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ABSTRACT

Bonnie E. Shook-Sa: Inverse Probability Weighting and Outcome Regression Approaches in
Causal Inference and Survey Sampling

(Under the direction of Michael G. Hudgens)

Survey sampling and causal inference share much of the same theoretical foundation. Both

fields commonly use estimation methods that rely on randomization-based or prediction-based

inferential paradigms, and inverse-probability weighting (IPW) and outcome regression methods

are common in both fields (Lohr, 2010; Hernán and Robins, 2020). IPW estimators are used in

conjunction with marginal structural models (MSMs) to estimate causal effects from observational

studies by controlling for confounding. The parametric g-formula is an outcome regression approach

utilized to make causal estimates in the presence of confounding by directly modeling the outcome

as a function of the exposure and confounding variables and then integrating over the distribution of

the confounders. IPW estimators are fundamental in survey sampling, as they appropriately account

for each unit’s probability of selection within a finite population and can be further adjusted to

account for nonresponding units and undercoverage of the target population. Under a prediction-

based inferential paradigm, outcome regression is used to impute outcomes for units not selected

into the sample based on data from sampled units.

We develop and compare methods based on IPW and outcome regression with applications in

survey sampling and causal inference. Our first paper develops methods to estimate the number

of HIV-positive persons incarcerated in North Carolina jails. Study data are derived from record-

linkage techniques and are incomplete. Survey sampling methods are used to adjust estimates

from a portion of counties to make state-level estimates that are representative of all counties. An

IPW estimator is compared with an estimator based on outcome regression in simulations and with

preliminary study data.
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A common technique for sample size determination for complex sample surveys is to make

use of the design effect, the ratio of the variance of an estimator under a complex sample design

to the variance of the estimator under a simple random sample (Kish, 1965). Design effects allow

researchers to calculate sample sizes under the simpler design and then inflate them to account for

the use of weights in the analysis. In our second paper, we extend the theory of design effects to

causal inference. The design effect approximation can be used to design causal studies that will be

analyzed using MSM with IPW to control for confounding.

MSMs, the parametric g-formula, and doubly robust estimators are commonly used to make

causal estimates for observational studies when the outcome of interest is continuous, binary, or

categorical. In our third paper, we provide a theoretical justification for the use of these methods

when the outcome is a count. We consider methods to account for overdispersion, zero-inflation,

and data heaping, a common type of measurement error for count data. We present estimators

for causal rate ratios along with their properties and compare the three classes of estimators via

simulations. We demonstrate these methods using data from the Women’s Interagency HIV Study

to assess the effect of incarceration on the number of sexual partners in the subsequent six-month

period.

iv



To Gustavo and Julia

v



ACKNOWLEDGEMENTS

I would like to thank my dissertation advisor, Dr. Michael Hudgens, for his guidance throughout

the dissertation process and for empowering me to reach my full potential. He has inspired me to be

a better statistician in both methods research and in application. Thank you also to my dissertation

committee Dr. Stephen Cole, Dr. John Preisser, Dr. David Rosen, and Dr. Donglin Zeng for their

valuable feedback and helpful suggestions that have strengthened this research.

The research in Chapter 2 was supported by NIH grant R01 AI129731. Dr. David Rosen and

Andrew Kavee are co-authors on this paper. Thanks also to Dr. Phillip Kott at RTI International for

his helpful suggestions.

The research in Chapters 3 and 4 was supported by NIH grant R01 AI085073. The research in

Paper 3 was funded in part through Developmental funding from the University of North Carolina

at Chapel Hill Center For AIDS Research (CFAR), an NIH funded program P30 AI050410. The

authors thank Dr. Stephen Cole, Noah Greifer, Shaina Alexandria, Bryan Blette, Kayla Kilpatrick,

and Dr. Jaffer Zaidi for their helpful suggestions.

Data in Chapter 4 were collected by the Women’s Interagency HIV Study, now the MACS/WIHS

Combined Cohort Study (MWCCS). The contents of this publication are solely the responsibility

of the authors and do not represent the official views of the National Institutes of Health (NIH).

MWCCS (Principal Investigators): Atlanta CRS (Ighovwerha Ofotokun, Anandi Sheth, and Gina

Wingood), U01-HL146241; Baltimore CRS (Todd Brown and Joseph Margolick), U01-HL146201;

Bronx CRS (Kathryn Anastos and Anjali Sharma), U01-HL146204; Brooklyn CRS (Deborah

Gustafson and Tracey Wilson), U01-HL146202; Data Analysis and Coordination Center (Gyp-

syamber D’Souza, Stephen Gange and Elizabeth Golub), U01-HL146193; Chicago-Cook County

CRS (Mardge Cohen and Audrey French), U01-HL146245; Chicago-Northwestern CRS (Steven

Wolinsky), U01- HL146240; Connie Wofsy Women’s HIV Study, Northern California CRS (Bradley

vi



Aouizerat and Phyllis Tien), U01-HL146242; Los Angeles CRS (Roger Detels), U01-HL146333;

Metropolitan Washington CRS (Seble Kassaye and Daniel Merenstein), U01-HL146205; Miami

CRS (Maria Alcaide, Margaret Fischl, and Deborah Jones), U01-HL146203; Pittsburgh CRS

(Jeremy Martinson and Charles Rinaldo), U01-HL146208; UAB-MS CRS (Mirjam-Colette Kempf

and Deborah Konkle-Parker), U01-HL146192; UNC CRS (Adaora Adimora), U01-HL146194.

The MWCCS is funded primarily by the National Heart, Lung, and Blood Institute (NHLBI),

with additional co-funding from the Eunice Kennedy Shriver National Institute Of Child Health &

Human Development (NICHD), National Human Genome Research Institute (NHGRI), National

Institute On Aging (NIA), National Institute Of Dental & Craniofacial Research (NIDCR), National

Institute Of Allergy And Infectious Diseases (NIAID), National Institute Of Neurological Disorders

And Stroke (NINDS), National Institute Of Mental Health (NIMH), National Institute On Drug

Abuse (NIDA), National Institute Of Nursing Research (NINR), National Cancer Institute (NCI),

National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute on Deafness and

Other Communication Disorders (NIDCD), National Institute of Diabetes and Digestive and Kidney

Diseases (NIDDK). MWCCS data collection is also supported by UL1-TR000004 (UCSF CTSA),

P30-AI-050409 (Atlanta CFAR), P30-AI-050410 (UNC CFAR), and P30-AI-0277 67 (UAB CFAR).

Thanks to Dr. Andrea Knittel, Dr. Andrew Edmonds, Catalina Ramirez, and Dr. Adaora Adimora

for contributions to the work in Chapter 4.

Thank you to Gustavo, Julia, my parents, and the rest of my family and friends. Without their

support I would not have made it here. Thank you to Kimberly Enders, Hillary Heiling, Nathan

Bean, and Ethan Alt for your help and support along the way. And thank you to my dogs, my silent

but supportive coauthors who never left my side.

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Inferential Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 IPW and Outcome Regression Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2.1 IPW Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2.2 Outcome Regression Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2.3 Doubly Robust Estimation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Survey Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Inferential Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 IPW and Outcome Regression Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2.1 IPW Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2.2 Outcome Regression Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Design Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Issues Surrounding the Analysis of Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Overdispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Data Heaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Estimating the Number of HIV-Positive Persons in North Car-
olina Jails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



1.6.2 Women’s Interagency HIV Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 2: SURVEY SAMPLING APPROACHES TO ESTIMATE THE
NUMBER OF HIV-POSITIVE PERSONS IN NORTH CAROLINA JAILS . . . . . . . . . . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Preliminary Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3.1 Outcome Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3.2 Weight Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Preliminary Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Outcome Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Weight Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 3: DON’T LET CONFOUNDING CONFOUND YOU: POWER
AND SAMPLE SIZE FOR MARGINAL STRUCTURAL MODELS . . . . . . . . . . . . . . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The Design Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 The Design Effect for a Single Causal Mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Sample Size Calculations using the Design Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2.1 Example 1: No prior study data (Scenario 1) . . . . . . . . . . . . . . . . . . . . . 46

3.4.2.2 Example 2: Prior study data (Scenario 5) . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



3.4.2.3 Naı̈ve Sample Size Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

CHAPTER 4: CAUSAL INFERENCE FROM OBSERVATIONAL DATA FOR
COUNT OUTCOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 MSM with IPTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Parametric g-formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Doubly Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.5 Data Heaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5.1 MSM with IPTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5.2 Parametric g-formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.5.3 Doubly Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Without Data Heaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 With Data Heaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Example: Women’s Interagency HIV Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Proofs of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1.1 Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1.2 Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.3 Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

x



APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1 Supplemental Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 Proofs of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2.1 Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2.2 Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.2.3 Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.2.4 Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2.5 Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



LIST OF TABLES

2.1 Simulation Summary Results, R = 1000 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Parameter Estimates for Multivariable and Single Variable Prediction
Models, Outcome Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Estimated Number of HIV-positive Persons Incarcerated in Jails in the
10 Largest and 10 Smallest Counties, Outcome Regression . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 County Characteristics by Response Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Parameter Estimates for Weight Calibration Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Five simulation scenarios. Scenarios 1-4 demonstrate use of the de-
sign effect when no prior study data are available, and Scenario 5
demonstrates use of the design effect with prior study data. X ∼ B(p)
indicates that a random variable X follows the Bernoulli distribution
with probability of success equal to p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Variances, approximated design effects, approximated adjusted vari-
ances, and required sample sizes for simulation scenarios by treatment. . . . . . . . . . . . . 48

3.3 Results of the simulation study by scenario across R = 2000 samples.
Empirical power ndeff and nrct are the proportions of simulated sam-
ples in which the p-values for testing H0 : β1 = 0 versus H1 : β1 6= 0
were less than α = 0.05 for the following MSM: E(Yai) = β0 + β1ai,
based on sample sizes ndeff and nrct, respectively, from Table 3.2 . . . . . . . . . . . . . . . . . 51

4.1 Results of the simulation study by distribution and method across R =
1000 samples with correct model specification, n = 800. Empirical
bias, ASE, ESE, SER, and empirical 95% confidence interval coverage
calculated for the CRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Results of the simulation study by distribution and method across
R = 1000 samples with one or both models misspecified, n = 800.
Empirical bias, ASE, ESE, SER, and empirical 95% confidence interval
coverage calculated for the CRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Results of the data heaping simulation study by method across R =
1000 samples with correct model specification, n = 800. All heaping
estimators and the naı̈ve PG and DR estimators assume a Poisson
distribution. Empirical bias, ASE, ESE, SER, and empirical 95%
confidence interval coverage calculated for the CRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



4.4 Results of the data heaping simulation study by method across R =
1000 samples with one or both models misspecified, n = 800. All
estimators assume a Poisson distribution. Empirical bias, ASE, ESE,
SER, and empirical 95% confidence interval coverage calculated for the CRR. . . . . . 74

4.5 Estimated causal rate ratios, estimated standard errors, and Wald 95%
confidence intervals for the effect of incarceration on the number of
male sexual partners in the subsequent six months by method and
assumed parametric distribution, WIHS 2007-2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B1 Results of the simulation study by distribution and method across R =
1000 samples with correct model specification, n = 2000. Empirical
bias, ASE, ESE, SER, and empirical 95% confidence interval coverage
calculated for the CRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B2 Results of the simulation study by distribution and method across
R = 1000 samples with one or both models misspecified, n = 2000.
Empirical bias, ASE, ESE, SER, and empirical 95% confidence interval
coverage calculated for the CRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



LIST OF FIGURES

2.1 Availability of Jail Rosters by NC County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Density Plots for Outcome Regression vs. Weight Calibration, R =
1000 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Predicted vs. Actual Proportion of Defendants who were Incarcerated,
n = 26 Counties with Publicly-Available Jail Rosters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Estimated Number of HIV+ Persons Incarcerated in NC Jails (n̂I,NC)
and 95% Confidence Intervals based on Outcome Regression and
Weight Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Examples of weight distributions for various approximated design
effects. Distributions were generated by taking the reciprocals of
Na = 1000 random draws from beta distributions with mean 0.5 and
shape parameters set to achieve the desired design effect. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Density plot of the true distribution of partners with a histogram of the
reported (heaped) number of partners for a single simulation, n = 800 . . . . . . . . . . . . . 71

4.2 Distribution of partners during the six months following the study
period reported by WIHS participants in the analytic sample: 0-4
partners (left, n = 865) and 5 or more partners (right, n = 17) . . . . . . . . . . . . . . . . . . . . . 77

xiv



CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Survey sampling and causal inference share much of the same theoretical foundation, and

inverse-probability weighting (IPW) and outcome regression approaches are common in both fields.

This dissertation focuses on applications and extensions of IPW and outcome regression approaches

in the fields of causal inference and survey sampling. Chapter 2 proposes and compares survey

sampling methods utilizing IPW and outcome regression for estimating the number of HIV-positive

persons incarcerated in NC jails when study data are available only for a nonrandom subset of

counties. Chapter 3 extends the theory of design effects from survey sampling to causal inference to

allow for design of studies that will be analyzed using MSM with IPTWs. Chapter 4 provides a

theoretical justification for the use of MSMs, the parametric g-formula, and doubly robust estimators

for count outcome and proposes methods that account for overdispersion and data heaping.

This chapter provides background information and covers existing literature relevant to the

methodology presented in Chapters 2, 3, and 4. We discuss the inferential paradigms commonly used

in causal inference and survey sampling and review research in these fields related to IPW estimators

and outcome regression approaches. We discuss the history of design effects and their applications

in survey sampling and causal inference, and issues related to the analysis of self-reported count

data.
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1.2 Causal Inference

1.2.1 Inferential Paradigms

Causal inference aims to move beyond measures of association to estimate causal effects

between variables. Neyman (1923) introduced the potential outcomes framework, and Rubin (1974;

1977; 1978) popularized this framework in the 1970s. This led to the Neyman-Rubin causal model,

which serves as the foundation of causal inference. Under the potential outcomes framework, for a

dichotomous treatment A the potential outcome Y a represents the outcome that would be observed

under treatment assignment A = a, a ∈ {0, 1}. In causal inference, the estimands are functions of

the potential outcomes. For each participant, only the potential outcome associated with the realized

treatment status is observed, and the other (counterfactual) outcome is unobserved. This leads to

what Holland (1986) calls the fundamental problem of causal inference, which is a missing data

problem.

Two of the inferential paradigms commonly employed in causal inference are randomization-

based and prediction-based (or large sample frequentist) inference. Under randomization-based

inference, the potential outcomes are commonly viewed as fixed characteristics of a finite population,

and the only random component is the treatment assignment A for each participant. Expectations

and variances are calculated based on all possible randomizations of treatment assignments. Neyman

(1923) provides unbiased estimators for the average causal effect under the randomization-based

paradigm along with their variance estimators.

The prediction-based paradigm relies on a large-sample frequentist perspective. LetAi represent

the binary treatment status for participant i (Ai = 1 means participant i received treatment, Ai = 0

means participant i did not receive treatment), Li be a vector of baseline covariates measured

prior to Ai or unaffected by treatment Ai, and Yi be the measured outcome for participant i.

Under the prediction-based paradigm, (Y1,L1, A1), (Y2,L2, A2), ..., (Yn,Ln, An) are viewed as an

independent and identically distributed sample from an infinite population. The causal methods

discussed subsequently are all based on the prediction-based paradigm.
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1.2.2 IPW and Outcome Regression Approaches

Standard statistical methods cannot be used to calculate causal effects from observational data

when confounding is present, as measures of association differ from the causal effects of interest.

Two methods commonly employed to calculate causal estimates in the presence of confounding are

marginal structural models (MSMs) with IPW and the parametric g-formula, which is an outcome

regression approach.

Both methods rely on three identifiability conditions: causal consistency, positivity, and con-

ditional exchangeability. Causal consistency defines the observed outcome Y as a function of the

potential outcomes and treatment assignment: Y = AY 1 + (1− A)Y 0 (Rubin, 1980; Gibbard and

William, 1981; Cole and Frangakis, 2009; Pearl, 2010). Positivity states that there is a non-zero

probability of each level of treatment A for all combinations of A and L in the population (Cole

and Frangakis, 2009; Hernán and Robins, 2020). Under conditional exchangeability, it is assumed

that Y a ⊥ A | L, a ∈ {0, 1}. That is, the potential outcomes are independent of the treatment

assignment given the set of measured confounding variables L. This assumption is also referred to

as the assumption of no unmeasured confounding (Hernán and Robins, 2020).

1.2.2.1 IPW Estimation

The propensity score for each participant is defined as ei = Pr(Ai = 1 | Li), the probability

that participant i received treatment A = 1 conditional on covariates Li (Rosenbaum and Rubin,

1983). The inverse-probability of treatment weight (IPTW) is equal to Wi = Aie
−1
i + (1−Ai)(1−

ei)
−1. Weighting individuals by Wi creates a pseudo-population in which confounding by variables

L is not present, which allows for the estimation of causal effects (Robins et al., 2000).

Marginal structural models (MSMs) were introduced by Robins (1998) and further refined

by Robins et al. (2000) and Hernán et al. (2000). To fit a MSM for a binary treatment, estimated

propensity scores are first obtained using a method such as logistic regression to predict the observed

treatment assignments A = a based on confounding variables L (Cole and Hernán, 2008). For

each participant i, the corresponding IPTW is estimated as a function of the estimated propensity
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score and the observed treatment assignment: Ŵi = I(Ai = 1)ê−1i + I(Ai = 0)(1− êi)−1, where

I(Ai = a) is a {0,1} treatment indicator for participant i. Weighted estimating equations are then

used to regress the observed outcome Y on treatment A with weights Ŵ . Under the assumptions

of causal consistency, positivity, and conditional exchangeability, causal effects are identifiable

because within the weighted population E(Y | A = a) = E(Y a | A = a) = E(Y a) for a ∈ {0, 1}.

When the weight model is correctly specified the average causal effect, E(Y 1)− E(Y 0), can be

consistently estimated as a difference in Hájek estimators for the two causal means (Lunceford and

Davidian, 2004):

ÂCE = µ̂1 − µ̂0 =

∑n
i=1 ŴiYiI [Ai = 1]∑n
i=1 ŴiI [Ai = 1]

−
∑n

i=1 ŴiYiI [Ai = 0]∑n
i=1 ŴiI [Ai = 0]

Lunceford and Davidian (2004) show that the empirical sandwich variance estimator provides a

consistent estimate for the asymptotic variance of the estimated average causal effect when the

weight model is correctly specified and that the asymptotic variance of ÂCE is Σ = E{(Y 1 −

µ1)2e−1 + (Y 0−µ0)2(1− e)−1} when the weights are treated as fixed. Furthermore, Lunceford and

Davidian (2004) show that treating the weights as fixed leads to a conservative variance estimate, as

the asymptotic variance when the weights are appropriately treated as estimated is less than Σ.

MSMs with IPTWs can be used to estimate casual effects from observational studies by

controlling for confounding variables. They do not require modeling the relationship between the

confounding variables and the outcome of interest. One key advantage of MSMs is that they can

adjust for confounding from time-varying covariates that are affected by prior exposures (Robins,

1998). The drawbacks of using MSM is that it requires correct specification of the weight model,

and the IPW estimator can be unstable when weights are extreme (Cole and Hernán, 2008; Little

and Rubin, 2019; Robins et al., 2000).
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1.2.2.2 Outcome Regression Approaches

The parametric g-formula is an outcome regression approach used in causal inference that is an

alternative to MSMs with IPWs. Standardization is a common analytic technique in epidemiology

research (see, for example Rothman, 2012, pages 188-192). Robins (1986) introduced the parametric

g-formula as a type of standardization that allows for the estimation of causal effects by directly

modeling the outcome as a function of the exposure and confounding variables and then integrating

over the distribution of the confounding variables.

More specifically, under the assumptions of conditional exchangeability and causal consistency,

E[Y a | L = l] = E[Y a | L = l, A = a] = E[Y | L = l, A = a]. The final quantity is identifiable

from the data and can be estimated using standard parametric models (e.g. linear regression, logistic

regression) (Hernán and Robins, 2020). Causal means are then estimated using the law of total

probability and integrating over the distribution of L, E[Y a] =
∫
E[Y | L = l, A = a]dFL(l). This

is typically done empirically by taking the average of the Ê[Y | L = l, A = a] for the observed

data (Hernán and Robins, 2020).

The parametric g-formula can lead to more stable and efficient estimates compared to MSM

with IPW (Daniel et al., 2013). The drawbacks of the parametric g-formula are that it requires

correct specification of the outcome regression model (i.e., correctly specifying the relationship

between the outcome and the exposure and confounding variables) and that it can be problematic

in longitudinal settings due to a phenomenon known as the “g-null paradox”. Under the g-null

paradox, when there is treatment-confounder feedback, the null hypothesis of no treatment effect

will be rejected with probability approaching one under the null given enough data (Hernán and

Robins, 2020; Robins, 1986).

1.2.2.3 Doubly Robust Estimation Approaches

Doubly robust estimators, also referred to as augmented IPW estimators, incorporate both MSM

and parametric g-formula estimators to provide protection against incorrect model-specification

for either the weight or outcome model (Bang and Robins, 2005; Hernán and Robins, 2020; Funk
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et al., 2011). Because the relationships between the exposure, outcome, and confounding variables

are typically unknown in observational settings, doubly robust estimators afford some protection

against misspecification of these models (Funk et al., 2011). While in practice all models are at least

partially misspecified, Bang and Robins (2005) note that doubly robust estimators allow for minimal

bias when either the weight or outcome model is nearly correct, giving the researcher two chances

to get close to correct specification. Lunceford and Davidian (2004) consider the doubly robust

estimators below, proposed by Robins et al. (1994), for the causal means of two binary treatment

groups.

Ê[Y 1] = n−1
n∑
i=1

AiYi − {Ai − π(Li, γ̂)}m1(Li, β̂1)

π(Li, γ̂)

and

Ê[Y 0] = n−1
n∑
i=1

(1− Ai)Yi + {Ai − π(Li, γ̂)}m0(Li, β̂0)

1− π(Li, γ̂)

where π(Li, γ̂) is the estimated propensity score for participant i from the weight model and

ma(Li, β̂a) is the predicted potential outcome for participant i from the parametric g-formula

model. These estimators combine the MSM and parametric g-formula estimators and are consistent

and asymptotically normal when either model is correctly specified (Lunceford and Davidian, 2004).

An alternative doubly robust estimator is constructed by incorporating the reciprocal of the estimated

propensity score, ê−1 as a covariate in the outcome regression model (Scharfstein et al., 1999; Bang

and Robins, 2005).

