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ABSTRACT

William Harrington Weir: Modularity-based approaches to community detection in
multilayer networks with applications toward precision medicine
(Under the direction of Peter J. Mucha and William Y. Kim)

Networks have become an important tool for the analysis of complex systems

across many different disciplines including computer science, biology, chemistry, social

sciences, and importantly, cancer medicine. Networks in the real world typically exhibit

many forms of higher order organization. The subfield of networks analysis known as

community detection aims to provide tools for discovering and interpreting the global

structure of a networks-based on the connectivity patterns of its edges. In this thesis, we

provide an overview of the methods for community detection in networks with an

emphasis on modularity-based approaches. We discuss several caveats and drawbacks of

currently available methods. We also review the success that network analyses have had

in interpreting large scale omics data in the context of cancer biology. In the second and

third chapters, we present CHAMP andmultimodbp, two useful community detection

tools that seek to overcome several of the deficiencies in modularity-based community

detection. In the final chapter, we develop a networks-based significance test for

addressing an important question in the field of oncology: are mutations in DNA damage

repair genes associated with elevated levels of tumor mutational burden. We apply the

tools of network analysis to this question and showcase how this approach yields new

insight into the structure of the problem, revealing what we call the TMB Paradox. We

close by demonstrating the clinical utility of our findings in predicting patient response to

novel immunotherapies.
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2.5 CHAMP on the NCAA Football Network. A) Modularity Q(γ) given
by Equation (3.10) versus resolution parameter γ for 50, 000 runs (10%
of results displayed here) of the Louvain algorithm [27, 226] at different
γ on the unweighted NCAA Division I-A (2000) college football network
[58, 71]. Grey triangles indicate the number of communities that include≥
5 nodes in each run, while the green step function shows the number in the
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rithm (see Section 2.3). Each line indicates Qσ(γ) given by Equation (2.2)
for a particular partition σ. Both panels show the convex hull of these lines
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resented by downward triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6 Similarity of CHAMP domains for NCAA Football. A) ForceAt-
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2.7 CHAMP on the human reactome. A) ModularityQ(γ) given by Equa-
tion (3.10) v. resolution parameter γ for 20, 000 runs (25% of results shown)
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grey triangles indicate the number of communities that include ≥ 5 nodes
in each run, while the dark green step function shows the number in the op-
timal partition in each domain. The dashed green curve is the piecewise-
linear modularity function for the optimal partitions, with the transition
values marked by blue triangles;B) Pairwise AMI between all partitions in
the admissible subset identified by CHAMP, arranged by their correspond-
ing γ-domains of optimality. Yellow stars denote the domains shown in
Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8 Visualization of Reactome communities. ForceAtlas2 layout [98],
created with [182], of the Human Reactome Network, colored according to
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v. γ for 100, 000 runs (5% of results shown) of Louvain [27, 226] on the
Caltech Facebook network [227]. Orange triangles indicate the number of
communities that include ≥ 5 nodes in each run, while the red step func-
tion shows the number in the optimal partition in eachdomain. The dashed
green curve is the piecewise-linearmodularity function for the optimal par-
titions, with the transition valuesmarked by blue triangles. The condensed
layout of communities (created with [182]) here visualizes the optimal par-
tition found for γ ∈ [0.908, 1.09], with each pie-chart corresponding to a
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labels (including the missing label) is 0.513; B) Pairwise AMI between all
partitions in the admissible subset identified by CHAMP, arranged by their
corresponding γ-domains of optimality. . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.10 CHAMP on the US Senate network. A) Domains of optimization for
the pruned set of partitions, colored by the number of communities within
each partition. The set of partitions was generated from 240, 000 runs of
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labeled domain are visualized in Appendix 2.1; B) Weighted-average AMI
of each partition with its neighboring domains’ partitions, weighted by the
length of the borders between neighboring domains. . . . . . . . . . . . . . . . . . . 72

2.11 Time-varying community structure for theU.S. Senate from1789
to 2008 according to the (A,B) 5-community and (C,D) 8-community
partitions with widest domains of optimality (see labels 5.1 and 8.1 in Fig-
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munities in that layer and political party labels. (This layer-averaged AMI
is shown for all partitions in the convex hull over the originally searched
parameter range in Figure 2.12.) (B,D) The vertical axis indicates the state
of a Senator, sorted according to geographic region, and the horizontal axis
represents time (two-year Congresses). . . . . . . . . . . . . . . . . . . . . . . . . . 74
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2.13 Sizeandconsistencyof theCHAMPsets for reactomenetwork[105,
120]. A) The total size of the CHAMP set for each partition ensemble of r
runs, averaged over 10 trials. Size of baseline set of all partitions indicated
by gold star. B) The average AMI between the CHAMP set for each par-
tition ensemble of r runs and the baseline ensemble, weighted by the size
of the domain, and averaged over 10 trials (see Equation 2.8). Baseline
partition has average AMI of 1 by construction. . . . . . . . . . . . . . . . . . . . . . 76

2.14 Exploring the stability of theCHAMPsets for reactomenetwork[105,
120]. A)Wecompute theAMI for the intersection of eachdomain between
the partitions for the baseline set of all partitions, and each individual set
with r runs. We have averaged the individual step functions over 10 inde-
pendent trails, each with r runs. B) Location of transitions between dom-
inant domains for each of the 10 trials with 102400 runs of Leiden, uni-
formly spaced across γ = [0, 4], as well as the transitions for the baseline
combined set (1621000 total runs) shown in red. . . . . . . . . . . . . . . . . . . . 77
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3.5 Testingmultimodbpon the2000-2001Division I-ACollegeFoot-
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10 runs at different β values, the number of communities identified by the
best run for each set of parameters (based on lowest Bethe free energy),
and the average entropy of the marginals across all of the nodes for each
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ing the node’s degree, and the y-axis showing the average neighbor degree.
The scatter plots that are above the y=x line (dashed orange line) have a
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CHAPTER 1: INTRODUCTION TO NETWORKS, COMMUNITY
DETECTION, AND APPLICATIONS TO ONCOLOGY

We begin this thesis with an overview of the basic concepts underpinning the main ideas

presented in this work, including networks and community detection with a focus on

personalized medicine. Advances in networks science have arisen from a plethora of fields:

sociology, physics, statistics, pure and applied mathematics, computer science, and many others.

This convergence of problems arising in radically disparate domains with a common set of

solutions is one of the most exciting parts of working in the field. However, it can make it difficult

for the casual reader to find an appropriate entry point into the discipline without getting drawn

into other minutia. In this introductory chapter, we hope to provide enough of a flavor of this

fascinating field to keep the reader engaged, and to provide a foothold for accessing this deep and

diverse body of work. For the interested reader who wishes to dive deeper, we recommend

Newman’s Networks [167] or Kolaczyk’s Statistical Analysis of Network Data [117], both of

which provide a hearty, self encapsulated introduction to networks. We begin by giving an

account of what networks are and why they arise in so many different contexts. We discuss

community detection in networks, detailing the different approaches and the philosophies

underpinning them. Finally, we conclude the chapter by giving an overview of how network

approaches, including (but not limited to) community detection have been used in the field of

cancer genomics. We segue into the next chapter by giving an overview of the rest of the thesis

and summarizing the main contributions of this work.

1.1 Networks

We conceptualize a network as an abstract collection of objects and relationships between

those objects. We refer to the “objects” as nodes or vertices and the relationships as edges. In

math terms a network, also called a graph, is a set of vertices and edges: G = (V, E). Edges
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typically represent pairwise interactions, involving two nodes only¹. We assign each node an

arbitrary index, i ∈ 1, . . . , N and denote a specific edge by the pair of nodes it involves: (i, j) ∈ E .

Our definition of a network is quite simple and quite broad; hence there are many systems in the

real world that can be conceptualized as networks:

G = ({genes}, {physically interact with each other})

= ({cities}, {connected via a road})

= ({researchers}, {have published a paper together})

. . .

All of these have a notion of individual entities (nodes) who come together through

interactions (edges) to form a more complex system. We typically visualize a network by drawing

circles for the nodes and lines connecting the circles for the edges as demonstrated in Figure 1.1,

where we have assigned each node a coordinate in 2D space based on an algorithm to reveal

clusters, although the layout is just one of infinitely many we could have chosen to show this

network. It is merely a representation of the underlying structure and not itself intrinsic to that

structure. Such visualizations can make us think of each network as living in 2D or 3D space;

however, they are much higher dimensional objects themselves as each network can have up to(
N
2

)
= N(N − 1)/2 possible edges and thus can have the same number of degrees of freedom. In

most networks of interest, there are many correlations between edges that can vary across the

network, greatly reducing the complexity of the information content within the network.

Networks can range in scale from tens to hundreds of millions of nodes², and the appropriate

visualization will depend on the size of the network as well as the density of edges.

Another way networks are commonly represented, especially to perform computations, is

¹Higher order networks (e.g. involving triplets or quartets) are called hypergraphs

²There is much interest in the dynamics of consumer preference on Amazon, which currently has over 600 million
products listed. Facebook had over 2.4 billion users as of 2019.
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Figure 1.1: The famous Zachary karate club network. [255]. Each of the 34 nodes represents a member
of the karate dojo Zachary was studying over several years, while edges represent whether or not Zachary ob-
served consistent social interactions between the members outside of the official functions of the club. During
the course of the the study, a disagreement between the leaders caused a split into two different clubs.

by an adjacency matrix, denoted A where:

Aij =


1 (i, j) ∈ E

0 otherwise
. (1.1)

For a network with N nodes, A will be an N ×N binary matrix³ (which we also can denote

A ∈ {0, 1}N×N ). As any reindexing of the nodes will result in a permutation of the rows and

columns of A, there are many adjacency matrices that can correspond to the same underlying

network. The adjacency matrix is computationally useful because it allows us to use both the

theoretical and computational tools of linear algebra to address questions concerning networks.

Networks theory has found application in nearly all applied sciences. Much of the early

work in the study of networks arose in the context of sociology, focusing on the empirical

distribution of node-level metrics of observed networks as well as developing simple models of

network formation to understand how those distributions could have arisen. For example, one of

the major network quantities of interest is the distribution of the degrees of a network. The degree

³In the casewhere the edges of the network areweighted, we let elements ofA take on arbitrary values (i.e. A ∈ R+N×N ).
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of a node, k, is the number of other nodes attached to it: ki =
∑

j Aij . The degree distribution of a

network, denoted pk, is the probability that a randomly chosen node has degree, k (i.e. the

number of nodes with degree, k divided by the total number of nodes in the network). In most

social networks, it was found that often there are a few high degree nodes, referred to as hubs, that

play important roles in the network. This simple fact concerning the distribution of the degrees

explains the surprising small-world effect described by Milgram [150]: despite the fact that there

are almost 7 billion people in the world, any two randomly selected people are separated (with

high likelihood) by a path of no less than six hops along edges within the networks. This same

phenomenon accounts for the fact that even though there are tens of thousands of airports in the

world, in most cases you can fly commercially between any two of them with only 1 or 2 layovers.

These structural facts have implications for a number of other fields as well. Both sociologists as

well as epidemiologists are interested in how phenomenon propagate themselves over a network:

mathematical models of how news, fashion trends, or voting preferences spread on a network will

have similar considerations to understanding an epidemic of a deadly disease.

Many domains in the biological sciences have also been impacted by developments in

network theory, providing researchers with the ability to take a systems-level approach. From

understanding the organization and functioning of the human brain at multiple structural levels;

to the modeling of chromatin folding and disruption [169]; to assembling and interpreting the

human genome [42]; All of these and many more systems can be tackled with the tools of

networks. Recently, as we shall overview in Section 1.3, the field of oncology has been

transformed by the exciting merger of large scale genomics data with the development of

networks-based approaches.

There are many possible extensions of the basic network described above that allow one to

capture more of the complexity of systems in the real world. One could allow for different

strengths of interactions, placing weights on the edges (weighted networks), or allow for the

interactions to have a directionality (directed network). We could also allow for multiple edges to

exist between pairs of nodes (multigraph) or allow for different kinds of edges (multilayer

network). For most of these, the operational representations of the network can be extended in a

natural way to make use of the available tools. For instance, in the case of the weighted networks,

allowing A to take on values other than 1 or 0 is usually sufficient to capture additional
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complexity added by the weights. In other cases, a more careful handling is required; throughout

the work we attempt to specify the kind of network we are using in each case when special

considerations are required. We provide a greater explanation in the next few subsections on

several needed concepts including the treatment of networks with multiple layers (multilayer), as

these are the focus of much of this thesis.

1.1.1 T G L

Earlier, we saw how the adjacency matrix,A, encodes the structural connectivity of the

network in a relatively straightforward way. We introduce here the concept of the graph

Laplacian, another matrix encoding the same structural information that arises in a number of

contexts, especially in considering the dynamics of processes occurring on the graph. The graph

Laplacian is a discrete version of the Laplacian operator∇2 that provides a notion of smoothness

for a function over a graph.

If we have a function, f , defined on each node by fi, we can derive the graph Laplacian by

considering how different the values of f are across neighboring nodes of the network:

||f ||2G =
∑
ij

(fi − fj)
2Aij . (1.2)

This equation then provides us with a simple notion of what it means for a function to be

smooth across a network. If differences in the value of f for neighboring nodes is usually small,

then ||f ||2G will also be small. If we rewrite this equation as follows:

||f ||2G =
∑
ij

(fi − fj)
2Aij

=
∑
ij

f2i Aij + f2j Aij − 2fifjAij

= 2(
∑
ij

f2i Dij −
∑
ij

fifjAij)

= 2(fTDf − fTAf)

= 2(fTLf) (1.3)
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where we have introduced the degree diagonal matrixD:

Dij =


ki If i = j

0 otherwise
, (1.4)

and have defined the graph Laplacian, L = D−A. Thus the graph Laplacian can be thought of as

a discrete difference operator on the graph. The graph Laplacian appears in many places in graph

theory, including the identification of the minimum spanning tree and in regularization for

machine learning approaches to graph structured data. The eigenvalues of the graph Laplacian

also contain information about the community structure of the graph as can be seen in Figure 1.2.

Figure 1.2: Embedding of 3 block SBM using the graph Laplacian. On the left we show the layout for a
graph drawn from a 3 block non-degree corrected stochastic block model (planted partition model) with pin =
.05 and pout = .001. To the right we plot the first two eigen values of the graph Laplacian of the network, with
each node colored according to the ground truth community assignment. We see that the three communities of
the model are well separated by the first two eigen values of the Laplacian.

1.1.2 M N

Much of network science has centered around the development of models of networks

that capture aspects of real world networks. For instance, the Watts-Strogatz’s “small world”

model attempts to generate networks with relatively short paths between possible pairs of nodes

[241]; the Barabási-Albert model of preferential attachment model produces networks with a
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fat-tailed, power law degree distribution,⁴ which is common in many real world networks [4] ⁵.

Here we briefly introduce the concept of a network model and describe the Erdős-Rényi model

and the configuration model, both of which will be useful throughout this thesis.

In broad terms, a random network model defines a distribution over the space of possible

networks one could observe. Often we use a model to look at how certain statistics behave over an

ensemble of networks drawn randomly from our model. The Erdős-Rényi (ER) model is one of

the simplest random network models: we allot equal probability weight to every network that has

a given number of nodes and a specified number of edges. We denote this distribution of

networks by : ER(N,M). Instead of specifying a fixed number of edges, it is often more useful

(and analytically tractable) to specify the independent and identically distributed (IID)

probability each edge has of occurring, p, written as ER(N, p). In this case, the expected number

of edges isM = p×
(
N
2

)
. For a large enough N the two models converge to each other. As each

edge has an equal probability of being selected, the degree distribution for each node is simply the

binomial distribution: pk ∝
(
n−1
k

)
pk(1− p)n−1−k.

Another random graph model that will appear several times in this work is the

configuration model. The configuration model is interesting in that the specified parameter is the

degree distribution itself, pk. The configuration model assigns equal probability to every network

with the specified degree distribution (and zero to all others). Typically, we can use the

configuration model to interrogate whether or not the properties we have observed in a real world

distribution are independent from its degree distribution. Given a network, one way to construct

the configuration model is to cut each edge in two, leaving a corresponding stub on each node.

The configuration model is formed by placing equal weight on all of the possible ways of

reconnecting the stubs, as illustrated in figure 1.3. We can calculate the probability of there being

an edge between any two nodes, i and j, under the configuration model. Each stub has an equal

probability of connecting with any other stub in the network. For a given stub on node i, there are

kj stubs on node j for it to connect to; therefore the probability of it being connected to a stub on

⁴A power law distribution follows the following functional form: P (X = x) ∝ x−α. Typically 2 < α < 3

⁵There is some debate as to whether true power law distributions are actually commonly seen or whether other fat tailed
distributions provide a better fit for most networks. See [29, 41] for assessing whether an observed distribution is fit
by a power law, as well as [92] for additional discussion.

7



Figure 1.3: Conceptualization of the configuration model. Given a network (left panel), we can construct
the configuration model by cutting every edge in the network into two (middle panel), and then randomly re-
connecting the stubs (right panel). Depending on the context, networks with multi-edges or with self loops are
not allowed. See [65] for a discussion of sampling from the configuration model and how to avoid having self
loops or multi-edges.

node j is kj
2m−1 . And since there are ki independent chances of a stub on node i connecting to a

stub on node j, then the total probability of an edge between the two is given by kikj
2m−1 (≈

kikj
2m for

large enoughm). There are many other network models that attempt to capture various aspects

of observed networks. In section 1.2, we discuss a few more complicated models that attempt to

capture higher order structure in the network by defining a notion of “communities”.

1.1.3 I M N

In recent years, there has been great interest in extending the traditional network models

to encompass more complexity that can better reflect a variety of systems. Specifically, in many

systems, interactions between objects can vary over time, be of multiple types, or other

complexities. For example, in a network of social actors, there could be multiple types of

relationships that are captured: are friends, have worked on a project together, are family

members, etc. We can incorporate this kind of structure by stratifying the nodes of the network

across multiple “layers” or dimensions. A multilayer network allows us to represent multiple

types of relationships between nodes in a unified way.⁶ Throughout this work, we have adapted

the multilayer notation and terminology from Ref. [114].

In the multilayer formulation, all edges representing a certain kind of relationship are

⁶The general multilayer network structure developed in [114] includes multidimensional networks, multiplex networks,
networks of networks, hypernetworks, and others.
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present within a layer. We show a depiction of such a network in Figure 1.4. In addition, we can

allow for relationships for nodes in different layers encoded by the interlayer edges (shown by

dashed lines in Figure 1.4). Typically, the interlayer edges encode the persistence of identity of

Figure 1.4: Depiction of a multilayer network with three different layers. Solid lines represent edges
within each layer of the network while dashed lines represent edges across layers (interlayer edges). Node col-
ors represent communities within the network. Note that if this were to represent a temporal network, we have
deliberately only included a few of the interlayer edges for visibility. We have highlighted a node in the network
that extends across all three layers as well as an example of a node-layer.

nodes across the various layers. For example, consider a multilayer where each layer represents

observed email correspondence between the executives of a firm within a given time frame. Each

executive would be represented in each layer by a specific node, with nodes in adjacent layers

(representing neighboring time frames) connected by an interlayer edge. To distinguish between

the single node or object of analysis across all layers, and its representation in any given layer, we

refer to a particular node as it exists within a layer as a “node-layer”.

There are several ways to encode a multilayer network. In the single-layer (also referred

to as monoplex) network, we represented the edges between all pairs of nodes through a single,

A ∈ RN×N matrix, with each element Aij indicating the presence of an edge between nodes i and

j (and the weight of the edge in the weighted case). In the multilayer case, we can represent each

layer as Al, with l ∈ [1, L], indexing the layer, and the whole of the network as a single tensor
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M ∈ RN×N×L, where L is the number of layers in the multilayer network.⁷ It is common to

flattenM into anA ∈ RNL×NL, “supra-adjacency” matrix, where each node k ∈ [1, N ] is

identified with node-layers indexed {i, i+N, . . . , i+N(L− 1)}. We use the notation i ∼= j to

denote that two node-layers are identified with the same node. Typically we index the node-layers

such that i ∼= i+N ∼= ... ∼= i+N ∗ (L− 1). We use the “supra-adjacency” notation in the rest of

the paper and i, j, k to refer to node-layers in the network unless otherwise specified. We also use

a single vector to keep track of which layer each node-layer resides in: l⃗ = [l1, ..., lNL] where

li ∈ [1, L] specifies the layer that node-layer i is in. We use Vli to denote the set of node-layers in

layer li (i.e. nodes in the same layer as i including i itself). In addition to the edges within each of

the layers, we also have to specify the overall topology across the layers. We encode the interlayer

topology through the matrixC ∈ RN∗L×N∗L. We only allow elements ofC to be non-zero if the

corresponding node-layers are in different layers : Cij = 0 if li = lj . Typically each node-layer will

be connected to a subset of the other node-layers corresponding to the same node in different

layers, but C can represent any number of interlayer topologies.

There are many different kinds of multilayer topologies that could be encoded by the

supra-adjacency format. Two of the most common types are the (discrete layer) temporal

topology and the multiplex topology. In the temporal topology, we have an inherent ordering of

the layers, usually representing observations of our system over time. Node-layers are typically

connected by interlayer edges only for adjacent layers. Examples of temporal networks include

observed functional connectivity patterns across regions in the brain at different times while

performing a cognitive task [19] or observed patient referral patterns for a group of physicians

across different years [228]. Multilayer networks can also encode a multiplex topology. Each

layer represents a different kind of relationship; however, there is no inherent ordering on the

layers. Identified node-layers are connected across all possible pairs of layers. Examples of

multiplex multilayer networks could include an observed social network where edges are

constructed separately from phone, text, and face-to-face contact information [94], or perhaps a

transportation network of the London underground where different lines connecting various

⁷Tomake the collection of layer-adjacencies into a single tensor, we need each layer to have the same set of node-layers.
In the case where a node is not present in a given layer (i.e. does not have a node-layer in that layer), we add in a place
holder node-layer that remains unconnected to everything else in that layer.
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stops are represented by different layers[196]. It is also possible to have a multilayer network

with both multiplex and temporal topology. In these, we can imagine several “dimensions” of

layers, with each layer being described by multiple aspect labels. For example we could observe a

multiplexed social network over many time frames.

The earliest approaches to multilayer network analysis attempted to characterize them on

the basis of well established single layer metrics. For example, to detect community structure,

researchers attempted to apply single layer tools on each layer of the network individually, and

then perform post-hoc alignment of the different layers [15]. There have also been attempts to

map multilayer networks into a monoplex network and apply existing single layer methods. [25].

There are several different ways to collapse a multilayer network into a single layer network (for

instance an using an OR operation on the existence of any edges or requiring an edge to be

present in every layer [218]). While it is possible that the loss of information from collapsing does

not significantly affect the downstream analysis, there are many cases when the multilayer

structure is vital to understanding how a system behaves. For instance, in modeling the spread of

a disease, the temporal arrangement of the edges can make a huge difference as to whether

contagion occurs [131]. There has been a push to extend the definitions and metrics used to

characterize single layer networks onto multilayer networks including various measures of

centrality, random walks, clustering coefficients, as well as notions of communities. In addition a

number of new metrics have arisen that have no single layer analog. These include metrics such

as the global overlap-the number of common edges present by any two layers [26]. Likewise, the

degree of multiplexity is the number of nodes with multiple edge types between them divided by

the total number of adjacent nodes [151]. These measures are inherently multilayer and provide

additional tools for researchers to characterize the statistical properties of these networks.

Several of the results that we present in this thesis concern the identification and

characterization of the structure of multilayer networks through the development of community

detection tools. In the next section we provide an introduction to the challenge of community

detection in networks, beginning with single layer and then discussing several approaches for

multilayer networks.
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1.2 Community Detection in Networks

Network analyses are useful in the context of analyzing real world data because in most

networks of interest, placement of the edges is not totally random. In fact, networks tend to

exhibit numerous types of higher order structure as a result of the underlying processes that

formed the network. Community detection is the development of models and algorithms to

identify and interpret such higher order structure in networks. In essence it is the attempt to

divide the network into “communities” in order to provide greater interpretability to the network

data. In its most basic form, community detection falls under the category of “unsupervised

learning”: the attempt to discover broader patterns within a dataset without any known labels of

the data.⁸ Although there is no single definition of what defines network community structure,

many approaches seek to identify groups of nodes which are more densely connected to each

other than to the rest of the network [62, 167, 186]. The task of community detection is therefore

to assign a label to each node such that this definition is optimally satisfied. Although this seems

like a relatively straightforward notion, there are many ways in which it has been more precisely

formulated, and there are many, many tools available to compute the communities of a network.

Some of the earliest work in the vein of community detection was on the problems of graph

partitioning that arise in several contexts in computer science. In graph partitioning problems,

the number and size of clusters is known in advance. For example the min-cut/max-flow problem

depicted in Figure 1.5 seeks to identify a cut that minimizes the number of severed edges.

This min-cut problem is well defined and has an answer for any graph that is identifiable

in polynomial time [72]. However, identification of the solution might not provide much insight

into the structure of the network itself. The goal of community detection is much broader in that

it seeks to identify partitions of the network and provide interpretability to those results. Thus

community detection deals with a broad range of questions: How well grouped or distinguished

are the communities? How certain am I that communities exist in the first place? Are certain

nodes more classifiable than others? Can I find communities within communities (i.e. at different

scales)?

⁸More recently, a few approaches have attempted to take known, node metadata into account, which could be consider
a “semi-supervised” approach. For examples see [166],[213] and [56]
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Figure 1.5: The min-cut, graph partitioning problem. The goal of the min-cut problem is to partition a
graph into k-parts with a minimum sized cut. A cut of a graph is the removal of edges such that subset of
nodes defined by a partition are disjoint. The size of the cut is the number of edges removed (or some func-
tion thereof). In this figure, there is a cut of size 2 that separates the green nodes from the blue nodes. Note
that there are other cuts of this size in this particular example network.

There is a huge (and ever growing) body of research devoted to the identification of

communities in networks. Here, we provide a brief overview of two widely used community

detection methods: modularity and stochastic block models. We comment on how they relate to

each other and on the particular benefits of each in addressing the challenges enumerated above.

We provide an overview of other challenges that fall within the domain of community detection.

We conclude this section with a discussion of how results of community detection are interpreted

and applied to real world data.

1.2.1 M

There are a number of community detection algorithms that define a score of how well a

partition “divides” a network, then, try to find partitions which optimize this score. Broadly

speaking, if we write down a score function, f(G, cG), with the network, G, and cG = [c1, . . . , cN ], a

partition of the network as inputs, then we can attempt to identify the partition that achieves the

maximum score:

c∗ = argmax
cG

f(G, cG) .

One such quality function, developed by Newman and Girvan that has become a popular

mainstay of community detection is called modularity [168]. Modularity has the form:

Q =
1

2m

∑
i,j

(

internal edges︷︸︸︷
Aij − γ

kikj
2m︸ ︷︷ ︸

expected edges

)δ(ci, cj) , (1.5)
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where δ(ci, cj) is one if nodes i and j belonging to the same community and zero otherwise, and γ

is a user specified “resolution” parameter that was first added by Reichardt and Bornholdt [191]

in showing the connection between modularity and the Potts spin glass model from statistical

mechanics. We discuss the resolution parameter in more detail later on in this section.

Originally, Newman and Girvan developed modularity as a metric to select an appropriate

threshold in a different hierarchical clustering approach based on the removal of edges in order of

decreasing betweenness. However, they and others soon developed algorithms to optimize

modularity directly [27, 163].

To explain the form of modularity, in Equation 1.5, we have labeled the two terms that

contribute to a partition’s modularity score on a given network. The first term sums over the

elements of the adjacency matrix that are internal to any of the communities. That is, how many

of the observed edges fall between nodes that are in the same community? This aligns well with

the idea that a good partition of the network should be dense within each community. However, if

this were the only term in our function (or we set γ = 0), one could trivially maximize modularity

by putting every node in a connected component into the same community. Thus, the second

term in Equation 1.5 gives the number of internal edges one would expect to see under a random

model of networks called the configuration model (see section 1.1.2 for details). We sum the

probability of each edge occurring, kikj2m , over all possible pairs of nodes within each community.

The modularity score tells us how the number of edges we have observed within each community

compares to what we would expect if we sampled the network under the configuration model with

the partition fixed. This is then normalized by the 1
2m prefactor such that the maximum value of

modularity is 1. Since modularity was introduced, numerous other null models for different

network topologies have been developed including those for directed networks [8, 132], bipartite

networks [14], signed networks [74, 222], and multilayer networks [156], which is discussed in

more detail in Section 1.2.1.

While modularity was developed based on the structural properties of a network (i.e. the

degree distribution), Lambiotte et al. showed that it can also be derived by considering the

dynamics of a random walk taking place on the network [122]. They define stability as the

likelihood of a random walker remaining within the same community after the passage of a

certain amount of time. They show that the formulation for stability, under the assumption of a
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continuous-time random walk via a Poisson process, is approximated to first order by modularity,

with the time scale of the random walk related to the resolution parameter. This provides an

interesting connection between the strength of a community and the diffusion of a random

walker on a network. A good partitioning of the network is one in which a random walker on the

network is more likely to remain within a community than leave it over a small enough time scale.

We note there is yet another connection between modularity and the field of statistical

mechanics. As we shall further explore in Chapter 3, modularity also arises in the context of a

spin-glass system of interacting particles.

O

Although modularity was initially constructed as a quality metric for a different

community detection method, it wasn’t long before approaches were developed to optimize

modularity directly. By writing Equation 1.5 in terms of matrix multiplication, Newman

developed a spectral based approach to identifying a high modularity partition [164]. Another

commonly used approach is known as the “Louvain” algorithm, after the corresponding institute

in France where it was developed by Blondel et al. [27]. The Louvain method shown in Figure 1.6,

begins by starting each node in its own community, then greedily attempting to swap nodes

between communities to increase the modularity score. Once no community swaps are found, all

nodes that are within the same community are then merged into a single, collapsed node in a

condensed graph. Multi-edges and self loops are placed in the condensed graph so the value of

modularity is maintained. Node-swaps between communities in the condensed graph correspond

to the same changes in modularity for the original graph. Once no possible moves are found in a

condensed graph, each node is assigned to the community corresponding to all the nodes it was

merged with at the highest level condensed graph. The advantage of collapsing the graph after no

moves can be found is that the algorithm can identify communities whose combination yields an

overall increase in modularity, even though there is no series of individual moves where each

move gives an increase. In other words it helps the algorithm overcome the problem of getting

trapped in local optima.

The Louvain algorithm is fast and usually finds a partition with fairly high modularity. It

has also been extended to multiple different modularity-like functions with very fast and efficient

15



code in the Genlouvain package [104]. More recently, Traag et al. released an improvement to

the Louvain approach which they called the Leiden algorithm [225]. Their approach combats the

tendency of Louvain to produce badly (or completely disconnected) communities by locally

splitting nodes within each community of the partition before aggregating nodes into a

condensed graph. We present results using the Leiden algorithm on several datasets in Chapter 2.

Figure 1.6: The Louvain algorithm developed by Blondel et al. [27]. Each node starts in its own commu-
nity, then each node is moved (in random order) into the community that gives the largest increase in modular-
ity. Once no more moves can be identified the graph is condensed (with self loops and multiedges) on the basis
of the partition and the algorithm is repeated. This figure was taken directly from [27].

However, as all of these are greedy algorithms, they are subject to entrapment in local

optima. In fact all known algorithms with a feasible run time (on anything beyond small

networks) will only produce a locally optimal partition, because the problem of optimizing

modularity has been shown to be NP-hard [28]⁹. This is not surprising given the number of

possible partitions of a network grows exponentially with the size of the network. To counter this,

one typically runs an algorithmmany times stochastically, randomly choosing the order of moves,

with the goal of exploring as much of the space as possible. However, incorporating information

from the many stochastic runs is made more challenging by the introduction of one or more free

parameters into the formulation for modularity. An approach to combining the results from

many different algorithmic runs is one of the contributions of this thesis developed in Chapter 2.

⁹There is a linear programming approach to modularity that find a guaranteed optimum, however this runs in exponen-
tial time. See Ref. [28] for details.
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One of the major issues with modularity, initially pointed out by [63], is that under certain

conditions it will fail to detect smaller clusters within a larger network. They show that the

condition for a community contributing positively to the modularity score depends on the total

number of edges within the network rather than a local comparison of relative edge densities

inside and outside of the community. If the number of edges within two distinct modules

connected to each other weakly is less than some fraction of the total edges within the network,

modularity will be optimized by merging the communities. This is not merely a failure of

algorithms attempting to maximize modularity; it is a fault in the metric itself and indeed any

such metric that uses a global null model. The resolution limit occurs because if the network

grows larger while keeping the size of individual modules fixed, the number of expected edges

between any two modules vanishes. Thus even a single link between modules can be enough to

increase modularity by merging them if the surrounding network is large enough.

Fortunato and Barthélemy provide several examples of real world networks where they

were able to identify additional sub-communities by re-applying modularity optimization to the

subgraphs induced by the individual communities identified by the first pass of modularity [63].

