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ABSTRACT 

Jedediah Seltzer: Determining the function of the interleukin-1 receptor associated kinase 
pathway in primary effusion lymphoma 
(Under the direction of Dirk Dittmer)  

 Kaposi’s sarcoma-associated herpesvirus (KSHV) is necessary but not sufficient for 

the development of Primary effusion lymphoma (PEL). Alterations in cellular signaling 

pathways are also a characteristic of PEL development. Other B cell lymphomas have 

acquired an oncogenic mutation in the myeloid differentiation primary response-88 

(MYD88) gene. The MYD88 L265P mutant results in the activation of the Interleukin-1 

Receptor Associated Kinase (IRAK) pathway and a pro-inflammatory environment. To probe 

IRAK/MYD88 signaling in PEL, we employed CRISPR/Cas9 technology to generate stable 

deletion clones in BCBL-1Cas9 cells. To look for off-target effects, we determined the 

complete exome of the BCBL-1Cas9 cell line. 

 Deletion of either MYD88, IRAK4, or IRAK1 abolished IL-1β signaling; however, 

we could grow stable sub-clones from each population. RNA-seq analysis of IRAK4 

knockouts showed that the IRAK pathway induced cellular signals constitutively, 

independent of IL-1β stimulation, which was abrogated by deletion of IRAK4. Transient 

complementation with IRAK1 increased NF-kB activity in MYD88KO, IRAK1KO, and 

IRAK4KO cells even in the absence of IL-1β. We also saw that IL-10, a hallmark of PEL, is 

engaged with the IRAK pathway as IRAK4 knockouts reduce IL-10 levels. We surmise that, 

unlike B-cell receptor (BCR) signaling, MYD88/IRAK signaling is constitutively active in 
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PEL, but that under cell culture conditions, PEL rapidly becomes independent of this 

pathway.  
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CHAPTER 1: INTRODUCTION 

Introduction 

In completion of my graduate studies in the laboratory of Dr. Dirk Dittmer, the following 

Dissertation will examine the relevance of the interleukin-1 receptor-associated kinase 

(IRAK) pathway in primary effusion lymphoma (PEL). The thesis will be broken into four 

parts starting with a broad introduction to cancer, PEL, IRAK and KSHV (chapter 1), 

followed by a chapter on experimental results from testing the function of the IRAK pathway 

in PEL. Chapter three will conclude and summarize the findings as well as provided a road 

map for moving this project forward. The final section will be an appendix that contains 

supporting information for chapter two.  

Cancer and Viruses 

Cancer is a global affliction that affects most living organisms (1-3). The rate of 

cancer in humans is high, as one in three individuals are diagnosed with a type of cancer 

during their lifetime, according to the American Cancer Society (4). There are over 130 types 

of human cancers, which have many different causes (NCI) such as exposure to harmful 

chemicals known as carcinogens, smoking, genetics, and environmental influences (5). 

Infectious agents, such as viruses, account for nearly 20% of all human cancer cases globally, 

and the scientific community’s understanding of virus-induced human cancers continues to 

improve with advancements in sequencing technologies (6-10). 

An important reason for this differentiation between virus-induced and non-viral 

cancers is that viruses introduce foreign genes into human cells and rely on disrupting host 
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pathways for survival of the infected cells. The viral genes can function as oncogenes, 

driving a normal cell into malignancy (7, 11, 12). Another distinction with virus-induced 

cancers is that viruses can be targeted with antivirals or vaccines, which changes the 

approach for treatment and preventive actions of non-viral cancers (6-8, 13). The interplay 

between the virus and the host is extremely important for cancer progression as only a 

fraction of individuals infected with viruses develop cancer, and only a small subset of 

viruses are known to cause cancer. 

Cancers are caused by the dysregulating of cellular pathways. Typically, a single 

mutation will not cause cancer, instead it takes an accumulation of mutations over time (10, 

14, 15). There are multiple steps of cellular dysregulation that occur throughout the course of 

a lifetime. An example would be a mutation in a tumor suppressor protein that is present in 

an individual who smokes, which induces new mutations that compound the effects of the 

inherited mutation, resulting in the development of lung cancer in the individual (16-18). 

This is only one example, however, and there are many known cellular pathways in humans 

that can function in cancer development, predisposing an individual to develop cancer. One 

such pathway that has been reported to predispose individuals to cancer is the IRAK 

pathway, which I will discuss later in this introduction (19-24). To understand the importance 

of the IRAK pathway in the context of this thesis, we must first understand KSHV, PEL and 

the concept of tumor plasticity.  

Tumor Plasticity  

Tumor heterogeneity is the genetic variation between malignant cells within a single 

patient (25). The heterozygote nature of tumors leads to resistance to treatment and cancer 

metastasis (26). Traditionally there were two main ideas for how this tumor heterogeneity 
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developed. One hypothesis was that of clonal evolution, or unique epigenetic/stochastic 

changes, which results in the development of tumor heterogeneity from individual cancer 

stem cells (25). The second hypothesis proposed was the cancer stem-like cell model, where 

a subset of the tumor cells have the ability to differentiate into various subtypes of cancer 

cells, causing variation within a tumor (27). 

A recently developed model, known as the cell plasticity model, combines aspects of 

both the cancer stem-like cell and the clonal models (25). This new model predicts that, due 

to changes in the tumor environment, cancer stem-like cells can undergo clonal expansion 

and epigenetic differentiation while maintaining a subset in the cancer stem-like cell state. 

The result of this ability is that, in response to stressors in the environment, such as 

inflammation or injury, the various subtypes of the cancer cells can survive and lead to 

resistance to therapy. One of the largest drivers of the plasticity seen in tumor cells is the 

ability of self-renewing and dysregulation (28). Just a few examples of dysregulation that can 

lead to plasticity in a tumor are loss of tumor suppressor proteins (such as p53, RB1 and 

PTEN), increased inflammatory compounds that induce differentiation towards stem-like 

cells, and the ability of these stem-like cells to remodel the microenvironment by influencing 

the differentiation of non-tumor cells into cells that support tumor growth (25, 29).  

A major problem with tumor cell plasticity is that it leads to resistance to targeted 

therapies. For example, targeted treatment of small-cell lung cancer leads to resistance, 

however, after a gap in treatment, the cells were re-sensitized to the drug (30), which 

demonstrates that the changes that lead to resistance are not always genetic. One of the best-

documented cases of the plasticity model and cancer resistance to targeted therapies is in 

epithelial-mesenchymal transition, which results in phenotypical changes between cell types 
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and resistance to therapies (18, 31). The ability of tumor cells to undergo lineage plasticity 

results in drug ineffectiveness and allows the tumor to proliferate beyond control. Prostate 

cancer, small-cell lung cancer, breast cancer, and basal cell carcinoma are only a few 

examples where targeted therapies have been challenged by tumor plasticity (18).  

The mechanism of drug resistance through plasticity is thought to occur when cells 

have inherent mutations that circumvent the target of the therapeutics, or when slow-growing 

cells bypass the pathway entirely through activation of alternate pathways (18, 32). Due to 

the complications of tumor plasticity, researchers must now seek to address these issues 

when developing targeted therapeutics. Concepts such as alternate dosing or combination 

therapies are currently leading the way to overcome tumor plasticity. Furthermore, the idea 

of tumor plasticity is important for this thesis as we examine the ability of tumor cells to 

circumvent inhibition of a host pathway in the context of a virus-induced lymphoma.  

Kaposi’s Sarcoma-associated Herpesvirus 

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 

8 (HHV8), is one of two members of the gamma herpesvirus family known to infect humans, 

the other being the Epstein Bar virus (EBV) (6, 33, 34). KSHV is the causative agent of 

Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), KSHV inflammatory cytokine 

syndrome (KICS), as well as cases of Multicentric Castleman disease (MCD) (35-38). The 

various aspects of the virus life cycle are crucial for understanding how these different 

diseases develop. The focus of this thesis will be on PEL, which will be discussed in the next 

section. 

 KSHV is an enveloped DNA virus with a large genome of approximately 165-kilo 

bases (39-41). KSHV encodes for approximately 85 proteins and microRNAs (36, 42-44). 
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Upon infection, the default programming of KSHV is to go into latency, where the viral 

genome is maintained as an episome tethered to the host genome by the latency associated 

nuclear antigen (LANA), making it difficult for the immune system to detect the virus (40, 

45-47). KSHV must evade the cellular innate immune response to infect cells efficiently (48-

50). During latency, only a subset of genes is expressed, LANA being one of those genes and 

having multiple functions including maintaining latency (11, 51-53). Another latency-

associated protein is the vFLIP that engages the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NFκB) protein and activates the downstream signaling pathway to promote 

a positive environment for latency (54-57).  

The vFLIP activates the NFκB pathway by modulating the NF-κB-inducing kinase 

(NIK) as well as both the IKK2-independent and dependent processes to activate p100 NFκB 

thus providing pro-inflammatory signaling, a hallmark of KSHV diseases (55). This 

activation of the NFκB pathway has long been believed to be critical for PEL survival (54, 

58-61). Additionally, vFLIP activation of NFκB is thought to inhibit the KSHV lytic cycle 

through activation of the AP-1 pathway, which down-regulates the KSHV ORF50 protein, 

the major lytic activator of KSHV (62). vFLIP also appears to inhibit cell death by competing 

with caspase 8 for binding death receptors (63). It has been shown that vFLIP is important to 

PEL survival, and studies conducted with the NFκB pathway inhibitor BAY11-7082 have 

supported this idea (54, 58, 61). However, additional research has determined that BAY11-

7082 has off-target effects that can result in cell death independent of NFκB inhibition (64, 

65). Upstream of NFκB is the IRAK pathway and toll like receptors (TLR) pathway, which 

are also known to exert effects on the KSHV life cycle in the context of PEL. 
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TLRs are innate immune sensors that recognize specific ligands and function in 

immunity by recognizing pathogens. TLRs, with the exception of TLR3, typically signal 

through the IRAK pathway to activate NFκB and stimulate innate immunity (66-72). TLRs, 

in the context of KSHV, signal through the downstream TRIF/TLR3 or MYD88/IRAK 

pathways (73). Within KSHV infection, TLRs have a function in reactivation from latency. 

The virus must overcome the TLR signaling cascade to establish infection (35, 74). The 

situation is complex, with KSHV activating some components of the pathway while shutting 

down others. Since most TLRs signal through IRAK1, KSHV encodes miR-K9, which down 

regulates IRAK1 during infection to dampen inflammation and establish latency (75). In 

primary infection of monocytes, KSHV infection results in activation of TLR3, which 

recognizes viral single stranded and double stranded RNA. The KSHV protein, ORF50, can 

degrade downstream effectors of TLR3 activation (35). The KSHV proteins, vIRF1 and 

vGPCR, inhibit TLR4 signaling during the advent of new infections, but during latency in 

KS spindle cells TLR4 activation is induced by the virus (76). If TLR7/8 are activated in 

cells that are latently infected with KSHV, it results in the reactivation of the virus (74). 

Therefore, we see that the interplay between the TLRs and KSHV is complex, with the 

degree of inhibition and activation depending on the life stage of the virus. We will next 

delve more into the PEL disease indication. 

Primary Effusion Lymphoma 

PEL is a non-Hodgkin’s B cell lymphoma (NHL) characterized by effusions in the 

peritoneal, pleural, and pericardial cavities (77, 78). Phenotypically, PEL cells are larger than 

healthy lymphocytes, which aids in identification (39). PEL is primarily seen in HIV positive 

males with low CD4 counts, although cases of PEL in HIV negative individuals and females 
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have been reported (36, 78, 79). The medium life expectancy following a PEL diagnosis is 6 

months (17, 80). PEL is currently treated with CHOP (cyclophosphamide, 

hydroxydaunorubicin, oncovin, and prednisone) therapy in most cases, which has limited 

success, as is evident by the short life expectancy (80). KSHV infected B-cells are 

responsible for PEL development, and it is thought that these cells are clonal and develop 

post germinal center (81). KSHV-EBV coinfections are common in PEL (34, 40).  

PEL cells have distinct features, including expression of CD138/Syndecan-1 as well as 

no expression of the B cell receptor (BCR) or CD79 co-receptor (80), despite exhibiting 

plasmacytoid features. It is thought that viral proteins such as vGPCR, K1, and K15 provide 

for constitutive activation of PI3K and PLC-K resulting in cell proliferation and survival (35, 

36, 56, 80, 82, 83). PEL expresses elevated levels of IL-10 and varying amounts of IL-6 in a 

cell line dependent manner (81, 84). Additional cytokines with high levels of expression in 

PEL are oncostatin and IL-6 soluble receptor (84, 85).  

PEL can appear concurrently with Kaposi sarcoma (KS) or independently, suggesting 

that KSHV infection profoundly reprograms B-cell signaling in an alternate mechanism to 

Kaposi sarcoma, a disease primarily in endothelial cells (36, 39, 40, 86). It is important to 

note that de novo KSHV infection results in latency not lytic replication, which in turn results 

in the expression of latently expressed viral oncogenes (64). In addition to the latency genes, 

PEL depends on different host pathways that KSHV modulates to carry out the viral life 

cycle (73, 87-89).  

One cellular pathway, studied extensively, is the mTOR pathway, which is required for 

PEL survival (87, 90-92).Viral proteins play a role in overriding the normal functions of host 

pathways for the benefit of the virus. LANA is known to be critical for PEL survival as well 
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as dysregulation of the immune response, such as blocking of p53 functions and upregulating 

ß-catenin (36, 40, 93). Another cellular pathway that is important for PEL survival and of 

interest to this thesis is the IRAK/NFκB pathway. The vFLIP is known to interact with the 

IRAK pathway by activating NFκB. The vFLIP is thought to aid in B-cell tumorigenesis, as 

was shown in mice (56, 94). Research has shown that HSP90 inhibition blocks vFLIP 

activation of NFκB and leads to cell death in PEL lines (95). Other work has shown that 

IKKγ mimetic peptides can lead to apoptosis in PEL (96). IKKγ is an upstream regulator of 

NFκB activation. To summarize, we see that PEL is an aggressive disease that causes 

dysregulation of cellular pathways and that KSHV infection is necessary but not sufficient 

for PEL development.  

The IRAK-MYD88 Signaling Pathway 

The IRAK pathway has important roles in innate immunity. When pathogens invade our 

bodies, cells can recognize various pathogen-associated molecular patterns (PAMP) (70, 73, 

97). These PAMPs include bacteria lipids, virus RNA, and virus DNA to name a few. 

PAMPs are recognized by TLRs. Additionally, cells can produce cytokines when stimulated 

by PAMPS, which alerts the immune system and other cells in the environment of the 

infection. One such cytokine is interleukin-1 Beta (IL-1β), recognized by the interleukin-1 

receptor (ILR1) (19, 98). There are 13 TLRs and 38 ILRs in humans (66, 99). Of these TLRs 

and ILRs, many signal through the IRAK pathway.  

Table 1. 1 List of TLRs that can signal through the IRAK pathway. 

TLR/ILR TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 IL1R 
Signals through 

the IRAK 
pathway 

Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 
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When the IRAK pathway is activated by either TLR or ILR activity, a signaling cascade 

is initiated that results in the transcription factor NFκB being released to change cellular 

transcription and create a pro-inflammatory environment (19, 22, 100). For fighting infection 

in an acute response, activation of NFκB is good for the human body (20, 22, 70, 71, 97, 

101). However, chronic inflammation due to NFκB can induce conditions such as arthritis 

and cancer (21, 22, 61, 97, 100, 102, 103).  

 

Figure I. 1: The IRAK pathway functions to activate NFκB.  

Since inflammation is tightly controlled by various cellular pathways, it is important to 

understand how the IRAK pathway functions properly in healthy cells. Initially, a TLR or 

ILR is activated by a ligand. The receptors then dimerize, and this change in confirmation 

recruits the adapter protein myeloid differentiation primary response protein (MYD88) (69, 
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104). MYD88 recruits interleukin associated protein 4 (IRAK4) to the complex, which is 

phosphorylated upon recruitment (19). Phosphorylation of IRAK4 allows for interleukin 

associated protein 1 (IRAK1) to be recruited into the complex (105, 106). This MYD88-

IRAK4-IRAK1 complex is known as the Myddosome, and its crystal structures has been 

solved (107). Following Phosphorylation of the IRAK1 activation site by IRAK4, IRAK1 

undergoes hyper auto-phosphorylation, which causes its release from the complex and 

association with TRAF6 and TAK1 (19, 108-110). These two proteins are activated and 

remove the suppression of the IKK complex, allowing the release of NFκB (108, 111).  

There are many variables within the IRAK pathway. The kinase activity of IRAK1 is 

not required for IL-1β signal propagation in some cell types (112). IRAK1 can activate 

STAT3, directly resulting in IL-10 transcription, which is dependent on kinase activity (113). 

IRAK-M is a negative regulator of the signaling pathway, preventing the phosphorylation of 

IRAK1 and IRAK4, but IRAK-M is primarily seen in monocytes and macrophages and is not 

expressed in B-cells (19, 100, 114). IRAK1 and IRAK4 are the most commonly expressed of 

the IRAK proteins in cancer cells (100). In T-cell acute lymphoblastic leukemia, inhibition of 

IRAK1-4 kinase activity resulted in cell arrest but not death (100). IRAK1 or IRAKM 

knockout mice had functional NFκB activity when stimulated with IL-1β. It is believed that 

IRAK2 compensates for the loss of IRAK1 in these situations; however, this is not the case 

in PEL (115, 116). IRAK2 is also linked to late-phase TLR response, whereas IRAK1 is 

present in early-phase TLR signaling (117). IRAK2 has expression levels near the detection 

limit in PEL whereas IRAK1 is highly expressed in PEL according to our RNA-seq data. 

Loss of both IRAK1 and IRAK2 results in the same inhibition of NFκB activation in 

response to IL-1β as an IRAK4 knockout (117). IRAK1 has also been shown in mouse 
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models to regulate type I Interferon production induced by TLR7 and TLR9 in distinct cell 

types (66). IRAK1 is known to bind and phosphorylate IRF7 in a TLR7 and TLR9 dependent 

manner, and the IRAK1 kinase activity is indispensable for phosphorylation of IRF7 (118). 

The IRAK pathway is complex and of its many players, each appear to have non-canonical 

functions. When the pathway is dysregulated, there can be extremely negative effects, which 

will be discussed in the next section. 

IRAK-MYD88 and Lymphoma 

In a subset of diffuse large B cell lymphomas, MYD88 L265P is an activating mutation 

that results in constitutive activation of the NFκB pathway and development of a more 

aggressive lymphoma (119-122). The L265P mutation is referred to as a driver mutation and 

30% activated B-cell like (ABC), 60% central nervous system, 77% testicular DLBL, and 

upwards of 90% Waldenstrom’s macroglobulinemia (WM) have this mutation (120, 123-

125). The mutated MYD88 results in an increase in IRAK1 phosphorylation and NFκB 

activation (126). It should be noted that these numbers are contested by some research 

groups, who suggest that the percentage of MYD88 L265P cases are lower (127). Cells with 

the MYD88 L265P mutation also display increased levels of JAK/STAT signaling and 

activation of the Bruton's Tyrosine Kinase (BTK) pathway (119, 124). 

