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ABSTRACT 
 

Lauren Christine Radlinski: 
 Harnessing interspecies antagonism to enhance antibiotic efficacy  

(Under the direction of Thomas H. Kawula and Brian P. Conlon) 
 

Beyond genetically encoded mechanisms of resistance, the factors that 

contribute to antibiotic treatment failure within the host are poorly understood. 

Traditional susceptibility assays fail to account for extrinsic determinants of antibiotic 

susceptibility present during infection and are therefore poor predictors of treatment 

outcome. To maximize the reach of current therapeutics, we must develop a more 

sophisticated understanding of antibiotic efficacy in the infection environment. Here we 

demonstrate that interspecies interactions between two important opportunistic 

pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, alters S. aureus 

response to antibiotics. We show that the P. aeruginosa-produced endopeptidase LasA 

potentiates lysis of S. aureus by vancomycin, rhamnolipids facilitate proton-motive 

force-independent aminoglycoside uptake, and that small molecule 4-hydroxy-2-

heptylquinoline-N-oxide (HQNO) induces multidrug tolerance in S. aureus through 

respiratory inhibition and reduction of cellular ATP. We further demonstrate rhamnolipid-

mediated potentiation of aminoglycoside uptake and killing of S. aureus restores 

susceptibility to otherwise tolerant persister, biofilm, small colony variant, anaerobic, 

and resistant S. aureus populations. 
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 Furthermore, bacterial pathogens that replicate within the intracellular niche are 

protected from antibiotics that cannot penetrate the eukaryotic membrane. Identifying 

and disrupting the pathways used by these pathogens to modify the intracellular niche 

in order to survive is an alternative strategy for limiting bacterial proliferation. Here, we 

use Francisella tularensis as a model intracellular bacterial pathogen to identify and 

describe the bacterial metabolic pathways and host-derived nutrients necessary for 

intracellular and in vivo growth. These findings reveal potential new therapeutic targets 

for disrupting bacterial nutrient acquisition that may be broadly applicable for treating 

other important intracellular pathogens.  

Overall, the findings presented here suggest that antibiotic susceptibility is 

contingent on a multitude of factors including interspecies interaction and the 

physiological replicative niche. Further elucidation of key antibiotic susceptibility 

determinants in vivo, as well as of strategies to overcome barriers to antibiotic efficacy 

may lead to a more holistic and personalized approach to therapy that will aid in the 

resolution of persistent infection.  
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CHAPTER 1 
ANTIMICROBIAL STRATEGIES FOR THE COMPLEX INFECTION ENVIRONMENT1 

 
Since the discovery of penicillin in 1928, antibiotics have become an essential 

component of modern healthcare. They have made once life-threatening infections 

readily treatable, greatly prolonged the lives of immunocompromised individuals, and 

made possible the routine undertaking of invasive surgical procedures. Currently, 

however, we are facing a growing crisis as resistance to antibiotics continues to spread, 

while the discovery of new antibiotics has stagnated[1,2]. For these reasons, it is more 

important than ever to use current antibiotics as effectively and appropriately as 

possible, and to develop novel strategies to eradicate difficult-to-treat bacterial 

populations before they evolve resistance. As part of this effort, we must develop a 

more sophisticated understanding of antibiotic efficacy in the infection environment. This 

task involves identifying the extrinsic factors that directly potentiate or antagonize 

antibiotic action during treatment, understanding how antagonistic and synergistic 

interactions can be overcome and exploited to enhance antibiotic efficacy, and to 

develop novel strategies for targeting bacterial populations that are refractory to current 

therapeutics. Approaching patient treatment from a holistic point of view that considers 

the physiological state of an infecting organism as well as the external determinants of 

antibiotic susceptibility within the patient may improve our understanding of why 
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antibiotic treatment failure occurs, and reveal opportunities for improving treatment 

outcome to promote patient health. 

PART I. ANTICIPATING AND AVOIDING ANTIBIOTIC TREATMENT FAILURE 

Antibiotic treatment failure: resistance vs. tolerance  

Antibiotic treatment failure is most commonly associated with resistance. 

Antibiotic resistance occurs when a bacterium acquires a genetically heritable trait, 

typically through chromosomal mutation or horizontal gene transfer, that allows the 

organism to grow in increasing concentrations of an antibiotic. Resistance-conferring 

mutations include those resulting in target site alteration, induction of drug efflux, 

metabolic bypass of the drug’s target, or direct enzymatic inactivation of the antibiotic[3]. 

An increase in resistance corresponds with an increase in the minimum inhibitory 

concentration (MIC) of an antibiotic necessary to stop the growth of a bacterium. 

Resistance becomes life threatening when the MIC of a resistant isolate surpasses the 

maximum achievable concentration of antibiotic deliverable to the site of infection, as 

the drug will no longer inhibit growth of the pathogenic bacterial population within the 

host. Antibiotic resistance represents an increasingly urgent threat to public health as 

highlighted by a 2019 report by the Centers for Disease Control (CDC) that stated that 

more than 2.8 million cases of antibiotic resistant infections occur each year leading to 

over 35,000 deaths in the US alone[4].  

Paradoxically, clinical isolates often exhibit full sensitivity to the administered 

antibiotics as measured through in vitro MIC assay, suggesting that treatment failure 

cannot be fully explained by the acquisition of resistance. Instead, there is a growing 

appreciation for the contribution of antibiotic tolerance to treatment failure[5–7]. 
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Antibiotic tolerance is a phenotypic switch, usually to a metabolically quiescent state, 

that allows a subpopulation of bacteria to survive transient exposure to lethal antibiotic 

concentrations (Figure 1.1). As a tolerant population does not grow in the presence of 

antibiotic, this phenomenon is not associated in a change in MIC and thus tolerant 

bacterial populations often go undetected by in vitro clinical susceptibility assays[8]. 

Upon removal of the antibiotic, a tolerant population that has survived treatment will 

resume replication, and progeny of that population are equally susceptible to antibiotic 

killing relative to the parental cells. In the context of patient health, a tolerant bacterial 

population that has survived antibiotic therapy by entering a dormant state can 

resuscitate and resume growth upon the cessation of treatment, thus contributing to 

chronic and relapsing disease[9–11].  

Though antibiotic tolerance and resistance are distinct phenomena, the two are 

clinically and conceptually related. Poor adhesion to antibiotic therapy regimens has 

long been associated with the rise of antibiotic resistance, as intermittent antibiotic 

exposure selects for the outgrowth of resistant subpopulations. In a similar way, recent 

in vitro studies with Escherichia coli have demonstrated that intermittent exposure to 

ampicillin selects for bacterial populations that are highly tolerant to ampicillin killing[12]. 

These tolerant populations acquire mutations that prolong population lag time without 

changing the MIC. Though these mutations are genetically heritable, this is not 

considered a mechanism of resistance, as the tolerant mutants are equally susceptible 

to antibiotic killing once the population enters exponential growth. However, Levin-

Reisman et al. recently demonstrated that antibiotic tolerance precedes resistance, 

suggesting that extended periods of antibiotic tolerance may facilitate the evolution of 
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antibiotic resistance [13]. Further, Liu et al demonstrated that during the treatment of 

clinical isolates with combinational antibiotics, tolerance preceded the emergence of 

resistance[14]. Thus, within the host, incomplete clearance of a bacterial population 

during antibiotic therapy likely increases the frequency of antibiotic tolerance and drives 

the evolution of resistance.  

 Antibiotic tolerance was also recently implicated in the spread of antibiotic 

resistance mechanisms among bacterial species through horizontal gene transfer. The 

facultative intracellular enteric pathogen Salmonella enterica serovar Typhimurium (S. 

Typhimurium) colonizes both the lumen of the intestinal tract and within the cells of 

various host tissues. Luminal populations of S. Typhimurium are rapidly cleared by 

antibiotics[15]. However, tissue-associated, intracellular S. Typhimurium can tolerate 

antibiotic therapy for extended periods of time[16,17]. Following cessation of treatment, 

tolerant S. Typhimurium cells that have survived treatment resuscitate and migrate to 

the luminal space of the colon[18]. In vivo studies by Bakkeren et al. showed that these 

tissue-associated S. Typhimurium populations act as a bacterial reservoir for plasmids 

encoding clinically relevant mechanisms of resistance including β-lactamase activity[15]. 

After re-seeding the lumen of the gut, these cells can act as donors or recipients to 

facilitate the spread of resistance plasmids among various Enterobacteriaceae species, 

thus fostering the spread of antibiotic resistance among various members of the 

microbiota.  

Antibiotic tolerance is associated with ATP depletion  

Antibiotics can be divided into two broad categories, bacteriostatic and 

bactericidal, based on their ability to inhibit growth or kill bacteria, respectively. As 
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tolerance describes the capacity of a population to specifically survive antibiotic killing, 

persistence is defined only for bactericidal and not bacteriostatic antibiotics. Bactericidal 

antibiotics kill bacteria by corrupting active cellular processes[19]. Binding of 

aminoglycosides to the 30S subunit of the ribosome, for instance, does not inhibit 

protein synthesis, but instead facilitates mistranslation through incorporation of incorrect 

amino acids into the elongating peptide strand[20]. These misfolded proteins then 

proceed to wreak havoc on cell membrane permeability and other important functions, 

and eventually lead to cell death[19]. Similarly, quinolone antibiotics bind bacterial 

topoisomerase-DNA complexes to prevent strand rejoining following DNA cleavage. 

This essentially converts the topoisomerase into an endopeptidase that generates lethal 

double-stranded breaks in the bacterial chromosome[21]. Translation, DNA replication, 

and most other antibiotic targets are ATP-dependent processes, thus a reduction in 

intracellular ATP that occurs during metabolic dormancy is associated with a reduction 

in the number of active targets available for antibiotic action and an increase in antibiotic 

tolerance. Metabolic dormancy is associated with the induction of multidrug tolerance, 

suggesting that ATP depletion protects cells from multiple mechanisms of antibiotic 

killing. 

In 1944 the microbiologist Joseph Bigger observed that a small sub-population of 

genetically susceptible Staphylococcus aureus cells survive intensive penicillin 

treatment[22]. Bigger termed this distinct subpopulation of cells ‘persisters.’ As with 

tolerance, persisters survive lethal antibiotic challenge without a change in MIC. The 

terms ‘tolerance’ and ‘persistence’ are often used interchangeably, however persistence 

is specifically defined as a special case of tolerance wherein a subpopulation of cells 
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survive antibiotic activity much better than the larger overall population (Figure 1.1) [23]. 

This phenomenon is readily observed in vitro and is characterized by a biphasic killing 

pattern where the bulk of the susceptible population succumbs to antibiotic killing at a 

much faster rate than the subpopulation of persister cells[8].  

In all bacterial species tested, a small subset of cells (typically 0.001-1% of the 

population) stochastically enters an antibiotic-tolerant persister state, regardless of 

culture environment or growth phase[24,25]. To date, the precise mechanism(s) that 

facilitate the persister cell formation within an unstressed, exponentially growing culture 

are poorly understood. In S. aureus and E. coli, persister cells are associated with 

stochastic entrance into a stationary-phase-like state accompanied by a drop in 

intracellular ATP concentration[26,27]. Indeed, a population-wide state of tolerance can 

be induced in S. aureus through exposure to arsenate, which depletes intracellular ATP 

through futile cycling of ADP-As[26,28]. These findings support a “low-energy” 

hypothesis of persister cell formation, which proposes that ATP depletion is responsible 

for the induction of antibiotic tolerance. We recently demonstrated that within a growing 

culture, S. aureus cells with low expression of TCA cycle enzymes, and thus low levels 

of ATP generation, are tolerant to antibiotic killing[29]. This finding led to the hypothesis 

that stochastic fluctuation in TCA cycle enzymes may represent a prominent 

mechanism of persister cell formation in S. aureus.  

Regardless of the specific mechanism responsible for persister cell formation, the 

frequency of antibiotic tolerant cells within a population can be increased through 

exposure to environmental stressors, including nutrient limitation[30], high cell 

density[31], and exposure to reactive oxygen species[32]. Many of these factors 
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influence the metabolic state of the bacterial population. For instance, as cultures of S. 

aureus approach stationary phase, nutrients become scarce and population density 

increases exponentially. Subsequently, S. aureus entrance into stationary phase is 

associated with a drop in ATP and a population-wide state of tolerance[26]. Similarly, in 

E. coli biofilm, amino acid starvation precipitates a significant increase in tolerance to 

ofloxacin challenge[33]. In general, nutrient starvation and subsequent persister cell 

formation has been attributed as a primary contributing factor to the refractory nature of 

bacterial biofilms to antibiotic activity[10,33,34]. 

Though metabolic dormancy often induces antibiotic tolerance, single cell 

analysis of tolerant populations has led researchers to appreciate that tolerance does 

not always require ATP depletion. Recent work by Stapels et al. demonstrated that 

Salmonella Typhimurium persisters within macrophages maintain metabolic activity[35]. 

Non-growing, intracellular S. Typhimurium persisters are transcriptionally and 

translationally active, and reprogram infected macrophages to drive M2 polarization and 

dampen the pro-inflammatory immune response [35]. Similarly, Pontes et al. 

demonstrated that treating Salmonella cultures with the bacteriostatic antibiotic 

chloramphenicol induces tolerance to ciprofloxacin and cefotaxime, despite the fact that 

inhibiting protein synthesis increases population-wide ATP levels[36]. Here the authors 

suggest that in this instance antibiotic tolerance is dependent on growth rate alone, and 

occurs independently of ATP. These studies raise interesting questions about the 

precise relationship linking bacterial ATP levels, antibiotic target activity, and tolerance. 
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Other factors that contribute to antibiotic treatment failure 

Antibiotics must access a site of infection to kill or inhibit the growth of a 

pathogen population. Pharmacokinetic/pharmacodynamics (PK/PD) studies determine 

the maximum serum concentration (Cmax) of an antibiotic achievable within the serum of 

the host. For simplicity, maximum serum concentrations are often substituted for 

antibiotic Cmax concentrations at specific tissue or organ sites where most bacterial 

infections actually occur. Penetration of the antibiotic from serum to target tissue site 

depends on several factors including the molecular characteristics of the drug, the type 

of tissue infected, and the degree of inflammation[37]. Penetration occurs more rapidly 

in highly vascularized tissues, such as the liver. Poorly vascularized infection sites 

frequently reach lower antibiotic concentrations and are more difficult to target with 

antibiotics[38]. Osteomyelitis, for instance, is notoriously difficult to resolve through 

antibiotic therapy, and inadequate drug penetration due to low tissue vascularization 

may be partially responsible. A recent systematic review by Thabit et al. compiled data 

from a number of pharmacokinetic studies assessing the extent of antibiotic penetration 

into bone and joint tissues[39]. The range, peak (Cmax), or mean concentrations of over 

30 different antibiotics were contrasted with MIC for the most common Gram-positive 

bacterial species associated with osteomyelitis. Quinolones, macrolides and linezolids 

penetrated bone and joint tissue well, meeting or exceeding the MIC90 values for most 

pathogens tested, however penicillins and cephalosporins poorly penetrated the 

infection site[38]. Inadequate drug concentrations may contribute to antibiotic treatment 

failure by selecting for the outgrowth of resistant strains[40]. Further, exposure to 

sublethal antibiotic concentrations can induce a state of tolerance, as was recently 
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demonstrate in P. aeruginosa[41]. Thus, the factors that control drug penetration must 

be considered when selecting an appropriate therapeutic approach.  

Furthermore, antibiotics often must access specific molecular target sites on the 

bacterium to facilitate death. Vancomycin is a frontline glycopeptide antibiotic used for 

the treatment of methicillin-resistant S. aureus (MRSA). Despite its widespread use, 

vancomycin treatment failure for endocarditis, bacterial pneumonia, or bacteremia range 

from 37-50%[42]. Vancomycin is hydrophilic molecule with a high molecular weight 

(over 1,400 Da) that readily binds plasma protein, resulting in poor tissue 

penetration[37]. Upon reaching infected tissue, vancomycin must specifically bind to D-

Ala-D-Ala residues of bacterial lipid II peptidoglycan precursor during cell wall 

biosynthesis to elicit bactericidal activity[43]. Vancomycin also binds peptidoglycan of 

the mature cell wall, but this interaction does not kill the bacterium and instead 

contributes to treatment failure as dense populations with excess non-lethal binding 

sites prevent vancomycin from accessing target lipid II[44]. For this reason, vancomycin 

fares poorly against stationary and biofilm associated S. aureus because these dense 

populations with thick cell walls contain many decoy D-Ala-D-Ala binding targets that 

limit vancomycin bactericidal activity[45,46]. Newly developed cell wall-acting antibiotics 

circumvent this obstacle by specifically binding lipid II at the S. aureus septum without 

binding mature peptidoglycan, and are thus much more effective against bacterial 

populations at high cell densities[47,48] 

Similar to vancomycin, aminoglycoside failure is often attributed to the inability of 

these drugs to access bacterial ribosomal targets. Aminoglycoside antibiotics are 

hydrophilic, positively charged, and typically around 400 Da in size[37]. Due to their size 



 
 

10 

and charge, aminoglycosides do not readily penetrate eukaryotic membranes through 

passive diffusion[49]. Instead, eukaryotic uptake of aminoglycoside antibiotics likely 

results from active cellular mechanisms such as pinocytosis, and consequently 

intracellular aminoglycoside accumulation is a slow process that typically takes 48-72 

hours to reach detectable levels[49]. For this reason, prolonged aminoglycoside therapy 

is often necessary for resolving infections caused by intracellular pathogens.  

Even against extracellular bacteria, aminoglycoside efficacy is hindered by poor 

membrane penetration. Bacterial aminoglycoside uptake occurs through proton motive 

force (PMF)-mediated passive diffusion[50]. In bacterial populations that are non-

respiring, the PMF often falls below the threshold necessary for drug uptake. External 

factors that induce a phenotypic non-respiring state eventually select for genetically 

heritable aminoglycoside resistance. For instance, long-term exposure to subinhibitory 

concentrations of tobramycin selects for highly resistant S. aureus small colony variants 

(SCVs)[51]. Clinically isolated S. aureus SCVs are often auxotrophic for various electron 

transport components required for respiration such as menaquinone (e.g. menD), or 

hemin biosynthesis (e.g. hemB)[52]. However, aminoglycoside exclusion can occur 

without genetic mutation, as the absence of a terminal electron acceptor (e.g. O2, NO3) 

or the presence of a respiration inhibitor (e.g. hydrogen cyanide) can select for a SCV 

phenotype in vivo[53]. In these cases, facultative anaerobic species such as S. aureus 

can tolerate high concentrations of aminoglycoside antibiotics by switching to a non-

respiring, fermentative metabolism[53]. Interestingly, this is considered an example of 

an ATP-independent mechanism of antibiotic tolerance, as S. aureus can readily 
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maintain adequate energy levels for growth and replication through fermentative 

metabolism in the presence of sufficient glycolytic carbon substrates. 

 

Antibiotic susceptibility assays are poor predictors of treatment outcome 

Current clinical antibiotic susceptibility testing consists primarily of in 

vitro diagnostic assays (e.g. MIC assay) that measure the ability of an antibiotic to 

inhibit growth of a pure bacterial culture grown under artificial conditions. However, 

these assays do not assess the ability of a drug to eradicate an existing bacterial 

population, and fail to account for extrinsic determinants of antibiotic susceptibility 

present in the complex infection milieu. Further, while MIC assays are important for 

characterizing the resistance profiles of infectious isolates, they do not assess the 

capacity of those isolates to tolerate the presence of the antibiotic. Indeed, several 

studies have demonstrated poor correlation between clinical antibiotic 

susceptibility testing and subsequent treatment outcome[54,55]. This poor correlation is 

particularly problematic in the case of deep-seated, chronic infections that fail to 

respond to prolonged antibiotic therapy despite apparent drug susceptibility. This 

suggests that environmental factors present within the host may influence a pathogen’s 

susceptibility to antibiotic killing.  

During infection, host-pathogen interactions, interspecies microbial interactions 

and metabolic heterogeneity in the infection environment can contribute to the success 

or failure of antibiotic therapy in patients (Figure 1.2). Identification and consideration of 

the factors present within the infection environment that impact the ability of an antibiotic 

to inhibit bacterial growth and/or kill bacterial cells will improve our ability to predict 
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efficacy in patients, reduce the duration of antibiotic therapy and decrease the risk of 

treatment failure, thereby minimizing the development and spread of antibiotic 

resistance.  

 

Host-microbe interactions that influence antibiotic susceptibility 

Inhibition of bacterial growth by bacteriostatic antibiotics gives the host immune 

system a chance to contain and eliminate an infectious bacterial population. Similarly, 

while bactericidal antibiotics facilitate cell death, even powerful bactericidal agents fail to 

completely eradicate bacterial populations, as antibiotic tolerant persister cells can 

survive in the presence of the antibiotic for long periods of time[22,56]. Hence, both 

bacteriostatic and bactericidal antibiotics rely on cooperation with the immune system to 

fully clear an infection. In some cases, this cooperation may simply be additive, whereas 

an antibiotic inhibits growth or kills a portion of the population and the immune system 

then eliminates the survivors. On the other hand, specific host-bacterial interactions 

may specifically inhibit or potentiate antibiotic efficacy. Such antagonistic or synergistic 

interactions are only recently coming to light and their impact on in vivo efficacy is yet to 

be fully appreciated. 

By comparing antibiotic efficacy in the presence or absence of host factors, 

Sakoulas et al. observed that b-lactam antibiotics synergize with the host immune 

response to potentiate bactericidal activity. Specifically, they found that ampicillin 

treatment can kill “ampicillin resistant” populations of Enterococcus faecium by altering 

cell surface charge and increasing the pathogen’s sensitivity to the action of host 

antimicrobial peptides (AMPs)[57]. Similarly, Staphylococcus aureus populations, 
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considered b-lactam resistant by MIC testing, were sensitized to killing by various host 

factors following b-lactam exposure[58]. Furthermore, in a murine model of intratracheal 

infection, it was found that the macrolide antibiotic, azithromycin, synergizes with the 

host cathelicidin antimicrobial peptide, LL-37, resulting in bactericidal activity against 

Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and more 

recently Stenotrophomonas maltophilia, despite an apparent lack of susceptibility to 

azithromycin by MIC testing[59,60]. It is likely that other as yet unidentified interactions 

with host factors synergize with commonly used antibiotics to promote efficacy within a 

patient.  

Interactions with the host may also be inhibitory to certain antibiotic activities. For 

instance, innate defenses can induce phenotypic resistance to the last-line antibiotic 

colistin in Enterobacter cloacae via activation of the histidine kinase PhoQ[61]. 

Importantly, in this study Band et al. demonstrate that an E. cloacae isolate described 

as colistin-susceptible via common clinical susceptibility testing can proliferate in the 

presence of colistin in vivo, leading to treatment failure and host death. Host-produced 

nitric oxide (NO) can inhibit PMF-dependent uptake of aminoglycoside antibiotics by 

inhibiting bacterial respiration and thus PMF generation in Salmonella, P. aeruginosa, 

and S. aureus [62], and DNA damage from exposure to reactive oxygen species (ROS) 

can induce persister cell formation in E. coli via the upregulation of toxin and drug efflux 

pump expression[63].  

The clearest example of the potentially antagonistic relationship between the 

host immune response and antibiotic activity is the ability of numerous pathogens to 

survive within phagocytic cells, where the adoption of an intracellular lifestyle often 
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correlates with decreased antibiotic sensitivity[64–66]. Within this niche, bacteria are 

often physically protected from certain antibiotics, such as aminoglycosides, that 

penetrate poorly into host cells[67]. However, poor drug penetrance cannot fully explain 

treatment failure in this environment, suggesting that other factors may contribute to the 

refractory nature of intracellular pathogens to antibiotic therapy[65,68,69]. Within the 

phagosome, bacteria face a variety of stressors including phagosome acidification, 

nutrient sequestration, and exposure to reactive oxygen and nitrogen species[70]. For 

Salmonella Typhimurium, vacuolar acidification and nutrient deprivation induces 

antibiotic-tolerant persister cell formation through toxin-antitoxin module activation[17]. 

Similarly, nitrosative stress within the phagosome induces antibiotic tolerance of 

internalized Mycobacterium tuberculosis[71].  

Recent appreciation for the capacity of S. aureus to persist within macrophages 

has led the hypothesis that infected macrophages may act as an important reservoir 

and mechanism of dissemination during infection[68]. Intracellular S. aureus is highly 

tolerant to killing by antibiotics, even against antibiotics that penetrate well into the 

intracellular space[32]. We recently demonstrated that ROS produced during respiratory 

burst induce a highly antibiotic tolerant state in S. aureus[32]. Within the phagosome, 

host-produced ROS attack S. aureus iron-sulfur cluster-containing proteins, including 

TCA cycle enzymes, to inhibit respiration and reduce bacterial ATP levels[32]. This was 

demonstrated to contribute to antibiotic treatment failure in a murine model of systemic 

S. aureus infection. Together, these findings suggest that a primary component of the 

innate immune response may be inadvertently antagonistic to antibiotic activity against 

S. aureus and potentially other intracellular pathogens.  
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These examples represent a microcosm of the many host-microbe interactions 

that influence antibiotic efficacy during infection. An improved understanding of how 

host factors mediate antibiotic susceptibility will improve our ability to predict antibiotic 

efficacy in vivo. Furthermore, consideration of these factors may lead to novel 

antimicrobial strategies with enhanced activity within the complex host environment.  

 

Interspecies interaction during polymicrobial infection alters antibiotic 
susceptibility  
 

Rather than existing in isolation, invading microorganisms frequently encounter a 

complex polymicrobial community within the host, where interactions with the resident 

microbiota or co-infecting pathogens can directly influence the overall structure and 

dynamics of the community. Antibiotic susceptibility within this complex environment 

may vary dramatically from that of the same organism grown in pure culture[72]. An 

excellent example of community based antibiotic resistance can be seen in the 

deactivation of an antibiotic by a single bacterial species, extracellularly or 

intracellularly, leading to de facto antibiotic resistance of the entire community[73,74]. In 

this case, antibiotic sensitive pathogens may elude antibiotic killing due to the activities 

of a co-existing organism[73]. As microbial expression of resistance factors such as 

antibiotic-modifying enzymes come with a fitness cost, during such instances of social 

“cheating” an antibiotic susceptible pathogen population can escape antibiotic action 

without the associated fitness or virulence cost[75,76].  

In addition to antibiotic deactivation, interspecies interactions can alter microbial 

metabolism and physiology to induce transient resistance or tolerance to antibiotics. For 

instance, production of the respiratory toxin 2-heptyl-4-hydroxyquinoline N-oxide 
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(HQNO) by P. aeruginosa elicits aminoglycoside tolerance in S. aureus by inhibiting the 

electron transport chain and depleting S. aureus cellular PMF, a necessary pre-requisite 

for aminoglycoside uptake[53]. P. aeruginosa-produced HQNO has also been shown to 

induce vancomycin tolerance in S. aureus by shifting S. aureus into a fermentative 

lifestyle[77]. As these pathogens frequently co-exist within the cystic fibrosis lung and in 

chronic wound infections, these interactions may represent an important determinant of 

antibiotic treatment outcome. Intraspecies quorum sensing (QS) has also been 

associated with changes in the susceptibility of a population to antibiotic killing. 