1.3 Survey Sampling

1.3.1 Inferential Paradigms

Survey sampling emerged in the late 1800s and early 1900s as an estimation approach for finite

populations, with early practitioners making use of methods such as stratification, clustering, and

multistage sampling (Kiaer, 1897). The classic paper by Neyman (1923) presented a finite population

inferential approach based on a probability sample. This laid the foundation for the randomization-

based (or design-based) inferential paradigm of survey sampling. The outcomes of interest are
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treated as fixed quantities associated with the finite population and the only random component is

which elements of the finite population are selected into the sample (Lohr, 2010, page 54). As in

the randomization-based approach to causal inference described above, expectations and variances

are calculated based on all possible randomizations. In survey sampling, these randomizations are

the possible samples that could have been selected. These methods are sometimes referred to as

unconditional, as they rely on averages over all possible samples and are not conditioned on the

observed sample (Lavrakas, 2008).

An alternative approach to sample survey estimation is the prediction-based (or model-based)

inferential paradigm. Royall (1970; 1976; 1978) was one of the early pioneers of the prediction-

based paradigm within survey sampling, proposing models based on a superpopulation perspective

and the use of auxiliary data for analyzing survey data. Under the prediction-based approach, the

outcomes themselves are considered random variables that follow a model, and the finite population

is thought of as a single realization of these random variables from a superpopulation (Särndal

et al., 1978). Data from the observed sample is used to predict the unobserved values from the non

sampled members of the finite population, and variances are estimated using standard parametric

modeling theory (Särndal et al., 2003; Bolfarine and Zacks, 1992; Lohr, 2010, page 148). These

methods can be more efficient than randomization-based methods when the model is correctly

specified, but can lead to substantially biased estimates when the model is incorrectly specified

(Hansen, 1987).

Model assisted survey sampling and randomization assisted model based inference are addi-

tional inferential paradigms that emerged to remedy the limitations of the randomization-based

and predication-based approaches. Classic randomization-based inferential methods do not ac-

commodate nonresponding units, undercoverage of the sampling frame, or measurement error.

Under model-assisted survey sampling, models are incorporated into the randomization-based

inferential framework as needed to account for these limitations of randomization-based methods,

but models play a secondary role to design-based inference (Särndal et al., 2003; Särndal, 2010).

The Generalized Regression Estimator (GREG) is a model-assisted survey sampling estimator with
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the double-robustness property. The GREG remains design-unbiased even when the regression

model is misspecified (Cassel et al., 1976; Särndal et al., 2003; Kang and Schafer, 2007). The

Generalized Exponential Model (GEM) is a generalization of the GREG and is further discussed in

Section 1.3.2.1. Proponents of randomization assisted model based inference argue that inference

should be based on the realized sample rather than across all possible samples, so this alternative

framework uses prediction-based theory but brings features of the sample design (e.g. stratification

and clustering) into the modeling framework (Särndal, 2010; Kott, 2005).

1.3.2 IPW and Outcome Regression Approaches

IPW and outcome regression approaches are common in survey sampling. We focus on

weight calibration estimators, specifically the GEM, under the randomization assisted model based

inferential paradigm and the use of outcome regression to impute missing data for units that were not

selected under the prediction-based paradigm. Let N be the finite population size and n represent

the sample size.

1.3.2.1 IPW Estimation

Under the randomization-based paradigm, weights wi are defined as the reciprocal of each unit

i’s probability of selection. These are commonly referred to as base weights (Valliant et al., 2013,

pages 311-314). Base weights can be further adjusted using auxiliary data under the model assisted

or randomization assisted model based paradigms to account for nonresponding units or sampling

frame undercoverage of the target population (Kott, 2006; Kott and Day, 2014; Valliant et al., 2013,

Ch 13-14).

Weight calibration models aim to balance an observed sample with respect to a set of calibration

variables by adjusting the weights such that sample sums of the weighted calibration variables equal

the population totals of the calibration variables (Deville and Särndal, 1992; Folsom and Singh,

2000). These models can reduce selection bias resulting from missing data under the assumption

that each missed observation had some unknown (but positive) probability of participating in the
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study (Kott and Liao, 2015). Calibration models also reduce the variance of an estimated total

compared to estimation based on uncalibrated weights when the outcome of interest is correlated

with calibration variables (Deville and Särndal, 1992).

A GEM is a type of weight calibration model used to calibrate the sample to known population

totals (Folsom and Singh, 2000). Under this model, the weight adjustment for each participating

unit i is defined as:

θi(xi,γ) =

(
li(ui − ci) + ui(ci − li) exp(aixiγ)

(ui − ci) + (ci − li) exp(aixiγ)

)

where xi is a 1 × p vector of calibration variables for participant i, where p is the number of

calibration variables in the model; li and ui are specified by the analyst and determine the lower

and upper bounds of the adjustments, respectively; ci is a centering constant for the model; and

ai is a function of li, ui, and ci (Folsom and Singh, 2000; RTI International, 2012). Let ri be a

response indicator for participant i : ri = 1 if participant i responded, 0 otherwise. The specified

lower and upper bounds put constraints on the assumed response model. Specifying a lower bound

of 0 implicitly models each participant’s probability of response as an exponential function of the

calibration variables, while specifying a lower bound of 1 implicitly assumes a logistic relationship

(Kott, 2006; Kott and Liao, 2012). Let Tx be a p × 1 vector of population totals known for the

finite population. That is, Tx =
∑N

i=1 x
T
i . Then, weight adjustments for each responding unit are

obtained by solving the following set of calibration equations for γ using Newton-Raphson:

sp(γ) =
N∑
i=1

xTi wiriθi(xi,γ)− Tx = 0

From the model, wci = wiθi(xi, γ̂) is the calibration adjusted weight for responding participant

i (i = 1, ..., n). Finite population totals are estimated by taking the weighted sum of observed

outcomes across the n sampled and responding units. Folsom and Singh (2000) show that the

calibration estimator is asymptotically consistent and derive the asymptotic variance. The large

sample variance can be approximated using Taylor series linearization (Kott and Day, 2014; Singh
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and Folsom, 2000; RTI International, 2012). Kott and Liao (2012) discuss the doubly robust

properties of the GEM estimator, as it provides consistent estimates when either the implied

response model or the linear predictor model is correctly specified.

Utilizing weight calibration provides the researcher control over the weight adjustments while

adjusting for sample undercoverage or nonresponse. This method appropriately treats the weights

as estimated when calculating variances instead of treating adjusted weights as fixed or known

(Shook-Sa et al., 2017). The disadvantage of weight calibration models are that results are based

on asymptotic theory, so unbiasedness and confidence interval coverage might not hold in small

samples (Kott, 2006).

1.3.2.2 Outcome Regression Approaches

Under the prediction-based inferential paradigm, data from the observed sample of size n is

used to predict the N − n unobserved values from the non-sampled units of a finite population

(Lohr, 2010, page 148; Royall, 1976; Särndal et al., 2003, pages 533-534). For example, for a

continuous outcome Y , the following linear regression model can be fit for sampled and responding

units: Yi = xiβ + ε, where ε ∼ N(0, σ2). Predicted values from the model are used to estimate the

outcome of interest for non-sampled units of the finite population, and finite population totals T are

estimated as the sum of the observed and predicted values in the population. Assume that units are

ordered such that i = 1, ..., n were selected and units i = n+ 1, ..., N were not selected. Then the

estimated population total T̂ can be defined as follows, and variances can be computed using using

standard linear model theory (Royall, 1976; Royall and Cumberland, 1978; Lohr, 2010, page 148;

Särndal et al., 2003, pages 533-534; Bolfarine and Zacks, 1992).

T̂ =
n∑
i=1

Yi +
N∑

j=n+1

Ŷj

Outcome regression approaches can be more efficient than randomization-based inferential ap-

proaches (Little, 2004) and do not depend on the underlying sampling scheme (Lohr, 2010, page
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148). However, bias can be significant when the model is not correctly specified (Hansen, 1987;

Särndal et al., 2003, page 535).

1.4 Design Effects

Weighted estimators are fundamental in survey sampling, and methods have been developed

to quantify the effect of weighting on the precision of resulting estimates. Kish (1965, page 257)

introduced the design effect, which is the ratio of the variance of an estimator under a complex

sample design to the variance of the estimator under a simple random sample. When observations

are independent, the design effect simplifies to the design effect due to weighting (deffw), or the

unequal weighting effect (Kish, 1992). Let wi represent the sampling weight for the ith participant

and n be the sample size. The design effect due to weighting can be calculated as:

deffw =
n
∑n

i=1wi
2

{
∑n

i=1wi}2

The design effect is interpreted as an estimator’s increase in variance due to differential weights

across participants. While this metric was theoretically motivated by a comparison of variance

estimators under different stratification allocations, it is commonly applied to all types of complex

sample designs in which sample members have different probabilities of selection (Valliant et al.,

2013, page 375). Gabler et al. (1999) provided a justification for how Kish’s design effect applies to

model-based estimators.

The design effect is commonly utilized in sample size calculations through the use of the

effective sample size. The effective sample size is equal to the observed sample size divided by the

design effect. It can be interpreted as the sample size under simple random sampling that produces

the same variance as the sample selected under the complex design (Valliant et al., 2013, page 5).

Bayesian importance sampling uses weighting methods when sampling from one distribution

to estimate the properties of another distribution (Kong et al., 1994). Importance sampling also uses

the effective sample size metric to compare the variance of the weighted estimator to the variance
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that would be achieved if sampling had been conducted directly from the distribution of interest

(Kong et al., 1994). Kong (1992) approximates the effective sample size as the observed sample

size divided by deffw.

Within causal inference, deffw has been used to quantify the loss of statistical precision due to

weighting (McCaffrey et al., 2004, 2013), but the design effect has not previously been theoretically

justified for causal methods and has not been used in power and sample size calculations. For the

purposes of study design, the advantages of the design effect are that it is (1) outcome invariant

and (2) allows the sample size under the complex design to be translated into an equivalent sample

size under a simpler design. The former implies that the approximated design effect depends only

on the participants’ weights and is constant across outcomes. The latter means that once deffw is

known or approximated, it can be used in power and sample size calculations along with the simpler

assumptions needed to design a study without weights.

While the design effect has a simple computational form and is thus a useful tool in study

design, it is not without its limitations. For many complex sample designs, and for the extension to

causal inference presented in Chapter 3, Kish’s deffw approximates the true ratio of the complex

variance estimator to the simple or naı̈ve estimator. In survey sampling, practitioners note that

for nonresponse adjusted weights, deffw is a good approximation when the outcome is weakly

associated with the adjustment cells (Little and Vartivarian, 2005). Kalton et al. (2005) note that for

sample surveys, use of deffw relies on the assumptions of homogeneous variance across adjustment

strata and that weights are unrelated to the outcome of interest and note that deffw should not

be applied uncritically. However, deffw remains a useful rule of thumb in the design of sample

surveys and performs well in practice (Little et al., 1997; Verma et al., 1980). Kong (1992) too

notes the limitation of using the effective sample size in Bayesian importance sampling because of

the approximation used in its derivation. He provides the form of the remainder term and says that

the approximation can be off substantially when the remainder is large.
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1.5 Issues Surrounding the Analysis of Count Data

Two common issues that can complicate the analysis of self-reported count data are the presence

of overdispersion in the data and data heaping. Analytic approaches are needed to account for the

presence of overdispersion or data heaping when the estimand is a count or a function of counts.

1.5.1 Overdispersion

The Poisson distribution takes on non-negative integer values and is often used to model the

number of events that occur in a specific time or place (Weisberg, 2005, page 271). Count data are

commonly modeled using Poisson generalized linear models (GLMs), in which the rate parameter

is modeled as a linear function of predictorsX through the link function (McCullagh and Nelder.,

1989, Ch 6). That is, we assume that Y ∼ Poisson(λ) and model the canonical (log) of λ as a

linear function of covariates: log(λ) = Xβ.

Because the Poisson distribution has a single parameter λ such that E(Y ) = V ar(Y ) = λ,

count data commonly exhibit overdispersion. Overdispersion occurs when variation in the data

exceeds the expected variation based on an assumed Poisson distribution (i.e., V ar(Y ) > E(Y ))

(Agresti, 2002, page 130).

Negative binomial models are one alternative when data exhibit overdispersion. The negative

binomial distribution has two parameters, with E(Y ) = λ and V ar(Y ) = λ + λ2θ. Because the

negative binomial has an additional parameter θ (the dispersion parameter), it allows the variance to

exceed the mean (Agresti, 2002, page 131).

Zero-inflated Poisson (ZIP) and negative binomial (ZINB) models are also used to account

for overdispersion when the data exhibit an excess of zero values compared to those expected

under the assumed parametric distribution. Parameter estimates have latent interpretations, as

these models have separate components that predict susceptibility for the outcome and the count

outcomes among those who are susceptible (Lambert, 1992; Long et al., 2014; Preisser et al., 2016).

Marginalized versions of these models have been developed to yield parameter estimates with
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similar interpretations to those in the Poisson and negative binomial GLMs (Long et al., 2014;

Preisser et al., 2016).

1.5.2 Data Heaping

Self-reported count data frequently exhibit a form of measurement error known as data heaping,

where reported counts are rounded to different levels of precision (Wang and Heitjan, 2008). This

phenomenon is commonly observed when collecting self-reported retrospective counts or measures

of duration, including cigarette usage (Klesges et al., 1995), duration of breastfeeding (Singh and

Folsom, 2000), and number of sexual partners (Wiederman, 1997; Roberts and Brewer, 2001). Data

heaping is often attributed to cognitive processes in respondents, including choosing round numbers

or approximations (digit preference) or using estimation methods to aid in recall (Roberts and

Brewer, 2001). Data heaping distorts the true underlying distribution of counts and can thus lead to

biased inference and increased variance (Wang and Heitjan, 2008; Cummings et al., 2015).

Methods have been proposed both to detect and account for heaping. Roberts and Brewer

(2001) propose a measure and test to quantify the amount of heaping in discrete data. Heitjan and

Rubin (1990) propose multiple imputation methods to account for data heaping. Singh et al. (1994)

present a smoothing method for heaped time-to-event data. Bayesian mixture models are another

way to account for heaping in observed data (Wright and Bray, 2003; Wang and Heitjan, 2008).

Cummings et al. (2015) present an interval-censored likelihood approach for accounting for heaped

count data.

1.6 Motivating Examples

Chapters 2 and 4 were directly motivated by public health research applications at the University

of North Carolina. Chapter 2 was developed to support the estimation of the number of HIV-positive

persons incarcerated in North Carolina jails, and Chapter 4 was developed to estimate the effect of

incarceration on the number of sexual partners in the subsequent six-month period using data from

the Women’s Interagency HIV Study.
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1.6.1 Estimating the Number of HIV-Positive Persons in North Carolina Jails

The methods in Chapter 2 were developed to estimate the number of HIV-positive persons

incarcerated in North Carolina (NC) jails overall and within each of the 100 counties over a

fixed period of time. NC does not maintain a list of HIV-positive persons incarcerated in its jails.

To estimate the size of this population, jail incarceration records, statewide court records, and

confidential statewide health department records of persons living with HIV will be linked. This

record linkage process will provide estimates for the number of HIV-positive persons incarcerated

in the 26 counties with available jail incarceration data, but not for the remaining 74 counties.

The characteristics of the counties with publicly-available data likely differ from those without

publicly-available data, so appropriate statistical methods are needed generalize these results to the

entire state of NC.

1.6.2 Women’s Interagency HIV Study

The Women’s Interagency HIV Study (WIHS) is a multicenter cohort study of women living

with HIV or at risk of acquiring HIV (Adimora et al., 2018). At each biannual visit, the WIHS

collects data regarding women’s incarceration status and the sexual behavior since the prior visit.

The methods in Chapter 4 allow for estimation of the effect of incarceration on the number of

sexual partners in the subsequent six-month period. Because these are observational data and many

variables can confound this effect (e.g. drug and alcohol use, unstable housing, sex exchange

practices), statistical methods are needed to control for confounding, overdispersion, and data

heaping in estimation.
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CHAPTER 2: SURVEY SAMPLING APPROACHES TO ESTIMATE THE NUMBER OF
HIV-POSITIVE PERSONS IN NORTH CAROLINA JAILS

2.1 Introduction

Calculating estimates for rare or dynamic populations is challenging when no single data

source contains all information necessary for estimation. A lack of a viable sampling frame further

precludes the use of conventional methods for estimating the size and characteristics of a rare

or ever-changing population. Record linkage techniques allow for multiple data sources to be

combined, which can facilitate indirect estimation of the target population (Harron et al., 2017;

Qayad and Zhang, 2009; St. Sauver et al., 2011). However, when record linkage results in missing

data, methods are needed to generalize findings based on linked records to the target population

(Bohensky et al., 2010; Ford et al., 2006; Harron et al., 2014; Judson et al., 2013).

The goal of this study is to develop and evaluate methods to account for missing data following

record linkage to estimate the number of HIV-positive persons incarcerated in the state of North

Carolina (NC) jails overall and within each of the 100 counties over a fixed period of time. Estimates

of HIV within and across county jails in the state could be used by jail administrators as well as

by local and state public health officials in efforts to ensure the availability of adequate medical

resources to treat HIV during periods of jail incarceration and to support incarcerated persons’

health needs as they are released and return to the community.

NC does not maintain a list of HIV-positive persons incarcerated in jails. To calculate estimates

for this rare population, the following individual-level datasets will be linked using incomplete

personal identifiers: jail incarceration records derived from published inmate rosters available

from 26 counties, statewide court records, and confidential statewide health department records

of persons living with HIV. This record linkage process will provide estimates for the number of
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HIV-positive persons incarcerated in jails in the 26 counties with available jail incarceration data.

The characteristics of the counties with publicly-available data likely differ from those without

publicly-available data, so care must be taken when generalizing these results to the entire state of

NC.

This paper uses preliminary study data to develop methods for estimating the number of persons

incarcerated in NC jails living with HIV. The findings from this methods evaluation will be used to

determine the primary analytic methods that will be applied to the final dataset once data collection

and linkage are complete. Two methods are considered, both of which provide estimates for the

total number of persons incarcerated in NC jails living with HIV, and one of which also provides

county-level estimates within the 74 counties without publicly-available jail rosters. Both methods

use sampling inference approaches that leverage county-level characteristics, either via outcome

regression or weight calibration modeling. In Section 2.2 both methods are presented. Section 2.3

describes a simulation study assessing and comparing these methods based on bias and precision,

and Section 2.4 provides an illustration of the two approaches based on preliminary study data.

Section 2.5 concludes with a discussion of the results and outlines the limitations of our study.

2.2 Methods

2.2.1 Record Linkage

To generate estimates of the number of people in NC jails living with HIV, the following datasets

will be linked: jail incarceration records, state court records, and confidential NC health department

records of persons in the state known to be living with HIV. A database of jail incarceration records

is being created using a technique called webscraping, in which, several times a day, automated

‘bots’ collect individual-level incarceration data from jail rosters published on county jail websites.

In NC, 26 of the 100 counties have such online rosters, which include the incarcerated persons’ full

names and ages (or dates of birth, DOBs). The 26 counties with available jail rosters are depicted in

Figure 2.1. Over a three-month period, this process generates over 45,000 inmate-level records.
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Figure 2.1: Availability of Jail Rosters by NC County

State criminal court records are being obtained from the NC Administrative Office of the Courts.

These records include variables such as defendants’ full names, DOBs, partial social security

numbers (SSNs), and the county court system in which defendants’ cases will be adjudicated. Over

a three-month period, there are over 400,000 defendant-level records in the 26 counties with online

inmate-level rosters and nearly 800,000 defendant-level records for the entire state of NC.

Finally, the NC State Health Department maintains a confidential database of all living persons

who were diagnosed with HIV in the state. Among other variables, this database includes patients’

full names, DOBs, SSNs, and dates of HIV diagnoses. This database tracks persons with positive

HIV tests and persons accessing HIV services in NC.

A deterministic data linkage of jail and court records is being performed on an ongoing basis

using the first and last names, DOBs or ages, and counties. These linked records will be provided to

the state health department to be linked to the state’s database of HIV records using probabilistic

matching based on first and last name, DOB, and partial SSN. In return, the state health department

will provide the estimated number of HIV-positive defendants in each of the 100 counties and the

estimated number of HIV-positive persons in each of the 26 jails with roster data. The Internal
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Review Board at the University of North Carolina at Chapel Hill reviewed and approved the study

protocol (IRB # 17-0946).

2.2.2 Preliminary Data Description

To avoid using final study data to develop the statistical analysis plan, methods development is

conducted using preliminary study data based on three months of linked jail-court records. Public

health records have not yet been linked to the individual level jail-court records, so preliminary

data includes the total number of defendants in each county over a three-month period but not the

number of HIV-positive defendants or the number of HIV-positive persons incarcerated in the 26

counties with publicly-available jail rosters.

For the purposes of developing a preliminary data file for use in methods evaluation, the

number of HIV-positive defendants in each county was approximated by multiplying the number of

defendants by the estimated prevalence of HIV among the defendant population in each county. The

estimated prevalence of HIV in each NC county was obtained by dividing the count of residents who

were HIV-positive (North Carolina HIV/STD/Hepatitis Surveillance Unit, 2017) by the estimated

number of county residents in 2016 from the US Census Bureau (U.S. Census Bureau Population

Division, 2018). The assumed HIV prevalence among defendants was set equal to the county

prevalence multiplied by five. This multiplier was chosen to reflect the approximate increased risk

of HIV among persons entering the criminal justice system, based on the known prevalence of HIV

in NC and the estimated prevalence among those entering the criminal justice system (Wohl et al.,

2013).

The final linked dataset will include estimates of the number of HIV-positive defendants in

each of the 100 counties and the number of HIV-positive persons incarcerated in 26 counties, so

the methods below are developed based on the availability of these data. The simulations and

preliminary analyses in Sections 2.3-2.4 treat the approximate numbers of HIV-positive defendants

and incarcerated persons on the preliminary data file as estimates from record linkage.
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2.2.3 Estimation

The estimands are the total number of HIV-positive persons incarcerated in jails over a fixed

period of time (1) in NC (nI,NC) and (2) within each of the 100 counties in NC (nI,i, i = 1, .., 100).

Within each county i, the number of HIV-positive persons who were incarcerated equals the number

of HIV-positive defendants (nD,i) multiplied by the proportion of HIV-positive defendants in county

i who were incarcerated (P (I | D)i). That is: nI,i = nD,iP (I | D)i.

The total number of HIV-positive persons incarcerated in NC jails is equal the sum of the

100 county-level totals: nI,NC =
∑100

i=1 nI,i. The number of HIV-positive defendants in each of

the 100 counties in NC (nD,i) will be estimated as described in Section 2.2.1 and the proportion

of HIV-positive defendants who were incarcerated in the 26 counties with publicly-available jail

rosters (P (I | D)i) will be estimated through the jail-court record linkage process. Thus, nI,i will

be estimated for the 26 counties that have publicly-available jail rosters. For the purposes of this

paper, the estimates resulting from record linkage are treated as known quantities (i.e., error in the

record linkage process is assumed to be negligible and is ignored). Furthermore, the 100 counties

are assumed to be independent. Without loss of generality, the notation in the remainder of the

paper assumes that counties are ordered such that nI,i is known for i = 1, ..., 26 and unknown for

i = 27, ..., 100.

