimal impacts on results.  

We also assumed no measurement error,107 positivity,111 and correct specification of parametric 

models. Potential issues with measurement error were described above in regards to self-reported alcohol 

and smoking. To improve positivity (i.e., nonzero probability of exposures within all strata of covariates) 

we carefully selected covariates, functional form, and interaction terms to avoid cells with sparse data. 

While it is not possible to verify correct model specification, we compared the data distribution simulated 

by g-computation to that observed in the WIHS cohort and confirmed we were able to replicate the 

observed distributions. 

In Aim 2, our main limitation was that our simulation was conducted in a limited region of the 

possible parameter space (as is the nature of simulation studies). Therefore, our findings might not 

generalize to all research settings. However, we considered a number of scenarios and clearly reported the 

conditions under which simulations were performed.  

Additionally, we considered a simplified scenario in which exposure was time-fixed, there were 

not multiple points of study follow-up, and data were only missing for the exposure as opposed to both 

exposure and covariate or outcome data. Because data were only missing for exposure, this also reduced 

our scenario to an example of monotone missing data. Nonmonotonic missing data patterns are likely to 

be encountered in HIV study settings and require nuanced approaches particularly when using inverse 

probability weighting approaches to address missing information.156,157 Furthermore, in longitudinal 

settings with missing exposure and/or covariate data at several timepoints, approaches to addressing 

missing data become more complex. However, our work took the essential first step in addressing missing 
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data within the parametric g-computation framework and will provide the foundation for further 

extensions to these increasingly complex scenarios.    

C.  Strengths  

Our work makes an important contribution to the literature as one of the only studies to evaluate 

the long-term effects of combined interventions on non-AIDS risk factors among people with HIV as well 

as the first to develop two-stage g-computation estimators that can be applied to estimate such effects 

when exposure information is partially missing. With few exceptions,64,65 the implementation of the 

parametric g-computation algorithm in HIV settings has been restricted to the estimation of an 

intervention on one risk factor at a time. In particular, most previous applications have focused primarily 

on AIDS-related risk factors (i.e., ART treatment and timing of initiation).68,73,75 This is likely due to the 

fact that AIDS-related comorbidities used to account for the majority of early mortality among those with 

HIV.158–160 Therefore, studies of effective HIV treatment and optimal timing of ART initiation were the 

priority. Because ART has typically been a well-measured exposure captured throughout the last two 

decades of clinical and observational cohort follow-up, this has presented an ideal scenario for evaluating 

effects of ART-based interventions using the g-computation algorithm.  

Yet, in the modern ART treatment era, it is now becoming clear that interventions on ART 

initiation alone have not closed the gap in survival for those with HIV who continue to die from non-

AIDS causes 8 to 9 years earlier than those without HIV.20–22 Given the complex clustering of multiple 

comorbidities, it is necessary to evaluate and compare the long-term impacts of various interventions on 

non-AIDS risk factors to prioritize strategies and ultimately reduce persisting disparities. Additionally, 

cost-effective and efficient evaluation of comprehensive interventions using existing cohorts requires 

adaptations to the g-computation algorithm that can accommodate frequently missing and imperfectly 

measured information on non-AIDS risk factors.  

Our work addressed both of the points above. First, we were able to use the g-computation 

algorithm to evaluate and compare the long-term effects of interventions on alcohol and smoking. 

Consequently, our study is one of the first to provide estimates of the potential long-term impacts that 
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may be achieved with more comprehensive intervention portfolios. Second, we developed two-stage g-

computation estimators that can be used to estimate effects of interventions on risk factors that are less 

well-measured or systematically collected in existing cohorts. Thus, our study was the first to provide 

investigators with validated, sophisticated approaches to implement g-computation methods in the context 

of missing data without sacrificing efficiency or validity.  

Use of the WIHS for Aim 1 provided several noteworthy benefits. WIHS is the largest and 

longest ongoing interval cohort study of women with HIV in the US. This provided us with a plethora of 

longitudinal data that have been systematically collected at semi-annual study visits since 1998. In 

particular, the WIHS has collected rich behavioral data that are not always available in clinical cohorts. 

The length of follow-up time allowed us to evaluate impacts of interventions on long-term outcomes (i.e., 

8-year risk of mortality) rather than suboptimal short-term proxies as is often the case in randomized trial 

settings. Finally, WIHS’s focus on women is especially important, given that most US-based HIV clinical 

cohorts include over 75% men63,161 and randomized controlled trials frequently exclude or limit 

enrollment of women; yet, it is women who experience the greatest burden of multimorbidity among 

those with HIV.5 Thus, WIHS is a critical source of information for studies examining multimorbidity 

among those with HIV and providing results that can reduce disparities in comorbidities among women. 

Furthermore, women enrolled in the WIHS have a race/ethnicity distribution representative of women 

with HIV in the US which improves the generalizability of our findings.91  

Another advantage of our work in Aim 1 is that we used prompt initiation of ART in the modern 

treatment era as our reference for comparing portfolios combining ART with interventions on non-AIDS 

risk factors. We chose this reference as opposed to the natural ART initiation course or prompt initiation 

of ART which could have occurred before or after the availability of modern regimens because it is a 

timelier, clinically relevant comparison.51 Our research question was based on determining the additional 

impact on survival that could be achieved by upscaling alcohol and smoking interventions compared to 

the status quo healthcare delivery among those with HIV. Since the beginning of WIHS follow-up, ART 

initiation guidelines have changed both in terms of timing of ART initiation and in regimen availability. 
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Thus, we were more interested in contrasting interventions on non-AIDS risk factors with an intervention 

that is founded in current HIV care guidelines – guidelines that focus on getting everyone on modern 

ART regimens without delay. Effect contrasts (e.g., risk differences and the related “number needed to 

intervene”) that leverage this reference are important to clinicians in making decisions and policymakers 

for cost-effectiveness analyses.49–52  

Our estimation of intervention portfolios both eliminating and reducing the prevalence of non-

AIDS risk factors is an innovative and highly significant approach. Many applications of the parametric 

g-computation algorithm model hypothetical interventions that completely eliminate a risk factor or set a 

risk factor to some threshold level among 100% of the study sample of interest.51,69,162 While this can be 

informative of the lower bound in mortality risk that could be achieved with perfectly efficacious 

interventions (assuming no other effects of interventions on pathways to the outcome aside from those 

modeled through exposure),46,52 its policy relevance is limited.49–51 Perfectly efficacious interventions do 

not exist in most cases. Thus, estimated effects of such hypothetical interventions do not correspond to 

changes in outcomes that are likely to be observed when real-world interventions are implemented. This 

makes it extremely difficult for clinicians to determine which risk factors are most important to target 

with existing interventions to achieve optimal outcomes as well as for policymakers to assess the cost-

effectiveness of various interventions.    

Westreich recently highlighted these challenges,46,49,50 arguing for a new vocabulary for causal 

contrasts with greater relevance to public health policy.51 He outlined several intervention contrasts that 

are critical for implementation science, including the generalized intervention contrast in which outcomes 

in the population are contrasted with outcomes under a scenario in which exposure is reduced but not 

eliminated.51 This takes into account the fact that not everyone eligible for intervention may be reachable, 

not everyone reachable may be willing to receive intervention, and importantly, that for all those 

receiving intervention, the intervention will not perfectly eliminate the relevant risk factor. Thus, 

generalized intervention contrasts provide a more realistic view of how changes in policy and clinical 

guidelines may improve population-level outcomes in real-world settings.  
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Our work contributes to the limited research to date that has provided estimates of generalized 

intervention effects from observational data. In other settings, this has often been performed by using 

reported efficacy estimates from trial data or meta-analyses to model reductions in the prevalence of risk 

factors that are likely to be achieved by the given intervention.46,64,65,103 We used estimates from a 

behavioral smoking cessation intervention implemented in a trial setting as well as an alcohol reduction 

intervention implemented in an HCV clinic to model expected reductions in the prevalence of smoking 

and alcohol that would be achieved with these interventions. These reductions of 16% and 36-62% for 

smoking and alcohol interventions respectively were much smaller than the 100% efficacy assumed by 

our elimination strategies. Consequently, while risks of mortality with interventions on non-AIDS risk 

factors still suggested improved survival, improvements were much smaller than those under complete 

elimination of risk factors (particularly for smoking). However, it is this information on which future 

clinical guidelines and policy decisions relies. Our estimates of the mortality risk under both elimination 

and realistic reduction of alcohol and smoking demonstrate that elimination of these risk factors can 

improve survival but existing interventions are not efficacious enough to achieve these improvements. 

Further research will be needed to identify better smoking cessation and alcohol elimination interventions.  

Part of this further research will likely entail leveraging existing cohorts to assess additional 

alcohol and smoking intervention effects and effects of interventions on other non-AIDS risk factors 

using the parametric g-computation algorithm. A remaining barrier that needs to be confronted, however, 

is frequently missing and imperfectly measured exposure information – both in existing cohorts as well as 

hybrid study designs in which existing cohort data may be supplemented with other data sources. 

Methods for accounting for missing data in the parametric g-computation framework have not been 

outlined or validated. Thus, the validity of findings from parametric g-computation applications using ad-

hoc methods to account for missing data in these settings is questionable. 

A major strength of our work in Aim 2 is that we adapted existing missing data theory and two-

stage analytic approaches for the parametric g-computation algorithm and validated these methods for 

application in future studies. Our use and validation of existing methods applied to the parametric g-
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computation algorithm allows investigators to easily construct our developed estimators in common 

statistical software programs for epidemiologic analyses. Therefore, these approaches are accessible and 

immediately available to all those who may want to use them. 

We also based our simulation example in a realistic setting and used the WIHS to inform 

parameters. Thus, results have improved generalizability to the research scenarios investigators are likely 

to encounter. The wide range of scenarios we assessed under varying sample conditions provides a 

comprehensive picture of our estimators’ operating characteristics.  

D.  Summary and Public Health Significance  

Despite over two decades of effective ART, people with HIV experience persisting disparities in 

morbidity and mortality compared to the general US population, dying from non-AIDS causes 8 to 9 

years earlier than those without HIV.20,21 Our work presents some of the first results regarding the 

potential improvement in survival that may be achieved with comprehensive healthcare delivery strategies 

that additionally target non-AIDS risk factors prevalent in populations with HIV. Given the complex 

clustering of multiple comorbidities, especially among women with HIV,5 it is necessary to evaluate and 

compare the long-term impacts of various interventions on non-AIDS risk factors to prioritize strategies 

and ultimately improve healthcare delivery. 

We have illustrated how observational HIV cohort data and novel quantitative methods can be 

leveraged to evaluate long-term impacts of interventions that would be difficult to assess in randomized 

controlled trial settings. While randomized trials were essential in informing current ART treatment 

policies including regimen and timing of ART initiation,163,164 important limitations of this study design 

have impeded its use in assessing and comparing the impact of interventions on non-AIDS risk factors. 