 Treating these L265P-mutant cells with an IRAK4 inhibitor was effective at reducing 

cellular proliferation, demonstrating that targeting the IRAK pathway could potentially serve 

as a drug target for certain lymphomas such as ABC-DLBCL (128). However, the members 

of the IRAK pathway have unique functions that depend on specific cell types and 

stimulations, which could also vary in different lymphomas depending on what stage of B-

cell development the lymphoma is characterized by (100). It was also seen that knockdown 
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of MYD88 in WM decreased the BTK signaling that was associated with the MYD88 L265P 

mutation (129). In this case, MYD88 was shown to act synergistically with CD79B 

mutations in the activation of NFκB, resulting in BTK inhibitor resistance (120).  

The IRAK pathway is also activated in other systems such as acute myeloid leukemia 

(AML) in which IRAK1 is overexpressed and hyper-phosphorylated at the T209 activation 

site (22, 130). In head and neck cancer, IRAK1 promoted cell survival and the inhibition of 

IRAK1 resulted in cell death (131). An analysis from the cancer genome atlas, performed in 

2017, demonstrated that IRAK1 has a role in cellular dysregulation and contributes to several 

other cancers such as melanoma, lung cancer, and breast cancer, by stimulating downstream 

proinflammatory pathways (132, 133). We have covered how two separate IRAK pathway 

members, MYD88 and IRAK1, have a role in cancer development and will next turn to the 

interplay between the IRAK pathway, KSHV, and PEL.  

The Interaction between KSHV and the IRAK Pathway 

This section will highlight the interplay between IL-1β and KSHV, as well as discuss 

the IRAK pathway as studied in PEL. IL-1β is a cytokine that relays its signal through the 

IRAK pathway, activating NFκB (19). KSHV is known to produce a pro-inflammatory 

environment by activating the NFκB pathway during latency (134). Activation of cells by IL-

1β also activates the NFκB pathway. 

 The Dittmer group demonstrated that IRAK1 has a conserved SNV in 15 out of 16 

sequenced PEL samples (135). This SNV, rs1059702 (F196S), is reported to increase basal 

levels of NFκB, produce a worse outcome of sepsis, and increase the risk of autoimmune 

diseases (136-140). The high prevalence of this SNV that results in enhanced NFκB signaling 

is very similar to what is seen with the MYD88 L265P mutation, which lead the Dittmer 



 13   
 

group to explore this pathway, eventually culminating in this thesis work. Preliminary 

research involving inhibitors and shRNA suggested that IRAK1 was essential for PEL 

survival (135). However, with the advancement of CRISPR and a greater understanding of 

the field, our hypothesis has changed to conclude that the IRAK pathway is important for the 

development of PEL but can be circumvented once the virus is established and the disease 

has progressed.  

 In KSHV-associated multicentric Castleman disease (MCD), KSHV can induce 

clinical flair-ups of IL-1β production (141). Yet, KSHV encodes for microRNAs that target 

both IRAK1 and MYD88, helping the virus to control this inflammatory pathway and it was 

demonstrated that KSHV RTA was able to degrade the TRAF protein, blocking IL-1β 

signaling during reactivation of the virus (40, 76, 142-144). IL-1β has a protective effect on 

serum-starved AIDS-KS cells, protecting them from apoptosis (145). These apparent 

contradictions suggest that the interplay between KSHV and IL1 signaling is complex and 

not yet fully understood. 

PEL primarily occurs in HIV infected individuals, and it has been shown that HIV 

infection raises the levels of IL-1β, which can enhance KSHV infection (146-148). Closer 

examination of KS demonstrated that IL-1β induced an autocrine growth factor loop leading 

to uncontrolled cellular growth (149). Increased IL-1β levels are also associated with 

KSHV/EBV co-infected PEL cases (86). It is likely that IL-1β serves an important function 

during the PEL disease progression, both paracrine acting on the tumor microenvironment 

and paracrine acting of PEL. Thus, clinically we can see the importance of IL-1β in many 

aspects of KSHV infection, as well as the importance of the IRAK pathway.  
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In the case of PEL, the scientific community has long held the view that NFκB was 

crucial for PEL survival and that vFLIP was largely responsible for activating NFκB. 

Inhibitor studies using the IKK inhibitor, BAY11-7082 , gave supporting evidence to this 

view as did shRNA studies on vFLIP (58, 61, 64). However, as inhibitors were further 

studied, the off-target effects of BAY11-7082 were seen to be mainly responsible for PEL 

cell death (150, 151). The traditional viewpoint that one protein, such as NFκB, could be a 

silver-bullet therapeutic target has been rebutted as a greater understanding of tumor 

plasticity developed (18, 25). In 2018 Manzano et al. group released a genome-wide CRISPR 

knockout screen conducted in BCBL-1 cells, a PEL tumor line, that demonstrated no 

individual member of the NFκB pathway was required for PEL survival (12). The result of 

this screen aligns with the plasticity model of cancer and is reshaping the view on the 

NFκB/IRAK pathway within the KSHV/PEL field. Multitarget therapeutics will most likely 

be more effective at treating PEL. Resistance to multitarget therapy would be less likely to 

develop, which would explain the effectiveness of BAY 11 off-target effects. Of the 

downstream genes turned on by NFκB activation, two of the most important for PEL are IL-

10 and IL-6.  

Interleukins in KSHV Infection and Disease 

Two important human cytokines that influence KSHV infection and disease are IL-10 

and IL-6 (84, 85). First, dysregulation of IL-10 is associated with the survival of cancers and 

lymphomas as it provides proliferation and anti-apoptotic signals (152). Second, IL-10 is 

linked to immune evasion for intracellular pathogens such as Tuberculosis and Leishmania 

through inhibition of MHC-II (152, 153). Both IL-10 and IL-6 can activate the JAK-STAT 

pathway, which is associated with cell survival and proliferation (153, 154). IL-6 functions in 
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promoting lymphocyte migration and is expressed at high levels in human serum in various 

disease such as KS. Dysregulation of IL-10 and IL-6 occurs across all four KSHV-related 

diseases: KS, PEL, KICS, and MCD as discussed below.  

KSHV is responsible for the increase of IL-10 and IL-6 expression in PEL (155-157). 

In one study, 19 PEL patients were compared with 20 HIV-associated DLBCL cases, and the 

PEL samples had elevated IL-10 and IL-6 levels when compared to the DLBCL (158). When 

comparing classic KS with AIDS-associated KS, higher levels of IL-10 were observed in 

AIDS-associated KS. Of the AIDS-associated KS, the highest levels of IL-10 were in 

individuals with the most aggressive disseminated KS lesions (159). In KS lesions, the TLR4 

pathway is constitutively active and results in increased IL-6 levels and STAT3 activation 

(160). Both KICS and MCD are characterized by high levels of IL-6 and IL-10 (161). In one 

study conducted on KICS, IL-10 and IL-6 levels were evaluated for all ten individuals (males 

that were HIV positive). These patients had an increased risk of death, lower hemoglobin and 

albumin, and displayed increased C-reactive protein levels (162).  

MCD can be divided into HIV negative and HIV positive cases, with better outcomes 

for those who are HIV negative (163). Approximately 50% of MCD patients have 

uncontrolled KSHV infections (164). KSHV viral load, vIL-6, IL-6, IL-10, TNF and IL-1β 

are used to evaluate KSHV+ MCD (141, 165-167). In KSHV+ MCD, gene expression is less 

regulated than is typically observed in KS. This lack of KSHV gene regulation in MCD leads 

to increased activation of vIL-6 (168, 169). vIL-6 or IL-6 can work together or independently 

to cause MCD flares (141). In KSHV+ MCD, a subset of patients developed hemophagocytic 

lymphohistiocytosis, a severe condition linked with IL-6 levels (165).  
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KSHV encodes a homolog of IL-6, vIL-6, which shares 25% homology with IL-6. 

vIL-6 binds directly to the gp130 receptor without the need of the IL-6R co-receptor that is 

required for IL-6 signal relay (170). KSHV vIL-6 can activate cells that do not respond to IL-

6 (171). N-linked glycosylation is required for optimal vIL-6 function (172, 173). Two 

KSHV proteins, vIL-6 and vGPCR, are linked to upregulation of Angiopoietin-2, a secreted 

proangiogenic and lymphangiogenic (174). KSHV RTA binds to and activates the IL-10 

promoter in collaboration with human specificity proteins 1 and 3 (175). KSHV vFLIP can 

block lytic replication by inhibiting RTA, yet RTA activation of vIL-6 is not inhibited (176). 

Epigenetic modifications are important for the function of vIL-6 because, during latency in 

PEL, the vIL-6 promotor is in an open chromatin formation but it differs in each viral 

episome (177, 178). KSHV encodes a viral endonuclease, SOX, which degrades cellular 

mRNA. Notably, IL-6 mRNA is protected from this degradation through a 3’ untranslated 

region (179). Tumor associated macrophages have been seen to play an important role in 

PEL disease progression (180). 

 In PEL cells IL-10 has a role in HSV1 induced reactivation of KSHV (181). EBV 

has a homolog of IL-10 (vIL-10) (182, 183). Infection of endothelial cells with KSHV 

activates IL-10, IL-6 and IL-13, which results in the development of monocytes into tumor-

associated macrophages (180). Binding of KSHV to dendritic cells (DC) resulted in 

increased levels of IL-10, IL-6, and IL-23, which activated STAT3 and blocked autophagy in 

the DC cells. This could allow for the establishment of KSHV and the development of KSHV 

associated diseases (184). 

In addition to viral proteins, KSHV encodes viral microRNAs that interact with these 

pathways. KSHV miR-K12-3 can regulate IL-10 expression and suppress STAT3 and 



 17   
 

STAT5 (185, 186). Using bioinformatics, KSHV miR-K12-3 and miR-K12-7 were shown to 

target the 3'UTR of the transcription factor C/EBPβ, which regulates IL-6 and IL-10. Follow-

up experiments revealed that these two miRNAs reduce expression of the C/EBPβ protein 

(187). During development of tumorigenesis, the KSHV miR-K12-1 activates NFκB and thus 

indirectly STAT3 (188). KSHV miR-K-10b and miR-K-12-12* have elevated levels in 

patients with sepsis. These miRNAs were also elevated postoperative but returned to normal 

after 7 days. KSHV miR-K-10b and miR-K-12-12* acted against TLR8 and are thought to 

have a function in increased IL-10 and IL-6 levels (189). Exomes are known to carry host 

and KSHV miRNAs. When exosomes were harvested from PEL effusions and used to treat 

endothelial cells, an increase in IL-6 and cellular migration was observed (190).  

When mice were generated with inducible vFLIP in endothelial cells, KICS 

symptoms developed including increased IL-6 and IL-10 levels (191). The mouse KSHV 

homolog, murine gamma-herpesvirus 68 (MHV68) M2 protein, was shown to activate IRF4 

and, in turn, IL-10, resulting in enhanced proliferation and survival (192, 193). When mice 

where engineered to express vIL-6, MCD symptoms quickly appeared, however, when vIL-6 

mice were made in a IL-6 KO background, no symptoms appeared, leading to the conclusion 

that both vIL-6 and IL-6 are required for development of MCD (194). 

When measuring disease function in KS patients treated with Omega3 fatty acid (Fish 

oil), there was a slight reduction in IL-6 levels (195). Studies have combined inhibitors 

PEP005 (protein kinase C activator) with JQ1 (bromodomain and extra-terminal inhibitor) 

and this resulted in a reduction of IL-6 in PEL cells while reactivating the virus (196). 

Treatment of MCD has been advanced by targeting CD20 with rituximab combined with 

virus reactivation drugs, zidovudine and valganciclovir, and has increased the one year 
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survival rate to around 85% (197, 198). Tocilizumab, a monoclonal antibody against IL-6, 

has also been used to successfully treat MCD (199). Adding liposomal doxorubicin with 

rituximab causes a decrease in KSHV viral load, vIL-6, IL-6, C-reactive protein, and serum 

immunoglobulin (200). In 2014 the FDA approved siltuximab for the treatment of MCD 

(201). Even when KSHV MCD is successfully treated, the patients remain at risk of 

developing NHL (201). 

CRISPR in PEL 

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) is a bacterial 

defense system that degrades invading phage DNA (202). The mechanism of CRISPR relies 

on RNA “PAM and guides” that recognize the invading phage genome coupled with a 

CRISPR-associated endonuclease (Cas) protein that cuts the target DNA, thus neutralizing 

the phage threat. This technique has been modified for use in mammalian cells by making 

guide RNAs (gRNA) that can target specific DNA sequences and when used with expression 

of a Cas9 protein, produce cuts in the DNA (202). The CRISPR technique is now extensively 

utilized and has been applied to create knockouts as well as gene knock in cell lines and 

model organisms.  

One CRISPR technique is to generate stable Cas9 expressing cells through lentivirus 

transduction and selection, followed by a second lentivirus transduction with a gRNA under 

the control of a different selection marker. This technique was the system used in this thesis. 

A second CRISPR method uses lentivirus to deliver a construct that has the Cas9 and the 

guide together, however, this system was not as adaptable for PEL in this study (34). A third 

mechanism to employ CRISPR is to transfect the plasmids into cells and sort/select for cells 

that have the plasmid using flow cytometry and a fluorescent tag. Primarily, when working 
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with CRISPR, clonal populations are generated. For short-term effects and whole genome 

CRISPR screens, this third technique can be useful. The PEL cell lines that we studied in this 

thesis are derived from B-cells, and as such, we determined that the two-step system 

described in the first technique would provide the best results since B-cells can be 

challenging to work with.  

One of the first CRISPR experiments applied to KSHV was conducted by knocking 

out cellular genes encoding for the ALX/FPR proteins in U2OS cells and infecting these lines 

with KSHV to observe whether these proteins functioned in infection (203). This method, 

however, was not conducted in PEL cells, and U2OS cells are easily transduced and 

transfected unlike PEL, which can be difficult to manipulate. Previous research in the 

Dittmer lab transfected CRISPR plasmids that targeted the Epstein-Barr virus (EBV) genome 

into KSHV/EBV co-infected PEL cell lines (34). Using this method, Bigi et al demonstrated 

that, in KSHV/EBV co-infected PEL cells, the loss of the EBV genome resulted in decreased 

viability of PEL cells (34).   

In 2018, as mentioned prior, Manzano et al. published results from a genome- wide 

CRISPR screen in BCBL-1 cells (12). The initial results of this study examined pooled cells, 

not clones, as we do in this thesis. The authors later used clonal populations to verify that 

members of the NFκB pathway were individually dispensable. Manzano et al., as in this 

thesis, also opted to use the two-part CRISPR system with the initial establishment of Cas9 

positive cell lines. Since the 2018 screen, several more papers have been published by 

Manzano et al., confirming the results of the CRIPSR screen and demonstrating the 

usefulness CRISPR in PEL studies (12, 204, 205).  
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At the time of writing of this thesis, the most recent application of CRISPR in PEL 

was using a one-part system with the Cas9 and two guides that target the KSHV protein, 

ORF57, transduced into BCBL-1 cells (206). Similar to what Bigi et al. showed when 

targeting EBV, after ORF57 was eliminated from BCBL-1 cells, the KSHV episome was 

destabilized (34, 206). Therefore, we see that although CRISPR is being used to study PEL, 

the techniques and methods are different, varying in the delivery system, host versus virus 

targets, and clonal versus pooled read outs following the CRISPR. The research in this thesis 

advances the study of PEL using CRISPR. In conclusion, CRISPR is a powerful tool to 

examine cellular pathways, and we adapted it to study the IRAK pathway in the context of 

PEL in this thesis.  

In summary, this chapter has introduced how cancer can be induced by viral 

infections, KSHV being one such virus. We have discussed PEL and the severity of the 

disease, as well as the aberrant host pathways of PEL cells, particularly the IRAK pathway. 

This chapter also summarized what is known about dysregulation of the IRAK pathway in 

other systems, and it concluded with the importance of IL-1β in the KSHV life cycle during 

infection, detailing the relationships between the IRAK and NFκB pathways and KSHV.  
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CHAPTER 2: IRAK SIGNALING IN KSHV INDUCED PEL1 

Importance 

100% of Primary effusion lymphoma (PEL) cases are associated with Kaposi 

Sarcoma-associated herpesvirus (KSHV). PEL cell lines, such as BCBL-1, are the workhorse 

for understanding this human oncovirus and the host pathways that KSHV dysregulates. 

Understanding their function is important for developing new therapies as well as identifying 

high-risk patient groups. The MYD88/IRAK pathway, which has pro-growth functions in 

other B cell lymphomas, has not been fully explored in PEL. By performing CRISPR/Cas9 

KO studies targeting the IRAK pathway in PEL, we were able to determine that established 

PEL cell lines can circumvent the loss of IRAK1, IRAK4, and MYD88; however, the 

deletion clones are deficient in IL-10 production. Since IL-10 suppresses T cell function, this 

suggests that the IRAK pathway may serve a function in vivo and during early-stage 

development of PEL.  

Introduction 

Primary Effusion Lymphoma (PEL) is a currently incurable B cell lymphoma. The 

medium survival time is estimated at 6 months following diagnosis. Kaposi’s Sarcoma-

associated herpesvirus (KSHV) is the etiological agent of PEL. Unlike the Epstein-Barr virus 

(EBV), KSHV infection of primary human cells in culture does not cause transformation. 

 
1 Jedediah Seltzer, Razia Moorad, Jason Schifano, Justin Landis, and Dirk P. Dittmer. 2020. Interleukin-1 
Receptor Associated Kinase (IRAK) signaling in Kaposi Sarcoma-associated herpesvirus (KSHV) induced 
Primary Effusion Lymphoma. J Virol. 2020 Mar 11. pii: JVI.02123-19. doi: 10.1128/JVI.02123-19. 
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This suggests that host cell mutations are required to explain the PEL phenotype, in addition 

to virus infection (207). As with all other cancers, these host mutations can be inborn, 

existing prior to KSHV infection, or they can develop under selection during tumor 

evolution. Tumor suppressor genes, such as p53 and Rb, exemplify the former and the latter 

are demonstrated by BCL6 and c-Myc, which become activated during germinal center 

passage of B cells and contribute to Burkitt lymphoma (10).  

PEL is observed primarily in end-stage AIDS patients, although isolated cases of PEL 

have also been reported in HIV-negative patients (reviewed in (36)). Most PEL cases arise in 

males. PEL manifests as effusions in body cavities such as the peritoneum. Several PEL 

effusions gave rise to culture-adopted cell lines, such as BC-1 (208) and BCBL-1 (209). 

During initial outgrowth, these cell lines depended heavily on autologous human serum but 

later adapted to growth in solely fetal bovine serum. PEL persists in a highly inflammatory 

environment, often with concurrent microbial infections. Markers of inflammation, such as 

IL-10, precede lymphoma development in AIDS patients, and IL1-β is one of the cytokines 

that is elevated in KS lesions as well as in KSHV-associated multicentric Castleman’s 

disease (MCD) (141, 210-213). It remains unknown how this inflammatory 

microenvironment shapes PEL tumor initiation and growth. This represents a gap in our 

knowledge of KSHV biology. Understanding the impact of predisposing genome variants in 

inflammatory signaling pathways may uncover novel targets of intervention and/or 

prevention for PEL. 