Production of the QS molecules CSP and acyl-homoserine lactone mediate multidrug-

tolerant persister cell formation within populations of Streptococcus mutans and P. 

aeruginosa, respectively[78,79]. In an interesting example of interspecies crosstalk, 

indole production by the native commensal E. coli was demonstrated to induce antibiotic 

tolerance in pathogenic Salmonella enterica Typhimurium[80]. Similarly, interception of 

Haemophilus influenzae autoinducer-2 (AI-2) by Moraxella catarrhalis significantly 

increases M. catarrhalis tolerance to antibiotics through the induction of M. catarrhalis 

biofilm formation[81]. Indeed, biofilm-associated infections have long been associated 

with antibiotic treatment failure, and these infections are often polymicrobial in 

nature[82]. Biofilm matrix production by one microbial species may induce antibiotic 

tolerance in another. In a recent example, it was demonstrated that C. albicans 

extracellular matrix production during dual-species biofilm formation protects S. aureus 

from antibiotic killing in vivo[83].  

In all, studying bacterial pathogenesis outside of artificial monoculture is not only 

more representative of the conditions encountered during infection, but also reveals 
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instances where factors produced by one species can inadvertently influence the 

susceptibility of another to antimicrobial activities. Interspecies interactions can induce 

antibiotic resistance or tolerance, which may have a deleterious impact on antibiotic 

efficacy[72]. It is also likely that synergistic interactions occur that increase antibiotic 

efficacy, though only a few instances have been reported so far [84,85]. Identifying the 

determinants of antibiotic susceptibility in complex communities rather than relying on 

potentially misleading information garnered from monoculture susceptibility assays is 

essential for improving our ability to efficiently treat polymicrobial infection.     

 

Physiological determinants of antibiotic susceptibility 

Currently, antibiotic susceptibility is measured in nutrient rich media, under 

aerobic conditions, free of most stressors typically encountered during infection. 

However, the complex “macro-ecosystem” of a host is composed of a variety of 

physiologically distinct microenvironments subject to bacterial colonization. Nutrient 

availability and overall physiological states within these distinct niches can vary 

drastically, and promote stark differences in bacterial metabolism. Even within the same 

spatial niche there often exists a significant degree of environmental heterogeneity, with 

aerobic, microaerophilic and anaerobic microniches in close proximity. Such is the case 

in late stage CF patients, where decreased mucociliary clearance promotes the 

formation of mucus plugs within the alveoli of the lungs, creating anoxic 

microenvironments within the aerobic lung[86]. Oxygen penetration is also often 

severely hampered in wound infections and abscesses[87,88]. Indeed, obligate 

anaerobes are frequently isolated from the CF lung as well as from polymicrobial wound 
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infections, implying that anoxic microenvironments exist within these infection 

sites[86,89]. Within the heterogeneous infection environment, facultative anaerobes 

such as S. aureus, E. coli or Streptococcus pneumoniae can colonize both aerobic and 

anaerobic niches to cause disease, and life within these niches requires specific 

metabolic adaptation. 

Physiologic heterogeneity in the infection environment may play a significant role 

in dictating antibiotic susceptibility. Indeed, certain antibiotic classes are active only 

against either aerobically or anaerobically growing bacteria. Metranidozole, for instance, 

is a prodrug that must be reduced by intracellular bacterial nitroreductases in order to 

exhibit bactericidal activity, which only occur in anaerobically growing bacteria[90]. 

Conversely, PMF-dependent uptake of aminoglycosides generally restricts their activity 

to aerobically respiring bacteria[50,91]. Active cellular respiration has also been linked 

to the lethality of other bactericidal antibiotics[92]. Respiration is a more efficient ATP 

generating process than fermentation, thus, actively respiring cells under oxygen rich 

conditions are expected to be higher in energy and more susceptible to antibiotic killing 

than cells in anoxic environments undergoing fermentation. In support of this 

hypothesis, frequently acquired mutations that result in defective electron transport in S. 

aureus are commonly associated with persistent infection, as the SCVs that result are 

highly resistant to antibiotic killing activity[93]. SCVs are selected for by oxidative stress 

and low pH as well as through interaction with small molecules produced by P. 

aeruginosa populations, further exemplifying how host and interspecies interaction can 

alter antibiotic susceptibility[94,95].  
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As bacteria compete both with other microorganisms and the host for nutrient 

sequestration during pathogenesis, nutrient availability undoubtedly plays a role in 

determining antibiotic susceptibility in vivo as well. Antibiotic tolerance increases 

significantly during periods of nutrient limitation or diauxic carbon-source transition, and 

starving bacteria of specific nutrients during in vitro growth markedly increases antibiotic 

tolerance[30,96,97]. Biofilm-associated growth represents a major source of metabolic 

heterogeneity during infection, as nutrient and oxygen consumption by cells at the 

periphery of the biofilm coupled with limited nutrient diffusion can result in a starvation-

induced state of dormancy for cells at the center of the biofilm that is associated with 

increased tolerance to antibiotic killing[98]. Supplying biofilms with limiting nutrients can 

restore bacterial susceptibility to antibiotic killing suggesting that starvation induced 

antibiotic tolerance may be responsible for the recalcitrance of biofilm infections to 

antimicrobial treatment[30,99,100].  

 

Staphylococcus aureus adaptive metabolism contributes to its recalcitrance to 
antibiotic therapy  
 
  S. aureus is a major human pathogen responsible for numerous chronic and 

relapsing infections[101]. S. aureus stably colonizes the anterior nares and skin of 

approximately one-third of the human population[102]. Typically this co-habitation is 

harmless, however colonization of immunocompromised individuals or physical 

disruption of the epithelial barrier in a healthy host can lead to subsequent 

dissemination of S. aureus through the blood to infect virtually any organ tissue in the 

body[103]. Life-threatening S. aureus infections include osteomyelitis, endocarditis, 
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necrotizing pneumonia and sepsis[104]. The rate of antibiotic treatment failure for these 

infections can reach 50%, and is often not associated with the emergence of antibiotic 

resistance[10,105–108] 

As a facultative anaerobe, S. aureus can be found in a variety of physiologically 

distinct niches within a host. S. aureus encodes an extensive network of metabolic 

pathways that promote bacterial replication under a plethora of physiological 

conditions[109]. Under aerobic conditions, S. aureus can catabolize a wide range of 

sugars and amino acids through glycolysis, acetogenesis, and TCA pathways to 

generate ATP and reducing equivalents to power cellular respiration[110]. In the 

absence of a terminal electron acceptor (O2, NO3-, etc.) or during respiration inhibition, 

S. aureus switches to fermentative lifestyle, typically fermenting glucose or other 

carbohydrates to a variety of fermentative end products including lactate, formate, 

ethanol, and potentially 2,3-butanediol[111–113]. This extensive metabolic network 

permits colonization of a wide range of niches within the complex host environment, and 

may explain the capacity of S. aureus to cause such a broad variety of infections[114]. 

Metabolic versatility makes systemic S. aureus infections difficult to resolve with 

antibiotic therapy, as broad-spectrum antibiotics are not always effective at targeting S. 

aureus in distinct physiological niches. For instance, aminoglycosides that require active 

respiration for bacterial uptake may eradicate respiring, planktonic S. aureus within the 

blood, but will be ineffective against non-respiring S. aureus deep within an abscess. 

Similarly, although vancomycin is considered a front-line antibiotic for resolving S. 

aureus infection, it is extremely ineffective at clearing dense, biofilm-associated S. 

aureus populations[115].  
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We propose that S. aureus represents an ideal model organism for studying how 

the extrinsic factors present during infection alter bacterial antibiotic susceptibility. This 

idea is explored further in Chapters 2 and 3. An improved understanding of how and 

why antibiotics fail to clear S. aureus populations within different niches of the host will 

not only aid in resolving recalcitrant S. aureus infection, but will also likely be broadly 

applicable for the resolution of other important pathogens responsible for chronic and 

relapsing infections.  

 

PART II. EXPLOITING SYNERGISTIC INTERACTIONS TO IMPROVE TREATMENT 
OUTCOME 

 

Targeting antibiotic tolerant populations.  

Identifying the underlying causes of antibiotic treatment failure is a futile pursuit if 

we lack the therapeutic means to target these difficult-to-treat populations. How do we 

target dormant populations when most of our current antibiotic arsenal requires active 

bacterial targets to function? After discovering persisters, Bigger himself proposed that 

pulse-dosing cultures with antibiotics to allow persisters time to revive between 

treatments and would eventually result in complete clearance of the population[22]. The 

plausibility of this hypothesis is supported by mathematical modeling and in vitro 

experimentation[116–118]. However, this strategy is clinically impractical because it 

inherently selects for resistance. Perhaps the simplest approach is to maintain antibiotic 

pressure until the tolerant population can no longer maintain a low-energy, quiescent 

state. However, in vitro studies have demonstrated that an antibiotic-tolerance can be 

maintained for extensive periods of time among persisters [119]. Furthermore, long-term 
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treatment is challenging as it requires strict adherence to antibiotic regimens, often in 

the face of uncomfortable or even debilitating side-effects that reduce patient 

compliance[120]. This is particularly apparent during Mycobacterium tuberculosis 

treatment. M. tuberculosis is a slow-growing bacterial pathogen that replicates within the 

phagosome of alveolar macrophages[121]. Within this environment, host-mediated 

stressors including nutrient sequestration and nitrosative stress support suboptimal 

growth conditions and growth arrest of M. tuberculosis, rendering the pathogen tolerant 

to antibiotic killing [71]. Current guidelines for the treatment of drug-susceptible M. 

tuberculosis begins with a four-drug regimen of isoniazid, rifampin, pyrazinamide, and 

either ethambutanol or streptomycin that lasts for at least two months[122]. Not only is 

this intensive treatment regimen impractical for underdeveloped countries with poor 

access to healthcare, but harmful side effects make patient non-adherence common 

even in developed countries[123]. This has led to a rise in multi-drug resistant M. 

tuberculosis strains that necessitate even more extensive and crippling antibiotic 

regimens. Indeed, M. tuberculosis recently surpassed Human Immunodeficiency Virus 

(HIV) as the leading cause of death from infectious disease[124].  

Clearly, extending antibiotic treatment duration is insufficient for combating 

treatment failure. Instead, researchers are pursing novel means for enhancing antibiotic 

efficacy against metabolically quiescent, tolerant populations that persist within infected 

hosts. These include combining antibiotics to target heterogeneous populations, 

physically disrupting cellular integrity, identifying susceptible targets in dormant 

populations, and reviving persisters prior to antibiotic exposure.  
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Combinational antibiotic therapy  

Antibiotic synergy testing assesses the efficacy of a combinational antibiotic 

therapy against a bacterial population in vitro. The effect of a two-compound 

combinational therapy can be additive, where the cumulative antimicrobial effect is 

simply the sum of both individual therapies; synergistic, where the combinatorial activity 

of two compounds exceeds the sum of each compound alone; or antagonistic, where 

the effects of one compound decreases the antimicrobial effect of the other[125].  

Over 50% of patients treated for septicemia and between 25-50% of patients with 

surgical site or pneumonia infections receive a combination of two or more antibiotics in 

an attempt to resolve the infection[126–128]. Prescription of multiple antibiotics with 

different spectra of activity may increase empiric coverage and efficacy of treatment, 

particularly when the susceptibility of infecting organism is unknown or there is 

heterogeneity in antibiotic susceptibility [128]. Combinational therapy may also slow the 

rise in resistance, and synergistic interactions can occur when two antibiotics with 

different mechanisms of action act on a single organism[129].  For instance, several in 

vitro studies have suggested that treating P. aeruginosa with a cell wall-acting β-lactam 

antibiotic during aminoglycoside therapy improves aminoglycoside penetrance and 

efficacy to improve bactericidal activity [130,131]. However, clinical investigations into 

the translational applications of these in vitro observations are conflicting, and our 

understanding of these molecular interactions is in its infancy[128]. Similarly, the 

practicality of using combinational therapies to slow the rise of resistance is 

controversial, as it has been suggested that this practice may actually select for 

multidrug resistant strains and speed the spread of resistance[128,132].   
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A second approach to combinational therapy focuses on antibiotic “sensitizers” or 

adjuvants. These are compounds that improve the efficacy of co-administered 

antibiotics, usually without demonstrating antimicrobial activity on their own[133]. 

Typically, adjuvants function by reversing mechanisms of resistance in naturally 

sensitive strains (e.g. combining an antibiotic with an antibiotic efflux pump inhibitor), or 

by sensitizing intrinsically resistant bacterial populations to killing (e.g. dispersion of 

antibiotic-tolerant biofilm)[133]. Clavulanic acid and amoxicillin for instance, make up a 

widely successful antibiotic cocktail that has been patented and commercialized as 

Augmentin®. Clavulanic acid inhibits the function of bacterial β-lactam-degrading β-

lactamases during amoxicillin therapy, restoring the efficacy of amoxicillin against β-

lactam-resistant populations[134]. One benefit of using antibiotic adjuvants is that a 

number of putative antimicrobial drugs that were shelved in the past for having low 

efficacy or a high intrinsic rate of resistance generation have been resurrected as 

promising adjuvant candidates. As researchers have only recently begun exploring 

potential antibiotic/adjuvant combinations, there may be a number of compounds with 

the capacity to significantly improve antibiotic lethality that have yet to be applied as 

such.    

 

Disrupting cellular integrity to target antibiotic tolerant populations 

 As discussed above, the bulk of our antibiotic arsenal is composed of drugs that 

corrupt active cellular processes to facilitate bacterial killing. The requirement of an 

active cellular target for bactericidal activity lends to the association between antibiotic 

tolerance and metabolic dormancy. For this reason, many researchers have turned their 
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attention to developing compounds that directly target bacterial cellular integrity, as this 

approach may permit eradication of dormant populations that are inherently tolerant to 

current therapeutics. Cell envelope integrity represents a promising but underdeveloped 

target for antibiotic action. Recent attention has focused on the applicability of using 

antimicrobial fatty acids, peptides, or other naturally occurring and synthetic compounds 

that physically disrupt the phospholipid bilayer as potential therapeutics, either alone in 

combination with a secondary antibiotic[59,135–137]. The primary draw of this approach 

is that membrane integrity is essential for the survival and virulence of all bacteria, 

regardless of metabolic state. Interaction with the membrane does not require ATP, thus 

tolerant persister populations are theoretically as susceptible to killing as metabolically 

active cells. Another attractive feature is that it is often more difficult for bacteria to 

evolve resistance to compounds that disrupt membrane integrity, as these compounds 

typically interact with multiple targets within the membrane. Indeed, results from in vitro 

studies show that de novo mutations that confer resistance to lipopeptides, antimicrobial 

peptides, and small molecules are exceedingly rare[138].  

The primary drawback of targeting the membrane stability is that compounds that 

disrupt bacterial membranes may be cytotoxic to host cells for the same reason. 

However, there are distinct physiological differences between bacterial and mammalian 

membrane composition, which may make it possible to specifically target bacterial 

membrane during treatment. Relative to mammalian membranes, bacteria lack 

cholesterol, and are dominated by negatively charged (phosphatidylglycerol, cardiolipin) 

and zwitterionic (phosphatidylethanolamine) phospholipids[139]. The clinical success of 

several membrane targeting antibiotics indicates that select targeting of bacterial 
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membrane is feasible and effective[138]. The antibiotic daptomycin, for instance, binds 

the surface of negatively charged bacterial membrane and oligomerizes to form pores 

and depolarize the membrane, leading to cell death[140,141]. As a membrane-acting 

agent, daptomycin often exhibits greater efficacy against non-growing S. aureus 

persister populations than traditional antibiotics[119]. Similarly, there are a number of 

membrane-acting compounds that have been recognized as safe by the United States 

Food and Drug Administration (FDA) for human consumption that exhibit antimicrobial 

activity[135,142,143]. Further, antimicrobial peptides and lipids constitute an important 

component of the human innate immune system, implying that these compounds may 

be safely administered to patients at concentrations that are bactericidal[144,145]. 

There may even be an opportunity to exploit synergistic interaction between naturally 

occurring antimicrobial lipids or peptides and antibiotics within the host to improve 

treatment outcome[59].  

 

Targeting and resuscitating dormant populations 

 Others have pursued more creative ways to re-sensitize ATP-depleted 

populations to antibiotic killing by commandeering and manipulating normal cellular 

processes during treatment. For instance, Conlon et al. used the antibiotic 

acyldepsipeptide (ADEP) to target dormant persisters[146]. ADEP binds to and 

activates ClpP, a bacterial protease that normally degrades misfolded proteins in the 

presence of ATP[147,148]. While bound to ADEP, ClpP remains in the active form, 

independent of intracellular ATP levels, leading to unchecked proteolysis within the cell. 

The activation of non-specific protein degradation in ATP-depleted cells makes ADEP 
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an exciting candidate for targeting dormant bacterial populations, as ADEP-treated cells 

essentially degrade themselves to death in an energy-independent manner. The 

authors further demonstrated that combining ADEP4 with rifampicin facilitated the 

eradication of persister populations in vitro and in a deep-seated murine biofilm infection 

model[146].  

 Chemically resuscitating dormant cells prior to antibiotic exposure by providing 

nutrients may also improve persister eradication in vitro and in vivo. Eradication of E. 

coli and S. aureus persisters can be achieved through supplementation with glycolytic 

sugar molecules that enhance aminoglycoside uptake through PMF generation[149]. 

Similarly, supplementing cultures with glucose increases daptomycin efficacy against S. 

aureus persisters, and supplementation with nitrate or arginine potentiates tobramycin 

and ciprofloxacin killing of P. aeruginosa biofilm[99,150]. Though these in vitro studies 

support the idea of reviving antibiotic tolerant persisters to improve therapeutic 

outcome, the clinical practicality and potential negative repercussions from providing 

pathogens with excess nutrients during treatment has yet to be evaluated.   

The widespread onset of multidrug-resistant pathogenic strains, coupled with an 

evaporating pipeline of new antibiotics reaching market emphasizes the importance of 

maximizing the efficacy of current antibiotics. Identifying instances where combinational 

antibiotic therapy can improve the rate and capacity of an antibiotic to clear recalcitrant 

bacterial populations will reduce the duration of antibiotic tolerance and slow the rise of 

resistance. Importantly, however, synergistic interactions observed in vitro are not 

always indicative of the in vivo outcome of combinational therapy and there are potential 

negative repercussions to combinational therapies that must be considered. Further 



 
 

28 

investigation is necessary to identify new opportunities for exploiting pathogen 

vulnerabilities during antibiotic therapy, as well as to assess the practicality and efficacy 

of implementing these therapies in patients.  

 

PART III. IDENTIFYING THERAPEUTIC TARGETS FOR INTRACELLULAR 
PATHOGENS  

 

The case for narrow-spectrum antibiotics  

 Broad-spectrum antibiotics act on both Gram-positive and negative bacterial 

species by targeting common cellular processes such as DNA replication 

(fluoroquinolones), transcription (rifamycins), translation (aminoglycosides), and cell wall 

biosynthesis (β-lactams) that are essential for bacterial replication and survival. With the 

discovery of penicillin, broad-spectrum antibiotics were the first developed, and remain 

the most commonly applied antimicrobial strategies used today for resolving bacterial 

infection. These drugs allow clinicians to quickly treat patients when a bacterial infection 

is suspected but the pathogen is unknown, they can also be used prophylactically to 

prevent infection during invasive surgery and during labor[151], and can resolve 

polymicrobial infection when more than one pathogen is causing disease.  

While undoubtedly useful, there are several drawbacks to the widespread use of 

broad-spectrum antibiotic therapy. Their overuse can select for resistance in both 

pathogenic and non-pathogenic (commensal) species within the host and inadvertently 

generate a reservoir of resistance genes that can propagate through horizontal gene 

transfer to dangerous pathogens[152]. The primary advantage of these drugs (their 

broad specificity) additionally leads to indiscriminate targeting of both pathogen and 
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host commensal species that render a patient susceptible to subsequent infection. This 

is particularly apparent during nosocomial Clostridioides difficile infection, where 

colonization follows antibiotic-mediated clearance of the host microbial flora[153]. 

Finally, while broad-spectrum antibiotics are effective at targeting extracellular bacterial 

pathogens, they are often ineffective against bacterial species that replicate within the 

cytoplasm or vacuolar space of host cells due to poor intracellular penetrance[67]. Many 

important antibiotic classes cannot enter the host cell cytosol and thus cannot gain 

access to the target bacterial population within[67]. Aminoglycosides, for instance, are 

the frontline therapy of choice for the facultative intracellular pathogen, Francisella 

tularensis, despite the fact that these antibiotics poorly penetrate the host cell[67]. As F. 

tularensis is among several bacterial species that can disseminate via cell-to-cell 

transmission mechanisms without exposure to the extracellular space[154], extensive 

treatment periods that last several weeks are often necessary to treat this organism.  

Recently, much attention has focused on the development of narrow-spectrum 

antibiotics that target specific genus, species, or physiological states of bacteria with the 

goal of addressing the issues posed by broad-spectrum antibiotic use[155]. Targeted 

therapies that specifically act on bacterial populations replicating within the intracellular 

environment without inadvertently decimating the host microbiome would be invaluable 

for preventing the spread of important diseases. However, implementation of this 

approach requires identification of antimicrobial targets that reduce pathogen viability 

without harming the host. In order to establish an infection, invading pathogens must 

actively modify the host metabolic activity to derive sufficient nutrients and reduce host 
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antimicrobial responses. Understanding and inhibiting these active microbial processes 

may prevent niche modification and restrict pathogen proliferation.  

 

Disrupting niche modification to target recalcitrant pathogen populations 

  Preventing pathogens from cultivating an environment that supports replication 

within the host is a promising alternative to antibiotic therapy. During dysbiotic 

Proteobacteria expansion, enteric pathogens actively modify their environment to 

establish a replicative niche[156]. The enteric pathogen Citrobacter rodentium, for 

instance, actively drives metabolic reprogramming of epithelial cells away from β-

oxidation and towards aerobic glycolysis by triggering colonic crypt hyperplasia[157]. 

This change in host cell metabolism increases oxygenation at the mucosal surface and 

drives aerobic expansion of pathogenic Enterobacteriaceae[156]. Inhibiting colonic crypt 

hyperplasia during C. rodentium infection with the γ-secretase inhibitor, dibenzazepine, 

reduced the ability of C. rotentium to colonize this environment[157]. Similarly, treating 

mice with a PPAR-γ agonist (rosiglitazone) significantly reduced E. coli luminal 

expansion by restoring epithelial β-oxidation and reducing luminal abundance of 

nitrate[158]. Recent clinical study of ulcerative colitis patients revealed that treatment 

with a PPAR-γ agonist that acts topically on the colonic epithelium (mesalazine) 

reduced Proteobacteria abundance in the colon, suggesting that this method may be 

effective for reducing pathogen expansion in human hosts[159]. Together, these studies 

demonstrate that inhibiting pathogen proliferation indirectly by targeting the host factors 

that support growth is an effective way to resolve infection, provided that we can first 

identify those factors.  
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An ideal therapy for intracellular pathogens would prevent pathogen-mediated 

niche modification of the intracellular space. For professional phagocytic cells this would 

allow for the host to eliminate pathogens through the normal innate immune response 

(phagosome acidification, ROS generation, etc.). Within non-phagocytic cells, disrupting 

pathogen-mediated niche modification would likely reduce nutrient availability and slow 

bacterial proliferation. However, in most cases the means by which these organisms 

compete with the hosts own metabolic demands to derive metabolites from the 

intracellular environment are unclear. An improved understanding of how intracellular 

bacterial pathogens modify the intracellular niche to obtain sufficient nutrients for 

replication and dissemination is likely to reveal novel therapeutic avenues for combating 

these important pathogens. Furthermore, targeting bacterial growth by altering host cell 

metabolism may circumvent issues concerning drug penetration, as host-targeting 

therapeutics act on infected host cells and not the bacteria replicating within that 

environment. 

 

Targeting bacterial metabolism to inhibit proliferation 

Prior to replication, virulence factor production, or dissemination, bacterial 

pathogens must secure sufficient nutrients to survive within the host. As an energy-

starved pathogen cannot cause disease, cutting off a pathogen’s food supply represents 

an enticing therapeutic avenue. Indeed, interfering with pathogen-specific metabolic 

pathways such as peptidoglycan synthesis, LPS synthesis, etc. has long been pursued 

as means for suppressing pathogen growth[160–162], and several studies have shown 

that inhibiting import or synthesis of a single essential metabolite significantly reduces 
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the virulence of otherwise virulent bacterial species[163,164]. However, for most 

pathogens the metabolic pathways and host-derived nutrients necessary for in vivo 

growth are poorly defined. 

Extracellular pathogens are subject to a constant flux of available nutrients within 

the host. By contrast, intracellular pathogens encounter more stable growth conditions 

within the cytoplasm or vacuolar space within the host cell. The relative simplicity of the 

intracellular environment has prompted significant strides in understanding the 

metabolic requirements of intracellular pathogens[165]. Within this niche, bacteria have 

access only to nutrients they can scavenge from this compartment. Recent studies 

suggest that the intracellular environment is not simply an open buffet of freely available 

metabolites left over from host metabolic processes[165]. Instead, most intracellular 

nutrients are stored within complex structures and not immediately available to 

intracellular pathogens[165]. To grow, intracellular bacteria must either harvest newly 

imported nutrients or direct the degradation of resident complex storage structures into 

their constituents (fatty acids, carbohydrates and amino acids). Successful intracellular 

pathogens have evolved the means for manipulating the intracellular environment to 

obtain sufficient carbon and trace elements necessary for replication[166–170]. As a 

reward, these pathogens are shielded from the innate immune system, competing 

microorganisms, and certain antibiotics that cannot access the intracellular space. 

Further, pathogens that can survive within motile macrophages and neutrophils may 

commandeer these cells as mode of protected dissemination through the 

host[69,171,172].  
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Francisella tularensis as a model for studying intracellular carbon catabolism  

F. tularensis is a Gram-negative, facultative intracellular bacterial pathogen and 

one of the most virulent organisms known. F. tularensis infects over 250 susceptible 

organisms, including humans[173]. Within these hosts, F. tularensis replicates within a 

variety of cell and tissue types including macrophages, epithelial cells, hepatocytes, 

neutrophils, fibroblasts and erythrocytes[174–177]. Following intracellular invasion, F. 

tularensis escapes the phagosome to replicate within the host cell cytosol[178]. A 

hallmark of F. tularensis pathogenesis is the bacterium’s ability to reach extreme 

densities within this niche, often replicating 1,000-fold within 24 hours to fill 60% of host 

cytosolic volume with bacterial mass (unpublished data). This remarkable rate of growth 

demonstrates that F. tularensis is adept at harvesting and utilizing host cell nutrients in 

an environment that does not inherently contain sufficient free carbon to support the 

levels of replication observed. F. tularensis must actively modulate the host metabolic 

processes to amass sufficient carbon to support growth and dissemination. We 

previously demonstrated that F. tularensis commandeers host cell autophagy to break 

down macromolecules and derive a source of free amino acids [179]. However, F. 

tularensis replicates to a considerable degree even in the absence of autophagy, 

demonstrating that this organism further exploits host metabolic processes to derive 

sufficient nutrients[179].  

 F. tularensis poses a severe risk to public health and is considered a potential 

agent for bioterrorism because of the bacterium’s low infectious dose and the high rate 

of mortality associated with tularemia [180–182]. Its broad host range and capacity to 

replicate to extreme densities within the intracellular space demonstrates that F. 
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tularensis is adept at modulating host cell metabolism to fuel replication. Furthermore, 

as a facultative intracellular pathogen, F. tularensis contains a small and decaying 

genome that encodes a relatively simple set of carbon catabolic pathways that support 

intracellular replication[183]. For these reasons, we propose that F. tularensis is an 

excellent model for studying intracellular niche modification and carbon metabolism, and 

that doing so will reveal new insights into how we can improve antimicrobial targeting of 

recalcitrant intracellular pathogens. This topic is explored further in Chapter 4.  