These include (1) the large sample size required to conduct factorial randomized trials to assess multiple, 

combined interventions, (2) the length of follow-up required to evaluate long-term effects on clinical 

outcomes of interest rather than on their imperfect, short-term proxies, and (3) stringent inclusion and 

exclusion criteria which limit generalizability of results – especially for women, racial and ethnic 

minorities, and those with complex health histories who are most in need of intervention. Observational 



 

 93 

HIV cohorts, on the other hand, have followed large numbers of HIV-positive individuals in the US since 

the early HIV epidemic. Yet, confounding remains a major concern when using traditional study 

approaches in observational cohorts to quantify effects of treatments or interventions due to 

nonrandomization of treatment.135  

Recent illustrations of the parametric g-computation algorithm68,69,71–73,75 now offer opportunities 

to leverage observational data to quantify the impacts of interventions on non-AIDS risk factors, provided 

that relevant exposures have been well-measured and documented over the course of cohort follow-up. In 

Aim 1, we demonstrated such an application in an innovative manner that considered multiple 

intervention portfolios and generalized intervention contrasts.46,50,51 Our work provides investigators with 

a framework for conducting comparative effectiveness studies in HIV cohorts as well an example of how 

one can estimate effects of real-world interventions with imperfect efficacy using observational data. This 

will be critical to addressing health disparities and improving health outcomes among ART-treated 

women with HIV in the current treatment era. Additionally, our finding that reductions in the risks of all-

cause mortality were attenuated under real-world interventions on alcohol and smoking as compared to 

the hypothetical elimination of these risk factors calls for identification of more efficacious interventions. 

Our work illustrates both the potential improvement in survival that can be achieved with perfectly 

efficacious interventions and the significant gap of existing interventions in terms of approaching this 

100% efficacy.  

While the parametric g-computation algorithm approach implemented in Aim 1 can be used by 

investigators to further evaluate interventions on non-AIDS risk factors among those with HIV when 

exposures have been well-measured and documented over the course of cohort follow-up, missing data 

are extensive in epidemiologic studies.77,165 Complete case analyses can lead to imprecise and biased 

results79,80,131 and presents a threat to the validity of results obtained when leveraging this powerful 

analytic tool in frequently encountered settings of incomplete exposure information. Our work in Aim 2 

has provided investigators with a framework for leveraging limited exposure information available on a 

subset of the study population in two-stage g-computation estimation. Our developed estimators provide 
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investigators with improved approaches to implement causal inference methods in the context of missing 

data without sacrificing efficiency or validity. Further, these approaches can guide more efficient study 

design when resources are limited especially when considering nested trials and hybrid study designs in 

which existing cohort data may be supplemented with other data sources. 

In conclusion, this body of work provides a framework for producing clinical and policy-relevant 

comparative estimates of the impact of potential comprehensive healthcare delivery strategies among 

people with HIV using existing, imperfect longitudinal data sources. Our illustration, development, and 

assessment of statistical approaches for leveraging observational data in realistic research settings will 

facilitate the broader application of these methods to answer important public health questions among 

HIV-positive and other populations. This can also improve the development of evidence-based 

interventions in a timely manner, using the information presently available. Finally, our outlined 

approaches can help researchers design more accurate studies in the future.  
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APPENDIX A: SUPPLEMENTAL TEXT 

 
 
Overview of the Parametric G-computation Algorithm  

We estimated the cumulative incidence of all-cause mortality in the Women’s Interagency HIV 

Study (WIHS)89–91 under each set of intervention portfolios (i.e., intervention combinations) using the 

parametric g-computation algorithm.67–69,104,105 Analogous to inverse probability of treatment 

weighting,76,100,135 this approach is a generalization of standardization that may be applied to observational 

data to re-express the outcome distribution under observed exposure as the outcome distribution that 

would be observed under changes in, or interventions on, exposure. In longitudinal settings subject to 

time-varying confounding, the parametric g-computation algorithm can provide valid estimates of the 

exposure effect that would otherwise be biased with the use of traditional regression models.67,101  

Applications of the parametric g-computation algorithm to estimate the risk of mortality under 

interventions on antiretroviral therapy (ART) initiation using data from observational HIV cohorts have 

yielded results comparable to those found in randomized controlled trial settings.68,75 Three noteworthy 

advantages of this estimator are its flexibility in estimating population-level effects of realistic changes to 

exposure distributions,46,49–51 ability to estimate effects of interventions that depend on the natural value of 

exposure,74,104,105 and efficiency in quantifying impacts of multiple interventions.69,105 Detailed 

descriptions of the parametric g-computation and illustrations of its implementation are 

available.46,65,162,68–70,74,75,97–99 Below, we describe the implementation of this approach in our research 

context.  

Notation  

Let uppercase letters denote random variables and lowercase letters denote potential realizations 

of those variables. Let 𝑖 index 1, …, 1016 women in our study sample, 𝑗 index 1, …, 𝐽 completed visits 

of follow-up, and 𝑌𝑖𝑗 represent an indicator of death for woman 𝑖 at time 𝑗. The maximum number of 

follow-up visits is 𝐽 = 16; as WIHS visits occur every 6 months, this corresponds to 8 years of follow-up 

from study baseline. We use 𝐴𝑖𝑗 to represent a binary indicator of antiretroviral therapy (ART) treatment, 
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𝐷𝑖𝑗 to represent categorical indicators for average drinking level per week and 𝑆𝑖𝑗  to represent a binary 

indicator of smoking. We use 𝒁𝑖𝑗  to represent a vector of time-varying covariates for woman 𝑖 measured 

at time 𝑗 (i.e., CD4 count, detectable viral load, and depression) and 𝑾𝑖𝑗 to represent a vector of time-

fixed demographic and clinical characteristics for woman 𝑖 measured at baseline (i.e., 𝑗 = 0). The vector 

𝑾𝑖𝑗 includes baseline age, race, level of education, history of injection drug use (IDU), prior exposure to 

dual therapy zidovudine (AZT), wave of WIHS enrollment, CD4 count, viral load, and smoking status. 

Finally, we use 𝐶𝑖𝑗  to represent a binary indicator of being censored due to loss to follow-up which we 

define as having two consecutive missed WIHS visits. All women are administratively censored after a 

maximum of 8 years of completed follow-up due to sparse data at later time points.  

At each time point 𝑗, the temporal ordering of variables is: 𝑾𝑖𝑗; 𝐶𝑖𝑗; 𝑌𝑖𝑗; 𝐴𝑖𝑗, 𝐷𝑖𝑗 , 𝑆𝑖𝑗; 𝒁𝑖𝑗 

(Supplemental Figure 1). The values of the time-fixed covariates 𝑾𝑖𝑗 remain constant for each woman 

throughout the study period so that for a given woman 𝑖, 𝒘𝑖0 = 𝒘𝑖1 = . . . = 𝒘𝑖𝐽. Among those who 

remain uncensored and alive by visit 𝑗 (i.e., 𝐶𝑖𝑗 = 𝑌𝑖𝑗 = 0), values of ART (i.e., 𝐴𝑖𝑗), drinking level (i.e., 

𝐷𝑖𝑗), and smoking (i.e., 𝑆𝑖𝑗) are based on self-report corresponding to the 6-month period between 𝑗 − 1 

and 𝑗.  

It is important to note that due to the nature of the WIHS as an interval cohort, exposure to ART, 

alcohol, and smoking, while occurring between 𝑗 − 1 and 𝑗, are documented at time 𝑗. It is unknown from 

the observed data whether, among those who die before a given follow-up visit, there was a change in 

exposure status in the time period between the last follow-up visit at which they remained alive (and 

uncensored) and their death date. ART initiation dates are recorded as the first WIHS visit date at which 

individuals report having initiated ART, while death dates are recorded as actual dates of death. 

Therefore, we assume that those who had not initiated ART at the last visit at which they remained alive 

and uncensored did not do so before their death. Similarly, we assume drinking and smoking status did 

not change between the last visit at which women remained alive and uncensored and their death. Or 

rather, in both cases, we assume that any change in ART, drinking, or smoking between the last follow-up 
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visit and a death occurring less than 6 months later was too short of an exposure period to notably affect 

the risk of death.    

Among those who remain alive and uncensored at time 𝑗, measured values of time-varying 

covariates (i.e., 𝒁𝑖𝑗) correspond to real time, or nearly real time, measures at 𝑗. Specifically, CD4 cell 

count and viral load are measured by laboratory tests conducted at the time of the WIHS visit. Depression 

is measured by a validated questionnaire124 that asks women to report symptoms experienced during the 

last week. In the remaining text we suppress subscript 𝑖.  

The cumulative incidence of mortality in the WIHS under the observed exposure history (i.e., no 

intervention on ART initiation or non-AIDS risk factors) at time 𝑗 can be expressed as Equation 1: 

𝐹(𝑗) = ∑∑∑∑∑∑

{
 
 
 
 

 
 
 
 
𝑃(𝑌𝑘+1 = 1|𝐴̅𝑘 = �̅�𝑘 , �̅�𝑘 = �̅�𝑘 , 𝑆�̅� = �̅�𝑘 , �̅�𝑘 = �̅�𝑘 ,𝑾𝑘 = 𝒘𝑘 , 𝐶�̅� =  �̅�𝑘 = 0) ×

∏

[
 
 
 
 
 
 
 
𝑓(𝒁𝑚|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� = �̅�𝑚 = 0) ×

𝑃(𝑆𝑚 = 𝑠𝑚|�̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐷𝑚 = 𝑑𝑚|�̅�𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐴𝑚 = 𝑎𝑚|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� = �̅�𝑚 = 0) ×

𝑃(𝑌𝑚 = 0|𝐴̅𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅�−1 = �̅�𝑚−1 = 0) ×

𝑓(𝑾𝑚) × ]
 
 
 
 
 
 
 

𝑘

𝑚=0

 }
 
 
 
 

 
 
 
 

𝑗

𝑘=0𝒘𝑗�̅�𝑗�̅�𝑗�̅�𝑗�̅�𝑗

 

Parameters of Interest 

For our base scenario (i.e., Portfolio 1), our parameter of interest is the cumulative incidence of 

mortality in the WIHS under universal, prompt initiation of ART in the modern treatment era. We adapt 

the above formula to reflect this parameter by setting 𝐴 = 1, indicating that all women are being set to 

initiate ART in the modern treatment era. Specifically, this indicator represents having initiated therapy 

by the time of the first follow-up visit (i.e., 𝐴 = 0 for all women at 𝑗 = 0 and 𝐴 = 1 for all women at 𝑗 =

1 and all visits thereafter). This is akin to an intent-to-treat analysis in which we assume that, once 

therapy is initiated, it is continued throughout the study period. It should be noted that women enrolled in 

the WIHS prior to 1 October 2001 and set to initiate ART by the first follow-up visit could not have 

initiated modern ART. This is based on our definition of modern ART initiation as initiation of ART on, 

or after, 1 October 2001 (the period after which tenofovir had been approved and became a common drug 

in combination ART regimens).114 However, we use observed exposure information from those in the 
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modern treatment era to extrapolate modern ART to this earlier time period. Our adapted incidence 

function is written as Equation 2:  

𝐹𝑎
𝑔
(𝑗)     = ∑∑∑∑∑

{
 
 
 
 

 
 
 
 
𝑃(𝑌𝑘+1 = 1|𝐴̅𝑘−1

𝑔
= �̅�𝑘

𝑔
, �̅�𝑘 = �̅�𝑘 , 𝑆�̅� = �̅�𝑘 , 𝑾𝑘 = 𝒘𝑘 , 𝐶�̅� = �̅�𝑘 = 0) ×

∏

[
 
 
 
 
 
 
𝑓(𝒁𝑚|𝐴̅𝑚−1

𝑔
= �̅�𝑚−1

𝑔
, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝑆𝑚 = 𝑠𝑚|�̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚 = 𝒘𝑚 , 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃(𝐷𝑚 = 𝑑𝑚|�̅�𝑚−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅� =  �̅�𝑚 = 0) ×

                                                                1 ×
𝑃(𝑌𝑚 = 0|𝐴̅𝑚−1

𝑔
= �̅�𝑚−1

𝑔
, �̅�𝑚−1 = �̅�𝑚−1, 𝑆�̅�−1 = �̅�𝑚−1, �̅�𝑚−1 = �̅�𝑚−1,𝑾𝑚 = 𝒘𝑚, 𝐶�̅�−1 = �̅�𝑚−1 = 0) ×

𝑓(𝑾𝑚) ]
 
 
 
 
 
 

𝑘

𝑚=0

 }
 
 
 
 

 
 
 
 

𝑗

𝑘=0𝒘𝑗�̅�𝑗�̅�𝑗�̅�𝑗

 

where we use superscript 𝑔 to convey that the value of 𝐴 is being set according to the intervention plan. 