The Interleukin 1 Receptor Associated Kinase 1 (IRAK1) functions in the 

MYD88/IRAK pathway, an immune signaling pathway that relays signals from Toll-like 

receptors (TLRs) and Interleukin receptors (ILRs) (19, 71, 214). When one of these receptors 
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recognizes a ligand, the receptors dimerize, resulting in the recruitment of the adapter protein 

MYD88. MYD88 then recruits Interleukin 1 Receptor Associated Kinase 4 (IRAK4), which 

undergoes auto-phosphorylation and activation. IRAK4 recruits IRAK1 to form a large 

complex composed of multimerized MYD88, IRAK4 and IRAK1 proteins, termed the 

“Myddosome” (215). There are two additional Interleukin 1 Receptor Associated Kinases: 

IRAK2 and IRAKM. IRAK2 has recently been shown to have limited kinase activity and 

IRAKM is an inhibitory protein, which is not expressed in PEL (103, 117, 135). IRAK4 

phosphorylates IRAK1, which induces IRAK1 auto-phosphorylation at T209 and release 

from the “Myddosome” (19, 216). Phosphorylated IRAK1 activates TRAF6/TAK1, 

translocating p65/RELA into the nucleus and activating multiple NFκB responsive genes. 

IRAK1 is then either degraded or marked for nuclear transport through K48 or K63 

ubiquitination respectively (19, 115, 217). IRAK1 is necessary and sufficient for IL-1β 

signaling in most cells, including B cells (71, 130). There are, however, cell lineages that 

deviate from this rule, where IRAK2 can substitute for IRAK1 (100), or where the presence 

of the IRAK1 protein is required but not its kinase activity (19). Additionally, MYD88 can 

signal through other downstream adaptors in addition to IRAK1/4, depending on the nature 

of the trigger (216, 218, 219).  

MYD88 sometimes harbors a mutation, L265P, pertinent to B cell lymphoma. L265P 

results in constitutive activation of the IRAK pathway in a fraction – 44-75% subtype 

specific – of diffuse large B cell lymphoma cases, and over 85% of Waldenstrom's 

macroglobulinemia cases (WM) (123, 220-224). WM is of post-germinal center lineages, like 

PEL, and has features of both plasma cells and lymphoid cells. Treating WM cells with an 

IRAK4 inhibitor or a MYD88 inhibitor was effective at reducing cellular proliferation, 
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demonstrating that the IRAK pathway could potentially serve as a drug target for WM (128, 

225-227). In this study, we set out to understand the IRAK pathway in PEL, and to test the 

hypothesis that this pathway could, as in WM, be exploited as a therapeutic target. 

 

Methods 

  

Cell Culture: Suspension cell lines were cultured in RPMI 1640 (Gibco), and adherent cells 

were cultured in DMEM (Gibco). Both mediums were supplemented with 100 U/mL 

penicillin-streptomycin (Gibco), 2 mM L-glutamine (Gibco), and 10% “Fetalgro” Bovine 

Serum (VWR). Stable Cas9-transduced BCBL-1 cells were maintained in 10 µg/mL 

Blasticidin. Cells were maintained at 37°C in 5% CO2 and passaged for no more than 3 

months at a time. All cell lines were obtained from the ATCC. For STR typing, cell pellets 

were submitted to Genetica DNA Laboratories, Burlington, NC using the PowerPlex®16HS 

assay (Promega) to provide results for 16 genetic test sites. Results were compared to 

reference data from ATCC. All cells underwent periodical mycoplasma testing (Lonza, 

LT07-701). 

Lentivirus production: Lentivirus particles were produced in 293T cells using ViraPower 

(Thermo-Fisher, #K497500) or purchased from Millipore Sigma Sanger clone library. All 

plasmids used in the lab are assigned a unique identification number known as a pDD 

number. CRISPR plasmids were obtained from Millipore Sigma: pDD2160-61 (IRAK1, 

#HS5000019451-2), pDD2162-63 (MYD88, #HS5000001249-50), or from Addgene: 

pDD2125 (Cas9, #52962), pDD2126 (EV, #52963), pDD2127-29 (IRAK4 guides #75664-6). 

Packaging mix and transfer plasmid were co-transfected into 293T cells using ViraPower, 
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according to the manufacturer protocol. Virus particles were harvested 48-72 hours post-

transfection, filtered, aliquoted, and stored at -80°C until use.  

Stable Cas9 cell line generation: A Cas9 expression plasmid was obtained from Addgene 

(#52962). This Cas9 is under constitutive expression in mammalian systems. 293T cells were 

transfected with the Cas9 plasmid and ViraPower mix as described in previous section. Cas9 

lentivirus were harvested and BCBL-1, BC-1 and BJAB cells were inoculated with the Cas9 

lentivirus. Following spinfection positive Cas9 stable cells were selected using 10 μg/mL 

Blasticidin selection. Stable Blasticidin resistant cells were probed by western blot for Cas9 

expression and used in all CRISPR experiments.  

Spinfection procedure: For purchased particles, 50,000 cells were plated in 24-well plates 

with 100 µL of serum free media. 200 µL of particles, MOI of 5 (Particle titers determined 

by manufacturer using a p24 assay) were added with 10 µg/mL polybrene. The plates were 

centrifuged for 90 minutes at 1,500 RPM (1000 x g). Media was changed 18 hours following 

centrifugation. Selection media, containing 2.5 µg/ml of puromycin, was added 24 hours post 

centrifugation. Half of the cells were plated into three 1 mL colony formation assays for 

single cell clone selection; see colony formation assay methods. Trypan Blue (Millipore 

Sigma, #T8154) cell counting was used for all growth proliferation assays and live/dead cell 

counting.  

CRISPR Knockout: For CRISPR KO, we used the same spinfection protocol as mentioned 

previously and performed a second spinfection with a second guide on the same target cell 

population. Following the second spinfection, 5,000 cells were plated in a 1% 

methylcellulose medium with 2 μg/mL puromycin to select for single cell clones. After three 

weeks of growth, clonal colonies were selected and grown in 5 µg/ml puromycin media. 
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Flanking PCR and gel analysis on a Perkin Elmer LabChip GX Touch HT instrument 

validated CRISPR cutting. PCR primer sequences for CRISPR validation are as follows, 

IRAK1-F: 5’-CCTCTGGCCTCACCTGGA, IRAK1-R: 5’-

CAGAACGCTGACCTGGAGTG, IRAK1-FB: 5’-TGGTGTGCGGTCTGAAGC, IRAK1-

RB: 5’-CTTCGCTTCGAGAGCCTCA, MYD88-F: 5’-

GCTGAACTAAGTTGCCACAGGA, MYD88-R: 5’-GAGCTTACCTGGAGAGAGGC, 

IRAK4-F: 5’-ACTGGAAAAAGTCCCACTTCTGA, IRAK4R: 5’-

ACTTTCTTACAGCCTAAGCCAGA, IRAK4-FB: 5’-

ACTGGCTGAAAAGAGAAGTATTTGC, and IRAK4-RB: 5’-

GGCAACCCAGTTGTTGACAT.  

Western blotting: One million cells were harvested; lysed with 100 μL “RIPA” buffer (150 

mM NaCl, 1% Triton X, 0.1% SDS, 1% Na-Deoxycholate, 50 mM Tris pH 7.4, H2O); 

supplemented with protease inhibitor cocktail (Millipore Sigma, P8340), 30 mM beta 

glycerol phosphate, 50 mM NaF, 1 mM Sodium Orthovanadate, and Benzonase Nuclease 

(Millipore Sigma, 712053); and incubated for 30 minutes on ice, with 15 seconds of 

vortexing every ten minutes. Depending on the assay, 10-15 µL of cell lysate, normalized by 

cell counts or Bradford Assays, was loaded onto 10% SDS-polyacrylamide gel, separated by 

electrophoresis, and transferred to a PVDF membrane (Millipore Sigma, GE10600023). 

Membranes were blocked using 10% milk or OneBlock (Genesee 20-313). Anti-Actin rabbit 

and mouse (#4970 & #3700), MYC-Tag (#2272), IRAK1 (#4504), MYD88 (#4283), NFκB 

p65 (#8242), and NFκB Pp65 (#3022) were purchased from Cell Signaling. Anti-IRAK4 

(#AF3919) was purchased from R&D systems. HRP-conjugated rabbit and mouse secondary 

antibodies (Vector Labs, #PI-1000 & #PI-2000) were used to detect western signals and 
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developed using Pierce ECL western blotting substrate (Thermo-Fisher, #32106) on film 

(Genesee, #30-810L) or with Clarity ECL (Bio-Rad, #1705061) on a ChemiDoc (Bio-Rad) or 

iBright (Thermo-Fisher) imaging device. For the p-NFκB (p65) western blots, samples were 

harvested 10 minutes after stimulation with 1 ng/mL of TNF-α or IL-1β. 

Colony Formation Assay (CFA): Cells were plated in 6-well dishes in triplicate using 10% 

FBS, complete RPMI media, 1% methylcellulose, and 2 μg/mL of puromycin to select for 

stable knockouts. Light images of wells were obtained 3 weeks after plating, using 10X 

magnification. The number of colonies was quantified using ImageJ software.  

NFκB reporter assay: 3 μg of Pglo44 NFκB driven luciferase reporter plasmid (Promega), 

pDD3209, was nucleofected into 1 million cells using 100 µL Ingenio electroporation 

solution (Mirus, #MIR50117) and the Lonza 4D nucleofector. Cells were stimulated with 1 

ng/mL TNF-α, IL-1β, or PBS 24 hours post-transfection. The luciferase values were 

measured after 6 hours. ONE-Glo (Promega, #E6120) firefly reagent was used, and activity 

was measured using a FLUOstar Optima plate reader (BMG Labtech). We used the same set-

up as above to test the effects of inhibitors on luciferase production. 15 minutes before 

stimulation with IL-1β, IRAK inhibitors were added to the plate at 100, 50, and 25 μM. The 

NFκB reporter assay was performed at 6 hours post IL-1β stimulation.  

IRAK1 complementation: We obtained three IRAK1 expression plasmids from Origene: 

pDD1951 (#RC221544, PEL phenotype full length IRAK1), pDD1952 (#RC224107, IRAK1 

isoform B), pDD1953 (#RC204869, IRAK1 isoform C), and the empty vector control 

pDD1957 (EV, pCMV6-entry). Blue Heron Biotech synthesized three additional IRAK 

expression plasmids based on the same pCMV6 vector: pDD2147 (kinase dead non-PEL 

IRAK1), pDD2148 (IRAK1 non-PEL), and pDD2149 (PEL IRAK1 kinase dead). 3 μg/μL 
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plasmid was nucleofected into 1 million cells using 100 µL Ingenio solution (Mirrus) and the 

Lonza 4D nucleofector. Western blots were performed 48 hours post transfection. For the 

complementation experiment to test NFκB signaling, we co-transfected the expression 

plasmid pDD3209 with Pglo44 NFκB plasmid (Promega), stimulated 24 hours after 

nucleofection, and viewed as described in the reporter method above. WT, ΔIRAK1, 

ΔIRAK4, and ΔMYD88 cell lines were all tested in this manner. All plasmids were sequence 

verified by complete plasmid sequencing on the Ion Torrent S5 platform at the UNC 

Lineberger Vironomics Core (https://www.med.unc.edu/vironomics/).  

Inhibitor EC50 assays: For generating IRAK, NFκB, BTK, and MYD88 inhibitor EC50 

values, serial dilutions of the inhibitors were added to 96 well plates containing 5,000 cells 

per well and incubated for 48 hours. After 48 hours, cell viability assays were carried out 

using CellTiter-Glo® 2.0 Luminescent Cell Viability Assay (Promega, #G9242) per 

manufacturer instructions. Luminescence was measured at 560 nm using the FLUOstar 

Optima (BMG Lab Tech). EC50 values were calculated using the R package DRC (version 

3.5.3). Inhibitors used in this study were as follows: inh1 (CAS No: 1042224-63-4), inh2 

(CAS No: 928333-30-6), inh3 (CAS No: 1012343-93-9), inh4 (CAS No: 1012104-68-5), 

inh6 (CAS No: 1042672-97-8), inh1-4 (CAS No: 509093-47-4), BAY11-7082 (CAS No: 

19542-67-7), STAT2825 (CAS No: 894787-30-5), Acalabrutinib (CAS No: 1420477-60-6), 

AVL-292 (CAS No: 1202757-89-8), and Ibrutinib (CAS No: 936563-96-1). 

Inhibitor KINOMEscan: We obtained KINOMEscan profiles from DiscoverX-Eurofins for 

each of the six IRAK inhibitors used in this study, which screened each inhibitor at 50 and 

250 nM concentrations against 480 human kinases. From this profiling, we were able to 

generate specific kinase profiles for each inhibitor.  



 29   
 

RNA-sequencing analysis: 1 million cells were harvested, flash frozen in TRIzol 

(Invitrogen, 15596026), and shipped on dry ice to Novogene for Illumina-based RNA-

sequencing. Raw sequence data fastq files were imported into CLC genomics workbench 

(Qiagen, version 12). Read alignment was performed using default parameters, where reads 

were annotated by their genes as well as transcripts from annotations on the Homo sapiens 

(hg38) sequence mRNA. The resultant gene expression (GE) tracks were used as input for 

further analysis and to generate figures in R (version 3.5.3 (2019-03-11)) and Bioconductor 

v3.10 using DESeq2(228). Heat maps illustrating the gene expression for the WT and clones 

treated with IL-1β and IL-1β + inhibitors were generated on CLC genomics, using the GE 

tracks as input. The Hierarchical clustering was performed by measuring the Euclidean 

distance between clusters, which were defined by their average linkage. Filtering was 

performed based on a fixed number of features, with a minimum of 10 and a maximum of 

100 genes. All reads were submitted to SRA under PRJNA590509 

https://www.ncbi.nlm.nih.gov/sra/PRJNA590509.  

Exome sequencing and mutation calling analysis: DNA was extracted from 1 million cells 

using a MagNA Pure Compact nucleic acid isolation I large-volume kit (Roche 3730972001) 

and quantitated by Qubit 3.0 double-stranded DNA (dsDNA) high-sensitivity (HS) assay 

(Life Technologies). Barcoded exome sequencing libraries were prepared from 100 ng DNA 

following Life Technologies protocol MAN00009808 Rev: A.0. with an Ion AmpliSeq 

Exome RDY library preparation kit (Life Technologies A38262) (92). Samples were 

sequenced on the Ion S5 system using methods as previously reported (92). The SRA 

accession number is PRJNA596731 https://www.ncbi.nlm.nih.gov/sra/PRJNA596731.  

https://www.ncbi.nlm.nih.gov/sra/PRJNA590509
https://www.ncbi.nlm.nih.gov/sra/PRJNA596731
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Statistics: Colony formation count data was transformed to the square root of the total 

number of colonies. The square root transformation is a variance-stabilizing transformation 

for Poisson distributed random samples. A Tukey-post Test was run on count data to obtain 

significance and confidence intervals for the data and to adjust for multiple comparisons. All 

calculations were performed using R version 3.5.3 (2019-03-11). Data and code is available 

under (https://bitbucket.org/ddittmer/r_irak2019/src/master/)  

Data availability 

RNA-seq data for WT and IRAK4 knockout cells are available here on the SRA database 

https://www.ncbi.nlm.nih.gov/sra/PRJNA590509. Twenty samples were sequenced, 

Accessions numbers are as SRX7194576-SRX7194595. The Exome-seq data of the IRAK 

pathway knockout cells were submitted to the SRA and the accession number is 

PRJNA596731 https://www.ncbi.nlm.nih.gov/sra/PRJNA596731. Individual accession 

numbers are SRX7417321- SRX7417326 with detailed description on each sample. For 

volcano plots and RNA-seq analysis R was used to perform the analysis. All code used in 

this study is deposited here (https://bitbucket.org/ddittmer/r_irak2019/src/master/). 

Results 

  

MYD88 is functional, but dispensable for PEL growth. PEL has a unique B cell 

signaling pathway network consistent with its presumed cell of origin (81, 229, 230). Unlike 

other B cell lymphomas, PEL does not express an active B cell receptor, CD79 or CD20 

(Figure II. 1A). Furthermore, PEL does not express Burton’s tyrosine kinase (BTK). Rather, 

PEL expresses high levels of MYD88, TLR1, 3, 4, 6-10, CCR5, and IL-10. TLR 7/8 

signaling is functional in PEL and results in KSHV reactivation (74). The initiating protein 

https://bitbucket.org/ddittmer/r_irak2019/src/master/
https://www.ncbi.nlm.nih.gov/sra/PRJNA590509
https://www.ncbi.nlm.nih.gov/sra/PRJNA596731
https://bitbucket.org/ddittmer/r_irak2019/src/master/


 31   
 

for the MYD88/IRAK4/IRAK1 Myddosome, the MYD88 coding regions for the BCBL-1, 

BC-1, BC3, BCP1, JSC1, and VG1 PEL lines as well as seven primary PEL patient samples 

were sequenced to test whether PEL contains activating mutations in MYD88 (Figure II. 1B). 

The MYD88 gene sequence was WT, and no L265P activating mutation was observed 

(Figure II. 1C &D).  

To test the hypothesis that MYD88 is essential for PEL survival, we utilized the two-

part CRISPR system. First, we generated stable Cas9-expressing cells, BCBL-1-Cas9. 

Following selection for stable, constitutively expressing Cas9-positive cells, we infected 

these cells with lentiviral vectors encoding MYD88-targeting gRNAs. We generated two 

MYD88-deficient cell lines (ΔMYD88.1 and ΔMYD88.2) following two rounds of single 

cell cloning (Figure II. 2). Western blot analysis showed that MYD88 protein was no longer 

expressed (Figure II. 2A). The growth rates of the ΔMYD88 were the same as empty-vector 

infected sub clones that had undergone the same procedure, or as wild-type BCBL-1Cas9 

cells (Figure II. 2B). There was no difference in the ability of the ΔMYD88 cells to form 

colonies in soft agar, a rigorous measure of single cell viability (Figure II. 2C&D). Flanking 

PCR was used to verify for genomic DNA editing. The PCR product was run on a LabChip 

GX Touch HT (Perkin Elmer) instrument and showed that the MYD88 gene was edited in 

the ΔMYD88.1 and ΔMYD88.2 cells compared to non-edited WT cells (Figure II. 2E). In 

summary, MYD88 was not mutated and is dispensable for growth of BCBL-1Cas9 cells. 

IRAK signaling is functional in PEL but can be readily dispensed upon selection. We 

had previously shown that 95% of PEL cases have a non-synonymous SNV (rs1059702) in 

the coding region of IRAK1 (135). Since the same SNV was present in primary PEL 

biopsies, it is unlikely that this represents an adaptation to growth in culture. IRAK1 has 
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multiple isoforms (19, 231). We determined that the three canonical splice variants of IRAK1 

were transcribed in PEL. Additionally, we observed a previously unreported fourth IRAK1 

isoform (Schifano, unpublished observation). A protein in size consistent with the full-length 

isoform was observed by western blot, but no smaller species (Figure II. 3A). 