Two statistical methods for obtaining estimates of nI,NC are considered: outcome regression

and weight calibration. The outcome regression approach aims to estimate P (I | D)i in the 74

counties where this quantity is unknown, and thus also provides estimates for nI,i within these

counties. The weight calibration approach uses a weighting adjustment to estimate nI,NC directly

and does not provide county-level estimates. Both approaches leverage county-level covariates

thought to be associated with the number of HIV-positive persons incarcerated in each county and

the proportion of HIV-positive defendants who were incarcerated. These county-level covariates,

which were obtained from Vera Institute’s publicly-available “Incarceration Trends” dataset for the

year 2014 include the following: annual jail admissions, daily jail populations, index crime rates,
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poverty levels, and urbanicity (Vera Institute of Justice, 2014). Additionally, the number of unique

defendants obtained from court records is used as a county-level covariate.

2.2.3.1 Outcome Regression

Two inferential approaches that are commonly used to calculate sample estimates for a finite

population are randomization-based and prediction-based inference (Lohr, 2010, pages 54-55).

Under randomization-based inference, outcomes of the finite population are viewed as fixed, and

the only random component is whether or not individual population members were selected into

the sample. Under the prediction-based approach, the outcomes themselves are considered random

variables that follow a model, and the finite population is thought of as a single realization of these

random variables. Data from the observed sample is used to predict the unobserved values from

the unsampled members of the finite population, and variability is estimated using standard linear

model theory (Lohr, 2010, page 148).

The outcome regression approach follows the prediction-based paradigm by using P (I | D)i in

the 26 counties with publicly available jail rosters to estimate the proportions in the remaining 74

counties without publicly available rosters, based on the set of predictors listed in Section 2.2.3.

To estimate P (I | D)i, the following linear regression model will be fit for the 26 counties with

publicly-available rosters: Yi = xiβ + εi, where Yi is the known proportion P (I | D)i in county i,

xi represents the 1× p vector of covariates for county i, and εi represents the random error. It is

assumed that εi ∼ N(0, σ2) and that errors are independent across counties.

Predicted values Ŷ ∗i = P̂ (I | D)i and 95% prediction intervals (P̂ (I | D)i,LCL, P̂ (I | D)i,UCL)

will be obtained from this model for each of the 74 counties without publicly-available jail rosters.

Let t0.025,25−p be the 97.5th percentile of the t-distribution with 25− p degrees of freedom. Then

P̂ (I | D)i = xiβ̂ and P̂ (I | D)i,LCL and P̂ (I | D)i,UCL are the lower and upper limits of

P̂ (I | D)i ± t0.025,25−pσ̂
√

1 + xi(XTX)−1xTi
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where β̂ are the maximum likelihood estimates for β,X is the 26× p matrix of predictors for the

regression model from the 26 counties with publicly-available jail rosters, and the mean squared

error (MSE) σ̂2 is used to estimate σ2.

To obtain the estimated number of HIV-positive persons incarcerated in jails in each of the 74

counties without publicly-available jail rosters along with 95% prediction intervals, the predicted

proportions and prediction interval limits will be multiplied by the number of HIV-positive defen-

dants in the county. That is, point estimates and the lower and upper endpoints for the 95% prediction

intervals are defined as follows, respectively: n̂I,i = nD,iP̂ (I | D)i, n̂I,i,LCL = nD,iP̂ (I | D)i,LCL,

and n̂I,i,UCL = nD,iP̂ (I | D)i,UCL.

An estimate for the total number of HIV-positive persons incarcerated in NC jails can be

obtained by adding the known number of HIV-positive persons incarcerated in the 26 counties to the

estimated number of HIV-positive persons incarcerated in the 74 counties without publicly-available

jail rosters to obtain:

n̂I,NC,OR =
26∑
i=1

nI,i +
100∑
j=27

nD,jŶ
∗
j

This estimator is unbiased and has minimum variance among the class of all unbiased estimators of

nI,NC under the assumed linear regression model above (Bolfarine and Zacks, 1992, pages 31-32).

LetX∗ be the 74× p matrix of covariates for the 74 counties without publicly-available jail rosters,

ρT = (nD,27, nD,28, ..., nD,100), and I be the 74 × 74 identity matrix. Then, a 95% confidence

interval for nI,NC is (Bolfarine and Zacks, 1992, Page 122): n̂I,NC,OR ± t0.025,25−p
√
ρT Σ̂ρ, where

Σ̂ = σ̂2
{
X∗(XTX)−1X∗T + I

}
.

2.2.3.2 Weight Calibration

Weight calibration aims to balance an observed sample with respect to a set of calibration

variables by constructing the weights such that sample sums of the weighted calibration variables

equal the population totals of the calibration variables (Deville and Särndal, 1992; Folsom and

Singh, 2000). Weight calibration can reduce selection bias resulting from missing data under

the assumption that each missed observation had some unknown (but positive) probability of
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participating in the study (Kott and Liao, 2015). Weight calibration can also reduce the variance

of an estimated total compared to estimation based on uncalibrated weights when the outcome of

interest is correlated with calibration variables (Deville and Särndal, 1992).

Weight calibration will be used to estimate the total number of HIV-positive persons incarcerated

in NC jails. Calibrated weights will be computed for each of the 26 “responding” counties (i.e.,

the counties for which publicly-available jail rosters were available) via a generalized exponential

model (Folsom and Singh, 2000; Kott, 2006), where the covariates listed above are calibrated to

known state-level totals. In addition, because the weight calibration model is estimating nI,NC

directly instead of the P (I | D)i, the number of HIV-positive defendants will also be included as a

calibration variable, as this variable should be highly predictive of nI,i.

For this method, each of the 100 counties has an initial weight of 1 (i.e., wi = 1, i = 1, ..., 100).

That is, each county represents itself when combining county-level estimates to form an overall

estimate for NC. The weight adjustment for county i is defined as:

θi(xi,γ) =

(
li(ui − ci) + ui(ci − li) exp(aixiγ)

(ui − ci) + (ci − li) exp(aixiγ)

)
where xi is the 1× p vector of calibration variables for county i; li and ui are specified by

the analyst and determine the lower and upper bounds of the adjustments, respectively; ci is a

centering constant for the model; and ai is a function of li, ui, and ci (Folsom and Singh, 2000; RTI

International, 2012; Kott, 2006). For this application, no constraints are imposed on the adjustment

factors, i.e., li = 0, ui = e20(essentially unbounded), and ci = 1.

Let ri be a response indicator for county i : ri = 1 if county i responded, ri = 0 otherwise. Let

Tx be a p× 1 vector of calibration variable totals for the finite population, i.e., all 100 counties in

NC. That is, Tx =
∑N

i=1 x
T
i . Then, weight adjustments for each responding county are obtained by

solving the following set of calibration equations for γ using Newton-Raphson:

sp(γ) =
N∑
i=1

xTi wiriθi(xi,γ)− Tx = 0
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From the model, wci = wiθi(xi, γ̂) is the calibration adjusted weight for responding county

i (i = 1, ..., 26). This method implicitly models each county’s probability of response as an

exponential function of the calibration variables (Kott, 2006). This estimator is doubly robust, in

that it provides consistent estimates when either the implied response model or the linear predictor

model is correctly specified (Kott and Liao, 2012).

The total number of HIV-positive persons incarcerated in NC jails will be estimated by the

following calibration estimator: n̂I,NC,WC =
∑n

i=1wcinI,i, where n = 26 (the number of respond-

ing counties). Folsom and Singh (2000) show that the calibration estimator is asymptotically

consistent and derive the asymptotic variance. Ignoring the finite population correction adjustment,

the variance estimator is:

V̂ ar(n̂I,NC,WC) =
n

n− 1

{
n∑
i=1

(wciei)
2 − (

∑n
i=1wciei)

2

n

}

where ei = nI,i − xi
(∑n

j=1wcjx
T
j xj

)−1 (∑n
j=1wcjx

T
j nI,j

)
(Kott, 2006; Shook-Sa et al., 2017).

A finite population correction (fpc) adjustment can be made to this variance estimator to account for

the large percentage of observed counties (26/100). The fpc adjustment is calculated as (1− n/N),

where N = 100 is the total number of counties in the finite population (see, for example, Kish, 1965,

page 43). The fpc-adjusted variance estimator is V̂ ar(n̂I,NC,WC)fpc = (1− n/N) V̂ ar(n̂I,NC,WC).

Then, a 95% confidence interval for nI,NC is (RTI International, 2012)

n̂I,NC,WC ± t0.025,n−1
√
V̂ ar(n̂I,NC,WC)

where V̂ ar(n̂I,NC,WC)fpc can be substituted in for V̂ ar(n̂I,NC,WC) to obtain an fpc-adjusted confi-

dence interval.

Utilizing weight calibration provides the researcher control over the weight adjustments. When

an intercept is included in the calibration model, this method also ensures that the calibration

adjusted weights will sum to the number of counties, which is critical when the estimand of interest
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is a total. Finally, this method appropriately treats the weights as estimated when calculating

variances instead of treating adjusted weights as fixed or known (Shook-Sa et al., 2017).

2.3 Simulation Study

A simulation study was conducted to examine small and large sample properties of the two

estimation approaches, provided that the models used for each method are correctly specified. True

values of P (I | D)i and nI,i were generated for each of the N = 100 counties (as outlined below),

as well as three sets of response probabilities that allow for the examination of three sample size

scenarios: n = 26 (the observed number of counties), n = 50, and n = 75. In addition, larger finite

populations of N = 200 and N = 500 were simulated, each with the same response probability

distributions specified for the N = 100 population.

For the N = 100 population, the covariates and the number of defendants (nD,i) from the

preliminary data file were used. For the N = 200 and N = 500 populations, the the preliminary

data file was duplicated, with each county appearing either twice (for N = 200) or five times (for

N = 500). Normally-distributed random noise was added to each covariate and to the number of

defendants in each county to obtain larger finite populations with counties that were similar, but

not identical, to the 100 NC counties on the preliminary data file. Given the covariates for each

county, a true P (I | D)i was generated for each of the counties in the finite population (N = 100,

N = 200, or N = 500) as P (I | D)i = 0.155− 0.03xi1 + 0.01xi2− 0.001xi3 + εi, where xi1 was a

rural/suburban indicator variable for county i, xi2 was the square root transformed index crime rate

for county i, and xi3 was the percent below poverty value for county i. The error term εi ∼ N(0, σ2),

where σ = 0.015. The resulting P (I | D)i ranged from 0.08 to 0.20 for N = 100 (median of 0.12),

from 0.07 to 0.20 for N = 200 (median of 0.13), and from 0.06 to 0.22 for N = 500 (median of

0.13). The simulated distributions were fairly consistent with the distribution in the preliminary data.

These P (I | D)i values were used to calculate a true number of HIV-positive persons incarcerated

within each county under the simulation: nI,i = nD,iP (I | D)i. This resulted in nI,i ranging from

0.1 to 314.8 for N = 100, from 0.1 to 309.7 for N = 200, and from 0 to 350.0 for N = 500, with a
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sum of nI,NC = 1911.7 (for N = 100), nI,NC = 3829.4 (for N = 200), and nI,NC = 9752.4 (for

N = 500).

For each finite population size (N = 100, N = 200, and N = 500 counties), three sets of

response probabilities were generated for each county, with log (P (r1 = 1)) = −{λ0 + 0.25xi1 −

0.02xi2 + 0.005xi3}, where xi1, xi2, and xi3 are as defined above. Three values of λ0 were

chosen such that the mean response across the counties for the three simulation scenarios was 0.26

(λ0 = 1.12), 0.50 (λ0 = 0.47), and 0.75 (λ0 = 0.068). This resulted in expected sample sizes for

N = 100 of n = 26 (the number of responding counties in the preliminary data file), n = 50, and

n = 75. For N = 200, this resulted in expected sample sizes of n = 52, n = 100, and n = 150.

For N = 500, this resulted in expected sample sizes of n = 130, n = 250, and n = 375.

After generating true values under the specified models, R = 1000 simulated samples were

generated for each of the nine finite population and sample size scenarios. Each simulated sample

was obtained by assigning each county a binary response status based on a random draw from a

Bernoulli random variable with mean P (ri = 1). After the respondent status was assigned, it was

assumed that the true P (I | D)i and nI,i were observed only for the responding counties, and the

outcome regression and weight calibration methods were implemented to estimate nI,i and/or nI,NC

with correctly specified models. For each iteration of the simulation, the following statistics were

obtained: n̂I,NC,OR, n̂I,NC,WC , their estimated standard errors, whether or not the 95% confidence

interval for each method included nI,NC , and the number of nonresponding counties in which the

outcome regression 95% prediction intervals captured the true nI,i.

The simulation results are summarized in Table 2.1 for each of the nine finite population size by

sample size combinations. Density plots for the distribution of n̂I,NC,OR and n̂I,NC,WC across the

R = 1000 simulated datasets for N = 100 are shown in Figure 2.2. Density plots for the N = 200

and N = 500 populations were similar and are not shown. Empirical bias was fairly small (3.17%

or lower) for all sample sizes, finite population sizes, and methods. The largest empirical bias was

for the weight calibration method when N = 100 and n = 26. Among the remaining scenarios,

absolute mean percent bias ranged from 0.00% to 0.89% of the true value. For all population and
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sample sizes, the distributions of both estimators are centered close to the true value of nI,NC

(depicted with vertical dotted lines in Figure 2.2).

For outcome regression, the average estimated standard error tracked fairly closely with the

empirical standard error. The outcome regression confidence intervals were slightly conservative

for the smallest finite population N = 100, but but the empirical coverage was close to the nominal

95% for the larger finite populations. The weight calibration method exhibited undercoverage when

N = 100, n = 26, regardless of whether or not the finite population correction (fpc) adjustment

was made. The observed coverage rates were 77% and 81% with and without the fpc, respectively.

For larger finite population sizes, weight calibration tended to be conservative when the fpc was

ignored and provided close to nominal coverage when the fpc was applied.

The outcome regression method led to more precise estimates of nI,NC , as the 95% confidence

interval half-widths were much smaller than the weight calibration half-widths for all population

and sample size scenarios. This is depicted in Figure 2.2, as there is more spread in the distributions

of the estimates for the weight calibration method compared to the outcome regression method,

regardless of the population size or the sample size. County-level prediction intervals for the

outcome regression approach had the appropriate level of coverage of the true values, as 94-95% of

prediction intervals included the true nI,i across the R = 1000 simulated samples for each scenario.

These simulations provide insight regarding the statistical methods specified in Section 2.2

under correctly-specified models. The outcome regression approach had good empirical properties,

with the estimator empirically unbiased and the corresponding confidence and prediction intervals

having empirical coverage rates approximately equal to the nominal level. Weight calibration led

to anti-conservative confidence interval coverage for the small finite population and sample size

scenario associated with the observed data for this study (N = 100, n = 26).
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Figure 2.2: Density Plots for Outcome Regression vs. Weight Calibration,
R = 1000 Simulations
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Table 2.1: Simulation Summary Results, R = 1000 Simulations
 

 

  

 

N 
Avg 

n Method 

Avg 
𝑛̂𝐼,𝑁𝐶 

Empirical 
Bias (%) ASE ESE SER 

95% CI 
Coverage 

(state-level 
estimate) 

95% CI 
Half-Width 
(state-level 
estimate) 

95% PI 
Coverage 

(county-level 
estimates) 

100 26 Outcome Regression 1909.9 -0.09% 65.8 64.5 1.02 0.98 137.0 0.94 

  Weight Calibration, no fpc 1851.2 -3.17% 324.2 400.1 0.81 0.81 668.7 n/a 

  Weight Calibration, fpc 1851.2 -3.17% 278.5 400.1 0.70 0.77 545.9 n/a 

 50 Outcome Regression 1911.1 -0.03% 31.2 25.4 1.23 0.99 62.9 0.94 

  Weight Calibration, no fpc 1894.6 -0.89% 275.3 221.1 1.25 0.95 553.5 n/a 

  Weight Calibration, fpc 1894.6 -0.89% 194.6 221.1 0.88 0.89 381.4 n/a 

 75 Outcome Regression 1912.4 0.04% 10.2 8.5 1.20 0.98 20.3 0.93 

  Weight Calibration, no fpc 1914.4 0.14% 234.7 106.3 2.21 1.00 467.7 n/a 

  Weight Calibration, fpc 1914.4 0.14% 117.2 106.3 1.10 0.97 229.6 n/a 

200 52 Outcome Regression 3831.3 0.05% 84.3 78.9 1.07 0.97 169.7 0.94 

  Weight Calibration, no fpc 3796.8 -0.85% 522.5 496.5 1.05 0.94 1049.4 n/a 

  Weight Calibration, fpc 3796.8 -0.85% 449.5 496.5 0.91 0.90 881.1 n/a 

 100 Outcome Regression 3827.0 -0.06% 43.8 43.6 1.00 0.96 86.9 0.94 

  Weight Calibration, no fpc 3827.4 -0.05% 391.3 270.5 1.45 0.99 776.6 n/a 

  Weight Calibration, fpc 3827.4 -0.05% 276.5 270.5 1.02 0.95 542.0 n/a 

 150 Outcome Regression 3823.7 -0.15% 15.4 13.9 1.11 0.96 30.5 0.95 

  Weight Calibration, no fpc 3827.7 -0.05% 322.0 130.6 2.46 1.00 636.2 n/a 

  Weight Calibration, fpc 3827.7 -0.05% 161.8 130.6 1.24 0.98 317.1 n/a 

500 130 Outcome Regression 9752.9 0.00% 123.1 132.2 0.93 0.94 243.6 0.94 

  Weight Calibration, no fpc 9694.2 -0.60% 904.9 792.1 1.14 0.96 1790.4 n/a 

  Weight Calibration, fpc 9694.2 -0.60% 777.7 792.1 0.98 0.93 1524.3 n/a 

 250 Outcome Regression 9753.8 0.01% 66.4 68.9 0.96 0.94 130.9 0.94 

  Weight Calibration, no fpc 9770.9 0.19% 664.8 435.1 1.53 1.00 1309.2 n/a 

  Weight Calibration, fpc 9770.9 0.19% 469.2 435.1 1.08 0.96 919.7 n/a 

 375 Outcome Regression 9751.2 -0.01% 24.0 25.5 0.94 0.95 47.1 0.94 

  Weight Calibration, no fpc 9763.5 0.11% 543.4 230.0 2.36 1.00 1068.6 n/a 

  Weight Calibration, fpc 9763.5 0.11% 271.9 230.0 1.18 0.98 532.9 n/a 

 
 

 

 
fpc = finite-population correction; ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio

(ASE/ESE)
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2.4 Preliminary Data Results

The outcome regression and weight calibration methods were implemented on the preliminary

data, as outlined in Section 2.2. For both methods, annual jail admissions, daily jail populations,

index crime rates, and the number of defendants per county were square-root transformed to reduce

skewness of these variables and thus the over-influence of the largest counties on model fit.

2.4.1 Outcome Regression

Figure 2.3 compares the known P (I | D)i with the estimated P̂ (I | D)i in the 26 counties for

which the outcome regression model was fit. These values align fairly well along the 45-degree line

of equality (R2 = 0.656), which is indicative of reasonable model prediction. Table 2.2 displays the

estimated model parameters. When predicting P (I | D)i based on these covariates one at a time

(single variable, or SV, models) or using all covariates simultaneously (the multivariable, or MV,

model), the number of unique defendants is the strongest predictor of P (I | D)i. This predictor

is stronger when conditioning on the other predictors than it is marginally. Because of the high

correlation among the set of predictor variables, a sensitivity analysis was conducted with subsets

of predictor variables to ensure robustness of the findings. The resulting n̂I,NC,OR estimates and

95% confidence intervals were similar for all models examined.

Based on the MV model, P̂ (I | D)i were computed and the number of HIV-positive persons

incarcerated within the 74 counties without publicly-available jail rosters, n̂I,i, were estimated.

Table 2.3 displays county-level estimates for the 10 largest and 10 smallest counties in NC along

with 95% prediction intervals for the counties for which P̂ (I | D)i was estimated from the model

rather than known. Because these results are based on preliminary data, counties are anonymized.

Based on the outcome regression approach, n̂I,NC,OR = 1297.6. The 95% confidence interval for

this estimate is (1198.5, 1396.7).
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Figure 2.3: Predicted vs. Actual Proportion of Defendants who were Incarcerated,
n = 26 Counties with Publicly-Available Jail Rosters

2.4.2 Weight Calibration

The association between county response status in the study (i.e., the availability of jail

roster data) and the covariates of interest was explored. Table 2.4 presents the distribution of

covariates by county response status. Responding counties tend to have more total defendants

and HIV-positive defendants compared to nonresponding counties. Annual jail admissions, daily

jail populations, and index crime rates are also higher in responding counties than nonresponding

counties. Nonresponding counties have higher poverty rates and are more rural compared to

responding counties.

The weight calibration model estimate was calculated as specified in Section 2.2.3.2, except

that the daily jail population covariate was exclude due to collinearities with the other covariates

that resulted in a lack of model convergence. Based on the simulation study, the sample size of

n = 26 counties is not large enough to ensure appropriate coverage of 95% confidence intervals,

and undercoverage was made worse when the fpc adjustment was applied. For this reason, the fpc
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Table 2.2: Parameter Estimates for Multivariable and Single Variable Prediction
Models, Outcome Regression

 

 

  

Variable Description 𝛽,̂ MV 
Est SE, 

MV 

95% 
Lower 
Conf 
Limit, 
MV 

95% 
Upper 
Conf 
Limit, 
MV 

p-value, 
MV 𝛽̂, SV 

Est 
SE, 
SV 

95% 
Lower 
Conf 

Limit, SV 

95% 
Upper 
Conf 
Limit, 
SV 

p-value, 
SV 

Percent below Poverty 0.0009 0.0015 -0.0022 0.0040 0.5543 0.0005 0.0019 -0.0035 0.0045 0.8075 

Annual Jail Admissions (in thousands)1 0.0219 0.0135 -0.0065 0.0504 0.1226 0.0001 0.0044 -0.0091 0.0092 0.9863 

Daily Jail Population1 0.0045 0.0031 -0.0021 0.0110 0.1686 -0.0002 0.0007 -0.0016 0.0012 0.7876 

Index Crime Rate (in thousands)1 -0.0060 0.0158 -0.0392 0.0273 0.7109 -0.0037 0.0044 -0.0129 0.0054 0.4085 

Number of Unique defendants in Court 
Records (in thousands)1 

-0.0422 0.0096 -0.0625 -0.0220 0.0004 -0.0052 0.0035 -0.0125 0.0021 0.1534 

Urbanicity Status: Rural -0.0144 0.0120 -0.0396 0.0108 0.2462 -0.0007 0.0136 -0.0288 0.0275 0.9612 

Urbanicity Status: Suburban 0.0063 0.0122 -0.0194 0.0320 0.6139 -0.0009 0.0164 -0.0348 0.0331 0.9587 

 
 

 
MV=Multivariable; SV=Single Variable; Est SE=Estimated Standard Error;

1 Square-root transformed

was excluded from the standard error calculation. The model parameters are presented in Table

2.5. County urbanicity status, the number of HIV-positive defendants, and annual jail admissions

were all associated with county response status at the α = 0.1 level in the multivariable calibration

model.