Kumpula et al. applied a similar approach to identify the conditions when modularity-based

methods would correctly identify subcommunities with the incorporation of the resolution

parameter, γ [119]. The resolution parameter was originally introduced by Reichardt and

Bornholdt [191] when they showed that modularity, as originally formulated, was a specific

version of a more general spin glass problem. We discuss the connection between modularity and

the spin glass problem in greater detail in Chapter 3. Although the parameter was not specifically

meant to address the resolution limit, they show how the communities identified under various

values of γ yield a hierarchy of communities at different scales. Kumpula et al. show that by

identifying communities across a range of the resolution parameter, one can overcome the

resolution limit. They caution, though, that one should question the validity of the hierarchical

structure observed by this approach due to the tendency of modularity to artificial merge

communities. Several other recursive approaches have been proposed that attempt to refine

identified partitions as different scales using spectral methods and local graph searches
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[194, 200].

Arenas et al. contend that the resolution limit arises from the existence of community

structure at multiple scales in most networks rather than the intrinsic defect in modularity [7].

Organization at multiple scales is a natural feature of complex systems, and the ability to tune

modularity to select for communities at different scales can be seen as a feature rather than a bug.

They develop an approach that adds a self loop to each node and then varies the weight of the self

loop while using the original version of modularity (γ = 1) to identify communities at different

scales [7]. Traag et al. suggest that for a community detection approach to be truly

“resolution-limit free”, that method should not split the induced subgraph of the individual

communities identified for some level of the resolution parameter [223]. To create an approach

that is truly resolution free, the objective function cannot rely on a null model that is dependent

on the global properties of the graph (as pij =
kikj
2m clearly does). Despite issues posed by the

resolution limit of detection, modularity-based approaches remain a popular and widely used

approach to community detection, largely in part due to the existence of easy to use, fast

implementations. While there is no a priori correct value of γ for arbitrary networks, there are

clearly networks for which a particular choice or range of γ’s produces well clustered results.

Exploring and characterizing how the identified structure changes as γ is varied remains an

important and practical question in the field. Chapter 2 in this thesis contributes the CHAMP

method to further address this question.

There are a number of other deficiencies to modularity-based approaches that have been

pointed out. Good et al. show that the modularity function exhibits a high degree of degeneracy

on most networks [76]. That is to say for most networks there exists a large number of

structurally dissimilar, high modularity partitions that make identifying a unique, optimal

solution quite challenging. Nevertheless, modularity-based community detection continues to be

widely employed, and as such, we offer several approaches in 2 and 3 of this thesis to help

surmount these well known deficiencies.

M M

Another reason why modularity remains popular is that it is one of only a few principled

approaches for the detection of communities within multilayered networks. Additionally, there
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are very fast and efficient implementations of multilayer modularity that is well maintained [101].

Mucha et al. developed multilayer modularity by extending the Laplacian dynamics approach by

Lambiotte et al. in [122] to include the conditional probabilities of traveling along various edge

types [156]. The equation they derived can be written in the supra-adjacency form (see

Section 1.1.3 for notation):

Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj) (1.6)

where i and j each index the distinct node-layers, Aij is the supra-adjacency encoding the

intralayer edges, Pij describes the expected number of intralayer edges based on the selected

random model(s), Cij encodes the interlayer connections, and ω is the inter-coupling parameter

that sets the strength of the interlayer edges relative to the intra-layer connections. Written in

this form, one can see that like its single layer counter part, multilayer modularity is a trade off

between edges (both interlayer and intralayer) within communities and those expected under the

null model. One can of course choose a variety of null models, even employing different models

across the various layers of the same network. In the original formulation derived by Mucha et

al., the Laplacian dynamics on temporal networks give rise to a within layer restricted

configuration model:

Pij =


didj
2mli

li = lj

0 li ̸= lj

(1.7)

where li is the layer containing node-layer i, (i.e. i ∈ Vli), di =
∑

j Aij , andmli =
∑

i,j∈Vli
Aij is

the total weight of edges in layer li. We see that the null-model in Equation 1.7 is very similar to

that introduced in the original form of modularity in Equation 1.5; the major difference being that

the multilayer null model has a layer specific denominator (2ml, the total edge weight in layer, l),

and is zero for all pairs of node-layers that are not in the same layer. The multilayer nature of

these networks allows for a much larger number of possible null models than in the single-layer

setting and the choice of null model can greatly influence the detected community structure. See

supplement of [156] for null models for bipartite, signed, and directed networks as well as [17] for

examples of other possible null models in a multilayer context.
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Most multilayer approaches to community detection attempt to identify community

structure that persists throughout the various layers (i.e. sets of node-layers in different layers

that in the same community). The multilayer modularity approach encourages identified

node-layers to remain in the same community across the layers of the network through the

interlayer coupling term, ω. This represents another free parameter that must be tuned, which is

one of the major benefits of using the CHAMP approach detailed in Chapter 2. Other approaches

to selecting ω have been tailored specifically for the system being studied (for example see[176]).

Multilayer modularity has been employed successfully in understanding the organization of a

number of systems including long-term changes in voting patterns in the US senate [155, 156],

the evolution of functional modules in the human brain during learning [16, 18], as well as the

prediction of conflict between countries over time based on trading networks [43]. As it continues

to be widely used for the detection of communities across a wide range of multilayer networks, we

hope the novel extensions we provide in Chapters 2 and 3 of this thesis will be found useful by the

general community.

O

One of the main other score-based community detection method is the Infomapmethod

developed by Rosvall and Bergstrom [198]. Like the Lambiotte treatement of modularity

previously discussed, Infomap approaches community detection from the perspective of the

dynamics of a random walk on the network. Rather than compare the stability of a random walk

with respect to the community assignments, Infomap attempts to minimize the information cost

of encoding such a random walk. Each community is given its own coding system for its nodes

and the brevity of the overall encoding trades off between the complexity induced by having

multiple code books, and the decreased size of codes within each community. If a random walk is

likely to stay within a given community, having a shorter code is worth the cost of designating

switches between each community’s set of code assignments. The Infomap approach makes

explicit that a well structure network (i.e. with strong communities) allows for a compressed

encoding of the network. Infomap’s emphasis on efficiently encoding random walks within a

network represents a shift from focusing on the “topological properties of its links” (in the

modularity approach) to “patterns of flow that its structure induces” [198]. Often times the
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communities identified between these two approaches are similar. However, in [198] they

illustrate a couple of cases where the optimal solutions diverge wildly between Infomap and

modularity. The authors suggest that Infomap is more appropriate when the links of the network

“represent patterns of movement among nodes” [198]. Infomap is also one of the few community

detection approaches that has been adapted for multilayer networks [48], as well as several other

extensions (e.g. [56, 199]).

1.2.2 S M N C

While the previously discussed approaches to community detection were based on finding

partitions that optimize some a priori notion of what a good community is, there is also a class of

methods that employ statistical models of communities in network. Like the networks models

discussed in Section 1.1.2, these approaches define a probability distribution over the space of

possible networks, with parameters that reflect the strength and structure of the identified

communities. In this sense, they are usually generative models, meaning that once one has

inferred the parameters of the model from the observed data, one can sample from the model to

create new networks from the distribution. Generally, one attempts to infer the parameters of the

model based on an observed network via a maximum likelihood estimation approach.

There are a number of benefits to fitting a generative model of community structure to

one’s data. Fitting a generative model to the observed data allows one to test whether other

statistical properties of the observed data (degree distribution, clustering coefficient, other

centrality measures, etc.) are significantly different than networks from the generative model.

The generative model can also be useful in assessing the performance of an algorithm over many

different random realizations of a model fit to the real data of interest. The inferred parameters

can also allow for comparing different size networks or for a way to summarize the networks in a

compressed from. For a more detailed discussion of the advantages of generative models of

network structure, as well as another example of a flexible, generative model that can capture

communities, see [135].

The most basic model of community structure, first developed by [91], is known as the

Stochastic Block Model (SBM). In the vanilla SBM, we divide all of the nodes intoK classes, with

each node’s class given by its corresponding element in vector c∗ = [c1, . . . cN ]. The probability of
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any two nodes being connected by an edge is conditional only on the classes of the two nodes. We

encode the probabilities of connection between each possible pair of theK communities with the

K ×K matrix, Θ ∈ RK×K as demonstrated by the example in Figure 1.7.A.

Figure 1.7: Example of a 3 community stochastic block model (without degree correction). A) The
matrix, Θ giving the probabilities of connections within and between the various communities. B) Adjacency
matrix for a network sampled from this model and C) layout of the corresponding network, colored by the block
each node is assigned to.

The probability of an edge between nodes i and node j is given by Θci,cj , the element of Θ

corresponding to the communities of the two nodes. Thus each node is statistically

indistinguishable from any other node within the same block. The probability of an observed

adjacency, given our model parameters is:

P (A|Θ, η) =
∏
i<j

(
Θ
Aij
ci,cj (1−Θci,cj )

1−Aij

)
. (1.8)

We see from Equation 1.8 that the probability of observing an adjacency is given by the

product of the independent probabilities for each edge. This implies that the edges, restricted to

each individual block, are distributed according to an Erdős-Rényi null model (see Section 1.1.2).

This produces generally unrealistic results when applied to real world networks (that have heavy

tailed degree distributions) and tends to disproportionally place high degree nodes together in

the same community. We discuss towards the end of this section a correction to the model that

accounts for more realistic degree distributions.

The goal of fitting the SBM to an observed network is to infer the parameters, Θ and c that
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maximizes the log of our likelihood, logP (A|Θ, c) :

Θ̂, ĉ = argmax
θ,η

(logP (A|Θ, c)) . (1.9)

In other words, we want the maximum likelihood estimate (MLE) of our model. While there is no

closed form solution to this problem, we can use variational techniques such as the

Expectation-Maximization algorithm to identify approximate solutions. In essence, these

methods work by treating c as our “latent variable”; that is we let c becomes a probability

distribution for each node over all the classes,ψ. If we fix ψ, we can analytically find the values for

Θ that maximize our likelihood. On the other hand, for a fixed Θ, there are mean-field

approaches to identify ψ that approaches the lower bound of our likelihood [46], as well as a

belief propagation approach [261].

To account for the heterogenous degree distributions observed in real networks, Karrer

and Newman introduced the degree corrected stochastic block model (dcSBM) [108]. They

modify the probability for an edge between two nodes by incorporating an extra parameter for

each node that dictates that nodes inherent likelihood of participating in an edge. To make their

approach more tractable, rather than treat each edge as a Bernoulli variable, they allow for

multi-edges under their model, with the number of edges being drawn from a Poisson

distribution.¹⁰ In the limit where the size of the network continues to increase while the edge

density remains sparse, these two formulations converge in expectation as the contribution from

multi-edges and self loops becomes negligible.

The likelihood under their model becomes:

P (A|Θ, η) =
∏
i<j

(θiθjΘci,cj )
Aij

Aij !
exp(−θiθjΘci,cj )×

∏
i

(12θ
2
iΘci,ci)

Aij/2

(Aij/2)!
exp(−1

2
θ2iΘci,ci) . (1.10)

where there is now an additional parameter for each node, θi that can be interpreted as the

¹⁰Recall that the Poisson distribution is a discrete distribution over counts with the following probability mass function:
P (X = k) = λk

k!
e−λ.
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probability that an edge connected to community ci is incident to node i. The maximum

likelihood estimate of θi ends up being proportional to the node’s degree, ki; hence the model

appropriately accounts for increased connections between high degree nodes. This model can

also be approximately solved using a variational approach.

There are numerous other extensions of the stochastic block model that have been

proposed. For example, Peixoto introduced a hierarchical, full Bayesian approach that

incorporates priors and hyperpriors for the number and size of communities, the degree

distributions, and the hierarchical nesting of communities at different scales [184]. He proposes

an approach based on a Markov Chain Monte Carlo (MCMC) importance sampling of the

posterior distribution of community memberships given the observed network, which he

implemented in the _ python package [181]. Several variants of the stochastic block

model have also been developed for multilayer networks including fitting individual SBM to each

layer with fixed node classes throughout the various layers [83], allowing for classes switching

within subsets of different layers for multiplex networks [212], as well as a belief propagation

approach for a temporal version known as the Dynamic Stochastic Block Model [70] (which we

describe in more detail in Section 3.3.2). There have also been several tools that attempt to

determine whether or not an observed single layer network is derived from an aggregated

multilayer stochastic block model structure including [229] and [183].

One interesting feature of the stochastic block model is that it can fit to a number of

different types of community architecture. For instance, it could be the case that edges are less

likely to occur within a block than outside of a block (i.e. the off diagonal elements of Θ are larger

than the diagonal elements), which represents a kind of disassortative or bipartite like

community structure. This could represent a network such as a food web where similar nodes are

not those that interact with each other but have similar neighbors (e.g. predators that share the

same prey)[6]. One could also have a core-periphery structure where one, core block is highly

connected internally and to other blocks, but everything else is weekly connected [102]. The

stochastic block model has the flexibility to represent multiple notions of community based on

the requirements of the specific domain.
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E

There is an equivalence between maximum likelihood estimation of the degree corrected

stochastic block model under certain conditions and the optimization of modularity [165]. With

some basic algebra, and dropping the constant terms, we can write the log-likelihood for the

dcSBM as follows :

logP (A|Θ, η) ∝ 1

2

∑
ij

(
AijlogΘci,cj −

kikj
2m

Θci,cj

)
(1.11)

where we have substituted in the degrees ki for what was originally θi based on the maximum

likelihood estimate for a fixed η. The equivalence between the SBM and modularity can be seen

when we restrict ourselves to a particular form of the SBM known as the planted partition model.

In the planted partition model we can have any number of communities, however the elements of

Θ are restricted to one of two values: Θr,s ∈ {pin, pout}. We let pin denote the probability of an

edge connection within each of the communities (i.e. the diagonal elements of Θ) and pout

represent the probability of an edge connection between nodes of different communities (the

off-diagonal elements of Θ). Therefore in the planted partition model, all communities are

assumed to have the same in-group and between group connection rates. We can write out the

elements of Θ as:

Θci,cj = (pin − pout)δci,cj + pout (1.12)

logΘci,cj = (log pin − log pout)δci,cj + log pout . (1.13)

Plugging this into Equation 1.11, we obtain

logP (A|Θ, η) = 1

2

∑
ij

(
Aij(log pin − log pout)δci,cj + log pout −

kikj
2m

(pin − pout)δci,cj + pout

)

=
1

2

∑
ij

(
Aij log

pin
pout

δci,cj + log pout −
kikj
2m

((pin − pout)δci,cj + pout)

)

=
1

2
log

pin
pout

∑
ij

(
Aij −

pin − pout
log pin

pout

kikj
2m

)
δci,cj +m(log pout + pout) . (1.14)
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The community assignments that maximize Equation 1.14 will also maximize the modularity

function for the resolution parameter

γ =
pin − pout
log pin

pout

. (1.15)

Thus we see that if for fixed set of parameters of our planted partition model, pin, pout,K, finding

the community assignments that maximize the likelihood of our SBM is equivalent to optimizing

modularity for a particular choice of γ. Newman suggests that this equivalence can be used in an

iterative manner to identify the correct value of γ for a network as follows: Select an arbitrary

value for γ and run modularity optimization; One can then calculate the values of pin, pout given

the identified communities, as well as the value of γ implied by Equation 1.15; Run modularity

optimization at the updated value of γ and repeat the process until the identified value of γ

converges. This process is not guaranteed to converge, especially in the equivalent multilayer

process which we discuss next. It is also possible that there could be multiple basins of attraction

for networks with community structure at multiple scales. Note that this procedure requires the

number of communities to remain fixed through each iteration in order for the equivalence to

hold, which is problematic as usually the appropriate number of communities is not known a

priori (and, moreover, most modularity optimization codes are not constrained to a specified

number of communities).

There is also an equivalence between certain versions of the multilayer stochastic block

model and multilayer modularity as shown by Pamfil et al. [174]. In the case where the network

has temporal topology and each node-layer in layer l has probability, p of copying its

corresponding node-layer’s community assignment in layer¹¹, l − 1, one can show that the model

implies a similar equivalence for the interlayer coupling parameter, ω:

ω =
ln(1 + p

1−pK)

T ⟨ln plin − ln plout⟩l
(1.16)

where T is the total number of layers, and ⟨, ⟩t denotes the average over the layers. Pamfil et al.

explore the dynamics of an iterative procedure in the (γ, ω) domain analogous to that suggested

¹¹This is the dynamic stochastic block model (DSBM) detailed in Section 3.3.2 with the exception that it is degree cor-
rected within each layer
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by Newman [165], showing how it can be used to identify an optimal (γ̂, ω̂). They also show an

equivalence in the case where there is non-uniform coupling between layers (i.e p is allowed to

vary across layers) and they identify an approximate formula for ω in the case when the topology

of the network is multiplex rather than temporal. The connection between modularity-based

approaches and the variants of the stochastic block model sheds light on why modularity

approaches have been successful as well as on some of the underlying assumption it makes. This

equivalence also leads to a more principled way to selecting appropriate values for (γ, ω).

1.2.3 R

While community detection has been proven to provide valuable insight into network

problems across a wide range of scientific domains, it is, in general, not an ultimate end in and of

itself. Rather, community detection can be thought of a useful approach towards generating and,

in some cases, testing hypotheses. For example, Weng et al. examine how the community

structure within the network of Twitter users influences the spread of viral memes [247]. They

showed that the extent to which memes were “trapped” by the community structure influenced

whether it would take off in the broader community, and they developed a metric to compare the

observed phenomenon with several models of social contagion. Importantly, they were able to

show that incorporating knowledge of the network’s community structure greatly enhances the

ability to predict which memes would go viral. This provides a useful example of how the results

of community detection can provide interpretable features for use in other supervised analyses

further downstream.

While we tend to consider community detection among the “unsupervised” analyses that

extract patterns from the data, the best approach is to develop questions that can be interrogated

from the data before application of the community detection methods. While the details will be

domain specific, examples of the kinds of downstream questions one can ask using community

detection include:

Are there any node attributes that tend to localize across the communities?

Are the community labels themselves useful in predicting a downstream task?

Does the structure I observe in my data suggest a process by which the network arose?
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Knowledge of the particulars of a given dataset as well as of the downstream task will

highly influence the definition of “community” that a researcher will look to use. We have

discussed several conceptions of communities that are assumed by the different community

detection methods detailed in the prior sections. There are also many other approaches to

clustering data that don’t assume the existence of a network at all. The details of the questions

researchers aim to answer, as well as the known laws governing the nature of the network itself

should dictate the types of community detection tools that are applied [149]. For a case study in

several successful applications of community detection to real world problems, see [207]. In this

section we discuss the approaches that have been used to validate and interpret various

community detection algorithms as well as some caveats for these approaches.

A

Like other forms of unsupervised learning, assessing the performance of community

detection algorithms yields its own particular set of challenges. In general, community detection

tools have been assessed on the basis of three criteria: 1) the ability to resolve known community

structure in networks generated from synthetic model 2) alignment of identified communities

with metadata for real world networks for which there is justification of it contributing to

community structure and 3) demonstrated usefulness of detected community structure in the

downstream analysis of real world data. We provide an overview of each of these approaches

below. Understanding the first two approaches requires an understanding of how we compare

identified communities.

M

In this section we discuss several metrics that are available for comparing partitions. In

general, we need a function that quantifies how similar two partitions, c and c∗ are to each other.

Ideally, this function should be high when a similar set of nodes is assigned to each group

between the two partitions and low when there is little concordance. It is also important for such

metric to be permutation invariant so that similarity between the two partitions is not dependent

on the arbitrary ordering of labels assigned to identified groups within each partition. It is for this

reason that simply counting the elements of c and c∗ that agree (also known as the accuracy) is
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not a very useful metric.

A M I Throughout the paper, we use an information theoretic metric

to assess how much the partitions are varying across the dominant domains. Mutual Information

(MI) quantifies the decrease in entropy for one random variable that comes from knowing the

value of a second random variable. Here the two random variables are discrete, community labels

on the nodes. If two partitions are highly similar, knowledge of the community label of node i in

the first partition drastically reduces the uncertainty of the label of node i in the second partition.

We let s and t index the unique labels for c and c∗ respectively, and let ps =
∑

i δci,s/|c| be the

proportion of the nodes of c that belong to community s. Likewise, let p∗t be the proportion of

nodes of c∗ that belong to community t. Finally, let ps,t =
∑

i δci,sδc∗i ,t

|c||c∗| , be the joint proportion for

each pair of community labels s and t. Then we can define the mutual information for the random

variable c and c∗ as :

MI(c, c∗) =
∑
s,t

ps,t log
ps,t
psp∗t

(1.17)

This score can be normalized by the average entropy of the two variables individually to

yield a value between 0 and 1, known as the normalized mutual information [68]. In this thesis,

we use a more stringent, normalized version of the metric introduced by Vinh et al. [235] called

Adjusted Mutual Information (AMI),

AMI(c, c∗) =
MI(c, c∗)− E(MI(c, c∗))

max (H(c),H(c∗))− E(MI(c, c∗))
, (1.18)

whereH(c) = −
∑

s ps log ps is the entropy of the random variable c. The expected value,

E(MI(c, c∗)), is calculated over random partitions sampled from a hypergeometric null

distribution (see [235] for details). The AMI between two partitions equals 1 to indicate perfect

concordance, with the value 0 representing alignment no better than random. AMI tends to be a

more conservative measure of alignment because it is less biased than normalized mutual

information or the Rand Index towards partitions with a larger number of communities [234].

With our multilayer examples, we have applied AMI in two ways to assess different aspects of the

alignment of the discovered partitions. We calculated the AMI between all node-layers and the
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entire partition, each taken as a single vector. We refer to this simply as AMI, and it is the main

metric we use throughout the paper. We also use a layer-averaged version of AMI where we

compute the AMI of the partition induced within each layer with the ground truth, weighted by

the size of the layer:

⟨AMI⟩ =
L∑
l=1

AMI(cl, c∗l )
|l|
N

(1.19)

where cl is the identified partitioning of the node-layers restricted to layer l, c∗l is the

ground-truth communities of the node-layers within layer l, |l| is the number of node-layers in

layer l, andN is the total number of node-layers. ⟨AMI⟩ is useful in assessing how well multilayer

community detection methods are leveraging information across layers to detect communities

within each layer (see discussion in [21] for advantages of a layer averaged metric).

V I Variation of information (VI) is an information theoretic measure

that assess the degree of information lost switching from from one variable to another [146].

Unlike AMI, VI is actually a measure of dissimilarity between two partitions and is a true metric.

This is useful in that one can use VI to compare sets of partitions and it will obey the triangle

inequality. If we index the unique values of c by s as above (i.e. the possible community

assignments) and likewise for c∗ by t, and use the same definitions for ps, p∗t , pst as above, then we

can compute the variation of information as follows:

V I(c, c∗) =
∑
st

−pst
[
log

pst
ps

+ log
pst
p∗t

]
. (1.20)

In the event that the two community assignments overlap perfectly, then pst = ps = p∗t , and both

terms inside each element of the sum will be zero. Variation of information can also be written in

terms of the mutual information between the two clusters:

V I(c, c∗) = H(c) +H(c∗)− 2MI(c, c∗) = H(c|c∗) +H(c∗|c) (1.21)

One issue with Variation of Information is that its maximum value is subject to the

number of communities in a partition and thus the authors suggest normalizing it by either 1
logN
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or 1
2 logK∗ whereK∗ is the maximum bound on the number of communities possible. As a metric

the VI is quite useful for exploring the space of clusters generated by an algorithm, for example if

one wanted to cluster the identified clusters.

O

There are many other metric for assessing the alignment between two community

partitions. There are cases where one knows one of the partitions is the ground truth and might

want to penalize successes and misses differently. The Rand Index [189], for instance, is one of

the pair countingmetrics and is defined by:

RI =
a+ b

CN2
(1.22)

where a is the number of pairs of samples that are within the same community in the ground truth

that are also in the same community in the predicted partition, b is the number of pairs of samples

that are in different communities in the ground truth that are also in different communities in the

predicted partition, and CN2 is the total number of possible pairings of the N samples. This also

has a normalized version that is adjusted for chance, the adjusted Rand index (ARI) [234]. Other

pair counting methods include the Jaccard Index and the Fowlkes-Mallows method [66].

Other measures have been adapted from the realm of supervised learning. The F1 score is

defined as the harmonic mean between the precision and recall [143]. While both of these have

their use, they are largely dependent on having a set of labels to serve as ground truth. For

example, with regards to the F1 score, in order to assess the precision of an identified partition,

one has to have a notion of a true positive. This assumes not only are the class labels aligned

between the two partitions (i.e. that the labels are permuted correctly), but also assigns a

privileged status to matching one community label (a positive prediction) over another (a

negative prediction). For an overview of metrics see [235] and [146]. Throughout this paper we

report the majority of results using AMI.
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1.2.4 B

One of the major approaches to validating community detection algorithms is to show

that a particular method is able to detect communities on networks generated from synthetic

models. For instance, we described in Section 1.2.2 how the SBM is a generative model, meaning

that if I arbitrarily fix the parameter of the model, then I can sample random networks according

to that distribution. While the statistically optimal approach to identifying communities in a

synthetic network is to fit the model that generated the network, synthetic models still provide a

useful way to test and compare performance across different algorithms. Furthermore, there are

a number of more complicated and realistic generative models for which there is not a tractable

approach to inferring the parameters of the model from the observed data. One such widely used

synthetic model would be the Lancichinetti-Fortunato-Radicchi (LFR) benchmark model

community detection [125]. The LFR model seeks to generate networks with degree distributions

and community sizes that are both captured by power laws, hoping to match the more

heterogenous distributions found in real world networks. Another flexible set of multilayer

models was developed by Bazzi et al. to capture how various interlayer topologies can influence

community structure across layers [21]. We use both of these models to benchmark our belief

propagation approach in Chapter 3. Synthetic models like these are very useful in that because we

know the ground truth community assignments used to generate samples from the model, we can

reliably assess the performance of our algorithm. Furthermore, we can compare multiple

community detection algorithms across a range of parameters for the model to assess the

scenarios where different approaches are optimal. The downside of using synthetic data is that

most models are drastically more simplistic than real-world datasets and each model assumes a

particular notion of communities that might not align with the assumptions of the algorithm.

Thus it is good practice to test any algorithm across multiple synthetic benchmark sets, and as

wide a range of parameters as possible to understand its specific benefits and limitation.

1.2.5 A

Given the limitations of evaluating the performance of a community detection algorithm

on synthetic data alone, we also suggest the testing of algorithms across real world datasets as
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well. This enables the researcher to see how the algorithm will hold up when applied across data

that is noisy with heterogenous distributions, generated from an unknown process. While this

sounds at first blush like the ideal way to test methods, the main challenge with using real world

data is that in general, we don’t know what the underlying structure (if there is any) is for most

networks. Usually a network is simply observed or constructed (with partial information) and we

can’t observe the latent process that gives rise to propensities for groups of nodes to form

communities. As a proxy measure for the real world datasets, researchers commonly look for

alignment between the detected communities and known node-attributes or metadata. This make

sense if there is good reason, a priori, to believe that the metadata would be highly influential in

contributing to the structure of the network. For instance, in both Chapters 2 and 3 we assess the

results of our approach on the NCAA College Football network compiled in [58, 71]. In this

network, each node represents the football team for a given university, while each edge represents

whether or not two particular teams played each other in the 2000-2001 season. The metadata

that we use to assess the results of our algorithm is the knowledge of which conference each team

belongs to. Because the overall schedule of games is designed to produce a ranking within each

conference, we know that the structure of the network should largely be determined by these

group memberships. Thus any results produced from a community detection should strongly

align with the conference labels. Similarly, there are other datasets for which there is good reason

to believe known metadata reflects the structure of the network. For instance a protein-protein

interaction network might have labels denoting the biological function for each gene/protein. It is

fairly plausible to believe that interacting genes should be likely to be involved in the same or

similar functions. ¹²

However, the metadata approach to evaluating community detection algorithms has

recently been critiqued by Peel et al. in [179]. They point out that failure to identify communities

that are well aligned with the metadata of a given network could be caused by: 1) there is no

detectable community structure in the network 2), the metadata attribute in question did not

significantly contribute to the detected structure within a network, or 3) the algorithm under

evaluation simply performed poorly. They frame the challenge of community detection as an

¹²One should be careful that this standard is not applied circularly. Formany genes, the function has not been definitely
shown, it is just deduced from the set of interactions the gene has.
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inverse problem: assuming that there is a process that generates an observed network from the

ground-truth community labels, the challenge of community detection is then to find the inverse

of that mapping from the network we observe to those community labels. Without knowing either

the original process to construct the network, or the original community assignments, there are

not enough constraints on this problem to enforce a unique solution. By substituting the

metadata labels for the unknown ground-truth community assignments, we provide more

constraints to the problem. However, Peel et al. argue that this “simultaneously tests the

metadata’s relevance and the algorithm’s performance, with no ability to differentiate between

the two” [179]. They suggest a test for assessing how well a given metadata explains the structure

of a network under a given statistical model. They also introduce a variant of the SBM called

neoSBM that applies a penalty to the standard SBMmodel for switching a node out of the

community label dictated by its metadata. By varying the cost of switching from the metadata

labels to the communities implied under the SBM, their method can assess whether the metadata

is capturing a completely different aspect of the network’s structure than the SBMmodel.

Regardless, one should use caution when assessing the performance of a community detection

algorithm with metadata and should not rely exclusively on misalignment between it and

detected communities as proof that an algorithm performs poorly.

1.2.6 S

There has also been a push to develop tools for assessing whether or not detectable

community structure is present in a network at all. Most algorithms will produce a clustering of

the network regardless of whether or not the input network is well partitioned. While many

approaches such as modularity do provide a “score” of the clustering, these values are often

difficult to interpret and can be misleading. Modularity, for example, can be quite high for certain

classes of random graphs including trees [10], graphs with constant average degree [49], as well

as even Erdős-Rényi graphs [259]. Reichart and Bornholdt offer a formula for the expected

modularity under the partitioning of a random ER graph based on the ground state of a q-state

Potts model [192], in addition to other limits on detectability imposed by the “resolution-limit”

discussed above [123]. Hard limits on the detectability of communities under the planted

partition version stochastic block model have also been derived in [50] as well as an optimal
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approach for recovering those communities [153]. Nadakuditi and Newman showed that

modularity also worked all the way down to this limit for the planted partition model [160].

Detectability limits have also been explored for networks with heterogenous degree distributions

[188], hierarchical structure [180, 204], and in the case of different multilayer aggregation

strategies for multiplex multilayer networks [218]. Many of these approaches characterize

detectability as the conditions under which the eigenvalues associated with community structure

emerge from the bulk structure for a particular matrix representation of the network

[160, 204, 218]

Knowledge of these detectability limits can allow one to assess whether or not the

observed network and learned parameters are within the detectability regime for a given

community model. They also provide important benchmarks to assess whether a given method is

performing optimally for synthetic networks generated under the model for which the limits have

been derived. However, there is an ongoing need for methods that can assess the significance of

detected communities on real world data for more flexible models. The contribution of our thesis

towards this problem is detailed in Chapter 3, where we present a modularity-based, belief

propagation approach towards detecting significant community structure in multilayer networks.

1.3 Network based approaches in genomics and oncology

The advent of large scale “omics” data in recent years has allowed us to probe the depths

of molecular biology in ways that were hitherto impossible. With such large increases in the scale

of available information also comes an increased awareness of the complexity of the underlying

biology as well as the need for a greater array of analytical tools to make sense of these systems.

This is especially true in the realm of oncology where we have seen nation-wide efforts to collect

and characterize genomic data from many different cancer types with the ultimate goal of

developing personalized therapies. Network analyses have played a key role in being able to

synthesize the many disparate molecular sources of information as well as in identification and

interpretation of the underlying biological patterns uncovered by these new high throughput

assays. One of the aims of this thesis is to highlight the success that applications of

networks-based analyses have had in the field of oncology, especially in the interpretation of large
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scale genomics data. In this section, we walk the reader through several broad applications of

network science to problems in oncology including the representation of the human genome using

different sets of networks, the identification of driver mutations and pathways in various cancers,

and the characterizations of new molecular subtypes on the basis of multiple data sources.

1.3.1 R

One of the main ways that network analyses have been applied to genomics research is in

representing the vast array of genes/proteins interactions captured by various molecular assays

and experiments. Protein-protein interaction (PPI) networks attempt to encapsulate the sum

total of interactions between genes based on different lines of evidence. This has been particularly

impacted by the ability to conduct different kinds of high throughput assays including genomics,

transciptomics, metabolomics, and proteomics. With the development of these assays, there has

been a rise in databases and analysis tools that seek to compile/curate known interactions as well

as predict new ones. There are many different databases that differ in how evidence is compiled,

what lines of evidence are accepted, and what species are included [116].

Broadly speaking, databases can be characterized as either primary databases that seek to

compile interactions from individual sources (IntAct [110], BioGRID [170]), or secondary

databases that collect and/or computationally predict interactions from multiple primary sources

(STRING [216], HumanNet2 [111], HINT [45]). Interactions in the primary databases such as

BioGRID are derived from the primary literature (using a mix of data mining and hand curation)

[170]. Secondary tools, however, such as HumanNet2 include links inferred from various sources

including predicted links from the observed network topology; the mining co-citations in the

genomics literature; and the occurrence of interlogs in other species [111]. Many of these

networks can be treated as inherently multilayered, representing a number of factors. For

example, the STRING-db characterizes edges not only on the types of evidence available

(co-expression, experimental/biochemical, co-mentioned in PubMed Abstracs, etc.), but also

based on the type of functional association (stable physical associations, transient binding,

substrate chaining, information relay, etc.) [216]. In some contexts, it is useful to conceptualize

these different types of functional relationships as different layers within the network.
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Figure 1.8: A portion of the STRING PPI for the human genome. We have selected the top 83000
edges and removed all nodes with zero degree, leaving 10641 vertices. We have applied the Leiden algorithm
[225], to identify 34 communities within the network, which we have denoted using the color of the nodes.
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These databases of PPI’s have been a boon for the application of networks-based analyses

toward many different problems. Mapping the space of functional interactions between genes has

provided one of the largest sources of evidence for predicting functions for many proteins. For

example, the popular Gene Ontology (GO) annotations can be predicted on the basis of

associations within mapped protein-protein interaction networks [52, 257]. In pharmacology,

everything from the prediction of possible drug targets to understanding side effect profiles has

been augmented by the incorporation of PPI’s [24]. These databases are also widely used to infer

disease-gene association: genes that are strongly connected in the PPI to known disease causing

genes might also be involved in the pathogenesis of a disease [96]. Several of the approaches in

the following section incorporate the protein-protein interaction network towards understanding

cancer biology.