To test the hypothesis that IRAK1 was essential for PEL survival, we again used 

CRISPR to generate IRAK1 knockout BCBL-1-Cas9 cell lines, ΔIRAK1.1 and ΔIRAK1.2 

(Fig. 3). Western blot verified the absence of IRAK1 protein (Figure II. 3A). Proliferation 

rates for knockouts were not significantly different from WT (Figure II. 3B), and neither was 

colony formation in semisolid medium. PCR verified deletion of IRAK1 (Figure II. 3E). The 

complete exomes of the parent and deletion clones were determined by NGS to explore 

possible off-target effects of CRISPR/Cas-9 mutagenesis. As expected, both private and 

common SNV were observed, but none in regions of known clinical or biological 

significance, SRA PRJNA596731. We were able to obtain stable deletion clones of BCBL-

1Cas9 cells, ΔIRAK4.1 and ΔIRAK4.2, that had no discernable growth disadvantage (Figure 

II. 4). Western blot showed an effective KO (Figure II. 4A), and cellular growth was 

observed to be the same as WT (Figure II. 4B). There was no difference for growth in semi-

solid medium for ΔIRAK4 cells compared to WT cells (Figure II. 4C&D). Deletion of 

IRAK1 was verified by PCR (Figure II. 4E). In conclusion, PEL can survive in culture in the 

absence of IRAK or MYD88 signaling. We conducted CRISPR experiments in a second PEL 

cell line, BC-1, to confirm the results we obtained in BCBL-1 were not cell line specific 

(Figure II. 5). We see by western blot that we have knockdown of MYD88, IRAK1, and 

IRAK4 (Figure II. 5A-C). One interesting result is instead of a clean knockout for BC-1 

ΔIRAK4 we see a shift in western band size implying we generated a fusion protein. We only 
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see a band shift like this for BC-1 IRAK4 westerns. We determined knocking out these three 

proteins in BC-1 didn’t hinder growth (Figure II. 5D-F), or the ability of BC-1 cells to form 

colonies in the CFA assay (Figure II. 5. G-I). 

To test the hypothesis that BCBL-1Cas9 cells were capable of MYD88/IRAK 

signaling in the first place, control and deletion clones were exposed to IL-1β. The 

phosphorylation status of NFκB (p65) was probed using phospho-NFκB specific antibodies. 

No NFκB phosphorylation was observed in any of the deletion clones, whereas WT BCBL-

1Cas9 had a strong p-NFκB signal in response to IL-1β stimulation within 10 minutes of 

exposure to 1 ng/mL IL-1β (Figure II. 6-8A). Additionally MYD88/IRAK activation was 

evaluated by NFκB reporter assay. Wild-type BCBL-1Cas9 responded robustly to IL-1β 

(Figure II. 6-8 B&C). By contrast, IRAK1, IRAK4 and MYD88 deleted clones did not 

respond. Levels of TNF-α induced activation were similar across all cell lines, demonstrating 

that the luciferase plasmids were present and functional in these experiments, as TNF-α 

induced activation of NFκB is independent of the MYD88/IRAK pathway (Figure II. 6-8) 

(116). These experiments demonstrate that each of the three components of the IL-1β 

pathway, MYD88, IRAK1 and IRAK4, are functional in PEL and are independently required 

to transmit IL-1β-initiated signals.  

To verify that only the intended gene in the pathway was deleted and that downstream 

responses remained fully functional in the deletion clones, we performed complementation 

experiments in all knockout cell lines with four different IRAK1 expression plasmids (Figure 

II. 9). Each plasmid expressed full length IRAK1. pDD1951 encodes the PEL genotype, 

pDD2149 encodes the D340N site mutation that was previously shown to abolish kinase 

activity (232) , pDD2148 is the non-PEL genotype, and pDD2147 encodes the D340N 
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mutation in the non-PEL background. Empty vector plasmid pDD1957 was used as control. 

The kinase-dead IRAK1 isoforms were expressed at higher protein levels, presumably since 

auto-phosphorylation primes IRAK1 for ubiquitin-mediated degradation (Figure II. 9A) 

(112). Upon nucleofection of any of the four IRAK isoforms into IRAK1 KO cells, NFκB 

signaling was restored and active independent of IL-1β (Figure II. 9B). As expected, posthoc 

comparison shows a statistically significant (adjusted p≤0.0001) difference between wild-

type BCBL-1 and IRAK1 KO cells. WT BCBL-1 cells responded to IL-1β stimulation, 

whereas IRAK1 KO cells did not. Introduction of any one of the IRAK1 expression plasmids 

is able to complement the IRAK1 deficiency, whereas the vector plasmid is not (adjusted 

p≤0.0001 for each pairwise comparison) (Figure II. 9B).The same phenotype was detected in 

IRAK4 and MYD88 KO cells (Figure II. 9C). These experiments demonstrate that the 

downstream targets of IRAK1 were intact in IRAK1, IRAK4 and MYD88 KO cells. 

Furthermore, it was demonstrated that IRAK1 is downstream of MYD88 and IRAK4 in the 

signaling pathway, as expected, and that IRAK1 functions in one of the pathways that induce 

NFκB in PEL. Our IRAK1 results substantiates earlier observations that IRAK1 can induce 

NFκB independently of its kinase activity under circumstances of ectopic expression (66, 

214, 232-234). 

Many small molecule tool-compounds that target MYD88 and IRAK1/4 exhibit 

substantial off-target effects. MYD88, IRAK1 and IRAK4 have been the subject of intensive 

drug discovery efforts (103, 126, 235, 236). Several tool compounds have been developed, 

and AMGEN has advanced an IRAK1/4 inhibitor into phase I clinical trials for non-cancer 

indications (237). To explore the phenotypes of inhibiting the MYD88/IRAK4 pathway 

pharmacologically, we tested the effectiveness of six IRAK, one MYD88, and three BTK 
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inhibitors in PEL (Figure II. 10). In vitro kinase assays for 480 human kinases 

(KINOMEscans) were evaluated on the six presumed IRAK inhibitors to validate the target 

specificity of the six IRAK inhibitors. Most of these compounds showed extensive off-target 

activity. Three of the IRAK inhibitors were selected for detailed characterization in PEL 

(Figure II. 10C). (i) The AMGEN compound "IRAK inhibitor-1-4" had the greatest in vitro 

specificity. KINOMEscan identified that only four proteins were inhibited by greater than 

80% at 250 nM concentration of inhibitor: IRAK1, CLK4, CLK1 and IRAK4. “IRAK 

inhibitor 1-4” was the least effective at killing BCBL-1 cells (Figure II. 10A). Despite having 

a high EC50 value of over 200 μM “IRAK Inhibitor 1-4” reduced IL-1β activation at levels 

far below the EC50 value when the cells would not be killed from the inhibitor treatment 

(Figure II. 10B). (ii) Compound “IRAK inhibitor-1" was less specific in vitro. In addition to 

IRAK4, 19 other kinases were inhibited by greater than 80% at 250 nM (Figure II. 10C): 

FLT3, JAK3, MKNK2, GAK, MEK5, BIKE, RIOK3, PHKG2, RIOK, AAK1, PIP5K2B, 

PDGFRB, RSK4, PHKG1, KIT, ROCK1, PFCDPK1, RSK1 and SIK2. (iii) Compound 

“IRAK inhibitor-4", had no strong hits on the KINOMEscan (Figure II. 10C). IRAK1 and 

IRAK4 were inhibited to ~20% at 250 nM. Both compounds reduced IL-1β induced 

luciferase activity; however, it was not possible to separate the specific IRAK4 inhibition 

from effects on other targets or cell death caused by the inhibitors, as the EC50 for IL-1β 

signaling inhibition was equal or above the EC50 for non-specific growth inhibition (Figure 

II. 10A&B).  

Next, these compounds were evaluated in the IRAK and MYD88 KO cells. The 

MYD88 dimerization inhibitor, ST2825 (219, 225) was included as an additional control. 

ST2825 killed cells, but displayed no change in EC50 values in WT (8.42 ± 3.44 μM n=4) 
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compared to the ΔMYD88 (5.16 ± 2.79 μM n=4) ΔIRAK1 (8.0 ± 7.6 μM n=4) or ΔIRAK4 

(14.07 ± 16.6 μM n=4) cell lines (Table 2. 1). Likewise, none of the IRAK inhibitors showed 

any significant change in EC50 comparing WT to ΔIRAK4 BCBL-1CAS9 as seen in (Table 

2. 2) The EC50s for ΔIRAK4 BCBL-1 were Inh1 (15.08 ± 16.1 μM n=4), Inh4 (5.1 ± 3.5 μM 

n=4) and inh1-4 (231 ± 236 μM n=4). This suggests that any anti-proliferative activity for 

these compounds in PEL was independent of their inhibition of IRAK4 kinase activity. 

Baseline IRAK signaling is elevated in PEL, which contributes to PEL-specific paracrine 

phenotypes and limits viral replication. To determine the consequences of 

MYD88/IRAK1/IRAK4 ablation genome-wide, RNA-seq analysis of ΔIRAK4 and WT 

BCBL-1Cas9 was conducted under several treatment conditions. Each RNA-seq experiment 

was conducted across multiple independent deletion clones. There was minimal change 

between harvesting biological replicates three weeks apart from the same clone (pairwise 

Spearman correlation across all mRNAs 0.9722, 0.9675, and 0.9671 for n=3 biological 

replicates). The combined results are summarized in a heat map representation (Figure II. 

11D). First, we observed differences in baseline gene transcription between WT and 

ΔIRAK4 BCBL-1Cas9 cells. Two independently derived ΔIRAK4 cell lines were examined 

and common transcriptional changes were quantitated using false-discovery rate adjusted p-

values for individual genes. Changes are visualized by Volcano plot (Figure II. 11A), which 

verifies the functional inactivation of IRAK4-dependent immune signaling. When treated 

with IL-1β, WT cells responded with upregulation of canonical IL-1β-responsive transcripts 

Figure II. 11B), and by contrast, ΔIRAK4 cells did not respond (Figure II. 11C).  

The following genes were transcribed in BCBL-1Cas9 but not in ΔIRAK4 cells in the 

absence of exogenous IL-1β: ARHGAP30, B2M, BCL7A, ENG, EPB41L3, FTL, 
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HSP90AA1, RPS12, SELPLG, SLC16A3, SULT1A1, and YWHAQ (Figure II. 11A & D). 

IPA suggested that this gene pattern of upregulated cells is linked to aberrant cellular growth 

and cancer. The transcription of these genes was abrogated by deletion of IRAK4 as seen in 

two different clones (Figure II. 11D). Hence, we conclude (i) that IRAK signaling is 

constitutively active in PEL and (ii) that these transcripts mediate the constitutive phenotype 

of IRAK4 in PEL. Both clones also upregulated a number of transcripts that were not 

transcribed in WT cells to compensate for the loss of the IRAK phenotype (Figure II. 11D). 

These would be expected to compensate for loss of constitutive IRAK signaling; however, 

we did not observe any transcripts that were common among both KO clones. Rather, each 

ΔIRAK4 clone compensated for loss of IRAK4 activity with a unique set of transcriptional 

adaptations. The significance of these adaptive transcriptional changes is unclear. 

IL-10 was one of the transcripts differentially regulated between WT and IRAK4 KO 

cells. IL-10 is expressed at high levels in BCBL-1 cells and many other PEL cell lines (90, 

212), and is central to the biology of PEL and KSHV infection in vivo, e.g. in KICS (38). 

ELISA verified the transcriptional phenotype for secreted IL-10 protein across all IRAK KO 

cell lines (Figure II. 11F, G). IL-10 levels were lower in the IRAK1, IRAK4, and MYD88 

cell lines as compared to wild-type BCBL-1Cas9 cells, demonstrating the robustness of the 

profiling results.  

To put the individual changes in gene transcription into context, we conducted gene 

network analyses using Qiagen IPA software. IRAK4 KO cells exhibited a decrease in TNF-

α, IL1α and IL-1β networks compared to WT. Knockout of IRAK4 translates into an overall 

down regulation of the pro inflammatory milieu, which is a classic hallmark of PEL (Figure 

II. 11E).  
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Discussion 

All PEL cases require KSHV for survival. Dual-infected PEL cases require both KSHV and 

EBV, presumably because EBV stabilizes the KSHV episome (15, 34, 238). In addition, PEL 

also acquired multiple genetic changes in the host genome, analogous to EBV-transformed 

BL (239, 240). PEL’s rarity has provided a challenge to developing definitive genomic 

analyses. Within these limitations, however, several SNVs in the protein coding regions of 

genes were identified, present across multiple PEL cases and cell lines at a higher frequency 

than in the general population (135). One of these SNVs occurred on the IRAK1 gene, which 

is located on the X chromosome and transcribed in PEL. IRAK1, IRAK4 and MYD88 

constitute the Myddosome, which mediates IL-1β and TLR signaling. MYD88 is 

mutationally activated in a large proportion of diffuse large B-cell lymphomas, such as WM, 

resulting in constitutive activation of the MYD88/IRAK pathway and driving proliferation of 

these cancers (121, 223, 241). This phenomenon prompted us to explore the biological 

function of MYD88/IRAK signaling in PEL. 

MYD88 was not mutated in any of the PEL cases analyzed and upon CRISPR/Cas-9 

facilitated deletion of MYD88, the BCBL-1Cas9 PEL cell line rapidly acquired 

MYD88/IRAK independence (Fig. 1-4). The same phenotype, of IRAK independence was 

observed in BC-1 cells (Fig. 5). Furthermore, MYD88-deleted cells were deficient in IL-1β 

signaling (Fig. 6). The same held true for IRAK1 and IRAK4 deleted BCBL-1CAS9 cells 

(Fig. 7-8). Interestingly, IRAK4 deleted BCBL-1Cas9 cells lost the expression of several 

genes that were highly transcribed at steady-state, i.e. prior to IL-1β stimulation and in the 

presence of an IRAK1/4 kinase inhibitor. One of these target genes was IL-10. IL-10 

secretion was downregulated in every MYD88, IRAK1 or IRAK4 deletion clone (Fig. 
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11F&G). This suggests that IRAK signaling was constitutively active in PEL, at least the part 

of the IRAK signaling cascade that is independent of kinase activities - as has been 

previously observed (19, 66, 233). Another result of these experiments demonstrated that 

current tool compounds that target IRAK1/4 or MYD88 derived their anti-proliferative 

efficacy in PEL largely from off-target effects (Fig. 10). This does not invalidate the utility of 

these inhibitors but suggests a different mechanism of action. Since, in PEL, IRAK1 induced 

both kinase independent as well as kinase dependent targets, it remains unclear what the 

direct benefit of targeting IRAK kinase activity in PEL would be.  

Another important piece of information to consider when examining data is in the 

differences in experimental designs. Small molecule inhibitor, siRNA, and shRNA screens 

measure acute phenotypes, often within hours after addition. These agents act effectively on 

dividing as well as on non-dividing cells since they target mRNA and protein and do not 

depend on homologous recombination. CRISPR/Cas9 requires each cell to traverse multiple 

replication/division cycles. Our approach of evaluating single cell clones differed from bulk 

CRISPR/Cas9 studies that were designed to measure a relative enrichment within the total 

population. Consistent with our results, Manzano et al. (12) reported a CRISPR/Cas9 screen 

in which PEL cells survived after deletion of NFκB, which is a downstream target of IRAK1 

as well as a multitude of other signaling pathways. NFκB is also a target of the KSHV vFLIP 

and based on pharmacological studies was believed to be a driver for PEL growth (55, 56, 

60). Yet, within a few generations, PEL clones that were independent of NFκB emerged.  

Whole exome sequencing data show that, like most transformed cell lines, PEL is 

mutable when exposed to drug selection or CRISPR/Cas9 selection SRA PRJNA596731 

(92). This culture plasticity is even more evident at the mRNA level, e.g. in response to 
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rapamycin (92). In this study RNA-seq analysis of the ΔIRAK4 clones demonstrated that the 

cells adapted other means to support survival, which was the phenotype that the 

CRISPR/Cas9 experiments select for (Fig. 11), but they did not adapt a means to transmit the 

IL-1β signal, since IL-1β responses were not selected for during the CRISPR/Cas9 process 

(Fig. 4).  

It is important to remember that BCBL-1, like all cancer cell lines, has been selected 

for continuous growth in culture. Therefore, vulnerabilities that exist in patients may not 

manifest themselves under ideal growth conditions. For example, one would expect PDX or 

direct xenograft models (242) to be more susceptible to agents that modulate autocrine and/or 

paracrine signaling pathways or that augment the host immune response. IL-1β is present at 

high levels in KS lesions (243), precedes NHL development in AIDS patients, and likely has 

its most important role in modulating the PEL microenvironment in vivo (45). One would 

expect PEL (or KSHV-infected precursors to PEL) to respond to some pro-inflammatory 

cytokines, such as IL-1β, by releasing IL-10, dampening T cell activity and counteracting 

viral clearance. If this is the case it may explain the prevalence of the IRAK1 SNV seen in 

PEL patients as this SNV results in higher levels of NFκB signaling (136, 244). This leads us 

to suspect a continued importance of the IRAK pathway in PEL, especially at the onset of 

infection. 
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Tables 

Table 2. 1: MYD88 inhibitor in IRAK pathway knockouts.  

 Results from treating IRAK pathway knockout cells with the MYD88 st2825 

dimerization inhibitor are represented below in μM. Three biological replicates, 

each the average of 4 technical replicates are shown.  

Cell line 
Replicate 1 
EC50 value 

(μM) 

Replicate 2 
EC50 value 

(μM) 

Replicate 3 
EC50 value 

(μM) 

Average 
EC50 value 

(μM) 

Standard 
Deviation  

BCBL-1 
WT 4.38 7.11 8.8 6.76 2.23 

ΔIRAK4.1 9.37 3.35 4.9 5.87 3.13 
ΔIRAK4.2 4.9 5.4 17.85 9.38 7.34 
ΔIRAK1.1 28.9 2.27 5.15 12.11 14.61 
ΔIRAK2.2 16 2.61 5.4 8.00 7.06 
ΔMYD88.1 3.64 3.46 8.39 5.16 2.80 
ΔMYD88.2 3.66 2.65 7.9 4.74 2.79 

 

Table 2. 2: IRAK inhibitors in IRAK pathway knockouts.  

IC50 values for three IRAK inhibitors conducted in WT and IRAK4 knockout 

BCBL-1 cell lines. Represented is the average and standard deviation of 4 

biological replicates.  

 IRAK inhibitor-1 
EC50 value (μM) 

IRAK inhibitor-4 
EC50 value (μM) 

IRAK inhibitor-1-4 
EC50 value (μM) 

BCBL-1 WT 14.93 ± 14.9  5.5 ± 0.5 275.4 ± 52 
ΔIRAK4.1 21.98 + 38 6.7 + 1.7 334.58 ± 170 
ΔIRAK4.2 15.08 ± 16.1 5.1 ± 3.5 231 ± 236 
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Figures 

 

Figure II. 1: PEL cells do 
not contain the L265P 
mutation in MYD88.  

A) Gene Expression 

Omnibus (GEO) analysis 

of mRNA levels in PEL 

and lymphoma for BTK, 

BCR, TLRs and MYD88 

(from PRJNA91407). 