In all, though antibiotic susceptibility is traditionally examined in simple 

homogenous conditions in vitro, more and more studies are revealing the dynamic and 

complex nature of antibiotic efficacy in the infection environment (Figure 1.2). The 

administration of antibiotics without consideration of these environmental factors may 

result in treatment failure, exacerbated disease progression, and the rise of resistant 

microorganisms. Moreover, we propose that pathogen sensitivity to antibiotic killing is 

contingent not only on genotype, but also the pathogen’s metabolic state, and on 

interactions that occur with the host and co-infecting microorganisms. Further 

elucidation of key determinants of efficacy in vivo may lead to a more sophisticated and 

personalized approach to antibiotic therapy in order to eradicate infection as efficiently 

as possible. Doing so will reduce the likelihood of treatment failure and the incidence 

and spread of antibiotic resistance. 
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Figure 1.1. Antibiotic tolerance, persistence, and resistance are related but 
distinct phenomena that contribute to treatment failure. The effects of antibiotic 
tolerance, persistence and resistance on bacterial population density are contrasted. 
Antibiotic tolerance (green) refers to the survival of an entire population to lethal 
antibiotic exposure. A tolerant population neither grows, nor dies in the presence of 
antibiotic. Persister populations (red) reference a subpopulation of tolerant bacteria 
within a larger susceptible population. Following antibiotic challenge, the sensitive 
population succumbs to antibiotic killing. Persisters tolerate the antibiotic but are unable 
to grow in the presence of antibiotic. This leads to the biphasic kill curve illustrated 
above with a rapid exponential death phase followed by the formation of a stable 
persister plateau. If a heterogeneous population contained a resistant mutant (blue) 
capable of inactivating or overcoming the activity of the applied antibiotic, outgrowth of 
that resistant mutant subpopulation would follow an initial reduction in viable cells as the 
susceptible strain succumbs to antibiotic killing, followed by growth of the resistant 
population in the presence of the antibiotic.   
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Figure 1.2. Overview of extrinsic factors influencing antibiotic susceptibility 
within the host. Environmental factors can antagonize or potentiate antibiotic efficacy 
killing of a pathogen. Antimicrobial peptides (AMPs) can synergize with antibiotics to 
increase killing of pathogens. Conversely, pathogen engulfment by phagocytic cells can 
inhibit antibiotic killing by preventing drug access to the pathogen or by directly 
influencing pathogen metabolism and physiology through production of reactive oxygen 
or nitrogen species (ROS/RNS), vacuole acidification or nutrient sequestration. Inter- 
and intraspecies interactions can positively and negatively impact a pathogen’s 
susceptibility to antibiotic killing either through signaling processes or via direct 
interaction, such is the case in polymicrobial biofilms. Finally, heterogeneity in oxygen or 
nutrient concentration within the infectious environment can influence bacterial 
metabolism with significant consequences for antibiotic susceptibility.  
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CHAPTER 2 
PSEUDOMONAS AERUGINOSA EXOPRODUCTS DETERMINE ANTIBIOTIC 

EFFICACY AGAINST STAPHYLOCOCCUS AUREUS1 
 

Chronic co-infections of Staphylococcus aureus and Pseudomonas aeruginosa 

frequently fail to respond to antibiotic treatment, leading to significant patient morbidity 

and mortality. Currently, the impact of interspecies interaction on S. aureus antibiotic 

susceptibility remains poorly understood. In this study, we utilize a panel of P. 

aeruginosa burn wound and cystic fibrosis (CF) lung isolates to demonstrate that P. 

aeruginosa alters S. aureus susceptibility to bactericidal antibiotics in a variable, strain-

dependent manner and further identify three independent interactions responsible for 

antagonizing or potentiating antibiotic activity against S. aureus. We find that P. 

aeruginosa LasA endopeptidase potentiates lysis of S. aureus by vancomycin, 

rhamnolipids facilitate proton-motive force-independent tobramycin uptake, and 2-

heptyl-4-hydroxyquinoline N-oxide (HQNO) induces multidrug tolerance in S. aureus 

through respiratory inhibition and reduction of cellular ATP. We find that the production 

of each of these factors varies between clinical isolates, and corresponds to the 

capacity of each isolate to alter S. aureus antibiotic susceptibility. Furthermore, we 

demonstrate that vancomycin treatment of a S. aureus mouse burn infection is 

potentiated by the presence of a LasA producing P. aeruginosa population. 
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These findings demonstrate that antibiotic susceptibility is complex and dependent not 

only upon the genotype of the pathogen being targeted, but also on interactions with 

other microorganisms in the infection environment. Consideration of these interactions 

will improve the treatment of polymicrobial infections. 

 

IMPORTANCE 

Accurate prediction of antimicrobial efficacy is essential for successful treatment 

of bacterial infection. Beyond genetically encoded mechanisms of resistance, the 

specific determinants of antibiotic susceptibility during infection remain poorly 

understood. Here we show that a single interspecies interaction between S. 

aureus and P. aeruginosa can completely transform the antibiotic susceptibility profile 

of S. aureus. Through multiple distinct mechanisms, P. aeruginosa can antagonize or 

potentiate the efficacy of multiple classes of antibiotics against S. aureus. We identify 

the exoproducts responsible for altering S. aureus susceptibility to antibiotic killing, and 

furthermore demonstrate that these compounds are produced at varying levels in P. 

aeruginosa clinical isolates, with dramatic repercussions for S. aureus antibiotic 

susceptibility. Finally, we use a mouse model of P. aeruginosa, S. aureus co-infection to 

demonstrate that the presence of P. aeruginosa significantly alters the outcome of S. 

aureus antibiotic therapy in a host. These findings indicate that the efficacy of antibiotic 

treatment in polymicrobial infection is determined on the community level with 

interspecies interaction playing an important, and as yet unappreciated role. 
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INTRODUCTION 

S. aureus is responsible for numerous chronic and relapsing infections such as 

osteomyelitis, endocarditis, and infections of the cystic fibrosis (CF) lung, as well as 

many penetrating trauma and burn infections, venous leg ulcers, pressure ulcers, and 

diabetic foot ulcers. These infections are notoriously difficult to treat, despite isolates 

frequently exhibiting full sensitivity to administered antibiotics, as measured in vitro 

using a Minimum Inhibitory Concentration (MIC) assay. This suggests that 

environmental factors present in vivo may influence the pathogen’s susceptibility to 

antibiotic killing. While these factors can include physical barriers to antibiotic activity, 

such as tissue necrosis and low vascularization at a site of infection, or bacterial 

replication within host phagocytes, treatment failure cannot be fully explained by poor 

drug penetration[10]. Instead, environmental determinants, such as interactions with the 

host, can induce phenotypic responses or genetic adaptations in bacteria that reduce 

antibiotic sensitivity[184,185]. 

Similarly, within complex polymicrobial communities, such as those encountered 

in chronic skin infections, burn wound infections and chronic colonization of the CF lung, 

inter- and intra- species interactions can influence the pathogenicity and antibiotic 

susceptibility of individual organisms[53,186,187]. The presence of the fungal pathogen 

Candida albicans, for instance, can induce S. aureus biofilm formation and thus 

decrease the bacterium’s susceptibility to antibiotic killing[186]. Furthermore, antibiotic 

deactivation by resistant organisms within a population can lead to de facto resistance 

of all members of the community[73,188–190].  
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In such polymicrobial infections, S. aureus is commonly co-isolated with the 

opportunistic pathogen P. aeruginosa[191]. These co-infections are generally more 

virulent and/or more difficult to treat than infections caused by either pathogen 

alone[192–194]. The interaction between these two organisms is complex, with P. 

aeruginosa producing a number of molecules that interfere with S. aureus growth, 

metabolism, and cellular homeostasis. These molecules include the secondary 

metabolites 4-hydroxy-2-heptylquinoline-N-oxide (HQNO), pyocyanin, and hydrogen 

cyanide, all of which inhibit S. aureus respiration[195–197]. Additionally, P. aeruginosa 

produces rhamnolipids, biosurfactants that interfere with the S. aureus cell membrane, 

and an endopeptidase, LasA, that cleaves pentaglycine bridges in S. aureus 

peptidoglycan[198–200].  

These anti-staphylococcal compounds allow P. aeruginosa to quickly eliminate S. 

aureus during in vitro co-culture but do not prevent co-colonization in vivo. Recent 

findings suggest that within the CF lung, P. aeruginosa strains evolve to be less 

competitive with S. aureus resulting in more stable co-infection of the same spatial 

niche[201]. Additionally, work by Wakeman et al. has shown that the presence of the 

abundant innate immune protein, calprotectin, induces a phenotypic switch in P. 

aeruginosa that promotes stable P. aeruginosa and S. aureus interaction through the 

chelation of zinc and manganese ions at the site of infection. This in turn represses P. 

aeruginosa metabolic toxin production, resulting in significantly less HQNO and 

pyocyanin[202]. Similarly, Smith et al. recently demonstrated that S. aureus can tolerate 

in vitro co-culture with P. aeruginosa in the presence of serum albumin through the 

inhibition of P. aeruginosa lasR quorum sensing and thus LasA expression[203]. 
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Despite these findings, P. aeruginosa LasA, rhamnolipids, HQNO and pyocyanin are 

routinely detected at significant concentrations in burn wounds and in CF sputum 

samples and thus likely influence S. aureus physiology[204–208]. 

We hypothesized that interaction with P. aeruginosa may antagonize or 

potentiate S. aureus antibiotic susceptibility and could explain the frequent occurrence 

of treatment failure in infections involving otherwise drug-susceptible strains. 

Furthermore, we hypothesized that such interactions could be exploited to improve 

antibiotic treatment outcome. Here we demonstrate that secreted P. aeruginosa factors 

dramatically alter S. aureus susceptibility to killing by multiple antibiotic classes, and 

identify several mediators of S. aureus antibiotic antagonism or potentiation. 

Importantly, the production of these molecules is highly strain dependent, thus 

implicating the genotype of co-infecting P. aeruginosa strains as critical determinants of 

antibiotic treatment outcomes for S. aureus infections. Ultimately, we demonstrate in a 

mouse model of S. aureus, P. aeruginosa co-infection that the presence of P. 

aeruginosa can significantly alter the outcome of S. aureus antibiotic treatment. Overall 

this work highlights the importance of considering the microbial context of the infection 

environment during the treatment of polymicrobial infection. 

 

RESULTS 

Pseudomonas aeruginosa alters S. aureus susceptibility to antibiotic killing 

To investigate the impact of P. aeruginosa on S. aureus antibiotic susceptibility, 

we measured the bactericidal activity of three antibiotics against S. aureus in the 

presence of supernatants from 12 P. aeruginosa clinical isolates; 7 from the lungs of CF 
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patients and 5 from burn wounds, as well as two laboratory strains; PAO1 and PA14. 

We were interested in examining how P. aeruginosa-secreted exoproducts can impact 

the susceptibility of S. aureus to vancomycin, tobramycin and ciprofloxacin. Vancomycin 

is the frontline antibiotic for the treatment of MRSA. Ciprofloxacin and tobramycin are 

commonly used to treat P. aeruginosa during co-infection.  

S. aureus strain HG003 was grown to exponential phase and treated with 500μL 

of sterile supernatant from overnight (18h) cultures of HG003 (control) or one of the 14 

P. aeruginosa strains prior to antibiotic challenge. After 24h, cells were washed and 

plated to enumerate survivors. We found that the individual bactericidal activities of all 

three antibiotics against S. aureus were affected by P. aeruginosa supernatants. More 

specifically, we observed three P. aeruginosa isolates that significantly protected S. 

aureus from killing by tobramycin (BC239, BC312 and BC252) and one P. aeruginosa 

isolate (BC310) induced over a ten-fold increase in tobramycin killing of S. aureus 

(Figure 2.1A). We also observed that the majority of P. aeruginosa supernatants were 

antagonistic towards ciprofloxacin killing (Figure 2.1B). Furthermore, supernatants from 

8 P. aeruginosa strains (PAO1, PA14, BC238, BC310, BC249, BC250, BC251 and 

BC252) dramatically potentiated vancomycin killing of S. aureus, resulting in 100-1000 

times more killing than the control culture (Figure 2.1C). These data highlight the 

variable and strain-dependent influence of P. aeruginosa on the susceptibility of S. 

aureus to different antibiotics, however the mechanism(s) by which P. aeruginosa alters 

S. aureus antibiotic susceptibility remained unclear.  
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Rhamnolipids increase tobramycin uptake and efficacy against S. aureus  

Previous studies have shown that during co-culture the presence of P. 

aeruginosa results in increased S. aureus resistance to tobramycin through the activity 

of HQNO[53]. In agreement with this, we observed that supernatants from BC239 and 

BC312 and BC252 protected S. aureus from tobramycin killing (Figure 2.1A). 

Paradoxically, however, we observed that the majority of our clinical isolates had no 

significant impact on tobramycin bactericidal activity. Even more striking, isolate BC310 

appeared to potentiate tobramycin bactericidal activity against S. aureus (Figure 2.1A). 

We hypothesized that the impact of P. aeruginosa on S. aureus tobramycin 

susceptibility was multi-factorial, with an unidentified factor increasing tobramycin 

bactericidal activity.  

Tobramycin uptake is dependent on proton-motive force (PMF)[209]. P. 

aeruginosa HQNO collapses S. aureus PMF by inhibiting electron transport, thus 

abolishing tobramycin uptake into the cell[53]. To explore the possibility that an 

additional factor within P. aeruginosa supernatant may influence the bactericidal activity 

of tobramycin against S. aureus, we examined S. aureus susceptibility to tobramycin in 

the presence of supernatant from a PA14 ΔpqsLphzShcnC strain. This strain cannot 

produce the respiratory toxins HQNO, pyocyanin or hydrogen cyanide, all of which 

inhibit S. aureus respiration and deplete PMF. Strikingly, we found that PA14 

ΔpqsLphzShcnC mutant supernatant led to the rapid eradication of a S. aureus 

population following tobramycin treatment (Figures 2.2A, 2.3A). Heat-inactivation of P. 

aeruginosa PA14 supernatant had no impact on its ability to alter tobramycin activity, 

ruling out heat-labile proteins as potentiators of tobramycin killing (Figure 2.3B).  
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P. aeruginosa produces surfactant molecules called rhamnolipids that inhibit 

growth of competing Gram-positive bacteria. These amphiphilic molecules increase cell 

permeability by interacting with the plasma membrane[210]. We hypothesized that 

rhamnolipid interaction with the membrane may facilitate tobramycin entry into 

otherwise tolerant, PMF-depleted persister sub-populations. To investigate this 

possibility, we deleted the rhlA gene in PA14, which is essential for rhamnolipid 

biosynthesis. Supernatant from a PA14 ΔrhlA mutant conferred full protection to S. 

aureus against tobramycin killing (Figures 2.2A, 2.3A). Furthermore, during tobramycin 

treatment, the exogenous addition of a 50-50 mix of purified P. aeruginosa mono- and 

di-rhamnolipids at 30μg/ml facilitated the rapid eradication of the S. aureus population, 

and decreased the MIC of tobramycin for S. aureus 8-fold (Figure 2.2A)(Table 2.2). This 

concentration is within the physiological range of rhamnolipids likely encountered by S. 

aureus during co-infection with P. aeruginosa, as previous work by Bjarnsholt et al. 

found that clinical isolates produce a range of 2.4μg/ml to 72.8μg/ml rhamnolipids when 

grown in vitro and Read et al. reported rhamnolipid concentrations as high as 64 μg/ml 

in a CF lung explant[204,211]. At the concentrations used in this study, rhamnolipids did 

not display antibacterial activity in the absence of antibiotic (Figure 2.3C). Further, 

incubation with a similar concentration of L-rhamnose, the glycosyl head constituent of 

rhamnolipids, had no effect on tobramycin killing, ruling out metabolite-stimulated PMF 

generation as the mechanism of tobramycin potentiation (Figure 2.3D). Finally, we 

found that 30μg/ml purified P. aeruginosa rhamnolipids led to increased uptake of Texas 

Red-conjugated tobramycin as determined by flow cytometry (Figure 2.2B).  
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We next measured the relative amount of HQNO and rhamnolipids produced by 

each P. aeruginosa isolate using mass spectrometry[212] and a drop-collapse assay, 

respectively[213]. We observed a large variance in the production of both HQNO (Table 

2.1) and rhamnolipids between isolates (Figure 2.2C). Importantly, the potentiator of 

tobramycin activity, BC310, was the only strain shown to be a high rhamnolipid 

producer without detectable HQNO production. In contrast, strain BC239, the strongest 

tobramycin antagonist, was among the highest HQNO producers, and did not produce 

rhamnolipids. Together, these data show that P. aeruginosa has the capacity to both 

positively and negatively influence S. aureus tobramycin uptake and bactericidal activity 

through the action of rhamnolipids and respiratory toxins, respectively. The presence of 

these two opposing factors may be responsible for the apparent disconnect between the 

P. aeruginosa-mediated increase in tobramycin resistance reported previously[53], and 

lack of protection from tobramycin killing following treatment with supernatant from the 

majority of P. aeruginosa strains observed in this study. Indeed, deletion of either P. 

aeruginosa respiratory toxins or rhamnolipids in a P. aeruginosa laboratory strain 

resulted in supernatants that facilitate complete sterilization or protection of S. aureus 

cultures, respectively (Figure 2.2A). Furthermore, similar trends were observed when S. 

aureus MRSA strain JE-2 was challenged with tobramycin following treatment with P. 

aeruginosa supernatant, supporting the relevance of this phenomenon in the clinical 

treatment of S. aureus infection (Figure 2.4A).    
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P. aeruginosa induces multidrug tolerance in S. aureus through respiratory 
inhibition 
 

 In addition to the ability of HQNO to inhibit uptake of aminoglycosides, we made 

an interesting and somewhat unexpected observation during our investigation. HQNO 

production in P. aeruginosa isolates correlated perfectly with protection against 

ciprofloxacin killing (Figure 2.1B)(Table 2.1). As ciprofloxacin uptake is PMF-

independent, we wondered if P. aeruginosa HQNO was conferring ciprofloxacin 

tolerance in S. aureus via an alternate mechanism.  

Antibiotic tolerance generally refers to a population-wide decrease in antibiotic 

susceptibility, often following exposure to external mediators of bacterial metabolism or 

physiology. In contrast, persister cells are generally described as antibiotic-tolerant sub-

populations that form stochastically in an otherwise susceptible population. We recently 

demonstrated that both phenomena are specifically associated with cells entering a low 

ATP state[26,27]. Sub-populations of low energy cells give rise to persisters, while 

changes in the environment can lead to a low energy antibiotic tolerant state in the 

entire population. HQNO inhibits respiration, the most efficient mechanism for ATP 

generation in S. aureus. We hypothesized that P. aeruginosa inhibition of S. aureus 

respiration induces a low ATP, multidrug tolerant state of the entire population. In 

support of this, no protection from antibiotic killing was observed following pre-treatment 

with PA14 supernatant during anoxic growth (Figure 2.5A). We then cloned the 

fermentation-specific promoter for pyruvate acetyltransferase (pflB) from S. aureus 

upstream of gfp in a low-copy plasmid. Expression of pflB only occurs under anaerobic 

conditions or when respiration is inhibited[113]. We found that transcription of the pflB 



 
 

47 

promoter was activated in response to supernatant from all of the P. aeruginosa strains 

with the exception of PA14 ΔpqsLphzShcnC (negative control) and 4 of the clinical 

isolates, BC236, BC308, BC310, and BC251. Importantly, these were the only clinical 

isolates that did not induce significant protection from ciprofloxacin killing (Figure 2.1B). 

Activation of pflB during aerobic growth demonstrates that respiration is inhibited in 

these conditions (Figures 2.6A, 2.7). Direct intracellular ATP quantification of cultures 

treated with P. aeruginosa or S. aureus supernatant revealed that P. aeruginosa 

supernatant induces significant depletion of S. aureus intracellular ATP (Figure 2.6B).  

 We found that mutation of pqsL (HQNO negative) drastically reduced the 

capacity of PA14 supernatant to protect S. aureus from ciprofloxacin killing, suggesting 

tolerance to ciprofloxacin killing is mediated by HQNO (Figure 2.6C). Individually, 

mutations to the biosynthetic pathways for pyocyanin (phzS) and hydrogen cyanide 

(hcnC) had no influence on P. aeruginosa-conferred protection from ciprofloxacin killing. 

However, supernatants from a ΔpqsLphzS and a respiratory toxin-null mutant 

(ΔpqsLphzShcnC) were further reduced in their capacity to protect S. aureus from 

ciprofloxacin killing (Figures 2.5B, 2.6C). Together, these data demonstrate that P. 

aeruginosa confers protection from ciprofloxacin killing to S. aureus through respiration 

inhibition and depletion of ATP. Further, treatment with HQNO, pyocyanin and HCN at 

concentrations detected within the sputum of CF patients with active P. aeruginosa 

infection [206,208,214] induced tolerance of S. aureus to ciprofloxacin (Figure 2.6D). 

Surprisingly, similar levels of tolerance were observed for other classes of antibiotics 

including tobramycin, and vancomycin, with HQNO inducing the most robust tolerance 

to antibiotic killing (Figure 2.5C,D).  
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The LasA endopeptidase potentiates vancomycin bactericidal activity against S. 
aureus 

  
The presence of purified HQNO protects S. aureus from vancomycin killing 

(Figure 2.5D). However, P. aeruginosa supernatant from the majority of isolates tested 

significantly potentiated vancomycin killing of S. aureus (Figure 2.1C). We hypothesized 

that, similar to what was observed with S. aureus susceptibility to tobramycin, an 

additional factor present in P. aeruginosa supernatant is capable of overcoming the 

protective effects of HQNO to potentiate vancomycin killing of S. aureus. Heat 

denaturation of PAO1 supernatant completely abrogated the potentiating effect, 

suggesting the involvement of heat-labile extracellular protein(s) in the phenotype 

(Figure 2.8A). Bacteriolytic assays revealed that the PAO1 supernatant combined with 

vancomycin induced dramatic lysis of the population that was absent in the presence of 

either factor alone (Figure 2.8B). This led us to examine the potential role of the P. 

aeruginosa extracellular lytic enzyme, LasA, in mediating vancomycin killing. LasA 

cleaves pentaglycine cross bridges in S. aureus peptidoglycan and has been shown to 

attack the cell wall of S. aureus during in vivo competition[198]. We examined the 

capacity of supernatant from a PAO1 lasA mutant to potentiate vancomycin killing. The 

lasA mutant supernatant did not potentiate killing by vancomycin compared to a 3-log 

reduction in S. aureus cfu in the presence of the PAO1 wild-type supernatant (Figures 

2.8A, 2.9A). Similar trends were observed in a S. aureus MRSA strain JE-2 (Figure 

2.4B). As it was previously shown that S. aureus can degrade HQNO[215], the absence 

of which could result in a more dramatic LasA-dependent potentiation effect in our 

supernatant experiments, we examined vancomycin killing in a co-culture model where 

P. aeruginosa is present to continually produce HQNO. Again, we found that the 
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presence of wild-type PAO1 resulted in a 3-Log reduction in cfu following vancomycin 

challenge, and that this potentiation was not observed in the presence of a PAO1 lasA 

mutant, where we observed 100-fold more survivors at 24h (Figure 2.10).  

Next, we measured the levels of LasA in the supernatants of each clinical isolate 

via western blot and an additional assay developed previously to quantify LasA 

activity[216](Figures 2.8C, 2.11). 7 of the clinical isolates and both laboratory strains 

were positive for LasA. Of these, only BC253, the lowest LasA producer, and BC312, a 

high HQNO producer, did not induce at least a 10-fold increase in killing by vancomycin 

(Figure 2.1C). Of the 5 LasA negative strains, only one, BC251, significantly potentiated 

vancomycin killing, although no lysis of the culture was observed (Figure 2.9B). These 

data suggest that P. aeruginosa potentiates the vancomycin killing of S. aureus via at 

least two distinct mechanisms, only one of which is LasA-dependent.  

 

P. aeruginosa potentiates vancomycin killing in a mouse model of P. 
aeruginosa/S. aureus co-infection 
 

Our observation that purified HQNO induces multidrug tolerance in S. aureus 

agrees with recent findings that P. aeruginosa protects S. aureus biofilm from 

vancomycin killing[77]. However, we have demonstrated that under planktonic growth 

conditions the protective effects of P. aeruginosa HQNO on S. aureus vancomycin 

susceptibility (Figure 2.5D) can be overcome by the lytic activity of LasA to potentiate 

vancomycin killing. In order to determine whether the protective effects of HQNO or the 

potentiating effects of LasA predominated in vivo, we adapted a previously described 

murine model of burn injury for S. aureus, P. aeruginosa co-infection[217]. Briefly, 

groups of mice were inflicted with a 20% total body surface area burn, then after 24h 
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were infected subcutaneously at the wound site with approximately 105 CFU S. aureus, 

HG003 alone or in combination with 103 PAO1 or 103 PAO1 lasA::tet. Mice were then 

treated daily with vancomycin, and harvested 72h post infection.  

LasA has been shown to mediate P. aeruginosa epithelial cell invasion and has 

been shown to be essential for corneal infections[218,219]. Interestingly, in our burn 

model, it appeared that the presence of PAO1 resulted in a higher burden of S. aureus, 

which is also dependent on lasA. However, for this study, we were interested solely on 

the impact of PAO1 presence on vancomycin sensitivity of S. aureus. While we 

observed no significant vancomycin efficacy in S. aureus mono-infected mice, relative to 

an untreated control group, we observed a 2-Log reduction in S. aureus burden 

following vancomycin treatment in mice co-infected with P. aeruginosa PAO1 (Figure 

2.12A,B). Furthermore, no potentiation of vancomycin killing was observed in mice co-

infected with the PAO1 lasA transposon mutant (Figure 2.12 A,B). Importantly, P. 

aeruginosa appeared to be unaffected by vancomycin treatment, and burden was 

similar for both wild type and PAO1 lasA::tet infected mice (Figure 2.13). Finally, we 

observed that PAO1 transcription of lasA is strongly upregulated (~200-fold) during in 

vivo co-infection (Figure 2.12C). Up-regulation of lasA transcription was also observed 

during P. aeruginosa monoinfection, suggesting that lasA expression is independent of 

the presence or absence of S. aureus during burn wound infection. 

Together, these data demonstrate that the presence of P. aeruginosa can 

potentiate vancomycin killing of S. aureus during infection through the production of 

LasA. To our knowledge, these data represent the first evidence of P. aeruginosa 

altering S. aureus antibiotic susceptibility in vivo and underlines the importance of 
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deciphering interspecies interactions to improve the antibiotic treatment of polymicrobial 

infections.  

 

DISCUSSION 

Polymicrobial infections are associated with exacerbated morbidity, accelerated 

disease progression and poor treatment outcome[81,193,220,221]. Antibiotic therapies 

are often selected to specifically target individual pathogens within a polymicrobial 

community without consideration of how interspecies interactions may alter a target 

organism’s antibiotic susceptibility. S. aureus and P. aeruginosa are two major human 

pathogens that frequently co-exist within chronically colonized patients, and these 

infections are often impossible to resolve through conventional antibiotic therapy. We 

find that P. aeruginosa dramatically alters the susceptibility of S. aureus to the killing 

activities of commonly used and clinically relevant antibiotics through three distinct 

pathways governed by rhamnolipids, HQNO, and LasA, and that these molecules are 

produced at different levels by P. aeruginosa clinical isolates resulting in vastly different 

impacts on antibiotic efficacy against S. aureus (Figure 2.14)(Summarized in Table 2.3). 