There has also been a rise in other types of networks that seek to model a more limited set

of interactions among genes or other types of regulatory molecules. For example transcription

regulatory networks attempt to curate known interactions between genes and regulatory

molecules such as transcription factors and microRNA’s [80, 140]. There are also networks that

represent the metabolic pathways and reactions such as KEGG [106], as well as networks of the

many small molecules (proteins, amino acids, carbohydrates, etc.) and their chemical/enzymatic

relationship within the human body [33, 248]. See [264] for an overview of the different kinds of

genomic networks that have been constructed as well as details about the type of graph structures

used to represent them (e.g. bipartite, directed, etc.).

1.3.2 I

One of the hallmarks of cancer is the dysregulation of normal genomic signals, either

through mutations or through aberrant epigenetic changes. Most cancers are characterized by

genomic instability, with the resulting cascade of mutations leading to the bypassing of normal

regulatory processes. While mutations normally accumulate in cells throughout the body over the

course of one’s lifetime, with the majority of them being non-impactful, in the case of cancer,

mutations are acquired at an increased rate. One of the main challenges in the field of cancer

genomics is to distinguish between the “driver” mutations that are contributing to development

and survival of a tumor, and the many “passenger” mutations that are present by random chance.
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Examining the most frequently mutated genes across many different tumor samples has revealed

a few highly mutated driver genes. For example TP53 or PIK3CA were two of the earliest

identified driver genes in breast cancer [12, 202] based on high mutation frequencies in these

genes. More recent approaches look for genes that are more frequently mutated than expected

under the estimated background mutation rate, which can vary across tumor types as well as

individual patients [126]. However even the most common mutations in breast cancer only occur

in 35% of cases, while most mutations are relatively rare leading to a “fat-tailed” distribution of

mutation frequencies [54, 69]. Frequency of mutations in the various genes also differs markedly

across cancer types and generally speaking, mutations in several genes are required for cancer to

develop and spread [141, 215]. Not only is landscape of mutations quite variable across different

tumors; we even see remarkable heterogeneity in the mutations present across the individual

cells of the same tumor as new mutations are continually acquired [88]. This can have large

implications for the ability of cancer cells to develop resistance to therapies.

In light of the finding that most mutations are relatively rare, there has been a large push

to characterize the common genomic pathways that are dysregulated across different cancers. The

underlying assumption is that while most individual mutations are rare, alterations at the level of

specific functional genomic pathways are more common, leading to the much lower levels of

phenotypic heterogeneity observed within cancer subtypes. The hope is that if by leveraging the

map of functional associations across all genes, more frequently occurring patterns of genomic

disruptions would emerge. Many approaches test for significantly different mutation rates at the

level of predefined pathways. Although designed for gene expression analysis, tools such as

DAVID [95] or GOstat[22] can also be used on mutational significance test scores. For example,

Lin et al. derive a group Cancer Mutational Prevalence (CaMP) score to assess the significance of

mutation rates for a group of genes and also apply gene set enrichment analysis (GSEA) [214] to

the individual gene CaMP scores based on predefined set of pathways [137]. Other approaches

such as PathScan define a significance score for each pathway at the level of individual tumors,

which are then combined appropriately [246]. These tests overcome many of the limitations of

using individual genes by increasing their power to detect significantly increased mutation rates

aggregated over genes in each pathway. However, these methods suffer from a number of

drawbacks. As the number of gene sets included in the analysis grows, so does the corresponding
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threshold for significance; thus smaller gene sets may not be ever be considered enriched. These

methods largely ignore the overlap of genes across sets as well as the crosstalk between the

multiple pathways needed for cancer to develop. And finally they treat each gene within a group

equally, ignoring the gradations in gene centrality within the underlying network structure [190].

Rather than testing for significance in predefined groups of genes, there are a number of

approaches that directly leverage the underlying network structure of gene interactions to

identify significantly mutated modules. This provides a more unbiased approach that respects the

complexity of the interconnected signally pathways. For instance, HotNet2 projects the vector of

sample mutations onto the PPI network using a “heat diffusion” process [133]. Using the

undirected adjacency for the HINT gene interaction network [45], a directed diffusion matrix is

defined as follows:

F = β(I− (1− β)W)−1 (1.23)

where β is an insulation parameter than controls what fraction of a node’s heat is retained at

steady state, andW = AD−1 is the degree normalized adjacency matrix.¹³ The heat projected

onto each node j from node i is then given by:

Eij = Fijhj , (1.24)

where the vector h encodes the mutation frequency for each gene. Basically, this allows for

mutations that commonly occur in genes that are well connected within the network to be pooled

together in the test for statistical significance. To assess significance of observed subnetworks,

they use a two-stage test based on observed heat values across similar subnetworks within many

different permuted versions of the PPI. Using this approach, they identified several genomic

modules including the MHC class I proteins, cohesin and condensin complexes, and the

telomerase complex that appeared to be important in cancer proliferation, even though all of

their individual genes are fairly rarely mutated [133]. DawnRank is another network based

method to find rare driver mutations. DawnRank looks for an association between individual

mutations and alterations in expression levels for genes that are downstream in the PPI network

¹³Normalizing the adjacency matrix by the degrees makes it into a Markov transition matrix that acts on a column as
input.
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[93]. DawnRank is based on the well known PageRank algorithm[172], though it uses in-degree

of each node rather than the out degree. It computes the following iterative equation for the rank

score of each gene, j:

rt+1
j = (1− dj)fj + dj

N∑
i=1

Ajir
t
i

kini
(1.25)

where dj is the individual gene dampening score, kini is the in-degree of node, i, and fj is the

differential expression score for gene j between tumors and normal samples. This equation tells

us that the rank for a gene, j, is a weighted combination of its differential expression score, and of

the differential expression scores for its neighbors normalized by their degrees. By incorporating

differential expression, as well as the topology of the PPI, DawnRank is able to identify

“personalized” driver mutations that are present in only a single sample.

Community detection tools have also been applied to reveal driver genes and pathways in

the cancer genome. Cantini et al. construct a multilayer, gene-gene network with the different

layers representing transcription factor co-targeting, microRNA co-targeting, the known physical

interactions (the PrePPI network [262]), and finally, the cancer specific co-expression network

[32]. They apply several popular multilayer community detection methods to reveal modules of

genes that extend across the different network layers. They compared networks constructed from

normal tissue samples to those from cancer samples to reveal biological pathways that were

enriched in different cancer types. This highlights how community detection tools can be applied

directly to network representations of the different genomics data to reveal tumor driver

pathways.

These network based approaches will continue to improve as the quality and coverage of

the available PPI networks improve. They will also benefit by the introduction of tissue specific

PPI networks such as GIANT [79], that will allow for information to be shared between different

cancer types in a way that respects tissue-specific differences. There is also an ongoing push to

identify driver mutations within the intergenic regions [243]. Interpretation of mutations within

these unexpressed, regulatory elements that have recently been mapped by the ENCODE project

[57] will no doubt rely on the tools of network analyses to reveal new patterns of genomic

reprogramming in cancer.
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1.3.3 C

Cancer is not itself a single disease entity; it is wildly heterogenous, covering an enormous

span of clinical presentations, with a wide range of ramifications for each patient. This fact has

been recognized for centuries and researchers have sought to develop a schema for classifying

cancers in order to better prognosticate, and in some cases, treat the patient. Until recently,

researchers largely characterized different cancers on the basis of the organ/tissue from which

they arose, and their histological appearances. This is still a mainstay in how cancer types are

conceptualized today, with over 200 different organ sites listed on the NCI’s website

(https://www.cancer.gov/types/by-body-location). However, with the advent of novel

molecular assays has come an increased ability to peer into the inner workings of the cell, and

map the many different ways that the normal biological functions of the cell can become aberrant.

For example, prior to microarray expression assays, breast cancer was largely categorized based

on IHC staining for several extracellular markers including the estrogen receptor (ER), the

progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER). However,

with the ability to probe tens of thousands of gene expression levels using microarrays, Perou et

al. were able to identify 5 different classes of breast cancer subtypes as well as the main sets of

genes contributing to this variation [185]. Importantly this schema was shown to be highly

predictive of overall survival and the rate of metastases [211]. Similar approaches have been

applied to other cancer types such as bladder cancer [44, 107], Glioblastoma Multiform (GBM)

[233], as well as many others. Classes across different cancer types continued to be refined as

more samples are collected and new types of molecular assays (DNA mutations, epigenetic

differences, copy number variants, etc.) all split samples along orthogonal biological differences.

Networks provide a natural platform for coherently integrating the information from

numerous biological assays. Wang et al. created a multiplex, multilayer network of Glioblastoma

Multiform (GBM) samples, with each layer representing similarity relationships defined by a

different biological assay [239]. They used microRNA, methylation, and mRNA expression data

to define proximity between samples in each of the layers, combining an exponential kernel with

a K nearest neighbors approach. They identified communities across the various layers using

multilayer modularity (see Equation 1.6), which they showed were somewhat distinct from the
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canonical subtypes, and importantly, were predictive of difference in survival. One of the issues

with their approach, which they note, is the dependency of the number of identified subtypes on

the choice of K for the KNN construction of the network, as well as the resolution parameter γ for

setting the scale of communities. Presumably these could be tuned to maximize a downstream

parameter such as differences in survival, however this would limit the generalizability of the

identified subtypes to different datasets.

There are a number of challenges associated with developing robust classification

schemata on the basis of high dimensional molecular assays. Like other unsupervised

approaches, it can be difficult to validate the identified results. There are several metrics for

assessing how tightly clustered a dataset is without reference to any ground truth: compactness,

connectedness, or predicted stability [85]. However, there is currently no rigorously developed

process for demonstrating the significance of identified clusters. This is particular troubling given

that for most datasets the number of measured features vastly outnumbers the sample size (i.e.

p≫ n), making it possible to find discriminating features for random partitions of the data. One

common approach to surmounting this problem is to apply network based regularization to the

feature space prior to clustering the data. This regularization enforces that genes that are

proximal to each other in the PPI network also have similar valued coefficients in the classifier

[264]. One way to apply this regularization is through the graph Laplacian, L (see Section 1.1.1 for

additional details about the graph Laplacian).

One such unsupervised approach where graph-based regularization has been successfully

applied is called non-negative matrix factorization (NMF). NMF is similar to principal

component analysis (PCA) in that it seeks to identify a low rank approximation to a given matrix;

unlike PCA, however, the loadings for each factor can only be non-negative (and the factors do

not have to be orthogonal to each other) [130]. If we letX ∈ RN×M represent our genomics

dataset (for example, the expression of N samples acrossM genes), the NMF seeks to minimize

the following objective function:

argmin
U,V

||X−UVT ||2F s.t.U ≥ 0,V ≥ 0 (1.26)

whereU ∈ R+N×k is the loadings for the samples andV ∈ R+M×k is the loadings for each of the
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features, both of which are constrained to be non-negative. The number of loadings, k, can be

chosen to be the lowest integer that achieves an acceptable reconstruction error. In enforcing

positivity on the loadings, NMF achieves a parts based representation of the data with more

interpretability for each of the feature loadings. In genomic applications, each of k loadings for

each samples is referred to as a meta-gene, because each represents a weighted combination of

genes that can be summarized by a single value in the reconstruction [30, 251]. Cai et al.

introduce the concept of regularizing the NMF reconstruction on graph structure features by

including the graph Laplacian in the objective function to minimize:

argmin
U,V

||X−UVT ||2F + λtrace(V TLV ) s.t.U ≥ 0,V ≥ 0 (1.27)

where L ∈ RM×M is the graph Laplacian for the network of the features (such as a PPI network)

and λ is a penalization parameter that sets how strongly the regularization is enforced. This

penalty enforces a smoothness of the loadings for features that are close to each other in the

underlying network structure.

Hofree et al. combined this regularized NMF approach with a network-based smoothing

approach to identify subtypes with ovarian, lung, and uterine cancers on the basis of their

mutational data alone [90]. The discover of cancer subtypes using mutational data alone is

difficult because of the very sparse structure of the data: most pairs of samples will share few if

any mutations even if very similar genomic pathways are disrupted. To overcome this, Hofree et

al. allowed the mutation status of each gene to be propagated across its local neighborhood in the

PPI network using the approach from [232], which is similar in spirit to the diffusion process

from HotNet2 described above. This transforms the data matrix from being sparse and binary to

being dense and continuous, and allows information about the relatedness of genes to be

incorporated. They then apply network-regularized NMF to this dense mutation data, along with

consensus clustering, to identify clinically relevant subtypes that predicted differences in survival.

Most importantly their approach allows for the discovery of which subnetworks in the broader

PPI network were important in determining the cancer type.

Xi et al. used a similar approach to factorize mutation information with regularized NMF

[250]. However in addition to regularizing the gene loadings, they also incorporated gene
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expression data as additional prior information. They construct a sample-sample network based

on the pairwise correlations of gene expression levels. This network is then used to apply

regularization to the sample loadings in the same manner as before. This encourages similar

loadings for samples that are close in the expression correlation network. In addition to revealing

cancer subtypes, they use this approach to identify additional driver mutations on the basis of the

strength of the feature loadings in the sparse representation.

While these unsupervised approaches can categorize different samples in an unbiased

manner, it is often of interest to identify genomic features that are predictive of an important

phenotypic trait, for example whether or not a cancer has metastasized. Networks can be

incorporated into these supervised approaches at numerous points in the process. Chuang et al.

project expression data for each gene onto the PPI network and greedily search for subnetworks

that are discriminatory between the metastatic and non-metastatic samples [38]. Aggregated

expression across each subnetwork is then used downstream as features in a logistic regression

classifier. In other cases, the regularization can be incorporated directly into the supervised

model. Chen et al. [36] apply a network-based penalty to inform the features learned by a

support vector machine (SVM) that has a very similar form to the penalty term in Equation 1.27.

More recently, there has been a push to apply the tools of deep learning to graph structured data.

Graph convolutional networks (GCN) provide the flexibility of deep architectures to modulate

how information is shared across neighborhoods in a network to increase predictive power [113].

Wang et al. deployed this framework successfully to integrate multiple types of genomic

information to predict survival rates across cancer types [238]. These tools offer exciting new

approaches for combining the power of deep learning with the rich prior knowledge of the

underlying PPI networks. For example Rhee et al. [193] trained a relational network downstream

of a PPI based GCN to predict the PAM50 breast cancer subtypes [177] with high accuracy. While

the application of deep approaches suffers from lack of interpretability, incorporation of

graph-based regularization could enable researchers to identify which parts of the gene networks

are most informative for prediction tasks. However, the potential of this field remains largely

untapped.
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1.3.4 O

While the previous sections have focused mainly on methods that incorporate databases

of interaction (PPI) networks, there are a number of other network representations that have

been used successfully in the analysis of oncology datasets. It is often useful to represent

relationships between different classes of objects using a special type of network, a bipartite

network, demonstrated in Figure 1.9. A bipartite network is one where each node belongs to one

of two classes and edges are only allowed between nodes of different classes. For example, Zhao

et al. create a bipartite network where one class of nodes represents a specific cancer type and the

other class represents protein complexes [265]. They connected edges within the network if the

complex as a whole is over-expressed in the cancer tissues, but under-expressed in the tissue type

of origin compared to other tissue types as a whole. They then cluster the nodes of the network

via a hierarchical, agglomerative algorithm (Ward’s method), using the similarity of

neighborhoods between each cancer node to cluster the cancer types. The bipartite

representation is useful in this context because it reveals which sets of altered protein complexes

differentiate cancers from the different tissue types.

Figure 1.9: Example of a bipartite layout. Node classes are indicated by color and shape. Edges are re-
stricted to nodes of different classes (i.e. edges are only present between circles and triangles). This type of
network commonly arises when interactions between objects are measured through a different variable of in-
terest. Examples include the network of actors/actresses and which movies they appeared in, researchers and
papers they have published, the diseases and symptoms they express, etc.

Another important question that has been investigated using bipartite networks is the
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identification of pairs of genes that tend to be significantly co-mutated together within cancers, or

conversely, have less co-occurring mutation than expected by chance (mutual exclusivity). It is

believed that each cancer has a relatively small number of driver mutations [236] that disrupt a

few cancer enabling cellular functions [84]. Driver mutations rarely occur within the same

pathway because there is a loss of selective pressure on other genes in the same pathway once an

initial mutation has already occurred. Similarly, if there are two separate pathways that are both

necessary for cancer to progress, one could expect to see a significant co-occurrence for pairs of

genes in the two pathways. Thus the identification of mutually exclusive or co-occurring

mutations can help to identify novel driver genes [9, 31, 40, 53, 258]. Many of these approaches

rely on incorporating prior information from the known set of gene interactions contained in

several PPI networks; however, Muller et al. used networks in a different manner with their

NetCutter approach to discovering co-occurring/mutually exclusive pairs of mutations [158].

They use a bipartite graph to represent their mutational dataset, using the genes as one class of

nodes and the tumor samples as the other. Each edge in the network connects a tumor sample to

a gene if that specimen contained a mutation in the corresponding gene. Using this framework,

they discuss how various other approaches to identifying significant co-occurrence can be

thought of as various null models on the space of bi-partite networks. They suggest that the

appropriate null model is the bipartite configuration model, which accounts for variation in both

gene and sample mutation rates. Mathematically, this gives rise to the Poisson-binomial

distribution to represent the expected number of occurrences between any two pairs of genes.

Another paper by Canisius et al. also uses a Poisson-binomial model in their DISCOVER method

to identify pairs of co-occurring/mutually exclusive genes, though they don’t frame this directly

as a networks approach [31]. Canisius et al. also use a different approach to estimate

tumor-sample specific probabilities and don’t use an approximation for estimating the

Poisson-binomial distribution. Canisius et al. find that overall, statistically significant

co-occurring mutations are quite rare, while mutually exclusive sets of mutations are more

common, suggesting that negative selection is the dominant force acting on the cancer genomes.

Both of these approaches show how reformulating a question in terms of a network can

provide new insight into the structure of the problem. The network can reveal how constraints on

the data can sometimes produce artificial correlations that need to be accounted for by any model
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in order to reveal true biological relationships. We provide a similar cautionary tale in Chapter 4

of this thesis; by treating our underlying dataset with the same bipartite network model as [158],

we show how previously observed correlations mostly arise from constraints on the data itself

rather than the underlying biology.

In this section we have shown how networks have been used to represent relational data

between genes/proteins, as well as how that prior information can be used to inform specific

tasks. We examined how networks can be to identify “driver genes” in the context of the fat-tail

distribution, and how network based regularization can be used for both subtype identification

and for downstream prediction. Finally we examined how other network representations can be

useful in identifying protein complex association with different cancer types or revealing

mutually exclusive sets of driver mutations. In Chapter 4, we will further demonstrate how a

networks-based approach can yield insight into predicting an important genomic readout, tumor

mutational burden. We close this chapter with a short outline of the entire thesis with links to the

relevant publications for each chapter.

1.4 Outline of thesis

Chapter 1 Introduction:We provide the necessary background on networks for the reader to grasp

the concepts detailed in the subsequent chapters. We also provide an overview of

community detection in networks with a particular focus on modularity-based approaches.

We detail some of the drawbacks of these approaches, providing additional justification for

methods developed in Chapters 2 and 3. We conclude the chapter with an overview of how

network analyses have been used in the field of oncology, setting the stage for Chapter 4.

Chapter 2 CHAMP:We present the Convex Hull of Admissible Modularity Partitions (CHAMP) a

method to select the optimal subset of partitions of a network out of a larger ensemble. We

develop the justification for CHAMP based on current approaches to community detection

and showcase in several practical examples how CHAMP help identified the appropriate

resolution scales for partitioning a network. We close this Chapter with a discussion of
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practical considerations when applying CHAMP and other caveats to be aware of.

Post-Processing Partitions to Identify Domains of Modularity Optimization.

W.H.Weir, S. Emmons, R. Gibson, D. Taylor, P.J. Mucha. Algorithms. 2016.

http://www.mdpi.com/1999-4893/10/3/93

CHAMP package: Convex Hull of Admissible Modularity Partitions in python and

matlab.

W.H.Weir, R. Gibson, P.J. Mucha. 2017-2020.

https://github.com/wweir827/CHAMP

Chapter 3 Multilayer Modularity Belief Propagation:We explore an alternative approach

to optimizing modularity-based on the principles of statistical mechanics and discuss the

benefits of such an approach. We introducemultimodbp, a belief propagation approach to

maximizing multilayer modularity and walk the reader through the justification for our

approach. We provide numerous benchmark and real world examples of our model and

compare it to other state of the art approaches. We conclude by discussing the benefits of

using an ensemble based approach to community detection.

Modularity belief propagation on multilayer networks to detect significant

community structure.

W.H.Weir, B. Walker, L. Zdeborovà, P.J. Mucha. In Submission. 2019.

https://arxiv.org/pdf/1908.04653.pdf

Modbp package: multilayer modularity belief propagation in python.

B. Walker, W. H. Weir. 2019-2020.

https://github.com/bwalker1/ModularityBP_Cpp

Chapter 4 The TMB Paradox: In the final Chapter of this thesis, we apply a networks-based

approach to identify genes whose loss or malfunction is associated with elevated levels of

tumor mutational burden. In particular we address the question of which DNA damage

repair genes are associated with elevated TMB. We show how this challenge can be recast as

a networks problem and this yields insight into why other univariate approaches are
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beholden to sampling bias. We demonstrate the robustness of across different datasets and

showcase the implications our method has for predicting patient response to novel

immunotherapy treatments.
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CHAPTER 2: CONVEXHULL OF ADMISSIBLEMODULARITY
PARTITIONS (CHAMP)

In this chapter we introduce a central problem in modularity-based community, the

resolution limit, and discuss our contribution towards identifying the scales over which

communities exist in a network. Our method, the Convex Hull of Admissible Modularity

Partitions (CHAMP), is not a community detection algorithm per se, but rather a meta tool to

identify the best partitions of a networks starting from a large diverse set. Given a set of

partitions, CHAMP identifies the domain of modularity optimization for each partition —i.e., the

part of parameter-space where it has the largest modularity relative to the input set—discarding

partitions with zero-sized domains to obtain the subset of partitions that are “admissible”

candidate community structures. This subset of the starting partitions represents those that

remain potentially optimal over indicated parameter domains. We begin by presenting the

motivation for and derivation of our method as well as an efficient algorithmic for applying

CHAMP. We demonstrate the utility of CHAMP on several datasets and discuss it’s role in

community detection in both single-layer and multilayer networks. We discuss some of the

drawbacks of the CHAMP approach as a motivation for an additional community detection tool

that we will presented in the next chapter.

2.1 Modularity-based detection and the resolution limit

In Section 1.2.1, we introduced the quantity of modularity in it’s various forms as a

heuristic for optimizing community structure within a network. For single-layer networks, the

original formulation of modularity was derived by Newman and Girvan [168] as a score to

measure the assortativity of node attributes on a network [162] by counting the number of links

between nodes of a certain class and subtracting the expected number of nodes under random

rewiring on the network (with the configuration model). Newman and Girvan then suggested that

this metric would be an appropriate way to select the cut off level for a hierarchical algorithm
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based on successively splitting the network up by removing edges with the highest betweenness

[168]. Ironically, here we see that modularity itself is being used a metric for the appropriate

scale of drawing communities lines for a different method of fragmenting the network.

Eventually, the modularity quantity was optimized directly by spectral [164], and other heuristic

approaches ( e.g. Louvain [27]). For a review of algorithmic approaches to modularity see

Section 1.2.1 as well as [62].

One of the main challenges of the modularity-based approach to community detection, is

the in ability of the algorithm to resolve smaller communities with in a larger network. Fortunado

and Barthélemy demonstrated that modularity score of a given subgraph depends on the size of

the network it is a part of it and not just on a “local” comparison of internal and external edges

[63]. They demonstrate how this implies that for a ring of cliques, optimization of modularity will

force adjacent cliques into a single community, despite the rather obvious natural divide into

cliques. This phenomenon had been noted in real world networks previously, especially larger

biological networks [157]. See Section 1.2.1 for a more detailed account of why modularity tends

to artificially merge communities immersed in a larger network . One solution proposed by

Kumpula et al. [119] was to use the adjusted formula for modularity developed by Reichardt and

Bornholdt [192]:

Q(γ) =
1

2m

∑
i,j

(Aij − γPij) δ(ci, cj) , (2.1)

with the resolution parameter, γ as a free parameter to “balance between missing and

existing links” [192]. Typically Pij =
kikj
2m is used representing the configuration model null for an

undirected network, but there are also other null models that have been suggested. Kumpula et

al. suggested that such a resolution limit would be inherent to all methods that rely on a null

model based on global connectivity probabilities because the expected number of links between

any two small sets of nodes is small at baseline; thus it only takes a few spurious edges to give a

higher modularity by combining smaller communities [119]. Their conclusion is that there is no

single “optimal” resolution for a given network. They suggest looking for communities across

different values of γ and examining the hierarchical structure revealed over a range of γ. Traag et

al suggested an efficient way of scanning the resolution domain when a Constant Potts null model
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is used (Pij = p = constant), which can be interpreted as the minimum density threshold of

internal edges needed to collapse nodes into a community [223]. It is essentially equivalent to

using an Erdös-Renyí null model. They show that under this model, the number of communities

is non-decreasing in γ, allowing for an efficient bisectioning method to identify specific values of

γ where communities are fractionated further [223]. Several other approaches have been

described to address the resolution problem including the addition of weighted, self loops to

nodes on the network [7, 78] or the recursive application of modularity to the subgraphs induced

by the communities until communities no longer split [124].

Despite the resolution limit as well as other draw backs (many of which are discussed in

Sections 1.2.1), it remains a widely used approach to community detection and has been adapted

to account for a number of other network models including directed [132], bipartite [14], signed

[73, 221], and multilayer networks [156]. Regardless of the particular form, all of the

aforementioned methods seek to identify community labels {ci}, such that the particular

definition of modularity, Q is maximized. We emphasize that throughout this work we will use

the term “modularity” in its broadest sense to include any of these generalizations as applied

appropriately to a given data set. Such generalizations include the use of resolution parameter γ,

or multiple resolution parameters for signed networks, and can include one or more

interlayer-coupling parameters for multilayer networks (which we discuss in more detail in

Section 2.4). As the number of tunable parameters grows, the difficulty of trying to explore

identified communities at multiple scales is compounded.

2.2 Scanning the resolution domain

The space of possible partitions is discrete and grows exponentially fast with the number

of nodes within a network. Optimizing over In fact, optimizing Eq 3.10 over the space of possible

communities has been proven to beNP-complete [28]. Because identifying globally optimal

community structure is computationally intractable for most networks (both for modularity and

most other approaches), optimization algorithms are usually “greedy” heuristics that are

guaranteed to find local extrema only. To ensure that a larger range of possible solutions is
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covered, these methods are usually run repeatedly in a stochastic fashion¹ over a range of γ. The

possibly different community structures found by computational heuristics at a particular γ

parameter point [(γ, ω) for multilayer networks] are then typically assessed only at that point

before moving on to generate results at other parameter values. For instance, one might select the

partition with greatest modularity found at that specific value of γ or measure some statistic over

the partitions that were generated at that γ (see, e.g., [1]). Thus a scanning of the resolution

domain typically involves a combination of adjusting the resolution parameter(s) as well as

multiple runs with stochastic initial conditions (as well as other sources of stochasticity within the

algorithm).

In order to determine whether the obtained community structures are “robust” to the γ

selection in any sense, one might look for stable plateaus in the number of communities (see, e.g.,

[60, 61, 78, 142]), consider another metric such as significance [224], directly visualize the

different community assignments across parameters (as in [136, 142]), or compare obtained

communities with other generally-acceptable labels by some measure such as pairwise counting

scores (see, e.g., the discussion in [227]) or information-theoretic measures like Variation of

Information [146] and Normalized Mutual Information [68]. A more

computationally-demanding approach that directly attacks the problem that there is no a priori

notion of what constitutes a “good” value of modularity is to compare the obtained best

modularity at each γ with the distribution of modularities obtained by running community

detection across some selected random-graph model, either on realizations from a model or from

permutations of the data, repeating this process at different γ to identify parameter values where

the obtained communities are strongest relative to the random cases [17]. Additionally, one may

use a given set of partitions to generate a new partition by ensemble learning [171] or consensus

clustering [17, 103, 124].

In many scenarios, the approaches above can produce very clean results. For example, in

Figure 2.1 we have computed 10 partitions each at 300 different values of γ (total of 3000

partitions) using the Leiden algorithm by Traag et al [225] to optimize Equation 3.10. For each

value of γ we compute the average, pairwise Variation of Information (VI) [146] between the ten

¹with random initial conditions or selecting random moves
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Figure 2.1: Application of modularity-based community detection (using Leiden method [225]) on
very detectable 4 community stochastic block model. (non-degree corrected) with N = 1000, < k >= 4,
ϵ = .2, community sizes = [325, 325, 175, 175]. A) We run the Leiden algorithm 10 times for each value of
γ ∈ [.1, 2] in 300 evenly space intervals on a logarithmic scale. B) Layout of the network using force directed
layout, ForceAtlas2 [98], colored according to ground truth communities.

Figure 2.2: Application of Leiden [225] to the human reactome network [105, 120]. We run the Leiden
algorithm 10 times for each value of γ ∈ [.1, 4] in 300 evenly space intervals on a logarithmic scale.
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partitions as well as the average number of communities. The left panel of Figure 2.1.A clearly

shows a range of γ ∈ [.6, 1.3] where both the number of communities identified (red line with

error bars) and the VI stabilizes. In the case of the VI we get a dip in the amount of variation

indicating that the identified communities in this range are more stable (recall VI is a measure of

dissimilarity between partitions). However, we note that while the group of communities at each

particular value of γ are fairly stable, the figure is misleading in that it doesn’t reflect the change

in community structure happening happening as γ is increasing. While we measure the stability

of the communities identified are at any single value of γ, we don’t capture how different

communities are as we adjust γ. For the network in Figure 2.1, the average pairwise difference

between communities identified at γ = .6 and those identified at γ = 1.3 is .2. While relatively

small, this is 4 times larger than the average pairwise VI within any single value of γ. Thus,

comparing partitions only at the γ for which they were discovered doesn’t allow one to really

assess stability of partitions with respect to changes in resolution.

Furthermore, for real world networks, especially larger ones, this type of approach often

fails to suggest a single good value of γ. In Figure 2.2, we scan the resolution range with the same

approach but on a real world network of the human reactome (a type of protein-protein

interactions networks) [105, 120]. This network has 6327 nodes and 147547 edges and clearly has

modular structure based on the layout in Figure 2.2.B. The partitions vary widely both within and

across neighboring values of γ. We propose filtering some of this stochastic variation by only

looking at the partitions that are have optimal modularity across different values of γ

Importantly, in all of the aforementioned approaches for exploring the parameter space,

the optimal partitions associated with each γ value are typically computed independently of those

at other γ values [and, again, in the multilayer case, (γ, ω)]. Variation in the structure of these

partitions and their corresponding modularity can arise from both adjusting the input parameters

and importantly, from the stochasticity of the algorithm itself. Often, for close enough values of γ,

the variation in modularity of identified partitions is driven more by the stochasticity of the

algorithm rather than the difference in the value of γ. Because of this independent treatment of

the results from different γ values, a large amount of information that might be useful for further

assessing the quality of the obtained partitions is typically thrown away. We propose a different

approach, which we call CHAMP, that uses the union of all computed partitions to identify the
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Convex Hull of Admissible Modularity Partitions in the parameter space. Our CHAMP method

[244], allows for identification of the (much) smaller subset of partitions generated by such

procedures, which is optimal by the modularity metric itself.

2.3 The CHAMP Algorithm (Convex Hull of Admissible Modularity Partitions)

Instead of associating each partition with a particular value of γ based on which value was

supplied to the heuristic that identified it, we instead imagine each partition as representing

function of γ over some larger domain. That is each partition gives us a Q(γ) based on

Equation 3.10, with γ allowed to vary. Thus an ensemble of partitions gives a collection of

functions over γ with each function mapping from γ to the modularity of that partition given that

choice of γ. The CHAMP framework identifies which of these functions give the maximum value

ofQ for any given value of γ as well as the values of γ for which each function is optimal. This task

is greatly facilitated by the fact that Equation 3.10 is a linear function of γ; Thus each partition

can be thought of as representing a line in the (γ,Q) (or a plane in (γ, ω,Q) for multilayer

networks). CHAMP identifies the domains of optimality across a set of partitions by ignoring the

γ that was used to compute each partition, finding instead the full domain in γ for which each

partition is optimal relative to the rest of the input partitions (hereafter, we always use the word

“optimal” in this restricted sense relative to the set of partitions at hand).