Shown on the vertical axis 

is the relative expression 

on a log10 scale. Shown 

on the horizontal axis is 

classification as PEL or 

not. “Yes” means the cells 

are PEL and “No” 

represents non-PEL 

samples. Colors indicate 

the presence of EBV in the 

sample. B) Genomic DNA 

from several KSHV-positive PEL cell lines, KSHV-negative B-cell lymphoma cell lines, and 

HIV-positive patient samples (PEL & non-PEL) was PCR-amplified. The ~400-bp amplicon 

flanking MYD88 exon 5 PCR product was ran on agarose gel. C) The PCR products were 
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subjected to Sanger sequencing to screen for the Leu265Phe (L265P) mutation in exon 5 of 

MYD88. Trace file of MYD88 exon 5 in BC-1 cell line. Exon 5 is highlighted in green, and 

the codon for L265 is in pink. D) Table summarizing which MYD88 exons were examined 

from each cell line or patient sample. WT, wild-type; (#), number of clones sequenced; non-

PEL, normal tissue; nd, not determined.  
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Figure II. 2: MYD88 is not required for 

PEL survival. 

A) MYD88 western blot of BCBL-1Cas9 cell 

line (WT), and two independent sublines 

ΔMYD88.1 and ΔMYD88.2 deleted for 

MYD88 loading control is β-actin. B) Growth 

curves for parent and ΔMYD88 clones 

obtained via Trypan blue cell counting. Two 

ΔMYD88 clones and an empty vector control 

were used in this experiment. C) 

Representative images from colony formation 

assays of ΔMYD88 and wt BCBL-1Cas9 

imaged at 10X magnification. Cells are plated 

in 1% methylcellulose medium and grown for 

three weeks. D) Quantification of colony 

formation. Colony counts were obtained using 

ImageJ and the square root of the number of 

colonies was plotted, N=15.E) PCR analysis 

using primers that flanking the CRISPR cut-

site. Visualization using PerkinElmer 

LabChip GX-Touch.  
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Figure II. 3: IRAK1 is not required for PEL 

survival. 

A) IRAK1 western blot of BCBL-1Cas9 cell lines 

showing complete knockout, loading control is β-

actin. B) Growth curves for BCBL-1Cas9 

ΔIRAK1 clones obtained via Trypan blue cell 

counting. Two ΔIRAK1 clones and an empty 

vector control were used in this experiment. C) 

Representative images from colony formation 

assays of ΔIRAK1 BCBL-1Cas9 imaged at 10X 

magnification. Cells were plated at a low cell 

density in 1% methylcellulose medium and grown 

for three weeks. D) Quantification of colony 

formation in BCBL-1Cas9 ΔIRAK1 stable cell 

lines. Colony counts were obtained using ImageJ 

and the square root of the number of colonies was 

plotted, N=15. E) Flanking cut site PCR analysis 

using PerkinElmer LabChip GX-Touch. Primers 

were designed flanking the cut site. Image analysis 

revealed changes in band size of the KO vs WT cells. 

  



 47   
 

Figure II. 4: IRAK4 is not required for PEL 

survival. 

A) IRAK4 western blot of BCBL-1Cas9 cell 

lines showing complete knockout, loading 

control is β-actin. B) Growth curves for BCBL-

1Cas9 ΔIRAK4 clones obtained via Trypan blue 

cell counting. Two ΔIRAK4 clones and an 

empty vector control were used in this 

experiment. C) Representative images from 

colony formation assays of ΔIRAK4 BCBL-

1Cas9 cells imaged at 10X magnification. Cells 

were plated at a low cell density in 1% 

methylcellulose medium and grown for three 

weeks. D) Quantification of colony formation in 

BCBL-1Cas9 ΔIRAK4 stable cell lines. Colony 

counts were obtained using ImageJ and the 

square root of the number of colonies was 

plotted, N=15. E) Flanking cut site PCR 

analysis using PerkinElmer LabChip GX-

Touch. Primers were designed flanking the cut 

site. Image analysis revealed changes in band 

size of the knockout vs WT cells. 
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Figure II. 5: MYD88, IRAK1 and IRAK4 are dispensable in BC-1  

A) MYD88 western blot of BC-1Cas9 cell lines showing complete knockout, loading control 

is β-actin. B) IRAK1 western blot. C) IRAK4 western blo.t D) Growth curves for BC-1Cas9 

ΔMYD88 clones obtained via Trypan blue cell counting. Two Δ MYD88 clones and an 

empty vector, WT control were used in this experiment. E) Growth curves for BC-1Cas9 

ΔIRAK1 clones. F) Growth curves for BC-1Cas9 ΔIRAK4 clones. G) Quantification of 

colony formation in BCBL-1Cas9 ΔMYD88 stable cell lines. Colony counts were obtained 

using ImageJ and the square root of the number of colonies was plotted, N=15. H) 

Quantification of colony formation in BCBL-1Cas9 ΔIRAK1 stable cell lines. I) 

Quantification of colony formation in BCBL-1Cas9 ΔIRAK4 stable cell lines.  
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Figure II. 6: NFκB activation by IL-1β 
is not functional in ΔMYD88 clones. 

A) A western blot for phospho-NFκB and 

the IRAK pathway proteins IRAK1, 

IRAK4 and MYD88 in WT and ΔMYD88 

BCBL-1Cas9 cells 15 minutes post IL-1β 

stimulation (1 ng/μL IL-1β). B) 

Quantification of luciferase production 

using an NFκB reporter assays system. 

Two ΔMYD88 clones and WT BCBL-

1Cas9 cells were stimulated with 1 ng/μL 

IL-1β, or mock PBS for 24 hours 

following transfection, and luciferase 

values measured 6 hours post stimulation. 

Results are fold change over mock. C) 

Two ΔMYD88 clones and WT BCBL-

1Cas9 cells were stimulated with TNF-α 

(1 ng/mL), and the response was 

compared to mock using the same 

procedure as in panel B. 
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Figure II. 7: NFκB activation by IL-1β 

is not functional in ΔIRAK1 cells. 

A) A western blot for p-NFκB and the 

IRAK pathway proteins in WT and 

ΔIRAK1 BCBL-1Cas9 cells 15 minutes 

post IL-1β stimulation, 1 ng/μL IL-1β. B) 

Quantification of luciferase production 

using an NFκB reporter assays system. 

Two ΔIRAK1 clones and WT BCBL-

1Cas9 cells were stimulated with 1 ng/μL 

IL-1β, or mock PBS. Cells were 

stimulated 24 hours following 

transfection, and luciferase values 

measured 6 hours post stimulation. 

Results are fold change over mock. C) 

Two ΔIRAK1 clones and EWT BCBL-

1Cas9 cells were stimulated with TNF-α, 

and the response was compared to mock 

using the same procedure as in panel B. 
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Figure II. 8: NFκB activation by IL-1β 

is not functional in ΔIRAK4 cells. 

A) A western blot for p-NFκB and the 

IRAK pathway proteins in WT and 

ΔIRAK4 BCBL-1Cas9 cells 15 minutes 

post IL-1β stimulation, 1 ng/μL IL-1β. B) 

Quantification of luciferase production 

using an NFκB reporter assays system. 

Two ΔIRAK4 clones and WT BCBL-

1Cas9 cells were stimulated with 1 ng/μL 

IL-1β, or mock PBS. Results are fold 

change over mock. Cells were stimulated 

24 hours following transfection, and 

luciferase values measured 6 hours post 

stimulation. C) Two ΔIRAK4 clones and 

WT BCBL-1Cas9 cells were stimulated 

with TNF-α, and the response was 

compared to mock using the same 

procedure as in panel B. 
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Figure II. 9: Complementation of IRAK1 restores signaling function in KO cells.  

A) Western blot in WT BCBL-1Cas9 cells showing expression of Myc-tagged IRAK1 

inBCBL-1Cas9 cells. B) IRAK expression plasmids were co-nucleofected with an NFκB 

reporter driven luciferase plasmid into WT or ΔIRAK1 BCBL-1Cas9 cells. Cells were 

stimulated with IL-1β or PBS (mock), and luciferase values measured 6 hours post 

stimulation. Shown are relative activity adjusted across multiple biological replicates and 
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scales as fraction of maximal response on a log10 scale. C) IRAK expression plasmids were 

co-nucleofected with an NFκB reporter driven luciferase plasmid into WT, ΔIRAK1, 

ΔIRAK4, or ΔMYD88 BCBL-1Cas9 cells. Cells were stimulated with IL-1β, TNF-α or PBS 

(mock), and luciferase values measured 6 hours post stimulation. Shown are relative activity 

adjusted across multiple biological replicates and scales as fraction of maximal response on a 

log10 scale. 
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Figure II. 10: Comparison of in vitro and in culture IRAK inhibitor activity. 

A) EC50 curves (growth) for three commercially available IRAK inhibitors. Fraction of 

response is shown on the vertical axis and concentration in μM on the horizontal axis. Inh1 

(CAS No: 1042224-63-4), inh4 (CAS No: 1012104-68-5), and inh1-4 (CAS No: 509093-47-

4). The EC50 value on each plot is the average of four experiments. B) Quantification of 

luciferase production in cells transfected with an NFκB-driven luciferase plasmid, incubated 

with inhibitor, stimulated with 1 ng/μL IL-1β. Luciferase values were measured 6 hours post 

stimulation. All values are fold change over mock PBS stimulation on the vertical axis and 
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inhibitor concentration in μM on the horizontal axis. C) A DiscoverX Kinome scan analysis 

for each IRAK inhibitor at 250 nM. Arrows point to either purple or blue dots and represent 

IRAK4 and IRAK1 kinase respectively. Size of the circle is proportional to percent activity 

inhibited by the inhibitors.  
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Figure II. 11: RNA-seq analysis of IRAK4 CRISPR KO. 

A) Volcano plots showing the genes that are differentially expressed in WT vs ΔIRAK4. B) 

WT ± IL-1β. C) ΔIRAK4 ± IL-1β. The vertical axis shows negative log10 of the unadjusted 

p-value, the horizontal axis shows log 2 of the fold change for each RNA in a paired 

comparison. D) Heat map of the top 20 most altered transcripts as obtained by unsupervised 

clustering of mRNA levels of ΔIRAK4 compared to WT BCBL-1Cas9 cells under the 

different conditions indicated above. Blue indicates that the gene is down regulated and red is 

upregulated relative to the overall mean. IL-1β response genes are indicated on the right. E) 

An IPA network map for RNA-seq data comparing WT vs ΔIRAK4. Proteins shaded red are 

upregulated in ΔIRAK4 vs WT, Green shaded proteins are down regulated, blue means it is 

predicted to be downregulated, and orange is predicted up regulated. F) IL-10 ELISAs were 
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run on IRAK pathway knockouts with data points collected at 48 hours. G) IL-10 ELISAs 

from 72- hour time points, reflecting the same time points as the RNA-seq harvests. 
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CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS 

Summary 

 In this thesis, we have explored the interaction between KSHV and the IRAK 

pathway in the context of PEL. KSHV is a γ-herpesvirus that causes four diseases including 

PEL. PEL is currently untreatable with a 6-month life expectancy (80). Since PEL is so 

deadly, the need for new therapies is pressing. We explored the function of the IRAK 

pathway in PEL as well as whether it could function as a potential therapeutic target for PEL. 

We were drawn to this pathway by previous work done in the Dittmer lab that identified the 

IRAK1 gene as having a single nucleotide variation (SNV) in 95% of PEL cases (135). Out 

of the genes with conserved SNVs in the genome, IRAK1 was of primary interest as the 

IRAK pathway is a critical innate immune signaling pathway responsible for reacting to 

pathogens and causing inflammation. The IRAK pathway has been linked to other 

lymphomas as well as arthritis and other inflammatory conditions (22, 23, 100, 118, 245). In 

various cases of WM and DLBCL, the adapter protein for the IRAK pathway, MYD88, is 

mutated resulting in a more aggressive cancer (119, 222, 241, 246, 247). The research 

reported in this thesis has probed how the IRAK pathway functions in PEL and whether this 

pathway has potential as a therapeutic target to treat the deadly disease that is PEL.  

The IRAK Pathway Members are Dispensable for PEL Survival 

Chapter two of this thesis highlights our research into the IRAK pathway in PEL. We 

discovered that the IRAK pathway can function in a canonical manner in PEL where IL-1β 

stimulation activates NFκB. We validated our reagents through various experiments shown in 
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Appendix A. We tested the effects of knocking down members of the IRAK pathway with 

shRNA or by knocking out the genes with CRISPR in PEL. We looked at three main 

pathway members, IRAK1, IRAK4, and MYD88. We observed in the shRNA experiments 

that knockdown of MYD88 and IRAK1 and 4 results in a minor decrease in cell survival that 

is quickly overcome, and we obtained stable CRISPR knockouts of these pathway members. 

This led us to conclude that, although the IRAK pathway is potentially important for PEL, if 

you inhibit one member of the pathway, PEL cells can quickly compensate for the loss and 

survive. This phenomenon is not unexpected as resistance often develops quickly with 

current single-target therapies in the cancer field (248). RNA-sequencing allowed us to look 

for compensatory changes in our knockout cell lines.  

By performing RNA-seq, we saw that when IRAK4 was removed from the BCBL-1 

cells, thus inhibiting the IRAK pathway, a subset of genes was no longer expressed in the 

knockout cells. We saw compensatory changes in the ΔIRAK4 clones, which Ingenuity 

Pathway Analysis (IPA) software predicted to be functioning in aberrant cellular growth and 

cancer. From these results, we demonstrated that the IRAK pathway has a constitutive 

function in PEL. These genes that were upregulated in the WT cells compared to ΔIRAK4 

cells are not canonically linked to the IRAK pathway, and it is likely that this constitutive 

signaling is unique to PEL.  

To see if we could complement IRAK1, IRAK4, and MYD88 knockouts, we used 

IRAK1 expression plasmids that were either of the PEL genotype or not, as well as kinase 

dead mutants of each. We determined that the IRAK pathway was not affected beyond the 

individual knockouts. It is known that overexpression of IRAK1 results in activation of the 

pathway independent of external stimulation, and we saw this was the case, verifying that 
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downstream members of the pathway were not harmed during the making of the knockouts 

(19, 97, 232, 249).  

Our CRISPR and shRNA results lead us to conclude that single target therapeutics 

developed against the IRAK pathway would not function in PEL, which is in agreement with 

data from other studies that show NFκB is not essential in PEL despite earlier literature using 

the NFκB inhibitor, BAY11-7082 , to kill PEL cells (12, 58, 61, 64, 151). We explored this 

phenomenon of inhibitor off-target effects and it is summarized in the next section.  

IRAK Inhibitor have Off-target Effects 

We discovered that using six commercially available IRAK inhibitors resulted in a 

wide range of EC50 values in PEL. This was interesting because, if these inhibitors 

successfully targeted IRAK1/4, we would expect a similar EC50 value among the inhibitors, 

not the broad spectrum of results that we saw observed. We performed Kinome scan analyses 

on each of these inhibitors and discovered that the inhibitor with the highest specificity for 

IRAK1/4 was our least effective inhibitor at blocking PEL growth and survival. We realized 

that off-target effects were resulting in the death of PEL for some of our inhibitors, since the 

least specific inhibitor had the lowest EC50 value.  

We also wanted to look at BTK inhibitors in PEL because some groups are exploring 

the possibility of combining inhibition of the IRAK pathway with inhibition of the BTK 

pathway (119, 120, 128, 235, 236, 250). It should be noted that BTK is not expressed in PEL, 

and thus BTK inhibitors should not be effective in PEL. We went on to show that inhibition 

of IRAK4 knockout cell lines or MYD88 knockout cell lines with IRAK inhibitors or a 

MYD88 inhibitor, st2825, did not result in a change of EC50 values for the inhibitor when 

compared to the WT cell lines with the knockout. These findings stress that inhibitors can be 
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non-specific and have off-target effects. Although certain inhibitors can be useful as 

therapeutic tools, researchers must approach the use of inhibitors with caution and not draw 

invalid conclusions from that data.  

Techniques can Yield Variable Results  

We have used various techniques in this thesis research to probe the IRAK pathway, 

and the differences in the techniques warrant discussion. First, when using CRISPR and 

selecting for clones, the population is narrowed down to one cell type, where only the cells 

that have incorporated the guide and Cas9 survive. Any cells that do not adapt to gene 

knockouts die, leading to survival of the most resistant cells. Although the CRISPR results 

demonstrate that PEL cells can lose individual members of the IRAK pathway and survive, 

we have selected heavily for this survival over a period of several weeks. In a clinically 

relevant setting, there are usually subtypes of cancerous cells that respond differently to 

treatments, and we may be selecting these out during CRISPR selection.  
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 Table 3. 1: Comparison of molecular targeting techniques.  

This table displays four common techniques used to probe the importance of a target for 
cellular survival. 

 

When using shRNA, we saw a greater variability than in CRISPR experiments. 

During shRNA experiments, we examined bulk culture that had not undergone clonal 

selection and thus, depending on the cell line, the phase of growth, and general health of the 

cells involved, the results could be variable. shRNA can also be silenced readily by cells that 

still retain the selection marker but no longer show knockdown of the target. This is different 

from the CRISPR system, which makes permanent changes to the targeted gene by cutting 

the DNA and inserting/deleting bases. In our studies, we saw that there could be slight 

growth inhibition in cells that have been shRNA-treated for the IRAK pathway, which was 

quickly overcome. Since this is a bulk culture, we believe it may have a more valid short-

term phenotype than in the CRISPR techniques, but cells adapt even quicker to silence the 

shRNA and overcome the inhibition of the pathway. Off-target affects for shRNA and 

CRISPR techniques are comparable, but if shRNA is silenced by a compensatory 

mechanism, then the phenotype is lost, unlike when using CRISPR (251, 252).  

The last technique we used to explore the IRAK pathway was inhibitors, which is a 

drastically different approach to shRNA and CRISPR. Inhibitors are convenient as they do 

Techniq
ue  

Tran
sient  

Allows 
for 

selectio
n 

Off 
target 
effects 

Dual 
target

s 

Resistanc
e  

Clonal 
Selection 

Lentivir
us 

infection 

shRNA No Yes Low No Yes No Yes 
siRNA Yes No  Low No - No No 

CRISPR No Yes Low No  No Yes Yes 

inhibitor
s  Yes No  

Variabl
e-

Likely 
Yes Yes No No 
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not require lentivirus production or selection and function quickly and uniformly. Two major 

drawbacks of using inhibitors, which hinder the effectiveness of the technique, are off-target 

effects and the dependence on the target to be either constitutively activated or conditionally 

inhibited for survival. In this study, we demonstrate the off-target effect of inhibitors as well 

as how it can be harder to make conclusions about results than when using RNAi approaches, 

where sequencing methods can be conducted to look for off-target effects with shRNA or 

CRISPR experiments. For specific inhibitors such as the IRAK inhibitor 1-4 that we used in 

this study, this technique can be relevant, since we demonstrated that the kinase activity was 

not important for PEL survival. Where this inhibitor technique would be most relevant is in 

situations that a protein has two functions, kinase dependent and independent. The IRAK1 

protein is known to act this way in certain systems where the kinase activity is dispensable 

but the protein is required for survival due to kinase independent functions (19, 103, 109, 

130, 131). By combining all three approaches in this study, we have been able to 

comprehensively examine the IRAK pathway in PEL and account for the strength and 

weaknesses of each approach.  