Our other parameters of interest are the cumulative incidences of mortality in the WIHS under 

universal, prompt initiation of ART in the modern treatment era combined with various interventions on 

alcohol consumption and/or smoking. Because we are interested in interventions that depend on the 

natural value of alcohol consumption and smoking (i.e., interventions that are implemented based on the 

values of alcohol and smoking that would be observed if intervention were discontinued immediately 

before measurement at time 𝑗), we use the extended version of the parametric g-computation 

algorithm.104,105 The incidence function under these additional interventions can be expressed with the 

extended parametric g-formula as Equation 3:   

𝐹(𝑎,𝑑,𝑠)
𝑔
(𝑗)

=∑∑∑∑∑
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𝑃(𝑌𝑘+1 = 1|𝐴̅𝑘

𝑔
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𝑔
= �̅�𝑘

𝑔
,  �̅�𝑘 = �̅�𝑘 ,𝑾𝑘 = 𝒘𝑘 , 𝐶�̅� = �̅�𝑘 = 0) ×
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𝑔
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𝑔
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𝑔
= �̅�𝑚−1

𝑔
, 𝑆�̅�−1

𝑔
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𝑔
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𝑔
= 𝑠𝑚

𝑔 |𝑆𝑚
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𝑔
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, �̅�𝑚−1 = �̅�𝑚−1, 𝑾𝑚−1 = 𝒘𝑚−1, 𝐶�̅� =  �̅�𝑚 = 0) ×

𝑃𝑔(𝐷𝑚
𝑔
= 𝑑𝑚

𝑔 |𝐷𝑚
∗ = 𝑑𝑚

∗ , �̅�𝑚−1
𝑔
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𝑔
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∗ = 𝑑𝑚
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𝑔
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𝑓(𝑾𝑚) ]
 
 
 
 
 
 
 
 
 

𝑘
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𝑗

𝑘=0𝒘𝑗�̅�𝑗�̅�𝑗�̅�𝑗

 

We use superscript 𝑔 to convey that the values of 𝐷 and 𝑆 (i.e., alcohol consumption and smoking) are 

being set according to the intervention plan while we use an asterisk to denote the values that would be 

observed if the intervention plan were discontinued immediately before measurement of these variables. 

The value �̅�𝑗
𝑔

 is set to 1 across all 𝑗 ≥ 1 for each set of intervention portfolios while the values of �̅�𝑗
𝑔

 and 

�̅�𝑗
𝑔

 are set according to the plans below. 
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Set A Intervention Portfolios to Nearly Eliminate Non-AIDS Risk Factors: 

Portfolio 2A: Under this portfolio, if observed drinking level is greater than zero for those with an 

indication of hepatitis C virus at baseline (i.e., positive antibody and positive or missing RNA status), 

drinking level is set to zero with probability 1. For those without an indication of hepatitis C virus, if 

observed alcohol consumption is above 1 drink per week, alcohol consumption is set to a limit of 1 drink 

per week. Otherwise, alcohol consumption is set equal to that of observed consumption.  

Portfolio 3A: Under this portfolio, all women reporting smoking are set to quit smoking by the 

next follow-up visit.  

Portfolio 4A: Under this portfolio, both Portfolio 2A and 3A are implemented.  

Set B Intervention Portfolios to Reduce Non-AIDS Risk Factors: 

Portfolio 2B: Among those with an indication of hepatitis C virus at baseline, drinking level is set 

to zero with probability 0.36, reduced by 50% with probability 0.26, and set to the observed value with 

probability 0.38 based on the reported efficacy of a brief alcohol counseling intervention.120 Among those 

without an indication of hepatitis C virus, drinking level is set to a limit of 3 drinks per week among those 

observed to drink above this limit.  

Portfolio 3B: Among those reporting smoking at a given visit, smoking status is set to zero with 

probability 0.16 based on the reported efficacy of a behavioral smoking cessation intervention described 

by Hoffman et al. and tested in the WIHS.121  

Portfolio 4B: Under this portfolio, both Portfolio 2B and 3B are implemented.  

Identification Conditions 

To consistently estimate our parameters of interest with the parametric g-computation algorithm, 

we assume a set of sufficient conditions. First, we assume no measurement error of exposures, covariates, 

or outcome.107 More specifically, we assume that the exposures and outcome are measured without error 

while covariates might be mismeasured but that the observed values are those that inform the intervention 

plan. For example, a laboratory measurement of CD4 cell count might be 220 for a patient whose true 

CD4 cell count is 235; however, the 220 value the clinician sees is the value that is used to determine 
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whether or not to initiate ART. Second, we assume counterfactual consistency (also described as 

treatment version irrelevance and no interference).108,144 If the observed exposure of woman 𝑖 is equal to 

the value of the exposure indicated by the intervention of interest (i.e., 𝐴𝑖 = 𝑎
𝑔), then the observed 

outcome of woman 𝑖 is equal to the outcome that would have been observed if exposure was set to the 

value indicated by the intervention plan. Third, we assume conditional exchangeability or no unmeasured 

confounding;135 the probability of exposures conditional on the set of modeled covariates is independent 

of the potential outcome. Fourth, we assume positivity, also described as the experimental treatment 

assignment assumption;111 the conditional probability of receiving exposure is nonzero within all strata of 

covariates. Finally, we assume correct specification of parametric models used to estimate the g-

computation algorithm formula.    

Estimation Process 

We followed the previously outlined steps for parametrically estimating the g-computation 

formula.68,69,71 Briefly, we fit pooled person-period logistic and linear models to the observed data across 

all visits 𝑗 ≥ 1 to estimate the conditional probability or density of each exposure, time-varying covariate, 

and outcome (Step 1). We then drew a large Monte Carlo sample of 𝑁 = 100,000 women at baseline 

(i.e., 𝑗 = 0) with replacement (Step 2). In the Monte Carlo sample, we used the estimated conditional 

probabilities or densities and observed values of exposures and covariates at the baseline visit to simulate 

the values of exposures, covariates, and outcomes at 𝑗 = 1 by drawing values from a Bernoulli 

distribution in the case of binary variables and multinomial distributions in the case of categorical 

variables. We then used the estimated conditional probabilities or densities and simulated values of 

exposures, covariates, and outcomes at 𝑗 = 1 to simulate the values of these variables at 𝑗 = 2, continuing 

this process for a maximum of 16 follow-up visits (Step 3). After completing the Monte Carlo simulation, 

we estimated the cumulative incidence of mortality at each time point using the complement of the 

Kaplan-Meier125 estimator of the survival function (Step 4). If parametric models are correctly specified, 

the cumulative incidence of mortality estimated in the Monte Carlo dataset under the natural course (i.e., 
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no intervention on exposures) should be equivalent to the cumulative incidence of mortality in the WIHS 

dataset. Similarly, the distribution of each exposure and time-varying covariate in the Monte Carlo sample 

should be equivalent to the distributions in the observed WIHS data.  

However, an important point is that we did not include a censoring model in our parametric g-

computation algorithm. Rather, we generated follow-up data for women at all visits at which they 

remained alive and had completed less than 8 years under study since analysis baseline. Thus, in our 

generation of data under the “natural course,” we use the definition of “natural course” provided by 

Young et al.78 in which loss to follow-up is eliminated but there is no intervention on exposure. Thus, we 

assume conditional exchangeability for those lost and not lost to follow-up based on modeled covariate 

history. Eliminating loss to follow-up in the g-computation simulated data may therefore result in a 

different number of observed events than were observed in the WIHS data. These two numbers should not 

be expected to be equal. However, the cumulative incidence function may still be equivalent, assuming no 

informative censoring.    

To achieve good model fit, we repeated the above steps using flexible specifications of 

continuous and categorical variables, interaction terms, and various sets of covariates for each model until 

we 1) had included all hypothesized confounders relevant to each exposure, and 2) were able to replicate 

the cumulative incidence observed in the WIHS sample in the Monte Carlo sample. The variables and 

models that were selected for final analyses are described below.  

Time-fixed covariates measured at baseline (𝑾𝑗=0) included age, race, level of education, history 

of injection drug use (IDU), prior exposure to dual therapy zidovudine (AZT), wave of WIHS enrollment, 

CD4 count, viral load, and smoking status. In final models, age was included as linear and squared terms 

(𝑎𝑔𝑒0, 𝑎𝑔𝑒0
2). Race was included as a binary indicator of Black race. Level of education was included as 

indicators for having completed high school (𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,1) or having some degree of college education 

(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,2) with the reference category defined as not having completed high school. History of 

injection drug use, prior exposure to AZT, and smoking were included as binary indicators. Wave of 
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WIHS enrollment was included as a binary indicator of having been enrolled in WIHS during the first 

recruitment wave between 1994 – 1995 (𝐹𝑖𝑟𝑠𝑡𝑊𝑎𝑣𝑒0). CD4 and viral load at baseline were included as 

categorical indicators using the same definitions described by Westreich et al.68 where CD4   categories 

were <200 cells/ml (𝐶𝐷40,1) and >350 cells/ml (𝐶𝐷40,2) with a reference category of 200-350 cells/ml 

and viral load categories were ≤400 copies/ml (𝑉𝐿0,1) and >10,000 copies/ml (𝑉𝐿0,2) with a reference 

category of 401-10,000 copies/ml. 

Time-varying covariates and exposures were CD4 cell count, viral load, depression, antiretroviral 

therapy, alcohol consumption, and smoking. CD4 cell count was included as a linear term, viral load was 

included as a binary indicator of having a detectable viral load (𝐷𝑉𝐿), and depression was included as a 

binary indicator of having a depressive symptom score indicating depression according to CES-D scale 

scoring criteria.124 Antiretroviral therapy was included as binary indicators of being on a combination 

ART treatment regimen (𝐴𝑅𝑇), having promptly initiated ART within 6 months of baseline 

(𝑃𝑟𝑜𝑚𝑝𝑡𝐴𝑅𝑇), and having initiated ART in the modern treatment period on/after 1 October 2001 

(𝑀𝑜𝑑𝑒𝑟𝑛𝐴𝑅𝑇). ART exposure was also included as indicator terms for time on ART at each visit to 

allow for interactions between ART and time (𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠). Alcohol consumption was included as a 

binary indicator of any drinking (𝐴𝑛𝑦𝐷) as well as indicators for the average number of alcohol 

consumed per week (𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙) where 1=1 drink per week, 2=2 drinks per week, 3=3 drinks per week, 

4=4-7 drinks per week, 5=8-12 drinks per week, and 6=over 12 drinks per week. Smoking was included 

as a binary indicator of smoking since the last visit.  