We found that P. aeruginosa staphylolytic activity correlates with vancomycin 

potentiation, and that P. aeruginosa HQNO production correlates with ciprofloxacin 

antagonism (Figure 2.15). Correlation analysis with rhamnolipid production is not 

appropriate as the measurement of biosurfactant activity is qualitative. Overall, our 

results imply that antibiotic efficacy is strongly influenced by interactions between 

bacterial species, which may have major implications for future susceptibility 

determination and antibiotic treatment of polymicrobial infection.  
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Aminoglycosides are used routinely for the treatment of P. aeruginosa infection. 

Though aminoglycosides are effective against susceptible populations of S. aureus, 

bactericidal activity is limited against anaerobic, small colony variant (SCV), biofilm-

associated, or persister subpopulations due in part to decreased respiration and thus 

PMF-dependent drug uptake[50,149]. Stimulating tobramycin uptake has been 

proposed as a way to eradicate these recalcitrant populations[149]. We have observed 

that P. aeruginosa-produced rhamnolipids sensitize the entire S. aureus population to 

tobramycin killing, leading to total eradication of otherwise tolerant populations. P. 

aeruginosa rhamnolipids may represent a promising new avenue for potentiating 

aminoglycoside killing of recalcitrant S. aureus and possibly other bacterial populations. 

Interestingly, a recent study has revealed that S. aureus increases tobramycin 

resistance in P. aeruginosa in an in vitro biofilm model, further emphasizing the 

importance of interaction between these organisms in dictating aminoglycoside 

susceptibility[222]. 

Vancomycin is a frontline antibiotic in the treatment of MRSA. To exert 

bactericidal activity against S. aureus, vancomycin must specifically bind the D-Ala-D-

Ala residues of lipid II during cell wall biosynthesis[43]. However, vancomycin will also 

bind D-Ala-D-Ala residues of mature peptidoglycan. Thus, vancomycin exhibits limited 

bactericidal activity against dense populations of S. aureus cells due to the increased 

number of “decoy” targets available in late exponential or stationary phase populations 

of cells. Our data demonstrate that through LasA, P. aeruginosa can restore 

vancomycin efficacy against otherwise tolerant S. aureus populations. In support of this, 

we found that strains capable of increasing vancomycin lysis of S. aureus were LasA 
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producers while the inert strains, generally, were not. This variance in LasA production 

may be due to mutations in lasR, an activator of lasA expression, which acquires 

mutations at high frequency during chronic P. aeruginosa infection[223]. We 

hypothesize that the combined action of cell wall degradation by LasA and inhibition of 

de novo peptidoglycan biosynthesis by vancomycin leads to cell wall destruction and a 

potent bactericidal effect.  

P. aeruginosa HQNO induces tolerance of S. aureus to multiple antibiotic classes 

through respiration inhibition and depletion of intracellular ATP. Recent work by Orazi et 

al. found that in a bronchial epithelial tissue culture system, P. aeruginosa inhibited the 

killing activity of vancomycin through HQNO[77]. In agreement with these findings, we 

observed that the addition of exogenous HQNO protects S. aureus from vancomycin 

killing (Figure 2.5D) However, during planktonic growth the protective effect of HQNO 

was overshadowed by LasA-mediated potentiation of vancomycin killing. Importantly, 

Orazi et al. performed killing assays in media containing albumin, which has been 

shown to inhibit LasA production [23, 40]. We were interested in examining whether P. 

aeruginosa antagonized or potentiated vancomycin in vivo, and found that P. 

aeruginosa expresses LasA at high levels during infection, and significantly potentiates 

the activity of vancomycin against S. aureus. This effect was abrogated in a P. 

aeruginosa lasA mutant suggesting that LasA plays a role in potentiating vancomycin 

killing of S. aureus during polymicrobial infection.  

Similarly, we observed in vitro that P. aeruginosa-produced rhamnolipids can 

negate the protective effect of HQNO to restore or even increase S. aureus 

susceptibility to tobramycin killing. The opposing influences of HQNO and rhamnolipids 
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on aminoglycoside activity against S. aureus may have major implications for 

aminoglycoside treatment of S. aureus during co-infection where production of one 

factor may dominate, leading to inhibition or potentiation of tobramycin activity against 

S. aureus. Indeed, we observed that clinical isolates produce a range of HQNO, LasA 

and rhamnolipids, and production of each factor determines an isolate’s ability to 

potentiate or antagonize antibiotic killing.  

P. aeruginosa strain variation and the impact of this variation on S. aureus 

antibiotic susceptibility suggests that a personalized approach to antibiotic therapy may 

be necessary to identify the ideal therapy to eradicate infection in an individual patient 

based on the genotype of S. aureus and the genotype of the bacteria it’s interacting 

with. Recent work has demonstrated that within the infectious environment, the 

production of HQNO, LasA and rhamnolipids is highly variable. P. aeruginosa isolates 

from chronic CF infections frequently harbor mutations associated with decreased 

quorum sensing activities and increased alginate production[223]. These mutations are 

attributed to the conversion to a mucoidal phenotype of P. aeruginosa that is 

significantly less competitive with S. aureus[224]. P. aeruginosa mucoidy is rarely 

associated with acute infection, thus the impact of P. aeruginosa on antibiotic 

susceptibility of S. aureus may differ during acute vs. chronic co-infection. Future 

studies are necessary to identify genetic hallmarks of P. aeruginosa strains that 

potentiate or antagonize the activities of different antibiotic classes against S. aureus 

towards the goal of improving antibiotic efficacy against currently unresolvable co-

infections. 
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It has long been observed that S. aureus is the dominant pathogen in the early 

life of CF patients with P. aeruginosa eventually dominating later in life[225]. It is 

interesting to consider a possible role of altered antibiotic susceptibility of S. aureus 

contributing to these dynamics, where vancomycin or tobramycin treatment in the 

presence of LasA or rhamnolipid producing P. aeruginosa strains may be particularly 

efficacious, resulting in a decrease in relative S. aureus abundance. 

 In summary, we characterized 3 distinct P. aeruginosa mediated pathways 

altering S. aureus antibiotic susceptibility. HQNO induces a low-energy multidrug 

tolerant state while LasA and rhamnolipids overcome this tolerance in co-operation with 

vancomycin and tobramycin respectively. Exploitation of these newly discovered 

pathways may lead to better prediction of antibiotic efficacy in vivo and improved 

treatments for chronic S. aureus infection. 

 

MATERIALS AND METHODS 

Ethics Statement 

P. aeruginosa CF isolates were provided by an IRB approved biospecimen bank 

(IRB#02-0948). P. aeruginosa burn wound isolates were from a previous study and use 

was deemed exempt by IRB study number #17-0836. All mice used in the study were 

maintained under specific pathogen-free conditions in the Animal Association of 

Laboratory Animal Care-accredited University of North Carolina Department of 

Laboratory Animal Medicine Facilities. All protocols were approved by the Institutional 

Animal Care and Use Committee at the University of North Carolina, protocol number 

17-141, and all experiments were performed in accordance with the National Institutes 
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of Health. Animals were anesthetized by inhalation of vaporized isoflurane. A 

subcutaneous injection of morphine was given prior to burn injury for pain control, and 

an intraperitoneal injection of lactated Ringer's solution was given immediately after 

burn injury for fluid resuscitation. Animals were provided morphinated water ab 

libitum and monitored twice a day.   

 

Bacterial strains and growth conditions  

S. aureus strains HG003 and JE-2 was cultured aerobically in Mueller-Hinton broth 

(MHB) at 37°C with shaking at 225 rpm. HG003 is a well-characterized model strain of 

S. aureus, while JE-2 is a well-characterized USA300 S. aureus associated with 

community acquired MRSA infection.  For anaerobic growth, overnight cultures were 

washed twice with PBS and diluted into 5 ml of pre-warmed (37°C) TSB + 100mM 

MOPS (pH7) to an OD600 of 0.05. Cultures were prepared in triplicate in 16x150mm 

glass tubes containing 1mm stir bars. Following dilution, cultures were immediately 

transferred into a Coy anaerobic chamber and grown at 37°C with stirring. P. 

aeruginosa strains were grown aerobically in MHB at 37°C with shaking at 225 rpm. 

Burn wound isolates represent the first positive Pseudomonal wound cultures obtained 

from 5 unique patients admitted to the NC Jaycee Burn Center between Nov 2015 and 

April 2016 with a total body surface area burn > 20% and/or inhalational injury after 

obtaining informed consent. Cystic fibrosis isolates were collected from 5 patients at the 

UNC medical center. Isolates were cultured from sputum or bronchoalveolar lavage 

(BAL) from patients with cystic fibrosis after obtaining informed consent. All burn and CF 

isolates were grown on Pseudomonas isolation agar (BD Difco) and verified with 16S 
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ribosomal sequencing using the primer pair 5’-

AGTATTGAACTGAAGAGTTTGATCATGG-3’ and 5’-

CTGAGATCTTCGATTAAGGAGGTGA-3’ for PCR amplification.  

 

Strain construction 

The PAO1 lasA mutant (PW4282 lasA-H03::ISlacZ/hah) was from the PAO1 knockout 

library[226]. PA14 deletion mutants were constructed by singly or sequentially deleting 

the coding sequences of rhlA, pqsL, phzS and hcnC. Briefly, flanking primers were 

designed to anneal 800-1200bp upstream and downstream of the coding region. The 

resulting PCR product was inserted into plasmid pEX18Gm in accordance with the 

NEBuilder HiFi DNA Assembly protocol (New England Biolabs). Mutant alleles were 

integrated onto the chromosome of PA14 as described previously[227]. Briefly, 

pEX18Gm containing the in-frame deletion and gene-specific flanking regions was 

mated into P. aeruginosa via E. coli S17-λpir. Primary integrants were selected for with 

gentamycin and irgasan, then grown for 4h in LB without selection to allow for 

recombination. Dilutions of P. aeruginosa were plated on LB containing 8% sucrose for 

counterselection (loss of plasmid). Deletion strains were confirmed through PCR and 

sequencing (Genewiz). Plasmid PpflB::gfp was constructed as follows, 298bp upstream 

of the pflB coding region was amplified from HG003 genomic DNA using primers 

flanked with EcoRI and XbaI sites and cloned upstream of gfpuvr in plasmid 

pALC1434[228]. 
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Antibiotic survival assays 

To prepare sterile supernatants, S. aureus and P. aeruginosa strains were grown in 

MHB at 37°C with shaking at 225 rpm for ~20h. The cultures were pelleted and 

supernatants were passed through a 0.2µm filter. HG003 or JE-2 was grown to ~5x107 

(for cell wall acting antibiotics) or ~2x108cfu/ml (for all other antibiotics) in 3ml MHB 

under aerobic or in 5ml TSB + 100mM MOPS under anaerobic conditions. Cells were 

pre-treated with 0.5ml sterile supernatant (or 0.83ml for anaerobic cultures) and 

returned to the incubator for a further 30 minutes. A 30-minute pre-exposure was 

routinely used as we attempted to emulate the situation in vivo, where a population that 

has encountered and reacted to the relevant metabolites is subsequently exposed to 

antibiotic treatment. Where appropriate, cells were treated with 0.5ml of P. aeruginosa 

culture taken directly from stationary phase (18hr) cultures in place of sterile 

supernatant. Co-culture experiments were performed in the presence of 5% bovine 

serum albumin (BSA) to facilitate S. aureus/P. aeruginosa co-existence. An aliquot was 

plated to enumerate cfu before the addition of antibiotics. Antibiotics were added at 

concentrations similar to the Cmax in humans at recommended dosing; ciprofloxacin 

2.34µg/ml[229], tobramycin 58µg/ml[230], vancomycin 50µg/ml[231]. The Cmax of 

vancomycin is physiologically relevant for bacteremia and infections with good blood 

supply. The Cmax of vancomycin in serum is likely higher than that reached in the lung 

during i.v infusion, however, it is certainly within the range experienced during inhaled 

therapy where clinical trials observed a Cmax of 270 µg/ml in sputum of CF patients. 

The Cmax of tobramycin is 58 µg/ml. Regarding lung concentrations, work by Ruddy et 

al. has found that inhaled tobramycin therapy results in sputum concentrations of 
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between 17.2 and 327.3 µg/ml. The concentration we use is well within this range. Also, 

this therapy fails to eradicate P. aeruginosa in vivo and thus, we believe is 

physiologically relevant for this study[232]. The ciprofloxacin blood Cmax used in this 

study is 2.34 µg/ml. This is also well within the physiologically relevant concentration for 

lung infection where ciprofloxacin concentration is actually higher than corresponding 

blood serum levels[233].  

Ciprofloxacin concentration was increased to 4.68µg/ml when cells were grown in 

TSB + 100mM MOPS to account for any decrease in pH where ciprofloxacin killing 

activity is reduced. At indicated times, an aliquot was removed and washed with 1% 

NaCl. Cells were serially diluted and plated to enumerate survivors. We routinely used 

two time points to enumerate survivors, 16h and 24h after antibiotic challenge as we 

previously found that, in S. aureus, susceptible cells are killed and a stable sub-

population of survivors emerges between 16 and 24h of exposure to antibiotics[26,56]. 

Where indicated sterile supernatant was heat-inactivated at 95°C for 10 min before 

addition to culture. Where indicated, pyocyanin 100µM, HQNO 11.5μM, sodium cyanide 

150µM or rhamnolipids 10-50µg/ml (50/50 mix of mono- and di-rhamnolipids, Sigma) or 

L-rhamnose 10-50µg/ml were added in place of supernatant. Concentrations of 

respiratory toxins represent levels detected in the sputum of cystic fibrosis 

patients[206,208].  

 

 

Promoter induction measurement 

S. aureus strain HG003 harboring gfp promoter plasmid PpflB::gfp was grown to 
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~2x108cfu/ml in 3ml MHB containing chloramphenicol 10µg/ml. Cultures were treated 

with 0.5ml supernatant from HG003, PAO1, PA14 or P. aeruginosa clinical isolates as 

indicated. 200µl culture was added to the wells of a clear bottom, black side 96-well 

plate. The plate was placed in a Biotek Synergy H1 microplate reader at 37°C with 

shaking. Absorbance (OD600) and GFP fluorescence (emission 528nm and excitation 

485nm) were measured every 1h for 16h. GFP values were divided by OD600.  

 

ATP assays 

HG003 was grown to ~2x108cfu/ml in 3ml MHB and pre-treated with 0.5ml sterile 

supernatant from S. aureus HG003 or P. aeruginosa PAO1 or PA14. ATP levels of the 

cultures were measured after 1.5h as described previously using a Promega BacTiter 

Glo kit according to the manufacturer’s instructions[26]. P-values are indicated.  

 

Vancomycin lysis assay 

HG003 was grown to ~2x108cfu/ml in 3ml MHB and pre-treated with 0.5ml sterile 

supernatant from S. aureus HG003, P. aeruginosa PAO1, PA14 or P. aeruginosa 

clinical isolates as indicated. Cells were incubated for a further 30min before addition of 

vancomycin 50µg/ml. 200µl aliquots were added to the wells of a clear 96-well plate and 

placed in a Biotek Synergy H1 microplate reader. Absorbance (OD600) was measured 

every 1h for 16h.  
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Western blot analysis of LasA 

P. aeruginosa strains were grown in MHB media for ~20h. Cultures were normalized to 

OD600 2.0, pelleted and supernatants were passed through a 0.2µm filter. Supernatants 

were boiled in SDS-sample buffer and run on a 4-12% bis-tris acrylamide gel 

(Invitrogen). Protein was transferred onto a PVDF membrane and LasA was detected 

using rabbit polyclonal anti-LasA antibodies (LifeSpan BioSciences, Inc.).  

 

Staphylolytic assay 

Staphylolytic assay was modified from Grande et al.[216]. Briefly, stationary phase S. 

aureus strain HG003 was heat killed at 95c for 20min. Cells were pelleted and 

resuspended in 20mM Tris-HCl (pH 8.0) at an OD595 0.8-1. P. aeruginosa strains were 

cultured in MHB media for ~20h. Cultures were normalized to OD600 2.0, pelleted and 

supernatants were passed through a 0.2µm filter. 17µl sterile supernatant was added to 

a 100µl heat-killed cells. OD595 was measured at time 0 and after 2h and % cell lysis 

was determined. The values shown represent the average of biological triplicates.  

 

Tobramycin-Texas Red Uptake  

Tobramycin-Texas Red was made as described previously[27,234]. S. aureus strain 

HG003 was grown to mid-exponential phase and then incubated with or without 30µg/ml 

rhamnolipids for 30min. Cells were plated to enumerate cfu prior to addition of Texas-

Red tobramycin at a final concentration of 58µg/ml. After 1h, an aliquot of cells was 

removed, washed twice in 1% NaCl and plated to enumerate survivors. The remaining 
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aliquot was analyzed for Texas Red uptake on a BD Fortessa flow cytometer. 30,000 

events were recorded. Figures were generated using FSC Express 6 Flow.  

 

Rhamnolipid Quantification 

P. aeruginosa rhamnolipid production was quantified utilizing a drop collapse assay, as 

previously described[213]. Briefly, clarified supernatants from overnight cultures of P. 

aeruginosa strains were serially diluted (1:1) with de-ionized water plus 0.005% crystal 

violet for visualization. 25μl aliquots of each dilution were spotted on to the underside of 

a petri dish plate and tilted to a 90° angle. Surfactant scores represent the reciprocal of 

the highest dilution at which a collapsed drop migrated down the surface of the plate.  

 

LC-MS/MS quantification of HQNO 

500µl aliquots of P. aeruginosa supernatant were extracted 3 times with 1ml of ethyl 

acetate containing 0.01% acetic acid. For each extraction, samples were vortexed for 

30 seconds then centrifuged at 15,000xg for 2 minutes. The organic phases were 

removed and combined in a separate tube and evaporated to dryness in a TurboVap 

under a gentle stream of nitrogen at 50°C. Dried samples were reconstituted in 250µl 

acetonitrile and a portion diluted by a factor of 100 prior to analysis by liquid 

chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analyses were 

performed on a Quantum Ultra triple quadrupole mass spectrometer (Thermo Scientific, 

Waltham, MA) equipped with an Acquity ultra performance liquid chromatography 

(UPLC) system (Waters Corp., Milford, MA).  A sample injection volume of 10µl was 

separated on a 2.1 x 100mm, 1.7µm, CSH™ Fluoro-Phenyl UPLC column (Waters 
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Corp., Milford, MA) at a flow rate of 250µl per minute and a column temperature of 

40°C.  Mobile phase solvents consisted of 0.1% acetic acid in deionized water (A) and 

methanol (B).  Separation was achieved with a linear gradient from 30% to 95% B over 

5 minutes with a total run time of 10 minutes.  Column effluent was diverted to waste 

from 1-3 and 7-10 minutes, and HQNO eluted at a retention time of 5.8 minutes.  The 

mass spectrometer was operated in positive ion electrospray mode (3000 V; 250°C), 

and data were acquired by selected reaction monitoring (SRM) in centroid mode using a 

mass transition of 260.1 to 159.3 m/z and a collision energy of 26 eV. 

 

Burn wound model of P. aeruginosa/S. aureus co-infection 

Animals were purchased from Taconic Farms and housed in specific pathogen free 

conditions in the Animal Association of Laboratory Animal Care-accredited at the 

University of North Carolina’s Department of Laboratory Animal Medicine Facilities. All 

protocols were approved by the Institutional Animal Care and Use Committee at the 

University of North Carolina, and all experiments were performed in accordance with the 

National Institutes of Health. Wild type C57BL/6 mice were burned and infected as 

previously described[217]. Briefly, a 65g copper rod was heated to 100°C and used to 

create a full-contact burn of approximately 20% of total body surface area through four 

applications of the rod to the anesthetized animal’s dorsal region. In preparing the 

inoculum, overnight cultures of bacterial strains were subcultured into fresh MHB and 

grown for 2.5h to mid-exponential phase. An aliquot of each culture was centrifuged and 

washed with 1ml of PBS + 1% protease peptone. Approximate bacterial density was 

calculated by absorbance (OD600), and cultures were diluted to obtain the desired 
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concentration. Inoculum was verified through CFU enumeration. Mice were infected 

subcutaneously in the mid-dorsal region in unburned skin surrounded by the wound 24h 

after burn. Mice were administered vancomycin intraperitoneally at 110mg/kg once daily 

for two days, then sacrificed 48h post-infection. At the time of sacrifice, 5mm tissue 

biopsy of the bacterial infection site were aseptically removed, homogenized with 

3.2mm stainless steel beads and a Bullet Blender (Next Advance; Averill Park, NY) then 

bacterial burden was enumerated by plating serial dilutions of the homogenates on 

selective media. Mice that mostly cleared P. aeruginosa (<103 CFU/g tissue) were 

discounted from analysis. 

 

qRT-PCR 

250ul of homogenized tissue was suspended in 1ml of Trizol (ThermoFisher) and frozen 

at -80oC until extraction. RNA was extracted following manufacturer’s protocol. 

Extracted RNA was DNase treated with 10 units RQ-1 RNase free DNase (Promega) 

following manufacturer’s protocol. RNA was purified after DNase treatment using RNA 

Clean and Concentrator-25 (Zymo) and eluted in 30µl of H2O, and quantified using a 

NanoDrop spectrophotometer. 500ng of total RNA was used to generate cDNA using 

SuperScript II Reverse Transcriptase (ThermoFisher) and Random Primer 9 (NEB) 

following manufacturer’s protocol. Copy number of lasA and gyrA were quantified using 

iTaq Universal Sybr Green master mix (Bio-Rad) in 20ul reaction volumes on a Roche 

LightCycler 96, using the following primer pairs: lasA_RT_5 5’-

CCTGTTCCTCTACGGTCGCG-3’, lasA_RT_3 5’-GGTTGATGCTGTAGTAGCCG-3’, 
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gyrA_5_RT 5’-GAAGCTGCTCTCCGAATACC-3’, gyrA_3_RT 5’-

CAGTTCCTCACGGATCACCT-3’. 

 

MIC Assays 

MICs were determined using the microdilution method. Briefly, ~5x105cfu were 

incubated with varying concentrations of ciprofloxacin, tobramycin, or vancomycin in a 

total volume of 200µl MHB in a 96-well plate. Where indicated, 34µl MHB was replaced 

with sterile P. aeruginosa or S. aureus supernatant or purified HQNO or rhamnolipids at 

final concentrations of 11.5µM and 30µg/ml, respectively. MICs were determined 

following incubation at 37c for 24h. 

 

Statistical Analysis 

Statistical data analysis was performed using Prism GraphPad software (San Diego, 

CA) version 5.0b. Differences in S. aureus intracellular ATP concentration or surviving 

S. aureus CFU following P. aeruginosa supernatant treatment and antibiotic challenge 

were compared using a one-way ANOVA with Tukey’s multiple comparisons post-test or 

the Student’s t-test where appropriate. Differences in tissue burden following S. aureus, 

P. aeruginosa co-infection were compared with a Mann-Whitney test. Finally, the 

statistical significance of each correlation analysis was determined with a two-tailed 