The calibrated weights exhibited a fairly high amount of variation, ranging from 1.45× 10−6

to 24.7 (with a median of 0.05). Based on the calibrated weights, n̂I,NC,WC = 1090.6, with a 95%

confidence interval of (969.1, 1212.1).

Figure 2.4 compares the estimates for the two methods. The confidence intervals overlap slightly,

but the outcome regression method leads to a larger point estimate than the weight calibration

method. The precision of the two methods differs greatly, with outcome regression providing the

narrower interval (half-width of 99.1) and weight calibration providing a wider interval (half-width

of 121.5).
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Table 2.3: Estimated Number of HIV-positive Persons Incarcerated in Jails in the
10 Largest and 10 Smallest Counties, Outcome Regression

  

County Name Response 𝑛𝐷,𝑖 𝑃(𝐼|𝐷)𝑖 𝑃̂(𝐼|𝐷)𝑖 𝑛̂𝐼,𝑖 

Large County 1 Responding County 270 0.13 0.13 (0.09, 0.18) 34.1 

Large County 2 Responding County 804 0.08 0.07 (0.02, 0.12) 62.5 

Large County 3 Responding County 312 0.14 0.12 (0.07, 0.17) 44.7 

Large County 4 Responding County 1104 0.09 0.07 (0.02, 0.12) 103.1 

Large County 5 Responding County 1580 0.12 0.13 (0.08, 0.19) 185.4 

Large County 6 Responding County 271 0.12 0.13 (0.09, 0.18) 33.2 

Large County 7 Responding County 93 0.09 0.09 (0.04, 0.14) 8.3 

Large County 8 Responding County 957 0.09 0.09 (0.04, 0.14) 90.2 

Small County 1 Nonresponding County 1  0.12 (0.08, 0.17) 0.2 (0.1, 0.2) 

Small County 2 Nonresponding County 3  0.11 (0.05, 0.17) 0.3 (0.1, 0.5) 

Small County 3 Nonresponding County 5  0.13 (0.08, 0.18) 0.7 (0.4, 1.0) 

Large County 9 Nonresponding County 626  0.09 (0.04, 0.14) 58.4 (26.5, 90.3) 

Large County 10 Nonresponding County 420  0.14 (0.08, 0.20) 60.5 (35.3, 85.7) 

Small County 4 Nonresponding County 3  0.12 (0.06, 0.17) 0.3 (0.2, 0.5) 

Small County 5 Nonresponding County 1  0.12 (0.07, 0.17) 0.1 (0.1, 0.1) 

Small County 6 Nonresponding County 4  0.12 (0.07, 0.18) 0.5 (0.3, 0.7) 

Small County 7 Nonresponding County 33  0.11 (0.06, 0.16) 3.7 (2.0, 5.4) 

Small County 8 Nonresponding County 11  0.15 (0.10, 0.21) 1.6 (1.0, 2.2) 

Small County 9 Nonresponding County 21  0.09 (0.04, 0.14) 1.9 (0.9, 2.9) 

Small County 10 Nonresponding County 27  0.10 (0.05, 0.15) 2.8 (1.4, 4.2) 
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Table 2.4: County Characteristics by Response Status
 

 

  

 

       County Characteristics 
Responding 

Counties 
Nonresponding 

Counties 

 n 26 74 

Number of Unique defendants in Court 
Records (in thousands) 

Median (Q1,Q3) 10.9 (6.5, 17.7) 4.0 (1.8, 6.4) 

 Mean (SD) 15.6 (14.7) 5.2 (4.8) 

 Min, Max 1.9, 54.2 0.4, 26.6 

Number of HIV+ defendants Median (Q1,Q3) 98 (55, 270) 36 (14, 84) 

 Mean (SD) 263 (395) 73 (101) 

 Min, Max 12, 1580 1, 626 

Annual Jail Admissions (in thousands) Median (Q1,Q3) 6.2 (3.5, 12.6) 1.6 (0.5, 3.1) 

 Mean (SD) 9.5 (10.1) 2.5 (2.8) 

 Min, Max 1.5, 40.3 0.0, 12.9 

Daily Jail Population Median (Q1,Q3) 250 (139, 457) 87 (36, 163) 

 Mean (SD) 389 (422) 124 (125) 

 Min, Max 46, 1881 0, 721 

Index Crime Rate (in thousands) Median (Q1,Q3) 3.8 (1.7, 6.6) 1.2 (0.3, 2.6) 

 Mean (SD) 6.6 (8.9) 1.9 (2.7) 

 Min, Max 0.6, 40.0 0.0, 17.3 

Percent below Poverty Median (Q1,Q3) 17.2 (15.2, 18.6) 20.5 (17.0, 24.3) 

 Mean (SD) 16.8 (3.1) 20.6 (5.2) 

 Min, Max 9.4, 24.2 6.0, 32.3 

Urbanicity Status Rural 9 (35%) 45 (61%) 

 Suburban 5 (19%) 5 (7%) 

 Small/Mid or Urban 12 (46%) 24 (32%) 
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Table 2.5: Parameter Estimates for Weight Calibration Model
 

 

  

Variable Description 𝛾 Est SE 
95% Lower 
Conf Limit 

95% Upper 
Conf Limit 

P-
Value 

Intercept 23.062 10.696 1.84 44.28 0.0335 

Urbanicity Status: Rural or Suburban1 -6.908 3.504 -13.86 0.04 0.0514 

Number of Unique defendants in Court 
Records (in thousands)2 

-2.097 1.308 -4.69 0.50 0.1121 

Number of HIV-positive Defendants 0.029 0.015 -0.00 0.06 0.0557 

Annual Jail Admissions (in thousands) 2 -7.648 3.386 -14.37 -0.93 0.0261 

Index Crime Rate (in thousands) 2 -0.806 2.036 -4.84 3.23 0.6930 

Percent below Poverty -0.009 0.151 -0.31 0.29 0.9523 

 
 

 

1 Small/Midsize, Urban is the reference level
2 Square-root transformed
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Figure 2.4: Estimated Number of HIV+ Persons Incarcerated in NC Jails (n̂I,NC) and
95% Confidence Intervals based on Outcome Regression and Weight Calibration
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2.5 Discussion

Record linkage across three large NC databases, combined with outcome regression or weight

calibration, will allow for indirect estimation of a rare population that cannot be directly measured

given the current data collection practices and capabilities of NC jails. There are advantages

and limitations of each method that are specific to the application at hand. Outcome regression

has the advantage of producing county-level estimates, which will be useful for practitioners for

targeting HIV interventions where they are most needed. However, outcome regression approaches

rely on correct outcome model specification (Hansen, 1987). Weight calibration can be used to

obtain an overall estimate for the entire state of NC, and the available covariates were predictive of

county-level response status. The weight calibration model is doubly robust, providing consistent

estimates if either the outcome model or the implied response model is correctly specified, but it

unfortunately cannot provide county-level estimates. Furthermore, findings from the simulation

called into question the small sample properties of its variance estimator for this population. In

the simulations, the fpc was applied to the calibration model variance estimator without a formal

justification. Use of the fpc led to more appropriate confidence interval coverage compared to

ignoring the fpc adjustment for larger finite populations.

There are limitations associated with our findings. The small sample of n = 26 counties made

model-fitting challenging and the validity of asymptotic properties questionable. The two evaluated

approaches treat the number of HIV-positive defendants and HIV-positive persons in the 26 jails as

known quantities, ignoring any error in the record linkage process. Despite these limitations, these

findings demonstrate how outcome regression and weight calibration can be used to account for

missing data following record linkage procedures in order to generalize results to a target population.
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CHAPTER 3: DON’T LET CONFOUNDING CONFOUND YOU: POWER AND SAMPLE
SIZE FOR MARGINAL STRUCTURAL MODELS

3.1 Introduction

Researchers often aim to estimate causal effects rather than just associations between variables.

In settings where experimental designs are implausible, inference relies on observational data

from which measured associations can be confounded. Marginal structural models (MSMs) are a

commonly used method to estimate causal effects in the presence of confounding variables (Hernán

et al., 2000; Robins et al., 2000; Cole and Hernán, 2008; Brumback et al., 2004). These models

are fit using weighted estimating equations, where the weights are the inverse of each participant’s

probability of the observed treatment (or exposure). For a binary treatment, the estimand of interest

is often the average causal effect, the difference in counterfactual means for the two treatment levels.

With the assumptions of causal consistency, conditional exchangeability, and positivity, the inverse

probability of treatment weight (IPTW) estimators are consistent for the MSM parameters for the

causal means and the average causal effect (Lunceford and Davidian, 2004). Variance estimates are

computed using standard estimating equation theory (Stefanski and Boos, 2002), with the empirical

sandwich variance estimator providing a consistent estimator for the asymptotic variance of the

estimated average causal effect.

While IPTW estimators provide researchers with an analytic tool for estimating causal effects

in the presence of confounding variables, these estimators pose challenges during study design. The

use of weights in the analysis affects the variance of the average causal effect estimator, making it

challenging to determine the number of participants needed to achieve sufficient statistical power to

detect a difference in causal means. Sample sizes cannot be calculated using standard methods that

ignore weighting as in a randomized controlled trial (RCT) (e.g. as in Chow et al., 2017), as this
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will tend to be anti-conservative. Numerous papers have examined the properties of IPTWs and

have developed guidelines and diagnostics for specifying weight models and adjusting estimated

weights (Austin, 2009; Austin and Stuart, 2015; Cole and Hernán, 2008; Lee et al., 2011). However,

currently no methods exist for power and sample size calculations for studies that will be analyzed

using MSMs fit with IPTWs.

Weighted estimators are common in survey sampling and for Bayesian methods that utilize

importance sampling, and both fields have developed methods to quantify the effect of weighting

on the precision of estimates. Kish (1965, page 257) introduced the design effect under the

randomization-based inferential paradigm for survey sampling. The design effect is the ratio of the

variance of an estimator under a complex sample design to the variance of the estimator under a

simple random sample. When participants are selected directly from the finite population rather

than from clusters of correlated observations, the design effect for a population mean estimator

simplifies to the design effect due to weighting (deffw), or the unequal weighting effect (Kish,

1992). Let n be the sample size and wi represent the sampling weight for the ith participant, i.e.,

the inverse of participant i’s probability of selection. The design effect due to weighting is defined

using either of the two equivalent forms:

deffw =
n
∑n

i=1wi
2

(
∑n

i=1wi)
2

= 1 +
S2(w)

(n−1
∑n

i=1wi)
2

(3.1)

where S2(w) is the finite sample variance of the weights. The design effect is interpreted as

an estimator’s increase in variance due to differential weights across participants. This metric

is commonly applied to all types of complex sample designs in which individuals in the finite

population have different probabilities of selection (Valliant et al., 2013, page 375). Gabler et al.

(1999) provided a justification for how Kish’s design effect also applies to model-based estimators.

In practice, the design effect is used to calculate the effective sample size, which is equal to the

observed sample size divided by the design effect. The effective sample size can be interpreted as

38



the sample size under simple random sampling that that would have produced the same variance as

the sample selected under the complex design (Valliant et al., 2013, page 5).

Bayesian importance sampling uses weighting methods when sampling from one distribution

to estimate the properties of another distribution (Kong et al., 1994). Importance sampling uses the

effective sample size metric to compare the precision of the weighted estimator to the precision

that would be achieved if sampling had been conducted directly from the distribution of interest

(Kong et al., 1994). When the estimator of interest is a Hájek estimator, Kong (1992) provides an

approximation for the effective sample size which is a function of (3.1).

Advantages of the approximated design effect are that it is outcome invariant and allows the

sample size under a complex design to be translated into a sample size under a simpler design

with the same variance. The former implies that the approximated design effect depends only on

the participants’ weights and is constant across outcomes. The latter means that once deffw is

known or approximated, it can be used in power and sample size calculations along with the simpler

assumptions needed to design a study without weights.

In this paper we consider design effects for planning observational studies to assess the effect of

a treatment or exposure on an outcome of interest. In the analysis of observational data, McCaffrey

et al. (2004, 2013) have used the effective sample size to quantify the loss of statistical precision

following inference about causal effects using propensity score weighting. Here we describe the use

of design effects for determining the sample size or power when designing an observational study.

Section 3.2 introduces the design effect for causal inference and proves that it can be approximated

with Kish’s deffw. Section 3.3 demonstrates how the design effect can be used to determine the

sample size or power of an observational study that will be analyzed using MSM with IPTWs.

Section 3.4 examines the accuracy of the design effect approximation for various exposure and

outcome types via simulations, and Section 3.5 provides practical considerations regarding the use

of design effects. Section 3.6 concludes with a discussion of the results and implications. Appendix

A includes proofs of the propositions appearing in the main text.
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3.2 The Design Effect

3.2.1 Preliminaries

Suppose an observational study is being planned where n independent and identically distributed

copies of (Ai, Li, Yi) will be observed, where Ai is the binary treatment (exposure) status for

participant i such that Ai = 1 if participant i received treatment and Ai = 0 otherwise, Li is a vector

of baseline covariates measured prior to Ai or unaffected by treatment Ai, and Yi is the observed

outcome for participant i.

The aim of the observational study will be to estimate the effect of treatment A on outcome

Y . Specifically, let Y1i denote the potential outcome if an individual i, possibly counter to fact,

receives treatment. Similarly let Y0i denote the potential outcome if individual i does not receive

treatment, such that Yi = AiY1i + (1− Ai)Y0i. Inference from the observational study will focus

on parameters of the MSM E(Ya) = β0 + β1a, with particular interest in the parameter β1 which

equals the average causal effect ACE = E(Y1)− E(Y0) = µ1 − µ0. Note the MSM is saturated

and thus does not impose any restrictions on the assumed structure of the data.

Under certain assumptions, the parameters of the MSM can be consistently estimated using

IPTW. In particular, assume conditional exchangeability holds, i.e., Ya ⊥ A | L for a ∈ {0, 1}. Also

assume that positivity holds such that Pr(A = a | L = l) > 0 for all l such that dFL(l) > 0 and

a ∈ {0, 1}, where FL is the cumulative distribution function of L. Estimating the average causal

effect under the stated assumptions with the IPTW estimator first entails estimating the propensity

score for each participant, defined as pi = Pr(Ai = 1 | Li) (Rosenbaum and Rubin, 1983). A model

is fit to obtain p̂i, each participant’s estimated probability of treatment conditional on observed

covariates Li. The estimated IPTW is then equal to Ŵi = I(Ai = 1)p̂−1i + I(Ai = 0)(1 − p̂i)−1,

where I(Ai = a) is a {0,1} treatment indicator for participant i. The estimated average causal

effect β̂1 is obtained by regressing the observed outcome Y on treatment A with weights Ŵ using

weighted least squares. The resulting IPTW estimator is a difference in Hájek estimators for the
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two causal means (Hernán and Robins, 2020; Lunceford and Davidian, 2004):

ÂCE = µ̂1 − µ̂0 =

∑n
i=1 ŴiYiI (Ai = 1)∑n
i=1 ŴiI (Ai = 1)

−
∑n

i=1 ŴiYiI (Ai = 0)∑n
i=1 ŴiI (Ai = 0)

(3.2)

Augmented IPW estimators, which incorporate both outcome and treatment models, may be

used instead of (3.2) to estimate the ACE. Such estimators are doubly robust and will be more

efficient than (3.2) if both the treatment and outcome models are correctly specified (Robins et al.,

1994; Lunceford and Davidian, 2004). Thus, the power and sample size calculations derived below,

which are based on (3.2), will be conservative for studies analyzed with augmented IPW estimators.

3.2.2 The Design Effect for a Single Causal Mean

Define the design effect to equal the ratio of the (finite sample) variance of µ̂a divided by

the variance of a naı̈ve causal mean estimator if, counter to fact, no confounding was present and

weighting was not needed. That is,

deffaw =
V ar(µ̂a)

V ar(µ̃a)
(3.3)

where µ̃a = {
∑n

i=1 YiI(Ai = a)}/{
∑n

i=1 I(Ai = a)}. The derivation of the design effect estimator

relies on the following proposition. The proposition assumes that the weights are known and are

denoted byWa = P (A = a | L)−1 for a ∈ {0, 1} withW = AW1 +(1−A)W0. Let σ2
a = V ar(Ya)

for a ∈ {0, 1}.

Proposition 3.1.
√
n(µ̂a − µa)

d→ N(0,Σa)

where

Σa = σ2
a

(
E {W 2I(A = a)}
[E {WI(A = a)}]2

)
+R(L, Ya)

and

R(L, Ya) = E[{Wa − E(Wa)}(Ya − µa)2]
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with

|R(L, Ya)| ≤
√
V ar(Wa)V ar{Y 2

a − 2µaYa}

for a ∈ {0, 1}

It follows from Proposition 3.1 that for large n the variance of µ̂a can be approximated as:

V ar(µ̂a) ≈
σ2
a

n

(
E {W 2I(A = a)}

[E {WI(A = a)}]2

)
+ n−1R(L, Ya)

By similar arguments, for large n, V ar(µ̃a) ≈ σ2
a/{nP (A = a)}. Therefore,

deffaw ≈
P (A = a)E{W 2I(A = a)}

[E{WI(A = a)}]2
+ Era (3.4)

where Era = {P (A = a)/σ2
a}R(L, Ya), which by Proposition 3.1 is bounded by:

|Era| ≤ {P (A = a)/σ2
a}
√
V ar(Wa)V ar(Y 2

a − 2µaYa) (3.5)

An approximation of (3.4) that does not depend on the potential outcome Ya omits the remainder

term Era:

d̃eff
a

w =
P (A = a)E{W 2I(A = a)}

[E{WI(A = a)}]2
(3.6)

When planning an observational study, prior or pilot study data may be available to estimate (3.6).

In particular, suppose based on a pilot study np copies of (Li, Ai) are observed. Then replacing

P (A = a) with Na/np where Na =
∑np

i=1 I(Ai = a), E{W 2I(A = a)} with n−1p
∑np

i=1 Ŵ
2
i I(Ai =

a), and E{WI(A = a)} with n−1p
∑np

i=1 ŴiI(Ai = a), a consistent estimator of (3.6) is:

d̂eff
a

w =
Na

∑np
i=1 Ŵ

2
i I(Ai = a){∑np

i=1 ŴiI(Ai = a)
}2 (3.7)

This estimator has the same form as Kish’s design effect (3.1), applied to treatment group A = a.

When prior data are not available, the design effect can be approximated using (3.6) based on an
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assumed distribution for A | L and the marginal distribution of L. The bias of (3.6) or (3.7) as an

approximation to (3.4) in a given application depends on the value of Era. As further discussed

in Section 3.6, Era is not guaranteed to be negligible. Bias of (3.6) and (3.7) for varying outcome

types and confounding structures is evaluated empirically in simulation studies presented in Section

3.4.

3.3 Sample Size Calculations using the Design Effects

When the ACE is the focus of inference for the observational study being planned, the large

sample distribution of ÂCE can be used for power or sample size calculations. As n→∞, ÂCE

is consistent and asymptotically normal, i.e.,
√
n(ÂCE − ACE)

d→ N(0,Σ∗), where Σ∗ is given

by equation (13) in Lunceford and Davidian (2004). By the following proposition, Σ∗ can be

decomposed into the sum of asymptotic variances for the two causal mean estimators:

Proposition 3.2.

Σ∗ = Σ1 + Σ0

Treating the weights as fixed or known leads to a larger asymptotic variance for ÂCE compared

to appropriately treating the weights as estimated, i.e., Σ∗ is at least as large as the true asymptotic

variance of ÂCE (Lunceford and Davidian, 2004). Therefore, sample size formulae derived based

on Σ∗ would in general be expected to be conservative.

The results in Propositions 3.1 and 3.2 allow for sample size calculations for studies that will be

analyzed using MSM with IPTW. Suppose the sample size for the observational study being planned

is to be determined on the basis of the power to test H0 : ACE = 0 versus Ha : ACE 6= 0 or

equivalently H0 : β1 = 0 versus Ha : β1 6= 0. Define the test statistic t = ÂCE{V ar(ÂCE)}−1/2,

where

V ar(ÂCE) ≈ V ar(µ̂1) + V ar(µ̂0) ≈ {nP (A = 1)}−1σ2
1,adj + {nP (A = 0)}−1σ2

0,adj (3.8)
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with σ2
a,adj = σ2

adeff
a
w for a ∈ {0, 1}. Then,

ÂCE − ACE√
V ar(ÂCE)

(3.9)

is approximately standard normal for large n. Thus, H0 is rejected when |t| > z1−α
2

, where α is the

type I error rate and zq is the qth quantile of the standard normal distribution.

Proposition 3.3. The sample size required to achieve power 1− β for effect size ACE = δ and

type I error rate α is approximately:

ndeff =
(1 + k)(z1−α/2 + z1−β)2(σ2

1,adj/k + σ2
0,adj)

δ2
(3.10)

where k = P (A = 1)/P (A = 0) is the odds of treatment in the population.

The sample size formula (3.10) is the standard sample size equation commonly used to design

RCTs, but with σ2
a replaced by σ2

a,adj (Chow et al., 2017, page 48). Thus, Proposition 3.3 simplifies

power and sample size calculations for observational studies by allowing researchers to design

studies as if they were designing an RCT, but inflating the assumed variances by the approximated

design effects. The researcher first assumes that no confounding is present, specifies the desired α

and 1− β, and makes assumptions about σ2
0 , σ2

1 , δ, and k. The design effect is then approximated.

When data from a pilot or prior study are available, deff 1
w and deff 0

w can be approximated based

on (3.7) for each treatment group. When no prior study data are available, the distribution of the

anticipated weights can be estimated based on assumptions about the distribution of L and A | L

and the design effect can be calculated based on (3.6). While these assumptions may not be easy to

make, this approach notably requires no assumptions about the potential outcomes Y0 and Y1 and

their associations with A and L. Further discussion about these practical considerations is included

in Section 3.5. Once the design effects are approximated by d̃eff
a

w or d̂eff
a

w, adjusted variances

σ2
a,adj can be estimated by σ̃2

a,adj = σ2
ad̃eff

a

w or σ̂2
a,adj = σ2

ad̂eff
a

w, respectively, for a ∈ {0, 1}.
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3.4 Simulation Study

3.4.1 Simulation Scenarios

Simulation studies were conducted to demonstrate use of the design effect in study design and

estimate the bias of the approximation in (3.6) and (3.7) under a variety of confounding structures

and outcome types. The scenarios in Table 3.1 were considered. For all scenarios, α = 0.05 and

1− β = 80% were chosen.