We also assessed interactions for smoking and high alcohol consumption as well as hepatitis C 

virus and high alcohol consumption. High alcohol consumption was defined as a binary indicator of 

consuming over 3 drinks per week. Hepatitis C virus was defined as having a positive antibody test and 

positive or missing RNA test at baseline. Ultimately, we excluded the interaction term between smoking 

and high alcohol consumption in our final models based on assessment of model fit. Estimates of the 

cumulative incidence functions and risks obtained using models with and without the interaction term 
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were similar but models were less stable with the inclusion of the interaction term and a likelihood ratio 

test did not support significant interaction (p-value 0.7). In each model, we included time (i.e., visit 

number) as restricted quadratic spline terms with 4 knots (𝑘, 𝑘1, 𝑘2 , 𝑘3).    

Models: Final models used to estimate the conditional probability or density of each variable are 

shown below where 𝑒𝑥𝑝𝑖𝑡(𝛼)  =
exp (𝛼)

[1+exp(𝛼)]
  and error terms 휀 are normal. 

Death 

𝑃(𝑌𝑘+1 = 1|�̅�𝑘 = �̅�𝑘 , �̅�𝑘 = �̅�𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘 = �̅�𝑘 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝑒𝑥𝑝𝑖𝑡[𝛼0+ 𝛼1𝑘 + 𝛼2𝑘
1 +𝛼3𝑘

2+𝛼4𝑘
3+ 𝛼5𝑎𝑔𝑒0+ 𝛼6𝑎𝑔𝑒0

2+ 𝛼7𝑅𝑎𝑐𝑒0+ 𝛼8𝐼𝐷𝑈0 + 𝛼9𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,1

+ 𝛼10𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,2+ 𝛼11𝐴𝑍𝑇0+ 𝛼12𝐶𝐷40,1+ 𝛼13𝐶𝐷40,2+ 𝛼14𝑉𝐿0,1+ 𝛼15𝑉𝐿0,2 +𝛼16𝑆𝑚𝑜𝑘𝑒0

+ 𝛼17𝐶𝐷4𝑘 + 𝛼18𝐶𝐷4𝑘−1 +𝛼19𝐷𝑉𝐿𝑘 +𝛼20𝐷𝑉𝐿𝑘−1 + 𝛼21𝐴𝑅𝑇𝑘 + 𝛼22𝐴𝑅𝑇𝑘−1 + 𝛼23𝑀𝑜𝑑𝑒𝑟𝑛𝐴𝑅𝑇𝑘

+ 𝛼24𝑃𝑟𝑜𝑚𝑝𝑡𝐴𝑅𝑇𝑘 + 𝛼25𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 2)

+ 𝛼26𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 3) + 𝛼27𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 4) + 𝛼28𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 5) + 𝛼29𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 6)

+ 𝛼30𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 7) + 𝛼31𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 8) + 𝛼32𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 9)

+ 𝛼33𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 10) + 𝛼34𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 11) + 𝛼35𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 12)

+ 𝛼36𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 13)

+ 𝛼37𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 14) + 𝛼38𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 15) +  𝛼39𝐼(𝐴𝑅𝑇𝑣𝑖𝑠𝑖𝑡𝑠𝑘 = 16) + 𝛼40𝐴𝑛𝑦𝐷𝑘

+ 𝛼41𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 +𝛼42𝐻𝑖𝑔ℎ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝑘−1 + 𝛼43𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘 + 𝛼44(𝐴𝑅𝑇 ∗ 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑)𝑘 + 𝛼45𝑆𝑚𝑜𝑘𝑒𝑘  

+ 𝛼46𝑆𝑚𝑜𝑘𝑒𝑘−1 + 𝛼47(𝐻𝐶𝑉 ∗ 𝐻𝑖𝑔ℎ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙)𝑘] 

 

Alcohol consumption 

Two models were specified for alcohol consumption. First, we estimated the probability of any 

alcohol consumption as: 

𝑃(𝐴𝑛𝑦𝐷𝑘 = 1| �̅�𝑘−1 = �̅�𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝑒𝑥𝑝𝑖𝑡(𝛽0 +𝛽1𝑘 + 𝛽2𝑘
1+ 𝛽3𝑘

2+ 𝛽4𝑘
3+𝛽5𝑎𝑔𝑒0 +𝛽6𝑎𝑔𝑒0

2 + 𝛽7𝑅𝑎𝑐𝑒0 +𝛽8𝐼𝐷𝑈0 + 𝛽9𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1

+𝛽10𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1) 

 

Among those who consumed alcohol, we estimated the probability of each drinking level from a 

generalized logit model where probabilities of each drinking level are given by 
𝐼(𝐿𝑒𝑣𝑒𝑙=𝑙𝑒𝑣𝑒𝑙)×𝑒𝑥𝑝 (𝛼)

1+exp (𝛼)
 ; the 

numerator 𝑒𝑥𝑝 function includes all beta coefficients for the drinking level being estimated while the 

denominator 𝑒𝑥𝑝 function includes beta coefficients for all non-reference categories. In our case, the 
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reference category was a drinking level of 1. Here, we use a drinking level of 6 as an example of our 

model.  

𝑃(𝐷𝑘 = 6|�̅�𝑘−1 = �̅�𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝐼(𝐿𝑒𝑣𝑒𝑙 = 6)

× {𝑒𝑥𝑝(𝛽0,6 +𝛽1,6𝑘 + 𝛽2,6𝑘
1+ 𝛽3,6𝑘

2 +𝛽4,6𝑘
3 +𝛽5,6𝑎𝑔𝑒0 +𝛽6,6𝑎𝑔𝑒0

2 +𝛽7,6𝑅𝑎𝑐𝑒0 +𝛽8,6𝐼𝐷𝑈0

+ 𝛽9,6𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1  + 𝛽10,6𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1)

/(1

+ 𝑒𝑥𝑝[𝛽0,6 +𝛽0,5+ 𝛽0,4 +𝛽0,3+ 𝛽0,2 +𝛽1,6𝑘 + 𝛽1,5𝑘 + 𝛽1,4𝑘 + 𝛽1,3𝑘 + 𝛽1,2𝑘 + 𝛽2,6𝑘
1

+𝛽2,5𝑘
1+ 𝛽2,4𝑘

1 +𝛽2,3𝑘
1+ 𝛽2,2𝑘

1 +𝛽2,1𝑘
1+  𝛽3,6𝑘

2

+𝛽3,5𝑘
2+ 𝛽3,4𝑘

2 + 𝛽3,3𝑘
2+ 𝛽3,2𝑘

2 + 𝛽4,6𝑘
3 +𝛽4,5𝑘

3 +  𝛽4,4𝑘
3+  𝛽4,3𝑘

3 +  𝛽4,2𝑘
3+ 𝛽5,6𝑎𝑔𝑒0

+ 𝛽5,5𝑎𝑔𝑒0+ 𝛽5,4𝑎𝑔𝑒0 + 𝛽5,3𝑎𝑔𝑒0 + 𝛽5,2𝑎𝑔𝑒0+ 𝛽6,6𝑎𝑔𝑒0
2 + 𝛽6,5𝑎𝑔𝑒0

2  + 𝛽6,4𝑎𝑔𝑒0
2  + 𝛽6,3𝑎𝑔𝑒0

2  

+ 𝛽6,2𝑎𝑔𝑒0
2+ 𝛽7,6𝑅𝑎𝑐𝑒0  + 𝛽7,5𝑅𝑎𝑐𝑒0  + 𝛽7,4𝑅𝑎𝑐𝑒0  + 𝛽7,3𝑅𝑎𝑐𝑒0  +  𝛽7,2𝑅𝑎𝑐𝑒0 +𝛽8,6𝐼𝐷𝑈0+ 𝛽8,5𝐼𝐷𝑈0  

+ 𝛽8,4𝐼𝐷𝑈0  + 𝛽8,3𝐼𝐷𝑈0  + 𝛽8,2𝐼𝐷𝑈0 + 𝛽9,6𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1  + 𝛽9,5𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1  + 𝛽9,4𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1  

+ 𝛽9,3𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1  + 𝛽9,2𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1 + 𝛽10,6𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1  + 𝛽10,5𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1  

+ 𝛽10,4𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1  + 𝛽10,3𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1  + 𝛽10,2𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1])} 

 

The probability of each drinking level except for that of the reference category was calculated in 

the same manner using the appropriate beta coefficients in the numerator. The probability of the reference 

drinking level was calculated as 1 minus the sum of all other drinking level probabilities. 

Smoking (stratified by smoking at 𝑘 − 1): 

𝑃(𝑆𝑘 = 1| �̅�𝑘−1 = 𝑑̅𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝑒𝑥𝑝𝑖𝑡[𝛾0 + 𝛾1𝑘 + 𝛾2𝑘
1+ 𝛾3𝑘

2+ 𝛾4𝑘
3 + 𝛾5𝑎𝑔𝑒0 + 𝛾6𝑎𝑔𝑒0

2 + 𝛾7𝑅𝑎𝑐𝑒0 + 𝛾8𝐼𝐷𝑈0+ 𝛾9𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,1

+ 𝛾10𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛0,2 + 𝛾11𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 0)+ 𝛾12𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 1) + 𝛾13𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 2)

+ 𝛾14𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 3) + 𝛾15𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 4) + 𝛾16𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 5)

+ 𝛾17𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 6)] 

Depression: 

𝑃(𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘 = 1|�̅�𝑘 = �̅�𝑘  , �̅�𝑘 = 𝑑̅𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝑒𝑥𝑝𝑖𝑡(𝜃0 + 𝜃1𝑘 + 𝜃2𝑘
1 + 𝜃3𝑘

2+ 𝜃4𝑘
3 + 𝜃5𝑎𝑔𝑒0+ 𝜃6𝑎𝑔𝑒0

2 + 𝜃7𝑅𝑎𝑐𝑒0 + 𝜃8𝐶𝐷40,1+ 𝜃9𝐶𝐷40,2  

+ 𝜃10𝐴𝑅𝑇𝑘  + 𝜃11𝐴𝑅𝑇𝑘−1 + 𝜃12𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−1 + 𝜃13𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑘−2 + 𝜃14𝑆𝑚𝑜𝑘𝑒𝑘−1

+ 𝜃15𝐻𝑖𝑔ℎ 𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝑘−1) 
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Detectable viral load (stratified by detectable viral load at 𝑘 − 1): 

𝑃(𝐷𝑉𝐿𝑘 = 1|�̅�𝑘 = �̅�𝑘  , �̅�𝑘 = �̅�𝑘,   �̅�𝑘 = 𝑠�̅�,   �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0)

= 𝑒𝑥𝑝𝑖𝑡[𝜃0 + 𝜃1𝑘 + 𝜃2𝑘
1+ 𝜃3𝑘

2 + 𝜃4𝑘
3+ 𝜃5𝑎𝑔𝑒0 + 𝜃6𝑎𝑔𝑒0

2 + 𝜃7𝑅𝑎𝑐𝑒0+ 𝜃8𝐶𝐷40,1 + 𝜃9𝐶𝐷40,2

+ 𝜃10𝑉𝐿0,1 + 𝜃11𝑉𝐿0,2  + 𝜃12𝐹𝑖𝑟𝑠𝑡𝑊𝑎𝑣𝑒0  + 𝜃13𝐴𝑅𝑇𝑘  + 𝜃14𝑀𝑜𝑑𝑒𝑟𝑛𝐴𝑅𝑇𝑘 + 𝜃15𝐶𝐷4𝑘−1

+ 𝜃16𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 0) + 𝜃17𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 1) + 𝜃18𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 2)