The Relevance of the IRAK Pathway in PEL with the Conserved IRAK1 SNV 

Throughout this study, we are examining the effect of the IRAK pathway in PEL cell lines 

that are tissue culture adapted and long removed from the clinical setting. This is important to 

note since the IRAK pathway could play a more significant role PEL development in the 

clinical setting. We see that 95% of PEL patient samples have the SNV in IRAK1 that results 

in increased basal levels of NFκB signaling and a pro-inflammatory environment (135, 136, 

244, 253). This is interesting as KSHV establishes a pro-inflammatory environment upon 

development of PEL (35, 54, 56, 57, 60, 254, 255). If individuals already have a favorable 
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environment for KSHV infection, then the effect of the IRAK1 SNV could act in synergy 

with the virus to establish a more aggressive infection that ultimately results in PEL. 

 As only a minority of individuals infected with KSHV develop PEL, there are factors 

independent of viral infection that are required to develop PEL, and it is likely that IRAK1 is 

one of these factors. Moving forward, the IRAK1 SNV could be studied in longitudinal 

studies to determine if individuals with the IRAK1 SVN have higher rates of KSHV infection 

and PEL than those who have WT IRAK1. Based on the current knowledge about the IRAK 

pathway in KSHV and PEL, we hypothesize that the IRAK SNV rs1059702 (F196S) 

predisposes individuals to develop PEL following infection with KSHV. Since a higher basal 

signaling level of NFκB would occur in individuals with the variant, these levels could 

enhance the establishment of KSHV infection, latency, and disease progression in B-cells 

thus resulting in a higher chance of developing PEL. Additionally, targeting this pathway 

may not matter in a cell line environment, but in the human environment with many more 

variables, pursuing inhibition of the IRAK pathway could result in a benefit to the patient.  

Future Directions  

There are numerous additional experiments that can be done to better understand the 

role of the IRAK pathway in PEL and how it functions in disease progression. A large 

number of studies could be conducted to explore the role of the IRAK1 rs1059702 (F196S) 

in infection. To do this, one would need to use a standard KSHV infection model and have 

one set of cells with the PEL IRAK1 variant and one without the variant. Infection rates 

could be measured by genome copy numbers and we could measure the viral reactivation 

ability following infection. This could allow researchers to identify if the IRAK1 SNV plays 
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a role in early infection and could even be expanded to a mouse model since mice have 

IRAK1 homologs.  

 CRISPR technology is advancing at a rapid rate and providing new tools for 

researching genomic questions such as the importance of the SNV in PEL. Using template 

gene editing methods, we could attempt to swap the SNV variants in PEL cells line and 

observe the effects through NFκB activation, virus reactivation from latency, and genome 

copy number. This technique is still being developed and requires a template plasmid as well 

as the CRISPR plasmid, however, with optimization we most likely could generate these 

variants in PEL cell lines.  

Another future area of interest would be looking at double knockouts of the IRAK 

pathway, such as knockout of both MYD88 and IRAK1 or a different combination of 

knockouts. It is likely that double knockouts might have greater effects on the survival of 

PEL. However, preliminary work done with siRNA and individual knockouts did not lead to 

cell death. To conduct the double knockout experiments, it would be best to use a CRISPR 

plasmid that has multiple guides so that the cells only undergo one round of clonal selection.  

We saw in the RNA-seq data that the IRAK pathway has a set of functions where 

genes are constitutively active when IRAK4 is present but are turned off when it is absent, 

and this would be an exciting lead to follow in future research. Many of these genes were 

involved in cellular movement and adhesion, and they mapped in IPA to “cancer” pathways. 

We also saw that in each IRAK4 knockout there was a compensatory set of genes that were 

up-regulated, and we believe that this was to account for the loss of the IRAK4 dependent 

genes. Following up on this RNA-seq data in future research, one could tease out how the 
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IRAK pathway functions in a resting state in PEL and whether the IRAK pathway has 

functions that have yet to be discovered and that could be applicable to other systems.  

We could also perform IP-mass spectrometry in wild type PEL cells for IRAK1, 

MYD88, and IRAK4, both stimulated and unstimulated, to see what the binding partners are. 

Additionally, we could perform the respective IP in each of the knockouts to see how these 

partners change. We hypothesize that there are canonical and non-canonical functions of all 

three proteins, and by taking away the canonical pathway through knockouts, we could 

observe binding partners in a knockout setting as well as the potential downstream results of 

those partnerships.  

Another interesting follow-up study could examine the IRAK inhibitor 4 more 

closely. Out of all the inhibitors, IRAK inhibitor 4 killed PEL but did not have any hits on the 

Kinome scan. Conducting experiments to see what this inhibitor targets could lead to 

identification of unknown pathways in PEL. We could also utilize RNA-seq to determine 

what happens to gene expression at sub IC50 levels. This would allow us to determine what 

the effects of the inhibitors are and potentially trace it back to inhibitor targets.  

Conclusion  

In conclusion, from this thesis work we have demonstrated that the IRAK pathway is 

dispensable in PEL in a tissue culture environment. As such, we do not believe that the IRAK 

pathway would function as a single-target therapeutic in PEL. There is potential in further 

studies that inhibiting the IRAK pathway in combination therapy could have a positive 

outcome, because we hypothesize that members of the IRAK pathway have functions outside 

of the canonical pathway in PEL. IRAK1 is known to function in regulating IRF7, STAT3, 

and IL-10, which are critical proteins in PEL. STAT3 and IL-10 are known to be important 
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for KSHV to establish infection (19, 100, 184, 255-257). MYD88 has functions outside of 

the IRAK pathway and is critical to almost all TLRs and several ILRs (216, 258-262). Since 

vFLIP already controls NFκB activation downstream of the IRAK proteins, it is highly likely 

that the IRAK pathway is important in PEL to a degree but that KSHV has the ability to 

circumvent the canonical activation in PEL (54, 55, 60). These interactions are only 

hypothesized to take place in PEL and require further exploration.  

This thesis advances the scientific communities’ knowledge of the IRAK pathway in 

PEL and will help to ensure that incorrect treatment regiments based on IRAK pathway 

targets are not administered to patients with PEL. We hypothesize that the IRAK pathway 

still serves a function in PEL, potentially early in the development of the disease, and as we 

understand the relevance of the pathway over time, we may be able to use this knowledge to 

recognize early warning signs of KSHV-infected individuals that are at risk of developing 

PEL.

 

Figure III. 1 Summary of the IRAK pathway in PEL 
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APPENDIX A: SUPPORTING INFORMATION 

Overview 

Examination of the IRAK pathway in the context of PEL required many experiments, 

of which only a subset was published in the 2020 paper. In Appendix A, additional 

experimental results that were performed to gain insight into the IRAK pathway in PEL are 

included. Some of the experiments are proof of concept, reagent testing, or use of a different 

technique, such as shRNA versus CRISPR. Additionally, multiple cell lines are represented 

in this appendix, as well as tables with information on inhibitors, plasmids used in this study, 

and more.  

 

Results  

In addition to the IRAK pathway, we examined another gene that had a conserved 

variation in PEL known as the ABCD1 gene. ABCD1 is a fatty lipid transport gene, and we 

can see through Figure AA. 1 that knockdown (KD) of this gene has no effect on BCBL-1 

growth in culture. We also determined that IRAK1 has three classical splice variants as well 

as a fourth, previously unidentified, splice variant. We see that F196S and S532L variants in 

IRAK1, which are known to increase NFκB levels in other systems, are present in PEL (140, 

253, 263, 264) (Figure AA. 2). We validated that the IRAK pathway is expressed in PEL 

(Figure AA. 3) through western blot analysis. Due to other studies focusing on the 

combination of BTK and IRAK4 inhibitors, we wanted to explore the BTK pathway in the 

context of PEL (119, 236, 250, 265). We verified that BTK is not expressed in PEL, and that 

BTK inhibitors are more effective in the non-PEL BJAB cell line that does express BTK. We 

also see that inhibitors of BTK kill cells proportionately to the specificity of each inhibitor 

(Figure AA. 4). 
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 Since much of this study relied on using TNF-α and IL-1β, we tested these reagents in 

U2OS cells, which are known to respond to both stimulants, by IFA, western blot, and 

luciferase assay (Figure AA. 5). We also tested these western blot and luciferase assays in 

BCBL-1 cells, and confirmed that TNF-α and IL-1β activate NFκB (Figure AA. 6). We 

titrated the optimal IL-1β concentration to stimulate cells with, as well as the best amount of 

CTG reagent (Figure AA. 7). We also validated the IRAK1 expression plasmids through 

restriction digest, western blot and sequencing, as seen in Figure AA. 8. 

 In addition to the CRISPR results described in chapter two, we have conducted 

extensive shRNA experiments as well. For these experiments, we looked at the short-term 

effects of KD of different IRAK pathway members. We saw that IL1R was dispensable for 

BCBL-1 survival, with the growth curve representing one shRNA spinfection experiment and 

colony formation assays performed after the spin (Figure AA. 9). We confirmed the results 

from the shRNA experiment by using CRIPSR (Figure AA. 10). This experiment differed 

from the CRISPR experiments in chapter two because those experiments were after two 

rounds of single clone selection whereas this IL1R test was conducted on a bulk culture that 

did not undergo clonal selection. We still see a reduction in IL1R protein and no inhibition of 

BCBL-1 survival (Figure AA. 10).  

We performed shRNA KD on MYD88 (Figure AA. 11). We did this in both PEL 

BCBL-1 cells and BJAB control cells. We determined that, in BCBL-1 cells, some 

experiments resulted in a lower survival rate when infected with shRNA targeting MYD88 as 

compared to the BJAB cells; however, long-term survival of MYD88 KD BCBL1 still 

occurred. In Figure AA. 12, we obtained IRAK1 KD in both BCBL-1 and BJAB cells and 

once again see the same trend as in the MYD88 KD experiments. Figure AA. 13-14 
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demonstrate that knockdown of IRAK4 does not have any short-term effects on PEL lines, 

BCBL-1 and BC-1, nor on the non-PEL BJAB cell line. CRISPR KO of IRAK4 in BJAB 

also did not result in any growth defects (Figure AA. 15).  

Looking at resting state NFκB levels, we saw that NFκB was constitutively activated 

in BC-1 but not BCBL-1 cells (Figure AA. 16). We performed RNA-seq and Exome-seq 

analysis on all of our clones shown in chapter two. For the RNA-seq data, we concluded a 

list of host pathways that are changed in our IRAK4 cells compared to WT BCBL-1 cells. 

The top pathways on this list are involved with cellular adhesion and migration (Figure AA. 

17). Exome sequencing data for the IRAK pathway knockouts show that we have cuts at the 

CRISPR guide sites and that there are shared SNVs across the different pathway knockouts, 

as expected for both BC1 and BCBL1 (Figure AA. 18-21). Some of the CRISPR guides 

resulted in deletions, seen via PCR, and others resulted in insertions and deletions.  

In addition to the results in chapter two, we further explored each of the inhibitors 

used in this study. We determined the EC50 values, the Kinome profiles, and the effects of 

each inhibitor on the reduction of luciferase activity (Figure AA. 22). The MYD88 inhibitor, 

ST2825, had no change in EC50 values in any of the IRAK pathway knockout cell lines 

compared to WT values (Figure AA. 23). In mice, we observed that IRAK inhibitor 1 and 4 

could clear infected cells from the mice; however, inhibitor 1-4 failed to do this (Figure AA. 

24). Furthermore, we saw that IRAK inhibitor 1 resulted in higher mouse mortality. We used 

each of these inhibitors in colony formation assays, and there was no reduction in colony 

numbers, as can be see visually in Figure AA. 25. Reactivation of BCBL-1 IRAK pathway 

knockouts displayed very slight differences in virus reactivation, with MYD88 knockout 

lines producing slightly more virus (Figure AA. 26). RNA-seq results for KSHV genes in 
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ΔIRAK4 BCBL-1 cells showed that virus reactivation corresponds with time point taken 

more so than with knocking out IRAK4 (Figure AA. 27). The final figures of this appendix 

show the complete western blots for the various figures in chapter two and this appendix 

(Figure AA. 28-34).  

 

Discussion  

 The research represented in this thesis provides supporting data for the 2020 IRAK 

paper published in JVI chapter two. As explained in chapter two, we found similar results 

using shRNA as we did using CRISPR techniques despite the differences in experimental 

set-up. A slight variation with the toxicity of the shRNA assays was observed. As seen in 

Figure AA. 11-12, shRNA resulted in lower cell survival and decrease in colony formation 

assays compared to CRISPR. One explanation for this could be that there is a short-term 

growth disadvantage when IRAK1 or MYD88 is knocked down in cells that can be quickly 

overcome with CRISPR and stable clonal selection. Another potential reason could be 

differences in viral titers used in the spinfection experiments. However, each experiment was 

conducted in non-PEL BJAB cells to control viral titer, and the drop in short-term viability 

was not seen in BJAB cells.  

 For inhibitor experiments (Table 3), we determined the inhibitors that target IRAK1 

or IRAK4, yet these inhibitors are also non-specific and appear to inhibit cell growth through 

off-target effects. Additionally, other inhibitors such as MYD88 inhibitor ST2825 had no 

difference in EC50 values in MYD88 KO cells versus WT cells (Figure AA. 20). We also 

saw that with BTK inhibitors, despite BTK not being expressed in PEL, some of these 

inhibitors do kill PEL cells. This would be due to off-target effects of the inhibitor, which 
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drives home the point that small molecules can have many off-target effects. In conclusion, 

the results shown in this appendix are supplemental to chapter two and strengthen the 

findings of this thesis work presented in chapter two as well as published in the 2020 IRAK 

paper in the Journal of Virology.  

Materials and Methods 

Methods are described in chapter two with the following exceptions, which were only 

conducted in experiments described in the appendix. 

Lentivirus production: Lentivirus particles were produced in 293T cells using ViraPower 

(Thermo-Fisher) or were purchased from Sigma Aldrich Sanger clone library. CRISPR 

plasmids were obtained from Genscript, Sigma, or Addgene as specified in supplemental 

table 1. Plasmids expressing shRNA were obtained from the UNC lentiviral core. Table 1 

contains a detailed list of plasmids used in this study. Packaging mix and transfer plasmid 

were co-transfected using ViraPower according to the manufactures protocol, into 293T 

cells. Virus particles where harvested 48-72 hours post transfection, filtered, aliquoted and 

stored at -80 C until use.  

Spinfection procedure: 500,000 cells were placed in 15 mL conical tubes with 1 mL of 

serum free media, 2 mL of lenti particles, and 10 μg/mL of polybrene for in house lentivirus 

prep. For purchased particles, 50,000 cells were plated in 24 well plates with 100 µL of 

serum free media and 200 µL of particles, MOI of 5, were added and 10 µg/mL polybrene. 

The plates/tubes were spun for 90 minutes at 2500 RPM. Media was changed 18 hours 

following spin. Selection media was added 24 hours post spin, with 2.5 µg/ml of puromycin 

for selection. Half of the cells were plated into colony formation assays for single cell clone 



 73   
 

selection, see colony formation assay methods. Trypan Blue (Sigma) cell counting was used 

for all growth proliferation assays and live dead cell counting.  

NFκB translocation IFA: U2OS cells were seeded at 250,000 cells/ml and grown on a glass 

cover slip. The following day, cells were treated with TNF, IL-1β or PBS for one hour. 4% 

paraformaldehyde was used as a fixation agent. 10% BSA was used to block cells for 1 hour 

with 0.2% triton X serving as the permeabilization agent. Primary antibody was used at a 

concentration of 1:500 and incubated for two hours at RT. Vector Labs Texas Red or 

Fluorescein secondary was used 1:500 and cells imaged using a Leica DM500 B scope and 

Image Q software. Cells were examined for NFκB translocation to the nucleus. 

Mouse inhibitor studies: Mice were inoculated intraperitoneal with 1 million BCBL-1-

TREX-LUC cells, which express luciferase protein and can be measured via imaging. Three 

days after injection, IRAK inhibitors were given to the mice at a dose of 78 mg/kg on 

Mondays, Wednesdays and Fridays for three weeks. Mice were imaged and luciferase values 

representing the PEL effusions growth were measured at the three-week termination point. 

Restriction digest: All CRISPR plasmids in this study underwent restriction digest using 

Thermo Scientific fast digest enzymes according to manufactures protocol. Digestion 

products were run on a 1.5% agarose gel and imaged on a Biorad Gel Doc XR. 
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Tables 

Table AA. 1: Table of plasmids used in this study. 

All plasmids used in this study were giving a unique pDD number. Resistant markers for 

growth in both bacteria and mammalian cells, DNA sequences if the plasmid contains 

CRISPR guides or shRNA, and the company and catalog numbers.  

pDD Backbone Plasmid 
description 

Bacterial 
resistance 
marker  

Cell 
resistant 
marker  

shRNA 
target 

sequence 

Co
mp
any 

Catalog 
number 

2079 pLKO.1 
shRNA 

targeting 
ABCD1 

amp puromycin 

GCACGA
GATGTT
CCAGGT

ATT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005943

4 

2080 pLKO.1 
shRNA 

targeting 
ABCD1 

amp puromycin 

CGCACA
GAAGCC
TTCACT

ATT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005943

5 

2081 pLKO.1 
shRNA 

targeting 
ABCD1 

amp puromycin 

GTATGT
TATGCT
GGAGCA

GTT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005943

7 

2082 pLKO.1 
shRNA 

targeting 
ABCD1 

amp puromycin 

CCTAAT
TTATTG
GATTCC

CTA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005943

3 

2083 pLKO.1 
shRNA 

targeting 
ABCD1 

amp puromycin 

CGCACC
TTCCTG
TCGGTG

TAT 

TR
C 

with 
the 

TRCN00
0005943

6 

https://drive.google.com/open?id=0B1KxrASzUuOreEUxTzJHcHllazA
https://drive.google.com/open?id=0B1KxrASzUuOrY043STZGV3BnN0k
https://drive.google.com/open?id=0B1KxrASzUuOrUlp3T1VpNlo5M0E
https://drive.google.com/open?id=0B1KxrASzUuOrRXlaNm1NU2xDbU0
https://drive.google.com/open?id=0B1KxrASzUuOrRDJ2dGVXZHpuSzQ
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Bro
ad 

insti
tute 

2084 pLKO.1 
shRNA 

targeting 
ATP7A 

amp puromycin 

CCTCTT
GGTATG
GATTGT

AAT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0004317

7 

2085 pLKO.1 
shRNA 

targeting 
ATP7A 

amp puromycin 

GCTCCC
TAAACA
GTGTTG

TTA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0004317

6 

2086 pLKO.1 
shRNA 

targeting 
ATP7A 

amp puromycin 

GCTGTA
TTAGTA
GCAGTT

GAT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0004317

4 

2087 pLKO.1 
shRNA 

targeting 
ATP7A 

amp puromycin 

CCATTC
ATGTAC
TAGCAC

TAT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0004317

3 

2088 pLKO.1 
shRNA 

targeting 
ATP7A 

amp puromycin 

GCCGCT
TCTGAC
TTCAAC

TAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0004317

5 

2089 pLKO.1 
shRNA 

targeting 
GFP 

amp puromycin Unknown 

TR
C 

with 
the 
Bro
ad 

 

https://drive.google.com/open?id=0B1KxrASzUuOrdmx2dHktR0cybGM
https://drive.google.com/open?id=0B1KxrASzUuOrY3BxM1pMWWpXWXM
https://drive.google.com/open?id=0B1KxrASzUuOrdG1pdnhzdERrWms
https://drive.google.com/open?id=0B1KxrASzUuOrQ3VKWWN0bDZCSmc
https://drive.google.com/open?id=0B1KxrASzUuOrZWdTMFRBVVJFb3M
https://drive.google.com/open?id=0B1KxrASzUuOrUGVFSmdwSVBJVUU
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insti
tute 