Pearson’s chi-squared test. Differences with a p-value ≤ 0.05 were considered 

significant.  
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FIGURES 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. P. aeruginosa supernatant alters S. aureus antibiotic susceptibility. S. 
aureus strain HG003 was grown to mid-exponential phase and exposed to sterile 
supernatants from S. aureus HG003 (red), P. aeruginosa laboratory strains PAO1 and 
PA14 (grey), P. aeruginosa CF clinical isolates (blue) or P. aeruginosa burn isolates 
(green) for 30min prior to addition of (A) 50μg/ml vancomycin, (B) 58μg/ml tobramycin 
or (C) 2.34μg/ml ciprofloxacin - concentrations similar to the Cmax in humans. An 
aliquot was removed after 24h, washed and plated to enumerate survivors.  The dotted 
red line represents the number of survivors in the control culture. All experiments were 
performed in biological triplicate and the number of survivors following antibiotic 
challenge in the presence of P. aeruginosa supernatant was compared to the HG003 
supernatant-treated control. *p<0.05 (one-way ANOVA with Tukey’s multiple 
comparisons post-test analysis of surviving CFU). Error bars represent mean + sd.  
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Figure 2.2. P. aeruginosa rhamnolipids potentiate aminoglycoside uptake and cell 
death in S. aureus. S. aureus HG003 was grown to mid-exponential phase and 
exposed to (A) sterile supernatants from P. aeruginosa or S. aureus or exogenous 
addition of rhamnolipids (30µg/ml) before addition of tobramycin 58µg/ml. At indicated 
times, an aliquot was washed and plated to enumerate survivors. (B) Texas Red-
conjugated tobramycin was added to S. aureus cultures with or without 30µg/ml 
rhamnolipids. Following 1h, Texas Red-tobramycin uptake was measured by flow 
cytometry. (C) Rhamnolipid production present in the supernatant of P. aeruginosa 
PAO1, PA14, PA14 ΔrhlA, CF isolates (blue) or burn isolates (green) were quantified by 
a drop-collapse assay. Experiments were performed in biological triplicate. Error bars 
represent mean ± sd. 
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Figure 2.3. Rhamnolipids do not cause cell death in S. aureus in the absence of 
tobramycin. S. aureus strain HG003 was grown to mid-exponential phase in MHB 
media and pre-treated with (A,B) sterile supernatants from P. aeruginosa PA14 wild 
type or isogenic mutants, S. aureus HG003 or (D) L-rhamnose 10-50µg/ml before 
addition of tobramycin at 58µg/ml. Where indicated, PA14 supernatant was heat 
inactivated (PA14 HI) at 95c for 10min. (C,D) Cultures were treated with exogenous 
rhamnolipids or L-rhamnose (10-50µg/ml) in the absence of antibiotic. At indicated 
times, an aliquot was washed and plated to enumerate survivors. Error bars represent 
mean ± sd. 
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Figure 2.4. Exposure to P. aeruginosa supernatant alters methicillin resistant S. 
aureus (MRSA) antibiotic susceptibility. S. aureus strain JE-2 was grown to mid-
exponential phase and exposed to sterile supernatants from P. aeruginosa for 30 mins 
prior to the addition of (A) tobramycin 58μg/ml or (B) vancomycin 50 μg/ml. At indicated 
times, an aliquot was removed, washed and plated to enumerate survivors. All 
experiments were performed in biological triplicate. Error bars represent mean ± sd. 
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Figure 2.5. Pseudomonas-produced toxins inhibit respiration in S. aureus and 
induce antibiotic tolerance. (A) S. aureus HG003 was grown to mid-exponential 
phase in TSB + 100mM MOPS in an anaerobic chamber and pre-treated with sterile 
supernatants from HG003 or PA14 for 30min before addition of ciprofloxacin. HG003 
was grown aerobically to mid-exponential phase in MHB media and pre-treated with (B) 
sterile supernatants from P. aeruginosa strains PA14 wild-type or its isogenic mutants 
or (C-D) physiologically relevant concentrations of HQNO, pyocyanin (PYO) or sodium 
cyanide (NaCN) for 30min prior to antibiotic challenge[206,208]. At indicated times, an 
aliquot was washed and plated to enumerate survivors. All experiments were performed 
in biological triplicate. Error bars represent mean ± sd. 
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Figure 2.6. P. aeruginosa secondary metabolites inhibit S. aureus aerobic 
respiration resulting in a drop in intracellular ATP and protection from 
ciprofloxacin killing. (A) S. aureus strain HG003 harboring plasmid PpflB::gfp was 
grown to mid-exponential phase and treated with supernatant from P. aeruginosa 
PAO1, PA14, CF isolates (blue) or burn isolates (green), for 30min. OD600 and gfp 
expression levels were determined after 16h using a Biotek Synergy H1 microplate 
reader. (B) Intracellular ATP was measured after 1.5h incubation with supernatant. 
***p<0.0005 (one-way ANOVA with Tukey’s multiple comparison post-test). (C) S. 
aureus strain HG003 was grown to mid-exponential phase in MHB media and pre-
treated with sterile supernatants from P. aeruginosa strains PA14 wild-type or its 
isogenic mutants or (D) physiologically relevant concentrations of HQNO, pyocyanin 
(PYO) or sodium cyanide (NaCN) for 30min prior to antibiotic challenge. At indicated 
times, an aliquot was washed and plated to enumerate survivors. All experiments were 
performed in biological triplicate. Error bars represent mean ± sd. 
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Figure 2.7 P. aeruginosa supernatant inhibits S. aureus aerobic respiration. (A-C) 
S. aureus strain HG003 harboring plasmid PpflB::gfp was grown to mid-exponential 
phase and treated with supernatant from P. aeruginosa clinical isolates or laboratory 
strains. OD600 and gfp expression levels were measured every 30 minutes for 16h using 
a Biotek Synergy H1 microplate reader. All experiments were performed in biological 
triplicate. Error bars represent mean ± sd. 
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Figure 2.8. P. aeruginosa supernatant potentiates killing by vancomycin via the 
LasA endopeptidase. S. aureus HG003 was grown to mid-exponential phase and 
exposed to sterile supernatants for 30min prior to addition of vancomycin 50µg/ml. 
Where indicated, PAO1 supernatant was heat inactivated (PAO1 HI) at 95c for 10min. 
(A) At indicated times, an aliquot was removed, washed and plated to enumerate 
survivors or (B) 100µl cells were added to a 96-well plate and lysis was measured at 
OD600 every hour for 16h. (C) LasA present in the supernatant of P. aeruginosa PAO1, 
PA14, CF isolates (blue) or burn isolates (green) was quantified by western blot and the 
ability of each supernatant to lyse heat-killed S. aureus HG003 cells after 2h. Error bars 
represent mean ± sd.  
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Figure 2.9. P. aeruginosa endopeptidase LasA induces lysis in S. aureus. S. 
aureus HG003 was grown to mid-exponential phase and exposed to sterile 
supernatants indicated for 30min prior to addition of vancomycin 50µg/ml. (A) At 
indicated times, an aliquot was removed, washed and plated to enumerate survivors. 
(B) At 24h post antibiotic treatment, the turbidity of cultures treated with supernatant 
from HG003 (red), P. aeruginosa CF isolates (blue), or burn isolates (green) was 
measured by absorbance at OD600.  *p<0.05 by one-way analysis of variance (ANOVA) 
and Tukey’s multiple comparisons post-test. All experiments were performed in 
biological triplicate. Error bars represent mean ± sd. 
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Figure 2.10. P. aeruginosa LasA potentiates vancomycin killing of S. aureus 
during P. aeruginosa/S. aureus co-culture. S. aureus strain HG003 was grown to 
mid-exponential phase, exposed to 0.5 ml of stationary phase culture from P. 
aeruginosa strains PAO1 or PAO1 lasA::tet and 5% BSA for 30 mins prior to addition of 
vancomycin (50 μg/ml). At indicated times, an aliquot was removed, washed and plated 
on selective media to enumerate (A) S. aureus and (B) P. aeruginosa cells. All 
experiments were performed in biological triplicate. Error bars represent mean ± sd. 
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Figure 2.11. P. aeruginosa LasA lyses heat-killed S. aureus. (A,B) Heat killed S. 
aureus cells were incubated with supernatant from P. aeruginosa isolates in a 96-well 
plate. Lysis of S. aureus was monitored by measuring OD595 every 5 minutes for 2h. All 
experiments were performed in biological triplicate. Error bars represent mean ± sd. 
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Figure 2.12. P. aeruginosa potentiates vancomycin killing of S. aureus in a murine 
model of co-infection. Approximately 1x105 CFU S. aureus strain HG003 was 
administered subcutaneously alone or in combination with approximately 1x103 CFU P. 
aeruginosa PAO1 or PAO1 lasA::tn 24h after burn. Mice were left untreated or 
administered 110mg/kg vancomycin subcutaneously once daily for two days. Mice were 
sacrificed 48h post infection. (A) Tissue biopsies at the site of infection were harvested, 
homogenized and S. aureus burdens were enumerated on selective media. Data for 
each group are compiled from two independent experiments. (n=6-10 mice per group) 
*p<0.05, ***p<0.005 (Mann-Whitney test). (B) Relative percentage survival for HG003 in 
each condition was calculated by dividing the CFU/g tissue of mice treated with 
vancomycin by the average CFU/g tissue of untreated mice. Maximum percentage 
survival is 100%. Data for each group are compiled from two independent experiments. 
(C) Expression of lasA in tissue from mono- (PAO1 alone) and co-infected 
(PAO1/HG003) mice relative to the starting inoculum measured by qRT-PCR. *p<0.05 
(Student’s t test). Error bars represent mean + sd.   
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Figure 2.13. Burned mice maintain a high burden of P. aeruginosa PAO1 WT and 
PAO1 lasA::tet during co-infection. Approximately 1x105 CFU S. aureus strain 
HG003 was administered subcutaneously alone or in combination with approximately 
1x103 CFU P. aeruginosa PAO1 or PAO1 lasA::tn 24h after burn. Mice were left 
untreated or administered 110mg/kg vancomycin subcutaneously once daily for two 
days. Mice were sacrificed 48h post infection. (A) Tissue biopsies at the site of infection 
were harvested, homogenized and P. aeruginosa burdens were each enumerated. Data 
for each group are compiled from two independent experiments.  
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Figure 2.14. P. aeruginosa mediated alteration of S. aureus antibiotic 
susceptibility. P. aeruginosa exoproducts pyocyanin (PYO), 2-heptyl-4-
hydroxyquinoline N-oxide (HQNO), and hydrogen cyanide (HCN) inhibit S. aureus 
electron transport, leading to collapse of proton-motive force (PMF) and inhibition of the 
F1F0 ATPase leading to a decrease in S. aureus antibiotic susceptibility. Conversely, P. 
aeruginosa rhamnolipids (RL) intercalate into the plasma membrane forming pores that 
permit aminoglycoside entry into the cell in a PMF-independent manner, while P. 
aeruginosa endopeptidase LasA cleaves pentaglycine crosslinks between 
peptidoglycan molecules of the cell wall, increasing vancomycin-mediated lysis of S. 
aureus. 
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Figure 2.15. Correlation analysis of P. aeruginosa exoproduct production and 
impact on S. aureus antibiotic susceptibility. (A) HQNO production (measured by 
mass spectrometry), and (B) lytic activity (measured by staphylolytic assay) of P. 
aeruginosa laboratory strains PAO1 and PA14 and 12 clinical isolates were correlated 
to the isolate’s impact on S. aureus susceptibility to (A) ciprofloxacin or (B) vancomycin. 
The correlation coefficient and p value for each analysis is shown. Statistical 
significance was determined using a two-tailed Pearson’s chi-squared test.  
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Table 2.1. LC-MS/MS quantification of HQNO production in P. aeruginosa strains 
 

 

 

 

 

 

 

 

 

 

 Table 2.2. Minimum inhibitory concentrations (MIC) of S. aureus HG003 

 

Strain Conc. (µM) 
PAO1 31.5 
PA14 28.3 
PA14 ΔpqsL ND 
BC236 ND 
BC237 18.9 
BC238 13.9 
BC239 25.7 
BC308 ND 
BC310 ND 
BC312 28.3 
BC249 29.0 
BC250 28.2 
BC251 ND 
BC252 47.0 
BC253 9.8 

Antibiotic Control + HG003 
supernatant 

PAO1/ PA14 
supernatant 

PA14 
ΔpqsLphzShcnC 

MIC ciprofloxacin 
(µg/ml) 0.3 0.3 0.3 - 

MIC tobramycin 
(µg/ml) 0.78 0.78 3.125-6.25 0.39 

MIC vancomycin 
(µg/ml) 1.25 1.25 1.25 - 

Antibiotic Control 10 µg/ml 
rhamnolipids 

30 µg/ml 
rhamnolipids 

50 µg/ml 
rhamnolipids 

MIC tobramycin 
(µg/ml) 0.78 0.39 0.195 0.0975 
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Table 2.3. Summary of P. aeruginosa isolate phenotypes and resulting  

    impact on HG003 susceptibility to listed antibiotics 
     

Strain RL HQNO LasA Tobramycin Ciprofloxacin Vancomycin 
PAO1 + + + nc ê é 
PA14 + + + nc ê é 

BC236 - - - nc nc nc 
BC238 + + + nc ê é 
BC239 - + - ê ê nc 
BC237 + + - nc ê nc 
BC308 - - - nc nc nc 
BC310 + - + é nc é 
BC312 + + + ê ê nc 

BC249 + + + nc ê é 
BC250 + + + nc ê é 
BC251 - - - nc nc nc 
BC252 + + + nc ê é 
BC253 - + + nc ê nc 
  *RL= Rhamnolipid production 
       
       



1 Radlinski LC, Rowe SE, Brzozowski R, Wilkinson A, Huang R, Eswara P, Conlon BP. Chemical 
induction of aminoglycoside uptake overcomes antibiotic tolerance and resistance in Staphylococcus 
aureus. Cell Chemical Biology. 2019 Oct 17;26(10):1355-1364.e4. 
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CHAPTER 3 
 CHEMICAL INDUCTION OF AMINOGLYCOSIDE UPTAKE OVERCOMES 

ANTIBIOTIC TOLERANCE AND RESISTANCE IN STAPHYLOCOCCUS AUREUS1 
 

Aminoglycoside antibiotics require proton motive force (PMF) for bacterial 

internalization. In non-respiring populations, PMF drops below the level required for 

drug influx, limiting the utility of aminoglycosides against strict and facultative 

anaerobes. We recently demonstrated that rhamnolipids, biosurfactant molecules 

produced by Pseudomonas aeruginosa, potentiate aminoglycoside activity against 

Staphylococcus aureus. Here, we demonstrate that rhamnolipids induce PMF-

independent aminoglycoside uptake to restore sensitivity to otherwise tolerant persister, 

biofilm, small colony variant, and anaerobic populations of S. aureus. Furthermore, we 

show that this approach prevents the rise of resistance, restores sensitivity to highly 

resistant clinical isolates, and is effective against other Gram-positive pathogens. 

Finally, while other membrane-acting agents can synergize with aminoglycosides, 

induction of PMF-independent uptake is uncommon, and distinct to rhamnolipids among 

several compounds tested. In all, small molecule induction of PMF-independent 

aminoglycoside uptake circumvents phenotypic tolerance, overcomes genotypic 

resistance, and expands the utility of aminoglycosides against intrinsically recalcitrant 

bacterial populations.   
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IMPORTANCE 

The widespread onset of multidrug resistant pathogenic strains, coupled with an 

evaporating pipeline of new antibiotics reaching market emphasizes the importance of 

maximizing the efficacy of current antibiotics. As such, novel means for overcoming 

antibiotic tolerance and re-sensitizing resistant strains are desperately needed to 

combat infection. Aminoglycosides demonstrate broad-spectrum bactericidal activity 

against actively growing bacterial populations, but their activity is limited against non-

respiring pathogen populations commonly found within the host. This limits the 

usefulness of this class of antibiotics against difficult-to-treat infections. Our study 

demonstrates that chemically inducing aminoglycoside uptake by promoting small 

molecule permeability in the membrane with rhamnolipids overcomes the barriers 

imposed during PMF depletion to extend the reach of aminoglycosides against 

recalcitrant pathogen populations. This approach is broadly applicable to Gram-positive 

pathogens, and sensitizes biofilm, SCV, and anaerobic populations of S. aureus to 

aminoglycoside killing. Furthermore, this combinational therapy demonstrates 

remarkably potent bactericidal activity against persisters, a bacterial population that is 

notorious tolerant to killing, regardless of antibiotic class. Chemically inducing PMF-

independent aminoglycoside uptake represents a promising new approach for resolving 

chronic or relapsing infection, improving patient health, and slowing the spread of 

resistance. 
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INTRODUCTION 

Environmental heterogeneity within a host elicits a spectrum of activities and 

metabolic states that render a pathogen recalcitrant to antibiotic killing [187]. For the 

facultative anaerobe, Staphylococcus aureus, antibiotic treatment failure occurs in 

approximately 1 in 5 patients, leading to an estimated 20,000 deaths annually in the 

United States alone [235]. Paradoxically, clinical isolates from these infections often 

exhibit sensitivity to administered antibiotics, as measured in vitro using minimum 

inhibitory concentration (MIC) assays [57,236]. This suggests that resistance alone 

cannot fully account for treatment failure, but rather that environmental factors present 

in vivo may influence the pathogen’s susceptibility to antibiotic killing. S. aureus 

frequently colonizes microaerophillic or anaerobic niches during infection of the bone, 

within an abscess, or in the late-stage cystic fibrosis (CF) lung [114]. The absence of a 

terminal electron acceptor, such as oxygen or nitrate, pushes S. aureus into a 

fermentative lifestyle associated with diminished PMF and intracellular ATP [109].  

Aminoglycosides are broad-spectrum antibiotics that exemplify the disconnect 

between in vitro and in vivo antibiotic efficacy. Aminoglycoside internalization is a multi-

step process that begins with ionic interaction with the plasma membrane. This 

association displaces magnesium cations that stabilize the phospholipid bilayer, leading 

to increased permeability to ionic molecules [237]. This promotes proton motive force 

(PMF)-mediated aminoglycoside diffusion into the cell, followed by an exponential 

increase of drug influx as aminoglycosides disrupt translation, and misfolded proteins 

insert into and further destabilize membrane integrity (Andry 1974; Davis 1987; Taber et 

al. 1987a). Thus, slow growing or non-respiring bacterial populations can withstand high 
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levels of aminoglycosides as the initial stage of drug uptake is hindered by diminished 

PMF [240]. In vitro, aminoglycosides are potent killers of growing, respiring bacteria, yet 

these antibiotics are often dismissed as viable therapeutics for chronic infections 

because efficacy is severely limited against anaerobic, small colony variant (SCV), 

biofilm-associated, and persister populations [93,100,119].  

The observation that aminoglycoside efficacy is impeded by defects in drug 

uptake has prompted several groups to pursue novel means for overcoming this barrier. 

Clinically, aminoglycosides are often prescribed in combination with cell wall-acting 

antibiotics such as β-lactams [241–243]. β-lactam treatment interferes with 

peptidoglycan crosslinking at the Gram-positive cell surface[244]. This action has been 

demonstrated to reduce S. aureus cell surface charge, and may promote interaction 

with positively charged aminoglycosides [50,245]. Though this synergy has been 

reported in vitro, clinical reports documenting this combinational therapy are conflicting 

[128]. Similarly, groups have investigated other means of stimulating aminoglycoside 

uptake, including pH-mediated stimulation of Δψ, metabolite-mediated stimulation of 

PMF in persisters, or the use of other antimicrobial or anti-biofilm peptides and 

compounds [137,149,246,247]. Apparent synergy has also been reported between 

aminoglycosides and compounds that destabilize the bacterial membrane, such as 

antimicrobial lipids and retinoids, however the mechanisms of potentiation are unclear 

[136,248].  

We recently demonstrated that P. aeruginosa-produced rhamnolipids synergize 

with tobramycin to improve efficacy against S. aureus [84]. Rhamnolipids are a class of 

amphiphilic biosurfactants composed of two β-hydroxy fatty acid tails of varying lengths 
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connected to one or two rhamnose sugar molecules (Figure 3.1A)[200,249]. Previous 

studies have shown that at high concentrations (>300μg/mL)[250], rhamnolipids exert 

bactericidal activity against certain Gram-positive species by intercalating into the 

cytoplasmic membrane and forming pores [210]. Despite demonstrating broad-spectrum 

antimicrobial activity against Gram-positive pathogens, rhamnolipids are often 

dismissed as a potential therapeutic because the concentrations necessary to exert 

bactericidal activity are cytotoxic to host cells. However, here we show that sub-

cytotoxic concentrations of rhamnolipids significantly stimulate tobramycin uptake in S. 

aureus, and precipitate rapid and complete sterilization of S. aureus cultures. We further 

demonstrate that small molecule targeting of membrane permeability represents a novel 

and viable strategy for overcoming aminoglycoside tolerance and resistance in S. 

aureus and other clinically relevant pathogens.  

 

RESULTS 

P. aeruginosa rhamnolipids potentiate aminoglycoside killing of S. aureus.  

Using a mix of mono- and di-rhamnolipid congeners (RL90; AGAE), we first 

identified a RL concentration that potentiated tobramycin killing without itself exerting 

bactericidal activity against S. aureus (Figure 3.2A), and demonstrated that 

RL/tobramycin combinational therapy mediates the rapid and total sterilization of S. 

aureus HG003 cultures in a dose-dependent manner (Figure 3.1B). Interestingly, RL 

treatment did not lead to substantial dissipation of cellular PMF until the applied 

concentration approached concentrations necessary to inhibit S. aureus growth (Figures 

3.1C, 3.2A). Other commercially available RL molecules including two purified mono-
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rhamnose RL molecules, Rha-C10C10 and Rha-C12C12 (Glycosurf), as well as a 

purified mix of 90% di-rhamnose RL molecules of various carbon tail lengths (RL95D90; 

AGAE) similarly potentiated at least a 4-fold increase in tobramycin killing of S. aureus 

(Figure 3.2E). RL concentrations that potentiated aminoglycosides fell well below what 

were cytotoxic to host cells (Figure 3.3A). Similar potentiation was observed against the 

MRSA strain JE2 (Figure 3.3B), as well as with the other aminoglycosides including 

gentamicin, amikacin, neomycin, and kanamycin, demonstrating that 

RL/aminoglycoside synergy is not strain-dependent, or restricted to tobramycin (Figure 

3.3C-F). Rhamnolipids did not potentiate killing by ciprofloxacin, rifampicin or oxacillin, 

and 30μg/mL rhamnolipids did not change the MIC of ciprofloxacin (0.3125μg/mL), 

rifampicin (0.008μg/mL), oxacillin (0.5μg/mL), or the bacteriostatic antibiotic tetracycline 

(0.25μg/mL), suggesting that the synergy observed is specific to aminoglycosides. 

(Figure 3.3G-I). 

Aminoglycosides lack activity against non-respiring bacterial populations, as 

these cells maintain a low PMF [240]. S. aureus frequently experiences oxygen 

limitation during infection, particularly in biofilms, and biofilm associated S. aureus is 

highly recalcitrant to antibiotics [100]. We hypothesized that rhamnolipids could restore 

aminoglycoside sensitivity to non-respiring populations of S. aureus by facilitating PMF-

independent, passive transport. S. aureus was grown to mid-exponential phase under 

anaerobiosis or overnight in conditions that promote biofilm formation, then challenged 

with the maximum attainable serum concentration (Cmax, 58μg/mL) of tobramycin [230]. 

As expected, tobramycin alone was ineffective against anaerobic or biofilm-associated 

S. aureus (Figure 3.1D, E). However, RL/tobramycin combinational therapy led to the 
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complete sterilization of S. aureus HG003 anaerobic cultures within one hour (Figure 

3.1D). Similarly, combinational therapy led to approximately a 4-log reduction in biofilm-

associated CFU (Figure 3.1E).  

S. aureus SCVs are notoriously difficult to treat and are isolated from at least 

25% of patients with CF [52]. SCVs are often auxotrophic for the biosynthesis of 

thiamine, menadione or hemin, and consequently are defective in respiration and 

resistant to aminoglycosides [51,251,252]. To test whether rhamnolipids could be used 

to re-sensitize S. aureus SCVs to tobramycin killing, we generated a menadione (menD) 

auxotroph in S. aureus strain HG003. The menD mutant demonstrated high-level 

resistance (MIC = 50µg/ml) to tobramycin, however rhamnolipids reduced this MIC to 

0.0975µg/ml. Similarly, though HG003 menD grew unabated in the presence of 

tobramycin (Figure 3.1F), RL treatment facilitated tobramycin-mediated sterilization of 

the cultures in a dose-dependent manner (Figure 3.1F). Taken together, these data 

demonstrate that by bypassing the requirement of PMF for aminoglycoside uptake, 

rhamnolipids re-sensitize S. aureus anaerobic, biofilm, and SCV populations to 

aminoglycoside killing.  

 

Rhamnolipid/tobramycin combinational therapy eradicates S. aureus persisters  

Bactericidal antibiotics corrupt active cellular processes such as cell wall or 

protein synthesis to facilitate killing [253]. Persisters are subpopulations of bacteria that 

stochastically enter a phenotypically dormant state and can thus tolerate bactericidal 

concentrations of antibiotics [254]. S. aureus persister cell formation is associated with a 

decrease in intracellular ATP levels [26]. We previously showed that a population-wide 
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state of antibiotic tolerance can be induced in S. aureus by treating cells with potassium 

arsenate (AsKO2) to reduce ATP levels [26]. As expected, exposing a susceptible 

population of S. aureus to AsKO2 reduced the intracellular ATP concentration of the 

population, and induced tobramycin tolerance (Figure 3.4A). Conversely, this protective 

effect was abrogated in the presence of rhamnolipids, suggesting that rhamnolipids 

allow tobramycin to overcome the level of protection conferred by ATP depletion, and 

strengthened our conclusion that increasing tobramycin uptake allows us to target low-

energy S. aureus persister populations.  

Aminoglycoside bactericidal activity requires protein synthesis. Consequently, 

populations demonstrating a decreased rate of translation should be slower to succumb 

to killing. Chloramphenicol is bacteriostatic antibiotic that inhibits, rather than corrupts, 

protein synthesis and thus at certain concentrations will cause cessation of growth 

[253]. We aimed to slow the rate of translation by exposing cells to chloramphenicol and 

assess the impact on tobramycin/RL killing. We measured translation using a xylose 

inducible GFP reporter plasmid, pCLON46, to confirm that addition of chloramphenicol 

to growing S. aureus cultures slowed the rate of GFP synthesis (Figure 3.5A). 

Remarkably, while chloramphenicol treatment protected S. aureus from tobramycin 

killing, tobramycin/RL combinational therapy facilitated eradication of chloramphenicol-

treated S. aureus cultures, albeit at a diminished rate (Figure 3.4B). Similar results were 

observed following linezolid pre-treatment (Figure 3.5B). Rhamnolipids also potentiated 

tobramycin killing in the presence of the protonophore and uncoupling agent, carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP), which causes collapse of PMF and prevents 

tobramycin uptake. This confirmed that rhamnolipids facilitate PMF-independent 
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tobramycin uptake and resensitize PMF-depleted populations to tobramycin killing 

(Figure 3.4C). Together, these results demonstrate that RL/tobramycin combinational 

therapy targets persisters by overcoming the requirement of PMF for drug influx and 

lowering the threshold energy and translation levels required for killing. As low PMF, 

ATP, and antibiotic target activity represent the primary barriers proposed to reduce to 

antibiotic efficacy in persisters, RL induction of aminoglycoside uptake may significantly 

improve treatment of otherwise tolerant persister cell populations. 

 

Rhamnolipids repress the rise of tobramycin resistance, and re-sensitize 
resistant isolates to killing 
 

Subinhibitory RL concentrations significantly decreased the MIC of tobramycin 

for S. aureus HG003 WT from 0.78 to 0.0975µg/ml. For S. aureus, the predominant 

mechanisms of aminoglycoside resistance include decreased uptake through the 

adoption of a non-respiring SCV phenotype, or horizontal transfer of an aminoglycoside-

modifying enzyme [255]. Because rhamnolipids allow PMF-independent drug uptake, 

we hypothesized that tobramycin/RL combinational therapy could prevent the rise of 

tobramycin resistance due to poor drug penetration during long-term tobramycin 

exposure. To test this, 6 independent S. aureus HG003 strains were passaged daily in 

sub-MIC concentrations of tobramycin with or without 30μg/mL of RL. Serial passage 

with tobramycin alone led to a 256-500-fold increase in tobramycin MIC, yielding a final 

MIC of 200μg/ml for HG-1 and HG-2, and 100μg/ml for HG-3 (Figure 3.6A). Conversely, 

serial passage in tobramycin + rhamnolipids generated a maximum MIC increase to 

6.25 or 12.5μg/ml (Figure 3.6A). Two of these strains (HG-4, HG-6) remained below the 

clinical breakpoint for intravenous tobramycin (8μg/ml). Furthermore, subsequent 
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treatment with rhamnolipids restored tobramycin susceptibility to resistant mutant 

strains that arose during passage in tobramycin alone (Figure 3.6B). Together, these 

findings indicate that when used in combination with aminoglycosides, rhamnolipids 

slow the rise of aminoglycoside resistance and re-sensitize aminoglycoside resistant 

isolates to killing.  

Patients with CF are routinely administered high doses of inhaled tobramycin 

therapy (300mg of aerosolized tobramycin twice daily for 28 days, reaching sputum 

concentrations of 737μg/ml) to reduce P. aeruginosa burden during periods of clinical 

exacerbation [256]. Co-infecting S. aureus isolates exposed to inhaled tobramycin 

therapy can become highly tobramycin resistant. We measured the MIC of tobramycin 

against a panel of S. aureus CF isolates, and found that 6 of 8 isolates grew in 

concentrations of tobramycin ranging from 800-1600μg/ml (Figure 3.6C).    

Aminoglycoside-modifying enzymes allow non-SCV S. aureus to inactivate intracellular 

drug and grow in high concentrations of aminoglycosides. All of our resistant isolates 

were non-SCV, and thus it is likely that these isolates had either acquired an 

aminoglycoside modifying enzyme or had mutated ribosomal binding sites with lower 

binding affinity for tobramycin. Regardless of mechanism, we hypothesized that 

significantly increasing intracellular concentrations of tobramycin with rhamnolipids 

could overwhelm both mechanisms of resistance to restore some level of susceptibility 

to these highly resistant isolates. Indeed, we found that rhamnolipids synergized with 

tobramycin to reduce the MIC 8 to 32-fold among our isolates (Figure 3.6C). Further, 

rhamnolipids reduced the concentration of tobramycin necessary to inhibit S. aureus 

growth in these isolates to below the clinical achievable concentration following 
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aerosolized delivery (~673μg/ml per dose)[256] (Figure 3.6C). In all, these findings 

demonstrate that combinational therapy can slow the rise of resistance in a closed 

system, and re-sensitize even the most highly resistant clinical isolates.   

Rhamnolipids sensitize other Gram-positive pathogens to aminoglycoside killing 

  We next asked whether targeting membrane permeability to induce 

aminoglycoside uptake is a valid therapeutic approach against other bacterial 

pathogens. Consistent with previous findings, we observed that rhamnolipids 

demonstrated no bactericidal activity, and thus no aminoglycoside-potentiating effects 

against Gram-negative Escherichia coli, presumably due to the presence of an 

additional outer membrane (Table 3.1)[210]. For Gram-positive species, we found that 

rhamnolipids lowered the MIC of tobramycin for Enterococcus faecalis, Bacillus subtilis, 

Listeria monocytogenes and Clostridioides difficile (Table 3.1). Of note, rhamnolipids 

reduced the MIC of C. difficile from 400μg/ml to under 0.39μg/ml, sensitizing what is 

otherwise a highly resistant, strictly anaerobic species. Rhamnolipids were ineffective 

against Streptococcus pneumoniae. 