+ 𝜃19𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 3) +  𝜃20𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 4) + 𝜃21𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 5)

+ 𝜃22𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 6)] 

CD4: 

𝑓(ln (𝐶𝐷4𝑘)|�̅�𝑘 = �̅�𝑘  , �̅�𝑘 = �̅�𝑘,   �̅�𝑘 = 𝑠�̅� , �̅�𝑘−1 = �̅�𝑘−1 , �̅̅̅�𝑘 = �̅�𝑘 , 𝐶�̅� = �̅�𝑘 = 0) =

= 𝑒𝑥𝑝[𝜌0 + 𝜌1𝑘 + 𝜌2𝑘
1+ 𝜌3𝑘

2+ 𝜌4𝑘
3+ 𝜌5𝑎𝑔𝑒0 + 𝜌6𝑎𝑔𝑒0

2+ 𝜌7𝑅𝑎𝑐𝑒0+ 𝜌8𝐶𝐷40,1 + 𝜌9𝐶𝐷40,2

+ 𝜌10𝑉𝐿0,1+ 𝜌11𝑉𝐿0,2   + 𝜌13𝐴𝑅𝑇𝑘  + 𝜌14𝐴𝑅𝑇𝑘−1 + 𝜌15𝑀𝑜𝑑𝑒𝑟𝑛𝐴𝑅𝑇𝑘  

+ 𝜌16𝑃𝑟𝑜𝑚𝑝𝑡𝐴𝑅𝑇𝑘  + 𝜌17𝑙𝑛𝐶𝐷4𝑘−1 +  𝜌18𝑙𝑛𝐶𝐷4𝑘−2 + 𝜌19𝐷𝑉𝐿𝑘−1 +  𝜌20𝐷𝑉𝐿𝑘−2

+ 𝜌21𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 0)+ 𝜌22𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 1)+ 𝜌23𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 2)

+ 𝜌24𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘 = 3) + 𝜌25𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 4) + 𝜌26𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 5)

+ 𝜌27𝐼(𝐷𝑟𝑖𝑛𝑘𝑙𝑒𝑣𝑒𝑙𝑘−1 = 6)] 

 

To estimate the cumulative incidence of mortality in the WIHS under each intervention portfolio, 

we repeated the steps described in the Estimation Process for each intervention. However, we altered the 

value of the exposures in the Monte Carlo sample in accordance with the criteria set forth by the 

intervention definitions. We estimated the cumulative incidence of mortality with the complement of the 

Kaplan-Meier125 survival function in each dataset. To calculate risk differences and risk ratios contrasting 

the effect of each intervention portfolio with the base scenario of intervening only on prompt initiation of 

modern ART, we concatenated datasets to subtract mortality risks under each intervention from the risks 

estimated in the base scenario.  

To obtain 95% confidence intervals, we repeated all steps for each intervention portfolio in 1000 

nonparametric bootstrap resamples126 taken of the original WIHS data. The standard error was calculated 

based on the standard deviation of estimated risks and effect measures across all bootstrap resamples.    
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APPENDIX B: SUPPLEMENTAL TEXT 

 
 
Data generation for motivating example  

 

Let 𝐴 represent exposure to long (i.e., 𝐴 = 1) versus short (i.e., 𝐴 = 1)  duration of opioid 

prescription, 𝑊 represent history of substance use (history: 𝑊 = 1; no history: 𝑊 = 0), 𝑍 represent lack 

of engagement in regular HIV care (lack of engagement: 𝑍 = 1; engagement: 𝑍 = 0), 𝑅 = 1 represent 

observed exposure information (i.e., selection into the sample of complete cases), 𝑌𝑎=0 represent the 

potential outcome for emergency room visit or death under short term opioid exposure, 𝑌𝑎=1 represent 

the potential outcome for emergency room visit or death under long term opioid exposure, and 𝑌 

represent the factual outcome for emergency room visit or death given the exposure received. 

We generated 10,000 simulation trials of 𝑛 = 1 to 1,623 independent and identically distributed 

sets {𝑊, 𝐴, 𝑍, 𝑅, 𝑌𝑎=0, 𝑌𝑎=1, 𝑌}𝑛 representing the 𝑁 = 1,623 members in the full population of interest. 

For each record, covariate values were simulated in the following order:  

𝑊  drawn from a Bernoulli distribution with a marginal prevalence of 0.44 

𝑍   drawn from a Bernoulli distribution with a marginal prevalence of 0.4 

𝑅   drawn from a Bernoulli distribution as a function of 𝑍 and with a marginal prevalence of 

0.3  

𝑌𝑎=0  drawn from a Bernoulli distribution as a function of 𝑊and 𝑍 and with a marginal 

incidence of 0.19 

𝑌𝑎=1  drawn from a Bernoulli distribution as a function of 𝑊and 𝑍 and with a marginal 

incidence of 0.37 

𝐴  drawn from a Bernoulli distribution as a function of 𝑊 and with a marginal prevalence of 

0.6 

𝑌  set according to realized value 𝑎 

SAS code used to generate the cohort and a graphical representation of the data generating mechanism 

with chosen parameters are shown below.  
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data cohort; 

call streaminit(123); 

do trial = 1 to 10000; 

do n =  1 to 1623 ;  

w = rand("BERNOULLI",0.44);   

*History of substance use; 

z = rand("BERNOULLI",0.4);  

*Not being established in regular HIV care;  

r = rand("Bernoulli",1/(1+exp(-(-log(1/0.26-1)-log(8)*z+log(8)*0.4))));   

*Complete data;  

y0 = rand("BERNOULLI",1/(1+exp(-(-log(1/.19-1)-log(1.5)*0.44+log(1.5)*w1-

log(1.5)*0.4+log(1.5)*z))));    

*Potential outcome for ER visit or death under short duration opioid prescription; 

y1 = rand("BERNOULLI",1/(1+exp(-(-log(1/.35-1)-log(1.5)*0.44+log(1.5)*w1-

log(10)*0.4+log(10)*z))));  

*Potential outcome for ER visit or death under long duration opioid prescription;  

a = rand("BERNOULLI",1/(1+exp(-(-log(1/.6-1)-log(2)*0.44+log(2)*w1))));  

*Long duration prescription; 

if a then y=y1; else y=y0;  

*Factual outcome, i.e., observed potential outcome given actual exposure;  

output; end; end; run; 
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A Y

W

ZR = 1

P(W=1)=0.44

P(Z=1)=0.4

P(R=1) = 1/(1+exp(-(-log(1/0.26-1)-log(8)*z+log(8)*0.4))) 

P(R=1)=0.3

P(A=1)=0.6

P(A=1)=1/(1+exp(-(-
log(1/.6-1)-lo

g(2)*0.44+log(2)*w1)))

P(Y=1)=0.3

P(Y0)=1/(1+exp(-(-log(1/.19-1)-log(1.5)*0.44+log(1.5)*w1-log(1.5)*0.4+log(1.5)*z)))
P(Y1)=1/(1+exp(-(-log(1/.35-1)-log(1.5)*0.44+log(1.5)*w1-log(10)*0.4+log(10)*z)))
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Appendix Figure 1. Risk difference for the average treatment effect estimated by g-computation 

approaches including and excluding covariate 𝑍. 

 



 

 

1
1
0

 

Appendix Figure 2. Bias (Panel A) and standard error (Panel B) for the effect of shortening opioid prescription duration among 7,500 HIV-positive 
women estimated by three g-computation approaches to address missing opioid data, 10,000 simulation experiments with complete opioid data 

varying from 10-90%. 



 

 111 

REFERENCES 

1.  Crum NF, Riffenburgh RH, Wegner S, et al. Comparisons of causes of death and mortality rates 

among HIV-infected persons: analysis of the pre-, early, and late HAART (highly active 

antiretroviral therapy) eras. J Acquir Immune Defic Syndr. 2006;41(2):194-200. doi:00126334-

200602010-00011 [pii]. 

2.  Palella FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: 

changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 

2006;43(1):27-34. doi:10.1097/01.qai.0000233310.90484.16. 

3.  French AL, Gawel SH, Hershow R, et al. Trends in mortality and causes of death among women 

with HIV in the United States: a 10-year study. J Acquir Immune Defic Syndr. 2009;51(4):399-

406. doi:10.1097/QAI.0b013e3181acb4e5. 

4.  Schwarcz SK, Vu A, Hsu LC, Hessol NA. Changes in Causes of Death Among Persons with 

AIDS: San Francisco, California, 1996-2011. AIDS Patient Care STDS. 2014;28(10):517-523. 

http://www.ncbi.nlm.nih.gov/pubmed/25275657. 

5.  Buchacz K, Baker RK, Palella FJ, et al. Disparities in prevalence of key chronic diseases by 
gender and race/ethnicity among antiretroviraltreated HIV-infected adults in the US. Antivir Ther. 

2013;18(1):65-75. doi:10.3851/IMP2450. 

6.  Hemkens LG, Bucher HC. HIV infection and cardiovascular disease. Eur Heart J. 

2014;35(21):1373-1381. doi:10.1093/eurheartj/eht528. 

7.  Hsue PY, Lo JC, Franklin A, et al. Progression of Atherosclerosis as Assessed by Carotid Intima-

Media Thickness in Patients With HIV Infection. Circulation. 2004;109(13):1603-1608. 

doi:10.1161/01.CIR.0000124480.32233.8A. 

8.  Lo J, Abbara S, Shturman L, et al. Increased prevalence of subclinical coronary atherosclerosis 

detected by coronary computed tomography angiography in HIV-infected men. AIDS. 

2010;24(2):243-253. doi:10.1097/QAD.0b013e328333ea9e. 

9.  Freiberg MS, Chang C-CH, Kuller LH, et al. HIV Infection and the Risk of Acute Myocardial 

Infarction. JAMA Intern Med. 2013;173(8):614. doi:10.1001/jamainternmed.2013.3728. 

10.  Rodriguez-Penney AT, Iudicello JE, Riggs PK, et al. Co-morbidities in persons infected with HIV: 
increased burden with older age and negative effects on health-related quality of life. AIDS Patient 

Care STDS. 2013;27(1):5-16. doi:10.1089/apc.2012.0329. 

11.  Price JC, Thio CL. Liver disease in the HIV-infected individual. Clin Gastroenterol Hepatol. 

2010;8(12):1002-1012. doi:10.1016/j.cgh.2010.08.024. 

12.  Joshi D, O’Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing burden of liver disease in 

patients with HIV infection. Lancet. 2011;377(9772):1198-1209. doi:10.1016/S0140-

6736(10)62001-6. 

13.  Crothers K, Butt AA, Gibert CL, Rodriguez-Barradas MC, Crystal S, Justice AC. Increased COPD 

among HIV-positive compared to HIV-negative veterans. Chest. 2006;130(5):1326-1333. 

doi:10.1378/chest.130.5.1326. 



 

 112 

14.  Crothers K, Thompson BW, Burkhardt K, et al. HIV-Associated Lung Infections and 
Complications in the Era of Combination Antiretroviral Therapy. Proc Am Thorac Soc. 

2011;8(3):275-281. doi:10.1513/pats.201009-059WR. 