We find the intersection of the half-spaces above the linear subspaces by computing the

convex hull of the dual problem. By identifying the convex hull of the dual problem, we prune

that set of partitions to the subset wherein each partition has at least some non-empty domain in

the parameter space over which it is has the highest modularity. This pruned subset contains all

of the partitions admitted through the dual convex hull calculation. Visually, plotting Q as a

function of the parameters, the pruned subset is that which remains in the upper envelope of Q,

so that each partition appears along the boundary of the convex space above the envelope in the

domain where it provides the optimal Q relative to the input set.

We have visualized the CHAMP approach in Figure 2.3. Originally, each partition is

represented by a point in (γ,Q), where the x-coordinate is given by the γ for which the partition

was identified by the particular algorithm used (Figure 2.3.A). All algorithms attempt to
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Figure 2.3: Visualization of the CHAMP algorithm. A) Each point represents a partition. The x-
coordinate of the point is the resolution at which the partition was obtained by algorithm. B) We can think of
each partition as defining a line. We want to to find the lines which bound the intersection of the areas above
all of the lines (i.e. the region shaded brown in the figure). C) Only a fraction of the original lines will form this
boundary (be in the convex hull) and each line will only optimal along some portion of the γ domain.

maximize modularity for a fixed value of γ, so this is a reasonable association to make. However,

as we shall show, each partition can also be thought of a linear relationship between γ and Q

(Figure 2.3.B), and in this framework we can compare partitions across different values of γ to

identify the optimal subset (Figure 2.3.C).

2.3.1 CHAMP -

Consider a non-empty set, Σ of unique network partitions encoded by the node

community assignments {ciσ} with σ ∈ {1, . . . , |Σ|}. By construction, δ(ciσ, cjσ) = 1 if nodes i and

j are in the same community in partition σ (i.e., ciσ = cjσ), and 0 otherwise. Let Qσ(γ) denote the

value of Equation 3.10 for given γ under partition σ. Ignoring the constant multiplicative factor in

front of the summation (alternatively, absorbing that factor into the normalization of Aij and

Pij), Equation (3.10) can be written as

Qσ(γ) =
∑
i,j

(Aij − γPij) δ(ciσ, cjσ)

=
∑
i,j

Aijδ(ciσ, cjσ)− γ
∑
i,j

Pijδ(ciσ, cjσ)

= Âσ − γP̂σ (2.2)
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where the quantities Âσ and P̂σ are the respective within-community sums over Aij and Pij for

partition σ. Importantly, Âσ and P̂σ are scalars that depend only on the network data (i.e., A),

null model (i.e., P ), and partition σ. Thus, for a given partition σ, Equation (2.2) is a linear

function of γ, which can be visualized as a line in the (γ,Q) plane. (See Figure 2.3 as well as

Figure 2.5B in Section 2.5.1 for an illustration of lines {Qσ(γ)} for several partitions of the 2000

NCAA Division I-A college football network [58, 71].)

We now compare the partitions’ modularity lines {Qσ(γ)}, seeking to identify the optimal

partitions that yield the largest modularity values across the γ values—that is, the upper-envelope

boundary {Qσ(γ)} for the set. We will additionally obtain γ-domains over which a given partition

is optimal (discarding partitions that are never optimal). Given a finite set of partitions {σ},

the coefficients Âσ and P̂σ can be computed individually, independent of how those partitions

were obtained. Therefore, a given value of γ admits an optimal partition σ∗ corresponding to the

maximum Qσ∗(γ) ≥ Qσ(γ) from the given set of partitions {σ}. At most values of γ, only a single

partition provides the maximum (i.e., “dominant”) modularity. When two partitions σ and σ′

correspond to identical modularity values [i.e., Qσ(γ) = Qσ′(γ)], it is typically because this is the

unique intersection of the two corresponding lines. ²

For a pair of partitions σ and σ′, the intersection point (γσσ′ , Qσσ′) indicates the resolution

γσσ′ at which one partition becomes more (less) optimal over the other with increasing

(decreasing) γ. That is, one partition dominates when γ < γσσ′ , while the other dominates when

γ > γσσ′ . It immediately follows that the γ-domain of optimality for a partition must be simply

connected. (We note that in higher dimensions, such as for signed or multilayer networks, the

same linearity requires that domains of optimality must be convex [156].).

We leverage these intersections to efficiently identify the upper envelope of modularity for

a given set of partitions, and the corresponding dominant partitions (relative to the set) for all

γ ≥ 0 as follows. Starting at γ0 = 0, the partition with maximum Âσ is optimal. For networks with

a single connected component, this partition is a single community containing all nodes; for

multiple disconnected components, any union of connected components gives the same Âσ, but

²It is possible to have the case where two different partitions have identical Âσ and P̂σ coefficients, and thus have equal
Qσ(γ) for all γ; but in practice we have observed this rarely in our examples (we refer to these as ”twin” partitions). We
hereafter ignore this possibility; it merely indicates two partitions of equal merit, in the sense of modularity, across all
scales.
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we select the partition wherein each separate component defines a community. Denoting the

optimal partition at γ0 by σ∗0 , we calculate the intersection points {γσ∗
0σ
} with the other partitions

{σ} where Qσ∗
0
(γ) = Qσ(γ). Substituting Equation (2.2) into this constraint yields

γσ∗
pσ =

Âσ∗
p
− Âσ

P̂σ∗
p
− P̂σ

, (2.3)

where p ≥ 0 for generality. Starting with partition σ∗p for p = 0, we identify the smallest

intersection point γσ∗
pσ > γp, which we define as γp+1. We denote the associated partition by σ∗p+1.

That is, partition σ∗p is optimal for the γ-domain γ ∈ [γp, γp+1), above which partition σ∗p+1

becomes optimal. In the unlikely event that multiple partitions are associated with the γp+1

intersection point, the one with smallest P̂σ becomes σ∗p+1. Setting p to p+ 1, we iteratively repeat

this process until there are no intersections points satisfying γσ∗
pσ > γp. We thus obtain an

ordered sequences of optimal partitions, {σ∗p}, and intersection points {γp} for p = 0, 1, . . . . The

optimal modularity curve for γ > 0, given by the upper envelope of the set {Qσ(γ)}, is then given

by the piecewise linear function

Q̃(γ) = Qσ∗
p
(γ) , γ ∈ [γp, γp+1). (2.4)

Of course, this procedure can be started at any selected γ of interest, and the analogous

procedure for identifying intersections for decreasing γ could be used to obtain the upper

envelope for γ < 0; but in practice here we restrict our attention to γ ≥ 0

2.4 Extension of CHAMP to multilayer networks

2.4.1 M

Despite it’s problems, one crucial reason why maximizing modularity remains one of the

few approaches for community detection in networks that has been extended in a principled way

[156] to multilayer networks [114] with very fast, scalable, and easy to use software packages

[104] available. We also call attention to the multilayer extension [48] of Infomap [198] and

recent developments extending stochastic block models [SBMs] to multilayer networks (see

[82, 212, 218] and, for a general update of developments in SBMs, [3]. In the case of a single
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intralayer coupling parameter, the multilayer modularity formula developed by Mucha et al.[156]

can be written in a similar form to the single layer version using the ‘supra-adjacency’ ³

representation :

Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj) (2.5)

where Aij , Pij , and Cij represent the (possibly weighted) edges, null model, and interlayer

connections, respectively, between the node-in-a-layer indexed by i and that indexed by j; and ci

indicates the community assignment. Each node in a layer be indexed by a single subscript, i or j.

While multilayer modularity provides a means for community detection in multilayer

networks using many of the same heuristics and applying some of the same conventional wisdom

developed for single-layer networks, the generalization admits at least one more parameter to

control the contribution of interlayer connections to modularity relative to that from intralayer

connections, e.g., the interlayer coupling ω in [156]. The same multilayer modularity framework

can be applied generally to include multiple interlayer coupling parameters controlling the

relative contributions of different parts of the multilayer structure, e.g., for data that is both

temporal and multiplex. As such, multilayer modularity requires exploring a two-dimensional

parameter space in its simplest setting, and higher dimensions in more general cases. For present

purposes, we will here only explicitly consider the case of a single interlayer coupling parameter

ω; but this does not put constraints on the coupling topology or relative values, only that there is

some selected interlayer coupling tensor that is multiplied by ω. Meanwhile, the CHAMP

approach we have presented can be naturally generalized to higher dimensions.

In the case where there is a single interlayer coupling parameter ω, each partition can be

identified with a plane in the (γ, ω,Q) space. Likewise the domains of optimality for the optimal

set of partitions can be envisioned as simply connected, convex polygons in the space bounding

³For example, in the ‘supra-adjacency’ representation of a simple multilayer network of multislice type where the same
N nodes appear in each of L layers, one might order the indices so that i ∈ {1, . . . , N} corresponds to the first layer,
i ∈ {N + 1, . . . , 2N} corresponds to the second layer, and so on. To emphasize that the formulation of CHAMP is
independent of the details of the multilayer network under study, we note here that the only distinction used presently
is thatAij encodes all of the edges, Pij specifies the within-layer null model contributions, andCij describes the known
interlayer connections. The key fact here is that Pij and Cij make distinct contributions to multilayer modularity, as
controlled by two different parameters, γ and ω. As such, we need to extend CHAMP to simultaneously address both
parameters. See Section 1.1.3 as well as [47, 114] for broader discussion about different notations and their advantages.
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Figure 2.4: Visualization of CHAMP on multilayer networks. Each planes is identified with a single multi-
layer partition detected using the multilayer modularity framework with set (γ,ω). Note that the surface formed
by the boundary of the convex hull is piece-wise, simply connected, convex polygons.

the intersection of the area above all planes as depicted in Figure 2.4. Several of our results in

Section 2.5.2 depict this surface projected into the two dimensional, (γ, ω) plane.

2.4.2 M CHAMP Q

Coupling the communities across layers is conceptually intuitive. Unfortunately,

introduction of the additional parameter, ω makes the previous methods for parameter selection

via visual inspection difficult to employ in practice and would seem to greatly complicate the

challenge of selecting good values of the parameters. (See [17] for one approach to addressing this

challenge.)

However, because the multilayer modularity function is linear in the parameters γ and ω,

we can again apply the general approach of CHAMP, albeit now in a larger dimensional

parameter space. For each partition σ, we again define the scalar quantities Âσ and P̂σ to be the

within-community sums over the adjacency matrix and null model, respectively, and now include

a similar sum over the interlayer connections, Ĉσ:

Âσ =
∑
i,j

Aijδ(ciσ, cjσ) , P̂σ =
∑
i,j

Pijδ(ciσ, cjσ) , Ĉσ =
∑
i,j

Cijδ(ciσ, cjσ) . (2.6)
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In this notation, the multilayer modularity of partition σ becomes simply

Qσ(γ, ω) = Âσ − γP̂σ + ωĈσ . (2.7)

Thus, the partition σ is represented by the plane Qσ in (γ, ω,Q). Analogous to the

single-layer case, each point in the two-dimensional (γ, ω) parameter space admits an optimal

Qσ∗ .

Given a set of partitions {σ}, CHAMP calculates the coefficients of the Qσ(γ, ω) planes in

Equation (2.7) and solves a convex hull problem to find the convex intersection of the half-spaces

above these partition-representing planes (see Figure 2.4). That is, each partition is represented

by a plane dividing (γ, ω,Q) in two, thereby defining a half-space. The intersection of the

half-spaces above all of these planes is the convex space of Q(γ, ω) values greater or equal to all

observed quality values, with the boundary specifying the maximummodularity surface of the

set. In single-layer networks, we considered ordered γ ≥ 0 and iteratively identified the next

intersection and associated partition for increasing γ. In the presence of multiple parameter

dimensions here, we instead apply the Qhull implementation [2] of Quickhull [13] to solve the

dual convex hull problem. In practice, multiple partitions of the network can be identified in

parallel, calculating and saving each set of Â, P̂ , and Ĉ coefficients. These coefficients defining

the planes are then input into Qhull. CHAMP thereby prunes {σ} to the subset admitted to the

convex hull and identifies the convex polygonal domain in (γ, ω) where each partition is optimal

(relative to {σ}).

We note that in practice the runtime for finding the pruned subset of admissible partitions

and associated domains of optimality is typically insignificant compared to that of identifying the

input set of partitions in the first place. In particular, computing the scalar coefficients of the

linear subspace of each partition is a direct O(M) calculation forM edges in the network.

Meanwhile, the subsequent convex hull problem has no explicit dependence on the network size,

depending instead on the number of partitions in the input set.

While we assume here that there is a single interlayer coupling parameter ω, we

emphasize again that we do not restrict ourselves here to a particular form of the interlayer

coupling, which might connect nearest-neighbor layers, all-to-all layers, connect only some nodes
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in one layer to those in another, and might have multiple different weights along different

interlayer edges. Rather, we only require here that there is some selected interlayer coupling

tensor C that is multiplied by ω. Even more complicated interlayer couplings with multiple

parameters (e.g., data that is both multiplex and temporal with the freedom to vary the relative

weights between these couplings) can in principle be treated analogous to the above in the

appropriate higher-dimensional space. With the notation γ⃗ = (γ, ω) and P̂σ = (P̂σ,−Ĉσ), we can

write Equation (2.7) as Qσ(γ⃗) = Âσ − γ⃗ · P̂σ, specifying linear subspaces of codimension one in

higher-dimensional parameter spaces, given appropriate definitions of γ⃗ and P̂σ. However, we do

not go beyond two parameters (γ, ω) in our example results here. While this is possible in theory,

in practice, the implementation of Qhull we have used does not suggests using 8 dimensions since

the number of facets in the output scales by n, the number of halfspaces raised to d/2, the

dimension [2]. We have not tested our algorithm for higher than the single interlayer coupling, ω

case (2D halfspaces).

For convenience we have implemented and distributed a python package for running and

visualizing both the single layer and multilayer CHAMP found at [245].

2.5 Applications of CHAMP

In this section we showcase CHAMP on a few real world datasets, both single-layer as well

as multilayer networks, and discuss the interpretation of the results. In Section 2.5.1, we consider

a network of NCAA Division I-A college football teams from the 2000 season [58, 71]. We then

look at results of applying CHAMP to a Human Protein Reactome (Section 2.5.1) and a Caltech

Facebook network [227] (Section 2.5.1). All three of these undirected networks are studied using

the Newman-Girvan null model with a resolution parameter as in Equation (3.10). Then, in

Section 2.5.2 we apply CHAMP to communities found using the multilayer generalization of

modularity in the multilayer network of roll call similarities across time, where each layer is a

different two-year Congress [156]. Finally, we explore the stability of these domains under many

different runs and explore how the size of the CHAMP set changes as input size grows in

Section 2.5.3

For each example, we input into CHAMP a set of partitions identified by the Louvain
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heuristic [27], as implemented by [226] for our three single-layer examples and by GenLouvain

[101] for our multilayer example. Because of the modest sizes of these example networks, we

perform large numbers of runs of the heuristic (between 20,000 and 240,000, as indicated for

each example). Each run of the heuristic is performed at a resolution parameter γ (including also

a parameter ω in the multilayer example) selected uniformly from a preselected range of the

parameter, as indicated for each example. Node indices were randomly permuted for each run to

ensure different order of considering nodes in the heuristic, to allow for possibly different

partitions to be found at identical parameters. CHAMP makes no requirement that so many

partitions be generated, nor about the way in which those partitions were generated, assuming

only that multiple partitions have been obtained by one means or another. CHAMP then prunes

the input partitions down to the admissible subset; as such, the overall quality of the final subset

of course depends on the input set. In practice, one’s tolerance for the computational burden will

be dictated by the cost of running the community detection heuristics employed on the network

of interest. Once the input set of partitions is identified, CHAMP reduces each partition to its

scalar coefficients—Âσ, P̂σ, and for multilayer networks, Ĉσ—and then prunes down to the

admissible subset in a trivial additional computational cost relative to that already expended to

obtain that input set.

Throughout this section, we typically assess the correspondence between identified

partitions and the known ground truth using the metric, Adjusted Mutual Information (AMI),

unless otherwise noted. See Section 1.2.3 for a more detailed discussion of this and other metrics.

2.5.1 CHAMP -

2000-2001 D 1-A C F N

Figure 2.5A visualizes a computational scan of the γ resolution domain for the Division

I-A college football network of 115 nodes representing teams and 613 (unweighted) edges

representing that at least one game was played between two teams. Additionally, each team has a

label identifying its athletic conference, a subgroup of teams that generally share a geographic

region and compete for a conference championship. One would expect that a good partition of the

network reflects the conference structure.
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For input to CHAMP, we ran the Louvain heuristic [27, 226] 50,000 times on the

network. The modularity and number of communities found for each run is plotted at the γ

resolution parameter used, which were uniformly spaced on γ ∈ [0, 6]. We observe in particular

the wide range of γ over which one finds 12-community partitions, but note that the range also

includes results with other numbers of communities, with ambiguity about which partition is the

better choice.

By considering each partition as a line over the full domain of γ as shown in Figure 2.5B,

we find the set of lines that form the convex hull of all the modularity functions and the intervals

in which each partition is optimal, indicated by the red step function in Figure 2.5A, with the

steps at the transition values of γ indicated by blue triangles in Figure 2.5B. These 50,000 runs of

the heuristic generated 384 unique partitions, with the average run time for each cycle of the

Louvain heuristic was 0.02 s. After application of CHAMP, there were only 19 partitions in the

pruned admissible subset associated with the original parameter search space (γ ∈ [0, 6]).

Moreover, CHAMP identifies a wide γ-domain of optimality of the 12-community partition,

running from γ
.
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Figure 2.5: CHAMP on the NCAA Football Network. A) Modularity Q(γ) given by Equation (3.10) ver-
sus resolution parameter γ for 50, 000 runs (10% of results displayed here) of the Louvain algorithm [27, 226]
at different γ on the unweighted NCAA Division I-A (2000) college football network [58, 71]. Grey triangles
indicate the number of communities that include ≥ 5 nodes in each run, while the green step function shows
the number in the optimal partition in each domain; B) Graphical depiction of CHAMP algorithm (see Sec-
tion 2.3). Each line indicates Qσ(γ) given by Equation (2.2) for a particular partition σ. Both panels show the
convex hull of these lines as the dashed green piecewise-linear curve, with the transition values represented by
downward triangles.
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This 12-community partition, visualized in Figure 2.6B, aligns very closely with the

conference labels of the teams as measured by Adjusted Mutual Information (AMI .= 0.92).

Further increasing γ, we see this 12-community partition domain is followed immediately by a

smaller (but still sizeable) domain of optimality for a 13-community partition. Note that while

partitions with 11 communities are repeatedly returned by the heuristic, CHAMP indicates the

corresponding domain of optimal γ to be quite small.

Figure 2.6A shows the pairwise adjusted mutual information (AMI) of the admissible

partitions, as organized by their domains of optimality. That is, the large white blocks on the

diagonal of the figure are AMI = 1 agreement between each partition and itself. In particular, we

observe that the 12-community partition (visualized in Figure 2.6B) is fairly similar to the next

few partitions in increasing γ, suggesting stability of some main features as communities break

up into smaller communities with increasing γ. At lower values of γ < 1, we see another possible

grouping of domains with reasonable pairwise AMI to one another but who have much lower AMI

with the partitions found at higher γ. These partitions could represent additional large-scale

network structure.

Figure 2.6: Similarity of CHAMP domains for NCAA Football. A) ForceAtlas2 [98] layout, created with
[182], of the unweighted NCAA Division I-A (2000) college football network. Nodes are colored according to
the dominant 12-community partition with the widest γ-domain γ ∈ [1.45, 3.89], with node shapes and border
indicating their conference labels; B) Pairwise adjusted mutual information (N=AMI) between all partitions in
the admissible subset identified by CHAMP, arranged by their corresponding γ-domains of optimality. Dashed
lines indicate the transition values of γ identified by CHAMP.
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H P R

We employed CHAMP to map the domains of modularity optimization for a larger

example: the undirected (single-layer) network representation of the Human Protein Reactome

[105, 120], with 6327 nodes representing human proteins and 147,547 edges signifying common

biological reactions. We ran the Louvain heuristic 20,000 times on this network with γ ∈ [0, 4]

uniformly spaced, generating 19,980 unique partitions. For this example, each run of Louvain

required an average of 2.6 s, generating the input set of partitions in approximately 140 CPU

hours. CHAMP pruned this input set of partitions down to 39 admissible partitions in the convex

hull over the original parameter search space (γ ∈ [0, 4]). Similar to the figures of the previous

example, Figure 2.7A shows the spread in the modularities and the numbers of communities

identified across all instances of the heuristic, along with the domains of optimization and the

number of communities for the admissible subset (see the red step function).

Contrasting Figures 2.5A and 2.7A, we observe in the latter that the red step function

decreases with increasing γ at some points. Importantly, these decreases are not because of our

choice to plot the number of communities that contain at least 5 nodes. The numbers of

communities is provably monotonically non-decreasing with increasing resolution parameter in

the special case where the null model Pij = γ is a constant independent of i and j [223, 224], but

we are unaware of any similarly rigorous condition for the Newman-Girvan null model used in

Equation (3.10). Nevertheless, one typically observes the number of communities to be

non-decreasing with increasing γ, so the results here may indicate values of the resolution

parameter near which additional runs of the heuristic might be more likely to identify higher

quality partitions.
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Figure 2.7: CHAMP on the human reactome. A) Modularity Q(γ) given by Equation (3.10) v. resolution
parameter γ for 20, 000 runs (25% of results shown) of Leiden [225] on the Human Protein Reactome network
[105]. Small, grey triangles indicate the number of communities that include ≥ 5 nodes in each run, while the
dark green step function shows the number in the optimal partition in each domain. The dashed green curve
is the piecewise-linear modularity function for the optimal partitions, with the transition values marked by blue
triangles; B) Pairwise AMI between all partitions in the admissible subset identified by CHAMP, arranged by
their corresponding γ-domains of optimality. Yellow stars denote the domains shown in Figure 2.8.

The number of communities in the initial set of partitions is highly variable, even for small

adjustments in γ, as shown by the yellow triangles in Figure 2.7A. It would be difficult to extract

any range of stability from such a plot. However, when we consider the admissible subset of

partitions, we see a few wide domains of optimality in the figure, the two most prominent being

γ ∈ [1.47, 1.91] and γ ∈ [3.36, 3.67]. Layouts of the network colored according to the partitions of

these two broadest domains are shown in Figure 2.8. The pairwise AMI of the admissible

partitions are shown in Figure 2.7B. Unlike the college football network, where pairwise AMI

appears to indicate two well separated groups of highly similar partitions, the communities here

appear to be diffusely similar throughout. Partitions of adjacent domains are fairly similar but

there is no clear divide into groups of partitions.
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Figure 2.8: Visualization of Reactome communities. ForceAtlas2 layout [98], created with [182], of the
Human Reactome Network, colored according to the partitions with the three widest γ-domains of optimization
identified by CHAMP from 20, 000 runs of Leiden.

C F N

As a final single-layer example, we considered the undirected network of Facebook

friendships for students at Caltech in September of 2005 [227], the largest connected component

of which includes 762 nodes representing Facebook users and 16,651 unweighted edges

representing reciprocal friendships.

We used the Louvain algorithm 100, 000 times on γ ∈ [0, 4] uniformly spaced, generating

91, 080 unique partitions. CHAMP pruned this set down to 51 partitions with associated

γ-domains of optimality in the original parameter search space (γ ∈ [0, 4]). That is, the number of

partitions in the pruned subset is 1785 times smaller than that in the set of unique partitions

found by our Louvain runs that were input into CHAMP. Each run of Louvain on the Caltech

Facebook network required around 0.8 s with all runs representing approximately 20 CPU hours.

This output from CHAMP, visualized in Figure 2.9A, does not indicate the same wide domains of

optimality for the community structures in this network as with the previous two examples. The

pie-chart visualization within Figure 2.9A corresponds to one of the wider domains here narrowly

straddling the default γ = 1 value. This community structure is reasonably well aligned with the

House System at Caltech (see also the associated discussion in [227]). At higher values of γ, we

expect that the scales of the communities will be subgroups within the Houses. We observe that

some of the wider plateaus in the numbers of communities in the figure correspond to multiple

different partitions with the same numbers of communities (note the transition values indicated

by blue triangles).
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Figure 2.9: CHAMP applied to Caltech Facebook network. A) Modularity Q(γ) v. γ for 100, 000 runs
(5% of results shown) of Louvain [27, 226] on the Caltech Facebook network [227]. Orange triangles indicate
the number of communities that include ≥ 5 nodes in each run, while the red step function shows the number
in the optimal partition in each domain. The dashed green curve is the piecewise-linear modularity function for
the optimal partitions, with the transition values marked by blue triangles. The condensed layout of communi-
ties (created with [182]) here visualizes the optimal partition found for γ ∈ [0.908, 1.09], with each pie-chart
corresponding to a community, fractionally colored according to the House membership of the nodes in the
community. The AMI between this partition and House labels (including the missing label) is 0.513; B) Pair-
wise AMI between all partitions in the admissible subset identified by CHAMP, arranged by their corresponding
γ-domains of optimality.

2.5.2 CHAMP -

U.S. S R C V N

We demonstrate the use of CHAMP to explore the parameter space for a multilayer

network using the roll-call-voting similarity network for the U.S. Senate from 1789 to 2008

(Congresses 1 to 110) as defined in [242] and studied with multilayer modularity in [155, 156].

This data represents the similarities of voting patterns within each two-year Congress between

the 1884 distinct U.S. Senators who served across the first 110 Congresses. As in [155, 156], each

two-year Congress starting in the early January following the biennial Congressional elections is

represented as a layer, with interlayer connections only between the multiple appearances of each

Senator when they appear in nearest-neighbor layers; as such, multilayer modularity directly

handles additions and removals of Senators over time. Self-loops within each layer are zeroed

out, since these only represent perfect agreement of a Senator with herself during the same
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two-year period. This representation of the voting data is useful for describing legislative voting

activity because the community structures typically group together Senators who vote similarly,

providing relatively accessible and intuitive examples of communities that are related to the

underlying political alignments as expressed by the Senators through voting, independent of their

nominally declared party affiliations. The temporal extents of the communities found by

multilayer modularity can then indicate different periods of stability in these political alignments.

We ran the GenLouvain [101] heuristic 240,000 times, on a 600-by-400 uniform grid

over [0.3, 2] × [0, 2] in (γ, ω), generating 197,879 unique partitions of the network. Each run of

GenLouvain required approximately 5 s for a total of 340 hours of CPU time. CHAMP pruned this

set to 1447 partitions admissible in the convex hull of modularity. We note that there were 267

additional partitions with corresponding domains of optimality that were completely outside the

selected parameter range [0.3, 2]× [0, 2]. In Figure 2.10 we visualize the (γ, ω)-domains of

optimality within this region of parameter space. In Figure 2.10A, a domain’s color indicates the

numbers of communities for its corresponding optimal partition, whereas in Figure 2.10B

domain color indicates the average AMI between the corresponding partition and the

neighboring optimal partitions (weighted by the lengths of borders between domains).
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Figure 2.10: CHAMP on the US Senate network. A) Domains of optimization for the pruned set of parti-
tions, colored by the number of communities within each partition. The set of partitions was generated from
240, 000 runs of GenLouvain [101] on a 600 × 400 uniform grid over [0.3, 2] × [0, 2] in (γ, ω). The largest
partitions are labeled “X.Y ” with X the number of communities with ≥ 5 nodes and Y the rank of the do-
main area (that is, in terms of size) for that given number of communities (e.g., “5.2” is the second-largest
domain corresponding to 5-community partitions). The partitions of each labeled domain are visualized in Ap-
pendix 2.1; B) Weighted-average AMI of each partition with its neighboring domains’ partitions, weighted by
the length of the borders between neighboring domains.
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The trivial 1-community partition dominates the left of the panels in Figure 2.10 at small

γ. Increasing γ outside of this domain, most of the (non-trivial) domains here appear to be

relatively long in the ω direction and much narrower in γ. Interestingly, we observe a range of γ

from roughly 0.8 to just above 1 where the domains visually widen in the γ direction while also

corresponding to a smaller number of communities than partitions below γ ≈ 0.8. Near ω = 1,

the widths in γ of the domains appear larger than those at smaller ω, suggesting perhaps that the

stability of identified communities is being enhanced by coupling between the layers. As γ

increases only slightly past 1, the number of communities in each partition rapidly increases, with

the majority of partitions past γ = 1.2 having over 100 communities. At the lower right corner we

see the domains are small and highly fragmented in both the γ and ω directions.

We also aim to identify parameter regions corresponding to similar partitions. For

single-layer networks, we directly visualized the whole set of pairwise AMI’s ordered by γ. Given

two parameters here, we calculate the weighted average AMI of each partition with its neighbors,

with weight proportional to the length of the border with the neighboring domain along which the

two partitions have the same value of multilayer modularity. The resulting neighbor-averaged

AMI of each partition is shown by color in Figure 2.10B. We again observe at least three distinct

regions of high pairwise similarity, separated by much lower neighbor-averaged AMI, aligned

with the different regions in Figure 2.10A discussed above: (1) the region below γ ≈ 0.8; (2) the

region just below γ = 1, with particularly high neighbor-averaged AMI for ω ∈ [0.6, 0.9]; and (3)

the many-community partitions for γ > 1.2.

Indeed, we see a shift in the types of partitions with increasing γ across this γ ≈ 0.8

transition boundary. The qualitative difference in community structure between these regions is

demonstrated in Figure 2.11, highlighting in Figure 2.10A the two partitions labeled 5.1

(Figure 2.11A) and 8.1 (Figure 2.11C). Recall, that these are the partitions with the largest domains

of optimality with 5 and with 8 communities, respectively. Most of the Congress layers in the

8-community partition include only a single community label per Congress (see Figure 2.11D). In

contrast, the 5-community partition divides the Senators both across time and within each

Congress, typically into 2 communities in each Congress. These intralayer divisions that extend

across time are additionally highlighted by the individual Senator layout in Figure 2.11A showing

distinct branches, because the Senators have been sorted here first by community label and then,
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within each community by time. Layouts for the other domains labeled in white in Figure 2.10A

further demonstrate qualitatively similar patterns, as shown in Appendix 2.1.
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Figure 2.11: Time-varying community structure for the U.S. Senate from 1789 to 2008 according to
the (A,B) 5-community and (C,D) 8-community partitions with widest domains of optimality (see labels 5.1
and 8.1 in Figure 2.10A); (A,C) The vertical axis indicates individual Senators, sorted by community label and
time. The AMI reported here is the average over layers (Congresses) of the AMIs in each layer between the
identified communities in that layer and political party labels. (This layer-averaged AMI is shown for all parti-
tions in the convex hull over the originally searched parameter range in Figure 2.12.) (B,D) The vertical axis
indicates the state of a Senator, sorted according to geographic region, and the horizontal axis represents time
(two-year Congresses).

In Figure 2.12, we again visualize the domains of optimality in the (γ, ω) parameter space,

now color-coded by the layer-averaged AMI between each partition and the known political

affiliations of Senators. Specifically, we compute for each layer the AMI between the community

labels {ciσ} and the Senators’ party affiliations, and then we average the AMIs across layers (i.e.,

across Congresses). The central, broadest domains have the highest AMI with the mostly 2-party

system seen throughout the different session of Congress, consistent with our observations above.

For the most part, partitions with neighboring domains have fairly similar structure within the

layers. There are a few places in the Figure where a darker border represents a transition in the

qualitative features of the community structure, such as the transition region around γ ≈ 0.8

discussed above.
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Figure 2.12: The domains of optimality for the time-varying U.S. Senate roll-call similarity network
(as in Figure 2.10), colored by the layer-averaged AMI between the political-party affiliations of Senators and
the community labels {ciσ} for that layer.

2.5.3 S CHAMP

Although the set of partitions that are identified by CHAMP are maximizers of modularity

with respect to the starting ensemble of partitions, for most networks of reasonable size, it is

quite probable that there will be optimal partitions that were not included in the original set. The

CHAMP approach is beholden to the ability of the community detection heuristic it is used with

to identify high modularity partitions (e.g. Louvain, Leiden, etc.). One question that naturally

arises is to what extent does the size of the CHAMP set depend on the size of the starting input

and how consistent are the domains that are identified? That is, how large does my input set need

to be to be reasonably certain one has captured enough partitions to well approximate the ideal

CHAMP set. Although it is always possible that there is a single partition one has not yet

uncovered that could dominate many of the partitions already in the CHAMP set, we find in

practice that the domains are relatively stable over repeated sweeps of our algorithm, and that the

number of partitions added to the dominant set typically decays logarithmically with the size of

the input set, indicating that past a certain point, continuing to search for additional partitions

yields diminishing gains.

In Figure 2.14, we explore the stability of the CHAMP set for the reactome network

[105, 120] by varying the number of runs of Leiden used as input for computing the CHAMP set.
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Figure 2.13: Size and consistency of the CHAMP sets for reactome network[105, 120]. A) The total
size of the CHAMP set for each partition ensemble of r runs, averaged over 10 trials. Size of baseline set of
all partitions indicated by gold star. B) The average AMI between the CHAMP set for each partition ensem-
ble of r runs and the baseline ensemble, weighted by the size of the domain, and averaged over 10 trials (see
Equation 2.8). Baseline partition has average AMI of 1 by construction.