2090 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GCCCTG
GACCAA
CCCGGC

CC 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2091 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GGCCGC
TGCCCC
GCTCCG

GG 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2092 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GGAAGA
CAATGT
GCCGCC

A 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2093 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

TCTGGA
CCAGAA
GGCTCC

GG 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2094 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GCTGCC
GCGGAG
GGTGAT

GA 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2095 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GGTGGC
CCACCG
GGTCCG

CT 

Wa
ng 
J1, 
201
4 

PN
AS 

 

2096 pMAX3 CRISPR for 
EBV amp 

NA 
produces 

GFP 

GTCCTC
GAGGGG
GCCGTC

GC 

Wa
ng 
J1, 
201
4 

 

https://drive.google.com/open?id=0B1KxrASzUuOrYVpRNVNaaXFGRVk
https://drive.google.com/open?id=0B1KxrASzUuOrU3U4UlRnT2xHN0k
https://drive.google.com/open?id=0B1KxrASzUuOrV1Vja1F1QWZFUjQ
https://drive.google.com/open?id=0B1KxrASzUuOrSUJJM3VCX2syZ2s
https://drive.google.com/open?id=0B1KxrASzUuOrcHpSVkg5ZEtTckk
https://drive.google.com/open?id=0B1KxrASzUuOrNlB0VGQwTEFLTjQ
https://drive.google.com/open?id=0B1KxrASzUuOrb3VtS0ktVDZLQXc
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PN
AS 

2104 pLKO.1 
shRNA 

targeting 
STAT3 

amp puromycin 

CGGATC
ATAAGG
TCAGGA

GAT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0002083

9 

2105 pLKO.1 
shRNA 

targeting 
STAT3 

amp puromycin 

GCTGAC
CAACAA
TCCCAA

GAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0002084

0 

2106 pLKO.1 
shRNA 

targeting 
STAT3 

amp puromycin 

GCTGAA
ATCATC
ATGGGC

TAT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0002084

1 

2107 pLKO.1 
shRNA 

targeting 
STAT3 

amp puromycin 

GCACAA
TCTACG
AAGAAT

CAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0002084

2 

2108 pLKO.1 
shRNA 

targeting 
STAT3 

amp puromycin 

GCAAAG
AATCAC
ATGCCA

CTT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0002084

3 

2109 pLP/VSVG 
VSVG for 
producing 

lenti 
amp NA NA 

The
rmo

-
fish
er 

 

https://drive.google.com/open?id=0B1KxrASzUuOrYjVnTndRZG5NWEE
https://drive.google.com/open?id=0B1KxrASzUuOrMHNLSnFqWk5yNFU
https://drive.google.com/open?id=0B1KxrASzUuOrTk9SNGhnZnVUaXc
https://drive.google.com/open?id=0B1KxrASzUuOrTU5GMkdQSlg3a2s
https://drive.google.com/open?id=0B1KxrASzUuOrcjB2eldmZm9ReXc
https://drive.google.com/open?id=0B1KxrASzUuOrMk01aHVJYUttZFk
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2110 pLP2 

produces 
packaging for 

lenti 
production 

amp NA NA 

The
rmo

-
fish
er 

 

2111 pLP1 

produces 
packaging for 

lenti 
production 

amp NA NA 

The
rmo

-
fish
er 

 

2112 pLenti6 
produces 

luciferase + 
control 

amp NA NA 

The
rmo

-
fish
er 

 

2113 pLKO.1 
shRNA 

targeting 
IRAK4 

amp puromycin 

CAGTTT
CACATA
AGGAGA

TTT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0000206

3 

2114 pLKO.1 
shRNA 

targeting 
IRAK4 

amp puromycin 

CCTCTG
CTTAGT
ATATGT

TTA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0000206

4 

2115 pLKO.1 
shRNA 

targeting 
IRAK4 

amp puromycin 

CCCAGA
CATTAA
GAAGGT

TCA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0000206

5 

2116 pLKO.1 
shRNA 

targeting 
IRAK4 

amp puromycin 

GCCTGA
CCTAAT
CCAAGT

GAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0000206

6 

2117 pLKO.1 
shRNA 

targeting 
IRAK4 

amp puromycin GCTAAT
ACACTA

TR
C 

with 

TRCN00
0001067

9 

https://drive.google.com/open?id=0B1KxrASzUuOrR0h0N1FrUVlaOTg
https://drive.google.com/open?id=0B1KxrASzUuOrbmRWQUZRdjZzT2s
https://drive.google.com/open?id=0B1KxrASzUuOrWGZUa2ZhNDNXUnc
https://drive.google.com/open?id=0B1KxrASzUuOrTXNaZ0h6YjB1dzA
https://drive.google.com/open?id=0B1KxrASzUuOrYklVTWUtQnAtcXM
https://drive.google.com/open?id=0B1KxrASzUuOrYWF5UjBvaWFnSmc
https://drive.google.com/open?id=0B1KxrASzUuOreUItODg5RTN6MFk
https://drive.google.com/open?id=0B1KxrASzUuOrM1hkcGZXOWlqNms
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CCTTCT
AAA 

the 
Bro
ad 

insti
tute 

2118 pLKO.1 
shRNA 

targeting IL-
1R 

amp puromycin 

CCCGTG
AACTTC
CTTTGA

CTT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005925

8 

2119 pLKO.1 
shRNA 

targeting IL-
1R 

amp puromycin 

GCCATA
TTTAAG
CAGAAA

CTA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005925

9 

2120 pLKO.1 
shRNA 

targeting IL-
1R 

amp puromycin 

GCCAAG
AATACA
CATGGT

ATA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005926

0 

2121 pLKO.1 
shRNA 

targeting IL-
1R 

amp puromycin 

GCTCTT
GTTCAG
GATGGA

ATT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005926

1 

2122 pLKO.1 
shRNA 

targeting IL-
1R 

amp puromycin 

CCCGGG
TAATAG
AATTTA

TTA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0005926

2 

2123 pDeNy 
MYD88 
dominant 
negative 

zeocin zeocin NA 
Invi
voG
ene 

pDeNy 
MYD88 

https://drive.google.com/open?id=0B1KxrASzUuOrYmhTd0RQTTZlTWM
https://drive.google.com/open?id=0B1KxrASzUuOrZ1dEVFhHbkRYc2M
https://drive.google.com/open?id=0B1KxrASzUuOrbENiTnh0M1drYVU
https://drive.google.com/open?id=0B1KxrASzUuOrQTlFQThVOXFPYnM
https://drive.google.com/open?id=0B1KxrASzUuOrQTlFQThVOXFPYnM
https://drive.google.com/open?id=0B1KxrASzUuOrSUYxQTh2aW9DVFU
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2124 pDeNy 
IRAK1 

dominant 
negative 

zeocin zeocin NA 
Invi
voG
ene 

pDeNy 
IRAK1 

2125 pFUGW 
CAS9 

expression 
plasmid 

amp Blasticidin NA 
Add
gen

e 
52962 

2126 lenti-guide empty vector 
control amp puromycin NA 

Add
gen

e 
52963 

2127 lenti-guide CRISPR for 
IRAK4 amp puromycin 

CCTGGG
AGCAAA
AGACTC

GC 

Add
gen

e 
75664 

2128 lenti-guide CRISPR for 
IRAK4 amp puromycin 

TGTAAA
CATATA
CTAAGC

AG 

Add
gen

e 
75665 

2129 lenti-guide CRISPR for 
IRAK4 amp puromycin 

CTCATG
TGCCAA
GAAAGT

GG 

Add
gen

e 
75666 

2130 

pLentiCRI
SPR v2 

CRISPR for 
ABCD1 amp puromycin 

CCTGTC
GTTCCG
CAGCCG

TC 

Gen
scri
pt 

crRNA 1 

2131 

pLentiCRI
SPR v2 

CRISPR for 
ABCD1 amp puromycin 

CGACGA
CATGAT
CCGCTC

AA 

Gen
scri
pt 

crRNA 2 

2132 

pLentiCRI
SPR v2 

Empt vector 
CRISPR amp puromycin  

Add
gen
e 

Damania 
Lab UNC 

2133 

pLentiCRI
SPR v2 

Scramble 
control 

CRISPR 
amp puromycin  

Add
gen

e 

Damania 
Lab UNC 

2134 

pLentiCRI
SPR v2 

CRISPR for 
IRAK4 amp puromycin 

CCTGGG
AGCAAA
AGACTC

GC 

Gen
scri
pt 

crRNA1 

2135 

pLentiCRI
SPR v2 

CRISPR for 
IRAK4 amp puromycin 

ATGGCA
CCAGAA
GCTTTG

CG 

Gen
scri
pt 

crRNA2 

https://drive.google.com/open?id=0B1KxrASzUuOrb0xwbVdQNVJvcGM
https://drive.google.com/open?id=0B1KxrASzUuOrT1R5cmR2cndEQXM
https://drive.google.com/open?id=0B1KxrASzUuOrWU1JNkJYSWdfYnc
https://drive.google.com/open?id=0B1KxrASzUuOraUdZVFYySzRHbkk
https://drive.google.com/open?id=0B1KxrASzUuOrQ1E5NVpHVnBUUjA
https://drive.google.com/open?id=0B1KxrASzUuOrZk9hNHhOallpOGc
https://drive.google.com/open?id=0B1KxrASzUuOrMWVVUi1LSEk1SkE
https://drive.google.com/open?id=0B1KxrASzUuOrVGJvdnJXTE1hOU0
https://drive.google.com/open?id=0B1KxrASzUuOrZUpRVFRLNV9ORkk
https://drive.google.com/open?id=0B1KxrASzUuOrQ1Myc3JsNmhVOFk
https://drive.google.com/open?id=0B1KxrASzUuOrUWppb0k0Q3FTSGs
https://drive.google.com/open?id=0B1KxrASzUuOrXzJESkxJOTBidzA
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2136 

pLentiCRI
SPR v2 

CRISPR for 
IRAK4 amp puromycin 

ACACCG
TGAACC
TCAGTT

AT 

Gen
scri
pt 

crRNA3 

2137 

P-select-
ZEo 

Empty vector 
for DD zeocin zeocin NA 

Invi
voG
ene 

 

2138 

pMXs-
IRES-Puro 

WT mouse 
IRAK4 amp puromycin NA 

PI 
Xia
oxia 
Li, 
CM
SI# 
CW
248
534
7 

 

2139 

pMXs-
IRES-Puro EV amp puromycin NA 

PI 
Xia
oxia 
Li, 
CM
SI# 
CW
248
534
7 

 

2140 

pMXs-
IRES-Puro 

K231M 
mouse 
IRAK4 

amp puromycin NA 

PI 
Xia
oxia 
Li, 
CM
SI# 
CW
248
534
7 

 

2141 

pMXs-
IRES-Puro 

L360A 
mouse 
IRAK4 

amp puromycin NA 

PI 
Xia
oxia 
Li, 
CM
SI# 
CW
248
534
7 

 

2142 

pMXs-
IRES-Puro 

R361E 
mouse 
IRAK4 

amp puromycin NA 
PI 

Xia
oxia 

 

https://drive.google.com/open?id=0B1KxrASzUuOrTkpBRUJaNG44c2c
https://drive.google.com/open?id=0B1KxrASzUuOrSFZIN2RZRDhCOTA
https://drive.google.com/open?id=0B1KxrASzUuOrSE94RXMwODdidms
https://drive.google.com/open?id=0B1KxrASzUuOrSzRVU0FjWlhzSzQ
https://drive.google.com/open?id=0B1KxrASzUuOreC1KQXo4YldWZ0E
https://drive.google.com/open?id=0B1KxrASzUuOrUGhxa3V5VzNUbnc
https://drive.google.com/open?id=0B1KxrASzUuOrT3BmRWtCdlRXLXc
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Li, 
CM
SI# 
CW
248
534
7 

2143 pLKO.1 
shRNA 

targeting 
IRAK1 

amp puromycin 

GCTGAA
GTAGGA
GGATCA

TTT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0012113

7 

2144 pLKO.1 
shRNA 

targeting 
IRAK1 

amp puromycin 

GCCACC
GCAGAT
TATCAT

CAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0012113

8 

2145 pLKO.1 
shRNA 

targeting 
MYD88 

amp puromycin 

ACAGAC
AAACTA
TCGACT

GAA 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0000802

6 

2146 pLKO.1 
shRNA 

targeting 
MYD88 

amp puromycin 

CCTGTC
TCTGTT
CTTGAA

CGT 

TR
C 

with 
the 
Bro
ad 

insti
tute 

TRCN00
0001122

3 

2147 pCMV6-
Entry 

expression 
vector for 
IRAK1 

kan G418 D340N 

Orig
ene/
Blu
eher
on 

 

2148 pCMV6-
Entry 

expression 
vector for 
IRAK1 

kan G418 196f 

Orig
ene/
Blu
eher
on 

 

https://drive.google.com/open?id=0B1KxrASzUuOrNllGMmVMRlhuY0E
https://drive.google.com/open?id=0B1KxrASzUuOrMldBR2lZODNHcUU
https://drive.google.com/open?id=0B1KxrASzUuOrV0VrYjY2R0paOWc
https://drive.google.com/open?id=0B1KxrASzUuOrYVNWTUVLOU0tWVU
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2149 pCMV6-
Entry 

expression 
vector for 
IRAK1 

kan G418 196f/D340
N 

Orig
ene/
Blu
eher
on 

 

2150 pLentiCRI
SPR v2 

CRISPR for 
IRAK1 amp puromycin 

CAACCG
GGCCCT
CTTACC

TG 

Gen
scri
pt 

 

2151 pLentiCRI
SPR v2 

CRISPR for 
IRAK1 amp puromycin 

ACCGAA
CTGGCA
CCAGTC

GG 

Gen
scri
pt 

 

2152 pLentiCRI
SPR v2 

CRISPR for 
IRAK1 amp puromycin 

CCCACC
GAACTG
GCACCA

GT 

Gen
scri
pt 

 

2153 pLentiCRI
SPR v2 

CRISPR for 
IL-1R1 amp puromycin 

AAGCAG
AAACTA
CCCGTT

GC 

Gen
scri
pt 

 

2154 pLentiCRI
SPR v2 

CRISPR for 
IL-1R1 amp puromycin 

AAGTCC
TCCGTC
TCCTGC

AA 

Gen
scri
pt 

 

2155 pLentiCRI
SPR v2 

CRISPR for 
IL-1R1 amp puromycin 

GCAAGC
AATATC
CTATTA

CC 

Gen
scri
pt 

 

2156 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR 
IRAK2 amp puromycin 

AAGCTG
CCAAAG
GCTTTT

CTGG 

Sig
ma 

HS50000
33157 

2157 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR 
IRAK2 amp puromycin 

GCAGGG
TGTGAG
CATCAC

GCGG 

Sig
ma 

HS50000
33158 

2158 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR IL-
1R1 amp puromycin 

GTATAT
TGTCAA
GAAGTA

GAGG 

Sig
ma 

HS50000
25663 

2159 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR IL-
1R1 amp puromycin 

AGGCTC
ATCGTG
ATGAAT

GTGG 

Sig
ma 

HS50000
25664 

2160 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRIPSR 
IRAK1 amp puromycin 

CTTCAC
TGCAGT
CCACTC

CAGG 

Sig
ma 

HS50000
19451 
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2161 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR 
IRAK1 amp puromycin 

CAGCTG
CTCCAC
CTCGGT

CAGG 

Sig
ma 

HS50000
19452 

2162 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR 
MYD88 amp puromycin 

GACAAC
CACCAC
CATCCG

GCGG 

Sig
ma 

HS50000
01249 

2163 

U6-
gRNA:PG
K-puro-

2A-tagBFP 

CRISPR 
MYD88 amp puromycin 

GTCACA
TTCCTT
GCTCTG

CAGG 

Sig
ma 

HS50000
01250 
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Table AA. 2: Antibodies used in this study: 

Catalog numbers, the protein that the antibody targets, size in kilo Daltons that is predicted 

for the gel to run and what is the species the antibody was raised in are displayed in this 

table.  

Catalog 
Number Protein Size 

KD Species Company 

#4970 Actin 42 Rabbit Cell Signaling 
#3700S Actin 42 Mouse Cell Signaling 

#2272 MYC-
TAG NA Rabbit Cell Signaling 

#05-724 MYC-
TAG NA Mouse Millipore 

MABE1668 Cas9 160 Mouse Millipore 

#9662S Casp3 17, 19, 
35 Rabbit Cell Signaling 

#9579S Cleav-
Casp3 17, 19 Rabbit Cell Signaling 

#5625S Cleav-
PARP 89 Rabbit Cell Signaling 

#3865 IL-1RA 18 Rabbit Cell Signaling 
ab180894 IL1-RL2 55 Rabbit Abcam 

#4504 IRAK1 75-105 Rabbit Cell Signaling 

GTX50994 IRAK1 
209P 75 Rabbit Genetex 

A1074 IRAK1 
209P 75 Rabbit Assay Biotech 

custom IRAK1 
209P 75 Rabbit Genscript 

ab218130 IRAK1 
P209 75 Rabbit Abcam 

PA5-38633 IRAK1 
P209 75-105 Rabbit Thermo-Fisher 

ab139739 IRAK1 
P387 75-105 Rabbit Abcam 

MAB6690 IRAK2 75 Mouse R&D systems 
ab62419 IRAK2 75 Rabbit Abcam 
#4363 IRAK4 55 Rabbit Cell Signaling 

AF3919 IRAK4 55 Goat RD 
ab5985 IRAK4 55 Rabbit Abcam 
#11927 IRAK4 P 55 Rabbit Cell Signaling 

ab113656 IRAK4 P 55 Mouse Abcam 
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ab8116 IRAKM 70 Rabbit Abcam 
#4283 MYD88 33 Rabbit Cell Signaling 
ab2064 MYD88 33 Rabbit Abcam 

PA5-15149 TAK1 75ish Rabbit Thermo-Fisher 
MA515073 TAK1 P 75ish Rabbit Sigma 

#8028 TRAF6 60ish Rabbit Cell Signaling 
ab94393 IL-1R 73 Rabbit Abcam 

PA5-29227 IL-1R 75 Rabbit Thermo-Fisher 
sc-393998 IL-1R 80 Mouse Santa Cruz 
MAB2162 ABCD1 65 Mouse Millipore 

#4904 STAT3 75 Rabbit Cell Signaling 
#9145 P-STAT3 75 Rabbit Cell Signaling 
#9131 P-STAT3 75 Rabbit Cell Signaling 

#8242 NFκB 
p65 80 Rabbit Cell Signaling 

#3033 pp65 80 Rabbit Cell Signaling 
Hydridoma vIL-6 25 Mouse NA 

#MA5-
14769 ORF45 65 Mouse Invitrogen 
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Table AA. 3: Small Molecule inhibitors used in this study: 

This table displays the various inhibitors used in this study, their chemical formulas, CAS 

numbers, EC50 values in PEL BCBL-1 cells, and the ability to inhibit colony formation at 

two concentrations.  