15.  Raynaud C, Roche N, Chouaid C. Interactions between HIV infection and chronic obstructive 

pulmonary disease: Clinical and epidemiological aspects. Respir Res. 2011;12(1):117. 

doi:10.1186/1465-9921-12-117. 

16.  Kim DJ, Westfall AO, Chamot E, et al. Multimorbidity patterns in HIV-infected patients: the role 

of obesity in chronic disease clustering. J Acquir Immune Defic Syndr. 2012;61(5):600-605. 

doi:10.1097/QAI.0b013e31827303d5. 

17.  Kooij KW, Wit FWNM, Schouten J, et al. HIV infection is independently associated with frailty in 

middle-aged HIV type 1-infected individuals compared with similar but uninfected controls. AIDS. 

2016;30(2):241-250. doi:10.1097/QAD.0000000000000910. 

18.  Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected 

persons compared with the general population. Clin Infect Dis. 2011;53(11):1120-1126. 

doi:10.1093/cid/cir627. 

19.  Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? 

Journals Gerontol - Ser A Biol Sci Med Sci. 2014;69(7):833-842. doi:10.1093/gerona/glt168. 

20.  Samji H, Cescon A, Hogg RS, et al. Closing the Gap: Increases in Life Expectancy among Treated 
HIV-Positive Individuals in the United States and Canada. Okulicz JF, ed. PLoS One. 

2013;8(12):e81355. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081355. 

Accessed October 6, 2015. 

21.  Wada N, Jacobson LP, Cohen M, French A, Phair J, Muñoz A. Cause-specific life expectancies 

after 35 years of age for human immunodeficiency syndrome-infected and human 

immunodeficiency syndrome-negative individuals followed simultaneously in long-term cohort 

studies, 1984-2008. Am J Epidemiol. 2013;177(2):116-125. doi:10.1093/aje/kws321. 

22.  Harrison KM, Song R, Zhang X. Life expectancy after HIV diagnosis based on national HIV 

surveillance data from 25 states, United States. J Acquir Immune Defic Syndr. 2010;53(1):124-

130. http://www.ncbi.nlm.nih.gov/pubmed/19730109. Accessed February 22, 2016. 

23.  Mdodo R, Frazier EL, Dube SR, et al. Cigarette smoking prevalence among adults with HIV 

compared with the general adult population in the United States: Cross-sectional surveys. Ann 

Intern Med. 2015;162(5):335-344. doi:10.7326/M14-0954. 

24.  Galvan FH, Bing EG, Fleishman J a, et al. The prevalence of alcohol consumption and heavy 
drinking among people with HIV in the United States: results from the HIV Cost and Services 

Utilization Study. J Stud Alcohol. 2002;63(2):179-186. doi:10.15288/jsa.2002.63.179. 

25.  Chander G, Josephs J, Fleishman JA, et al. Alcohol use among HIV-infected persons in care: 
Results of a multi-site survey. HIV Med. 2008;9(4):196-202. doi:10.1111/j.1468-

1293.2008.00545.x. 

  



 

 113 

26.  Samet JH, Cheng DM, Libman H, Nunes DP, Alperen JK, Saitz R. Alcohol consumption and HIV 
disease progression. J Acquir Immune Defic Syndr. 2007;46(2):194-199. 

doi:10.1097/QAI.0b013e318142aabb. 

27.  Neblett RC, Hutton HE, Lau B, McCaul ME, Moore RD, Chander G. Alcohol consumption among 

HIV-infected women: impact on time to antiretroviral therapy and survival. J Womens Health 

(Larchmt). 2011;20(2):279-286. doi:10.1089/jwh.2010.2043. 

28.  Phillips AN, Neaton J, Lundgren JD. The role of HIV in serious diseases other than AIDS. AIDS. 

2008;22(18):2409-2418. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2679976&tool=pmcentrez&rendertype

=abstract. Accessed November 15, 2015. 

29.  Kuller LH, Tracy R, Belloso W, et al. Inflammatory and coagulation biomarkers and mortality in 
patients with HIV infection. PLoS Med. 2008;5(10):1496-1508. 

doi:10.1371/journal.pmed.0050203. 

30.  Warriner AH, Burkholder GA, Overton ET. HIV-related metabolic comorbidities in the current 

ART era. Infect Dis Clin North Am. 2014;28(3):457-476. doi:10.1016/j.idc.2014.05.003. 

31.  Mukamal KJ. The effects of smoking and drinking on cardiovascular disease and risk factors. 

Alcohol Res Heal. 2006. 

32.  Bellentani S, Saccoccio G, Costa G, et al. Drinking habits as cofactors of risk for alcohol induced 

liver damage. Gut. 1997. doi:10.1136/gut.41.6.845. 

33.  Hamabe A, Uto H, Imamura Y, et al. Impact of cigarette smoking on onset of nonalcoholic fatty 

liver disease over a 10-year period. J Gastroenterol. 2011. doi:10.1007/s00535-011-0376-z. 

34.  Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: Cellular and molecular 

mechanisms. J Dent Res. 2012. doi:10.1177/0022034511421200. 

35.  McEvoy JW, Nasir K, Defilippis AP, et al. Relationship of cigarette smoking with inflammation 

and subclinical vascular disease: The multi-ethnic study of atherosclerosis. Arterioscler Thromb 

Vasc Biol. 2015. doi:10.1161/ATVBAHA.114.304960. 

36.  Imhof A, Froehlich M, Brenner H, Boeing H, Pepys MB, Koenig W. Effect of alcohol 

consumption on systemic markers of inflammation. Lancet. 2001. doi:10.1016/S0140-

6736(00)04170-2. 

37.  Stanhope B-J, Burdette WJ, Cochran WG, et al. Report of the Advisory Committee to the Surgeon 

General of the Public Health Service.; 1964. 

38.  U.S. Department of Health and Human Services. A Report of the Surgeon General: How Tobacco 

Smoke Causes Disease: What It Means to You. U.S.; 2010. doi:Dec 1 2014. 

39.  Eliasson B. Cigarette smoking and diabetes. Prog Cardiovasc Dis. 2003. 

doi:10.1053/pcad.2003.00103. 

40.  Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes. 

Transl Res. 2017. doi:10.1016/j.trsl.2017.02.004. 



 

 114 

41.  Rahmanian S, Wewers ME, Koletar S, Reynolds N, Ferketich A, Diaz P. Cigarette Smoking in the 
HIV-Infected Population. Proc Am Thorac Soc. 2011;8(3):313-319. doi:10.1513/pats.201009-

058WR. 

42.  Helleberg M, Afzal S, Kronborg G, et al. Mortality attributable to smoking among HIV-1-infected 

individuals: A nationwide, population-based cohort study. Clin Infect Dis. 2013;56(5):727-734. 

doi:10.1093/cid/cis933. 

43.  Calvo-Sánchez M, Perelló R, Pérez I, et al. Differences between HIV-infected and uninfected 

adults in the contributions of smoking, diabetes and hypertension to acute coronary syndrome: 
Two parallel case-control studies. HIV Med. 2013;14(1):40-48. doi:10.1111/j.1468-

1293.2012.01057.x. 

44.  Gingo MR, Morris A. Pathogenesis of HIV and the Lung. Curr HIV/AIDS Rep. 2012:42-50. 

doi:10.1007/s11904-012-0140-x. 

45.  Klitzman RL, Kirshenbaum SB, Dodge B, et al. Intricacies and inter-relationships between HIV 

disclosure and HAART: a qualitative study. AIDS Care. 2004;16:628-640. 

doi:10.1080/09540120410001716423. 

46.  Westreich D, Cates J, Cohen M, et al. Smoking, HIV, and risk of pregnancy loss. AIDS. 

2017;31(4):553-560. doi:10.1097/QAD.0000000000001342. 

47.  Justice AC, McGinnis KA, Tate JP, et al. Risk of mortality and physiologic injury evident with 
lower alcohol exposure among HIV infected compared with uninfected men. Drug Alcohol 

Depend. 2016;161:95-103. doi:10.1016/j.drugalcdep.2016.01.017. 

48.  Tien PC, Choi AI, Zolopa AR, et al. Inflammation and mortality in HIV-infected adults: analysis 
of the FRAM study cohort. J Acquir Immune Defic Syndr. 2010;55(3):316-322. 

doi:10.1097/QAI.0b013e3181e66216. 

49.  Westreich D. From exposures to population interventions: Pregnancy and response to HIV 

therapy. Am J Epidemiol. 2014;179(7):797-806. doi:10.1093/aje/kwt328. 

50.  Westreich D, Edwards JK, Rogawski ET, Hudgens MG, Stuart EA, Cole SR. Causal impact: 

Epidemiological approaches for a public health of consequence. Am J Public Health. 2016. 

doi:10.2105/AJPH.2016.303226. 

51.  Westreich D. From Patients to Policy: Population Intervention Effects in Epidemiology. 

Epidemiology. 2017;28(4). doi:10.1097/EDE.0000000000000648. 

52.  Westreich D, Mooney SJ. Number (of Whom?) Needed to Treat (with What?): Exposures, 

Population Interventions, and the Number Needed to Treat. Epidemiology. 2019. 

doi:10.1097/EDE.0000000000001061. 

53.  Cahill K, Stevens S, Perera R, Lancaster T. Pharmacological interventions for smoking cessation: 

an overview and network meta-analysis. Cochrane Database Syst Rev. 2013;5(5):CD009329. 

doi:10.1002/14651858.CD009329.pub2. 

54.  Yeung E, Long S, Bachi B, Lee J, Chao Y. The psychiatric effects of varenicline on patients with 

depression. BMC Proc. 2015;9(S1):A31. doi:10.1186/1753-6561-9-S1-A31. 



 

 115 

55.  Pence BW, Miller WC, Whetten K, Eron JJ, Gaynes BN. Prevalence of DSM-IV-defined mood, 
anxiety, and substance use disorders in an HIV clinic in the Southeastern United States. J Acquir 

Immune Defic Syndr. 2006;42(3):298-306. doi:10.1097/01.qai.0000219773.82055.aa. 

56.  Siu AL. Behavioral and pharmacotherapy interventions for tobacco smoking cessation in adults, 

including pregnant women: U.S. preventive services task force recommendation statement. Ann 

Intern Med. 2015. doi:10.7326/M15-2023. 

57.  Wilk AI, Jensen NM, Havighurst TC. Meta-analysis of randomized control trials addressing brief 

interventions in heavy alcohol drinkers. J Gen Intern Med. 1997;12(5):274-283. 

doi:10.1046/j.1525-1497.1997.012005274.x. 

58.  Magill M, Ray LA. Cognitive-Behavioral Treatment With Adult Alcohol and Illicit Drug Users: A 

Meta-Analysis of Randomized Controlled Trials. J Stud Alcohol Drugs. 2009;70(4):516-527. 

doi:10.15288/jsad.2009.70.516. 

59.  Streeton C, Whelan G. Naltrexone, a relapse prevention maintenance treatment of alcohol 

dependence: a meta-analysis of randomized controlled trials. Alcohol Alcohol. 2001;36(6):544-

552. doi:10.1093/alcalc/36.6.544. 

60.  Ledgerwood DM, Yskes R. Smoking Cessation for People Living With HIV/AIDS: A Literature 

Review and Synthesis. Nicotine Tob Res. 2016;18(12):2177-2184. doi:10.1093/ntr/ntw126. 