Specifically, for each value of r ∈ {100, 400, 1600, 6400, 51200, 102400}, we create 10 independent

ensembles of partition by running Leiden r times across γ ∈ [0, 4], uniformly distributed. We

compare the CHAMP set for each of these individual ensembles to the CHAMP set of the union of

all ensembles (which is a total of 10×
∑
r = 1621000 input partitions), which we refer to as the

baseline partition ensemble. In Figure 2.13.B, we show that the number of unique partitions in

the CHAMP set grows logarithmically with the size of the input ensembles (the point representing

baseline partition set is denoted by a star). In Figure 2.14.B, we calculate the average AMI of the

partitions in each individual CHAMP set with the CHAMP set for the baseline, weighted by the

overlap of the domains of the each partition:

γ̄AMI =
1

γ̄

∑
ci∈Σ∗

baseline

∑
cj∈Σ∗

rk

AMI(ci, cj) ∗ γ̄ci ∩ γ̄cj , (2.8)

where Σ∗
baseline and Σ∗

rk
represent the CHAMP set of partitions for the baseline partition set and

the kth set of r runs respectively, γ̄ci represents the domain for the ci partition, and γ̄ represents

the length of the whole γ domain over which all runs occurred (in this case 4). This gives us a way
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Figure 2.14: Exploring the stability of the CHAMP sets for reactome network[105, 120]. A) We com-
pute the AMI for the intersection of each domain between the partitions for the baseline set of all partitions,
and each individual set with r runs. We have averaged the individual step functions over 10 independent trails,
each with r runs. B) Location of transitions between dominant domains for each of the 10 trials with 102400
runs of Leiden, uniformly spaced across γ = [0, 4], as well as the transitions for the baseline combined set
(1621000 total runs) shown in red.
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to compare partitions in the CHAMP set between different runs on the basis of the overlap

between their domains of dominance. In Figure 2.14.A, we plot the AMI for all non-empty

intersections γ̄i ∩ γ̄j between the CHAMP set for the baseline partitions and each of set of r runs,

averaged over the 10 trials with 95% confidence intervals shaded. Equation 2.8 gives us the

average AMI value for each of these curves.

In Figure 2.13.A we see that the size of the CHAMP set continues to grow logarithmically

with the size of the input set. Figure 2.13.B shows that although increasing the number of runs

better approximates the baseline CHAMP set, even a small set of runs well approximates the

domains of the much larger baseline set. We see that even for only 100 runs, we achieve an

average γ̄AMI ≥ .93 with the baseline CHAMP set. This continues to increase logarithmically with

the size of the input set, at least with the set sizes considered here. The baseline CHAMP set is

well approximated by each of the sets of 102400, despite each of these having less than one tenth

of the number of total partitions in the baseline. Thus while the size of the CHAMP set appears to

grow logarithmically with the size of the input set, we see that newly added partitions are either

very similar to already discovered partitions or have increasingly small domains of dominance. In

Figure 2.14.A, we show how the concordance between each of the smaller subsets of runs and the

baseline set varies across the γ domain. We see that there are regions where the CHAMP set is

more consistently identified (for example around γ = .4 or γ = 1.0). In Figure 2.14.B, we show

how the domains of dominance align across the various runs at r = 102400, as well as the

baseline. We see several locations where the domains identified are quite consistent across all of

the runs such as at γ = .4. These results demonstrate that CHAMP is a relatively effect tool for

exploring the space of partitions even without a near exhaustive set of input partitions.

2.6 CHAMP Discussion

There are a number of features of CHAMP that make it a useful tool for community

detection, as we have demonstrated by way of our real world examples. By eliminating partitions

that are non-admissible to the convex hull, CHAMP can greatly reduce the number of partitions

remaining for consideration. By assessing the sizes of the domains of optimality of the partitions

in the pruned admissible subset, and through direct pairwise comparisons of partitions in the
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admissible subset, CHAMP provides a framework for identifying stable parameter domains that

signal robust community structures in the network.

The set of input partitions can be obtained as a result of a community-detection method

across a range of parameter choices (as we explored here) or from the comparison of different

community-detection methods. Ideally the input set contains near-optimal partitions with

relevance for the application at hand. Because each partition is allowed to compete across the

whole space of resolution and coupling parameters, CHAMP can surmount some of the

pathologies associated with modularity-based community detection heuristics. For example,

CHAMP has uncovered several cases where there is a parameter range over which Louvain

consistently identifies suboptimal partitions compared to partitions that Louvain itself identifies

at other parameter values. In our study of the Human Protein Reactome network (see section

2.5.1), we have seen that the stochasticity over multiple runs of the heuristic makes finding a

plateau in the number of communities challenging; nevertheless, CHAMP is able to identify

regions where a single partition is intrinsically stable, regardless of how frequently a particular

detection algorithm uncovers such a partition. By identifying a manageable-sized and organized

subset of admissible partitions with CHAMP, one can then apply a pairwise measure of similarity

such as AMI to adjacent partitions to identify shifts in the landscape of optimal community

structure.

We in no way claim that CHAMP resolves all of the problems with modularity-based

methods

(see, e.g., the discussion in [64]). And CHAMP is certainly not the only way to try to process

different results across various resolution parameters (see again the Introduction). However,

by taking advantage of the underlying properties of modularity, including the fact that each

partition defines a linear function for Q in terms of the resolution and interlayer coupling

parameters, CHAMP provides a principled method built directly on the definition of modularity

to make better sense of the parameter space when modularity methods are employed. In

particular, many of the various other proposed approaches assess each partition at the particular

parameter value input into the community detection heuristic that found the partition, that is

treating each partition as a single point in (γ,Q). In contrast, CHAMP returns to the underlying

definition of modularity with a resolution parameter to recognize that each partition here is more
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completely represented as a line in (γ,Q) [in the multilayer case, as a plane in (γ, ω,Q)]. The

single point is on that line but does not completely explore the potential of that partition to

compete against the other identified partitions. By using the full linear subspace associated with

each partition, CHAMP prunes away the vast majority of partitions in practice.

Importantly, CHAMP itself is not a method for partitioning a network, and as such its

ability to highlight partitions is limited by the set of partitions given as input to the algorithm.

Given the many available heuristics, the computational complexity of maximizing modularity

[28], and the potentially large number of near-optimal partitions [76], it is possible that

interesting and important community features may be missing from the provided input set.

CHAMP as developed here is restricted to processing hard partitions of nodes into community

labels, whereas overlapping communities and background nodes (those not belonging to any

community) can be important for some applications. One may also reasonably worry about the

potential value of partitions in the input set that are near-optimal over a wide domain of the

parameters but yet never achieve admission to the convex hull itself and are thus discarded by the

algorithm.

With the introduction of CHAMP presented here, we have left open many other possible

uses of this general approach that may be worth exploring. Although we apply Louvain to

discover partitions, CHAMP is agnostic to the detection method used to generate the set of

partitions. The partitions input into CHAMP do not even need to be generated by

modularity-maximizing heuristics; for example, one may also include new partitions as generated

by ensemble learning [171] or consensus clustering [17, 103, 124]. By comparing the results

between sets of partitions generated by different methods, CHAMP might be useful as an

additional method for making comparisons between these methods.

In Section 2.5.3 we have shown how the identified domains are consistent from run to run

and that it takes relatively few runs to well approximate the final CHAMP set obtained after many

additional trials. While the size of the CHAMP set grows with the number of domains as input,

the larger domains tend to remain relatively fixed, with the identity of newly added partitions

fairly consistent with those that they replace. The number of initial partitions needed to get a

good mapping of the parameter space undoubtedly depends on the structure of the network and

the computational heuristics used. It may also be possible to use a variant of CHAMP to
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iteratively steer the parameters at which additional partitions might be sought.

Of course, even with a resolution parameter, modularity may not be a good measure for

what constitutes a good “community” in some networks, and one could investigate whether other

quality functions with parameters might be explored with an analogous approach. Even within

the consideration of modularity, it would be interesting to generalize the approach of CHAMP to

exploring different scales as resolved with different self-loop weights as proposed in [7] (see also

[78] for an application of this approach). Unlike the resolution and coupling parameters used

here, changing the self-loop weight makes a nonlinear change to modularity. Nevertheless, we

believe it may be possible to extend CHAMP to the self-loop method for resolving different scales.

It would also be useful to extend CHAMP to methods for community structures with overlap and

with background nodes.

In further developing CHAMP, it is important to recognize the inability of many

community-detection algorithms to assess the reliability of identified communities versus

apparent structures arising in random network models. The particular value of modularity, for

example, does not immediately indicate whether an identified partition is significant; in fact, the

modularities of many classes of random networks such as trees of fixed degree can be quite high

in the asymptotic limit [10, 49]. Thus, it may be interesting to use CHAMP to further explore and

characterize the domains of optimization for partitions of such random networks, to determine

the extent to which leveraging such partition stability information can address questions about

detected structures and random noise.

In summary, we have presented the CHAMP algorithm as a post-processing tool for

pruning a set of network partitions down to the admissible subset in the convex hull that

optimizes modularity at different parameters. We have demonstrated the utility of CHAMP on

various single-layer networks and on a multilayer network, identifying partitions and their

associated domains of optimality in the parameter space. Further research may focus on how the

sizes of these domains and the comparisons between domains can be best used to ascertain

confidence in identified community structures, to explore subgraphs of a network, and to further

process the admissible subset for consensus clustering, as well as other uses of the pruned subset

identified by CHAMP.
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CHAPTER 3: MULTILAYERMODULARITY BELIEF
PROPAGATION

In Chapter 3 we present an alternative approach to maximizing modularity directly on a

network. Instead, we apply the tools of statistical physics to identify how strongly each node is

associated with a possible community and whether or not community structure is present in the

network. We begin by providing background on the general algorithmic approach we have

employed here, known as “belief propagation”. Then we detail the specific belief propagation

approach to modularity maximization developed by Zhang and Moore [259]. Our main

contribution in this chapter is the extension of the belief propagation algorithm to multilayer

networks, which we refer to asmultimodbp. As part of this extension, we have introduce a

resolution parameter, γ, and we show how this can improve performance of the algorithm,

especially in the context of single-layer networks. In Section 3.3.1 we demonstrate the improved

performance of our method on several synthetic models of communities in single layer networks

as well as two real world networks. Then, in Section 3.3.2, we showcase our method on the

Dynamic Stochastic Block Model, a synthetic model of multilayer communities, as well as on a

synthetic model of mesoscale communities for different multilayer topologies. We also apply our

approach on two real world datasets. Through these examples, we demonstrate how the

application of multilayer modularity belief propagation can provide additional information about

the structure of multilayer networks and suggest some practical considerations in applying the

tool. Finally, we close this chapter with a discussion of our contribution, and additional details

concerning the implementation ofmultimodb Section 3.4.

3.1 Introduction to belief propagation

The belief propagation approach (also known as the cavity method in physics, and

sum-product message passing) is a widely used algorithm for calculating the marginals of a joint

distribution where the variables can be expressed in a graphical model. One general way to
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represent such a model is through a factor graph¹ for example seen in Figure 3.1. A factor graph

is a bipartite network representation of our model with two classes of nodes : variable nodes,

{Si} = V and factor nodes, {fa = f(⊂ V} = F . Each variable node, Si ∈ σ can occupy one of

several states in the state space (which could be discrete or continuous), while each factor can

take one or more variables as inputs. We write the joint distribution of our model as the product

of all the factor nodes as follows

p({Si}) =
1

Z
∏
a

fa({Si}i∈∂fa) , (3.1)

where ∂fj represents the neighbors of fj in the factor graph (i.e. the subset of the variable nodes

that fj depends on). We note that the functions represented by the factor nodes do not

themselves have to be probability densities as we include a normalization constant

Z =
∑
{Si}

∏
j

fa({Si}i∈∂a) , (3.2)

where the sum is over all possible combinations of values of the input variables, which grows

exponentially in the number of variables in our model. As such, while Eq 3.1 is rather simple to

write, calculating Z , known as the partition function, involves summing over all possible

combinations of variables in the state space which grows exponentially in the number of variable

nodes. Factors graphs are quite flexible in that relationships of arbitrary order can be represented

by different factors (in the example in Figure 3.1 we have shown a maximum of order 3). There

are several tools are available to compute the marginals of Eq 3.1, including Markov Chain Monte

Carlo sampling, Gibb’s sampling, the class of algorithms known as belief propagation. However,

belief propagation offers several unique advantages including computational efficiency and the

tractability of asymptotic analysis [147].

Given our set of variable nodes and factor nodes, we can derive the rules of the belief

propagation algorithm by assuming that our network is a tree and computing the marginals at

¹There are several other ways to represent the graphical models for which belief propagation can be applied, most no-
tably bayesian networks and markov random fields. Any model represented by one of these can be converted to an
equivalent factor graph (see [253] for procedure) and it is a matter of convenience which representation to use. The
form of the belief propagation equations will look different depending on the representation used.
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Figure 3.1: Example representation of a factor graph. Each node is of one of two classes: variables repre-
sented by green circles or factors, represented by colored squares. Each variable node can occupy one of several
states. Each factors node one more more of the variables as input to determine its value. The overall probabil-
ity of a given state of the model is the product over all of the factor nodes.

each node (with all other marginals held fixed). In the case that our network is a tree, the belief

propagation updates are tantamount to writing down the factorized joint distribution and give

exact results [175]. Remarkably, the belief propagation algorithm also works well in the case of

graphs with loops as long as the graph meets certain, fairly non-restrictive conditions

[147, 159, 178, 253, 254, 256].² Because factor graphs are bipartite, we will have two different

rules for updating messages: one for messages from the variable nodes to the factors, and another

for sending messages from the factors to the variable nodes. These update rules have the

following recursive form:

χj→a
Sj

=
1

Zj→a
gj(Sj)

∏
b∈∂j\a

ψb→j
Sj

(3.3)

ψa→i
Si

=
1

Za→i

∑
{Sj}j∈∂a\i

fa({Sj}j∈∂a)
∏

j∈∂a\i

χj→a
Sj

, (3.4)

where χj→a
sj is the message that variable node j sends to factor node a, and ψa→i

si is the message

that variable node i receives concerning its own state from factor node a. If we restrict our factor

graph to allow only pairwise interactions between the variable nodes (i.e. each fa only depends on

2 variable nodes and thus only has two neighbors), we can simplify the belief propagation

²They should be locally tree-like, with correlations between nodes decaying O(logN).
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equations by substituting the definition of ψa→i
si where it appears in the formula for χj→a

sj :

χj→a
sj =

=
1

Zj→a
gj(Sj)

∏
b∈∂j\a

ψb→j
Sj

=
1

Zj→a
gj(Sj)

∏
b∈∂j\a

∑
{Sk}k∈∂a\j

fb({Sk}k∈∂b)
∏

k∈∂b\j

χk→b
sk

(3.5)

Note that now, ∂a \ j is only the single node that is connected by each of the factors. Thus we can

switch from j → a to j → i because each factor node defines a pair of variable nodes. We also use

ψ to denote the single set of messages in this case

ψj→i
sj =

1

Zj→i
gj(Sj)

∏
k∈∂j\i

∑
{Sk}

f(Sk, Sj)ψ
k→j
Sk

. (3.6)

If our model is a tree, we can initialize the states on leaves of the tree, and calculate the

beliefs proceeding up the root to obtain the marginals for each node exactly. In the case where

there are loops in the graph, we can initialize the nodes beliefs randomly³ and then apply Eq 3.6

iteratively in a random sequential order to all of the nodes until the beliefs have converged [256].

We then use the beliefs to calculate the estimate of the marginal each node, p̂(Sj) by taking the

product of all incoming beliefs to node j:

p̂(Sj) =
1

Zj
gj(Sj)

∏
k∈∂j

∑
{Sk}

f(Sk, Sj)ψ
k→j
Sk

, (3.7)

where we note that the product is over all incoming beliefs. One can think of the BP estimate of

the marginals as the belief that a node sends to itself about it’s state. Belief propagation also gives

us an estimation to the value of Z, the partition function, which is quite useful in determining the

statistical properties of our model. We can use our belief propagation approximation to estimate

our partition function with the Bethe free energy approximation:

f bethe = − 1

N
lnZ =

∑
i

logZ i −
∑
ij

logZ ij (3.8)

³In this chapter we initialize them to a random perturbation about the factorized form: 1
q
+ ϵ
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where Zij =
∑

{Si,Sj} f(Si, Sj)ψ
i→j
Si

ψj→i
Sj

is the partial partition for the belief propagation

estimation of the pairwise marginals. One can show that any fixed point for the belief

propagation equations will also be a local stationary point for Eq 3.8 [253, 254]. As we will see in

the next section we can write down a graphical model for modularity on a network using Eq 3.1.

This allows for a different perspective on optimizing modularity with some unique advantages.

Later we will extend this approach to the multilayer formulation for modularity (see Sections 1.2.1

and 2.4.1 for more complete background to multilayer modularity).

3.2 Belief propagation approach to modularity

In general, maximizing modularity over the combinatorially large space of possible

partitions is NP-hard [28]. Several fast and efficient algorithms exist for locally optimizing

modularity, including Louvain [27] and the GenLouvain [104] extension for optimizing

multilayer modularity. One of the main problems with optimizing modularity as a means of

community detection is that partitions of high modularity often exist even in randomly generated

networks without underlying structure (see for example [10, 49]). Zhang and Moore [259] were

able to surmount several of the issues with modularity-based methods by treating modularity

optimization in terms of the statistical physics of the spin-glass system with Hamiltonian

H = −mQ({ci}), where {ci} = [c1, . . . , cN ] with ci ∈ {1, ..., q} indicating the assignment of node i

(of N) to one of q communities. As such, the distribution of states of the system is given by the

Boltzmann distribution

P ({ci}) ∝ e−βH({ci}) (3.9)

where β represents the nondimensional inverse temperature that sets the sharpness of the energy

landscape. Maximizing the joint distribution P ({ci}) is then equivalent to globally optimizing

modularity and identifying the ground state of the system. Instead of searching for a global

modularity maximum, Zhang and Moore attempt to solve for the marginals of each node,

P (ci = q), in the finite temperature regime. By looking for a “consensus of good partitions” rather

than seeking a single “best” partition, the algorithm converges to non-trivial structures above a

certain temperature only if there is broad underlying structure within the network. If it exists,

this parameter regime where belief propagation converges to non-trivial structure is called the
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retrieval phase. In particular, Zhang and Moore demonstrated that the algorithm’s convergence

properties distinguish between synthetic networks with or without known underlying structure,

even when the nominal modularity values of the identified partitions are quite similar. In this

sense, a belief propagation approach is able to detect when a particular network has “significant

structure”. We note that throughout this chapter we use the term ‘significant’ to mean having an

identifiable region in the β domain where the algorithm converges to non-trivial community

structure, i.e., the marginals are not all approximately equal to 1
q . From a statistical physics

perspective, this means that for a given network there exists a particular phase in the state space

(referred to as the retrieval phase by Zhang and Moore) where the beliefs converge to a non-trivial

solution. The relationship between convergence of belief propagation and the detectability of

communities in SBMs has been explored analytically [50, 51, 153] and empirically [70, 259].

Later, we will empirically demonstrate this for the multilayer modularity belief propagation. We

emphasize that this differs from the standard notion of ‘statistical significance’ — specifically, we

do not assess the value of a statistic compared to any particular model. That is, we do not assume

any explicit model of communities here in using the modularity objective function maximization

approach. There are a number of community detection approaches that employ a statistically

based approach (e.g the stochastic block model (SBM) and all of its variants). However, we

highlight that in the modularity belief propagation approach, there is no explicit model of

communities. Beyond providing this notion of significance of structure, maximization of the

marginals has the additional benefit of producing an interpretation of a soft partition wherein

nodes are partially assigned across multiple communities. That is, the marginals reveal which

node labels the algorithm is most uncertain about. Moreover, we can use the average entropy

across all of the node labels as a measure of confidence in the predicted structure.

While there are several other tools available to compute the marginals of Eq 3.9, including

Markov Chain Monte Carlo sampling, Gibb’s sampling, belief propagation offers several unique

advantages including computational efficiency and the tractability of asymptotic analysis [147].

Belief propagation is a general algorithm for calculating the marginals of a joint distribution by a

series of iterative updates. Belief propagation was initially developed for trees [175] for which it is

an exact algorithm, but has been shown to provide good approximations on graphs with loops

(i.e. “loopy” belief propagation) [147, 178] assuming loops are small and short range correlations
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that decay exponentially [256]. A belief propagation was first successfully applied to community

detection in solving the stochastic block model in [86] and improved upon in [51] using an

expectation maximization process to update the model parameters, and rigorously analyzed in

[50]. Zhang and Moore introduced the belief propagation updates for single layer modularity

maximization [259]. Recall the original formula by Newman and Girvan for modularity:

Q(c) =
1

2m

∑
i,j

(Aij −
kikj
2m

)δci,cj (3.10)

where Aij is the possibly weighted adjacency, ci ∈ {1, ..., q} denotes the community assignment of

node i, and ki =
∑

j Aij givens the degree/strength of node i, andm =
∑

i<j Aij the number of

edges in the graph. In writing this as a factor graph, we must distinguish between edges in the

original network and interactions in our factor graph. In the case of modularity, the sum is over

all pairs of nodes (rather than only the edges) because pairs of nodes within the same community

still contribute to the score through the null model term, kikj2m . Thus, the set of edges in our factor

graph includes those in the original graph, but also the interactions described by the null model,

as depicted in Figure 3.2.

Figure 3.2: Schematic of modularity belief propagation. We have split the contributions to the modularity
into two kinds of interactions: strong interactions represented by edges in the original graph (shown as dark,
solid lines in figure) and weaker, all-to-all connections given by the null model term (shown as dashed lines).
Beliefs (shown as arrows) are summed from all interacting nodes except the one who is receiving the message
(far right node).

We could imagine Equation 3.10 as defining the contribution to the energy for a single

type of interaction between nodes with corresponding interaction term: fij = eβ(Aij−
kikj
2m

)δst ,

where we have dropped the factor of 1
2m because only the relative energies matter for the

probability of occupying a given state, and switched notations from ci, cj ↔ s, t to match the belief
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propagation notation. We note that s, t ∈ {1, . . . , q} are used to index the marginals, while ci, cj

represented the community assignment of specific nodes. However, this leads to a much more

computationally intensive form of belief propagation where updates for each node depend weakly

on every other node in the graph requiring O(qn2) computations for each round of updates.

Instead we represent two different kinds of interactions in between our nodes shown in

Figure 3.2: those corresponding to the edges in the original graph with contribution :

fEij = eβAijδst and the weak but dense interactions between all pairs of nodes in the graph that

arise from the null-model term : fnullij = e−β
kikj
2m

δst . By splitting our interaction into contributions

from the separate terms in Equation 3.10, we can factor out the contribution from these, giving us

the belief update equations introduced by Zhang and Moore [259]:

ψi→k
t =

1

Zi→k

∏
j∈∂i\k

q∑
s=1

eβδstψj→i
s

∏
j ̸=i\k

q∑
s=1

e−β(didj/2m)δstψj→i
s . (3.11)

where the first product is only over the neighbors of node i in the network excluding k (i.e.

j | (i, j) ∈ E). Both terms can be simplified as follows:

q∑
s=1

eβδstψj→i
s = eβψj→i

t +

q∑
s ̸=t

ψj→i
s = (eβ − 1)ψj→i

t + 1 (3.12)

q∑
s=1

e−β
kikj
2m

δstψj→i
s = e−β

kikj
2m ψj→i

t +

q∑
s ̸=t

ψj→i
s = (e−β

kikj
2m − 1)ψj→i

t + 1 (3.13)

Further simplification of the second term occurs by replacing all of the weak interactions with a

single field term that is updated after each round of belief propagation updates. In the event that

the network is sparse, the degree of any given node will be small compared to square root of the

total number of edges edges (ki, kj <<
√
2M). In this case we can approximate the message a
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node sends to a non-neighboring nodes (along a dashed line in Figure 3.2) with its own marginal:

ψit = ψi→k
t

∑
s

e−β
kikj
2m

δstψk→i
s (3.14)

= ψi→k
t (

∑
s ̸=t

ψk→i
s + e−β

kikj
2m ψk→i

t ) (3.15)

≈ ψi→k
t (

∑
s ̸=t

ψk→i
s + (1− β

kikj
2m

)ψk→i
t ) (3.16)

= ψi→k
t (

∑
s

ψk→i
s − β

kikj
2m

ψk→i
t ) (3.17)

= ψi→k
t (1− β

kikj
2m

ψk→i
t ) (3.18)

≈ ψi→k
t (3.19)

Thus we can write our contribution from the null-model as follows:

∏
j ̸=k

∑
s

e−β
kikj
2m δst =

∏
j ̸=k

((e−β
kikj
2m − 1)ψj→i

t + 1) (3.20)

≈
∏
j ̸=k

((e−β
kikj
2m − 1)ψjt + 1) (3.21)

≈
∏
j ̸=k

(β
kikj
2m

ψjt + 1) (3.22)

≈
∏
j ̸=k

(eβ
kikj
2m

ψj
t ) (3.23)

= exp

−β ki
2m

∑
j

kjψ
j
t

 (3.24)

= exp

(
−β ki

2m
θt

)
(3.25)

where θt =
∑

j ψ
j
t dj and is treated as constant for each round of belief propagation and then

updated accordingly with each node’s marginal. This “field trick” originally applied in [50] and

[51] is made possible by splitting off the contributions from the edges of the network into a

separate term from the interactions that come from the null-model term in the modularity

formula. This reduces the computational complexity to a much more manageable O(qm).
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Combining these simplifications gives Zhang and Moore’s original update equation:

ψi→k
t ∝ exp

−βki
2m

θt +
∑
j∈∂i\k

log
(
1 + (eβ − 1)ψj→i

t

) (3.26)

Fixed points of the Eq 3.26 are also stationary points of the Bethe free energy

fBethe = − 1

Nβ

∑
i∈V

logZi −
∑

(i,j)∈E

logZij +
β

4m

∑
t

θ2t

 , (3.27)

where V is the set of N nodes, E is the set of edges, and Zij =
∑

st e
βδstψisψ

j
t is the normalization

constant for the pairwise joint marginals.

Computing marginals for each node, Zhang and Moore defined a “retrieval partition”

assigning the community for each node according to its greatest marginal ci = argmaxt ψ
i
t, with

randomly broken ties. Retrieval modularity can be computed from the retrieval partition using

Eq 3.28. We note that while this approach uses the modularity score to establish the energy

landscape over which optimization is performed, ultimately the belief propagation minimizes the

free energy; while lower free energy often corresponds to higher modularity for the retrieved

partition, this relationship is in no way required and indeed is sometimes violated.

3.2.1 E

Recall the equation for the multilayer extension of modularity developed by Mucha et al.

[156] written in the supra-adjacency form⁴

Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj) (3.28)

where i and j each index distinct node-layer objects, possibly in different layers,A is the

supra-adjacency encoding the intralayer edges, P describes the expected number of intralayer

edges based on the selected random model(s), andC encodes the interlayer connections. The

⁴In the supra-adjacency representation, a single block diagonal matrix is used to represent all intralayer connections,
each block representing a single-layer, with no connections between the blocks. A different matrix, C encodes the in-
terlayer connections. Note that dim(A) = dim(C) = dim(P) For introduction to multilayer networks and explanation
of the notation, see Section 1.1.3.
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normalizing factor traditionally written in front of the summation above has been absorbed here

into the constituent terms for notational convenience. We here assume for simplicity the

Newman-Girvan model for undirected edges within each layer, writing the null model

contribution (prior to absorbing the normalizing factor) as

Pij =


didj
2mli

li = lj

0 li ̸= lj

(3.29)

where li is the layer containing node-layer i, (i.e. i ∈ Vli), di =
∑

j Aij , andmli =
∑

i,j∈Vli
Aij is

the total weight of edges in layer li. We enforce onA that a given node-layer i only participates in

intralayer edges within its own layer (by definition). In the case where edge weights are binary

(Aij ∈ {0, 1}), di is the degree of node i. For weighted networks, Aij is continuous and

di =
∑

j Aij is called the ‘strength’ of node i. Similar null models are available for bipartite

graphs, directed networks, and networks with signed edges (see, e.g., the supplement of [156] for

references to appropriate forms for Pij in different contexts).

We have employed a very similar approach as Zhang and Moore, however now we use the

formula for multilayer modularity in Equation 3.28 as the Hamiltonian to represent interactions

in our model. We now use i, j, and k to index the node-layers in our multilayer network. For

more details about the multilayer notation used here, please see Section 1.1.3 in the introductory

chapter. First, we account for the additional contribution of the interlayer edges in a similar

manner to the intralayer edges: fmultiij = eβÃij , where Ãij = Aijδ(li, lj) + ωCij(1− δ(li, lj)) is the

appropriate weight for the inter/intralayer edge the message is traveling along. We note that we

have allowed for weights along the intralayer edges in the same method as Shi et al. [208] while

interlayer edges are of uniform weight which is incorporated into ω. The block description of Aij

and Cij considered here makes the δ(·, ·) indicators in Ãij unnecessary; but we include them to

help clarify the notation in terms of the layers containing i and j. Thus the contributions from the

edges in the network as now given by :

∏
j∈∂i\k

q∑
s=1

eβÃijψj→i
s =

∏
j∈∂i\k

(
(eβÃij − 1)ψj→i

t ) + 1
)
. (3.30)
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This product is over all node-layers in the neighborhood of i including its interlayer neighbors

(but excluding node-layer k). There are also several modifications we have made to the

contribution from the null-model in multilayer modularity. In the null model for multilayer

modularity given by Equation 3.28, only pairs of node-layers that are within the same layer

contribute to Pij with the denominator being the total number of edges within i’s layer,mli (see

Equation 3.29) . Thus the product in the null-model component only goes over the indices of

node-layers within the same layer as node-layer,i :

∏
j ̸=k

∑
s

e−β
kikj
2m δst ⇒

∏
j∈Vli

\k,i

∑
s

e
−β

kikj
2mli δst (3.31)

(3.32)

We have also incorporated a resolution parameter, γ to the contribution from the null model. The

resolution parameter balances between the contribution of edges that are internal to

communities and the strength of the field from the null-model. This gives the null-model

interaction: fnullij = e
−βγ

kikj
2mli . We can still incorporate the field trick detailed above as long as

ki, kj <<
√

2mli/γ. We have found that the algorithm generally doesn’t converge if γ is too large

and have generally used γ ≤ 3 for experiments in this manuscript. We can apply the same line of

reasoning as Equation 3.20 above, substituting ψjt for ψ
j→i
t and Taylor’s theorem to arrive at :

∏
j∈Vli

\k

∑
s

e
−βγ

kikj
2mli δst ≈ exp

(
−β ki

2mli

θtli

)
, (3.33)

where θcli =
∑

j∈V↕⟩
ψjt kj , is the layer specific field term that is treated as constant for each round

of message passing, then updated according to the new marginals. These modification combined

give us the update equations 3.34 formultimodbp. We note that the message passed from

node-layer i to node-layer k, ψi→k
t does not depend on the type of edge (i, k). Node-layer i

integrates information from its neighboring nodes-layers (except node-layer k), handling both

edge weights and types appropriately, and passes this information to node-layer k. The edge type

(and weight) between node-layer i and node-layer k only comes into play when node-layer k

integrates all the information coming in from its neighboring nodes. Thus we can write the belief
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propagation equations for multilayer modularity as follows :

ψi→k
t ∝ exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 (3.34)

The fixed point of the above iterative equations are minimizers for the following Bethe

free energy equation, as derived in Section 3.1 of the supplement:

fBethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij +
∑
l

β

4ml

∑
t

(θlt)
2

 (3.35)

where Zij =
∑

st e
βδstψisψ

j
t is the normalization factor for the pairwise joint marginals.

While we demonstratemultimodbp below in the context of the specific multilayer

topology corresponding to a multiplex network, our formulation is flexible enough to handle any

type of multilayer network consisting of two classes of edges (i.e., intralayer and interlayer edges).

In particular, we remark that, similar to the weights in Aij , the contribution from Cij is explicitly

included here, allowing for different interlayer weights. In principle, the method could also be

extended to networks with multiple types of edges, such as encountered in representing network

data that is both longitudinal and multiplex, with each new edge type introducing its own

coupling parameter, ωi. There are several other details concerning the implementation of the

belief propagation approach which we leave for the interested reader at the end of this chapter,

including the selection of the inverse temperature parameter β in Section 3.5.1 as well as how we

can use the algorithm to identify the appropriate number of communities in Section 3.5.2. Next,

we will demonstrate how the changes we have made affect the performance of modularity belief

propagation in the case of single-layer networks as well as the interpretation of the results.

3.3 Multimodbp results

3.3.1 S -

We begin by examining how our modifications affect the ability ofmodbp to detect

communities within synthetically generated data in the single-layer case. For single-layer

networks, our method is equivalent to Zhang and Moore’s except two main differences (see also
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3.5. Additional Methods for Chapter 3): First, we have included a resolution parameter γ

that adjusts the relative balance of the terms in the update equation. Like other implementations

of modularity, this effectively controls the size of the identified partitions. Second, we have set an

upper limit qmax on the number of communities and incorporated the approach from [206] to

select an effective number of communities based on the overlap of the marginals (see Section

3.5.2).
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Figure 3.3: Demonstration of multimodbp on two realizations of the original SBM model (non-
degree corrected). From left to right, the plots show the retrieval modularity, number of iterations to con-
vergence, and the AMI of the retrieval partition with known community assignments and the effective num-
ber of communities. (a) 4 community SBM with n = 1000, ϵ = pout

pin
= .1, cavg = 4, and even commu-

nity sizes and (b) and 4 community SBM with n = 1000, ϵ = .1, cavg = 4, with uneven community sizes
(ν = [300, 200, 300, 200]). For each network we also show the performance of the sbmbp with parameters for
the SBM supplied (middle plot, dotted black line. See Section 3.3.1 for details of sbmbp method.)