Table 3.1: Five simulation scenarios. Scenarios 1-4 demonstrate use of the design effect when no
prior study data are available, and Scenario 5 demonstrates use of the design effect with prior

study data. X ∼ B(p) indicates that a random variable X follows the Bernoulli distribution with
probability of success equal to p.

Scenario Treatment (A) Confounders (L) Outcome (Y ) δ

1
binary Y ,

small deffaw
A | L = 0 ∼ B(0.5)
A | L = 1 ∼ B(0.75)

L ∼ B(0.6)
Y0 | L ∼ B(0.85− 0.2L)
Y1 | L ∼ B(0.70− 0.2L)

−0.15

2
binary Y ,

large deffaw
A | L = 0 ∼ B(0.1)
A | L = 1 ∼ B(0.9)

L ∼ B(0.5)
Y0 | L ∼ B(0.85− 0.2L)
Y1 | L ∼ B(0.70− 0.2L)

−0.15

3
continuous Y ,
small deffaw

A | L = 0 ∼ B(0.5)
A | L = 1 ∼ B(0.75)

L ∼ B(0.6)
Y0 | L ∼ N(20− 10L, 144)
Y1 | L ∼ N(25− 10L, 256)

5.0

4
continuous Y ,
large deffaw

A | L = 0 ∼ B(0.1)
A | L = 1 ∼ B(0.9)

L ∼ B(0.5)
Y0 | L ∼ N(20− 10L, 144)
Y1 | L ∼ N(25− 10L, 256)

5.0

5
prior study data

(NHEFS)
smoking cessation

9 baseline
variables weight gain 2.0

3.4.2 Sample Size Calculation

Two general approaches can be used to design a study with the design effect approximation:

when prior study data are not available, as in Scenarios 1-4, and when prior study data are available,

as in Scenario 5. One example from each general approach is presented in detail.
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3.4.2.1 Example 1: No prior study data (Scenario 1)

Suppose no prior study data are available to design the study of interest. Then, the researcher

must make the same assumptions and design choices as when designing an RCT, namely by

specifying α, 1 − β, σ2
0 , σ2

1 , δ, and k. In general, σ2
1 can be determined by deriving the marginal

distribution of Y1 based on the assumed distributions of Y1 | L and L. For Scenario 1, P (Y1 =

1) =
∑1

l=0 P (Y1 = 1 | L = l)P (L = l) = 0.58, and thus σ2
1 = 0.2436. Similarly, σ2

0 = 0.1971.

Here, the average causal effect is assumed to be δ = −0.15. The proportion of the population

receiving treatment can be derived by integrating the distribution of A | L over L. For Scenario

1, P (A = 1) =
∑1

l=0 P (A = 1 | L = l)P (L = l) = 0.65, and thus k ≈ 1.857. When prior study

data are not available, the distribution of the IPTWs must be assumed at the design phase. Based

on the assumptions in Table 3.1, four possible values of W exist. These assumed values of W ,

along with the joint distribution of A and L, allow for the computation of the design effects using

(3.6). This leads to d̃eff
0

w = 1.12 and d̃eff
1

w = 1.04, with approximated adjusted variances of

σ̃2
0,adj = 0.2208 and σ̃2

1,adj = 0.2533.

Under the assumptions outlined in Table 3.1 for Scenario 1, to achieve 80% power to detect an

average causal effect of −0.15 at the α = 0.05 level, a sample size of approximately ndeff = 356 is

required based on Proposition 3.3. The design effects and required sample sizes for Scenarios 2-4

can be determined similarly and are presented in Table 3.2. Note Scenarios 1 and 3 have the same

design effects because in both instances the joint distribution of A and L is the same. Likewise,

Scenarios 2 and 4 have the same design effects.

3.4.2.2 Example 2: Prior study data (Scenario 5)

Prior study or pilot data may allow for better informed assumptions about σ2
0 , σ2

1 , δ, and k.

Because σ2
a = E(Y 2

a ) − {E(Ya)}2, σ2
a can be estimated by obtaining Ê(Y 2

a ) and Ê(Ya) from

fitted MSMs based on the prior study data. The estimate ÂCE and prevalence of the exposure or

treatment in the prior study can inform assumptions about δ and k.
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As an example, consider designing a new study based on the National Health and Nutrition

Examination Survey Data I Epidemiologic Follow-up Study (NHEFS) example presented in Chapter

12 of Hernán and Robins (2020). Hernán and Robins use MSM with IPTWs to estimate the average

causal effect of smoking cessation (A) on weight gain after approximately 10 years of follow-up

(Y ) based on the NHEFS sample of smokers (n = 1566), assuming conditional exchangeability

based on nine baseline confounders L: sex, age, race, education, smoking intensity, duration of

smoking, physical activity, exercise, and weight.

Making the same assumptions as Hernán and Robins (2020), Scenario 5 considers the design

of a new study to estimate the average causal effect of smoking cessation on 10-year weight gain.

Based on the NHEFS data, assume that σ2
0 = 56.1 and σ2

1 = 74.0, obtained by fitting MSMs with

IPTWs to estimate E(Y 2
a ) and E(Ya). In the Hernán and Robins example, ÂCE = 3.441kg. The

new study will be designed to provide approximately 80% power to detect a difference in weight

gain of δ = 2.0kg. From the NHEFS sample, assume k ≈ 0.346.

When prior study data are available, deff 0
w and deff 1

w can be estimated using (3.7). For the

NHEFS data, d̂eff
0

w = 1.03 and d̂eff
1

w = 1.24. This leads to approximated adjusted variances

of σ̂2
0,adj = 57.78 and σ̂2

1,adj = 91.76. Based on these assumptions, a sample size of ndeff = 853

is needed to achieve approximately 80% power to detect an average causal effect of 2.0kg at the

α = 0.05 level using MSM with IPTWs.

3.4.2.3 Naı̈ve Sample Size Calculations

As a comparison, sample sizes nrct were calculated naively under the assumptions of an RCT,

ignoring the effect of weighting on the variances of the estimates. In other words, sample sizes were

calculated as demonstrated above, except using σ2
a instead of σ̃2

a,adj or σ̂2
a,adj from Table 3.2.
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Table 3.2: Variances, approximated design effects, approximated adjusted variances,
and required sample sizes for simulation scenarios by treatment.

Scenario a σ2
a d̃eff

a

w or d̂eff
a

w σ̃2
a,adj or σ̂2

a,adj ndeff nrct

1
binary Y ,

small deffaw
0
1

0.1971
0.2436

1.12
1.04

0.2208
0.2533

356 327

2
binary Y ,

large deffaw
0
1

0.1875
0.2400

2.78
2.78

0.5208
0.6667

828 298

3
continuous Y ,
small deffaw

0
1

168.0
280.0

1.12
1.04

188.2
291.2

310 286

4
continuous Y ,
large deffaw

0
1

169.0
281.0

2.78
2.78

469.4
780.6

784 283

5
prior study data,

(NHEFS)
0
1

56.10
74.00

1.03
1.24

57.78
91.76

853 713

3.4.3 Evaluation

For Scenarios 1-4, empirical power based on samples of size ndeff was evaluated via simulation

by following these steps:

(i) Generate a superpopulation of size N = 1, 000, 000 based on distributions in Table 3.1.

(ii) Select a sample of size ndeff without replacement from the superpopulation, where ndeff is

specified in Table 3.2.

(iii) Estimate Ŵi for each member of the sample based on the predicted values from the logistic

regression of A on L.

(iv) Fit the MSM E(Yai) = β0 + β1ai using weighted least squares, treating the weights as

estimated by stacking the estimating equations from the weight model with the estimating

equations for the causal means and difference in causal means using the geex package in R

(Saul and Hudgens, 2020).
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(v) Test H0 : β1 = 0 versus H1 : β1 6= 0 using a Wald test, rejecting H0 at the α = 0.05

significance level.

(vi) Repeat steps (ii)-(v) R = 2000 times and calculate empirical power as the proportion of

simulated samples where H0 was rejected.

For Scenario 5, empirical power based on a sample of size ndeff was evaluated via simulation

by following these steps:

(i) Estimate the propensity score for each of the 1566 NHEFS participants from a logistic

regression model of A on L as p̂i = P̂ r(Ai = 1 | Li = li). As in Hernán and Robins (2020),

the logistic regression model includes main effects for each of the nine baseline confounders

and quadratic terms for the four continuous covariates.

(ii) For each participant, calculate Ŷai, a ∈ {0, 1}, as the predicted value Ê(Yai | Li = li) from the

following linear regression model, fit only on participants withA = a: E(Yai | Li = li) = liβ,

where li is a vector for participant i that includes an intercept term, the 9 previously defined

covariates, and the four quadratic terms corresponding to continuous covariates. Also compute

V̂ ar(Yai | Li = li) = MSEa, where MSEa is the mean squared error from the model for

E(Yai).

(iii) Add 1.441 to Ŷ0i for all participants, such thatACE = 2.0 in the simulated population instead

of 3.441 as in the NHEFS sample.

(iv) Select a sample of size ndeff with replacement from the NHEFS dataset, where ndeff is

specified in Table 3.2.

(v) Assign Ai = ai as a random draw from Ai ∼ Bernoulli(p̂i).

(vi) Let Yai = Ŷai + εai, where εai ∼ N(0, V̂ ar(Yai | Li = li)).

(vii) Follow steps (iii)-(v) from the above list for Scenarios 1-4.
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(viii) Repeat steps (iv)-(vii) R = 2000 times and estimate empirical power as the proportion of

simulated samples where H0 was rejected.

For each scenario, these steps were repeated to calculate empirical power based on the naı̈ve sample

sizes, replacing ndeff with nrct.

The results of the simulation study are presented in Table 3.3. For all simulation scenarios,

when the sample size was calculated using the design effect, empirical power was equal to or

exceeded the nominal 80% level. That is, use of the design effects to calculate required sample

sizes led to close to the intended level of statistical power. On the other hand, ignoring the effect

of weighting and basing sample sizes on the naı̈ve assumptions of an RCT led to empirical power

that was lower than the nominal 80% level for all but one scenario. These results demonstrate that

ignoring the weights in power and sample size calculations can lead to significantly underpowered

studies, particularly when there are strong confounders that lead to high variability in the weights.

For all scenarios, the approximation errors Era from (3.4) for each sample and treatment were

estimated by Êra = {Na/(nσ
2
a)}Ê

[
{Ŵa − Ê(Ŵa)}{Ya − Ê(Ya)}2

]
, where expected values were

calculated empirically within each sample. Estimated approximation errors were then averaged

across the R = 2000 simulated samples. Mean estimated approximation error was small for most

scenarios (Table 3.3) and was in opposite directions for the two treatment groups, which tended

to offset the effects of the errors. Approximation error was large for Scenario 2 (0.60 for A = 0

and −0.19 for A = 1), but empirical power still equaled the nominal level when the design effect

was used to calculate the sample size. Note Scenario 2 is an extreme example, as it includes only a

single and very strong confounding variable and only two possible and extreme values for W . For

the binary outcome, this resulted in large approximation errors.
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Table 3.3: Results of the simulation study by scenario across R = 2000 samples. Empirical
power ndeff and nrct are the proportions of simulated samples in which the p-values for testing

H0 : β1 = 0 versus H1 : β1 6= 0 were less than α = 0.05 for the following MSM:
E(Yai) = β0 + β1ai, based on sample sizes ndeff and nrct, respectively, from Table 3.2

Scenario
Empirical

Power
ndeff

Empirical
Power
nrct

Mean
Êr0

Mean
Êr1

1 0.81 0.76 0.08 -0.01

2 0.80 0.42 0.60 -0.19

3 0.85 0.81 -0.02 0.01

4 0.86 0.47 0.00 -0.01

5 0.82 0.76 0.02 -0.03

3.5 Practical Considerations

When prior study data are not available, specifying the design effects can be challenging. A few

general guidelines are offered to help researchers determine reasonable assumptions to facilitate

power and sample size calculations.

When only a few categorical covariates will be included in the weight model, researchers

can use subject matter knowledge or prior study information to nonparametrically specify the

joint distribution of A and L, or the marginal distribution of L and the conditional distribution of

A | L (as in Example 1). Based on these assumptions, the anticipated weights can be calculated

nonparametrically and the design effects for each treatment group can be approximated.

When specification of these distributions is not feasible, researchers can forgo approximating

the values of the weights and instead consider more generally how much variation is expected in

the weights. The lower bound for deffaw is 1, which implies that the weights within both treatment
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groups are all equal and thus covariates are not predictive of the treatment. Design effects tend to

increase when more covariates are added to the weight model. The presence of covariates that are

strong predictors of treatment tends to increase the design effect. Care must be taken to identify the

appropriate set of confounders to include in the weight model (Vansteelandt et al., 2012). Inclusion

of instrumental variables, which are predictive of the exposure but which do not affect the outcome,

inflate the variance of the ACE estimator without reducing bias (Rubin, 1997; Myers et al., 2011).

The use of weight truncation will decrease the design effect.

Figure 3.1 provides a visual depiction of weight distributions within one treatment group for

various values of the design effect to aid researchers in choosing a design effect consistent with

the expected variation in the weights. These weight distributions were generated by taking the

reciprocals ofNa = 1000 random draws from beta distributions with mean 0.5 and shape parameters

set to achieve the desired design effect. As variation in the weights increases, so does the design

effect approximation.
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def fw
a = 2.5 def fw

a = 2.75 def fw
a = 3

def fw
a = 1.75 def fw

a = 2 def fw
a = 2.25

def fw
a = 1.05 def fw

a = 1.25 def fw
a = 1.5
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Figure 3.1: Examples of weight distributions for various approximated design effects.
Distributions were generated by taking the reciprocals of Na = 1000 random draws from beta

distributions with mean 0.5 and shape parameters set to achieve the desired design effect.
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3.6 Discussion

The design effect approximation simplifies power and sample size calculations of observational

studies. Using the design effect allows researchers to utilize standard power and sample size

software (e.g., nQuery, SAS Proc Power) for randomized trials, but with variances inflated by the

approximate design effects. An additional advantage of using the design effect approximation is

that no assumptions are required about the relationship between the potential outcomes and either

the treatment or the confounders. Empirical results presented in Section 3.4 demonstrate the design

effect approximation can yield the nominal level of power over a range of confounding and outcome

structures.

Approximating the design effect when planning an observational study may be challenging.

In survey sampling, it is common practice to report estimated design effects in analytic reports

for better understanding of the precision of the estimates and to assist other researchers who are

designing similar studies (see, for example Center for Behavioral Health Statistics and Quality,

2019). Reporting the estimated design effects corresponding to treatment or exposure effect

estimates in observational studies may assist researchers with future study designs. In time, as

more studies analyzed with MSMs start to report their design effects, rules of thumb and practical

upper bounds for the design effects will likely emerge to aid in the design of future studies (see,

for example, United Nations Statistical Division (2008, page 41), Daniel (2012, page 251), and

Salganik (2006) from the survey sampling literature).

In the absence of knowledge of estimated design effects from prior studies, the design effect

may be approximated either using (3.6) or, if pilot data are available, (3.7). In either case, the

remainder term in (3.4) is ignored, which may introduce bias. The remainder may be large when

individuals with extreme weight values tend to have potential outcomes that are also extreme relative

to the mean. In the simulation studies in Section 3.4, the approximation error was small for all but

one of the scenarios examined. Remainders were in opposite directions for the two treatment groups,

which tended to offset the effects of the errors and thus use of the approximation did not result in
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deviations from the nominal level of statistical power for any of the scenarios examined. However,

there is no guarantee that approximation error will be negligible for a given study. When pilot

or prior study data are available, approximation error Era can be estimated as in the simulations,

but with Ya replaced with Ŷa for a ∈ {0, 1} where Ŷa is based on an assumed outcome regression

model. Alternatively, an estimate for the upper bound of Era can be obtained by estimating the

upper bound in (3.5).

Despite these limitations, the design effect approximation can be a useful tool for the design

of studies that will be analyzed using MSM with IPTWs, as currently no power and sample size

methods exist in this context. The design effect can also be used in precision calculations using

approaches analogous to those described in this paper, i.e., basing calculations on the adjusted

variances σ̃2
a,adj or σ̂2

a,adj rather than σ2
a.

55



CHAPTER 4: CAUSAL INFERENCE FROM OBSERVATIONAL DATA FOR COUNT
OUTCOMES

4.1 Introduction

Researchers often seek to estimate the causal effect of an exposure or treatment on an outcome

of interest. Experimental designs are infeasible for many exposures of interest, and thus inference

often relies on observational data. Associations measured from observational data can be subject

to confounding, so methods have been developed to estimate causal effects in the presence of

confounding variables. Three commonly-used methods to estimate causal effects from observational

data are marginal structural models (MSM) fit with inverse probability of treatment weights (IPTWs)

(Robins, 1998; Robins et al., 2000; Hernán et al., 2000), the parametric g-formula (Robins, 1986),

and doubly robust estimators that incorporate both exposure and outcome model estimators (Bang

and Robins, 2005; Hernán and Robins, 2020; Funk et al., 2011; Kang and Schafer, 2007). These

three methods provide consistent estimates of the average causal effect, the difference in coun-

terfactual means for the two exposures, under the assumptions of causal consistency, conditional

exchangeability, and positivity (Lunceford and Davidian, 2004). In practice, MSM with IPTWs, the

parametric g-formula, and doubly robust estimators are commonly applied to observational data

when the outcome of interest is continuous, binary, or categorical (Hernán et al., 2000; Bodnar et al.,

2004; Cole and Hernán, 2008; Taubman et al., 2009; Young et al., 2011; Garcia-Aymerich et al.,

2013; Funk et al., 2011; Waernbaum, 2012).

Count outcomes are common in observational studies, as researchers often seek to estimate

measures over a fixed period of time such as the number of sexual partners (Wiederman, 1997;

Knittel et al., 2020), pill counts to assess treatment adherence (Bangsberg et al., 2001), or the

number of cigarettes smoked (Singh et al., 1994). To estimate the effect of a binary exposure on

56



a count outcome, one key estimand is the causal rate ratio, the ratio of the counterfactual mean

under exposure to the counterfactual mean under no exposure. Applying causal methods to count

outcomes poses challenges unique to count data that must be accounted for to yield valid inference.

The Poisson distribution is commonly used to model count outcomes, but the observed variance of

a count outcome often exceeds the variance assumed under the Poisson model. This phenomenon

is known as overdispersion (Agresti, 2002, page 130). Zero-inflation is also common in count

outcomes, where the number of observed zero counts exceeds the number expected under a Poisson

distribution (Böhning et al., 1999).

In addition to overdispersion and zero-inflation, which pose challenges for correctly modeling

count outcomes even when data are measured without error, count outcomes are also susceptible

to a form of measurement error called data heaping. Data heaping occurs when reported counts

are rounded to different levels of precision (Wang and Heitjan, 2008). This phenomenon is

commonly observed when collecting self-reported retrospective counts or measures of duration,

including cigarette usage (Klesges et al., 1995), duration of breastfeeding (Singh and Folsom,

2000), and number of sexual partners (Wiederman, 1997; Roberts and Brewer, 2001). Data heaping

is often attributed to cognitive processes in respondents, including choosing round numbers or

approximations (digit preference) or using estimation methods to aid in recall (Roberts and Brewer,

2001). Data coarsening is a type of data heaping where participants tend to round their reported

outcomes (Heitjan, 1989; Cummings et al., 2015). When count outcomes are subject to data heaping,

the true underlying distribution of counts is distorted which can lead to biased point and variance

estimates (Wang and Heitjan, 2008; Cummings et al., 2015).

Causal methods have been applied to count data (Sato and Matsuyama, 2003), and methods

have been proposed to estimate the causal rate ratio using the parametric g-formula for zero-inflated

data (Albert et al., 2014). A general theoretical framework is needed to define causal estimands

and estimators for count outcomes. Methods are needed to account for the unique features of

count data, including overdispersion, zero-inflation, and data heaping. This paper develops and

compares three estimators for the causal rate ratio for count data, each of which can accommodate

57



overdispersion and/or zero-inflation in the outcome. Methods are presented for estimating the causal

rate ratio when the observed outcome data exhibit data heaping under a given set of assumptions.

Section 4.2 presents the estimators in detail and describes their large sample properties. Section 4.3

demonstrates and compares the empirical properties of the estimators with a simulation study, and

Section 4.4 applies the methods to Women’s Interagency HIV Study (WIHS) data to estimate the

effect of incarceration on the number of sexual partners in the subsequent six-month period. Section

4.5 concludes with a discussion of the results. Appendix B includes supplemental tables and proofs

of the propositions appearing in the main text.

4.2 Methods

4.2.1 Preliminaries

Assume that the observed data (Y1, L1, A1), (Y2, L2, A2), ..., (Yn, Ln, An) are an independent

and identically distributed sample from a superpopulation, where Ai is the binary exposure or

treatment status for participant i (Ai = 1 if participant i was exposed, Ai = 0 if participant i was

not exposed), Li is a vector of baseline covariates measured prior to Ai or unaffected by exposure

Ai, and Yi is the observed count outcome for participant i. That is, Yi ∈ N0 and N0 is the set of

all non-negative integers. Let Y 1
i denote the potential outcome if individual i, possibly counter to

fact, is exposed. Similarly, let Y 0
i denote the potential outcome if individual i is not exposed, such

that Yi = AiY
1
i + (1− Ai)Y 0

i . Assume that conditional exchangeability holds, i.e., Y a ⊥ A | L,

a ∈ {0, 1}. Also assume that positivity holds such that Pr(A = a | L = l) > 0 for all l such that

dFL(l) > 0 and a ∈ {0, 1}, where FL is the cumulative distribution function of L. Let E(Y a) = λa

for a ∈ {0, 1}. The estimand is the causal rate ratio, CRR = λ1/λ0.

4.2.2 MSM with IPTW

Marginal structural models were introduced by Robins (1998) and further refined by Robins

et al. (2000) and Hernán et al. (2000). The parameters of these models are commonly estimated using
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IPTW. Participant i’s IPTW is Wi = Aie
−1
i + (1 − Ai)(1 − ei)−1, where ei = Pr(Ai = 1 | Li),

the probability that participant i was exposed conditional on covariates Li. Weighting by the

IPTWs creates a pseudo-population in which confounding by L is not present, which allows causal

estimands within a MSM to be identifiable and for the estimation of causal effects for observational

data (Robins et al., 2000).

Consider the following MSM: log(λa) = β0 + β1a. Under the assumptions specified in Section

4.2.1, the parameters of the MSM can be consistently estimated using IPTW. To estimate the causal

rate ratio, exp(β1) from the above MSM, the propensity score for each participant is estimated

based on the observed exposure A and covariates L using a finite dimensional parametric model.