 

Rhamnolipids induce distinct modifications to the S. aureus membrane to 
promote tobramycin uptake 
 

To better understand the molecular mechanism(s) for how rhamnolipids and 

other cell envelope-acting agents (CEAAs) potentiate aminoglycosides, we selected 3 

other putative aminoglycoside adjuvants and compared their impact on S. aureus 

membrane physiology. Antimicrobial monoglycerides such as glycerol monolaurate 

(GML) target the plasma membrane and were recently demonstrated to synergize with 
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aminoglycosides against S. aureus biofilm [144,248]. Similarly, the retinoid adarotene 

targets bacterial membranes and synergizes with aminoglycosides against S. aureus 

persisters [136]. Finally, β-lactam/aminoglycoside synergy has long been theorized to 

occur in vivo, with limited in vitro support and conflicting clinical reports (Figure 

3.7A)[128].  

For each compound we attempted to identify a concentration that potentiated 

tobramycin killing without exerting bactericidal activity alone (Figure 3.2B-D). Treatment 

with 3.2μg/mL of adarotene and 40μg/mL of GML facilitated 100 to 1000-fold increase in 

tobramycin killing (Figure 3.8A). Surprisingly we observed that sub-bactericidal 

concentrations of oxacillin conferred a moderate but significant protective effect against 

tobramycin (Figure 3.2D, Figure 3.8A). Rhamnolipids were the most powerful 

potentiator of tobramycin killing, sterilizing cultures to the limit of detection (Figures 

3.2A, 3.8A). These findings were supported by traditional checkerboard synergy assays 

where synergy (FICI ≤ 0.5) was observed between tobramycin and rhamnolipids, GML, 

and adarotene; but not between tobramycin and oxacillin (Figure 3.9, Table 3.2).  We 

then used flow cytometry to measure changes in Texas Red-conjugated tobramycin 

uptake following exposure to each CEAA. Strikingly, we found that only RL treatment 

led to significant changes in tobramycin uptake post antibiotic exposure despite the fact 

that rhamnolipids, GML and adarotene all potentiated tobramycin killing at these 

concentrations (Figures 3.8B, 3.7B, C).  

We hypothesized that the unique ability of rhamnolipids to promote rapid 

aminoglycoside influx might stem from how rhamnolipids interact with the bacterial 

membrane. Aminoglycoside internalization begins with ionic interaction with the cell 
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surface, followed by PMF-mediated diffusion into the cell [50]. We reasoned that 

rhamnolipids might promote aminoglycoside uptake by altering membrane charge 

and/or permeability. Similar to oxacillin, RL treatment decreased S. aureus surface 

charge, and both rhamnolipids and adarotene stimulated a lasting increase in 

membrane fluidity (Figure 3.7D, E). However, only rhamnolipids significantly stimulated 

leakage of intracellular ATP into the medium, suggesting that at these concentrations 

only rhamnolipids induce small molecule permeability of the membrane (Figure 3.7F).  

Overall, rhamnolipids simultaneously altered surface charge, membrane fluidity, and 

small molecule permeability, which may explain their unique capacity to stimulate PMF-

independent aminoglycoside uptake. 

As GML and adarotene did not promote tobramycin influx during the initial phase 

of tobramycin uptake, we hypothesized that these CEAAs may instead potentiate 

aminoglycoside killing downstream of initial antibiotic influx. If true, then rhamnolipids 

alone should restore tobramycin susceptibility to CCCP treated cells, as PMF-depleted 

cultures exclude aminoglycosides altogether. As expected, CCCP-treatment induced 

tolerance to tobramycin that was overcome with rhamnolipids (Figure 3.8C). However, 

combinational therapy with GML, adarotene, or oxacillin were unable to overcome 

CCCP-mediated PMF depletion, confirming that these compounds do not bypass the 

initial phase of tobramycin uptake and instead likely synergize with tobramycin after 

antibiotic has penetrated the cell, possibly by rendering S. aureus more sensitive to 

downstream membrane damage resulting from protein synthesis corruption (Figure 

3.8C). Physiologically this distinction is critical, because synergy with GML or adarotene 

will likely be limited to respiring, high PMF S. aureus populations in vivo. Indeed, when 
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grown anaerobically, adarotene no longer potentiated aminoglycoside killing, and the 

synergy observed for GML was minor compared to the rapid eradication observed 

following RL treatment (Figure 3.8D).       

We used high-resolution fluorescent microscopy to visualize the effects of each 

compound on the S. aureus plasma membrane. We observed that treatment with 

rhamnolipids at concentrations that potentiate aminoglycoside killing, resulted in a 

population of viable cells that retained overall shape and membrane morphology, 

however localization of membrane-associated cell division machinery, measured with 

the FtsZ proxy, ZapA-GFP, was perturbed, suggesting that rhamnolipids interfere with 

membrane physiology without completely destabilizing it (Figure 3.8E, Figure 3.7G). 

Adarotene and GML treatment resulted in membrane clumping indicative of more 

pronounced membrane destabilization at concentrations that induced tobramycin 

synergy (Figure 3.8E). All compounds stimulated mislocalization of ZapA-GFP from the 

membrane (Figure 3.7G). Taken together, these data suggest that rhamnolipids 

distinctly modify the plasma membrane to induce tobramycin uptake, while the 

potentiation effects observed from other CEAAs may occur through general 

destabilization of the membrane during aminoglycoside-induced membrane stress.  

  

DISCUSSION 

 Aminoglycoside efficacy is limited by the environmental context of infection [187]. 

Minor fluctuations in nutrient and oxygen availability have dramatic implications for drug 

penetration, rendering aminoglycosides useless against certain types of infections 

[50,240]. Here, we demonstrated that inducing PMF-independent aminoglycoside 
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uptake with rhamnolipids facilitates the eradication of anaerobic, biofilm, SCV and 

persister populations, represses the rise of aminoglycoside resistance, and restores 

susceptibility to highly resistant isolates (Figure 3.10). Furthermore, we showed that 

while other cell membrane-targeting agents can synergize with aminoglycosides, 

stimulating the initial phase of aminoglycoside influx is rare, and unique to rhamnolipids 

under these conditions. Consequently, rhamnolipids demonstrated the greatest efficacy 

as a combinational therapy against aminoglycoside-tolerant S. aureus.  

The specific mechanisms that induce antibiotic tolerance in the host are poorly 

understood. In vitro, bacterial tolerance is associated with a stochastic or deterministic 

drop in ATP-dependent antibiotic target activity below the threshold required to facilitate 

death [26,27]. Aminoglycoside tolerance, however, is further complicated by the fact 

that PMF-dependent drug influx is also contingent on the metabolic state of the cell. 

Consequently, it is difficult to delineate between deficiencies in drug penetration or low 

intracellular ATP when examining an aminoglycoside tolerant population. rhamnolipids 

remove the prerequisite of PMF for drug influx, and allow us to specifically study the 

relationship between ATP depletion and aminoglycoside tolerance. Strikingly, we found 

that rhamnolipids allowed for tobramycin-mediated eradication of S. aureus populations 

exhibiting minimal intracellular ATP and translation activity, suggesting that the primary 

obstacle to aminoglycoside efficacy lies in drug influx. This is in contrast to other 

antibiotics that diffuse freely across the membrane or act on the cell surface, where ATP 

depletion is sufficient to induce tolerance [26]. With these antibiotics, we suggest that 

the primary barrier to efficacy likely lies in the reduction of active cellular targets such as 

DNA replication (fluoroquinolones), transcription (rifamycins) or cell wall synthesis (β-
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lactams) among tolerant populations. Recent work suggests that “dormant” persister 

populations maintain low level metabolic activity [257–259]. Although protein synthesis 

is likely reduced in persisters, our results suggest that the number of active ribosomal 

targets in these populations is sufficient for aminoglycosides to precipitate cell death if 

they are accessible to the antibiotic. This is supported by the recent finding that growth-

arrested bacterial populations actively synthesize protein for several days after entering 

stationary phase [260]. By stimulating aminoglycoside influx, rhamnolipids allow us to 

target and eradicate persister cells with extremely low-level rates of translation. 

To date, the molecular details of how rhamnolipids interact with the bacterial 

membrane are poorly understood. Data from biophysical studies suggest that the 

inverted cone-like structure that arises from a large polar head group and smaller 

hydrophilic tail causes rhamnolipids to induce a positive curvature in the membrane that 

leads to the formation of pores [261]. Indeed, at high bactericidal concentrations, RL 

treatment causes catastrophic pore formation in B. subtilis [210]. We suspect that the 

subinhibitory RL concentrations used here elicit sufficient membrane destabilization to 

permit diffusion of aminoglycosides into the cell without inducing bactericidal pore 

formation and membrane dissolution. This conclusion is supported by the fact that we 

observed increased small molecule permeability and aminoglycoside uptake, but not 

total dissipation of PMF when cells were treated with subinhibitory concentrations of 

rhamnolipids. Importantly, rhamnolipids synergized with aminoglycosides against a 

panel of Gram-positive pathogens, all of which produce a range of different phospholipid 

molecules and cell membrane components [139], indicating that this potentiating effect 

is not unique to the S. aureus membrane composition.  
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Destabilizing the bacterial plasma membrane during aminoglycoside therapy 

represents a promising approach that is complicated by off-target effects to host cell 

membranes. While rhamnolipids facilitated tobramycin-mediated eradication of S. 

aureus at concentrations far below what was cytotoxic to host cells, cytotoxicity at 

higher concentrations may limit the therapeutic potential of these molecules. 

Furthermore, it remains to be seen whether this therapeutic approach increases the 

toxicity of aminoglycosides against eukaryotic host cells. An ideal aminoglycoside 

adjuvant would exhibit broad affinity for the bacterial membrane and limited affinity for 

eukaryotic membranes. Here we used a commercially available mix of mono- and di-

rhamnolipids, however a recent study revealed that chemical derivatization of purified 

RL congeners significantly alters the antibacterial and cytotoxic properties of these 

molecules [250]. In particular, semi-synthetic amide RL derivatives demonstrated 

greatly increased antibacterial activity against S. aureus. Furthermore, certain 

antimicrobial peptides are postulated to disrupt cell membranes via a mechanism that is 

similar to rhamnolipids [261,262]. In their paper, Lin et al. demonstrate that cationic 

antimicrobial peptides synergize with the macrolide antibiotic azithromycin to potentiate 

activity against Gram-negative pathogens [59]. Similarly, aminoglycoside/antimicrobial 

peptide synergism was demonstrated against Enterococcus faecium in a murine 

cutaneous abscess model [137]. In both of these cases the proposed mechanism of 

potentiation is increased antibiotic uptake. Further investigation to uncover a specific RL 

derivative or a novel small molecule inducer of permeability that demonstrates minimal 

cytotoxicity may yield the ideal combinational therapy for targeting recalcitrant bacterial 

populations within a host. Importantly, however, our findings demonstrate that potential 
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adjuvants must operate at the initial phase of aminoglycoside uptake to induce PMF-

independent influx. Otherwise, compounds that require PMF-mediated aminoglycoside 

uptake for synergy will fail to clear physiologically relevant PMF-depleted, 

aminoglycoside tolerant populations.  

 

MATERIALS AND METHODS 

Bacterial strains and growth conditions  

S. aureus strain HG003 was cultured aerobically in Mueller-Hinton (MHB) or tryptic soy 

(TSB) broth at 37°C with shaking at 225 rpm. For anaerobic growth, overnight cultures 

were washed twice with PBS and diluted into 5 ml of pre-warmed (37°C) TSB to an 

OD600 of 0.05. Cultures were prepared in triplicate in 16x150mm glass tubes containing 

1mm stir bars. Following dilution, cultures were immediately transferred into a Coy 

anaerobic chamber and grown at 37°C with stirring. CF isolates were collected from 

patients at the UNC medical center. Isolates were cultured from sputum or 

bronchoalveolar lavage (BAL) from patients with CF after obtaining informed consent. 

HG003 menD::erm was generated through transduction using 80α as described 

previously[263], using a published COL menD::erm mutant strain [264] as the donor and 

HG003 WT was the recipient. A modified version of the E. coli/S. aureus cloning vector 

pEPSA5[265] carrying an erythromycin selection cassette and a xylose-inducible GFP 

was constructed as follows: pEPSA5 vector was linearized through PCR amplification 

using primers SR43 and SR44 at the 5’ and 3’ sites immediately flanking the 

chloramphenicol cassette, which was then replaced with an erythromycin resistance 

cassette amplified using primers specific to the bursa aurealis erythromycin resistant 
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transposon from the NARSA library (SR41, SR42) [266]. The gfpuvr (Clontech)[267] 

was amplified by primers which added a 5’ EcoRI site, 3’ KpnI site, and a sarA ribosome 

binding site and spacer. This amplicon was digested with KpnI and EcoRI (NEB) and 

ligated into similarly digested pEPSA5-erm to yield plasmid pCLON46.  

 

Antibiotic survival assays 

HG003 was grown to ~3x108cfu/ml in 3ml MHB or in 5ml TSB under aerobic and 

anaerobic conditions, respectively. An aliquot was plated to enumerate cfu before 

antibiotic challenge. Tobramycin was added at either the concentration similar to the 

Cmax in humans at recommended dosing (58µg/ml)[230] or at 20x the MIC (15.6 

µg/ml). Non-aminoglycoside antibiotics were added at 20x MIC concentrations as 

stated. At indicated times, culture aliquots were removed, washed with 1% NaCl, then 

serially diluted and plated to enumerate survivors. Where indicated, rhamnolipids 

(RL90, AGAE), GML (Sigma), adarotene (Sigma) or oxacillin (Fisher) was added with 

antibiotics. For plate-based killing assays, HG003 was grown to ~3x108 CFU/mL and 

100μl of each culture was seeded into wells of a 96-well plate pre-loaded with 100μL 

MHB containing 2x the desired concentration of each CEAA +/- 15.6μg/mL tobramycin 

(final concentration=7.8μg/mL). Plates were incubated with shaking for 24hr at 37°C. 

Cells were then pelleted, washed, and plated to enumerate survivors.  

 

Biofilm susceptibility assays 

Overnight cultures (~18hr) of HG003 were subcultured 1:200 in BHI, seeded in a 96-

well microtiter plate and incubated statically at 37°C overnight. After 24hrs, wells were 
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washed 2x with 1% NaCl and overlaid with 200µl of BHI with or without tobramycin at 

58µg/ml +/- rhamnolipids and incubated overnight at 37°C. 24hr later, wells were 

washed 2x, overlaid with 100µl of 1% NaCl, and sonicated for 10 minutes to disrupt 

biofilm. Sonicated samples were then serially diluted and plated for CFU enumeration.  

 

ATP assays 

HG003 was grown to ~3x108cfu/ml in 3ml MHB and treated with 5mM sodium arsenate 

dibasic heptahydrate (Sigma) for 30min +/- 30μg/mL rhamnolipids. ATP levels were 

measured using a Promega BacTiter Glo kit according to the manufacturer’s 

instructions. For small molecule permeability assays, exponential phase cultures of 

HG003 were treated with CEAAs for 1hr, then 1mL aliquots of each culture was pelleted 

and the supernatant used to measure ATP concentration.   

 

Minimum inhibitory concentration (MIC) assays 

MICs were determined using the microdilution method. Briefly, ~5x105cfu were 

incubated with varying concentrations of tobramycin in a total volume of 200μl MHB in a 

96-well plate. MICs were determined following incubation at 37°C for 24hr. MICs were 

performed in BHI for E. faecalis and L. monocytogenes, and in BHI supplemented with 

2% yeast extract for C. difficile to support growth. Where indicated, MICs were 

performed in the presence of 30µg/ml rhamnolipids. To monitor the rise in spontaneous 

tobramycin resistant mutants over time, six independent lineages of HG003 were grown 

in varying concentrations of tobramycin in a 96-well plate. After 24hrs of static 

incubation at 37°C, wells with the highest concentration of tobramycin that permitted 



 
 

103 

significant bacterial growth (OD600≥ 0.1) were used to inoculate fresh MHB for the next 

passage at a bacterial density of approximately 5x105 CFU/mL. Three independent lines 

(HG1-3) were serially passaged with tobramycin alone, and three lineages (HG4-6) 

were passaged in tobramycin + RL at 30µg/ml for a total of 31 days. At every third 

passage, strains were collected and stored at -80°C in a 20% glycerol stock. As a 

control, the MIC of wild-type HG003 was determined concurrently with each passage of 

strains HG1-6.  

 

Checkerboard synergy assays 

Dual antibiotic synergy was assayed using plate-based checkerboard assay as 

described previously[268], where 2-fold serial dilutions of each compound added to 2-

fold dilutions of tobramycin to create an 8x8 matrix in a 96-well plate. The Fractional 

Inhibitory Concentration Index (FICI) was calculated as: FICI= (MIC of compound A in 

combination/MIC compound A alone) + (MIC compound B in combination/MIC 

compound B alone). FICI ≤ 0.5 = synergy, 0.5 < FICI ≤4 = no interaction, 4<FICI = 

antagonism. 

 

Texas Red-tobramycin uptake  

Texas Red-succinimidyl ester (Invitrogen) was dissolved in high-quality anhydrous N,N-

dimethylformamide at a final concentration of 20mg/ml. Tobramycin was resuspended in 

100mM K2CO3, pH 8.5 at a final concentration of 10mg/ml. On ice, 10µl of Texas Red 

was slowly added to 350µl tobramycin solution at 30 molar excess to allow the 

conjugation reaction to occur, and to maximize the formation of single-label tobramycin 
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as described [269]. HG003 was grown to mid-exponential phase and then treated with 

the indicated compound + Texas Red-tobramycin at a final concentration of 15.6µg/ml. 

After 1hr, an aliquot of cells was removed, washed twice in 1% NaCl and plated to 

enumerate survivors. The remaining aliquot was analyzed for Texas Red uptake on a 

Thermo Fisher Attune NxT flow cytometer. 30,000 events were recorded. Figures were 

generated using FSC Express 6 Flow. 

 

Membrane potential measurements 

Bacterial membrane potential was measured with the BacLight Bacterial Membrane 

Potential Kit as per the manufacturers instructions. Briefly, overnight cultures of HG003 

were subcultured 1:100 in MHB and grown for 3.5 hrs before a 30 min exposure to the 

indicated concentration of rhamnolipids. Cultures were then diluted 1:100 in 1mL PBS to 

approximately 1x106 CFU/mL and treated with 30μM DiOC2 for approximately 30 

minutes before analysis on a Thermo Fisher Attune NxT flow cytometer. 30,000 events 

were recorded and relative membrane potential was calculated by taking the ratio of 

population red and green linear mean fluorescence intensity (MFI) values.  

  

Cytochrome C binding assays  

S. aureus surface charge was measured using a modified protocol described previously 

[270]. HG003 was subcultured 1:100 in TSB and grown 2.5hr at 37°C with shaking prior 

to a 1hr incubation with indicated compounds. Cells were harvested from 1mL of each 

cultures normalized to OD600=0.3, then resuspended in 150μL 20mM MOPS pH 7.0. 

Samples were treated with 200μg/mL of purified cytochrome C (MP Bio) for 10 minutes. 
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Cells were then pelleted and 100μL of supernatant was transferred to a 96-well plate 

where absorbance was measured at 530nM.  

 

Laurdan GP Membrane Fluidity  

Overnight cultures of HG003 were diluted 1:100 in MHB and grown for 4hrs at 37°C with 

shaking. Laurdan staining was performed as described[271], and carried out in a 37°C 

climate-controlled room to ensure stable temperatures. Laurdan was added to each 

culture at a final concentration of 10μM for 10 min, while shaking in the dark. Cells were 

harvested by centrifugation in pre-warmed microtubes and washed 4x with pre-warmed 

wash buffer (137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 0.2% glucose, 1% DMF). 

Following wash steps, cells were resuspended in wash buffer to an OD600=0.8. 100μL of 

stained cells were added to 100μL of wash buffer containing 2x the desired 

concentration of each compound in a pre-warmed black wall, clear bottom plate 

alongside a baseline control. Fluorescence was measured immediately in 2min intervals 

over 30mins (excitation: 350nM, emission: 460nM and 500nM. Laurdan GP = (I460-

I500)/(I460+I500).  

 

Eukaryotic cytotoxicity assays 

Rhamnolipid cytotoxicity activity was measured for J774A.1 macrophage-like cells using 

the CellTiter-Blue Cell Viability assay according to the manufacturer’s instructions. 

Briefly, J774A.1 cells were seeded in a black wall, clear bottom 96-well plate at 25,000 

cells/well in high-glucose DMEM (Gibco) supplemented with 10% FBS and 2mM L-

glutamine, and allowed to incubate overnight at 37°C and 5% CO2. After 24hr, the 
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media was removed from wells and replaced with media + the indicated concentration 

of rhamnolipids and cells were returned to incubate overnight. After 24hr, 100μL of 

CellTiter-Blue reagent was added to each well and allowed to incubate at 37°C for 2 

hours before fluorescence was read at 560/590 nm (excite/emit).  

 

Fluorescent Microscopy  

Overnight cultures of S. aureus SH1000 harboring a pRB42 plasmid-based cadmium-

inducible copy of zapA-gfp [272], were grown at 22°C in tryptic soy broth (TSB) with 5 

μg/ml erythromycin (erm) for plasmid maintenance, and then subsequently diluted 1:10 

into fresh TSB+erm. Cultures were then grown at 37°C and growth was monitored by 

the measurement of absorbance. At mid-log phase, when optical density at 600 nm 

reached 0.5, 1.25 mM cadmium chloride was added to the cultures to induce the 

expression of zapA-gfp. Cells were then treated with either rhamnolipids (30μg/ml), 

GML (40μg/ml), adarotene (3.2μg/ml), or oxacillin (0.5μg/ml) for 1 h. Untreated cells and 

cells treated with DMSO were used as controls. Following the incubation period, 1 ml 

cells were washed three times in PBS, and then resuspended in 100 ml of PBS 

containing 1 mg/ml membrane stain (FM6-64). Aliquots of 5 ml culture were pipetted 

onto a glass bottom dish (MatTek), and sample was covered with a 1% agarose pad. 

Microscopy was performed at room temperature using a GE Applied Precision 

DeltaVision Elite deconvolution fluorescence microscope equipped with a Photometrics 

CoolSnap HQ2 camera.  
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Quantification and Statistical Analysis 

Experiments were performed with three biological replicates from at least two 

independent experiments when possible. Statistical significance is reported in Figure 

Legends, and data are presented as mean +/- SD as indicated. All statistical analysis 