61.  Brown JL, Demartini KS, Sales JM, Swartzendruber AL, Diclemente RJ. Interventions to reduce 
alcohol use among HIV-Infected individuals: A review and critique of the literature. Curr 

HIV/AIDS Rep. 2013;10(4):356-370. doi:10.1007/s11904-013-0174-8. 

62.  Westreich D, Edwards JK, Lesko CR, Cole SR, Stuart EA. Target Validity and the Hierarchy of 

Study Designs. Am J Epidemiol. 2019. doi:10.1093/aje/kwy228. 

63.  Kitahata MM, Rodriguez B, Haubrich R, et al. Cohort profile: the Centers for AIDS Research 

Network of Integrated Clinical Systems. Int J Epidemiol. 2008;37(5):948-955. 

doi:10.1093/ije/dym231. 

64.  Lesko CR, Todd J V., Cole SR, et al. Mortality under plausible interventions on antiretroviral 

treatment and depression in HIV-infected women: an application of the parametric g-formula. Ann 

Epidemiol. September 2017:S1047-2797. doi:10.1016/j.annepidem.2017.08.021. 

65.  Breskin A, Westreich D, Cole SR, et al. The Effects of Hepatitis C Infection and Treatment on 

All-cause Mortality Among People Living With Human Immunodeficiency Virus. Clin Infect Dis. 

2019. doi:10.1093/cid/ciy588. 

66.  Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in 

epidemiology. Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011. 

67.  Robins J. A new approach to causal inference in mortality studies with a sustained exposure 

period-application to control of the healthy worker survivor effect. Math Model. 1986;7(9-

12):1393-1512. doi:10.1016/0270-0255(86)90088-6. 

  



 

 116 

68.  Westreich D, Cole SR, Young JG, et al. The parametric g-formula to estimate the effect of highly 
active antiretroviral therapy on incident AIDS or death. Stat Med. 2012;31(18):2000-2009. 

doi:10.1002/sim.5316. 

69.  Taubman SL, Robins JM, Mittleman M a., Hernán M a. Intervening on risk factors for coronary 

heart disease: An application of the parametric g-formula. Int J Epidemiol. 2009;38(6):1599-1611. 

doi:10.1093/ije/dyp192. 

70.  Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: 

Demonstration of a causal inference technique. Am J Epidemiol. 2011;173(7):731-738. 

doi:10.1093/aje/kwq472. 

71.  Keil AP, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-

event data: intuition and a worked example. Epidemiology. 2014;25(6):889-897. 

doi:10.1097/EDE.0000000000000160. 

72.  Cole SR, Richardson DB, Chu H, Naimi AI. Analysis of occupational asbestos exposure and lung 

cancer mortality using the G formula. Am J Epidemiol. 2013;177(9):989-996. 

doi:10.1093/aje/kws343. 

73.  Edwards JK, Cole SR, Westreich D, et al. Age at Entry into Care, Timing of Antiretroviral 

Therapy Initiation, and 10-Year Mortality among HIV-Seropositive Adults in the United States. 

Clin Infect Dis. 2015;61(7):1189-1195. doi:10.1093/cid/civ463. 

74.  Lesko CR, Todd J V., Cole SR, et al. Mortality under plausible interventions on antiretroviral 

treatment and depression in HIV-infected women: An application of the parametric g-formula. 

Annals of Epidemiology. 2017. 

75.  Young JG, Cain LE, Robins JM, O&apos;Reilly EJ, Hernán MA. Comparative Effectiveness of 

Dynamic Treatment Regimes: An Application of the Parametric G-Formula. Stat Biosci. 

2011;3(1):119-143. doi:10.1007/s12561-011-9040-7. 

76.  Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. 

Am J Epidemiol. 2008;168(6):656-664. doi:10.1093/aje/kwn164. 

77.  Eekhout I, de Boer RM, Twisk JWR, de Vet HCW, Heymans MW. Missing data: a systematic 

review of how they are reported and handled. Epidemiology. 2012;23(5):729-732. 

doi:10.1097/EDE.0b013e3182576cdb. 

78.  Young JG, Cain LE, Robins JM, Reilly EJ, Hernán MA. Comparative Effectiveness of Dynamic 

Treatment Regimes: An Application of the Parametric G-Formula. Stat Biosci. 2011;3(1):119-143. 

doi:10.1007/s12561-011-9040-7. 

79.  Demissie S, LaValley MP, Horton NJ, Glynn RJ, Cupples LA. Bias due to missing exposure data 

using complete-case analysis in the proportional hazards regression model. Stat Med. 

2003;22(4):545-557. doi:10.1002/sim.1340. 

80.  Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Using the whole cohort in the 

analysis of case-cohort data. Am J Epidemiol. 2009;169(11):1398-1405. doi:10.1093/aje/kwp055. 

  



 

 117 

81.  Greenland S, Finkle WD. A critical look at methods for handling missing covariates in 
epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255-1264. 

doi:10.1002/ajmg.a.33795. 

82.  Neyman J. Contribution to the Theory of Sampling Human Populations. J Am Stat Assoc. 

1938;33(201):101-116. doi:10.1080/01621459.1938.10503378. 

83.  Hanley JA, Csizmadi I, Collet JP. Two-stage case-control studies: Precision of parameter 

estimates and considerations in selecting sample size. Am J Epidemiol. 2005;162(12):1225-1234. 

doi:10.1093/aje/kwi340. 

84.  Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Improved Horvitz–Thompson 

Estimation of Model Parameters from Two-phase Stratified Samples: Applications in 

Epidemiology. Stat Biosci. 2009;1(1):32-49. doi:10.1007/s12561-009-9001-6. 

85.  White JE. A two stage design for the study of the relationship between a rare exposure and a rare 

disease. Am J Epidemiol. 1982;115(1):119-128. http://www.ncbi.nlm.nih.gov/pubmed/7055123. 

86.  Flanders WD, Greenland S. Analytic methods for two-stage case-control studies and other 

stratified designs. Stat Med. 1991;10(5):739-747. doi:10.1002/sim.4780100509. 

87.  Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are 

not always observed. J Am Stat Assoc. 1994;89(427):846-866. 

doi:10.1080/01621459.1994.10476818. 

88.  Hubbard AE, Van Der Laan MJ. Population intervention models in causal inference. Biometrika. 

2008. doi:10.1093/biomet/asm097. 

89.  Barkan SE, Melnick SL, Preston-Martin S, et al. The Women’s Interagency HIV Study. WIHS 
Collaborative Study Group. Epidemiology. 1998;9(2):117-125. doi:10.1097/00001648-

199803000-00004. 

90.  Bacon MC, Von Wyl V, Alden C, et al. The Women’s Interagency HIV Study: an Observational 

Cohort Brings Clinical Sciences to the Bench. Clin Diagn Lab Immunol. 2005;12(9):1013-1019. 

doi:10.1128/CDLI.12.9.1013–1019.2005. 

91.  Adimora AA, Ramirez C, Benning L, et al. Cohort Profile: The Women’s Interagency HIV Study 

(WIHS). Int J Epidemiol. 2018;47(2):393-394i. http://dx.doi.org/10.1093/ije/dyy021. 

92.  Feldman JG, Minkoff H, Schneider MF, et al. Association of cigarette smoking with HIV 

prognosis among women in the HAART era: A report from the women’s interagency HIV study. 

Am J Public Health. 2006. doi:10.2105/AJPH.2005.062745. 

93.  Cook RL, Zhu F, Belnap BH, et al. Longitudinal trends in hazardous alcohol consumption among 
women with human immunodeficiency virus infection, 1995-2006. Am J Epidemiol. 2009. 

doi:10.1093/aje/kwp004. 

94.  Theall KP, Clark RA, Powell A, Smith H, Kissinger P. Alcohol consumption, art usage and high-

risk sex among women infected with HIV. AIDS Behav. 2007. doi:10.1007/s10461-006-9159-6. 

  



 

 118 

95.  Reynolds NR. Cigarette smoking and HIV: More evidence for action. In: AIDS Education and 

Prevention. Vol 21. ; 2009:106-121. doi:10.1521/aeap.2009.21.3_supp.106. 

96.  Breslow NE, Cain KC. Logistic regression for two-stage case-control data. Biometrika. 

1988;75(1):11-20. doi:10.1093/biomet/75.1.11. 

97.  Danaei G, Hernan MA, Hu FB. Using parametric G-formula to estimate the effect of multiple 
lifestyle and dietary interventions for preventing type 2 diabetes in a prospective cohort. Am J 

Epidemiol. 2011;173:S30. doi:http://dx.doi.org/10.1093/aje/kwr181. 

98.  Cole SR, Richardson DB, Chu H, Naimi AI. Analysis of occupational asbestos exposure and lung 
cancer mortality using the G formula. Am J Epidemiol. 2013;177(9):989-996. 

doi:10.1093/aje/kws343. 

99.  Edwards JK, Cole SR, Westreich D, et al. Age at Entry Into Care, Timing of Antiretroviral 
Therapy Initiation, and 10-Year Mortality Among HIV-Seropositive Adults in the United States. 

Clin Infect Dis. 2015;61(7):1189-1195. doi:10.1093/cid/civ463. 

100.  Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology. 

2003;14(6):680-686. doi:10.1097/01.EDE.0000081989.82616.7d. 

101.  Robins JM, Hernán M a, Brumback B. Marginal structural models and causal inference in 

epidemiology. Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011. 

102.  Edwards JK, Cole SR, Westreich D, et al. Loss to clinic and five-year mortality among HIV-

infected antiretroviral therapy initiators. PLoS One. 2014;9(7). doi:10.1371/journal.pone.0102305. 

103.  Cates JE, Westreich D, Unger HW, et al. Intermittent preventive therapy in pregnancy and 

incidence of low birth weight in malaria-endemic countries. Am J Public Health. 2018. 

doi:10.2105/AJPH.2017.304251. 

104.  Young JG, Hernán MA, Robins JM. Identification, estimation and approximation of risk und 

interventions that depend on the natural value of treatment using observational data. Epidemiol 

Method. 2014. doi:10.1515/em-2012-0001. 

105.  Robins JM, Hernan MA, Siebert U. Comparative Quantification of Health Risks. Eff Mult Interv. 

2004:1651-1800. 

106.  Westreich D, Cole SR, Young JG, et al. The parametric g-formula to estimate the effect of highly 
active antiretroviral therapy on incident AIDS or death. Stat Med. 2012;31(18):2000-2009. 

doi:10.1002/sim.5316. 

107.  Edwards JK, Cole SR, Westreich D. All your data are always missing: Incorporating bias due to 

measurement error into the potential outcomes framework. Int J Epidemiol. 2015;44(4):1452-

1459. doi:10.1093/ije/dyu272. 

108.  VanderWeele TJ. Concerning the Consistency Assumption in Causal Inference. Epidemiology. 

2009;20(6):880-883. doi:10.1097/EDE.0b013e3181bd5638. 

109.  Pearl J. On the consistency rule in causal inference: axiom, definition, assumption, or theorem? 

Epidemiology. 2010;21(6):872-875. doi:10.1097/EDE.0b013e318209dc0f. 



 

 119 

110.  Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol 

Community Health. 2006;60(7):578-586. doi:10.1136/jech.2004.029496. 

111.  Westreich D, Cole SR. Invited commentary: Positivity in practice. Am J Epidemiol. 

2010;171(6):674-677. doi:10.1093/aje/kwp436. 

112.  Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus 
indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per 

cubic millimeter or less. N Engl J Med. 1997. doi:10.1056/NEJM199709113371101. 