For example, A can be regressed on L using logistic regression, i.e., the model logit(ei) = liα is

fit, where li is the 1 × cw vector corresponding to the ith row of the design matrix for the A | L

model, cw is the number of columns in the design matrix, and α is the cw × 1 vector of regression

coefficients from the weight model. Predicted propensity scores are calculated as êi = êi(li, α̂) =

logit−1(liα̂) where logit−1 represents the inverse logit function (exp(liα̂)/{1 + exp(liα̂)}) and α̂

are the maximum likelihood estimates for α from the logistic model. Predicted propensity scores

are used to estimate the IPTWs as Ŵi = I(Ai = 1)ê−1i + I(Ai = 0)(1− êi)−1, where I(Ai = a) is

a {0,1} exposure indicator for participant i. The CRR is then estimated using weighted estimating

equations by regressing the observed counts Y on exposure A with weights Ŵ .

The following estimator for the CRR is proposed, which is equal to exp(β̂1) from the above

MSM:

ĈRRMSM =

∑n
i=1 ŴiYiI(Ai = 1)∑n
i=1 ŴiI(Ai = 1)

/∑n
i=1 ŴiYiI(Ai = 0)∑n
i=1 ŴiI(Ai = 0)

(4.1)

That is, the MSM estimator for the CRR is the ratio of two Hájek estimators, one for each causal

mean λa. Next, the large sample properties of (4.1) are defined.

Proposition 4.1. When the weights are treated as a known function of Ai and Li, (4.1) is a

consistent and asymptotically normal estimator of the CRR.
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Proposition 4.2. When the weights are treated as a known function of Ai and Li,

√
n
(
ĈRRMSM − CRR

)
d−→ N (0,ΣMSM)

where

ΣMSM = E

[
e−1
(
Y 1 − λ1

λ0

)2

+ (1− e)−1
{
λ1(Y 0 − λ0)

(λ0)2

}2
]

Proposition 4.3. When the weights are estimated based on the observed values of Ai and Li,

√
n
(
ĈRRMSM − CRR

)
d−→ N (0,Σ∗MSM)

where

Σ∗MSM ≤ ΣMSM

Note that the consistency and asymptotic normality of the MSM with IPTW estimator (4.1)

requires no assumptions about the parametric distribution of the count outcome nor does it require

special handling of overdispersion or zero-inflation.

4.2.3 Parametric g-formula

The parametric g-formula is an outcome regression approach used in causal inference and is an

alternative to MSM with IPTW. Robins (1986) introduced the parametric g-formula as a type of

standardization that allows for the estimation of causal effects by directly modeling the outcome as

a function of the exposure and confounding variables and then integrating over the distribution of

the confounding variables.

The parametric g-formula provides an alternative estimator for theCRR. Under the assumptions

of conditional exchangeability and causal consistency, E(Y a | L = l) = E(Y a | L = l, A = a) =

E(Y | L = l, A = a). The final quantity is identifiable. By the law of total probability, the causal

mean λa is then defined as λa =
∫
E(Y | L = l, A = a)dFL(l) for a ∈ {0, 1}. The parametric

g-formula estimator of the CRR is specified below, where Ê(Yi | Li = li, Ai = a) is estimated for
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a ∈ {0, 1} from a parametric model:

ĈRRPG =
n−1

∑n
i=1 Ê(Yi | Li = li, Ai = 1)

n−1
∑n

i=1 Ê(Yi | Li = li, Ai = 0)
(4.2)

Four distributions are commonly used to model count outcomes:

1. Poisson:

p(Yi = yi | Ai = ai, Li = li) =
e−µiµyii
yi!

2. Negative Binomial (NB)(Lawless, 1987):

p(Yi = yi | Ai = ai, Li = li) =
Γ(yi + θ−1)

yi!Γ(θ−1)

(
θµi

1 + θµi

)yi ( 1

1 + θµi

)θ−1

3. Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) (Lambert, 1992;

Long et al., 2014; Preisser et al., 2016):

p(Yi = yi | Ai = ai, Li = li) =

{
(1− νi) + νif(Yi = yi | Ai = ai, Li = li) for yi = 0

νif(Yi = yi | Ai = ai, Li = li) for yi > 0

where f(Yi = yi | Ai = ai, Li = li) is the probability mass function for the Poisson

distribution (for the ZIP) or the NB distribution (for the ZINB) and νi is the probability that

individual i is in the susceptible population, i.e., the population of individuals who could have

a count greater than zero.

For the Poisson distribution, E(Yi | Ai = ai, Li = li) = V ar(Yi | Ai = ai, Li = li) = µi and

for the NB distribution E(Yi | Ai = ai, Li = li) = µi and V ar(Yi | Ai = ai, Li = li) = µi + µ2
i θ,

where θ represents the dispersion parameter. The Poisson distribution is reasonable when the

variance is expected to equal the mean, while the NB distribution is useful in the presence of

overdispersion (Agresti, 2002, page 131). For both distributions, a generalized linear model

(GLM) is fit of the form: log(µi) = xiβ for i = 1, ..., n, where xi = g(li, ai) is the 1 × c vector
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corresponding to the ith row of the design matrix for the Y | A,L model, c is the number of

columns in the design matrix, and β is the c× 1 vector of regression coefficients. The maximum

likelihood estimates for β, β̂, are obtained for the GLM, Ê(Yi | Li = li, Ai = a) = exp{g(li, a)β̂}

are calculated for each participant for a ∈ {0, 1}, and ĈRRPG is derived as in (4.2).

The ZIP and ZINB distributions account for excess zeros in the count outcome without and

with overdispersion, respectively. When a ZIP or ZINB distribution is assumed for modeling a

count outcome, regression coefficients have latent interpretations corresponding to a subpopulation

that is susceptible for an outcome greater than zero and a subpopulation that is non-susceptible and

thus always has an outcome of zero (Long et al., 2014). When the outcome follows a ZIP or ZINB

distribution, models for νi and the expected count for individual i within the susceptible population

(ηi) are simultaneously fit: logit(νi) = xi1γ and log(ηi) = xi2ξ, where xi1 = g1(li, ai) is the 1× c1

vector corresponding to the ith row of the design matrix for the susceptibility model, xi2 = g2(li, ai)

is the 1×c2 vector corresponding to the ith row of the design matrix for the count model, γ is the c1×1

vector of regression coefficients for the susceptibility model, and ξ is the c2 × 1 vector of regression

coefficients for the count model. The exposure A is included in either or both models, as appropriate

for correct model specification. The maximum likelihood estimates for γ and ξ, γ̂ and ξ̂ respectively,

are obtained for the model and Ê(Yi | Li = li, Ai = a) = logit−1{g1(li, a)γ̂} exp{g2(li, a)ξ̂} are

obtained for each participant for a ∈ {0, 1}. ĈRRPG is then calculated as in (4.2). Albert et al.

(2014) demonstrates the use of the parametric g-formula to estimate the CRR for zero-inflated data.

Proposition 4.4. Under correctly specified models, (4.2) is a consistent and asymptotically normal

estimator of the CRR.

Estimates of (4.2) and its variance can be computed using estimating equation theory (Stefanski

and Boos, 2002), as demonstrated in Sections 4.3 and 4.4.

4.2.4 Doubly Robust Estimation

Doubly robust estimators, also referred to as augmented inverse probability weighted (AIPW)

estimators, incorporate both MSM and parametric g-formula estimators to provide protection against
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incorrect model specification for either the weight or outcome model (Bang and Robins, 2005;

Hernán and Robins, 2020; Funk et al., 2011). Because the relationships between the exposure,

outcome, and confounding variables are typically unknown in observational settings, doubly robust

estimators afford some protection against misspecification of these models (Funk et al., 2011).

While in practice all models are at least partially misspecified, Bang and Robins (2005) note that

doubly robust estimators allow for minimal bias when either the weight or outcome model is nearly

correct, giving the researcher two chances to get close to correct specification.

We propose the following doubly robust estimator for the CRR:

ĈRRDR =
λ̂1DR

λ̂0DR
(4.3)

where

λ̂1DR = n−1
n∑
i=1

AiYi − {Ai − êi}m1(Li, τ̂)

êi

and

λ̂0DR = n−1
n∑
i=1

(1− Ai)Yi + {Ai − êi}m0(Li, τ̂)

1− êi

Note êi is the estimated propensity score for participant i from the weight model as described

in Section 4.2.2 and ma(Li, τ̂) = Ê(Yi | Li = li, Ai = a) is the predicted potential outcome

for participant i from the parametric g-formula model for a ∈ {0, 1}, based on one of the four

distributions specified in Section 4.2.3. The causal mean estimators λ̂aDR for a ∈ {0, 1} are of the

form considered in Lunceford and Davidian (2004) that were originally proposed by Robins et al.

(1994).

Proposition 4.5. When either the weight or outcome model is correctly specified, (4.3) is a consis-

tent and asymptotically normal estimator of the CRR.

Estimates of (4.3) and its variance can be computed using estimating equation theory, as

demonstrated in Sections 4.3 and 4.4.
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4.2.5 Data Heaping

When data heaping is present, the estimators discussed in Sections 4.2.2-4.2.4 are biased in

general. Define the potential outcomes for participant i following data heaping as Y a
hi for a ∈ {0, 1},

with Y a
i 6= Y a

hi for some i and thus E(Y a
hi) 6= λa in general. The extent of bias depends on the

amount of heaping in the data and the mean of the underlying count distribution (Wang and Heitjan,

2008). One common type of data heaping is data coarsening, where some participants round their

reported count outcome to the midpoint of a heaping interval. For example, a woman who has

between 25 and 35 sexual partners might report her number of sexual partners rounded to the nearest

ten and might report 30 sexual partners rather than the exact count.

Valid inference can be made when data are coarsened using a mixture of likelihoods approach,

as outlined in Cummings et al. (2015). Under this approach, outcomes that are not multiples of the

heaping interval length (H) are treated as not censored while observations that occur at multiples

of H are treated as interval censored. Specifically, let ∆i = I(Yi mod H = 0) H/2, where

I(Yi mod H = 0) is a {0, 1} indicator that is zero if Yi is not a multiple of H and is one otherwise.

The realized value of ∆i based on the observed data is δi = I(yi mod H = 0) H/2. Define

Yli = max(0, Yi −∆i) and Yri = Yi + ∆i as the left and right endpoints of the heaping interval for

participant i, respectively, and yli = max(0, yi − δi) and yri = yi + δi are the realized values based

on the observed data. Here it is assumed that H is an even number and that the heaping interval is

the same for all participants, but these endpoints can be defined more generally as in Cummings

et al. (2015).

To estimate the CRR in the presence of data heaping using the interval censoring method, a

parametric model is specified based on the assumed distribution of the underlying true counts and a

regression model is fit to the observed heaped data based on the log-likelihood function

L =
n∑
i=1

logP{Yi ∈ (yli, yri) | Yi ∼ P (Yi = yi | Zi = zi)} (4.4)
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where P (Yi = yi | Zi = zi) is the probability mass function for the Poisson, NB, ZIP, or ZINB

distribution as specified in Section 4.2.3 and Zi is defined below for the MSM with IPTW, parametric

g-formula, and doubly robust methods.

This approach relies on the assumption of noninformative interval censoring, i.e., that the

underlying behavior that drives the censoring makes no contributions to the likelihood function.

Stated more formally, noninformative interval censoring implies that P (Yi ≤ yi | Yli = yli, Yri =

yri, Yli ≤ Yi ≤ Yri) = P (Yi ≤ yi | yli ≤ Yi ≤ yri) (Zhang and Sun, 2010). When interval

censoring is noninformative, the likelihood can be factored and the portion of the likelihood that

relies on censoring does not include the parameters and is thus ignored (Klein and Moeschberger,

2006, page 77).

4.2.5.1 MSM with IPTW

As discussed in Section 4.2.2, the parameters of the following MSM can be consistently

estimated using IPTW: log(λa) = β0 + β1a. To account for data heaping using the interval

censoring method, a parametric distribution is assumed for the marginal distribution of Y a for

a ∈ {0, 1}. For example, assume that Poisson distributions with means λa are specified. Then

log(λai ) = xiβ for i = 1, ..., n, where xi is the row vector corresponding to the ith row of the

design matrix for the Y a model, and thus includes one (corresponding to the intercept term) and the

observed exposure for participant i.

The parameters of the MSM are estimated by applying IPTWs to the score function associated

with the log-likelihood (4.4), with Zi = Ai. Define the h× 1 vector of estimating equations for the

heaped MSM to be

n∑
i=1

Wi(α̂)
∂

∂βj

{
logP{Yi ∈ (yli, yri) | Yi ∼ P (Yi = yi | Ai = ai)

}
= 0 (4.5)

where j = 1, .., h and h is the number of parameters in the heaped MSM, Wi(α̂) is the estimated

IPTW as described in Section 4.2.2, and P (Yi = yi | Ai = ai) is the probability mass function
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for the assumed parametric distribution of Y a. Parameter estimates for the MSM are obtained by

finding the maximum likelihood estimates (MLEs) for β from (4.5) and the CRR is estimated as

ĈRRMSM,heap = exp(β̂k), where k is the coefficient of the MSM corresponding to the exposure A.

Note when Y a is assumed to follow a ZIP or ZINB, a marginalized ZIP or ZINB can be used to

model Y a such that theCRR can be obtained across the susceptible and non-susceptible populations

(Long et al., 2014; Preisser et al., 2016). Robust standard error estimates for ĈRRMSM,heap can be

obtained using M-estimation.

4.2.5.2 Parametric g-formula

The parametric g-formula estimator of the CRR can be modified to accommodate data heaping

using the interval censoring method by replacing the log-likelihood functions for the Poisson, NB,

ZIP, or ZINB distribution with (4.4) where P (Yi = yi | Zi = zi) is the probability mass function for

the specified distribution and Zi = {Ai, Li}. Specifically, define the parametric g-formula estimator

that accommodates data heaping as:

ĈRRPG,heap =
n−1

∑n
i=1 Êheap(Yi | Li = li, Ai = 1)

n−1
∑n

i=1 Êheap(Yi | Li = li, Ai = 0)
(4.6)

MLEs for the parameters in the heaping model are obtained and are used to calculate Êheap(Yi |

Li = li, Ai = a) for a ∈ {0, 1} and i = 1...n, as outlined in Section 4.2.3 and (4.6) is derived.

Corollary 4.1. Under correctly specified models, (4.6) is a consistent and asymptotically normal

estimator of the CRR.

The proof of Corollary 4.1 follows from the proof of Proposition 4.4 after noting that the score

function for the interval censored heaping model ψτj is unbiased based on maximum likelihood

theory (McCullagh and Nelder., 1989, page 28), with solution τ̂ .

Robust standard error estimates for ĈRRPG,heap can be obtained using M-estimation.
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4.2.5.3 Doubly Robust Estimation

When observed count data are heaped, the doubly robust estimator proposed in Section 4.2.4

is biased, even when the predicted potential outcomes ma(Li, τ̂) for a ∈ {0, 1} are derived as in

Section 4.2.5.2. This can be shown by rewriting the estimating equation for λ̂1DR, as derived in the

proof of Proposition 4.5, in the presence of data heaping as ψ1(Yi, Ai, Li; α̂, τ̂ , λ
1) = Y 1

hi + {Ai −

êi(Li, α̂)}{Y 1
hi −m1(Li, τ̂)}{êi(Li, α̂)}−1 − λ1. When a correctly specified heaping model is used

to estimate the potential outcomes, E{Y 1
hi−m1(Li, τ̂)} = 0. However, E(Y 1

hi)−λ1 6= 0 in general,

so the doubly robust estimator (4.3) is generally biased in the presence of data heaping. Because

there is no intuitive way to combine the MSM with IPTW estimator proposed in Section 4.2.5.1

with the parametric g-formula estimator proposed in Section 4.2.5.2, we propose a DR estimator of

the form developed by Scharfstein et al. (1999) and further evaluated by Bang and Robins (2005):

ĈRRDR,heap =
n−1

∑n
i=1 Êheap(Yi | Li = li, Ai = 1, r̂i)

n−1
∑n

i=1 Êheap(Yi | Li = li, Ai = 0, r̂i)
(4.7)

where r̂i = ê−1i is the inverse of the estimated propensity score for participant i as described in

Section 4.2.2. The estimated potential outcomes Êheap(Yi | Li = li, Ai = a, r̂i) for a ∈ {0, 1}

are calculated from the parameter estimates for an interval censored outcome regression model,

as specified in Section 4.2.5.2, but including r̂ as a covariate in the outcome model. The DR

estimator (4.7) is a consistent and asymptotically normal estimator of the CRR when either the

weight or outcome model is correctly specified, based on a delta method argument to the proof in

Bang and Robins (2005). Robust standard error estimates for ĈRRDR,heap can be obtained using

M-estimation.

4.3 Simulation Study

A simulation study was conducted to examine and compare the empirical properties of the

estimators. The goal of the simulation study was to estimate the CRR for a binary exposure A and

a count outcome Y in the presence of three confounding variables L1, L2, and L3 using the MSM,
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parametric g-formula, and doubly robust estimators proposed in Section 4.2. Simulations were

conducted both without data heaping, where the true outcome was observed (Section 4.3.1) and

with data heaping, where the observed count was rounded to the nearest ten for some participants

(Section 4.3.2).

4.3.1 Without Data Heaping

Data were simulated to approximate the distributions of WIHS variables, which are further

discussed in Section 4.4. The sample size was n = 800, which is similar to the size of the

WIHS analytic sample presented in Section 4.4. To examine the large-sample properties of the

estimators, simulations were also conducted for n = 2000, with the results presented in Appendix B.

Ignoring subscripts i for notational ease, let L1 represent a participant’s baseline age, where L1 ∼

Uniform(20, 40). Let L2 represent baseline binary drug use status, with L2 ∼ Binomial(p1),

where p1 = logit−1(−(l1 − 0.5)/100 + ε1) and ε1 ∼ Uniform(−1, 1). The baseline binary

sex exchange for money or drugs variable is represented by L3 ∼ Binomial(p2), where p2 =

logit−1(−3 − (l1 − 0.5)/100 + 1.2l2 + ε2), and ε2 ∼ Uniform(−0.5, 0.5). The exposure A

represents the binary incarceration status at the visit following baseline, where A ∼ Binomial(p3),

and p3 = logit−1(−0.5− l1/100 + 0.5l2 + 0.5l3).

The outcome of interest Y represents the number of total male sexual partners in the six-month

period following measurement of the exposure, and it was generated under the four assumed

parametric distributions: Poisson, NB, ZIP, and ZINB. Let the parameters of the four distributions

from Section 4.2.3 equal µ1 = η1 = exp(−1−0.005l1 +0.7l2 +3.5l3 +0.5), µ0 = η0 = exp(−1−

0.005l1 + 0.7l2 + 3.5l3), θ = 0.5, and (1− ν1) = (1− ν0) = logit−1(−2.5 + l1/100− 0.3l2− 2l3).

For each scenario, log(CRR) = 0.5. The estimated causal rate ratios ĈRRMSM , ĈRRPG,

and ĈRRDR and their estimated variances were calculated for each scenario as described in

Section 4.2 (1) under correct model specification and (2) when the weight and/or outcome model

were incorrectly specified by excluding L2. Standard errors for ĈRRMSM were estimated both

conservatively treating the weights as fixed or known and appropriately treating the weights as
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estimated. Standard error estimates were computed using the geex package in R, which implements

M-estimation (Stefanski and Boos, 2002; Saul and Hudgens, 2020).

The results of the simulation for n = 800 are presented in Table 4.1 when both models were

correctly specified and Table 4.2 when one or both models were misspecified. These results

demonstrate minimal empirical bias regardless of the method or underlying distribution of the

data when models were correctly specified. Empirical bias was even smaller when the sample

size was increased to n = 2000, as shown in Supplemental Tables B1 and B2. For MSM with

IPTWs, standard error ratios were close to one and empirical coverage was close to the nominal

95% level when the weight model was correctly specified and weights were appropriately treated as

estimated. When weights were treated as fixed, estimated standard errors were too large, leading

to standard error ratios over 1.5 and confidence intervals with empirical coverage at or near 100%.

The parametric g-formula and doubly robust estimators yielded more precise estimates than MSM

with IPTW, with the parametric g-formula yielding the smallest estimated standard errors.

As anticipated, the doubly robust estimators yielded minimal empirical bias when the weight or

outcome model was misspecified, while the MSM with IPTW and parametric g-formula estimators

were empirically biased under weight and outcome model misspecification, respectively (see Table

4.2). The doubly robust estimators were empirically biased when both models were misspecified.

For the doubly robust estimators, average estimated standard errors were smaller when the outcome

model was correctly specified than when it was misspecified. However, misspecification of the

weight models yielded similar doubly robust average standard errors as the average standard errors

produced under correct specification of the weight model. These findings are consistent with the

empirical results in Funk et al. (2011).
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Table 4.1: Results of the simulation study by distribution and method across R = 1000
samples with correct model specification, n = 800. Empirical bias, ASE, ESE, SER, and

empirical 95% confidence interval coverage calculated for the CRR.

Distribution Method Empirical Bias ASE ESE SER 95% CI Coverage
Poisson MSM, fixed 0.008 0.342 0.120 2.852 1.000

MSM, estimated 0.008 0.117 0.120 0.977 0.947
PG 0.004 0.082 0.085 0.957 0.946
DR 0.004 0.082 0.086 0.954 0.946

NB MSM, fixed 0.029 0.421 0.274 1.537 0.996
MSM, estimated 0.029 0.268 0.274 0.978 0.941
PG 0.003 0.162 0.160 1.016 0.953
DR 0.023 0.253 0.257 0.987 0.941

ZIP MSM, fixed 0.003 0.351 0.123 2.851 1.000
MSM, estimated 0.003 0.125 0.123 1.020 0.956
PG 0.000 0.083 0.087 0.956 0.929
DR 0.000 0.090 0.095 0.952 0.937

ZINB MSM, fixed 0.031 0.431 0.283 1.520 0.995
MSM, estimated 0.031 0.275 0.283 0.971 0.928
PG 0.006 0.177 0.174 1.022 0.945
DR 0.030 0.266 0.271 0.983 0.921

Note: ZIP PG and DR results exclude 3.2% and 3.1% of simulations, respectively, where outcome models failed to
converge in geex. ZINB PG and DR results exclude 3.9% and 3.8% of simulations, respectively, where outcome models
failed to converge in geex. Abbreviations: NB=Negative Binomial; ZIP=Zero-Inflated Poisson; ZINB=Zero-Inflated
Negative Binomial; MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust

Estimator; ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio
(ASE/ESE); CI=Confidence Interval;

4.3.2 With Data Heaping

To demonstrate the empirical properties of the estimators that account for data heaping, data

were simulated under a scenario where the estimators defined in Sections 4.2.2-4.2.4 were expected

to be substantially biased. Let L1, L2, L3, and A follow the same distributions as in Section 4.3.1.