We examine the behavior ofmultimodbp on instances of a four-community stochastic

block model (SBM) (using the original, non-degree corrected SBM) for different values of the

resolution parameter γ. First, we show that in the setting with several smaller communities, a

lower value of γ produces a much wider retrieval phase and thus makes detection of communities

more robust to selection of β. To investigate this robustness, we generated a single realization of
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an SBM and scanned a range of β values to characterize the behavior of the algorithm seen in

Figure 3.3. For an SBM network with four even-sized communities, Figure 3.3a shows that the

retrieval phase for both γ = 1.0 and γ = 1.5 are very narrow (leftmost panel) with a small

corresponding peak in the AMI of detected communities (middle panel). In contrast, for γ = 0.5

the retrieval phase widens out with a broader and higher set of AMI values for the detected

communities. Furthermore, the number of communities identified for γ = 0.5 plateaus at the

correct number, 4 as shown in far right panel of Figure 3.3a)

We also tested the performance of the algorithm in the case where the sizes of the planted

communities were uneven, shown in Figure 3.3b. The relative performance for varying γ is even

more disparate in this case. There is a small retrieval phase for γ = 1, but it is much smaller than

that of γ = 0.5 and the AMI is again consistently lower. For γ = 0.5 we actually detect two

retrieval phases. In the first retrieval phase (β ∈ [1.4, 2.0]), only nodes within the two larger

communities are labeled correctly. Then, as β increases (β ∈ [1.75, 3.0]), the smaller two

communities also become identifiable. This is consistent with the multiphase behavior observed

in [206], though we note that in their example, the phase transition is observed for the default

value of γ = 1. In both of these examples the AMI of the identified partition bymultimodbp is

close to the result achieved by a belief propagation implementation of the SBMmodel, which has

been shown to achieve the optimal bounds for this model [50, 51].

In both of these experiments the value of β∗ marking the transition from the paramagnetic

phase to either the retrieval phase or the spin-glass phase is independent of value chosen for the

resolution parameter, γ. However, the width of the retrieval phase is dependent on the particular

value of the resolution parameter, γ (see upper left panel in Figure 3.3a. Thus the detection of

significant communities in this case relies on the appropriate selection of the value of γ.

C SBMBP LFR

We compare the performance of our algorithmmultimodbp, with a belief propagation

approach to fit the Stochastic Block Model (SBM) developed and implemented in Ref. [50], which

we refer to as sbmbp. This Expectation-Maximization (EM) implementation of sbmbp alternates

between iteratively updating the marginals using belief propagation with fixed SBM parameters,

and updating the SBM parameters using likelihood maximization for the fixed marginals. Their
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implementation requires setting a fixed q however, so for testing we ran sbmbp across a range of q

values (q ∈ 2, 3, ..., 8) and selected the partition with the lowest free energy density.

Our test dataset is the Lancichinetti-Fortunato-Radicchi (LFR) benchmark generator

[125], an algorithm developed to generate networks with more diverse community structures. We

tested ourmultimodbp with several values of the resolution parameter γ against sbmbp across a

range of parameters of the LFR model. We vary the LFR mixing parameter µ, which sets the

detectability of the underlying communities. The LFR algorithm also has a parameter γ̂ to set the

exponent of the power law for the degree distribution and a parameter β̂ to set the exponent of

the community size distribution. We tested both algorithms for two sets of (γ̂, β̂) in Figure 3.4.

Figure 3.4 shows that the modularity based approach outperforms the stochastic block model
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Figure 3.4: Performance of multimodbp and sbmbp over many LFR benchmark realizations with a
range of values for the mixing parameter µ. Each point represents an average over 100 realizations of LFR
with 1000 nodes, an average degree of 3 (with a max of 10), and other parameters set to default values.

across a range of µ, the mixing parameter, all the way down to the detectability limit. The

flexibility of the modularity approach allows for better identification of communities with for real

world degree distribution (since the classic SBM assume homogenous degree distribution within

a community). The comparison was done using sbmbp’s EM approach which is not well suited to

determine the number of communities. In contrast, using our approach as described in

Section 3.5.2, themultimodbp algorithm was able to identify the correct number of communities
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and get more accurate community assignment using a resolution parameter value of γ = 0.5

(though other values of γ also performed well).

NCAA D I-A C F

We now demonstrate that inclusion of the resolution parameter γ in the modularity

objective function can significantly improve performance on real-world networks. As an example

of a real-world network with stable community structure we selected the 2000-2001 NCAA

Division I-A College football network, which has 115 nodes representing teams (schools) and 613

unweighted edges connecting teams that played at least one game [58, 71]. Our previous work

suggests that modularity optimization produces the best community partition in a range

γ ∈ [1.4, 4] [244, 245]. To investigate how the value of γ affects the retrieval phase, we ran

multimodbp for a range of values of the parameter γ and examined the minimal number of

iterations for which non-trivial structure was identified, shown in Figure 3.5. For each value of γ,

multimodbp was run over 30 evenly-spaced values over β ∈ [0.5, 4.5]. For each value of γ we show

the minimum number of iterations over all values of β for which non-trivial structure was

identified and the AMI of the partition of the corresponding partition (the partition identified

with the minimum number of iterations). Runs that did not converge after 500 iterations suggest

that for that value of γ the retrieval phase was either very small or nonexistent. It is possible that

a retrieval phase exists outside the chosen range for β, though we verified for a few arbitrary

values of γ that the algorithm did not have a retrieval phase. Furthermore, Figure 3.5

demonstrates that the AMI of the retrieval partition increases as a function of γ from γ = 1 up

until it plateaus from γ = [1.7, 3.4] at a stable 11 community partition (shown in the far right

panel). In Figure 3.6, we show the algorithm convergence properties as well as performance for a

few values of γ on this network. We also compare the performance of themultimodbp algorithm

with the sbmbp approach, showing that even when the SBM approach identifies the correct

number of communities (middle panel dashed line),multimodbp still achieves more accurate

identification of the underlying community structure (right panel).
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Figure 3.5: Testing multimodbp on the 2000-2001 Division I-A College Football network [58, 71].
A) The average number of iterations until convergence in the retrieval phase across a range of γ values.
B) The average number of communities detected in the retrieval phase as γ increases and the corresponding
adjusted mutual information (AMI) of those partitions. C) ForceAtlas2 [98] layout of the football network with
each node colored according to a partition identified using γ = 3.0, demonstrating excellent alignment to the
conference structure.
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Figure 3.6: Performance characteristics of the algorithm for 3 different values of γ on the 2000-2001
NCAA Division I-A College football network. A) Although all three values of γ produce a wide retrieval
phase, the communities identified within each retrieval phase are different. B) The number of non-redundant
communities is higher as γ increases with γ = 3 producing the number of communities that lines up well with
the ground truth (the conferences) in this example, with C) showing corresponding higher values of AMI for
γ = 3. Horizontal black dashed line shows that sbmbp identifies correct number of communities in B) but has
less agreement with the known conference structure of the network.
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3.3.2 M

D

We test the multilayer functionality ofmultimodbp by application to a multilayer SBM

called the dynamic stochastic block model (DSBM) as described in [70]. The DSBM represents a

temporal multilayer network where each node in the network is represented by a single

node-layer within each layer. The correspondence between identified node-layers is represented

by a single interlayer edge between adjacent layers. In the DSBM, each layer is drawn from a

regular stochastic block model with q communities and edge probabilities described by

probabilities pin within communities and pout between communities. Each node-layer’s

community assignment has a fixed probability η of remaining the same between subsequent

layers (and 1− η probability of choosing a new community). Conditioned on the node community

assignments, each layer’s edges are independent of all other layers. For a fixed average degree c,

the strength of community structure within each layer is given by the parameter ϵ = pout/pin.

In Figure 3.7 we show the average ⟨AMI⟩ score of themultimodbp algorithm on the

dynamic stochastic block model for a range of parameters. We consider DSBM networks created

using values of ϵ and η ranging from 0 to 1. For each choice of ϵ and η we created 50 networks and

computed the ⟨AMI⟩ between partitions identified usingmultimodbp and the ground truth.

Because the value of q is usually not known beforehand, for each (γ, ω) point we scan a range of

possible values of β∗ corresponding respectively to possible values of q as given by Eq 3.41 with

qmax = 4 set to twice the true number of communities (2). For each trial, we select the partition

with the highest retrieval modularity among all that converged.

We apply themultimodbp algorithm in this analysis with several choices of the resolution

parameter, γ (columns in Figure 3.7) and coupling parameter, ω (rows of Figure 3.7). Figure 3.7

shows that incorporation of a resolution parameter makes a large difference for detectability of

community structure based on the DSBM parameters used to generated the network. For lower

values of ϵ (i.e., increased intralayer community signal) with with frequent community switching

(decreased η), γ = 0.5 clearly outperforms the higher values of γ. However, for γ = .5 the

algorithm fails to utilize information across the layers and performance drops off as ω is
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Figure 3.7: Accuracy of the multilayer modbp algorithm on a DSBM. We test multimodbp across dif-
ferent values of model parameters ϵ, and η (x and y axes respectively) and for multimodbp parameters γ and
ω (moving horizontally and vertically vertically across panels). For these generated networks, N = 250,
nlayers = 20, c = 10, and qtrue = 2.
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increased. For (γ = .5, ω = 0),multimodbp performs quite well all the way down to the limit of

detection for single layer networks, given by the condition N(pin − pout) > q
√
c in [51] and [160]

(depicted by the vertical dashed line at ϵ = .38 in upper row of Figure 3.7).

For higher values of γ we get better aggregation of information across the layers with

increasing ω. At γ = 1.0, ω = 4.0 the range of detection is increased to a maximum of ϵ = .75 for

η = 1.0 (no community switching). This behavior is consistent with the limits of detectability that

are achieved through aggregation of layers as discussed in [218]. They derive a modified limit of

detectability in the case where each layer is drawn from the same 2-block SBM with the

community labels fixed throughout the layers, unlike our model where each nodes’ community

assignment is allowed to vary. They compute a detectability threshold of

NL(pin − pout) =
√

4NLρ(1− ρ) where ρ = 1
2(pin + pout). For parameters used in this experiment

the theoretical detectability limit is ϵ ≈ .82 (shown by the dashed lines in Figure 3.7). These

results demonstrate how the additional flexibility provided by tuning γ and ω allows for achieving

near optimal performance depending on the parameters of the underlying model.

C G L H B N

To assess the performance ofmultimodbp on more realistic synthetic data, as well as on

different multilayer topologies, we have applied it to the generative models described in [21] and

implemented in MATLAB [99] and python [100]. In [21], Bassi et al. present a multilayer

generative model that allows for the coupling of mesoscale structures across a variety of interlayer

topologies. In their approach, a multilayer partition is sampled from a distribution defined by a

given null model as well as the specified interlayer dependencies. For the multilayer networks

shown here, communities assignments are drawn from a Dirichlet distribution in an arbitrary

starting layer, and then either copied or resampled based on the interlayer coupling probability

(p) in the other layers. For a complete description see [21] . Then the interlayer edges are drawn

independently for each layer conditioned on the assigned communities. After a multilayer

community partition has been sampled, the edges within each layer are sampled according to a

degree corrected stochastic block model (DCSBM) conditioned only on the community
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assignments within each layer⁵. That is the edges within each layer are independent of each other

given the community assignments. Interlayer dependencies are introduced only through the

probability that a given node keeps the same community assignment from layer to layer. Within

each layer, the strength of community structure is given by the mixing parameter, µ ∈ [0, 1]. If

µ = 0, communities are perfectly separated (no edges between) while if µ = 1 edges are placed

without regard to the communities. We specify the interlayer coupling topology and parameters

for each experiment below and the parameters for sampling the intralayer edges from the

DCSBM. For each experiment in this section, we have used the same parameters detailed in

Section V.A of [21] for the corresponding multilayer topologies. We have comparedmultimodbp

to GenLouvain [104] across a range values for the interlayer coupling parameter, ω (keeping

γ = 1.0). Within the multiplex experiments detailed below, we found that as the number of layers

became deeper, the all-to-all connections between node-layers representing a single node quickly

became stuck in a local minimum where node-layers with interlayer connections were all strongly

forced into the same community, washing out the weak community information from the

intralayer neighbors. To surmount this, we used a rudimentary spectral clustering approach on

the modularity matrix to initialize the beliefs as was suggested in [260]. We compute the top

k = qmax − 1 eigenvectors of B = A− γP+ ωC, the modularity matrix, and use the K-means

algorithm to find qmax different clusters. This does not add significant additional runtime as

computing the leading eigenvectors of sparse matrices can be done efficiently. All incoming

beliefs to a given node are then initialized to a soft version of the identified spectral partition

where the belief representing the node’s associated community is set to be some factor (5 in this

case) times larger than the other beliefs. We found that in general that startingmultimodbp with

even relatively weak alignment from the spectral partitioning greatly improved the results for the

highers values of ω. We show in supplement Figure 24 thatmultimodbp improves on the baseline

provided by the spectral initialization (even when the spectral clustering performs quite poorly).

All of the results of GenLouvain were obtained using the iterated approach where results from

each run are used to initialized the communities for the next round until no improvements in

⁵Other models could be used for sampling the intralayer connections. The network generation process described by
Bazzi et al. is modular in nature allowing for a large combination of inter and intralayer structures. We have chosen
the DCSBM for comparability with the results in [21]
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modularity can be obtained. We also used the randommove setting which allows the algorithm to

break out of local optimum. For each combination of µ, p, and ω in the experiments below, we

run each approach once on 100 independently sampled networks from the benchmark model.

Our results below for GenLouvain closely mirror the findings from [21].

Figure 3.8: Graphical representation of the community structures for networks samples from different
interlayer topologies available with the multilayer-generative model in [21]. In each subfigure, each row
represents a particular node, with each column representing a layer of the network. Each node-layer is colored
according to its multilayer partition. Thus we can see how the different communities persist across the layers of
the network.

T M N : This network has a similar interlayer topology as the DSBM

detailed in Section 3.3.2 with an ordering on the layers and each node-layer connected to only the

node-layers in the layers adjacent to it. That is

Ctemporalij =


1 if lj = li ± 1 AND i ∼= j

0 otherwise
. (3.36)

Similarly to the DSBM, each node has a probability, p of copying its identified node-layer’s

community in the preceding layer. The major difference with this experiment is that community

assignments are drawn from a more realistic Dirichlet null distribution with

θ = 1, nset = 5, and q = 1 (rather than a uniform size distribution) and that the intralayer

connections are drawn from an SBM with degree correction (DCSBM) with :

ηk = −2, kmax = 30, kmin = 3. Each sampled network has 150 node-layers in each layer with 100

104



layers for a total of 15000 node-layers. Visualization of an example temporal network is shown in

Figure 3.8.A. We have run bothmultimodbp across a range of p and µ and compared how the

increasing the interlayer coupling parameter ω affects the performance of the algorithm. In

Figure 3.9.A (the top two rows) we see thatmultimodbp with the spectral initialization tends to

outperform GenLouvain for a wide variety of model parameters. We see that the peak AMI

obtained for µ = .8 is higher formultimodbp across most values of p in some cases notably so

(⟨AMI⟩ ≈ .8 vs ⟨AMI⟩ ≈ .4 at p = .99). Thusmultimodb is better able to utilize the information

across the adjacent layers to inform community prediction.

U M B M : We also sampled graphs from two different

multiplex interlayer topologies. Unlike in the temporal multilayer networks, in the multiplex

topology, there is no inherent ordering to the layers. Each node-layer is connected with interlayer

edges to all other node-layers in the identified set:

Cmultiplexij =


1 if i ∼= j

0 otherwise
. (3.37)

In the uniform multiplex, a node-layer’s community assignment is copied with a given probability

p to all of its identified node-layers. A visualization of an example network with this structure is

shown in Figure 3.8.B. In contrast, for the block multiplex, we divide the layers into a specified

number of blocks, and only copy the layer assignments with probability p for layers within a given

block. Within each block the structure is the same as the uniform multiplex, however there is a

complete discontinuity in node-layer community assignments from block to block. Note that

while the interlayer coupling probabilities are set to 0 between blocks in the model, the interlayer

edges between blocks are still present in the network. Figure 3.9.C shows an example of a

multiplex block network. For both of these examples we use a Dirichlet null model with

θ = 1, nset = 10, and q = 1 and generate the intralayer edges from the DCSBM with parameters:

ηk = −2, kmin = 3, and kmax = 150.

We comparemultimodbp with GenLouvain on the uniform multiplex benchmark
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Figure 3.9: (Caption on next page.)
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Figure 3.9: (Previous page.) Comparison of multimodb with GenLouvain on multilayer benchmarks. We
compare the performance of multimodb (top rows of each panel) and GenLouvain [104] (bottom row of each
panel) across a range of multilayer benchmark networks developed by Bazzi et al. [21]. For each model we vary
both µ, the intralayer mixing parameter (strength of communities) denoted by the different markers and colors.
From left to right, across the subfigures, we vary the persistence of communities across layers from p = .5 to
p = 1.0. Each points represents the average ⟨AMI⟩ over 100 independent realizations of the model. A) Tempo-
ral network topology with ordered layers and interlayer connections only present between adjacent layers. Multi-
layer community partitions are drawn from Dirichlet distribution with θ = 1, nset = 5, and q = 1 and intralayer
edges are samples from a DCSB with : ηk = −2, kmax = 30, kmin = 3. Each network has 100 node-layers
in each layer with 150 layers for a total of 15000 node-layers. B) Uniform multiplex multilayer network with
unordered layers and all to all interlayer connections among identified node-layers across all layers. Multilayer
partitions are sampled from Dirichlet distribution with θ = 1, nset = 10, and q = 1 and intralayer connec-
tions are drawn from DCSB with ηk = −2, kmin = 3, and kmax = 150. Each network has 1000 node-layers
in each layer with 15 layers for a total of 15000 node-layers. C) Block multiplex model with the same parame-
ters as the uniform multiplex models however we introduce a discontinuity between each block of 5 layers where
community labels are completely independent.

networks in Figure 3.9.B (middle two rows). We find that in most of the parameter regimes,

performance is relatively comparable between the two methods, with GenLouvain having a slight

edge overall, especially for higher values of µ and lower values of ω. However, for some

parameters on the block multiplex networks in Figure 3.9.C,multimodbp tends to have the edge

over GenLouvain, especially at lower values of µ (see µ = .8, p = .95). Overall, we see that

multimodbp is able to utilize information across layers to detect community structure where it

would be undetectable if each layer was considered independently. These benchmarks

demonstrate thatmultimodb performs comparably and in some cases outperforms one of the

leading multilayer community detection methods, GenLouvain.

Furthermore, the convergence properties ofmultimodbp provide additional information

about whether there is significant community structure within a network. In Figure 3.10 we show

thatmultimodbp stops converging when the planted structure is undetectable. In contrast, the

modularity of the communities detected by GenLouvain remains relatively stable, even as the

communities become increasing undetectable for higher values of µ. Normal modularity is thus

able to overfit the noise within a network and cannot reliably assess its own performance. In

networks without known communities (e.gmost real-world networks)multimodbp can better

assess whether there community structure is actually present. In addition, while we have

assessed the performance of our algorithm in the previous sections using a hard partitioning of

the network, one of the advantages of our method is the ability to generate a soft partitioning by

using the computed marginals for each node-layer. In the next section we showcase how the
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Figure 3.10: Detectability of communities in the uniform multiplex benchmarking network (with
p = .85) as µ is varied. We plot the average ⟨AMI⟩ of the detected communities for both multimodbp (solid
red line) and for GenLouvain (solid blue line). We also show the average modularity of the partitions identi-
fied by GenLouvain (dashed blue line) as well as percentage of trials that converged to a non-trivial solution for
multimodbp

information can be used to interpret the structure of two real world multilayer networks.

R

We conclude our results by demonstrating the inferences that can be made on real-world

networks using the additional information provided bymultimodbp. We begin with the US

Senate voting similarity network as introduced by [242] and analyzed in [155]. This dataset

represents the voting similarity patterns of 1,884 U.S. Senators over 110 Congresses starting in

1789. Each 2-year Congress beginning in the January following an election is represented as a

layer within this network. A node within a layer represents a Senator serving in that Congress

with Senators serving in consecutive Congresses linked through interlayer edges. In the analysis

performed here, the network was modified to sparsify the intralayer connections by taking the

K-nearest neighbors (KNN) of each Senator based on voting correlations (using K=10) while

keeping the edges with the original weights based on voting correlations.

In Figure 3.11.A we show the correspondence between the retrieval modularity, the Bethe

free energy (Eq 3.35), and the AMI with the political party labels of partitions identified across a
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Figure 3.11: Application of multimodbp to US Senate voting network. We ran multimodbp on the US
Senate voting similarity network comprised of 1884 Senators across the first 110 Congresses [155, 242]. A) The
relationship between the retrieval modularity (x-axis) and the Bethe free energy is given by equation Eq 3.35.
The Bethe free energy correlates strongly with modularity of a partition, and the partitions with the lowest free
energy tend to correspond best with the underlying party structure. B) We examined the distribution of the
average Senator entropy for each Congress (layer) in the network. Inset graphs depict how changes in average
entropy correspond with network structure and the overall level of polarization within the network. Node size
depicts the average entropy level of Senators with “high entropy” Senators labeled.range of the (γ, ω) parameter space. Each point represents a partition identified using

multimodbp. The belief propagation algorithm fixed points are actually minimizers of the Bethe

free energy (rather than optimizers of the retrieval modularity). We see in general that partitions

that minimize the Bethe free energy produce high retrieval modularities. Optimizing the Bethe

free energy also produces partitions that accurately reflect the underlying known structure in the

data set (i.e., the political party affiliations of the Senators), shown by the color of the scatter

points in Figure 3.11. We show a comparison of these partitions with the real party layouts in

Figure 23. It appears that the most appropriate choice (in this sense) of themultimodbp

parameters are around (ω = 6, γ = 0.5).

One of the main benefits of using the belief propagation approach for community

detection is that we can obtain a measure of how confident we are in the predicted community for

each node. In Figure 3.11.B, we show the distribution of Senator entropies for each Congress,

averaged over the top 200 partitions identified (by AMI with parties). On the y-axis we plot the

distribution of − log10(entropy) across all Senators as a measure of how strongly identified the

communities are and thus how polarized Congress is along party lines. We have highlighted

several periods of American history such as the Era of Good Feelings with corresponding low

polarization/high entropy, or the high level of polarization immediately preceding the Civil War.
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The insets show how the corresponding changes in entropy from Congress to Congress are

reflected in the community structure of the graph. This is consistent with the increasing level of

polarization identified by Moody et al. in their study of this data set[152]. Our method gives the

further benefit of providing a node level metric to identify how strongly a node is connected with

its community. In Figure 3.11.B we have labeled the “high entropy” Senators, those whose voting

patterns indicate a measure of bipartisanship (or independence from the party as in the case of

Bernie Sanders in the 2007–08 Congress). Thus node-level information contained in the

marginals allows for an extra layer of interpretability about the community structure. This has

allowed us to assess performance ofmultimodbp on a real world network with an approach that is

orthogonal to comparing detected communities with the meta data on the network. This is

particularly notable given the difficulties with assessing community detection approach solely on

the basis of alignment with metadata attributes as is discussed in [179].

The second real-world network that we have analyzed is the Lazega Lawyer network

introduced by [127]. We scan the (γ, ω) parameter range [0, 3]× [0, 3] and select the partition with

the highest retrieval modularity, Q({t̂}) at each point. In Figure 3.12, we show the number of

iterations taken by the converged partitions for different parameter choices of (γ, ω). Within the

lower right quadrant (high γ, low ω) the algorithm only converged for a small range of β values.

In the top row, middle panel, we see that for this network three communities were chosen for a

large portion of the parameter space, although the structure of the identified partitions varied

widely. In the top right panel of Figure 3.12.A, we look at the average entropy per node across the

parameter space to identify regions where node ambiguity is minimized. These suggest another

way to identify regions of the (ω, γ) with corresponding strong community structure. We see that

there are a few partitions with quite low entropy for γ < 1, and that average entropy tends to

increase past this threshold. The region where the algorithm converged for very few values of β

(lower right corner) also tends to have the highest entropy. In the bottom two rows we have

explored how each partition overlays with a particular metadata attribute within a given layer.

For instance the panel titled “office-friends” shows the AMI of all partitions with the office

attribute only within the friends layer. We see that within different parts of the parameter space,

different features of the metadata align more closely with the partitions identified. For instance
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Figure 3.12: Several visualizations of the Lazega Lawyer network [127]. On the right we show several
characteristics of partitions identified with multimodbp at various values of γ (x-axes) and ω (y-axes). In the
top row, from left to right, we show how many times the algorithm converged over 10 runs at different β val-
ues, the number of communities identified by the best run for each set of parameters (based on lowest Bethe
free energy), and the average entropy of the marginals across all of the nodes for each of these partitions. In
the next two rows we show the AMI of the identified partition within a single-layer and a specified metadata at-
tribute. For example in the left most panel of the second row, we show how the “practice” (which type of law
practiced by each node) attribute lines up with the partitioning of work layer. To the right in B) we show the
three layers of the network (advice, work, friends) colored by two of the metadata attributes, practice (which
specialty of law each person is involved in) and office (which is the location the person works in). Showing the
partitions in this manner demonstrates how different metadata attributes affect the community structure in the
different layers and how this is best captured by multimodbp for different values of γ and ω.
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there is a narrow band from γ ∈ (0.5, 0.9) for which the practice attribute strongly aligns with the

community structure of the advice network. For higher values of γ the advice layer switches to

being more aligned with the office metadata. Similarly, within the “work” layer, we see that the

practice attribute contributes most significantly to the structure identified at a similar

γ ∈ (0.5, 0.9) regime, however the office attribute actually contributes more at higher γ and lower

ω. Our results for this network complement those derived in [179] suggesting that no single

metadata attribute explains the structure of this network. These results highlight the need to

explore and summarize partitions across different parameter ranges.

3.4 Discussion: Benefits of an ensemble based approach

We have presentedmultimodbp, an extension of the modularity-based belief propagation

framework to multilayer modularity. Like the original belief propagation framework for

modularity [259], there are a number of features ofmultimodbp that make it a useful tool for

identifying community structure in real-world multilayer networks. At its core, modularity and

its multilayer extension are objective functions for assessing community structure and do not

allow for true statistical inference⁶(cf. generative approaches like the stochastic block model, e.g.,

[81, 184, 212, 218] for example). However, by formulating multilayer modularity optimization

from the perspective of a Boltzmann ensemble, we can obtain an estimate of the uncertainty of

assignment at each node from its marginal. The marginals reflect how much shifting a node from

one community to another changes the modularity and thus is a measure of how strongly a node

prefers a certain community. In this sense we can find a “soft” partitioning of the nodes, in which

one node may belong to multiple communities, along with confidence levels corresponding to

each community. We have shown in two real world examples how knowledge at the node level

about the confidence in the community prediction can inform interpretation of the community

structure of the graph. Most modularity-based algorithms do not allow for overlapping

communities with a few notable exceptions including OverMod [23] and the fuzzy c-means [263],

both of which require an initial disjoint partitioning of the network in order to identify overlaps.

⁶Newman has shown that optimizingmodularity is equivalent to theMLE for a planted partition of the degree corrected
stochastic block model for a certain value of γ [165]. Likewise Pamfil et al. showed an equivalence for multilayer
modularity for a multilayer SBM with both temporal and multiplex topologies [174].
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Other versions of overlapping modularity-like approaches include [87, 138]. Our approach is

useful in that it can be used for either a hard or soft partitioning of the network depending on the

desired context.

Meanwhile, although the method of Zhang and Moore allows for the selection of the

number of communities by identifying the value of q for which the retrieval modularity

plateaus [259], we have shown that this approach fails to perform optimally in a number of cases.

This underscores the need for greater flexibility as provided by incorporation of the resolution

parameter γ. Rather than searching along the domain of q, we allow q to float (up to a certain

point qmax) and search along the γ domain to characterize network structure. The flexibility

added by the resolution parameter becomes even more important in the multilayer context. We

have shown that performance ofmultimodbp is optimized by different combinations of (γ, ω) in

different parameter regimes of the dynamic stochastic block model. This is consistent with the

work of Newman who demonstrated a link between the resolution parameter γ of modularity and

the pin and pout parameters of the degree-corrected stochastic block model [165]. Recently, Pamfil

et al. extended this approach to multilayer modularity, deriving a similar mapping between the

coupling parameter, ω, and the parameters of a model very similar to the DSBM studied here

[174].

One of the greatest benefits of themultimodbp approach is that the convergence of the

algorithm to non-trivial solutions reveals the existence of significant community structure above

what would be expected at random. Several prior works have shown that even in

randomly-generated networks without underlying structure, modularity optimization heuristics

are capable of finding high-modularity partitions [10, 49, 259]. For this reason alone we believe

an extension of modularity belief propagation for multilayer networks provides a valuable new

tool for network analysis. We have shown that our algorithm performs comparably to

GenLouvain across a range of multilayer topologies and that its convergence properties can be

useful in determining whether significant community structure is present.

There remain a number of technical challenges for implementingmultimodbp at scale.

The runtime of the algorithm depends greatly on the number of iterations of belief propagation

that are required to run before convergence. As described in Zhang and Moore, this tends to spike

as you approach the retrieval phase, and the formula for β∗ we have used tends to yield values
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slightly above where this spike occurs. Ideally, one could have an adaptive solution, identifying a

value of β for which the algorithm appears to be converging quickly early on and adjusting β once

the algorithm is closer to converging. Eventually, we would like to devise an automatic method of

selecting an appropriate value for β based on a preliminary scan of convergence rates across the β

domain, similarly to how we iteratively select the appropriate number of communities as the

algorithm runs. Another issue is the dependency of the runtime and memory of the algorithm on

the number of marginals being optimized. We try to reduce the dimension of the marginals after

the algorithm has run, by attempting to combine redundant dimensions (those that are highly

correlated). One could imagine attempting such a reduction earlier on after a few course-grained

runs of the algorithm to produce additional performance gains.

To facilitate use of (and possible improvements on) our method, we have written and

distributed a Python package available on PyPI [237].

3.5 Additional Methods for Chapter 3

3.5.1 S β

By analyzing the linearized stability of the fixed point to small, uncorrelated perturbations,

Zhang and Moore provided a heuristic for selecting an appropriate value of β = β∗ at which point

the trivial, factorized solution (ψj→i
t = 1/q for all beliefs) is no longer stable, assuming a random

distribution of edges conditioned on the degree distribution. If significant structure is not present

within the network, for values of β > β∗, the algorithm enters the ‘spin-glass’ phase in which

convergence never occurs. In contrast, if the network has detectable community structure, then

there is a range of values, βR < β < βSG where a retrieval state has lower free energy than the

trivial solution and is stable. Typically, β∗ is greater than βR and is within the retrieval phase. We

demonstrate empirically that β∗ is indeed within the retrieval phase in supplement Figures 16, 17,

and 20. However, in principle for real-world networks, β∗ could exist outside of the retrieval

phase, in which case it would be necessary to scan a wider range of β values.

Practically this can be used to eliminate or at least reduce one of the free parameters

involved in running the algorithm. Shi et al. [208] recently expanded the stability analysis around

the fixed point for the case where random weights are added on the edges. We have adopted their
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heuristic for selecting β∗ in the multilayer context, arguing that in the limit of small perturbations,

the intralayer field term does not contribute to the linearized form of the update equations. The

linear stability of the factorized solution is characterized by the derivatives of the messages with

respect to each other at the fixed point (1/q). To identify β∗, the critical value for instability with

respect to random, uncorrelated perturbations, we linearize themultimodbp update equations

(Eq 3.34) and then analyze the stability of the equations under repeated iteration. We use the

notation from Zhang and Moore and Shi et al. Suppose that each belief is perturbed by a small

random amount, ψi→j
cj = 1

q + ϵi→j
cj , these perturbations will propagate to first order by :

ϵi→j
ci =

∑
k∈∂i\j

∑
ck

T i→j,k→i
ci,ck

ϵk→i
ck

, (3.38)

where

T i→j,k→i
ci,ck

=
∂ψi→j

ci

∂ψk→i
ck

∣∣∣∣
1/q

. (3.39)

We provide a derivation for the form of T i→j,k→i
ci,ck in the supplement, Section 3.3 and show that its

largest eigenvalue is:

ηij =
eβÃij − 1

eβÃij + q − 1
, (3.40)

where Ãij = Aijδ(li, lj) + ωCij(1− δ(li, lj)) defines the appropriate weight and connectivity

between nodes i and j. Shi et al. show that the message will only remains stable if the variance of

the perturbations remains less than one over an arbitrary length path in the graph, providing the

following equation: ⟨(
eβ

∗Ãij − 1

eβ
∗Ãij + q − 1

)2⟩
ij

ĉ = 1 , (3.41)

where ĉ = <d2>
c − 1 is the average excess degree of the network, and the expectation is taken over

all non-zero edge-weights. We can solve this equation to identify the appropriate β∗ that

appropriately incorporates both the weights on the edges of the networks as well as the interlayer

coupling ω. We use a root finder to solve Equation 3.41 for β∗(Ãij |q, ω).