was performed with Graphpad Prism software. 
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FIGURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. Rhamnolipids synergize with aminoglycosides against tolerant S. aureus 
populations. (A) Chemical structure of a representative di-rhamnolipid congener, di-
rhamnolipid C10C10. (B) S. aureus strain HG003 was grown to mid-exponential phase and 
challenged with 20x the MIC (15.6μg/mL) of tobramycin +/- 10 or 30μg/ml rhamnolipids. 
Survivors were enumerated at the indicated time points. (C) S. aureus HG003 membrane 
potential was measured by calculating the red/green ratio using the population mean 
fluorescence intensities (MFI) for HG003 incubated with 30μM DiOC2(3) for 30 minutes. Prior to 
staining, cells were grown to mid-exponential phase, then treated for 30 minutes with the 
indicated concentration of rhamnolipids or for 5 minutes with 5μM CCCP as a control. *p<0.05 
(One-way ANOVA with Tukey’s multiple comparison post test). (D) Mid-exponential phase 
HG003 was challenged with the Cmax concentration of tobramycin (58μg/mL) +/- 30μg/ml 
rhamnolipids under anaerobic conditions. Survivors were enumerated at the indicated time 
points. (E) Biofilm-associated S. aureus HG003 was challenged with 58μg/mL tobramycin +/- 
30μg/ml rhamnolipids for 24 hours prior to CFU enumeration. (F) S. aureus SCV strain HG003 
menD::tn was grown to mid-exponential phase and challenged with 15.6μg/mL tobramycin +/- 
10 or 30μg/ml rhamnolipids. CFU enumeration occurred at the indicated time points. All 
experiments were performed in biological triplicate. **p<0.005 (Student’s t-test). Error bars 
represent mean +/- SD. Limit of detection is indicated by the horizontal dashed line.  
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Figure 3.2. Membrane-acting agents potentiate aminoglycoside killing. S. aureus 
HG003 was grown to mid-exponential phase then treated with the indicated 
concentrations of (A) rhamnolipids, (B) glycerol monolaurate, (C) adarotene, or (D) 
oxacillin +/- 10x the MIC of tobramycin (7.8μg/mL) in a 96-well plate. After 24hr, the 
wells were washed, and cells were plated to enumerate survivors. (E) S. aureus strain 
HG003 was grown to mid-exponential phase and challenged with 15.6μg/mL of 
tobramycin with or without 30μg/mL of each RL congener. At the indicated time points 
an aliquot was removed, washed and plated to enumerate survivors. All experiments 
were performed in biological triplicate. Error bars represent mean +/- SD. Limit of 
detection is indicated by the horizontal dashed line. 
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Figure 3.3. Sub-cytotoxic concentrations of rhamnolipids specifically potentiate 
aminoglycoside killing of S. aureus. (A) J774.1 macrophage-like cells were treated 
with the indicated concentrations of rhamnolipids for 24hr before cell viability was 
determined using a CellTiter Blue cell viability assay. (B) S. aureus MRSA strain JE2 
was grown to mid-exponential phase and challenged with 15.6μg/mL of tobramycin +/- 
30μg/mL rhamnolipids. (C-I) S. aureus strain HG003 was grown to mid-exponential 
phase and challenged with 15.6μg/mL of (C) amikacin, (D) gentamicin, (E) neomycin, 
(F) kanamycin, (G) 6.25 μg/mL ciprofloxacin, (H) 160ng/mL rifampicin, or (I) 10μg/mL 
oxacillin +/-30μg/mL rhamnolipids. At the indicated time points an aliquot was removed, 
washed and plated to enumerate survivors. All experiments were performed in 
biological triplicate. Error bars represent mean +/- SD. Limit of detection is indicated by 
the horizontal dashed line. 
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Figure 3.4. Rhamnolipid/aminoglycoside combinational therapy targets S. aureus 
persisters. (A) Mid-exponential phase S. aureus strain HG003 was treated with 5mM 
AsKO2 for 30 min prior to addition of 58μg/mL tobramycin. Intracellular ATP was 
measured using a BacTiter-Glo cell viability assay immediately prior to antibiotic 
challenge (black bars). An aliquot of each culture was removed after 24hr, washed, and 
plated to enumerate survivors (grey bars). ***p<0.005 (Student’s t-test, calculated 
relative to cultures treated with tobramycin alone). (B, C) Exponential phase populations 
of HG003 were exposed to (B) 30μg/mL chloramphenicol or (C) 1μM CCCP for 30 min 
prior to challenge with 58μg/mL tobramycin +/- 30μg/ml rhamnolipids. At the indicated 
time points an aliquot was removed, washed and plated to enumerate survivors. All 
experiments were performed in biological triplicate. Error bars represent mean +/- SD. 
Limit of detection is indicated by the horizontal dashed line.  
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Figure 3.5. Reducing S. aureus translation with bacteriostatic translation 
inhibitors slows the rate of RL/tobramycin killing. (A) Mid-exponential phase 
populations of S. aureus strain HG003 harboring the xylose-inducible gfp reporter 
plasmid pCLON46 was treated with 30μg/mL chloramphenicol prior to induction with 
0.2% xylose. OD600 and gfp expression levels were determined using a Biotek Synergy 
H1 microplate reader. (B) HG003 was treated with 50μg/mL linezolid for 30 minutes 
prior to tobramycin challenge in the presence or absence of 30μg/mL rhamnolipids. At 
the indicated time points an aliquot was removed, washed and plated to enumerate 
survivors. All experiments were performed in biological triplicate. Error bars represent 
mean +/- SD. Limit of detection is indicated by the horizontal dashed line. 
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Figure 3.6. Rhamnolipids repress the rise of tobramycin resistance and restore 
sensitivity to resistant isolates. (A) Six independent lineages of HG003 were 
passaged daily in subinhibitory concentrations of tobramycin +/- 30μg/mL rhamnolipids 
and monitored for the spontaneous occurrence of tobramycin resistant mutants through 
changes in MIC. (B, C) Minimum tobramycin concentration necessary to inhibit the 
growth of (B) resistant isolates from passaged strain HG-2 (Figure 3.6A, black arrows) 
or (C) CF clinical isolates, +/- 30μg/mL rhamnolipids.  
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Figure 3.7. Membrane targeting agents can potentiate aminoglycoside killing without 
improving uptake. (A) The chemical structures of glycerol monolaurate, adarotene, and 
oxacillin, respectively. (B) Percent survival and (C) Mean Fluorescence Intensity (MFI) values 
for S. aureus cultures treated with CEAAs + Texas Red-tobramycin (D) Changes to S. aureus 
cell surface charge was measured after treatment with each compound through association with 
positively-charged cytochrome C. (E) Changes to S. aureus membrane fluidity following 
treatment with each compound was monitored via Laurdan GP fluorescence. (F) Small molecule 
permeability through the S. aureus plasma membrane was assessed 1hr after treatment with 
each compound by measuring ATP leakage into the supernatant with the BacTiter-Glo cell 
viability assay.  (G) S. aureus strain SH1000 harboring an inducible PzapA::gfp cell division 
reporter was grown to OD600=0.5, then treated with 30μg/mL rhamnolipids, 40μg/mL GML 
3.2μg/mL adarotene, or 0.5μg/mL oxacillin for 1 hr. Changes to membrane morphology and 
ZapA localization relative to control cultures were visualized using a GE Applied Precision 
DeltaVision Elite de-convolution fluorescence microscope equipped with a Photometrics 
CoolSnap HQ2 camera.*p<0.05 (Student’s t-test). All experiments were performed in biological 
triplicate. Error bars represent mean +/- SD. 
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Figure 3.8. Rhamnolipids specifically induce PMF-independent aminoglycoside 
uptake to resensitize tolerant S. aureus. (A) S. aureus was grown to mid-exponential 
phase then challenged with 58μg/mL tobramycin alone, or in combination with 30μg/mL 
rhamnolipids, 40μg/mL GML, 3.2μg/mL adarotene, or 0.5μg/mL oxacillin (black bars). 
An aliquot of each culture was removed after 24hr, washed, and plated to enumerate 
survivors. White bars represent S. aureus survivors following 24hr treatment with each 
cell envelope-acting agent without tobramycin. (B) Texas Red-conjugated tobramycin 
was added to S. aureus cultures with our without each compound. Following 1hr, Texas 
Red-tobramycin uptake was measured by flow cytometry. (C, D) S. aureus HG003 was 
(C) treated with 1μM CCCP or (D) grown anaerobically prior to treatment with 58μg/mL 
tobramycin +/- each cell envelope acting compound individually. Survivors were 
enumerated at the indicated time points. (E) S. aureus strain SH1000 harboring an 
inducible PzapA::gfp cell division reporter was grown to OD600=0.5, then treated with 30 
rhamnolipids, 40μg/mL GML 3.2μg/mL adarotene, or 0.5μg/mL oxacillin for 1 hr. Cells 
were washed, then treated with the membrane dye, FM4-64. Changes to membrane 
morphology and ZapA localization relative to control cultures were visualized using a 
GE Applied Precision DeltaVision Elite de-convolution fluorescence microscope 
equipped with a Photometrics CoolSnap HQ2 camera. Scale bar: 1μm. *p<0.05 
(Student’s t-test). All experiments were performed in biological triplicate. Error bars 
represent mean +/- SD.  
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Figure 3.9. Tobramycin and cell envelope-acting agent checkerboard assays. 
Synergism between tobramycin and (A) rhamnolipids, (B) glycerol monolaurate, (C) 
adarotene, and (D) oxacillin was determined against S. aureus HG003 using the 
checkerboard microdilution method. FICI values were calculated by determining the 
minimum concentration of each compound necessary to inhibit bacterial growth alone or 
in combination with tobramycin as described in the main text. Synergy, FICI≤0.5; no 
interaction, 0.5<FICI<4; antagonism, FICI≥4.  
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Figure 3.10. Rhamnolipids facilitate PMF-independent aminoglycoside uptake.  
Aminoglycoside antibiotics such as tobramycin require proton motive force (PMF) for 
bacterial internalization. In non-respiring populations, bacterial PMF drops below the 
threshold required for PMF-mediated tobramycin uptake, leading to antibiotic exclusion 
and subsequent treatment failure. Pseudomonas aeruginosa-produced rhamnolipids 
intercalate into the Gram-positive bacterial membrane to increase membrane 
permeability to tobramycin and facilitate PMF-independent tobramycin uptake. This 
restores tobramycin susceptibility to tobramycin resistant and tolerant populations and 
facilitates rapid bacterial death in otherwise tolerant non-respiring, small colony variant, 
biofilm-associated, anaerobic and persister-associated Staphylococcus aureus 
populations. 
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Table 3.1. Tobramycin/rhamnolipid MIC values for other Gram positive and 
negative bacterial species (μg/mL)  

   Tobramycin  Tobramycin 
+ 

rhamnolipids 

Fold 
change 

RL  
MIC 

Gram negative     
  Escherichia coli 0.78 0.78 0 >2400 
Gram positive     
  Bacillus subtilis  0.39  0.0061 64 62.5 
  Streptococcus pneumoniae  12.5 12.5 0 >2400 
  Enterococcus faecalis 100 0.78 128 125 
  Listeria monocytogenes 1.56 0.049 32 125 
  Clostridioides difficile  400 0.39 1025 31.25 

Table 3.2. Fractional inhibitory concentration (FICI1) of cell envelope acting 
agents in combination with tobramycin against S. aureus HG003 
Compound FICImax FICImin Synergy 
rhamnolipids 0.625 0.1875 YES 
Glycerol 
monolaurate 

0.625 0.25 YES 

Adarotene 0.625 0.25 YES 
Oxacillin 2.125 0.75 NO 
1FICI ≤ 0.5: synergy, 0.5 < FICI ≤4: no interaction, 4<FICI: antagonism 



1 Radlinski LC, Brunton J, Steele S, Taft-Benz S, Kawula TH. Defining the metabolic pathways and host-
derived carbon substrates required for Francisella tularensis intracellular growth. mBio. 2018 Nov 
20;9(6). pii: e01471-18.  
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CHAPTER 4 
DEFINING THE METABOLIC PATHWAYS AND HOST-DERIVED CARBON 

SUBSTRATES REQUIRED FOR FRANCISELLA TULARENSIS INTRACELLULAR 
GROWTH1 

 
 Francisella tularensis is a Gram negative, facultative intracellular bacterial 

pathogen and one of the most virulent organisms known. A hallmark of F. tularensis 

pathogenesis is the bacterium’s ability to replicate to high densities within the cytoplasm 

of infected cells in over 250 known host species, including humans. This demonstrates 

that F. tularensis is adept at modulating its metabolism to fluctuating concentrations of 

host-derived nutrients. The precise metabolic pathways and nutrients utilized by F. 

tularensis during intracellular growth, however, are poorly understood. Here we use 

systematic mutational analysis to identify the carbon catabolic pathways and host-

derived nutrients required for F. tularensis intracellular replication. We demonstrate that 

the glycolytic enzyme phosphofructokinase (PfkA), and thus glycolysis, is dispensable 

for F. tularensis SchuS4 virulence, and highlight the importance of the gluconeogenic 

enzyme fructose 1,6-bisphosphatase (GlpX). We found that the specific gluconeogenic 

enzymes that function upstream of GlpX varied based on infection model, indicating that 

F. tularensis alters its metabolic flux according to the nutrients available within its 

replicative niche. Despite this flexibility, we found that glutamate dehydrogenase (GdhA) 

and glycerol-3P dehydrogenase (GlpA) are essential for F. tularensis intracellular 
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replication in all infection models tested. Finally, we demonstrate that host cell lipolysis 

is required for F. tularensis intracellular proliferation, suggesting that host triglyceride 

stores represent a primary source of glycerol during intracellular replication. Altogether, 

the data presented here reveal common nutritional requirements for a bacterium that 

exhibits characteristic metabolic flexibility during infection.  

 

IMPORTANCE 

The widespread onset of antibiotic resistance prioritizes the need for novel 

antimicrobial strategies to prevent the spread of disease. With its low infectious dose, 

broad host range, and high rate of mortality, F. tularensis poses a severe risk to public 

health and is considered a potential agent for bioterrorism. F. tularensis reaches 

extreme densities within the host cell cytosol, often replicating 1000-fold in a single cell 

within 24 hours. This remarkable rate of growth demonstrates that F. tularensis is adept 

at harvesting and utilizing host cell nutrients. However, like most intracellular pathogens 

the types of nutrients utilized by F. tularensis and how they are acquired is not fully 

understood. Identifying the essential pathways for F. tularensis replication may reveal 

new therapeutic strategies for targeting this highly infectious pathogen, and may provide 

insight for improved targeting of intracellular pathogens in general. 

 

INTRODUCTION 

In order to establish a successful infection, intracellular bacterial pathogens must 

adapt their metabolism to utilize the nutrients available within the host cell, often in 

direct competition with the host’s own metabolic processes and mechanisms for nutrient 
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sequestration[273]. Nevertheless, many of these microorganisms have evolved 

dedicated mechanisms to harvest and assimilate essential nutrients to proliferate within 

this specialized niche[274–276]. Targeted strategies for carbon acquisition and 

assimilation fuel bacterial replication and often aid in the evasion of host cell 

defenses[277–279]. Despite their importance, the metabolic pathways and host-derived 

carbon sources utilized by bacterial pathogens in vivo are generally not well 

understood[165,280].  

Metabolites can be directly acquired from the host, salvaged from similar 

molecules, or synthesized de novo using host-derived sources of carbon, nitrogen, 

sulfur, etc. Bacteria that replicate within the host cell cytosol theoretically have access to 

the products and intermediates produced during major host metabolic processes that 

take place within this compartment, including glycolysis and amino acid biosynthesis. 

The actual concentrations of these products within an infected cell, however, are 

unclear. Rather, most nutrients are stored within complex structures such as lipid 

droplets, glycogen and protein, and thus are not immediately available to intracellular 

pathogens[165].  

Many bacteria employ active mechanisms to acquire host-derived carbon during 

intracellular growth. Mycobacterium tuberculosis and Chlamydia tracomatis, for 

instance, associate with host lipid droplets and utilize host-derived lipids for anabolic 

and catabolic purposes[169,170]. Salmonella enterica serovar Typhimurium secretes 

effector proteins that stimulate the activation of Akt, a major metabolic regulator of host 

metabolism[166,281]. This in turn stimulates host glycolytic flux, and increases the 

concentration of glucose within the infected cell[281]. Similar effector molecules actively 
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alter host vesicular trafficking to direct nutrients to the Salmonella containing 

vacuole[168]. The observation that many pathogens employ active mechanisms to 

obtain carbon emphasizes that carbon acquisition within the host cell requires complex 

host-pathogen interactions, which are only beginning to be elucidated.  

We previously demonstrated that F. tularensis induces host autophagy during 

infection, and that this pathway provides the pathogen with essential amino acid 

metabolites[282]. Nevertheless, F. tularensis replicates to a considerable degree in the 

absence of autophagy, indicating that autophagy-derived nutrients are only a subset of 

the total required to support full F. tularensis intracellular proliferation[282]. A 

transposon mutagenesis screen of F. tularensis subspecies holarctica LVS revealed 

that nearly half of the genes identified as essential for proliferation in macrophages 

encode proteins involved in metabolism or metabolite transport[283]. These proteins 

include enzymes predicted to facilitate gluconeogenesis, glycerol catabolism, amino 

acid transport, as well as purine, LPS, and fatty acid biosynthesis. Surprisingly, no 

glycolytic genes were identified during this screen. Glycolysis is a fundamental 

metabolic pathway that oxidizes carbohydrates to generate energy and provide 

precursor metabolites for other biosynthetic pathways. In contrast, the gluconeogenic 

pathway reverses the reactions of glycolysis during growth on non-glucose carbon 

substrates to replenish stores of glucose-6P and other essential metabolic 

intermediates when glucose concentrations are limited. One gene encoding a key 

gluconeogenic enzyme, glpX, was required for efficient intracellular replication[283]. 

Indeed, glpX has repeatedly been identified as an important factor for virulence in 

genetic screens performed in F. tularensis Schu S4 and LVS[284–286]. Furthermore, 
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recent work by Brissac et al. demonstrated that gluconeogenesis is an essential 

metabolic pathway for Francisella novicida and F. tularensis LVS during growth in 

glucose-limiting conditions[287]. These data suggest that F. tularensis intracellular 

proliferation may not be dependent on glycolysis, but rather gluconeogenesis to 

preferentially assimilate non-glucose carbon substrates within a host cell.  

To determine the specific host-derived carbon sources that facilitate rapid F. 

tularensis intracellular proliferation, we aimed to define the essential carbon metabolic 

pathways and metabolites required for F. tularensis intracellular and in vivo growth.  

 

RESULTS 

Gluconeogenesis, but not glycolysis, is essential for F. tularensis intracellular 
growth and virulence  
 

Unlike most enzymatic reactions of the glycolytic pathway, the conversion 

between fructose 6-phosphate (F6P) and fructose 1,6-bisphosphate (FBP) is 

physiologically irreversible, and is catalyzed by enzymes specific to either glycolysis or 

gluconeogenesis. In F. tularensis, the glycolytic enzyme phosphofructokinase (PfkA) 

converts F6P to FBP, and the gluconeogenic enzyme fructose 1,6-bisphosphatase 

(GlpX) performs the reverse reaction (Figure 4.1). Deletion of pfkA should prevent F. 

tularensis from utilizing glucose or glucose 6-phosphate imported from the host, while 

deletion of glpX should prevent the bacterium from producing F6P during growth on 

gluconeogenic carbon sources. F6P is a precursor of the pentose phosphate pathway 

and is used for the de novo synthesis of lipopolysaccharide, peptidoglycan, pentose 

phosphates, and aromatic amino acids. We hypothesized that if glucose represents a 
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major carbon source for F. tularensis within the host cell, then pfkA would be essential. 

Alternatively, if glucose is not a major source of carbon utilized by F. tularensis, then the 

gluconeogenic enzyme glpX would be required in order to synthesize sufficient F6P and 

glucose-6P from alternate carbon sources.   

We first sought to confirm the predicted functions of pfkA and glpX for glycolysis 

and gluconeogenesis, respectively. Markerless, in-frame deletions were created for 

pfkA and glpX in F. tularensis subspecies tularensis Schu S4, and the deletion strains 

were grown in defined media with either glycolytic or gluconeogenic carbon substrates. 

For all broth cultures, F. tularensis was grown in Chamberlain’s defined media (CDM) 

containing a low concentration (~3mM) of 13 essential and non-essential amino acids 

and no other major carbon sources[288]. In this media, wild-type (WT) Schu S4 grew to 

low, but detectable levels, presumably by assimilating amino acids for protein synthesis 

or energy production (Figures 4.2A, 4.3A). Indeed, Brissac et al. recently demonstrated 

that supplementation of this media with 30mM of select amino acids (threonine, proline, 

methionine, lysine, tyrosine, tryptophan, phenylalanine, asparagine or serine) permits 

varying degrees of F. novicida growth, suggesting that these amino acids may be 

utilized as carbon sources [287]. Supplementation with either glucose or glutamate 

supported robust growth of WT Schu S4 (Figure 4.2A, 4.3A). A ΔpfkA mutant grew to 

WT levels during growth on glutamate, but did not grow on glucose, possibly due to 

glucose-mediated repression of alternative carbon catabolic pathways (Figure 4.2A). 

Importantly, though terminal OD600 describes the overall capacity of each mutant to 

grow on different carbon substrates, closer attention to in vitro doubling times reveals 

subtle nuances in how each deletion affects growth. For instance, a ΔpfkA mutant 
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reaches the same OD600 as WT Schu S4, but grows at a much slower rate (Figure 

4.3B).  As expected, the ΔglpX mutant grew on a glucose but not glutamate (Figures 

4.2A, 4.3C). The growth defects of each mutant were restored to WT levels when the 

deleted genes were complemented in trans (Figures 4.2A, 4.3A-C).  

To assess the importance of glycolysis and gluconeogenesis during F. tularensis 

intracellular growth, we utilized a luminescence reporter to monitor intracellular growth 

as previously described[283], where F. tularensis Schu S4 strains harbor a plasmid 

expressing luciferase enzyme and substrate as well as an addiction system to maintain 

the plasmid even in the absence of antibiotic selection. As demonstrated previously, an 

increase in the bacterial burden within the infected cell is directly proportional to an 

increase in reporter luminescence[283]. BMDMs were infected with WT Schu S4, 

ΔpfkA, or ΔglpX, each strain harboring the luminescence reporter. 24 hours post-

inoculation, WT Schu S4 and ΔpfkA grew to similar levels within the BMDMs, while the 

growth of ΔglpX was reduced approximately 10-fold relative to WT and ΔpfkA (Figure 

4.2B). These data indicate that gluconeogenesis, but not glycolysis, is necessary for WT 

levels of F. tularensis intracellular growth and suggests that glucose does not represent 

a major carbon source within macrophage cells. 

We hypothesized that the severe intracellular growth defect observed for the 

ΔglpX mutant was due to the mutant’s inability to synthesize sufficient levels of F6P and 

G6P from the catabolism of gluconeogenic carbon substrates. Therefore 

supplementation with excess glucose should rescue ΔglpX mutant growth within cells. 

J774A.1 cells are a transformed macrophage cell line constitutively expressing c-Myc, 

and therefore import large quantities of glucose to increase glycolytic flux[289,290]. To 
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determine if excess glucose could restore the growth defect of the ΔglpX mutant, we 

infected J774A.1 cells with WT Schu S4, ΔpfkA, and ΔglpX, supplied the infected cells 

with either high glucose (4.5 g/L) or glucose-free DMEM, and then measured bacterial 

growth over a 36-hour period. WT Schu S4 and ΔpfkA exhibited significant growth with 

or without glucose supplementation (Figure 4.5A). As expected, the ΔglpX mutant strain 

did not replicate within J774A.1 cells cultured in glucose-free DMEM, however 

intracellular replication was restored to WT levels with excess glucose (Figure 4.5B).  

The rescue of the ΔglpX mutant did not occur in primary BMDMs, as all BMDM 

infections were performed in high glucose (4.5g/L) DMEM (Figure 4.2B). This 

observation suggests that the reduced level of glucose import and glycolytic flux 

exhibited by BMDMs, relative to J774A.1 cells, is insufficient to permit ΔglpX from 

acquiring adequate glucose from the host to restore WT growth properties even when 

glucose is present at high concentrations in the media. To test this, we attempted to 

rescue growth of ΔglpX in BMDMs by treating the host cells with 5-amnoimidazole-4-

carboxamide ribonucleotide (AICAR). AICAR is an analog of adenosine monophosphate 

(AMP) that stimulates activation of the major host metabolic regulator, AMP-dependent 

protein kinase (AMPK)[291]. When activated, AMPK stimulates glucose uptake and 

energy production in part by increasing expression of major glucose transporters 

GLUT1 and GLUT4, and by increasing overall host glycolytic flux[292]. We 

hypothesized that AICAR treatment of BMDMs cultured in high glucose DMEM would 

restore ΔglpX intracellular growth by stimulating glucose import. Indeed, while AICAR 

had little impact on the growth of WT Schu S4 within BMDMs (Figure 4.2C), AICAR 

treatment significantly increased the intracellular growth of ΔglpX in BMDMs cultured in 
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high glucose DMEM (Figure 4.2D). Altogether our results support the conclusion that 

the inability of the ΔglpX mutant to fully assimilate gluconeogenic carbon sources 

results in attenuated growth during periods of glucose limitation.  

We next tested whether F. tularensis similarly requires glpX and not pfkA for 

replication in a murine model of F. tularensis pulmonary infection. Groups of C57BL6/J 

female mice were infected intranasally with 100 CFU of WT, ΔpfkA or ΔglpX Schu S4 

strains. Three days post infection, the lungs, livers and spleens of the infected mice 

were harvested, homogenized, and plated for bacterial enumeration. Organ burdens for 

the ΔpfkA mutant strain were similar to that of WT Schu S4 (Figure 4.2E). However, the 

number of CFU recovered from the lungs of mice infected with the ΔglpX mutant was 

similar to that of the original inoculum, and below the limit of detection in the liver and 

spleen (Figure 4.2E). These data align with our observations that glpX, and therefore 

gluconeogenesis, is necessary for F. tularensis replication in host cells, while pfkA and 

glycolysis are dispensable. 

 

F. tularensis possesses multiple pathways that supply gluconeogenic substrates 
to support intracellular growth 
 

Our data suggest that a ΔglpX mutant does not produce essential biosynthetic 

precursors from the nutrients available within the host cell. Since the deletion of glpX 

precludes the utilization of a large number of gluconeogenic carbon sources such as 

glycerol, pentose sugars, amino acids, lactate, pyruvate, and TCA cycle intermediates, 

we generated F. tularensis mutant strains unable to utilize some of these specific 

carbon sources. Like the conversion of F6P to FBP, the enzymatic conversion of 
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pyruvate to phosphoenol pyruvate (PEP) during glycolysis is physiologically irreversible, 

and must be bypassed during gluconeogenesis. The ATP-dependent decarboxylation of 

oxaloacetate to PEP is catalyzed by PEP carboxykinase (pckA), and is important for 

growth on carboxylic or amino acids. Alternatively, pyruvate-phosphate dikinase (ppdK) 

converts pyruvate to PEP and is required for growth on pyruvate, lactate and some 

amino acids. The reactions catalyzed by each enzyme can independently fuel the 

gluconeogenic pathway to generate essential metabolic precursors necessary for 

growth. (Figure 4.1) 

We generated markerless, in-frame deletions of ppdK and pckA. Growth 

characteristics of each mutant were analyzed in defined media with specific glycolytic or 

gluconeogenic substrates to confirm the metabolic function of each enzyme. Both 

ΔppdK and ΔpckA grew to levels similar to WT Schu S4 in CDM supplemented with 

glucose (Figure 4.4A,B). However, while ΔpckA grew to WT levels in CDM with or 

without excess glutamate, ΔppdK had a severe growth defect in CDM and in CDM 

supplemented with glutamate, similar to the ΔglpX mutant (Figure 4.4A,B). These data 

suggest that during growth in defined media, F. tularensis preferentially synthesizes 

PEP from pyruvate (PpdK) and not oxaloacetate (PckA).  

We observed that both ΔppdK and ΔpckA grew to WT levels within the BMDMs 

(Figure 4.4C). Furthermore, a ΔppdKpckA double mutant replicated to significant levels 

within these cells, albeit at a slower rate, suggesting that these gluconeogenic pathways 

are not essential for F. tularensis growth within BMDMs (Figure 4.4C). When we 

infected J774A.1 cells with the ΔppdK and ΔpckA mutants, we found that ΔpckA grew to 

WT levels within J774A.1 cells cultured with or without glucose supplementation (Figure 
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4.5C). ΔppdK, however, exhibited significantly reduced growth within J774A.1 cells 

cultured without glucose (Figure 4.5D). Intracellular proliferation of the ΔppdK mutant 

was restored to WT levels upon high glucose supplementation, indicating that ppdK 

may contribute to the assimilation of host-derived carbon in J774A.1 cells.  

While we found that the organ burdens of the ΔppdK mutant were similar to that 

of WT Schu S4 in our murine model, we recovered significantly reduced numbers of the 

ΔpckA mutant from the lung, liver and spleen of infected mice (Figure 4.4D). Further, we 

recovered similar numbers of the ΔppdKpckA double mutant relative to the ΔpckA 

single mutant. This indicates that pckA is required for optimal replication in a murine 

model of F. tularensis infection but ppdK is dispensable (Figure 4.4D).  

 

Amino acids feed the gluconeogenic pathway through the TCA cycle  

 The attenuation of ΔpckA in mice suggests that F. tularensis relies on the 

metabolic pathway catalyzed by PckA during infection. Potential nutrients that can fuel 

the gluconeogenic pathway through PckA include TCA cycle intermediates or amino 

acids that feed into the TCA cycle. To discern between these possibilities, we evaluated 

the importance of glutamate dehydrogenase (gdhA) for F. tularensis intracellular growth. 

GdhA catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate, a 

TCA cycle intermediate (Figure 4.1). F. tularensis is predicted to require GdhA to shuttle 

several amino acids into the TCA cycle including glutamate, glutamine, proline, arginine, 

and potentially aspartate and asparagine. Therefore, if F. tularensis preferentially 

catabolizes amino acids and not TCA cycle intermediates, then a ΔgdhA mutant would 

likely be similarly attenuated relative to ΔpckA during in vivo growth.  
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 To validate the predicted function of gdhA, we tested a ΔgdhA mutant for growth 

on glycolytic and gluconeogenic carbon sources in defined media. As expected, we 

found that gdhA was required for growth in CDM or CDM supplemented with glutamate, 

but not CDM supplemented with glucose (Figure 4.6A). Because ΔgdhA grew to 

significant levels on glucose in defined media lacking glutamate, we reasoned that gdhA 

was dispensable for glutamate synthesis, but required for glutamate assimilation. 

 The ΔgdhA deletion mutant exhibited reduced growth in BMDMs that was 

restored upon expression of gdhA in trans (Figure 4.6B), suggesting that GdhA-

mediated carbon assimilation represents an important metabolic pathway during F. 

tularensis replication in BMDMs. When we infected J774A.1 macrophage cells with 

ΔgdhA we found that the defect in bacterial intracellular replication during culture in 

glucose-free DMEM could be partially rescued with excess glucose, similar to the ΔglpX 

and ΔppdK mutants (Figure 4.5E). Similarly, BMDMs cultured in high glucose DMEM 

and treated with AICAR permitted significant growth of ΔgdhA relative to untreated 

BMDMs (Figure 4.6C). These data suggest that the intracellular growth defect observed 

for ΔgdhA is at least in part due to the ability of this mutant to assimilate sufficient host-

derived carbon. 

 We expected the ΔgdhA mutant to be similarly attenuated relative to a ΔpckA 

mutant during growth in mice. Strikingly, when we assessed the requirement of gdhA for 

growth in our murine model of F. tularensis pulmonary infection, we found that the CFUs 

recovered from the lung, liver and spleen of gdhA-infected mice were greatly reduced 

compared to WT, and that the CFUs recovered from the liver and spleen of the mice 

were reduced approximately 3-fold relative to ΔpckA (Figure 4.6D). In addition to fueling 
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the gluconeogenic pathway, ΔgdhA-mediated anaplerosis of the TCA cycle may be 

essential during infection to supply other essential metabolic precursors (e.g. 

oxaloacetate and/or acetyl-CoA) or to generate reducing power via the use of malic 

enzyme. This conclusion is consistent with our observation that excess glucose 

supplementation during growth in J774A.1 or AICAR-treated BMDMs only partially 

rescued bacterial proliferation of this mutant.  