Let Y a ∼ Poisson(µa) for a ∈ {0, 1}, where µ1 = exp(1.2 − 0.005l1 + 0.4l2 + 0.4l3 + 0.5)

and µ0 = exp(1.2 − 0.005l1 + 0.4l2 + 0.4l3). Thus, log(CRR) = 0.5. Let C represent a binary

coarsening indicator that equals one if the participant rounded her reported count to the nearest

ten and zero if the participant reported the exact count. Here, C ∼ Bernoulli(pc) where pc = 0 if

y < 5 and pc = 0.5 if y ≥ 5. This resulted in approximately 20% of reported outcomes rounded to

the nearest ten (Figure 4.1).
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Figure 4.1: Density plot of the true distribution of partners with a histogram of the
reported (heaped) number of partners for a single simulation, n = 800
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The estimated causal rate ratios based on MSM with IPTW, the parametric g-formula, and

the doubly robust estimator and their estimated variances were calculated for each scenario both

ignoring data heaping, using the estimators described in Sections 4.2.2-4.2.4 (referred to as naı̈ve in

the results below), and accounting for data heaping using the interval censoring method, as described

in Section 4.2.5. As with the simulations presented in Section 4.3.1, the CRR was estimated under

correct model specification and when the weight and/or outcome model were incorrectly specified

by excluding L2. Standard errors for the MSM estimators were estimated both treating the weights

as fixed or known and appropriately treating the weights as estimated. Standard error estimates

were computed using M-estimation with the geex package in R.

The results of the data heaping simulations are presented in Table 4.3 under correct model

specification and in Table 4.4 when the weight model, outcome model, or both models were

incorrectly specified. When data heaping was ignored and the standard estimators from Sections

4.2.2-4.2.4 were applied to coarsened data, the estimates exhibit considerable bias and 95% CI

coverage is below the nominal level. However, standard error ratios are close to one when the naı̈ve

estimators were applied to heaped data.

The heaping estimators demonstrate minimal empirical bias regardless of the method when

models were correctly specified. For MSM with IPTWs, the standard error ratio was close to one

when weights were appropriately treated as estimated, but exceeded one when weights were treated

as fixed. The three estimators had similar average estimated standard errors.

As anticipated, the doubly robust estimators yielded minimal empirical bias when the weight or

outcome model was misspecified, while the MSM with IPTW and parametric g-formula estimators

were empirically biased under weight and outcome model misspecification, respectively (Table 4.4).

Not surprisingly, the doubly robust estimators were empirically biased when both models were

misspecified.
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Table 4.2: Results of the simulation study by distribution and method across R = 1000
samples with one or both models misspecified, n = 800. Empirical bias, ASE, ESE, SER,

and empirical 95% confidence interval coverage calculated for the CRR.

Distribution Method Empirical Bias ASE ESE SER 95% CI Coverage
Poisson MSM, fixed, MW 0.123 0.362 0.134 2.708 1.000

MSM, estimated, MW 0.123 0.131 0.134 0.979 0.866
DR, MW 0.004 0.082 0.085 0.955 0.946

NB MSM, fixed, MW 0.144 0.447 0.293 1.525 1.000
MSM, estimated, MW 0.144 0.288 0.293 0.982 0.945
DR, MW 0.021 0.252 0.255 0.987 0.937

ZIP MSM, fixed, MW 0.120 0.372 0.139 2.682 1.000
MSM, estimated, MW 0.120 0.140 0.139 1.007 0.891
DR, MW 0.000 0.090 0.094 0.953 0.939

ZINB MSM, fixed, MW 0.148 0.457 0.305 1.497 0.997
MSM, estimated, MW 0.148 0.296 0.305 0.968 0.950
DR, MW 0.028 0.263 0.269 0.976 0.921

Poisson PG, MO 0.123 0.130 0.134 0.966 0.860
DR, MO 0.010 0.119 0.124 0.961 0.940

NB PG, MO 0.143 0.183 0.180 1.018 0.922
DR, MO 0.029 0.268 0.274 0.978 0.945

ZIP PG, MO 0.119 0.134 0.134 1.000 0.880
DR, MO 0.005 0.127 0.125 1.017 0.954

ZINB PG, MO 0.146 0.196 0.196 1.003 0.925
DR, MO 0.033 0.276 0.285 0.969 0.928

Poisson DR, MB 0.123 0.130 0.135 0.965 0.861
NB DR, MB 0.145 0.287 0.292 0.981 0.944
ZIP DR, MB 0.121 0.139 0.138 1.004 0.893
ZINB DR, MB 0.151 0.295 0.306 0.963 0.948

Note: ZIP PG and DR results exclude 0%-3.1% of simulations where outcome models failed to converge in geex. ZINB
PG and DR results exclude 2.2%-3.8% of simulations where outcome models failed to converge in geex. Abbreviations:

NB=Negative Binomial; ZIP=Zero-Inflated Poisson; ZINB=Zero-Inflated Negative Binomial; MSM=Marginal
Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust Estimator; MW=Misspecified Weight

Model; MO=Misspecified Outcome Model; MB=Both Weight and Outcome Models Misspecified; ASE=Average
Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio (ASE/ESE); CI=Confidence

Interval
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Table 4.3: Results of the data heaping simulation study by method across R = 1000
samples with correct model specification, n = 800. All heaping estimators and the naı̈ve
PG and DR estimators assume a Poisson distribution. Empirical bias, ASE, ESE, SER, and

empirical 95% confidence interval coverage calculated for the CRR.

Method Estimator Empirical Bias ASE ESE SER 95% CI Coverage
MSM, fixed Naı̈ve 0.072 0.086 0.079 1.087 0.900

Heaping -0.022 0.078 0.073 1.068 0.948
MSM, estimated Naı̈ve 0.072 0.079 0.079 0.991 0.864

Heaping -0.022 0.074 0.073 1.014 0.937
PG, Poisson Naı̈ve 0.072 0.079 0.079 0.991 0.865

Heaping 0.006 0.072 0.074 0.978 0.949
DR, Poisson Naı̈ve 0.071 0.079 0.079 0.993 0.864

Heaping 0.005 0.072 0.074 0.978 0.952
Abbreviations: MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust
Estimator; ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio

(ASE/ESE); CI=Confidence Interval

Table 4.4: Results of the data heaping simulation study by method across R = 1000
samples with one or both models misspecified, n = 800. All estimators assume a Poisson

distribution. Empirical bias, ASE, ESE, SER, and empirical 95% confidence interval
coverage calculated for the CRR.

Method Empirical Bias ASE ESE SER 95% CI Coverage
MSM, fixed, MW 0.060 0.081 0.078 1.033 0.915
MSM, estimated, MW 0.060 0.079 0.078 1.007 0.901
DR, MW 0.005 0.074 0.074 1.006 0.951
PG, MO 0.068 0.078 0.078 0.996 0.873
DR, MO 0.009 0.073 0.074 0.980 0.944
DR, MB 0.068 0.082 0.079 1.039 0.877

Abbreviations: MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust
Estimator; MW=Misspecified Weight Model; MO=Misspecified Outcome Model; MB=Both Weight and Outcome

Models Misspecified; ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error
Ratio (ASE/ESE); CI=Confidence Interval
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4.4 Example: Women’s Interagency HIV Study

To demonstrate the application of these methods, we built on the analysis described in Knittel

et al. (2020), which estimated the effect of incarceration on the total number of vaginal, oral, or anal

male sex partners (subsequently referred to as partners) during subsequent six-month period using

data from the Women’s Interagency HIV Study (WIHS). The WIHS is a multicenter cohort study of

women living with HIV or at risk of acquiring HIV (Adimora et al., 2018). At each biannual visit,

the WIHS collects data regarding women’s self-reported incarceration status and sexual behavior

since the prior visit. Because of the complex relationships between incarceration, high risk sexual

behavior, drug use, and sex exchange for money or drugs, the effect of incarceration on the number

of partners is likely confounded. As shown in Figure 4.2, many participants reported no partners

over a six-month period and the number of partners exhibits potential overdispersion, with some

participants reporting large numbers of partners relative to the mean. Furthermore, there is evidence

of data heaping as women with five or more partners tended to report counts at multiples of ten. Due

to a lack of causal methods to accommodate these unique features of count outcomes, the authors

categorized the number of partners in the original analysis described in Knittel et al. (2020).

To assess the effect of incarceration on the number of partners in the six-month period following

incarceration, we estimated the causal rate ratio using the estimators presented in Section 4.2.

Because the WIHS are observational data, many variables likely confound the effect of incarceration

on the number of partners. As in Knittel et al. (2020), we assume age, educational attainment

(high school or more versus less than high school), race (black, white, or other), WIHS site, HIV

status, prior incarceration status, unstable housing (living in a rooming/boarding/halfway house),

sex exchange practices (sex for drugs, money, or shelter), alcohol use (none, 1-7 drinks/week, or > 7

drinks/week), marijuana use, and hard drug use (crack cocaine, cocaine, heroin, methamphetamines,

other opioids, or any injection use) confound the effect of incarceration on the number of partners.

Let the study period be the visit in which the exposure, incarceration status, was measured. Then the

visit prior to the study period represents the baseline visit. For the purposes of this application, we
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assume that baseline values for the above set of covariates L provide conditional exchangeability,

i.e., that Y a ⊥ A | L, a ∈ {0, 1}, where A represents the binary incarceration status during the

study period, Y 1 represents the total number of sexual partners in the six-month period following

the study period if, possibly counter to fact, the participant was incarcerated during the study period.

Y 0 represents the number of total sexual partners in the six-month period following the study

period if, possibly counter to fact, the participant was not incarcerated during the study period. We

also assume that positivity and causal consistency hold for this application. To facilitate fitting

zero-inflated models to these data, we assume that baseline values for the set of covariates X2

consisting of age, marital status (legally married/common-law married/living with a partner or

widowed/divorced/marriage annulled/separated/never married/other), sex exchange practices, HIV

status, and sexual orientation (lesbian/gay or heterosexual/straight/bisexual/other) allow for correct

specification of the susceptibility model. These variable classifications were made to predict a

woman’s potential to have one or more male sexual partners in subsequent study visits.

The analytic sample was derived by restricting the longitudinal WIHS dataset of 4,982 women

to women who attended at least one visit between 2007-2017, as 2007 is when incarceration

questions were added to the WIHS questionnaire. As in Knittel et al. (2020), the dataset was further

restricted to include only women without missing covariates L and X2 following implementation

of last value carried forward and previous value carried back imputation, excluding the history of

incarceration covariate which was only asked at a single timepoint and thus could not be imputed

using this method. For each woman who reported being incarcerated between 2007-2017, her first

incarcerated visit following a non-incarcerated visit was selected as her study period visit. This

allowed for an appropriate run-in period in which to measure covariates L at the visit preceding the

study period visit. The outcome Y was measured at the visit following the study period visit. This

resulted in n = 294 incarcerated women after excluding the 28 women missing outcome data at

the visit following the study period visit. A sample of one visit from each of n = 588 women who

did not report being incarcerated between 2007-2017 was randomly selected, ensuring the same

distribution of study period visits as the incarcerated women and restricting sampling to women
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Figure 4.2: Distribution of partners during the six months following the study
period reported by WIHS participants in the analytic sample: 0-4 partners (left,

n = 865) and 5 or more partners (right, n = 17)

with non-missing outcome data at the visit following the sampled study period visit. Missing

values for prior incarceration for n = 14 participants were imputed with the mode (no history of

incarceration).

ĈRRMSM , ĈRRPG, and ĈRRDR were calculated as described in Section 4.2 and standard

error estimates were computed using M-estimation with the geex package in R. For each estimate,

95% Wald confidence intervals were constructed. For the MSM with IPTW approach, the set

of covariates L was included in the logistic regression model for computing the IPTWs. For

the parametric g-formula estimators, the set of covariates X1 = {L,A} was included in the

count outcome models, and for zero-inflated models, the covariates X2 were included in the

logistic susceptibility models. In all models, age was included as a continuous predictor and the

remaining covariates were treated as categorical. Doubly robust estimators included the same

weight and outcome model specifications as the MSM with IPTW and parametric g-formula models,

respectively.

When calculating standard errors for ĈRRMSM , the weights were appropriately treated as

estimated in the computation of standard errors and confidence intervals. To compare the fit of
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parametric models to these data, the Akaike information criterion (AIC) was computed for each

parametric model (Agresti, 2002, pages 216-217).

Table 4.5 presents estimates of the CRR based on the three estimators. The estimators provide

similar estimates of theCRR, regardless of the assumed underlying distribution of the outcome. The

mean number of partners if everyone in the population were incarcerated is estimated to be about 1.3

times the mean number of partners if no one in the population were incarcerated. Precision estimates

are also similar across estimates, with the parametric g-formula and an assumed NB distribution

having the smallest estimated standard error and the parametric g-formula and an assumed ZIP

distribution having the largest estimated standard error. AIC values for the Poisson, NB, ZIP, and

ZINB were 2321, 2125, 2323, and 2132, respectively, indicating that the NB distribution provided

the best fit for the WIHS data.

Table 4.5: Estimated causal rate ratios, estimated standard errors, and Wald 95% confidence
intervals for the effect of incarceration on the number of male sexual partners in the subsequent

six months by method and assumed parametric distribution, WIHS 2007-2017

Method Distribution ĈRR ŜE(ĈRR) Wald 95% CI
MSM n/a 1.27 0.30 (0.68, 1.85)
PG Poisson 1.30 0.34 (0.64, 1.97)

NB 1.35 0.21 (0.93, 1.76)
ZIP 1.31 0.38 (0.55, 2.06)
ZINB 1.35 0.22 (0.92, 1.78)

DR Poisson 1.32 0.28 (0.77, 1.88)
NB 1.33 0.30 (0.74, 1.93)
ZIP 1.33 0.29 (0.76, 1.90)
ZINB 1.34 0.31 (0.73, 1.94)

Abbreviations: NB=Negative Binomial; ZIP=Zero-Inflated Poisson; ZINB=Zero-Inflated Negative Binomial;
MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust Estimator;

SE=Standard Error; CI=Confidence Interval; n/a=Not Applicable

As a sensitivity analysis, the WIHS data were analyzed to account for data heaping at intervals

of ten, as discussed in Section 4.2.5. Because over 98% of the analytic sample reported zero to

four partners in the six months following the study period, data heaping had only a small effect on

the estimates. Assuming that the number of partners follows a Poisson distribution, ĈRRMSM,heap
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was 1.27 with a 95% CI of (0.81, 1.72), ĈRRPG,heap was 1.26 with a 95% CI of (0.64, 1.88), and

ĈRRDR,heap was 1.26 with a 95% CI of (0.64, 1.88). Both the MSM and parametric g-formula

heaping estimates had smaller estimated standard errors than their non-heaping counterparts (0.23

versus 0.30 for the MSM with IPTW estimator and 0.32 versus 0.34 for the parametric g-formula

estimator), while the doubly robust estimator’s standard error was slightly larger when heaping was

accounted for (0.31 versus 0.28).

4.5 Discussion

Count outcomes are of common interest in public health research. To estimate the causal effect

of a binary exposure on a count outcome with observational data, methods are needed to control for

confounding variables. This paper proposes estimators of the causal rate ratio based on marginal

structural modeling with IPTWs, the parametric g-formula, and doubly robust estimation. All

three estimators can accommodate overdispersion and/or zero-inflation. Under the assumptions

of causal consistency, conditional exchangeability, and positivity, these estimators are consistent

for the causal rate ratio. Consistency and asymptotic normality holds for the MSM and parametric

g-formula estimators under correct exposure and outcome model specification, respectively, and for

the doubly robust estimator when either the exposure or the outcome model is correctly specified.

Modified estimators are proposed for the causal rate ratio when data are heaped using a mixture of

likelihoods approach.

Simulations demonstrate that all estimators were empirically unbiased under correct model

specification and led to appropriate standard error estimates when M-estimation was implemented.

In simulations, the MSM with IPTW estimator exhibited very conservative 95% confidence interval

coverage when weights were treated as fixed or known and thus we recommend appropriately treat-

ing weights as estimated by stacking the estimating equations using M-estimation. In simulations,

the parametric g-formula and doubly robust estimators were more precise than the MSM with

IPTW estimator but required specification of the parametric distribution of the counts. One notable

advantage of the MSM with IPTW estimator is that it is robust to the distribution of the outcome
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and does not require specification of a parametric model for the outcome when data heaping are not

present.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

This appendix contains proofs of the propositions in Chapter 3.

A.1 Proofs of Propositions

A.1.1 Proposition 3.1

Without loss of generality, consider a = 1. LetXi = W1iYiAi and Zi = W1iAi. The asymptotic

distribution of µ̂1 =
∑n

i=1Xi/
∑n

i=1 Zi can be derived using the multivariate delta method (Kong,

1992). Let

Tn =

 1
n

∑n
i=1Xi

1
n

∑n
i=1 Zi

 , θ =

 µx

µz

 , g(θ) =
µx
µz
, ∇g(θ) =

 1
µz

−µx
µ2z

 ,

and

Σ =

 V ar(X) Cov(X,Z)

Cov(Z,X) V ar(Z)


where µx = E (Xi), µz = E (Zi), and ∇g(θ) is the gradient vector for g(θ). From the bivari-

ate central limit theorem,
√
n(Tn − θ)

d→ N2(0,Σ). Applying the multivariate delta method,
√
n{g(Tn)− g(θ)} d→ N(0,Σ1) where g(Tn) = µ̂1 and

Σ1 = ∇g(θ)TΣ∇g(θ) =

(
µx
µz

)2{
V ar (X)

µ2
x

+
V ar(Z)

µ2
z

− 2
Cov (X,Z)

µxµz

}

Dropping subscripts i for notational ease, note that:

µz = E (Z) = E (W1A) = EL

{
EA|LA

P (A = 1 | L)

}
= 1
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and from Hernán and Robins (2020) Technical Point 2.3, µx = E (X) = E (W1AY1) = µ1. Then,

Σ1 = V ar (W1AY1) + µ2
1V ar (W1A)− 2µ1Cov (W1AY1,W1A) (A.1)

A simpler form for Σ1 is derived by rewriting the components of (A.1) using the following results.

First note that

Cov (W1AY1,W1A) = E {(W1AY1) (W1A)} − E (W1AY1)E(W1A) = E
(
W 2

1AY1
)
− µ1

= EL

{
EA|LA EY1|LY1

P (A = 1 | L)2

}
− µ1 = EL

{
EY1|LY1

P (A = 1 | L)

}
− µ1

= E (W1Y1)− µ1 (A.2)

Also note that

V ar (W1AY1) = E
(
W 2

1AY
2
1

)
− {E (W1AY1)}2

= EL

{
EA|LA EY1|LY

2
1

P (A = 1 | L)2

}
− µ2

1 = EL

{
EY1|LY

2
1

P (A = 1 | L)

}
− µ2

1

= E
(
W1Y

2
1

)
− µ2

1 (A.3)

By the law of total variance:

V ar(W1A) = E{V ar(W1A | L)}+ V ar{E(W1A | L)} = E(W1)− 1 (A.4)

Therefore, plugging (A.2), (A.3), and (A.4) into (A.1),

Σ1 = E(W1Y
2
1 )− µ2

1 + µ2
1{E(W1)− 1} − 2µ1{E (W1Y1)− µ1}

= E(W1Y
2
1 ) + µ2

1E(W1)− 2µ1E(W1Y1) (A.5)
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Next define R = E[{W1 − E(W1)}(Y1 − µ1)
2] and note that

R = E(W1Y
2
1 )− 2µ1E(W1Y1)− E(Y 2

1 )E(W1) + 2µ2
1E(W1) (A.6)

From (A.5) and (A.6) it follows that

Σ1 = E(W1)E(Y 2
1 )− E(W1)µ

2
1 +R = E(W1)σ

2
1 +R

= σ2
1E(W 2

1A) +R = σ2
1

[
E(W 2

1A)

E(W1A)

]
+R

= σ2
1

[
E(W 2A)

{E(WA)}2

]
+R

Bounds for R follow from the Cauchy-Schwarz inequality:

|R| = |Cov(W1, Y
2
1 − 2µ1Y1)| ≤

√
V ar(W1)V ar(Y 2

1 − 2µ1Y1)

A.1.2 Proposition 3.2

From equation (13) in Lunceford and Davidian (2004),

Σ∗ = E{W1(Y1 − µ1)
2 +W0(Y0 − µ0)

2}

Note

E{W1(Y1 − µ1)
2} = E(W1Y

2
1 )− 2µ1E(W1Y1) + µ2

1E(W1)

which equals Σ1 by (A.5). Similarly, E{W0(Y0 − µ0)
2} = Σ0, proving the proposition.

83



A.1.3 Proposition 3.3

Let 1− β denote the power to detect a difference in causal means of size δ, i.e.,

1− β = P (|t| > z1−α/2 | ACE = δ)

= P

 ÂCE − δ√
V ar(ÂCE)

> z1−α/2 −
δ√

V ar(ÂCE)

∣∣∣∣ACE = δ


+ P

 ÂCE − δ√
V ar(ÂCE)

< zα/2 −
δ√

V ar(ÂCE)

∣∣∣∣ACE = δ


In large samples, (3.9) is approximately standard normal. Thus,

1− β ≈ 1− Φ

z1−α/2 − δ√
V ar(ÂCE)

+ Φ

zα/2 − δ√
V ar(ÂCE)

 (A.7)

where Φ(∗) represents the cumulative distribution function for the standard normal evaluated at ∗.

Without loss of generality, assume δ > 0. Then the second component on the right side of (A.7)

will be less than α/2 and often close to zero. Therefore,

zβ ≈ z1−α/2 −
δ√

V ar(ÂCE)

(A.8)

Define k = P (A = 1)/P (A = 0). Given that V ar(ÂCE) ≈ {nP (A = 1)}−1σ2
1,adj + {nP (A =

0)}−1σ2
0,adj and solving (A.8) for n yields (3.10).
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

This appendix contains supplemental tables and proofs of the propositions in Chapter 4.

B.1 Supplemental Tables

Table B1: Results of the simulation study by distribution and method across R = 1000
samples with correct model specification, n = 2000. Empirical bias, ASE, ESE, SER, and

empirical 95% confidence interval coverage calculated for the CRR.

Distribution Method Empirical Bias ASE ESE SER 95% CI Coverage
Poisson MSM, fixed 0.003 0.215 0.078 2.748 1.000

MSM, estimated 0.003 0.074 0.078 0.944 0.940
PG 0.002 0.052 0.054 0.949 0.934
DR 0.002 0.052 0.054 0.948 0.936

NB MSM, fixed 0.004 0.264 0.176 1.498 0.994
MSM, estimated 0.004 0.171 0.176 0.967 0.934
PG 0.001 0.103 0.103 1.003 0.949
DR 0.004 0.162 0.169 0.961 0.931

ZIP MSM, fixed 0.005 0.22 0.080 2.767 1.000
MSM, estimated 0.005 0.079 0.080 0.994 0.937
PG 0.002 0.053 0.053 0.996 0.947
DR 0.003 0.058 0.060 0.974 0.949

ZINB MSM, fixed 0.014 0.272 0.177 1.534 0.996
MSM, estimated 0.014 0.177 0.177 0.997 0.951
PG 0.000 0.109 0.108 1.008 0.949
DR 0.011 0.168 0.168 0.996 0.949

Note: ZIP PG and DR results exclude 1.2% and 1.1% of simulations, respectively, where outcome models failed to
converge in geex. ZINB PG and DR results exclude 1.9% of simulations where outcome models failed to converge in
geex. Abbreviations: NB=Negative Binomial; ZIP=Zero-Inflated Poisson; ZINB=Zero-Inflated Negative Binomial;

MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust Estimator;
ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio (ASE/ESE);

CI=Confidence Interval
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Table B2: Results of the simulation study by distribution and method across R = 1000
samples with one or both models misspecified, n = 2000. Empirical bias, ASE, ESE, SER,

and empirical 95% confidence interval coverage calculated for the CRR.