We have found that this heuristic works well in identifying values of β for which our

method converges. We note that β∗ represents the boundary for stability of the solution for

uncorrelated perturbations in the beliefs. In the case when detectable community structure
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exists, the messages become correlated with each other and the transition from the trivial

paramagnetic phase to the retrieval phase is generally lower than β∗ [259]. Thus, choosing values

of β near β∗ works well in practice. Additionally, Schülke el al. showed that in many networks

there can be multiple zones of the retrieval phase corresponding to detecting communities at

different scales [206]. Therefore, in our experiments, we run the algorithm for a range of

{β∗q} = [β∗(q = 2), . . . β∗(q = qmax)], where qmax is some reasonable upper limit for the number of

communities in a particular network. We have found that this approach identifies a reasonable

retrieval phase for the networks tried in this chapter. For example in Figure 20, we show how

several of the {β∗q} consistently lie within the retrieval phase for the US Senate voting network

discussed in Section 3.3.2.

We emphasize that like the original Zhang and Moore approach as well that that by Shi et

al., our heuristic assumes a sparse, tree-like network as well as randomly distributed edges and

edge weights and provides no guarantees that β∗ will be found within the retrieval phase. For

certain networks, scanning a larger range of β will be necessary, though in practice we have found

that the approach above is fairly robust. We note that while it is possible that a fairly small

retrieval phase could be missed by such an approach, in our experiments this approach for

selecting β∗ has identified values of β for which the algorithm converges close to the known

detection limit (see Figure 3.7). In running the algorithm, we also set un upper limit to the

number of message passing iterations allowed before we say that the algorithm has not

converged. We generally select this to be several hundred times the number of iterations at which

the algorithm converges to the fixed point (ψit = 1/q, ∀i, t) for smaller values of β.

3.5.2 S , q

One critical issue with many community detection algorithms is in selecting the

appropriate number of communities. In the context of modularity, adjusting the resolution

parameter γ can reveal communities of different scale and size, overcoming the “resolution limit

of detection” first raised by [63]. Since then there have been several approaches showing how the

scale of the community structures identified varies with the resolution parameter (see, e.g., the

discussion and references in [244]).

Zhang and Moore do not include a resolution parameter in deriving theirmodbp
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algorithm (thereby implicitly setting γ = 1 in Eq 3.26), instead suggesting an alternative

approach for selecting the appropriate number of communities. They show in several examples

that the maximummodularity achieved in the retrieval phase of the algorithm peaks at certain

numbers of communities. They suggest that this peak identifies the correct value for q, the

number of communities, where there is no additional increase in the retrieval modularityQ({ci}).

However, this approach requires runningmodbp for many possible values of q, and then choosing

an arbitrary threshold when modularity is no longer sufficiently increasing to establish the

correct value of q. In many cases, selecting an exact value of q is made difficult because of

fluctuations in the retrieval modularity near the β∗ value derived by Zhang and Moore. Figure 19

in the supplement illustrates how choosing q is challenging in practice by these considerations.

Meanwhile, selecting the number of communities in this manner implicitly uses the value γ = 1,

which has been shown to return non-ideal partitions in synthetic and real-world networks (see,

e.g., [7, 63, 165, 224]). We show in Section 3.3.1 the positive impact of using different values for γ

on several different networks.

There have been two other approaches to selecting the appropriate number of

communities usingmodbp without having to run the algorithm at many values of q. Both

approaches involve selecting a qmax, the largest possible number of communities, and then using

similarities in the marginal probabilities of assignments to evaluate the true number of

communities. Lai et al. [121] noted that in the event that q is too large, many of the marginal

community assignments will be highly correlated, and highly correlated states (community

assignments) can be condensed into a single group. Similarly, Ref. [206] condenses the

community assignments on the basis of the average distance between the marginals across all

nodes in the network. In practice, we have found that for the default resolution (γ = 1), choosing

the number of communities this way all but obliterates the retrieval phase if qmax is chosen to be

too much larger than the actual number. We have implemented the method in Ref. [206], letting

the number of communities float up to a pre-specified qmax (See Section 3.5.1), and condensing

together communities that have closely aligned marginals. We show that incorporation of a

resolution parameter γ restores the width of the retrieval phase and returns values closer to the

correct number of communities. As previously mentioned, because we do not specify a single

value of q; rather, we run the algorithm across a range of β = [β∗(c, q = 2), . . . , β∗(c, q = qmax)]
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where the formula for β∗(c, q) is given obtain using Eq. 3.41. We have found that this provides a

reasonable range of β values to search within and that performance of the algorithm does not

depend on the precise value of β, as long as it is within the retrieval phase.

3.5.3 C -

In runningmultimodbp at low levels of interlayer coupling (ω) on multilayer networks

with both temporal and multiplex coupling topology (e.g the dynamic stochastic block model

described in Section 3.3.2 and the multiplex networks in Section 3.3.2 ), we frequently observed

that the intralayer marginals would rapidly converge to communities that remained misaligned

between layers. Such misalignment would then typically lead to “fragmented” partitions as shown

in Figure 21 as well as a lower AMI. For these partitions, within any single-layer the AMI of the

partition with the ground truth with that layer would be very high, but the total AMI over the

entire multilayer data would become much lower. To correct for this issue, we implemented a

greedy heuristic to explicitly permute the community assignments within certain layers in order

to maximize local alignment between neighboring layers. Specifically, we identify the layer x that

has the greatest number of nodes (of those present in both layers) that change community identity

from the previous layer, y. We then find the matching of community labels in x that best matches

those observed in y; that is, we minimize the total number of mismatches across layers x and y:

C(x, y) =
∑
i∈Vx

∑
j∈Vy

[(ci ̸= cj) ∧ I((i, j) ∈ Einter)] (3.42)

Once the optimal bipartite matching has been identified [118], the community labels in layer x

and every subsequent layer are rearranged according to that matching (with community labels in

subsequent layers that are not present in either layer x or y remaining unchanged). We then

repeat this procedure until no further labels are changed (i.e. the optimal matching is the identity

at the layer where the greatest change occurs). We note that this procedure does not alter the

community structure identified within any particular layer, maintaining nodes that have been

grouped together. Rather, this procedure aligns the community labels between layers in a way

that always increases the retrieval modularity, thereby improving the computed results. This

approach assumes a notion of persistent community across inherently ordered layers which is
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appropriate in the temporal multilayer setting. In the multiplex case, for each layer we permute

communities in order to minimize that layers differences across with all other layers∑
y ̸=xC(x, y), cycling through the layers in random order until no permutations are found. This

heuristic is the same as the interlayer merging developed by Bazzi et al. to overcome a similar

problem encountered when optimizing multilayer modularity with the GenLouvain algorithm

[20].
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CHAPTER 4: THE TMB PARADOX

In this chapter, we discuss a particular question in cancer genomics whose solution is

revealed more readily when formulated as a network. We dive back into the realm of oncology

here and examine the following challenge: when looking across the mutational landscape of many

different tumors, can one identify which mutations are associated with increased levels of

mutational burden overall. One senses intuitively that there is a bit of a chicken and egg problem

here because the cause (mutations in specific genes) is also part of the effect we are measuring

(mutations across all genes). We will see how this conundrum leads to a phenomenon which we

have dubbed, the “Tumor Mutational Burden (TMB) paradox”. We begin with a discussion of the

relevance of this question to personalized medicine with a new class of immune based therapies.

We detail the previous, univariate approaches and why these give inappropriate results. We

reveal how a networks based approach can reveal new insight to the problem and provides a test

for such association. We close by showcasing how our results can increase predictive power on

several clinical datasets.

4.1 Introduction to TMB Paradox

4.1.1 I C B (ICB) TMB

Immune Checkpoint Blockade (ICB) has revolutionized the treatment of many solid

tumors achieving remarkable remissions in some cancers, while largely sparing patients from the

more toxic side effects of traditional chemotherapy. ICB uses monoclonal antibodies targeting

cell surface proteins including cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell

death 1 (PD-1), and programmed cell death ligand 1 (PD-L1), all of which serve as inhibitory

pathways to activating an adaptive anti-tumor immune response. While some patients achieve a

durable response to ICB, the majority of patients either have or develop primary and secondary

resistance respectively. While several genomic markers are available to predict which patients
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will respond, there is still a large degree of heterogeneity that is not explained by existing markers

of response. Continuing to refine and develop novel predictive biomarkers will allow us to apply

these drugs more sparingly among patients, as well as understand the basic mechanisms

underlying tumor susceptibility.

Tumor mutational burden (TMB), usually defined as the number of synonymous and

non-synonymous mutations per megabase sequenced has consistently been associated with

response to ICB [35, 89]. A number of recent studies have shown [109] that increased levels of

tumor mutational burden are predictive of response to immune checkpoint blockade (ICB)

[35, 77, 144, 148, 154, 187, 195, 210, 230, 249, 252] The basis of TMB’s correlation with ICB

effectiveness is believed to be that higher levels of TMB correspond to more neoantigens, altered

expressed proteins that are not recognized as self by the immune system, triggering an

antigen-driven immune response [128, 129, 154]. However, TMB levels only explain a fraction of

the variation in patient response to ICB [109]. TMB levels can range widely both across and

within tumor types [252]. For example, pediatric tumors tend to have very low median levels of

TMB, while carcinogen induced tumors such as melanoma, lung, and bladder tumors have much

higher median TMB levels [154]. Tumor types with higher levels of TMB typically have better

response rates. However, there are a few tumor types such as renal cell carcinoma that have good

response rates despite having generally low levels of mutation [252]. Even within high TMB

cases, response rates are below 40% of patients, with many high TMB patients failing to respond.

Conversely, there are also many low TMB patients that do respond to ICB therapy, suggesting

that TMB alone fails to capture the complexity of ICB response and that other predictive

biomarkers are needed.

4.1.2 T M B DNA D R

The level of tumor mutational burden is thought to represent the balance between a

tumor’s exposure to a mutagenic process (UV radiation, carcinogen, replicative stress) and the

integrity of the cellular DNA Damage Repair (DDR) pathways. Multiple studies have now

confirmed an association between the inactivation of a DDR gene and increased levels of TMB.

Studies have documented this association with individual genes (i.e. POLE) [34, 205], individual

DDR pathways such as MMR [35, 67, 266], co-mutations across multiple pathways [240], or the
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presence of any DDR mutation [144, 161, 266]. All of these reports have noted a strong

correlation between mutations in the DDR genes/pathways examined with higher levels of TMB

and in some cases ICB outcome. In contrast to these previous reports, a recent study of DDR

mutations across all TCGA tumors found only two DDR genes where mutations were associated

with a higher level of TMB than other genes in the cohort [115].

There have been several studies that have reported a link between mutations in DDR

pathways and response to ICB therapy. Recently, pembroluzimab was approved by the FDA for

treatment in cancers with loss of the mismatch-repair (MMR) machinery, the first cancer drug

approved for use on the basis of a biomarker alone, regardless of cancer type [134]. Other

research has shown a link between ICB response and mutations in specific genes such as POLE

[145], as well as BRCA2 [97]. Importantly, models that include mutations in any DDR genes have

had increased predictive power of ICB response over TMB alone [219]. However, Mariathasan et

al. found that while DDR mutations were able to predict response to ICB, in aggregate they did

not provide any explanatory power beyond TMB [144]. It is believed that alterations in DNA

Damage Repair could mediate the production of neo-antigens in a way that is not captured by

TMB alone [109, 154]. Thus, firmly establishing the causal link between alterations in DNA

Damage Repair pathways and elevated TMB has import prognostic and therapeutic implications.

4.1.3 U TMB

Most of the studies examining the link between elevated TMB and mutations in the DDR

pathways rely on a univariate test such as the t-test or Mann-Whitney-U test to determine

statistical significance. In these univariate tests, the in-group is defined as all samples with a

deleterious mutation in a given gene (or pathway), which we refer to as a gene’s mutated sample

set. The out-group is represented by all other samples in the cohort. However, this approach is

confounded by a bi-directional feedback loop between our readout of interest (levels of TMB) and

the variable we are trying to relate it to (mutations in DDR genes). If there is a mutation in a gene

that leads to higher levels of genomic instability and increased mutation frequency (e.g. a DDR

gene), we are more likely to observe mutations within that gene as well as the other genes we are

testing (such as other DDR pathways). This leads to a bias in the selection of samples for the

comparison groups of the univariate approach.
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Furthermore, aggregating mutations across genes within a pathway or multiple pathways

increases the effect of this bias. We suggest a networks based approach that accounts for this

issue, and demonstrate our approach on the TCGA pan-cancer dataset, identifying the DDR

pathways that are associated with higher levels of TMB. We validate these findings in an

independent, novel dataset from an academic-industry collaboration, the Precision Medicine

Exchange Consortium (PMEC). The PMEC dataset complements the TCGA data well in that

many of the gene and tumor-level characteristics agree (see supplemental Figure 25) and that it is

similar in size and diversity of tumor types. We highlight how the results suggested by our

approach differ markedly from the univariate approach described above. Finally, we find that

mutations in the DDR genes that are not associated with higher levels of TMB are independently

predictive of immune checkpoint blockade (ICB) therapy response in two clinical data sets.
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Figure 4.1: Application of univariate approach to DDR pathways and comparison against all genes A)
We show the distribution of Tumor mutational burdens (TMB) for all samples with a mutation in each of the
DNA Damage Repair (DDR) pathways. Dashed line shows the median TMB for all TCGA samples (including
those with mutations in the DDR pathways) with light blue line showing the interquartile range. Mann-Whitney
U p-values are calculated by comparing the distribution of TMB for samples with any mutation in the genes
that define a pathway (counting only once if they have multiple mutations) to the distribution of all samples,
again including those with mutations in the DDR pathway. B) Distribution of Mann-Whitney U test p-values
(without multiple test correction) across all genes in TCGA. For each gene MWU test compares distribution of
TMB values for samples with a mutation in the gene vs all samples in cohort. C) Distribution of mean TMB
values for mutated sample set for each gene compared with the overall mean TMB for the cohort (dashed black
line).

The most straightforward analysis to identify the genes in which a disrupting mutation

leads to higher levels of TMB is to compare the distribution of TMB in samples with a mutation in

a given gene to those without using a statistic like a t-test or the non-parametric Mann-Whitney U

(MWU) test. Because the mutational frequency of most individual genes is quite low, greater

power can be achieved if we combine mutations across identified genomic pathways, again

comparing samples with a mutation in each pathway to those without any such mutation.

Depending on the number of genes to be considered, there are often a number of samples with

mutations in multiple genes or pathways. These samples might simply be ignored, or considered

as part of multiple in-groups for the analysis. Throughout this chapter we have used the core

DNA Damage Repair pathway assignments as defined by Knijnenbrug et al. [115], shown in

124



Table 4.1.¹ In Figure 4.1 we show how this analysis finds that all of the DNA Damage repair

pathways are highly associated with elevated levels of TMB. We have computed Mann-Whitney-U

p-values here using a more conservative approach: we use all samples for the out-group in the

comparison, including those with mutations in the DDR pathway we are assessing. This has the

benefit that each DDR pathway is compared to the same out-group. Despite this we find very

significant p-values ranging from 1.5e−08 to 6.7e−81. We found similar results using the

mutation data in the PMEC dataset, although a generally lower significance level (p-values in the

range of 1.2e−07 to 2.6e−55)

We also examined how the DDR pathway genes compared to the overall set of genes.

Figure 4.1.B shows that the vast majority of genes were found to have a significant association

with elevated TMB based on the MWU test (around 70% of genes have p-value <.01.) This is

reinforced by Knijnenburg et al.’s finding that most of the DNA Damage repair genes were

uniquely associated with higher levels of TMB as compared to other genes (see Figure S2.K)[115].

Surprisingly, when we looked at the distribution of mean TMB values of samples harboring a

mutation in each gene in Figure 4.1.C, we found that the majority of genes have a mean TMB well

above the average TMB of the whole cohort. Because it seems paradoxical that almost all

individual genes have an associated higher median or mean TMB than the median or mean of all

samples, we have labeled this phenomenon, “The TMB Paradox”. We refer to finding as the TMB

Paradox: almost all genes have a higher median/mean TMB than if one considers the dataset as a

whole. As the t-test and Mann-Whitney U test are testing for differences in the central tendencies

(i.e. the mean or the median respectively) between two distributions, this observation suggests

that the majority of genes will have a highly statistically significant association with elevated

TMBs.

We also wondered whether or not the current test was biased towards significance for

genes with a greater mutational frequency.² Figure 4.2 shows the mean level of tumor mutational

¹The presence of a given (usually highly mutated) samples across multiple in-groups is particularly problematic when
testing at the pathway level because often times a given gene is in multiple pathways. While the DDR classification
schema we have used assigns each gene to only one pathway, given the extensive crosstalk between the different path-
ways, many schemas (including the inclusive schema from [115]) contain overlapping memberships.

²The mutation frequency for a given gene is the proportion of samples with a mutation in that gene for a given cohort.
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Figure 4.2: Comparison of mutation frequency with mean TMB of mutated sample set. Gene level
mutation frequency (x-axis) plotted against the mean TMB for all samples with a mutation in each gene. (y-
axis) for the PMEC A) and the TCGA B). Each scatter point represents a unique gene in the dataset, with
DNA Damage Repair genes starred and colored according to their pathway (see legend in panel A). Dashed
horizontal lines depict the threshold for high TMB (> 10) as well as the mean TMB for all samples within the
data set (lower line in each panel). Regression curve show slight negative relationship between mutation fre-
quency and the median level of TMB for samples with a mutation in that gene.

burden for samples with a mutation in each gene versus the mutational frequency for the

corresponding genes. We have plotted all genes (including the DDR genes with colored stars) for

both PMEC and TCGA. We see that there is a slight negative trend in both datasets with higher

mutation frequencies predicting a lower mean TMB. We believe that this weak association

represents yet another artifact of the univariate approach rather than a true biological trend.

Figure 4.2 also reinforces that the mutated sample set for most genes has a mean TMB that is

above what would classify as “high” TMB (> 10) and nearly all genes have mean TMB above the

mean TMB for all samples as a whole.

This finding is similar to the well known “friendship paradox” in network science [59].

The friendship paradox states that for most nodes in a network, their neighbors will on average

have a higher degree than the node itself does. By re-casting our data into a network of a

particular form, we can show how the TMB paradox is a case of the friendship paradox and how

this form of oversampling bias arises. We propose an appropriate statistical test for whether

mutations in a given gene are associated with higher levels of TMB. We expect that a statistical

test built on a network analysis that corrects for the TMB Paradox would 1) yield a uniform
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distribution of p-values, with only a small subset of genes found significant; 2) exhibit no

relationship between mutation frequency of a gene and TMB; and 3) be independent of gene size.

4.2 Networks-based approach to identify gene-TMB associations

4.2.1 B

To explain why the TMB Paradox arises in the previously described tests, we first show

how our mutational data can be recast as a network. In Figure 4.3, we demonstrate how a matrix

that encodes which genes are mutated in each sample can be converted into a bipartite network.

A network is a collection of nodes and edges that represent pairwise interactions between these

nodes. Networks provide a powerful framework for analyzing complex systems and have been

successfully applied in numerous contexts in oncology including cancer subtyping [90, 139],

identification of driver mutations [39, 217, 220, 258], and the identification of dysregulated

pathways associated with cancer development and prognosis [112, 133, 231]. See Section 1.3 for a

more detailed review of networks based methods in oncology.

A bipartite network is a network where the nodes are in one of two classes and edges are

only allowed between nodes of different classes [167]. In the context of this chapter, the two

classes of nodes are the genes and the tumor samples as shown in Figure 4.3. For each of the

Figure 4.3: Schematic representation of converting our mutational data in matrix from, B to a bi-
partite network. The two classes of nodes are the genes and the samples. Each sample is connected to a gene
if that sample has a mutation within that gene. For simplicity, we consider an unweighted bipartite network
since it is rare for a sample to have multiple mutations in the same gene. Far right panel depicts the friend-
ship paradox for a randomly generated (non-bipartite) network using a common, synthetic benchmark model
(Lancichinetti, Fortunato, & Radicchi, 2008) . Each scatter plot represents a node in the network, with the x-
axis showing the node’s degree, and the y-axis showing the average neighbor degree. The scatter plots that are
above the y=x line (dashed orange line) have a higher average neighbor degree than their own degree. We see
that this is the case for most nodes in the network.
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datasets, we represent the mutational data as an N (genes) byM (samples) binary matrix with

each entry denoting whether a particular sample has a mutation within a given gene by a 1 and a

zero otherwise. Figure 4.3 shows the equivalence between a representative mutational matrix,B,

and the corresponding bipartite network. We emphasize that, by construction, edges can only

occur between the different classes of nodes, in this case between a gene and a tumor sample.

In the bipartite network representation of the mutation data, a gene’s mutation frequency

is proportional to its node’s degree (i.e. the number of neighbors it has), since by definition each

edge represents a mutation of that gene in a sample. This quantity is directly proportional to the

mutation frequency of the gene (moduloM , the number of samples observed, which is the same

for every gene). Likewise, each tumor sample’s total mutational count will be proportional to its

degree in the network. We have found empirically that the total number of mutations for a given

sample is very tightly correlated (R2 = .91 for TCGA) with the TMB of the sample (which

incorporates other factors such as sequencing depth).

The friendship paradox states that for the majority of nodes in a network, their degree will

be less than the average degree of their neighbors. This is referred to as the friendship paradox

because in social networks representing friendships (edges) between individuals (nodes), it

implies that for most individuals in the network, their friends will on average have more friends

than they do. This phenomenon arises because nodes with large degrees are counted in the

average neighbor degree for many different individuals; they are oversampled and play an

outsized role in computing the average neighbor’s degrees. We offer a proof the friendship

paradox in the supplemental section 4.1.

In our bipartite model, the average neighbor degree³ for any given gene is the average

degree of the samples with a mutation in that gene. For example, in Figure 4.3 the circled node

labeled g3 would have an average neighbor degree of (1 + 3)/2 = 2. In the case of the bipartite

network representing our mutational data, the average neighbor degree for each gene is the mean

TMB of the samples with a mutation in that gene. In network science, the average degree of a

³The distribution of neighboring degrees is closely related to a quantity known as the excess degree. The excess degree
is the distribution of degrees you get from picking a random edge in the network and looking at the degree of one of
the nodes attached to that edge, not counting the edge you travelled along [167]. Therefore the average excess degree
is really the average degree of the neighbors minus 1.
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node’s neighbors is related to called the excess degree [167].⁴

This phenomenon applies to all networks with non-trivial degree distributions⁵ and

becomes more pronounced as the variance of the degree distribution gets larger. That is as the

degree distribution becomes more fat-tailed, the divergence between the average neighbor degree

and the average degree increases [59]. On the far right panel of Figure 4.3, we demonstrate this

phenomenon for a randomly generated network using the Lancichinetti-Fortunado-Radicchi

(LFR) generative model for random networks [125]. The far right of the plot depicts the marginal

distribution of the neighboring degrees, with the mean degree of the network represented by the

horizontal, dashed line. This plot shows that most of the nodes in the network have a significantly

higher mean neighbor degree than their degree.

The phenomenon we have described in our mutational datasets, shown in

Figures 4.1 and 4.2, is really a special case of the friendship paradox. In our bipartite network

representation of our data, the mutational frequency of the genes in our network is equated with

the degree of the gene nodes in our network. Likewise the mean TMB of the samples mutated in

each gene is represented by the average neighbor degree of the gene nodes. Application of the

friendship paradox dictates that most genes will be associated with a higher level of TMB than the

distribution of the samples as a whole. This phenomenon is augmented by the fact that the

distribution of mutations across the tumor samples is fat tailed. Most of the samples have

relatively few mutations (in the TCGA dataset, 78% of the tumors have less mutations than the

average), while a few samples are highly mutated. In recognizing this TMB paradox at play, we

are in a position to test for associations between mutations in each genes and elevated TMB in a

way that respects the underlying constraints of the network data.

4.2.2 S

In recognizing the effect that the distribution of mutation frequency (for both tumor

samples and genes) plays in biasing our test statistic, we construct a novel test that corrects for

⁴The excess degree is actually the degree of the neighborminus the edge travelled along to reach the neighbor. Therefore
the average excess degree is really the average degree of the neighbors minus 1.

⁵For example a ring or other k-regular graphwould not exhibit this. See [173] formore examples of special graphs where
the paradox does not hold.
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this TMB paradox. Our test consists of comparing the observed mean TMB for each gene or

pathway’s mutated sample set against the expected distribution under random sampling of

bipartite networks that match the degree distribution of the original dataset. The null model for

networks in which all networks with a given degree sequence are uniformly likely is known as the

configuration model [167], which has also been extended to bipartite graphs [203]. A useful way

to visualize the bipartite configuration model is demonstrated in Figure 4.4.A: we cut across the

edges in the original network and reconnect the “stubs” at random with each possible sets of

pairings respecting the bipartite structure of the original network and being equally likely under

the model.

Figure 4.4: Sampling from the bipartite configuration model A) Depiction of the configuration null
model for a given network. Edges are ‘cut’ in two leaving stubs, which can be connected to any other stub
as long as the bipartite structure is maintained. In the configuration model, each valid arrangement is equally
likely to occur. B) We can sample from the configuration model by repeated rewiring of the network. The sam-
ples from the model will be independent as long as a sufficient number of rewires has occurred between each
sample.

In Figure 4.4.B we demonstrate a method for sampling from this space of network using a

rewiring procedure as analyzed in [65]. We note that we sample the bipartite configuration model

using a series of rewiring steps rather than the more direct “stub matching” approach to ensure

that we sample the appropriate, more restricted model without self-loops and multi-edges [65].⁶

⁶Although the bipartite model without self-loops and multi-edges can be directly sampled with “stub matching” with
rejection sampling, this can take exponential time. See [65] for more detailed discussion of algorithms to sample the
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We iterate the following steps:

1. Select two edges at random in the network.

2. Assert that each edge is connected to a distinct pair of nodes. If the two edges involve either

the same sample node, or the same gene node, repeat 1.

3. Swap which gene is connected to which sample.

4. Repeat 1-3

This process creates a Markov chain that, if run for long enough, will sample all of the possible

networks under our model with uniform probability [65]. Our test statistic compares the observed

mean TMB of a gene’s mutated sample set, to the distribution of mean TMB’s from many

independently drawn mutated sample sets for that gene from the bipartite configuration model.

Figure 4.5: Sampling the distribution of mean TMBs from the bipartite null model. Each blue step
function represents the empirical cumulative distribution function for the TMB of all samples with a mutation
in the selected gene (MSH3) in a single network drawn from the null model. The red line shows the observed
distribution of TMB and the inset shows the distribution of the means of each set of sampled TMBs with a
fitted Gaussian overlaid. The red dashed line in the inset represents the observed mean TMB for that gene.

As demonstrated in Figure 4.5, we compute a z-score for the observed mean level of TMB

compared with the distribution of the means across many random networks under the

various versions of the configuration model.
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assumption that the sampled means follow a normal distribution.⁷ The z-score can then be used

to assess whether the statistic is significant at a given threshold with the appropriate correction

for multiple testing. We can compute our statistic for both an individual gene as well as a group of

genes such as a DNA Damage Repair pathway. In the next section we apply our network

permutation test to two large datasets and compare the results with the univariate approach. In

so doing, we demonstrate that only two of the major DNA damage repair pathways are associated

with elevated levels of TMB.

4.3 TMB Paradox Results

4.3.1 A DDR

We have applied our test to the TCGA mutational data as well as to the PMEC data,

computing gene level and DDR pathway level z-scores and comparing them with the

Mann-Whitney U test p-values for reference. Overall, we found that only mutations in the

mismatch repair (MMR) and nucleotide excision repair (NER) pathways were associated with

higher levels of tumor mutational burden in both datasets. Figure 4.6 shows the distributions of

TMB’s for each of the pathways across 500 permuted networks from the bipartite configuration

model.

None of the other pathways showed a strong association with elevated tumor mutational

burdens, with the exception of non-homologous end joining (NHEJ) pathway in the PMEC

dataset. However, only a single NHEJ gene, PRKDC, was available in the much smaller set of

genes present in PMEC. Interestingly, mutations in the damage-sensing (DS) pathway were

associated with lower levels of TMB. This could arise if mutations in this pathway were mutually

exclusive with mutations in a high TMB associated pathway such as NER. However, this warrants

further investigation as to the biological interpretation of this result.

We examined the correlation between the z-scores obtained via our permutation test

using the full TCGA data (consisting of about 18000 genes across 9500 tumor samples) with the

⁷We compute a z-score and convert it to a p-value as an approximation to the true significance of the test due to com-
putational constraints. Under the assumption that our samples are independent, by the Central Limit Theorem, the
distribution of the mean TMB should be normally distributed. One could also draw a sufficiently large number of
samples from the null distribution to compute an empirical p-value.
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Figure 4.6: Application of bipartite configuration test to the DNA Damage Repair pathways in the
TCGA data. Each figure shows the observed cumulative distribution of TMB for samples with any mutation in
the genes of the specified pathway (with samples with multiple mutations counted only once) by the red solid
line. The blue line shows the average cumulative distribution across 500 sampled networks, with the light blue
band showing the 99% confidence interval. The horizontal line at y = .5 denotes the median TMB for the
distributions. The inset figure in each panel shows a histogram of the means of the sampled distributions of
TMB for samples with a mutation in the corresponding DDR pathway. The vertical red dashed line depicts the
observed mean TMB in the actual data set. Z-scores were constructed by comparing the observed mean TMB
to the sampled means.
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z-scores obtained on the PMEC dataset, which only consists of about 500 genes total. In

Figure 4.7.A, we show that the obtained scores are consistent for the DDR pathway genes between

the two datasets (R2 = .46), with good consistency between the pathway level scores. Similar

agreement between gene-level z-scores across the two datasets is found using the entire set of

common genes (R2 = .37) shown in supplemental Figure 26.

Figure 4.7: Comparisons of permutation test applied to DDR genes. A) We compare z-scores obtained
for each of the DDR genes (solid dots) and the DDR pathways (open circles) using both the PMEC dataset (x-
axis) as well as the TCGA mutation data (y-axis). Solid gray lines indicate boundaries for a p < .05 significance
threshold for each test. B) We compare the z-scores obtained for the permutation test in the TCGA data with
the p-values for the corresponding Mann-Whitney U test in the same dataset. Genes are colored in both plots
according to their DDR pathway.

We also looked at the consistency between the z-scores of network permutation test and

the p-values of the Mann-Whitney U test⁸ shown in Figure 4.7.B. As previously mentioned, the

MWU test predicts a positive association between TMB and mutations in the vast majority of

genes. However using the network based test, only a few of the individual DDR genes (with

z-score >2) have enough evidence to suggest a positive association between mutations in the gene

and elevated levels of TMB, including POLE and several of the MMR genes. Several other genes

that would be ranked highly under the MWU are no longer significant or have a negative

⁸The Mann-Whitney U statistic tests whether a value drawn from one distribution is likely to be larger than that from
the second. We perform the two-side version of the test here and report the p-values. In all cases the distribution of
TMB for samples with a mutation in the gene was higher than the non-mutated samples, even though the opposite
direction of effect would also have given a small p-value.
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association under the permutation test, suggesting that there is a confounding effect from

co-mutations with other genes. We see a similar relationship between the permutation test

z-scores and the MWU p-values when looking across all genes in the TCGA set (see supplemental

Figure 26) though with a slightly stronger correlation (ρ = .51). We note, however, that the

relationship is clearly not linear.

Figure 4.8: Characterization of network permutation test Distributions of p-values for the A) Mann-
Whitney U test as well as the B) network permutation test applied to all 18, 000 genes in the TCGA dataset.
C) Z-score values and protein length (number of amino acids) show no relationship. D) Mutation frequency for
each gene in TCGA plotted against its z-score based on the permutation test.

If we compare the distribution of p-values implied by the network permutation test to the

distribution generated by the MWU test (Figures 4.8.A and B) we find that the network based test

produces a more uniform distribution of p-values, which is what one would expect assuming that

the null hypothesis holds for most genes (i.e. that mutations in the majority of genes are not

correlated with higher levels of TMB). We also see that our z-score is independent of both the

length of the encoded protein and the mutation frequency of the gene across all tumors
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(Figure 4.8.C and D). Thus our network based permutation test is able to properly account for the

co-occurrence of mutations that drastically biases other approaches.

4.3.2 GO- -

We looked for enrichment of Gene Ontology (GO) terms [52] associated with the genes

with the 50 highest and lowest z-scores using the full TCGA dataset. We found that the genes with

the lowest z-scores were highly enriched for a number of biological processes, most prominently

negative enrichment of cell proliferation and in chromatin remodeling shown in Figure 4.9. This

finding could be explained by the fact that cancer types with low overall levels of mutational

burden are often driven by epigenomic changes and disruption in chromatin structure [75]. For

example, the gene ARTX, a member of the SWI/SNF chromatin remodeling complex, had a very

low z-score (z = −14.6). ARTX is commonly mutated in Glioma (≈ 20% in Samstein et al. dataset

and 40% in the TCGA dataset), which tends to have one of the lowest levels of TMB across all

tumor types [5]. We did not find any gene ontology terms enriched in the genes with the 50

highest z-scores by our permutation test.

Figure 4.9: Gene Ontology Enrichment analysis for genes with the lowest z-scores. Bars represent the
− log10 of the p-values for the corresponding GO term with multiple test correction applied (using Bonferroni
multiple test correction).
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4.3.3 M - DDR ICB

The original impetus for our analysis was the question of whether mutations in DNA

Damage Repair genes (or other genetic pathways) have predictive power for response to ICB

therapy that is independent of their association with elevated TMB levels. Our method equips us

to approach this question because we can identify which groups of DDR genes are actually

associated with elevated levels of TMB. Using two independent clinical datasets (see Section 4.5.1

for full description of each), we find that DDR mutations not associated with elevated levels of

TMB can help predict response for ICB therapy.