113.  Ray WA. Evaluating Medication Effects Outside of Clinical Trials: New-User Designs. Am J 

Epidemiol. 2003;158(9):915-920. doi:10.1093/aje/kwg231. 

114.  AIDSinfo. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use 

of Antiretroviral Agents in Adults and Adolescents with HIV. Dep Heal Hum Serv. 2018. 

115.  Cole SR, Hudgens MG, Brookhart MA, Westreich D. Risk. Am J Epidemiol. 2015;181(4):246-

250. doi:10.1093/aje/kwv001. 

116.  Cole SR, Lau B, Eron JJ, et al. Estimation of the standardized risk difference and ratio in a 

competing risks framework: Application to injection drug use and progression to AIDS after 

initiation of antiretroviral therapy. Am J Epidemiol. 2015. doi:10.1093/aje/kwu122. 

117.  Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption 

with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ. 

2011. doi:10.1136/bmj.d671. 

118.  Monto A, Patel K, Bostrom A, et al. Risks of a Range of Alcohol Intake on Hepatitis C-Related 

Fibrosis. Hepatology. 2004. doi:10.1002/hep.20127. 

119.  U.S. Department of Health and Human Services. Helping patients who drink too much: A 

clinicians guide. National Institute on Alcohol Abuse and Alcoholism. 

http://www.niaaa.nih.gov/publications. Published 2005. 

120.  Dieperink E, Ho SB, Heit S, Durfee JM, Thuras P, Willenbring ML. Significant reductions in 
drinking following brief alcohol treatment provided in a hepatitis C clinic. Psychosomatics. 2010. 

doi:10.1176/appi.psy.51.2.149. 

121.  Hoffman AM, Redding CA, Goldberg D, et al. Computer expert systems for African-American 
smokers in physicians offices: A feasibility study. Prev Med (Baltim). 2006. 

doi:10.1016/j.ypmed.2006.03.025. 

122.  Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 

1999. doi:10.1097/00001648-199901000-00008. 

123.  Brookhart MA. Counterpoint: The Treatment Decision Design. Am J Epidemiol. 

2015;182(10):840-845. doi:10.1093/aje/kwv214. 

124.  Radloff LS. The CES-D Scale: A Self-Report Depression Scale for Research in the General 

Population. Appl Psychol Meas. 1977. doi:10.1177/014662167700100306. 



 

 120 

125.  Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc. 

1958;53(282):457-481. doi:10.2307/2281868. 

126.  Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman Hall, New York. 1993. 

doi:10.1111/1467-9639.00050. 

127.  Cunningham CO. Opioids and HIV infection: From pain management to addiction treatment. Top 

Antivir Med. 2017. 

128.  Deyo RA, Hallvik SE, Hildebran C, et al. Association Between Initial Opioid Prescribing Patterns 

and Subsequent Long-Term Use Among Opioid-Naïve Patients: A Statewide Retrospective Cohort 

Study. J Gen Intern Med. 2017. doi:10.1007/s11606-016-3810-3. 

129.  Schieber LZ, Guy GP, Seth P, et al. Trends and Patterns of Geographic Variation in Opioid 

Prescribing Practices by State, United States, 2006-2017. JAMA Netw open. 2019. 

doi:10.1001/jamanetworkopen.2019.0665. 

130.  Josephs JS, Fleishman JA, Korthuis PT, Moore RD, Gebo KA. Emergency department utilization 

among HIV-infected patients in a multisite multistate study. HIV Med. 2010;11(1):74-84. 

doi:10.1111/j.1468-1293.2009.00748.x. 

131.  Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat 

Methods Med Res. 2011. doi:10.1177/0962280210395740. 

132.  Firth D. Bias Reduction of Maximum Likelihood. Biometrika. 1993. doi:10.1093/biomet/80.1.27. 

133.  Galvan FH, Bing EG, Fleishman JA, et al. The prevalence of alcohol consumption and heavy 

drinking among people with HIV in the United States: Results from the HIV cost and services 

utilization study. J Stud Alcohol. 2002. doi:10.15288/jsa.2002.63.179. 

134.  Duprez DA, Neuhaus J, Kuller LH, et al. Inflammation, coagulation and cardiovascular disease in 

HIV-infected individuals. PLoS One. 2012;7(9). doi:10.1371/journal.pone.0044454. 

135.  Hernán M, Robins J. Estimating causal effects from epidemiological data. Epidemiol Community 

Heal. 2006;60(7):578-586. doi:10.1136/jech.2004.029496. 

136.  Cropsey KL, Willig JH, Mugavero MJ, et al. Cigarette Smokers are Less Likely to Have 

Undetectable Viral Loads: Results from Four HIV Clinics. J Addict Med. 2016. 

doi:10.1097/ADM.0000000000000172. 

137.  Chander G, Lau B, Moore RD. Hazardous alcohol use: A risk factor for non-adherence and lack of 

suppression in HIV infection. J Acquir Immune Defic Syndr. 2006. 

doi:10.1097/01.qai.0000243121.44659.a4. 

138.  Samet JH, Horton NJ, Meli S, Freedberg KA, Palepu A. Alcohol Consumption and Antiretroviral 
Adherence among HIV-Infected Persons with Alcohol Problems. Alcohol Clin Exp Res. 2004. 

doi:10.1097/01.ALC.0000122103.74491.78. 

139.  Kozak MS, Mugavero MJ, Ye J, et al. Patient reported outcomes in routine care: Advancing data 

capture for HIV cohort research. Clin Infect Dis. 2012;54(1):141-147. doi:10.1093/cid/cir727. 



 

 121 

140.  Moore D, Aveyard P, Connock M, Wang D, Fry-Smith A, Barton P. Effectiveness and safety of 
nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-

analysis. BMJ. 2009. doi:10.1136/bmj.b1024. 

141.  Brown JL, Demartini KS, Sales JM, Swartzendruber AL, Diclemente RJ. Interventions to reduce 

alcohol use among HIV-Infected individuals: A review and critique of the literature. Curr 

HIV/AIDS Rep. 2013. doi:10.1007/s11904-013-0174-8. 

142.  Samet JH, Walley AY. Interventions targeting HIV-infected risky drinkers: Drops in the bottle. 

Alcohol Res Heal. 2010. 

143.  Samet JH, Horton NJ, Meli S, et al. A randomized controlled trial to enhance antiretroviral therapy 

adherence in patients with a history of alcohol problems. Antivir Ther. 2005. 

144.  Pearl J. On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? 

Epidemiology. 2010;21(6):872-875. doi:10.1097/EDE.0b013e3181f5d3fd. 

145.  Robins JM, Hernán M a., Rotnitzky A. Invited commentary: Effect modification by time-varying 

covariates. Am J Epidemiol. 2007;166(9):994-1002. doi:10.1093/aje/kwm231. 

146.  Lash TL, Schisterman EF. New Designs for New Epidemiology. Epidemiology. 2017;29(1):2017-

2018. doi:10.1097/EDE.0000000000000768. 

147.  Daniel RM, Kenward MG, Cousens SN, De Stavola BL. Using causal diagrams to guide analysis 

in missing data problems. In: Statistical Methods in Medical Research. ; 2012. 

doi:10.1177/0962280210394469. 

148.  Hernán MA. Invited commentary: Selection bias without colliders. Am J Epidemiol. 2017. 

doi:10.1093/aje/kwx077. 

149.  Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing Study 

Results: A Potential Outcomes Perspective. Epidemiology. 2017. 

doi:10.1097/EDE.0000000000000664. 

150.  Stuart EA, Bradshaw CP, Leaf PJ. Assessing the generalizability of randomized trial results to 

target populations. Prev Sci. 2015. doi:10.1007/s11121-014-0513-z. 

151.  Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: 

The ACTG 320 trial. Am J Epidemiol. 2010. doi:10.1093/aje/kwq084. 

152.  Rudolph KE, Díaz I, Rosenblum M, Stuart EA. Estimating population treatment effects from a 

survey subsample. Am J Epidemiol. 2014. doi:10.1093/aje/kwu197. 

153.  Hoenigl M, Chaillon A, Moore DJ, et al. Rapid HIV Viral Load Suppression in those Initiating 

Antiretroviral Therapy at First Visit after HIV Diagnosis. Sci Rep. 2016. doi:10.1038/srep32947. 

154.  Pilcher CD, Ospina-Norvell C, Dasgupta A, et al. The Effect of Same-Day Observed Initiation of 

Antiretroviral Therapy on HIV Viral Load and Treatment Outcomes in a US Public Health Setting. 

J Acquir Immune Defic Syndr. 2017. doi:10.1097/QAI.0000000000001134. 

  



 

 122 

155.  Ford N, Migone C, Calmy A, et al. Benefits and risks of rapid initiation of antiretroviral therapy. 

AIDS. 2018. doi:10.1097/QAD.0000000000001671. 

156.  Sun B, Perkins NJ, Cole SR, et al. Inverse-Probability-Weighted Estimation for Monotone and 

Nonmonotone Missing Data. Am J Epidemiol. 2018. doi:10.1093/aje/kwx350. 

157.  Sun BL, Tchetgen Tchetgen EJ. On Inverse Probability Weighting for Nonmonotone Missing at 

Random Data. J Am Stat Assoc. 2018. doi:10.1080/01621459.2016.1256814. 

158.  The Antiretroviral Therapy Cohort Collaboration. Causes of death in HIV-1-infected patients 

treated with antiretroviral therapy, 1996-2006: collaborative analysis of 13 HIV cohort studies. 

Clin Infect Dis. 2010;50(10):1387-1396. doi:10.1086/652283. 

159.  French AL, Gawel SH, Hershow R, et al. Trends in mortality and causes of death among women 

with HIV in the United States: a 10-year study. J Acquir Immune Defic Syndr. 2009;51(4):399-

406. doi:10.1097/QAI.0b013e3181acb4e5. 

160.  Weber R, Ruppik M, Rickenbach M, et al. Decreasing mortality and changing patterns of causes 

of death in the Swiss HIV Cohort Study. HIV Med. 2013;14(4):195-207. doi:10.1111/j.1468-

1293.2012.01051.x. 

161.  Justice AC, Dombrowski E, Conigliaro J, et al. Veterans Aging Cohort Study (VACS): Overview 

and description. Med Care. 2006;44(8 Suppl 2):S13-24. 

doi:10.1097/01.mlr.0000223741.02074.66. 

162.  Danaei G, Pan A, Hu FB, Hernán MA. Hypothetical Midlife Interventions in Women and Risk of 

Type 2 Diabetes. Epidemiology. 2013;24(1):122-128. doi:10.1097/EDE.0b013e318276c98a. 

163.  Egger M, Hirschel B, Francioli P, et al. Impact of new antiretroviral combination therapies in HIV 
infected patients in Switzerland: prospective multicentre study. Swiss HIV Cohort Study. BMJ. 

1997;315(7117):1194-1199. doi:10.1136/bmj.315.7117.1194. 

164.  Baker J V., Sharma S, Achhra AC, et al. Changes in Cardiovascular Disease Risk Factors With 

Immediate Versus Deferred Antiretroviral Therapy Initiation Among HIV-Positive Participants in 
the START (Strategic Timing of Antiretroviral Treatment) Trial. J Am Heart Assoc. 2017. 

doi:10.1161/JAHA.116.004987. 

165.  Greenland S, Finkle WD. A critical look at methods for handling missing covariates in 
epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255-1264. 

doi:10.1093/aje/kwi188. 

 