Distribution Method Empirical Bias ASE ESE SER 95% CI Coverage
Poisson MSM, fixed, MW 0.118 0.228 0.086 2.662 1.000

MSM, estimated, MW 0.118 0.083 0.086 0.969 0.713
DR, MW 0.002 0.052 0.054 0.948 0.934

NB MSM, fixed, MW 0.120 0.280 0.189 1.483 0.997
MSM, estimated, MW 0.120 0.183 0.189 0.969 0.924
DR, MW 0.003 0.161 0.167 0.962 0.931

ZIP MSM, fixed, MW 0.122 0.234 0.088 2.643 1.000
MSM, estimated, MW 0.122 0.089 0.088 1.000 0.745
DR, MW 0.003 0.058 0.060 0.976 0.948

ZINB MSM, fixed, MW 0.131 0.289 0.190 1.520 0.996
MSM, estimated, MW 0.131 0.190 0.190 1.000 0.922
DR, MW 0.010 0.167 0.167 1.003 0.947

Poisson PG, MO 0.118 0.082 0.085 0.968 0.714
DR, MO 0.003 0.075 0.080 0.943 0.933

NB PG, MO 0.139 0.116 0.115 1.004 0.822
DR, MO 0.005 0.171 0.177 0.968 0.935

ZIP PG, MO 0.120 0.085 0.085 1.005 0.741
DR, MO 0.006 0.081 0.081 0.996 0.937

ZINB PG, MO 0.143 0.123 0.124 0.988 0.812
DR, MO 0.013 0.177 0.179 0.992 0.951

Poisson DR, MB 0.118 0.082 0.085 0.967 0.713
NB DR, MB 0.120 0.183 0.188 0.970 0.923
ZIP DR, MB 0.122 0.088 0.088 1.000 0.745
ZINB DR, MB 0.130 0.189 0.191 0.994 0.919
Note: ZIP PG and DR results exclude 0.1%-1.1% of simulations where outcome models failed to converge in geex.

ZINB PG and DR results exclude 0.8%-1.9% of simulations where outcome models failed to converge in geex.
Abbreviations: NB=Negative Binomial; ZIP=Zero-Inflated Poisson; ZINB=Zero-Inflated Negative Binomial;
MSM=Marginal Structural Modeling with IPTW; PG=Parametric g-formula; DR=Doubly Robust Estimator;

MW=Misspecified Weight Model; MO=Misspecified Outcome Model; MB=Both Weight and Outcome Models
Misspecified; ASE=Average Estimated Standard Error; ESE=Empirical Standard Error; SER=Standard Error Ratio

(ASE/ESE); CI=Confidence Interval
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B.2 Proofs of Propositions

B.2.1 Proposition 4.1

Consider the following MSM: log(λa) = β0 + β1a. β̂0 and β̂1 are the solutions to the following

estimating equations, where Wi is the true weight for participant i and is treated as known.

n∑
i=1

Wi

 Yi − exp(β0 + β1ai)

Ai (Yi − exp(β0 + β1ai))

 = 0

Using the law of iterated expectation and assuming causal consistency and conditional exchange-

ability:

E{WiYi −Wi exp(β0 + β1ai)}

= E{AiWiYi − AiWi exp(β0 + β1) + (1− Ai)WiYi − (1− Ai)Wi exp(β0)}

= EL
{
WiEA|L(Ai | L)EY 1|L(Y 1

i | L)
}
− EL

{
WiEA|L(Ai | L) exp(β0 + β1)

}
+EL

{
WiEA|L{(1− Ai) | L}EY 0|L(Y 0

i | L)
}
− EL

{
WiEA|L{(1− Ai) | L} exp(β0)

}
= E(Y 1

i )− exp(β0 + β1) + E(Y 0
i )− exp(β0) = 0

Similarly,

E{WiAiYi −WiAi exp(β0 + β1ai) = 0}

Therefore, these estimating equations are unbiased. The solutions to the estimating equations are

derived as follows:
n∑
i=1

Wi

 Yi − exp(β̂0 + β̂1ai)

Ai

{
Yi − exp(β̂0 + β̂1ai)

}
 = 0

⇐⇒
n∑
i=1

Wi exp(β̂0 + β̂1ai) =
n∑
i=1

WiYi (B.1)
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and
n∑
i=1

WiAi exp(β̂0 + β̂1) =
n∑
i=1

WiAiYi (B.2)

Solving (B.1) for β̂0:

β̂0 = log

( ∑n
i=1WiYi∑n

i=1Wi exp{β̂1I(Ai = 1)}

)

Plugging β̂0 into (B.2):

[ ∑n
i=1WiYi∑n

i=1Wi exp{β̂1I(Ai = 1)}

]{
n∑
i=1

Wi exp{β̂1)I(Ai = 1)

}
=

n∑
i=1

WiYiI(Ai = 1)

=⇒ β̂1 = log

(∑n
i=1WiYiI(Ai = 1)∑n
i=1WiI(Ai = 1)

/∑n
i=1WiYiI(Ai = 0)∑n
i=1WiI(Ai = 0)

)
Define g(β1) = exp(β1). Because ĈRRMSM = exp(β̂1) is a delta method transformation of the

solution to an unbiased estimating equation, ĈRRMSM is a consistent and asymptotically normal

estimator of CRR when the weights are known (Stefanski and Boos, 2002).

B.2.2 Proposition 4.2

The proof of proposition 2 relies on standard estimating equation theory (see Stefanski and

Boos, 2002). Define the set of estimating equations:

n∑
i=1

Ψ(Oi,Λ) =

∑n
i=1 Ψ1(Oi,Λ)∑n
i=1 Ψ0(Oi,Λ)

 =

 ∑n
i=1 e

−1
i (Yi − λ1)I(Ai = 1)∑n

i=1(1− ei)−1(Yi − λ0)I(Ai = 0)

 = 0

Then,

Ψ̇(Oi,Λ) =
∂Ψ(Oi,Λ)

∂Λ
=

−e−1i I(Ai = 1) 0

0 −(1− ei)−1I(Ai = 0)



A(Λ) = E(−Ψ̇) =

 1 0

0 1


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and

B(Λ) = E[Ψ(Oi,Λ)Ψ(Oi,Λ)T ] = E

e−2i (Yi − λ1)2I(Ai = 1) 0

0 (1− ei)−2(Yi − λ0)2I(Ai = 0)



= E

e−2i (Y 1
i − λ1)2I(Ai = 1) 0

0 (1− ei)−2(Y 0
i − λ0)2I(Ai = 0)



=

EL {e−2i EY 1|L(Y 1
i − λ1)2EA|LI(Ai = 1)

}
0

0 EL
{

(1− ei)−2EY 0|L(Y 0
i − λ0)2EA|LI(Ai = 0)

}


= E

e−1i (Y 1
i − λ1)2 0

0 (1− ei)−1(Y 0
i − λ0)2


by causal consistency, iterated expectation, and conditional exchangeability. Then as n→∞,

√
n


λ̂1MSM

λ̂0MSM

−
λ1
λ0


 d−→ N (0, V (Λ))

where

V (Λ) = A(Λ)−1B(Λ){A(Λ)−1}T = B(Λ)

The delta method is applied to obtain the asymptotic variance of ĈRRMSM = λ̂1MSM/λ̂
0
MSM , with

g(Λ) = λ1/λ0. Thus,

G =
∂g

∂Λ
=

[
1
λ0

−λ1
(λ0)2

]
Then,

√
n

(
λ̂1MSM

λ̂0MSM

− λ1

λ0

)
d−→ N (0,ΣMSM)
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where

ΣMSM = GV (Λ)GT = E

[
e−1i

(
Y 1 − λ1

λ0

)2

+ (1− ei)−1
{
λ1(Y 0 − λ0)

(λ0)2

}2
]

B.2.3 Proposition 4.3

When the weights are treated as estimated rather than known, we solve the set of estimating

equations:

n∑
i=1

Ψ(Oi,Λ) =


∑n

i=1 Ψα(Oi,Λ)∑n
i=1 Ψ1(Oi,Λ)∑n
i=1 Ψ0(Oi,Λ)

 =


∑n

i=1 Ψα(Oi, α)∑n
i=1Wi(α)(Yi − λ1)I(Ai = 1)∑n
i=1Wi(α)(Yi − λ0)I(Ai = 0)

 = 0

where ΛT = (αT , λ1, λ0) are the p parameters from the logistic regression weight model (α) and

the two causal means (λ1 and λ0), Oi = (Ai, Li, Yi) are the observed data, and Ψα is the vector

of score functions from the logistic regression weight model. Let the solutions to the estimating

equations be denoted by Λ̂, where

Λ̂ =


α̂

λ̂1MSM

λ̂0MSM

 =


α̂∑n

i=1Wi(α̂)YiI(Ai = 1)/{
∑n

i=1Wi(α̂)I(Ai = 1)}∑n
i=1Wi(α̂)YiI(Ai = 0)/{

∑n
i=1Wi(α̂)I(Ai = 0)}


When the weight model is correctly specified, Λ̂ are solutions to an unbiased set of estimating

equations. Thus,
√
n(Λ̂− Λ)→ N(0, V (Λ)), where V (Λ) = A(Λ)−1B(Λ){A(Λ)−1}T . Note that

A(Λ) = E{−Ψ̇(Oi,Λ)}, B(Λ) = E{Ψ(Oi,Λ)Ψ(Oi,Λ)T}, and Ψ̇(Oi,Λ) = ∂Ψ(Oi,Λ)/∂Λ are
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(p+ 2)× (p+ 2) matrices. Also note that:

Ψ̇(Oi,Λ) =


∂Ψα/∂α ∂Ψα/∂λ

1 ∂Ψα/∂λ
0

∂Ψ1/∂α ∂Ψ1/∂λ
1 ∂Ψ1/∂λ

0

∂Ψ0/∂α ∂Ψ0/∂λ
1 ∂Ψ0/∂λ

0

 =


∂Ψα/∂α 0p×1 0p×1

∂Ψ1/∂α −Wi(α)I(Ai = 1) 0

∂Ψ0/∂α 0 −Wi(α)I(Ai = 0)


where ∂Ψα/∂α is the p × p Jacobian matrix of partial derivatives for Ψα, ∂Ψa/∂α are gradient

vectors for a ∈ {0, 1}, and 0p×1 are vectors of 0. Then,

A(Λ) =

A1 0p×2

A2 I2×2


where A1 = E(−∂Ψα/∂α) and I2×2 is the identity matrix. Note that

A2 =

E(−∂Ψ1/∂α)

E(−∂Ψ0/∂α)


and thus

A(Λ)−1 =

 A−11 0p×2

−A2A
−1
1 I2×2


Let

B(Λ) =

B11 BT
21

B21 B22


where B11 is (p× p), B21 is (2× p), and B22 is (2× 2). By Lemma 7.3.11 in Casella and Berger

(2002), A1 = B11. We claim that A2 = B21. Under this claim,

V (Λ) =

 A−11 0p×2

−A2A
−1
1 I2×2


A1 AT2

A2 B22


A−11 −(A−11 )TAT2

02×p I2×2

 =

A−11 0p×2

02×p B22 − A2A
−1
1 AT2


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Thus, as n→∞,
√
n(Λ̂− Λ)

d−→ N (0, V (Λ))

The delta method is applied to obtain the asymptotic variance of ĈRRMSM = λ̂1MSM/λ̂
0
MSM , with

g(Λ) = λ1/λ0. Thus,

G =
∂g

∂Λ
=

[
01×p

1
λ0

−λ1
(λ0)2

]
Then,

√
n

(
λ̂1MSM

λ̂0MSM

− λ1

λ0

)
d−→ N (0,Σ∗MSM)

where

Σ∗MSM = GV (Λ)GT = g∗TB22g
∗ − g∗T (A2A

−1
1 AT2 )g∗ = ΣMSM − g∗T (A2A

−1
1 AT2 )g∗

and

g∗ =

[
1
λ0

−λ1
(λ0)2

]
The final equality holds because B22 = V (Λ) from the proof to Proposition 4.2. Note that

g∗T (A2A
−1
1 AT2 )g∗ = g∗T (A2B

−1
11 A

T
2 )g∗ ≥ 0 because B11 is positive semi-definite. This proves the

proposition under the claim that A2 = B21.

Now, prove the claim that A2 = B21. Denote the propensity score as e = {1 + exp(−αL)}−1.

Let k = 1, .., p represent the kth column of the first row of A2, which equals

−E
(
∂Ψ1

∂αk

)
= E

(
e−2(Y − λ1)I(Ai = 1)

∂e

∂αk

)
= E

(
e−1(Y 1 − λ1) ∂e

∂αk

)

The kth column of the first row of B21 equals

E(Ψ1Ψαk) = E

(
e−1(Y − λ1)I(Ai = 1)

I(Ai = 1)− e
e(1− e)

∂e

∂αk

)
= E

(
e−1(Y 1 − λ1) ∂e

∂αk

)
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becauseEA|L{I(Ai = 1)2−eI(Ai = 1)} = EA|L{I(Ai = 1)−eI(Ai = 1)} = (1−e)EA|L{I(Ai =

1)} = (1− e)e.

Similarly, the kth column of the second row of A2 equals

−E
(
∂Ψ0

∂αk

)
= −E

(
(Y − λ0)I(Ai = 0)

(1− e)2
∂e

∂αk

)
= −E

(
Y 0 − λ0

1− e
∂e

∂αk

)

and the kth column of the second row of B21 equals

E(Ψ0Ψαk) = E

(
(Y − λ0)I(Ai = 0)

1− e
I(Ai = 0)− e
e(1− e)

∂e

∂αk

)
= −E

(
Y 0 − λ0

1− e
∂e

∂αk

)

Thus, Σ∗MSM ≤ ΣMSM .

B.2.4 Proposition 4.4

Assume that Ê(Yi | Li = li, Ai = a) is estimated based on one of the four models described in

Section 4.2.3. Define the set of estimating equations:

n∑
i=1

ψ(Yi, Ai, Li; τ, λ) =


∑n

i=1 ψτ (Yi, Ai, Li; τ)∑n
i=1 ψ1(Yi, Li; τ̂ , λ

1)∑n
i=1 ψ0(Yi, Li; τ̂ , λ

0)

 = 0

where ψτj is the derivative of the log-likelihood function for the model with respect to the jth

regression coefficient, for j = 1, ..., p. For the Poisson and NB distributions, τ = β and τ has

dimension p = c, and for the ZIP and ZINB distributions, τ = [γ ξ]T and has dimension p = c1 + c2.

For example, for the Poisson distribution, ψτj = {yi − exp(
∑c

j=1 xijβj)}xij = 0, for j = 1, ..., c.

When the model(s) are correctly specified, these estimating equations are unbiased based on

maximum likelihood theory, with solutions τ̂ . Now we define the estimating equations for the causal

means. Define λ̂aPG = Ê(Y a) =
∫
Ê(Y | L = l, A = a)dFL(l) = n−1

∑n
i=1 Ê(Yi | Li = li, Ai =

a). Then,
∑n

i=1 ψa(Yi, Ai, Li; τ̂ , λ
a) =

∑n
i=1{Ê(Yi | Li = li, Ai = a) − λa} = 0 for a ∈ {0, 1},

where Ê(Yi | Li = li, Ai = a) is the predicted count for participant i based on the model. When the
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model(s) are correctly specified and based on causal consistency and conditional exchangeability,

E{ψa(Yi, Li; τ̂ , λa)} = E{E(Yi | Li = li, Ai = a)− λa} = E{E(Y a
i | Li = li, Ai = a)} − λa

= E{E(Y a
i | Li = li)} − λa = E(Y a)− λa = 0

Thus, this represents an unbiased set of estimating equations. Under suitable regularity conditions

(Stefanski and Boos, 2002),

√
n



τ̂

λ̂1PG

λ̂0PG

−

τ

λ1

λ0


 d−→ N (0,ΣPG)

where

ΣPG = A(Λ)−1B(Λ){A(Λ)−1}T

where ΛT = (τT , λ1, λ0),A(Λ) = E{−ψ̇(Yi, Ai, Li,Λ)},B(Λ) = E{ψ(Yi, Ai, Li,Λ)ψ(Yi, Ai, Li,Λ)T},

and ψ̇(Yi, Ai, Li,Λ) = ∂ψ(Yi, Ai, Li,Λ)/∂ΛT . The delta method is applied to obtain the asymptotic

distribution of ĈRRPG = λ̂1PG/λ̂
0
PG, with g(Λ) = λ1/λ0. Thus,

GPG =
∂g(Λ)

∂(Λ)
=

[
01×p

1
λ0

−λ1
(λ0)2

]

Then,
√
n

(
λ̂1PG

λ̂0PG
− λ1

λ0

)
d−→ N (0,Σ∗PG)

where

Σ∗PG = GPGΣPGG
T
PG

Because ĈRRPG is a delta method transformation of solutions to an unbiased set of estimating

equations, ĈRRPG is a consistent and asymptotically normal estimator of CRR when the model(s)

are correctly specified.
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B.2.5 Proposition 4.5

Define the set of estimating equations:

n∑
i=1

ψ(Yi, Ai, Li;α, τ, λ) =



∑n
i=1 ψα(Ai, Li;α)∑n

i=1 ψτ (Yi, Ai, Li; τ)∑n
i=1 ψ1(Yi, Ai, Li; α̂, τ̂ , λ

1)∑n
i=1 ψ0(Yi, Ai, Li; α̂, τ̂ , λ

0)


= 0

where ψαj is the derivative of the log-likelihood function for the weight model with respect to

the jth regression coefficient, for j = 1, .., cw, with cw equal to the number of columns in the

design matrix for the weight model; ψτk is the derivative of the log-likelihood function for the

parametric outcome model with respect to the kth regression coefficient, for k = 1, ..., p. For

the Poisson and NB distributions, τ = β and τ has dimension p = c, and for the ZIP and ZINB

distributions, τ = [γ ξ]T and has dimension p = c1 + c2. For example, for the Poisson distribution,

ψτj = {yi − exp(
∑c

j=1 xijβj)}xij = 0, for j = 1, ..., c.

Define α̂ such that E{ψα(Ai, Li; α̂)} = 0, and τ̂ such that E{ψτ (Yi, Ai, Li; τ̂)} = 0. Then

êi(Li, α̂) is participant i’s estimated propensity score from the weight model, i.e, êi(Li, α̂) =

P̂ (Ai = 1 | Li = li). Participant i’s estimated potential outcomes for a ∈ {0, 1} based on the out-

come model(s) are defined asma(Li, τ̂) = Ê(Yi | Li = li, Ai = a). Then,
∑n

i=1 ψ1(Yi, Ai, Li; α̂, τ̂ , λ
1) =∑n

i=1 ([AiYi − {Ai − êi(Li, α̂)}m1(Li, τ̂)]{êi(Li, α̂)}−1 − λ1) = 0 is the estimating equation for

λ̂1DR and
∑n

i=1 ψ0(Yi, Ai, Li; α̂, τ̂ , λ
0) =

∑n
i=1[{(1 − Ai)Yi + {Ai − êi(Li, α̂)}m0(Li, τ̂)}{1 −

êi(Li, α̂)}−1 − λ0] = 0 is the estimating equation for λ̂0DR.

We show that when either the weight model or the outcome model(s) are correctly specified,

ψ1(Yi, Ai, Li; α̂, τ̂ , λ
1) and ψ0(Yi, Ai, Li; α̂, τ̂ , λ

0) are unbiased. Let α0 and τ0 represent the true

values of the parameters from the weight and outcome models, respectively. When the weight

model is correctly specified, E(α̂) = α0, and when the outcome model is correctly specified

E(τ̂) = τ0. By causal consistency and algebraic manipulation, ψ1(Yi, Ai, Li; α̂, τ̂ , λ
1) = Y 1

i +
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{Ai − êi(Li, α̂)}{Y 1
i −m1(Li, τ̂)}{êi(Li, α̂)}−1 − λ1. Note that by conditional exchangeability:

E[{Ai − êi(Li, α̂)}{Y 1
i −m1(Li, τ̂)}{êi(Li, α̂)}−1]

= EL
(
{êi(Li, α̂)}−1EA|L{Ai − êi(Li, α̂)}EY 1|L{Y 1

i −m1(Li, τ̂)}
)

When the weight model is correctly specified, EA|L{Ai − êi(Li, α̂)} = EA|L{Ai} − ei(Li, α0) = 0

and when the outcome model(s) are correctly specified EY 1|L{Y 1
i −m1(Li, τ̂)} = EY 1|L{Y 1

i } −

m1(Li, τ0) = 0. Then,E{ψ1(Yi, Ai, Li; α̂, τ̂ , λ
1)} = E(Y 1)−λ1 = 0. Thus, ψ1(Yi, Ai, Li; α̂, τ̂ , λ

1)

is unbiased when the weight or outcome model is correctly specified. Similarly, ψ0(Yi, Ai, Li; α̂, τ̂ , λ
0)

is unbiased when either model is correctly specified.

Then, under suitable regularity conditions (Stefanski and Boos, 2002),

√
n





α̂

τ̂

λ̂1DR

λ̂0DR


−



α

τ

λ1

λ0




d−→ N (0,ΣDR)

where

ΣDR = A(Λ)−1B(Λ){A(Λ)−1}T

where ΛT = (αT , τT , λ1, λ0),A(Λ) = E{−ψ̇(Yi, Ai, Li,Λ)},B(Λ) = E{ψ(Yi, Ai, Li,Λ)ψ(Yi, Ai, Li,Λ)T},

and ψ̇(Yi, Ai, Li,Λ) = ∂ψ(Yi, Ai, Li,Λ)/∂ΛT . The delta method is applied to obtain the asymptotic

distribution of ĈRRDR = λ̂1DR/λ̂
0
DR, with g(Λ) = λ1/λ0. Thus,

GDR =
∂g(Λ)

∂(Λ)
=

[
01×cw 01×p

1
λ0

−λ1
(λ0)2

]

Then,
√
n

(
λ̂1DR

λ̂0DR
− λ1

λ0

)
d−→ N (0,Σ∗DR)
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where

Σ∗DR = GDRΣDRG
T
DR

Because ĈRRDR is a delta method transformation of solutions to an unbiased set of estimating

equations, ĈRRDR is a consistent and asymptotically normal estimator of CRR when the weight

model or the outcome model(s) are correctly specified.
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