We split samples within both datasets into those with a high z-score DDR mutation and

those samples with a low z-score DDR mutation (see Section 4.5.5 for the list of genes within each

set). In cases where samples had mutations in both low and high z-score DDR genes, samples

were considered in the high z-score group (and not in the low z-score group).

We tested whether having a mutation in a low z-score (z-score<0) DDR gene in

combination with high TMB had an effect on overall survival using the data from the IMVigor210

trial as released in [144]. Figures 9.A and B show that having a mutation in a low z-score DDR

gene has a significant negative interaction with elevated TMB. Samples with a mutation and high

TMB have increased survival above those that have high TMB but no mutation. However, the

effect is reversed for samples with low TMB, with mutated samples having much worse overall

survival rates. In contrast, mutations in genes associated with high TMB (z-score > 0) had no

effect on overall survival as shown in Supplement Figure 27.

The difference in effect on survival between mutations in low z-score DDR genes and

those with high z-scores was also borne out in the objective response data, shown in

Figures 4.10.C and D respectively. Among tumors with elevated levels of TMB, there was a

significant difference (by Fisher’s exact test) in response rates between samples with a mutation

in the low z-score DDR genes and those without (WT). However, no such difference was seen

when the samples were segregated by the presence of a high z-score DDR mutation. This suggests

that DDR genes that are not associated with elevated levels of TMB could have additional power

to predict which samples will respond to ICB therapies.

To validate our findings in the IMVigor210 dataset, we conducted a similar analysis using
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Figure 4.10: Effect of Low Zscore DDR mutations on survival for the IMVigor dataset. A) Splitting
the samples into groups based on high (> 10) or low TMB (< 10) and mutated or WT for the low z-score
DNA Damage Repair Genes. Samples are groupled based on whether or not they had a mutation in a low z-
score DDR gene. We tested a Cox proportional hazard model for differences in overall survival between these
four groups. B) Forest plot showing the estimated coefficients for a CPH model testing jointly testing TMB,
mutation in low-zscore DDR genes, as well as an interaction term between the two variables (denoted by DDR-
low:highTMB). We note here that TMB is treated as a continuous variable. C) and D) show the percentage
of clinical response rates across the samples segregated by low TMB with no mutation in low z-score DDR, low
TMB with a mutation, high TMB with no mutation, and high TMB with a mutation in order. Red bars denote
the percentage of samples in each group that had a complete or partial response while blue bars denote the
fraction that had stable or progressive disease. P-values were assessed using Fisher’s exact test.
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data from a large, multi-cancer cohort with targeted sequencing compiled by Samstein et al.[201].

Figure 4.11: Effect of Low z-score DDR mutations on survival for the Samstein dataset. A) Splitting
the samples into groups based on high (> 10) or low TMB (< 10) and mutated or WT for the low z-score
DNA Damage Repair Genes. We group samples based on whether or not they had a mutation in a low z-score
DDR gene. We tested a Cox proportional hazard model for differences in overall survival between these four
groups, each treated as a dummy variable. B) Forest plot showing the estimated coefficients for a CPH model
testing jointly testing TMB, mutation in low-zscore DDR genes, as well as an interaction term between the two
variables (denoted by DDRlow:highTMB). We note here that TMB is treated as a continuous variable.

We found a similar effect in predicting survival with the Samstein et al. cohort: a

significant negative interaction effect between TMB and mutation in the low z-score DDR genes

as shown in Figure 4.11. We see a similar pattern in survival between the groups in both datasets,

with mutations in the low z-score DDR genes having a positive effect for high TMB samples and a

negative effect for low TMB samples. Having a low z-score DDR mutation was not in and of itself

significant in this cohort. However this is not altogether surprising given the negative interaction

term when conditioned on TMB. This is an example of the well known Simpson’s paradox

whereby a significant difference can be masked when groups are aggregated [209]. As was seen in

the IMVigor210 data, this effect disappears when samples are segregated by the presence of a

high z-score DDR gene mutation, shown in supplemental Figure 27.C-D.

We also tested for this interaction effect in the Samstein et al. data with groups defined

based on mutation in DDR genes with very low Mann-Whitney-U scores. These would be the

genes that the MWU test would characterize as being the least associated with elevated TMB.
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Supplement figure 28 shows that there was no discernible difference between the samples

separated by mutations defined by the MWU test. Thus our approach is able to uniquely identify

a set of genes with clinical relevance.

4.4 TMB Paradox Discussion

We have presented a novel, networks based test for an association between Tumor

Mutational Burden and mutations in specific genes or pathways. Our approach considers the

co-mutational structure of the data jointly in that we use all of the data at once to define the null

model to test associations against. By reformulating our mutational data as a bipartite network,

we are able to appropriately account for the outsized role that highly mutated samples play in

univariate tests for statistical association. We have shown that this oversampling phenomenon is

a special case of the friendship paradox from the network science literature, and we have

presented a network permutation test that allows us to assess the true significance of associations

between mutations and TMB. Our test results in a much more principled and appropriate

assessment of the genome as a whole as compared to the univariate tests such as the t-test or the

Mann-Whitney U. Our network based approach suggests that relatively few genes are actually

associated with higher levels of TMB.

We have showcased the power of our method by applying our test to the genes in the DNA

Damage Repair pathways. Our results are consistent between two large, multi-cancer datasets

(TCGA and PMEC) and show that the only pathways in which mutations are actually associated

with elevated levels of TMB are the mismatch repair and nucleotide excision repair pathways.

This confirms the results from other studies that have examined the link between DDR pathways

and TMB in the context of a broader set of genes [115].

We examined whether mutations in DNA Damage Repair genes that were independent of

elevated TMB were predictive of overall response in two separate patient cohorts treated with

immune checkpoint therapy and with clinical sequencing. We found that there is a strong

interaction between TMB as a covariate and having a mutation in a DDR gene with a low z-score

and that this interaction appears to be negative. This effect is seen within both datasets and is

reinforced in the clinical response data for the IMVigor210. By distinguishing which genes are
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actually associated with high levels of TMB, we have identified a group DDR genes in which

having a mutation is predictive of better outcomes for samples with high levels of TMB. We

hypothesize that mutations with this group of low z-score DDR genes might illicit an immune

response in a mechanism that is not captured by TMB alone, though this hypothesis requires

further investigation.

One way in which our null model might not be realistic is in how we have ignored the

tumor types of the samples in our null model. The likelihood of connecting any samples with any

gene is simply proportional to the product of their degrees in the bipartite network. However, it is

well established that different cancer types have different profiles of genes that are commonly

mutated. One way we could improve our test is by restricting that edges can only be swapped

among samples with the same cancer type. In addition, we do not include multi-edges in the

network for samples that have multiple mutations in the same genes and do not include larger

deletions or amplifications in constructing our network. We could also look at smaller genomic

units than a single gene such as the exons that compose a specific domain or other regulatory

regions. Such analyses will become more and more feasible as the number of samples in

large-scale clinical datasets is expanded. All of these effects could make our null model more

realistic and would be interesting to investigate in future lines of research. In addition, further

investigation is required into the mechanisms underlying the observed interaction between TMB

and mutations in the low z-score DDR genes. This line of inquiry could provide insight into how

ICB therapy could be rescued in combination with other targeted approaches.

In summary, we have identified a sampling bias in the current testing methods to identify

an association between elevated levels of TMB and mutation in specific genes or pathways. By

recognizing this bias as a special case of the friendship paradox, we have developed a networks

based test for significant associations. We have shown that our method gives consistent results in

multiple, large-scale genomic datasets and we have identified two DNA Damage Repair pathways

where mutations are associated with elevated TMB. We demonstrate the clinical significance of

our findings on two large datasets with annotated clinical outcomes. We found concordance in

how the genes identified by our approach were able to predict survival in both datasets. We have

released all of our analyses as part of a python package, including several notebooks to replicate

all of our figures.
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4.5 TMB Paradox Additional Methods

4.5.1 D

T C G A (TCGA) P - MC3 D

Throughout this chapter we have relied on several datasets for development and

validation of our approach. Our primary dataset for developing our method was the

TCGA-pancan unified ensemble MC3 variant call set, with Whole Exome Sequence (WES) tumor

samples from all TCGA centers re-called in a uniform pipeline. This dataset includes 3.6 million

variants from 10,295 tumor samples. This dataset is described in [55]. We filtered this dataset

down to the most deleterious variants, keeping only those with the following high consequence

annotations: stop lost, stop gained, transcript ablation, start lost, and frameshift variant. This

resulted in 209,612 remaining variants in 9539 different samples in 18,322 different genes.

P M E C (PMEC)

The Precision Medicine Exchange Consortium is a partnership between 12 universities

and Foundation Medicine to provide clinical sequencing of a large cohort of tumors. The goal of

the consortium is to pool together genomic sequencing data as well as large-scale clinical

annotation to advance research in personalized medicine. The PMEC dataset consist of 12,657

unique tumor specimens with targeted sequencing of 557 cancer-associated genes. Specimens

within the PMEC dataset were delineated into 330 different cancer types and subtypes, which

were grouped into 40 different main cancer types that aligned with the TCGA nomenclature.

Clinical outcomes have not yet been annotated for this dataset.

IMV 210

The IMVigor210 trial is a Phase II single arm study examining the response of patients

with locally advanced or metastatic urothelial bladder cancer to atezoliziumab (anti PD-L1). A full

description of the characteristics of the patient cohort can be found in [11, 197]. We have used the

publicly available dataset released by Mariathansan et al. which can be accessed at

http://research-pub.gene.com/IMvigor210CoreBiologies/. The cohort consists of 260
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patients with 1249 short variants across 160 different genes. We did not filter any of the

mutations from this cohort.

S . C

To validate our clinical findings, we used a large, multi-trial cohort consisting of 1662

patients treated with different Immune Checkpoint Blockade (ICB) therapies and with targeted

clinical sequencing, first compiled and analyzed in [201]. Sequencing was performed using the

Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets

(MSK-IMPACT) panel [37]. We downloaded the data from cbioportal using the following link:

https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018. We filtered down to the

1307 patients that received anti PD-1/PD-L1 therapies and kept the variants with one of the

following high impact consequences: missense mutation, nonsense mutation, frameshift

deletion, frameshift insertion, translation start site, or nonstop mutation. This resulted in a total

of 19,057 variants in 468 different genes.

4.5.2 D DNA D R P

We have relied on the core DNA Damage Repair pathways defined by Knijnenburg et al.

[115] to conduct all of our pathway level analysis. The pathways are defined as follows:

BER NER MMR FA HR NHEJ DS

PARP1 CUL5 EXO1 FANCA MRE11 EME1 LIG4 ATM
POLB ERCC1 MLH1 FANCB NBN GEN1 NHEJ1 ATR
APEX1 ERCC2 MLH3 FANCC RAD50 MUS81 POLL ATRIP
APEX2 ERCC4 MSH2 FANCD2 TP53BP1 PALB2 POLM CHEK1
FEN1 ERCC5 MSH3 FANCI XRCC2 RAD51 PRKDC CHEK2
TDG ERCC6 MSH6 FANCL XRCC3 RAD52 XRCC4 MDC1
TDP1 POLE PMS1 FANCM BARD1 RBBP8 XRCC5 RNMT
UNG POLE3 PMS2 UBE2T BLM SHFM1 XRCC6 TOPBP1

XPA BRCA1 SLX1A TREX1
XPC BRCA2 TOP3A

BRIP1

Table 4.1: Core DDR Pathways defined by [115].
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4.5.3 S

Our bipartite permutation test compares the observed distribution of TMB for samples

with a mutation in a given gene or pathway, with the expected distribution for bipartite networks

with the degree sequence fixed. To obtain samples from this bipartite configuration model, we

follow the network rewiring approach developed in [65]. To rewire the network, we select two

edges in the network at random, (gi, sx) ∈ E and (gj , sy) ∈ E . We check whether or not this

represents a valid switch that would not create a multi-edge in the permuted graph. That is we

assert that gi ̸= gj and sx ̸= sy. If this condition is not met, we simply resample from all edges

with replacement. Once the sampled edges represent a valid swap, we add the new edges (gi, sy)

and (gj , sx) to the network, removing the original sampled edges. This constitutes a single rewire

of the network. To obtain a single random sample, we rewire the network many times in series,

keeping track of the new edges so that the network becomes progressively unrecognizable from

the original network. The series of rewired network is known as a Markov chain. Each network is

independent of all of the previous networks conditioned on its immediate predecessor.

Furthermore, if run long enough, the process will generate all possible networks under our model

with uniform probability. Prior to generating samples from our Markov chain, we conduct

“burn-in” rewires in order to get the process into a region of high likelihood under the model and

to get samples that are largely independent from our observed data. We select the number of

rewires, R, between each sampled network to be equal to the total number of edges in the

network, R =M , with a burn-in of 2M . This ensures that most edges in the network will have

been re-wired between each sample.

4.5.4 E

Let the gene gi have degree ki. Let ∂giobs = {s|(s, gi) ∈ Eobs} denote the set of samples

connected to gi in the bipartite representation of the original data, Gobs (that is the neighbors of

gi). Let Tobs = Es∈∂giobs (TMBs) be the average TMB for all samples connected to gi in the

observed dataset. We derive a z-score for a significant association between TMB and gi as follows:

1. We sample R independent realizations of the bipartite network with fixed degrees

sequences.
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2. For each sampled network, Gr, we compute Tr = Es∈∂gir (TMBs), the average TMB for all

neighbors of gi in each sampled bipartite network Gr.

3. We compute the z-score for the observed graph using :

zi =
Tobs − ErTr
σ̂r(Tr)

where σ̂r(Tr) is the empirical standard deviation for the distribution of sampled {Tr} .

4.5.5 S A

Figure 4.12: Splitting DDR genes on the basis of z-score. We split the DDR genes on the basis of hav-
ing a high (>0) or low (<0) z-score for both the IMVigor and the Samstein et al. datasets. Here we show the
distribution of z-scores as well as which genes were placed in each category.

All survival analyses were conducted using the Cox-proportional hazard model with a

log-likelihood ratio test (LLR) to test for the overall significance of the model and a t-test to assess

the significance of individual variables in the model. For the depiction of Kaplan-Meyer curves,

TMB is treated as a binary variable with a threshold of TMB> 10 defining the high TMB group.

Samples were divided into groups based on the presence of a mutation within a high z-score DDR

genes or low z-score DDR genes, shown in Figure 4.12. The low z-score DDR genes included:

ATM, ATR, BRCA1, BRCA2, BRIP1, CHEK1, CHEK2, RAD51, RAD52, TP53BP1. The high z-score

genes were: BARD1, BLM, ERCC2, ERCC4, ERCC5, FANCA, FANCC, MDC1, MLH1, MRE11,

MSH2, MSH3, MSH6, NBN, PALB2, PARP1, PMS1, PMS2, POLE, RAD50, XRCC2. Samples with

mutations in both sets of genes were considered in the high z-score category and excluded from
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the low z-score category. The genes that defined the low MWU test set were: RAD51, RAD52,

ERCC5, ERCC2, CHEK1, FANCC, PMS1, XRCC2, CHEK2, and FANCA.
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APPENDIX

2 Chapter 2 CHAMP Supplement

2.1 C 2

In this Appendix, we include visualizations of each of the partitions with domains of

optimization labeled in white text in Figure 2.10A. In Figure 13, the Senators are plotted

according to their states. In Figure 14, the individual Senators have been sorted according to

community assignment and, within communities, time of first appearance in the Senate.

We call particular attention to the qualitative difference between the community

structures with domains above and below the transition around γ ≈ 0.8. Below γ ≈ 0.8, each

Congress layer has only a single community, with the communities broken up across time. In the

region just above this transition, the typical Congress layer has two communities, with the

community structure corresponding to an evolving two-party system over time.
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Figure 13: Visualizations of partitions labeled in white in Figure 2.10.A, with Senators grouped according
to their state. The listed AMI is the average over layers of the AMI in each layer (Congress) between the com-
munities and political party affiliations for that Congress. Partitions are labeled “X.Y ” with X the number of
communities with ≥ 5 nodes and Y the rank of the domain area for that number of communities.
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Figure 14: (Caption on next page.)
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Figure 14: (Previous page.) Visualizations of partitions labeled in white in Figure 2.10.A, with Senators
sorted by their most frequent community label (with the labels sorted by last appearance in time), and within
communities by first appearance. The listed AMI is the average over layers of the AMI in each layer (Congress)
between the communities and political party affiliations in that Congress.

3 Chapter 3 Multilayer Modularity Belief Propagation Supplement

3.1 D B F E

We derive here the formula for the free energy of the single layer model given in Zhang

and Moore [259]. In the next section we will show how this naturally extends to the multilayer

case with interlayer edges. For any model which has only pairwise interactions, the formula for

the Bethe free energy approximation is given by

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij

 . (S1)

In the modularity model, there are really two types of edge interactions: those that are

given explicitly by the underlying graph ( i.e. the Ai,jδci, cj term), and the pairwise interaction

term that comes from the null model (i.e. Pi,j =
ki,kj
2m δci,cj ). We can split these two apart:

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij −
∑
i ̸=j

log Ẑij

 (S2)

where we refer to the edges in the underlying graph as E and split out the non-edge interactions

into another term with normalization Ẑij . We write out the joint distribution for the “non-edges”:

ψijst =
1

Ẑij
e−β(didj/2m)δstψisψ

j
t (S3)

We use this to compute Ẑij:

Ẑij =
∑
t

∑
s

e−β(didj/2m)δstψisψ
j
t , (S4)
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∑
i<j

log Ẑij =
∑
i<j

log
∑
t

∑
s

e−β(didj/2m)δstψisψ
j
t (S5)

≈
∑
i<j

log

(∑
t

∑
s

1− β(didj/2m)δstψ
i
sψ

j
t

)
(S6)

≈
∑
i<j

(∑
t

∑
s

−β(didj/2m)δstψ
i
sψ

j
t

)
(S7)

=
∑
t

∑
i<j

−β(didj/2m)ψitψ
j
t (S8)

= − β

4m

∑
t

∑
i ̸=j

didjψ
i
tψ

j
t (S9)

= − β

4m

∑
t

θ2t . (S10)

This gives us the expected full formula,

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij +
β

4m

∑
t

θ2t

 (S11)

3.2 M B F E

We now extend the Bethe Free Energy equation to multilayer networks. The formula for

multilayer modularity for undirected networks is given by Equation 3.28 in main text:

Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj) (S12)

As before we only have pairwise interactions within the model. However, note that in the

multilayer formulation there are now both intra- and interlayer edges. We can split the edge term

E of fbethe into the contributions from interlayer and the intralayer edges:

∑
i,j∈E

logZij =
∑

i,j∈Einter

logZinterij +
∑

i,j∈Einter

logZintraij . (S13)

Where Eintra and Einter are given by the non-zero elements of Aij and Cij respectively. For the

non-edge term in the multilayer case, we note that the non-edge interaction terms are all

restricted to within a given layer. This means that nodes within different layers of the model only
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interact through the interlayer edge term and not through the null model term:

1

Nβ

∑
i ̸=j

log Ẑij =
1

Nβ

∑
l

∑
i ̸=j,i,j∈l

log Ẑ lij (S14)

We can therefore split this term into a sum over the contributions from each of the layers with a

similar form as from before:

∑
l

∑
i ̸=j,i,j∈l

log Ẑ lij = −
∑
l

β

4ml

∑
t

(θlt)
2 (S15)

and we can write the full Bethe free energy as

fbethe = − 1

Nβ

∑
i

logZi −
∑

i,j∈Einter

logZinterij −
∑

i,j∈Einter

logZintraij +
∑
l

β

4ml

∑
t

(θlt)
2

 (S16)

where the Zinterij can be computed from the pairwise marginals of the interlayer interactions:

ψi,js,t =
1

Zinterij

eβωδs,tψi→j
s ψj→i

t . (S17)

3.3 D E L M B P

In this paper, we have used the approach by Shi et al. to identify the value of β∗ where the

trivial solution is no longer stable [208] which is an extension of the reasoning to the original

approach presented in Zhang and Moore [259] (see Section 3.5.1 in main text). Here we present

the form of the linearized approximation of the messages as well as its eigenvalue.

Consider the update equation formultimodbp:

ψi→k
t ∝ exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 . (S18)
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We compute the derivative ∂ψi→k
t

∂ψj→i
s

assuming both (i, j) and (i, k) are edges:

∂ψi→k
t

∂ψj→i
s

=
∂

∂ψj→i
s

 1

Z
exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 (S19)

=
1

Z

∂

∂ψj→i
s

exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 (S20)

+ exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 ∂

∂ψj→i
s

[
1

Z

]
. (S21)

We will consider each of these two derivatives separately. To help condense notation we define

Farg = γ βdi
2mli

θlit +
∑

j∈∂i\k log (1 + ψj→i
t (eÃijβ − 1)). First,

∂

∂ψj→i
s

exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 (S22)

= exp
[
Farg

] ∂

∂ψj→i
s

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 . (S23)

The derivative of the first term here,
∂

∂ψj→i
s

γ
βdi
2m

θlit

is O
(
didj
2m

)
, which we can ignore given our assumption that the network is sparse (di ≪

√
m for

all i).

We are then left with

∂

∂ψj→i
s

 ∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 .
The only term in this sum that will lead to a non-zero derivative is if s = t, leading to

∂

∂ψj→i
s

log (1 + ψj→i
t (eÃijβ − 1))δst = δst

eÃijβ − 1

1 + ψj→i
s

(
eÃijβ − 1

) . (S24)

Evaluating at the fixed point, and combining with the previous 1
Z exp(Farg)

∣∣
1
q
= 1

q , this term
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becomes

δst
eÃijβ − 1

q + eÃijβ − 1
. (S25)

Next we move on to the second term from the previous product rule expansion (Eq S19):

∂

∂ψj→i
s

1

Z
= − 1

Z2

∂Z

∂ψj→i
s

= − 1

Z2

∂

∂ψj→i
s

∑
t

exp

γ βdi
2mli

θlit +
∑
j∈∂i\k

log (1 + ψj→i
t (eÃijβ − 1))

 .
we follow the same line of reasoning as before, dropping the θli term to arrive at

≈ −
exp(Farg)

Z2

eÃijβ − 1

1 + ψj→i
s (eÃijβ − 1)

. (S26)

If we bring the extra exp(Farg) from before back in, and evaluate at the fixed point, this leads to

= −1

q

eÃijβ − 1

q + eÃijβ − 1
. (S27)

In total, we find the linear approximation of the messages is given by the q × q matrix:

T i→k,j→i
st =

eÃijβ − 1

q + eÃijβ − 1

(
δst −

1

q

)
. (S28)

The leading eigenvalue of this matrix is given by

ηij =
eβÃij − 1

eβÃij + q − 1
. (S29)

3.4 T β∗

As part of testing the formula for β∗(q, w), we look at the effect of adding normally

distributed edges weights on an Erdös-Rényi graph shown in Figure 15. For the Erdös-Rényi

graph with normally distributed weights, Equation 3.41 gives a very good estimate of where the

divergence occurs, while the unmodified equation becomes less accurates as the weights differ

from 1.

In the far right panel of Figure 15, we show that formula derived by Shi et al. well predicts
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Figure 15: Stability boundary for Erdös-Rényi graph with weights assigned randomly from a N (µ, σ =
.5) normal distribution. Left three plots depict convergence curves of the algorithm for three different means
of the normally distributed edge weights (µ =1,2, and 3 respectively). Each curve represents the average over
10 realizations of the ER random graph. The unweighted prediction for β∗ is given by the black dashed line,
while the weight adjusted prediction is given by the dashed green line. On far right plot β∗ was empirically de-
termined for several different mean weights (red line) and compared with the predicted values (blue line) show-
ing good agreement.

the point where the trivial solution is no longer stable (shown by the red line). Below in Figure 16,

we also demonstrate that for a 2 community SBM the modified formula for β∗ occurs within the

retrieval phase, detecting the communities with high accuracy.

We have used Equation 3.41 to identify the value of β to run the algorithm at in all of the

experiments within this manuscript. Since a priori the number of communities, q, isn’t known in

advance, we run the algorithm at several values β = [β∗(q = 2, c, ⟨w⟩), ...β∗(q = qmax, c, ⟨w⟩)] for a

range of expected numbers of communities, [2, qmax]. We reiterate that the heuristic derived

works well in most cases, but makes no guarantees that β∗ will be inside the retrieval phase for all

degree distributions and distribution of edge weights. For some networks scanning a range of β

values might be required.

In Figure 17, we also show that the retrieval phase of multilayer networks also varies with

the strength of the coupling parameter, ω. The β∗ predicted by Equation 3.41 consistently lies

within the retrieval phase even as ω increases (in contrast to the value of β given from the

unmodified equation).
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Figure 16: Stability boundary for 2 community stochastic block model graph with weights assigned
randomly from a N (µ, σ = .5) normal distribution. SBM’s had n = 200 nodes with mean degree, c = 6,
and ϵ = pout

pin
= .1. Each convergence curve was averaged over 10 realizations of the SBM model with different

means of the normally distributed edge weights (µ =1,2, and 3 respectively). The unweighted prediction for
β∗ is given by the black dashed line, while the weight adjusted prediction is given by the dashed green line.
Red curve shows the adjusted mutual information with the underlying ground truth. On far right plot β∗ was
empirically determined for several different mean weights (red line) and compared with the predicted values
(blue line) showing good agreement.
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Figure 17: Stability boundary for 2 community unweighted multilayer dynamic stochastic block model
graph. Network had n = 100 node within each layer with mean degree c = 6 and ϵ = pout

pin
= .1. Each

convergence curve was averaged over 10 realizations of the SBM model with the algorithm run with different
interlayer edge couplings (ω =0, 1, and 2 respectively). The unweighted prediction for β∗ is given by the black
dashed line, while the weight adjusted prediction is given by the dashed green line. Red curve shows the ad-
justed mutual information with the underlying ground truth. In the far right plot β∗ was empirically determined
for several different mean weights (red line) and compared with the predicted values (blue line) showing good
agreement.

156



3.5 C 2

Figure 18: Effect of varying γ with q remaining fixedWe compare the performance of the algorithm for a
wide range of γ values in the event that the number of communities is fixed at the correct number (q = 4).
Here we do not allow q to float as described in Section 3.5.2
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Figure 19: Attempting to select the appropriate value of q on the American football network. Using
the method recommended by Zhang and Moore to select the appropriate value of q for the American NCAA
Div-IA College Football Network [58, 71]. Each colored line corresponds to running modbp for a given value of
q across a window of β around β∗(q) (shown by black dashed line). Using this method would suggest an ap-
propriate q ∈ [6 − 8] depending on the threshold selected. We note that here, we do not collapse community
labels as described in Section 3.5.2; for each run a single fixed value of q is used as well as the default resolu-
tion (γ = 1). AMI with the school conferences is denoted for each q by the colored ”X”.
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Figure 20: Scanning the β domain for the US Senate Rollcall dataset. We run multimodbp on the US
Senate Voting similarity network [242], using the KNN (k=10) as described in Section 3.3.2 of the main text.
We ran multimodbp for a maximum of 4000 iterations across 100 evenly spaced values of β ∈ [0, 1]. For
each value of β we ran multimodbp 5 different times. We show that Shi et al’s approach to selecting β∗ [208]
identifies regions where the algorithm is in the retrieval phase (i.e converges to non-trivial partitions). Vertical
dashed black lines show calculated value for β∗(q) for q = [4, 6, 8, 10, 12, 14]. Vertical blue and red bars denote
the percentage of runs for that value of β that ultimately converged (percentage is shown by the proportion
of the space under the number of iterations curve occupied by the bar). Bar color denotes whether the iden-
tified partitions were trivial (ψi

t = 1
q∀i, t) We see that several of these lie within the observed retrieval phase

(q = [8, 10, 12, 14]) .
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Figure 21: Fragmentation of identified communities across layers. Demonstration of layer ”splitting” on
the multilayer dynamic stochastic block model (DSBM). Left shows the ground truth planted community as-
signments while the right shows the communities identified by multimodbp without the cross layer assignment
procedure. We reiterate that this cross layer label permuting preserves all identified structure within a layer and
always results in higher modularity.

Figure 22: multimodbp applied to the US Senate Voting similarity network [242]. Left: AMI of identi-
fied partitions with the political party labels using multimodbp across a range of γ (x-axis) and ω values. Right:
the number of communities identified by the algorithm as a function of the parameters (γ, ω).
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Figure 23: Community structure for lowest free energy partitions identified by multimodbp. Top iden-
tified partitions based on minimization of the Bethe free energy on the US Senate voting similarity network.
In each, each row represents the Senator for a particular State, organized by region, while the x-axis denotes
the year of each Congress. Nodes are colored according to their identified partition, while the top left figure is
colored by the political party affiliation of each senator.
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Figure 24: Multiplex benchmark without spectral initialization and only using spectral method. Top
row: the performance of multimodbp on the uniform multiplex network (as specified in Section 3.3.2 of the
main text) without the spectral initialization detailed in the main text. Performance of the algorithm at higher
omega trails off abruptly. For comparison with multimodbp with spectral initialization, see Figure 3.9 in main
text. Bottom row: performance of just the spectral initialization (without multimodbp). The spectral initial-
ization’s performance tends to be better at higher values of omega, complementing the deficiencies in multi-
modbp.

4 Chapter 4 TMB Paradox Supplement

4.1 P

We can represent a network of N nodes andm edges with an N ×N adjacency matrix,A,

where the entries ofA are defined as follows

Aij =


1 if (i, j) ∈ E

0 otherwise

where we use E to denote the set of edges present in the graph, indexed by the pair of

nodes connected by each edge. Bipartite networks can be represented by an adjacency matrix as

well, with all edges (i, j), connecting only nodes in different classes. The degree of each node, ki is

given by the number of edges connected to node i : ki =
∑

j Aij . We let pk give us the fraction of

nodes that have degree, k, also known as we the degree distribution. This represents the

probability that a randomly chosen node will have degree k. The excess degree distribution is the

distribution of degrees of a random chosen neighbor of a node. This is equivalent to the

probability of that at the end of a randomly chosen edge will have degree k. We show that the
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average excess degree is necessary greater than or equal to the average degree of a network, using

a proof largely taken from [167].

We begin by computing the probability that after following a randomly chosen edge in our

network, we arrive at a node with degree k. Since each edge connects 2 nodes, there 2m possible

choices of nodes. The probability of ending at any particular node with degree k is k
2m . We have

N × pk nodes with degree k, and thus the probability of following an edge to a node of degree k is

given by :
k

2m
Npk =

k

< k >
pk

where we have used the fact that 2m
n =< k > gives us the average degree for the network.

Thus the excess degree distribution is weighted by a factor of k. We are more likely to choose a

higher degree vertex by virtue of the fact that it has more edges coming off of it. We can compute

the average excess degree by:

∑
k

k
k

< k >
pk =

∑
k

k2

< k >
pk =

< k2 >

< k >

We can compute the difference between the average excess degree and the average degree:

< k2 >

< k >
− < k >=

< k2 >

< k >
− < k >2

< k >
=

1

< k >

(
< k2 > − < k >2

)
=

1

< k >
V ar(k)

where V ar(k) is the variance of the degree distribution. This is strictly non-negative and

is zero in the case where all nodes have the same degree. Since the difference between the average

excess degree and the average degree is always non-negative, the average excess degree must

always be greater than the average degree. Furthermore we see that this difference is

proportional to the variance of the degree distribution, which means that the more heavy tailed

the degree distribution is, the larger the difference in the average excess degree and the average

degree. Each of the lines of logic we have used above holds for a bipartite network as well, and

thus we have our explanation of how the TMB paradox arises.
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4.2 C 4

Figure 25: Comparson of general characteristics of PMEC vs TCGA. A Scatter of the short mutation
(SNV+indel) frequency for the DDR genes in PMEC (x-axis) vs TCGA(y-axis). B) Scatter of the CNV fre-
quency for the DDR genes in PMEC (x-axis) vs TCGA(y-axis). C) Scatter of median TMB levels by cancer
type for PMEC vs TCGA. D) Venn diagram of overlap between broad cancer types in TCGA vs PMEC.
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Figure 26: Permutation test z-scores for all PMEC genes. A We scatter the z-scores for the permutation
test for the 481 genes in PMEC for TCGA vs PMEC. Note that scores for the TCGA dataset were derived using
the full 18K genes. B) We also show how the − log10 p-value for the Mann-Whitney U test compares to the
z-score for the full TCGA dataset using all 18K genes.
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Figure 27: Testing for association with survival in samples with a high z-score DDR mutation. A)
Kaplan-Meyer curve for IMVigor samples binned according to high vs low TMB and mutated or WT in high
z-score DDR genes. B) Cox-proportional hazard model for IMVigor fitting TMB (as continuous variable), along
with mutation in high z-score DDR genes, as well as a cross term between TMB and mutation in high z-score
DDR genes. C) and D) Analogous plots for the Samstein et al. dataset.
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Figure 28: Testing for association with survival in samples with a low MWU score DDR mutations.
A Kaplan-Meyer curve for Samstein et al. samples binned according to high vs low TMB and mutated or WT
in low MWU test DDR genes. B) Cox-proportional hazard model for IMVigor fitting TMB (as continuous vari-
able), along with mutation in low MWU test DDR genes, as well as a cross term between TMB and mutation
in low MWU test DDR genes.
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