Name Formula CAS No. 
EC50 

BCBL-
1 

Colony 
Inhibition 
at 1 µM 

Colony 
Inhibition 
at 10 µM 

IRAK inh1 C17H19N5 1042224-63-
4 

15.9 ± 
11 yes yes 

IRAK inh2 C17H14N4O2 928333-30-6 10.9 ± 
9.6 no yes 

IRAK inh3 C21H21N5O4S 1012343-93-
9 53 ± 8 no no 

IRAK inh4  C33H35F3N6O3 1012104-68-
5 5.5 ± 0.5 no yes 

IRAK inh1/4  C20H21N5O4 1042224-63-
4 274 ± 52 no no 

IRAK inh6 C20H20N4O3S 1042672-97-
8 

16.6 ± 
17 no no 

BAY11-7082  C10H9NO2S 19542-67-7 0.6 ± 0.2 yes yes 

ST2825 C27H28Cl2N4O5S  894787-30-
5 8.4 ± 3.4 no yes 

Acalabrutinib C26H23N7O2 1420477-60-
6 98 ± 6.5 no no 

AVL-292 C22H22FN5O3 1202757-89-
8 

3.45 ± 
1.1 yes yes 

PCI-32765 
(Ibrutinab) C25H24N6O2 936563-96-1 19.6 ± 

20 no yes  

 

  

http://www.medchemexpress.com/IRAK-inhibitor-2.html
http://www.medchemexpress.com/IRAK-inhibitor-3.html
http://www.medchemexpress.com/IRAK-inhibitor-4.html
http://www.medchemexpress.com/IRAK-1-4-Inhibitor-I.html
http://www.medchemexpress.com/IRAK-inhibitor-6.html
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Table AA. 1: Pathways that are always on in WT BCBL-1 cells according to IPA 

analysis. These pathways have members that are active in resting state WT BCBL-1. This 

activation is lost in IRAK4 knockout cells.  

Diseases or 
Functions 

Annotation 
p-Value Molecules 

# 
Molec
ules 

Abdominal 
cancer 0.00185 

ARHGAP30,B2M,BCL7A,ENG,EPB41L3,FT
L,HSP90AA1,RPS12,SELPLG,SLC16A3,SUL

T1A1,YWHAQ 
12 

Cancer of 
secretory 
structure 

0.00268 
ARHGAP30,B2M,BCL7A,ENG,EPB41L3,HS
P90AA1,RPS12,SELPLG,SLC16A3,SULT1A1

,YWHAQ 
11 

Genital tract 
cancer 0.000322 

ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,
RPS12,SELPLG,SLC16A3,SULT1A1,YWHA

Q 
10 

Genital tumor 0.000408 
ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,
RPS12,SELPLG,SLC16A3,SULT1A1,YWHA

Q 
10 

Pelvic cancer 0.000629 
ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,
RPS12,SELPLG,SLC16A3,SULT1A1,YWHA

Q 
10 

Malignant 
genitourinary 
solid tumor 

0.00222 
ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,
RPS12,SELPLG,SLC16A3,SULT1A1,YWHA

Q 
10 

Breast or 
gynecological 

cancer 
0.000903 ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,

RPS12,SLC16A3,SULT1A1,YWHAQ 9 

Uterine cancer 0.000111 ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,
RPS12,SLC16A3,SULT1A1 8 
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Endometrial 
cancer 0.000539 ARHGAP30,B2M,ENG,EPB41L3,HSP90AA1,

SLC16A3,SULT1A1 7 

Upper 
gastrointestinal 

tract cancer 
0.000632 B2M,BCL7A,ENG,EPB41L3,HSP90AA1,RPS

12,SULT1A1 7 

Respiratory 
system tumor 0.00115 ARHGAP30,B2M,EPB41L3,FTL,HSP90AA1,

RPS12,SULT1A1 7 

Prostatic tumor 0.00208 B2M,ENG,EPB41L3,HSP90AA1,SELPLG,SL
C16A3,YWHAQ 7 

Advanced 
extracranial 
solid tumor 

1.42E-05 B2M,ENG,EPB41L3,FTL,HSP90AA1,SLC16
A3 6 

Secondary 
tumor 0.000163 B2M,ENG,EPB41L3,FTL,HSP90AA1,SLC16

A3 6 

Non-small cell 
lung carcinoma 0.000736 ARHGAP30,B2M,EPB41L3,FTL,HSP90AA1,

SULT1A1 6 

Cell 
proliferation of 

tumor cell 
lines 

0.00208 ENG,EPB41L3,FTL,HSP90AA1,SLC16A3,Y
WHAQ 6 

Upper 
gastrointestinal 

carcinoma 
0.00288 B2M,ENG,EPB41L3,HSP90AA1,RPS12,SUL

T1A1 6 

Liver 
carcinoma 0.0242 B2M,ENG,EPB41L3,FTL,HSP90AA1,SULT1

A1 6 
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Figures 

 

 

Figure AA. 1: Knockdown of 
ABCD1 has no effect on PEL 
growth. 

A) ABCD1 western blot verifying 

knockdown, loading control is β-

actin. B) Growth curves for ABCD1 

KD stable BCBL-1 cells via though 

Trypan blue cell counting. Two 

different ABCD1 shRNA and a GFP 

targeting non-control were used in 

this experiment. C) Representative 

images from colony formation 

assays of ABCD1 KD stable BCBL-

1 cells plated at a low cell density in 

1% methylcellulose medium and 

grown for three weeks. Colony 

formation was imaged at 40X 

magnification. D) Quantification of colony formation in BCBL-1 ABCD1 KD stable cell 

lines using ImageJ. 
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Figure AA. 2: PEL cells contain F196S and S532L Variants in IRAK1. 

cDNA from several PEL cell lines was PCR-amplified and subjected to Sanger sequencing. 

All of the cells examined contain F196S and S532L Variants. A) Scale schematic of the four 

IRAK1 transcript isoforms listed on NCBI, including the three major transcripts from the 

literature – 1a, 1b, and 1c. 5’ and 3’ UTRs are in orange, coding portions of exons are in 

shades of blue, inclusion of a potential intron in transcript X1 is in green, gaps indicate 

regions not present in specific isoforms, and regions amplified by PCR are shaded gray. B) 

Scale schematic showing all variations of IRAK1 amplicons detected in PEL cells. The 
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potential intron from transcript X1 in amplicon 1 was not detected. Amplicon 3 spans the 

only known region of variation in IRAK1 isoforms across exons 10 to 12. The three major 

transcripts plus two potential new transcript isoforms (in red text) were sequenced in BC-1 

cells. Δ# denotes which codons are deleted relative to the 1a transcript. Length of amplicon 3 

(in red text) corresponds to bands in panel C. C) Agarose gel electrophoresis of amplicon 3. 

NTC, non-template control; mw, molecular weight marker. 
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Figure AA. 3: Western blot of the IRAK pathway in PEL and other cell lines.  
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Figure AA. 4: BTK is not expressed in PEL. 

 BTK was examined to determine if the protein played a role in PEL. A) Western blot 

analysis of Total BTK in BCBL-1 and BJAB cells treated with three BTK inhibitors. AC = 

Acalabrutinib, AV = AVL-292, and IB = Ibrutinib. Actin was probed to show even loading. 

B) Representative images of colony formation assays showing the effectiveness of the three 

BTK inhibitors in killing cells when treated with 5 μM of each inhibitor. C-F) Quantification 

of colony formation assays at both 5 and 20 μM for BCBL-1 and BJAB via ImageJ. Tukey 

Test was used to determine confidence intervals. G-L) IC50 curves for each inhibitor in each 

cell line generated from CTG assays after drug treatment and generated on R using DL4RP 

code.  
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Figure AA. 5: U2OS cells have functional IL-1β signaling. 

A) Western blot for total, P-NFκB, and actin. Cells were stimulated with TNF-α, or IL-1β for 

the noted amount of time. B) A luciferase assay testing for the activation of NFκB driven 

luciferase following TNF-α or IL-1β stimulation. Values are represented as a fold change 

over non-stimulated PBS control. C) NFκB translocation observed via Immunofluorescence. 

Cells were treated with TNF-α, or IL-1β for one hour and nuclear translocation of NFκB was 

examined by probing for P65. Single channels are in gray scale. Scale bars are 20 μM. 
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Figure AA. 6: TNF and IL-1β activate NFκB in PEL. 

A) Time course western blot of p-NFκB in BCBL-1 cells following stimulation with IL-1β. 

B) Luciferase assay measuring luminescence following stimulation of cells with TNF or IL-

1B when luciferase is on a plasmid with an NFκB driven promoter.   
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Figure AA. 7: IL-1β and CTG titration in BCBL-1 cells. 

A) Titration of IL-1β in PEL cell line BCBL-1 to determine proper dosing for use in various 

studies using IL-1β. B) Titration of IL-1β in PEL cell line JSC1 cells to determine proper 

dosing. C) CTG reagent titration in BCBL-1 cells.  
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Figure AA. 8 Validation of IRAK expression plasmids. 

A) Restriction digest of IRAK1 expression plasmids. B) Western blot of IRAK expression 

plasmids in BCBL-1 cells. C) Western blot of IRAK expression plasmids in BC-1 cells. D) 

Sequences alignment of IRAK expression plasmids showing the mutated residues at position 

196 and 340.   
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Figure AA. 9: IL1R shRNA 
figure BCBL-1. 

A) IL-1R1 western blot of 

BCBL-1 cells, loading control is 

β-actin. B) Survival curves 

following shRNA knockdown for 

IL-1R1 KD BCBL-1 cells via 

Trypan blue cell counting. Five 

different IL-1R1 and a no-

targeting GFP control guides 

were used in this experiment. 

Negative control is WT BCBL-1 

with no resistance inferred to 

puromycin. C) Representative 

images from colony formation 

assays of IL-1R1 KD BCBL-1 

cells plated at a low cell density 

in 1% methylcellulose medium and grown for three weeks. Images are at 40X magnification. 

D) Quantification of colony formation in BCBL-1 IL-1R1 KD via ImageJ.   
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Figure AA. 10: IL1R CRSIPR 
BCBL-1. 

A) IL-1R1 CRIPSR western blot of 

BCBL-1 cells, loading control is β-

actin B). Survival curves following 

CRISPR knockout for IL-1R1 KD 

BCBL-1 cells via Trypan blue cell 

counting. Two different IL-1R1 and 

an empty vector control were used in 

this experiment. C) Representative 

images from colony formation assays 

of IL-1R1 KO BCBL-1 cells plated at 

a low cell density in 1% 

methylcellulose medium and grown 

for three weeks. Images are at 40X 

magnification. D) Quantification of colony formation in 

BCBL-1 IL-1R1 KO as quantified by ImageJ. 
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Figure AA. 11: MYD88 shRNA data. 

A) Survival curves for BC-1 treated with shRNA targeting MYD88. Live/dead cell counts 

are obtained using Trypan blue. Two shRNA targeting MYD88 were used as was a non-

targeting GFP control. (-) control is WT cell lines B) Survival curves for BJAB treated with 

shRNA targeting MYD88. C) Western blot for MYD88 showing knock down in, BC-1 and 

BJAB cells. D) Colony formation assay images for MYD88 shRNA treated cells BC-1 and 

BJAB. Images are 40X E) Quantification of colony formation assays for MYD88 shRNA 

treated BC-1 cells. Quantified in ImageJ F) Quantification of colony formation assays for 

MYD88 shRNA treated BJAB cells. 
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Figure AA. 12: IRAK1 shRNA results. 

A) Survival curves for BCBL-1 treated with shRNA targeting IRAK1. Live/dead cell counts 

are obtained using Trypan blue. Two shRNA targeting IRAK1 were used as was a non-

targeting GFP control. (-) control is WT cell lines. B) Survival curves for BJAB treated with 

shRNA targeting IRAK1. C) Western blot for IRAK1 showing knock down in, BCBL-1 and 

BJAB cells. D) Colony formation assay images for IRAK1 shRNA treated cells BCBL-1 and 

BJAB. Images are 40X E) Quantification of colony formation assays for IRAK1 shRNA 
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treated BCBL-1 cells. Quantified in ImageJ F) Quantification of colony formation assays for 

IRAK1 shRNA treated BJAB cells. 
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Figure AA. 13: IRAK4 shRNA data. 

A) Growth curves for IRAK4 KD stable BCBL-1 cells via Trypan blue cell counting. Five 

different IRAK4 and a no-targeting GFP control guides were used in this experiment. B) 

IRAK4 western blot of BCBL-1 cells, loading control is β-actin. C) Representative images 

from colony formation assays of IRAK4 KD BCBL-1 cells plated at a low cell density in 1% 

methylcellulose medium and grown for three weeks. Images are at 40X magnification. D) 

Quantification of colony formation in BCBL-1 IRAK4 KD obtained via ImageJ.  
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Figure AA. 14: IRAK4 shRNA has no 
effect in BC-1. 

A) Growth curves for IRAK4 KD stable 

BC-1 cells via Trypan blue cell 

counting. Five different IRAK4 and a 

no-targeting GFP control guides were 

used in this experiment. B) IRAK4 

western blot of BC-1 cells, loading 

control is β-actin. C) Representative 

images from colony formation assays of 

IRAK4 KD BC-1 cells plated at a low 

cell density in 1% methylcellulose 

medium and grown for three weeks. 

Images are at 40X magnification. D) 

Quantification of colony formation in 

BC-1 IRAK4 KD obtained via ImageJ.  
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Figure AA. 15: CRISPR knockout 
of IRAK4 has no effect on BJAB 
cells. 

A) IRAK4 western blot of BJAB 

cell lines showing complete KO, 

loading control is β-actin. B) 

Growth curves for BJAB IRAK4 

KO clones obtained via Trypan blue 

cell counting. Two different IRAK4 

KO clones and an empty vector 

control were used in this 

experiment. C) Representative 

images from colony formation 

assays of IRAK4 KO BJAB and 

BJAB cells imaged at 10X 

magnification. Cells are plated at a 

low cell density in 1% 

methylcellulose medium and grown for three weeks. D) Quantification of colony formation 

in BJAB IRAK4 KO stable cell lines. Colony counts were obtained using ImageJ. 
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Figure AA. 16: NFκB is constitutively activated in BC-1 but not BCBL-1 cells.  

Cells were treated with IL-1β in the presences or absence of the 6 IRAK inhibitors, MYD88 

inhibitor and the NFκB inhibitor BAY11-7082 . Lysates were collected 15 minutes post IL-

1β stimulation.  
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Figure AA. 17. IPA 
pathway analysis on IRAK4 
knockout RNA-seq.  

IPA pathway analysis on 
RNA-seq data for the top 
changes in pathways when 
comparing WT to ΔIRAK4 
cells. Orange means the 
pathway is up in the 
Knockout and blue means it is 
down. The X axis is by the –
log(P-value).  
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Figure AA. 18: Exome sequencing data for the IRAK pathway knockouts in BCBL1: 

A) Highlights that there is a deletion seen in the MYD88 knockout lines but not the other 
three cell lines. B) Demonstrates knockout of IRAK1. C) Demonstrates knockout of IRAK4 
as seen by the reduction in coverage. 
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Figure AA. 19 Exome sequencing variant calling in BCBL1 

A) Chromosome 3 which contains MYD88 B) X chromosome which contains IRAK1. C) 
Chromosome 12 which contains IRAK4. 
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Figure AA. 20 Exome sequencing data for the IRAK pathway knockouts in BC1. 

A) Highlights that there is a deletion seen in the MYD88 knockout lines but not the other 
three cell lines. B) Demonstrates knockout of IRAK1. C) Demonstrates knockout of IRAK4 
as seen by the reduction in coverage. 
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Figure AA. 21 Exome sequencing variant calling in BC1. 

A) Chromosome 3 which contains MYD88 B) X chromosome which contains IRAK1. C) 
Chromosome 12 which contains IRAK4. 
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Figure AA. 22: IRAK inhibitors are non-specific.  

A) EC50 curves for 6 commercially available IRAK inhibitor in μM. Inh1 (CAS No: 

1042224-63-4), inh2 (CAS No: 928333-30-6), inh3 (CAS No: 1012343-93-9), inh4 (CAS 

No: 1012104-68-5), inh6 (CAS No: 1042672-97-8), and inh1-4 (CAS No: 509093-47-4). The 

EC50 value on each plot is the average of three experiments. B) Quantification of luciferase 

production in cells transfected with an NFκB driven luciferase plasmid, incubated with 

inhibitor, stimulated with 1 ng/μL IL-1β. Luciferase values were measured 6 hours post 

stimulation. All values are fold change over mock PBS stimulation. C) A DiscoverX Kinome 

scan analysis for each IRAK inhibitor at 250 nM. Arrows point to either Purple and Blue dots 

represent IRAK4 and IRAK1 kinase respectively. Size of the circle is proportional to percent 

activity inhibited by the inhibitors. 
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Figure AA. 23 MYD88 inhibitor ST2825 EC50 in IRAK knockouts  

A) Panel A has represented EC50 curves for the MYD88 dimerization inhibitor ST2825 for 

each of the IRAK knockout cells. B) Colony formation assay for each pathway knockout 

following treatment with ST2825. C) Quantification of the colony formation information 

from panel C when cells had no inhibitor treatment. D) Quantification of colony formation 

when cells were treated with 1 μM of inhibitor.  
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Figure AA. 24: IRAK mouse inhibitor data.  

Mice were inoculated with 1 million BC-1 -TREX-LUC cells, three days after injection 

IRAK inhibitors were given to the mice, Mondays, Wednesdays and Fridays for three weeks. 

Mice were imaged and luciferase values representing the PEL effusions were measured at the 

three week termination point. A) IRAK inhibitor 1 B) IRAK inhibitor 4 C) IRAK inhibitor 1-

4.  
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Figure AA. 25: CFA supplemental data  

IRAK4 knockout cells were treated with inhibitors during colony formation assays with at 10 

μM.  
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Figure AA. 26: Reactivation of BCBL-1 IRAK pathway knockouts.  

A) Western blots for lytic KSHV markers ORF45 and vIL-6 on IRAK pathway, ΔMYD88, 

ΔIRAK1 and ΔIRAK4 BCBL-1 cells following reactivation with 1 mM sodium butyrate and 

25 ng/mL PMA. B) Lysates were harvested at 0, 48, and 72 hours, and genome copy 

numbers/mL were calculated using qPCR.   
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Figure AA. 27: RNA-seq results for virus genes 
in ΔIRAK4 BCBL-1. 

A heat map of KSHV expression patterns with blue 

being low expression and red high. Scale is on the 

bottom.  
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Figure AA. 28: ABCD1 complete western blot. 
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Figure AA. 29: BTK complete western blot. 
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Figure AA. 30: IRAK4 shRNA BCBL-1 complete western blot. 
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Figure AA. 31: IRAK1 shRNA complete blots.  
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Figure AA. 32 BCBL-1 MYD88 CRISPR complete western blot  
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Figure AA. 33 IRAK1 CRISPR complete western blot BCBL-1.  
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Figure AA. 34: IRAK4 CRISPR complete western blot.  
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