 

Glycerol catabolism is required for F. tularensis in vivo growth  

Since ΔglpX was more severely attenuated in mice relative to ΔppdKpckA, we 

reasoned that F. tularensis may assimilate additional carbon substrates besides those 

supplied through the gluconeogenic pathways catalyzed by Ppdk and PckA. In F. 

tularensis, glpA (glycerol-3P dehydrogenase) is predicted to be required for the 

catabolism of glycerol and glycerol-3P (G3P). We used the Targetron gene knockout 

system modified for use in Francisella to disrupt glpA in F. tularensis Schu S4[293]. 

Interestingly, we found that the generation of a ΔglpA mutant strain was only possible 

through the simultaneous introduction of a secondary mutation in glpK (Figure 4.7A). In 

F. tularensis, glpK is located upstream of glpA, and is predicted to encode a kinase 

responsible for the phosphorylation of glycerol forming G3P during glycerol catabolism 

(Figure 4.7A). The disruption of G3P dehydrogenase in the presence of a fully functional 

glycerol kinase can lead to increased concentration of intracellular G3P. In E. coli, 

excess G3P within the cell stimulates the synthesis of the toxic metabolite 

methylglyoxal[294]. We suspect a similar phenomenon may be responsible for the 

requirement of a secondary glpK mutation in a F. tularensis ΔglpA background. 
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We analyzed the growth properties of the glpKA disruption mutant in defined 

media supplemented with glucose, glycerol or G3P to confirm that glpA and glpK are 

required for growth on glycerol and G3P. As expected, the glpKA mutant grew to WT 

levels when cultured with glucose, but not glycerol or G3P (Figure 4.8A). In fact, 

supplying the glpKA mutant with G3P led to significantly lower levels of bacterial 

replication relative to growth on glycerol or just CDM, possibly due to the toxic buildup of 

intracellular G3P. We found that growth of the glpKA mutant was restored on glycerol 

and G3P only when these two genes were expressed with the downstream gene, glpF, 

despite the fact that sequencing of the surrounding genes in our glpKA mutant revealed 

no additional mutations in or around the coding sequence for glpF. glpF is predicted to 

encode a glycerol uptake facilitator and may be co-transcribed with glpA (Figure 4.7A). 

As expected, we observed WT levels of growth on G3P but not glycerol when glpA and 

glpF, but not glpK, were expressed in trans in the glpKA mutant (Figure 4.7B), and 

growth on both glycerol and G3P was restored when the glpKA mutant was 

complemented with glpKAF in trans (Figure 4.8A). These findings are summarized in 

Table 4.1.   

The glpKA mutant replicated in J774A.1 cells to intermediate levels with or 

without supplemented glucose, indicating that this mutant can replicate within this cell 

line, but growth was not fully restored by the addition of excess glucose (Figure 4.5F). 

We found that the glpKA disruption mutant did not replicate within BMDMs (Figure 

4.8B). Interestingly, growth within BMDMs was restored to WT levels upon in trans 

expression of glpA and glpF without glpK, suggesting that F. tularensis Schu S4 may 

assimilate G3P and not glycerol during intracellular growth (Figure 4.7C). Growth of the 
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mutant within BMDMs was similarly restored to WT levels upon complementation of 

glpKAF (Figure 4.8B). Finally, replication of the glpKA mutant was significantly 

increased within BMDMs cultured with AICAR and excess glucose, demonstrating that, 

similar to the glpX mutant, the glpKA disruption mutant could be rescued by supplying 

an alternative carbon source (Figure 4.8C).   

We then assessed the importance of glycerol catabolism for F. tularensis during 

growth in mice, and found that the number of CFU recovered from the lungs of mice 

infected with the glpKA disruption mutant was similar to the original inoculum, and 

below the limit of detection in the livers and spleens of mice (Figure 4.8D). These data 

suggest that a glpKA mutant colonized, but did not proliferate or disseminate in a 

murine model of F. tularensis infection.  

Data from our mutational analysis suggest that glycerol represents an essential 

host-derived source of carbon during F. tularensis intracellular growth. However, we 

could not exclude the alternative possibility that F. tularensis attenuation may be due to 

a toxic buildup of metabolites or disruption of proper metabolic regulatory mechanisms 

in our mutant strains. To delineate these possibilities we sought to reduce the 

concentration of available glycerol within BMDMs, and examine the impact on WT F. 

tularensis intracellular proliferation. A significant bulk of host glycerol stores are 

sequestered as triglycerides in host lipid droplets[295]. During lipolysis, a series of 

enzymatic reactions free glycerol from cellular triglyceride stores and release it into the 

cytosol of the host[295,296]. We hypothesized that F. tularensis may exploit this 

process to establish a source of glycerol during intracellular growth. Atglistatin is a 

selective inhibitor of adipose triglyceride lipase (ATGL), an enzyme responsible for the 
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first catalytic step of lipolysis[297]. When we infected Atglistatin-treated BMDMs with 

WT F. tularensis we observed that Atglistatin treatment significantly reduced F. 

tularensis intracellular burden in a dose-dependent manner (Figure 4.9A). Importantly, 

these concentrations were not cytotoxic to BMDMs (Figure 4.10A). To verify these 

findings, we used Cre-Lox recombination to generate ATGL deficient BMDMs. BMDMs 

derived from C57Bl6/J or ATGL-flox mice were treated with Cre recombinase gesicles 

during differentiation. Cre-treated BMDMs isolated from ATGL-flox mice demonstrated 

approximately 60% knockdown of ATGL expression based on qRT-PCR (Figure 4.10B). 

This was associated with a significant reduction in F. tularensis replication within ATGL 

knockdown BMDMs (Figure 4.9B). From these data we conclude that host lipolysis is 

important for sustaining F. tularensis growth, and that host-derived glycerol represents a 

primary source of carbon necessary for fueling F. tularensis in vivo replication.  

 

DISCUSSION 

Previous work by our group and others highlight the importance of amino acid 

metabolism for F. tularensis replication and virulence [282,298–300].  Furthermore, 

Brissac et al. recently demonstrated that gluconeogenesis is vital for F. tularensis 

subspecies holarctica LVS and F. novicida growth during periods of glucose 

limitation[287]. Here, we have similarly demonstrated that gluconeogenesis is essential 

for intracellular and in vivo growth for the highly virulent F. tularensis subspecies 

tularensis Schu S4, while pfkA, and thus glycolysis, is dispensable. Additionally, through 

systematic mutational analysis, we identified specific metabolic pathways essential for 

F. tularensis virulence. We found that ΔglpX, ΔpckA, ΔgdhA and ΔglpA mutant strains 
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were attenuated during growth in a mouse model of F. tularensis pulmonary infection, 

suggesting that these pathways may by critical for the efficient assimilation of host-

derived carbon. These findings are summarized in Table 4.2. 

The metabolic pathways required for F. tularensis growth varied based on the 

infection model. We found that pckA was important for growth in mice, while ppdK was 

essential for WT levels of growth within a J774A.1 transformed macrophage cell line. 

The differential requirements of these genes suggest that F. tularensis may utilize 

alternate gluconeogenic pathways for growth in different environments as the bacterium 

may preferentially assimilate different host-derived carbon sources, perhaps based on 

availability. As transformed macrophages undergo altered metabolism relative to 

primary cells, it is likely that the carbon sources available to F. tularensis are distinct 

within these models. For instance, J774A.1 metabolism is subject to the “Warburg 

effect” in which these cells significantly increase glucose uptake and aerobic glycolysis, 

leading to high intracellular concentrations of lactate[301]. F. tularensis may exploit this 

metabolic aberrance and primarily assimilate lactate during replication within these 

cells. As ppdK is required for F. tularensis assimilation of lactate (Figure 4.1) this may 

explain the requirement of ppdK specifically in J774A.1 cells.  

We found that ppdk, and not pckA, is essential for growth on glutamate in defined 

media. F. tularensis possesses an additional gluconeogenic enzyme (MaeA, malate 

dehydrogenase) responsible for the synthesis of pyruvate from malate, which can then 

be converted to PEP through PpdK (Figure 4.1). Previous work has suggested little or 

no utilization of the oxidative branch of the pentose phosphate pathway during F. 

tularensis growth[287]. Bypassing the oxidative branch of the pentose phosphate 
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pathway means that F. tularensis must use an alternative mechanism for the generation 

of the essential cofactor, NADPH. It is possible that the bacterium relies on an NADP+-

dependent malic enzyme for the production of NADPH during growth on glutamate 

defined medium. As the conversion of TCA intermediates to PEP through malic enzyme 

bypasses PckA but requires PpdK, this would provide a possible explanation for why 

ppdK and not pckA is the preferred gluconeogenic pathway during growth on glutamate. 

We were surprised to find that a ΔgdhA mutant demonstrated significantly 

reduced growth within a mouse compared to a ΔppdKpckA double mutant. If gdhA is 

required solely for gluconeogenic purposes we would expect that these two mutants 

would be similarly attenuated, as a ΔppdKpckA double mutant theoretically halts the 

gluconeogenic conversion of TCA cycle intermediates to glucose. However, during 

replication within a mouse, gdhA may be additionally required for anaplerosis of the 

TCA cycle or glutamate biosynthesis. Further, it was recently demonstrated that 

glutamate import plays a critical role in oxidative stress defense and phagosomal 

escape during F. tularensis infection[299]. Thus, the attenuation of this mutant may be 

in part due to its inability to withstand oxidative stress within the phagosome to reach 

the host cell cytosol. However, because growth of ΔgdhA can be partially rescued by 

supplying J774A.1 cells (Figure 4.5E) or AICAR-treated BMDMs (Figure 4.6C) with 

excess glucose we conclude that this pathway is primarily involved in carbon acquisition 

during F. tularensis intracellular growth.   

Unlike ppdk and pckA, we found that a glpKA mutant was attenuated for growth 

in all models tested, highlighting the importance of glycerol catabolism for F. tularensis 

pathogenesis. Based on the annotated genomic sequence of F. tularensis subspecies 
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tularensis Schu S4, a ΔglpA mutant strain cannot assimilate glycerol or G3P[302]. 

During our investigation we found that disrupting glpA in F. tularensis Schu S4 resulted 

in an independent polar mutation in glpK that prevented growth on glycerol. As 

expected, genetic complementation of our glpA mutant strain with glpA, but not glpK, 

rescued growth on G3P, but not glycerol (Figure 4.7C). However, our partially 

complemented strain replicated to WT levels within BMDMs, suggesting that within this 

cell type G3P and not glycerol is available for F. tularensis metabolism. This conclusion 

is consistent with the fact that glycerol is actively phosphorylated by the host to prevent 

its efflux from the cell. Of note, unlike F. tularensis subspecies tularensis and F. 

novicida, F. tularensis subspecies holarctica can only metabolize G3P and not glycerol. 

As F. tularensis possesses a small decaying genome adapted to an intracellular 

lifestyle, this may reflect an interesting evolutionary example supporting our prediction 

that F. tularensis specifically metabolizes G3P within the cell[183].   

Despite occupying similar niches, intracellular bacterial pathogens have evolved 

distinct methods to meet their respective nutritional requirements. Many pathogens such 

as Salmonella enterica, Legionella pneumophila and enteroinvasive Escherichia coli 

species preferentially assimilate glucose during intracellular growth[277,303,304]. In 

contrast, Shigella flexneri downregulates genes involved in glucose catabolism and 

favors the assimilation of C3 substrates during growth within the cytosol[305]. Listeria 

monocytogenes relies on two major carbon substrates (glycerol and glucose 6-

phosphate) to fuel distinct catabolic and anabolic pathways during cytosolic 

replication[306]. Our data suggest that the primary carbon substrates utilized by F. 

tularensis during intracellular growth varies depending on the model of infection. This is 



 
 

138 

not surprising, considering that the host range of F. tularensis subspecies tularensis 

Schu S4 includes over 250 species, and that within these hosts F. tularensis infects 

numerous cell types including macrophages, dendritic, endothelial and epithelial 

cells[307]. In order to replicate within such a diverse range of hosts F. tularensis must 

adapt its metabolism to the carbon sources available from the environment, which can 

vary significantly from host to host, and between cell types. Thus, we suspect that the 

extraordinary ability of F. tularensis to proliferate within such a wide range of hosts is in 

part due to the pathogen’s capability of sensing and adapting to the fluctuating 

availability of nutrients over the course of its infectious lifestyle.  

When available, F. tularensis will consume glucose. The intracellular growth 

defect of the ΔglpX mutant in J774A.1 cells was rescued by supplying excess glucose 

(Figure 4.3B). Further, F. tularensis subspecies holarctica LVS replication within 

J774A.1 and THP-1 macrophage cells leads to a significant reduction in host 

intracellular glucose[287]. However, the nutrient concentrations within these established 

cell lines do not reflect the physiological conditions encountered by F. tularensis during 

infection, and it is likely that in physiological conditions glucose limitation forces F. 

tularensis to utilize non-glucose carbon substrates. Indeed, a transcriptomic analysis of 

the F. tularensis metabolic network during extracellular and intracellular growth 

suggests that significant changes in carbohydrate metabolism occur when the pathogen 

transitions to an intracellular lifestyle[308]. Our data support the proposed model that in 

the absence of glucose, F. tularensis will primarily utilize alternate carbon sources such 

as amino acids or C3 substrates derived from the host. 
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Bacterial metabolic pathways must be coordinated to reduce unnecessary 

energy expenditure and maximize fitness. In E. coli, key branch points in the glycolytic 

pathway are controlled by feed-forward/feedback inhibition. For instance, the conversion 

of fructose-6P to fructose-1,6-BP by PfkA is stimulated by ADP and inhibited by the 

downstream metabolite PEP[309]. Conversely, the reverse reaction (catalyzed by 

fructose 1,6-bisphosphatase) is inhibited by AMP and glucose-6P[310]. Carbon 

catabolite repression is poorly understood in F. tularensis, however, instances of 

catabolite repression have been described in other γ-proteobacteria including 

Pseudomonas aeruginosa and S. Typhimurium[311]. Therefore it is likely that F. 

tularensis also employs regulatory mechanisms to inhibit the utilization of alternative 

carbon substrates in the presence of a preferred carbon source such as glucose. We 

observed significant growth attenuation for a pfkA mutant in CDM supplemented with 

glucose relative to CDM alone or CDM with glutamate. Similar to E. coli, the buildup of 

glucose-6P may allosterically inhibit the activity of GlpX and prevent growth on 

gluconeogenic carbon sources such as glutamate or other amino acids that are present 

at low concentrations in the media.  

Central carbon metabolism represents arguably the single most important cellular 

process in the context of bacterial viability and virulence. Energy generation, precursor 

biosynthesis, virulence factor expression, cell division, etc. are all contingent on a 

bacterium’s ability to acquire and utilize sufficient carbon to fuel these processes. 

Targeting bacterial catabolic and anabolic pathways is a promising strategy for 

combating pathogenic organisms such as F. tularensis. Indeed, it is well established 

that F. tularensis purine auxotrophs are attenuated during infection, and these mutants 
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have been suggested as potential candidates for use as a live vaccine[163,164]. 

Similarly, targeting other essential metabolic pathways such as gluconeogenesis, 

glycerol catabolism or amino acid catabolism, either through drug or vaccine 

development, may constitute a means for limiting the spread of this deadly pathogen. 

Overall, by identifying the specific metabolic pathways and nutrients utilized by F. 

tularensis during intracellular growth our findings begin to unravel the complex host-

pathogen relationship exploited by F. tularensis during infection and furthers our 

understanding of F. tularensis pathogenicity. 

 

MATERIALS AND METHODS 

Bacterial Strains 

Francisella tularensis subspecies tularensis Schu S4 was obtained from BEI Resources. 

F. tularensis was maintained on solid chocolate agar medium supplemented with 1% 

IsoVitaleX (Becton-Dickson); modified Mueller-Hinton (MMH) agar supplemented with 

1% tryptone, 0.5% NaCl, 0.05% L-cysteine freebase, 1% glucose and 0.00025% Fe 

pyrophosphate; brain heart infusion (BHI) broth supplemented with 1% IsoVitaleX; 

Chamerlains Defined Media (CDM); or modified CDM[288]. For selection, each growth 

medium was supplemented with 10μg/ml kanamycin or 200 μg/ml hygromycin when 

applicable. All cloning was performed in Escherichia coli DH5α and S17-1λpir strains 

propagated in Luria-Bertani (LB) broth or solid agar supplemented with 50μg/ml 

kanamycin or 200μg/ml hygromycin when necessary for selection. All cultures were 

grown at 37°C with aeration.  
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Cell Culture 

J774A.1 (ATCC TIB-67) macrophage-like cells were maintained in Dulbecco’s modified 

Eagle medium (DMEM) supplemented with 4.5 g/liter glucose, 10% fetal bovine serum, 

2mM L-glutamine, and 1mM sodium pyruvate. Bone marrow derived macrophages 

(BMDMs) were generated from C57BL6 mice (Jackson Labs) by flushing bone marrow 

cells from murine femurs and incubating the recovered cells for 6 days in L929 cell-

conditioned DMEM containing 10% fetal bovine serum. Prior to use, non-adherent cells 

were removed by washing BMDMs with phosphate-buffered saline (PBS), and cells 

were recovered from untreated plates using 10mM EDTA in PBS. For experiments, 

BMDMs were maintained in high glucose (4.5g/L) DMEM supplemented with 2mM L-

glutamine and 10% fetal bovine serum.  

 

Generating ATGL-Deficient BMDMs  

Bone marrow from 8-14 week old C57Bl/6J or ATGL-flox (B6N.129S-Pnpla2tm1Eek/J, 

Jackson Labs Stock No. 24278) were generated as described above. 5 days after the 

bone marrow is cultured, 20 ul of Cre Recombinase Gesicles (Takara) were added 

directly to the culture media on the developing cells. Approximately 36 hours later, the 

cells were harvested and incubated overnight in tissue culture dishes for experiments. 

Almost all BMDMs took up detectable levels of the Cre Recombinase Gesicles (data not 

shown). For the different replicate experiments, the effectiveness of this process on 

ATGL RNA in the ATGL-flox mice treated with gesicles was 46.7%, 21.5%, and 33.9% 

of C57Bl/6 mice not exposed to gesicles. 
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qRT-PCR 

BMDMs were seeded at 250,000 cells the night before infection. Immediately prior to 

infection, Trizol (Life Technologies) was added to a subset of wells. The samples were 

treated with choloform and centrifuged. The top fraction was mixed with 70% ethanol 

and RNA was isolated using a RNEasy kit (Qiagen). Samples were then treated with 

DNase (ThermoFisher). The samples were analyzed using a Sensifast, One-Step 

PMaster mix kit (Bioline) following the manufacturer’s suggested ratio. The primers were 

based on experiments by Ogasawara et al. and verified for use in mice[312]. Briefly, 

The conditions for the PCR were: 10 min at 45 °C for reverse transcription, 2 min at 95 

°C for polymerase activation, 35 cycles with a 95°C denature (10 sec), 55°C anneal (10 

sec) and 72°C extension (30 sec). Wells that did not receive template or reverse 

transcriptase had no amplification in any replicate for any experiment. ATGL: 5′-

AGTTCAACCTTCGCAATCTC-3′(sense), 5′-GTCACCCAATTTCCTCTTGG -

3′(antisense). B-actin: 5′-ACCTGACAGACTACCTCATG-3′ (sense), 5-

ACTCATCGTACTCCTGCTTG-3′ (antisense). 

 

Plasmid Vectors and Bacterial Genetics 

Markerless, in-frame deletions were generated through allelic exchange as described 

for all F. tularensis deletion strains except for glpA[313]. For allelic exchange, all suicide 

vectors were constructed from pEDL50, a modified version of the suicide vector 

pMP812 (Kanr, sacB) containing an origin of transfer for mating into F. tularensis[314]. 

The pEDL50 suicide vector was mated into F. tularensis Schu S4 via E. coli S17-1λpir 

by mixing the bacteria on LB agar overnight, then selecting for primary integrants on 
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chocolate agar with kanamycin (10μg/mL) and polymyxin B (200μg/mL). Kanr, PMBr 

resistant strains were grown overnight in BHI broth without selection to allow for 

recombination, then plated on chocolate agar containing 10% sucrose for 

counterselection (loss of plasmid). Deletion strains were confirmed through PCR and 

sequencing (Genewiz). The glpA gene was disrupted using the Targetron system 

modified for use in Francisella species. The Targetron suicide vector was created using 

primers assigned by the Targetron Primer design program (Sigma). The vector was 

transformed into F. tularensis Schu S4 and the mutant was isolated as described[293]. 

For complementation of deletion strains, selected genes and their predicted promoters 

were PCR amplified and ligated into pJB3, a luminescent reporter plasmid derived from 

the low-copy shuttle, pMP831 that constitutively expresses the Photorhabdus 

luminescens luxCDABE operon from pXB173[283]. Genes lacking an obvious native 

promoter were cloned into pJB2, a modified version of pJB3 that contains a pblaB 

promoter sequence driving expression of the targeted gene. Suicide and 

complementation vectors were transformed into E.coli S17-1λpir and F. tularensis, 

respectively. E.coli S17- λpir was transformed through heat shock. For F. tularensis 

transformation, Schu S4 was grown overnight in CDM, washed 4 times with 0.5M 

sucrose and electroporated in a 1mm gap cuvette at 2kV, 25μF, and 200Ω. The 

transformants were allowed to recover for 2 hours in BHI broth at 37°C, then plated on 

chocolate or MMH agar with appropriate selection.   
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Growth Curves 

Overnight cultures of F. tularensis SchuS4 grown in CDM were diluted to an OD600 of 

0.05 in 200μl of CDM or modified CDM in a 96-well plate (Corning). All CDM was 

buffered with 50mM MES at pH 6.2 to account for ammonia production during amino 

acid catabolism in experiments where modified CDM contained amino acids as the 

primary carbon source. Each major carbon source was added to a final concentration of 

0.4%. Cultures were incubated in an Infinite 200M Pro series TECAN plate reader 

(TECAN) at 37°C with orbital shaking. The OD600 was measured every 15 minutes for 

48 hours.  

 

Macrophage Infections 

Bacterial intracellular growth within J774A.1 or BMDM cells was determined by 

measuring the luminescence of Schu S4 harboring the luminescence reporter plasmid 

pJB2 or pJB3 described above. J774A.1 and BMDM cells were plated at 5x104 cells per 

well in a 96-well white wall, white bottom polystyrene plate (Corning) the night before 

infection. Each well was inoculated at a multiplicity of infection (MOI) of 100. Following a 

two-hour infection period, the inoculation medium was removed and replaced with 200μl 

of media containing 25μg/ml (J774A.1) or 10μg/ml (BMDMs) gentamicin. Luminescence 

was measured every 15 minutes for 48 hours using an Infinite 200M Pro series TECAN 

plate reader (TECAN) maintaining constant 37°C temperature and 5% CO2. To 

enumerate intracellular bacteria by plating, BMDM tissue culture medium was removed 

2 hours post-gentamicin treatment and cells were washed once with PBS before being 

scraped up, vortexed hard for 1 minute, diluted and plated on chocolate agar. When 
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applicable, J774A.1 and BMDM cells were cultured in glucose-free, pyruvate-free 

DMEM (Gibco) supplemented with 10% dialyzed FBS. For the AICAR and Atglistatin 

experiments, BMDMs were pretreated 2 hours prior to infection with 150µM AICAR 

(Cayman Chemical), or Atglistain (Cayman Chemical), and this drug concentration was 

maintained throughout the infection. Atglistatin cytotoxicity was measured using a 

Vybrant MTT Cell Proliferation Assay Kit (ThermoFisher) following the manufacturer’s 

protocol.  

 

Mouse Infections  

Groups of 6-8 week old female C57BL6 mice (Jackson Labs) were inoculated 

intranasally with 100 CFU of F. tularensis Schu S4 wild-type or mutant strains. Infected 

and control mice were housed in a recirculating air Techniplast system (Techniplast) 

within a BSL-3 facility. At 3 days post infection, mice were sacrificed and the lungs, 

livers and spleens were harvested and homogenized using a Biojector (Bioject). The 

homogenates were serially diluted and plated onto chocolate or MMH agar to quantify 

organ burdens.   
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. An overview of Francisella tularensis subsp. tularensis Schu S4 central 
carbon metabolism. Labeled enzymes (red) are predicted to be required for the flux of specific 
carbon substrates (blue) for F. tularensis central carbon metabolism. Orange arrows indicate 
reactions that are specific to gluconeogenesis. Abbreviations: PPP, pentose phosphate 
pathway; PEP, phosphoenolpyruvate; Acetyl-CoA, acetyl coenzyme A; PfkA, 
phosphofructokinase (FTT_0801); GlpX, fructose 1,6-bisphosphatase (FTT_1631); GlpK, 
glycerol kinase (FTT_0130); GlpA, glycerol 3-phosphate dehydrogenase (FTT_0132); PckA, 
phosphoenolpyruvate carboxykinase (FTT_0449); PpdK, pyruvate phosphate dikinase 
(FTT_0250); MaeA, malic enzyme (FTT_0917); GdhA, glutamate dehydrogenase (FTT_0380).  
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Figure 4.2. F. tularensis GlpX is essential for replication on gluconeogenic carbon 
substrates, within host macrophages, and in a murine model of infection. (A) Terminal 
OD600 of WT Schu S4, ΔpfkA, and ΔglpX strains after 48 hours of growth in CDM and CDM 
supplemented with glucose or glutamate at a final concentration of 0.4%. (B) Intracellular 
replication of WT Schu S4, ΔpfkA, ΔglpX, and ΔglpX pglpX in BMDMs as indicated via relative 
luminescent units (RLU) measured every 15 minutes over a 36-hour period. (C) Growth of WT 
Schu S4, and (D) ΔglpX in BMDMs cultured with or without 150µM AICAR and/or glucose at a 
concentration of 4.5g/L. Growth was measured via luminescence read every 15 minutes over 36 
hours. All growth curves represent one of three independent experiments and each data point 
represents the average of three technical triplicates.  (E) Organ burdens of mice three days post 
intranasal inoculation with WT Schu S4, and ΔpfkA, and ΔglpX. Data are pooled from three 
independent experiments. (**p<0.01, ***p<0.001 as determined by Student’s t-test).   
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Figure 4.3. Growth kinetics of F. tularensis ΔpfkA and ΔglpX mutants during growth in 
CDM, CDM + glucose and CDM + glutamate. (A) WT Schu S4; (B) ΔpfkA, ΔpfkA ppfkA; and 
(C) ΔglpX, ΔglpX pglpX strains were grown in CDM and CDM supplemented with glucose or 
glutamate at a final concentration of 0.4%. The OD600 was measured every 15 minutes over a 
36-hour period. All growth curves represent one of three independent experiments and each 
data point represents the average of three technical triplicates. 
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Figure 4.4. Growth of ΔpckA and ΔppdK in defined media, host cells and in a murine 
model of infection. Terminal OD600 of (A) ΔpckA and (B) ΔppdK and ΔppdK pppdK after 48 
hours of growth in CDM and CDM supplemented with glucose or glutamate at a final 
concentration of 0.4%. Data are pooled from three triplicate wells from three independent 
experiments (mean +/- SD). (C) The intracellular growth kinetics of ΔpckA, ΔppdK and 
ΔppdKpckA cultured in high glucose (4.5g/L) DMEM as indicated via RLU measured every 15 
minutes over a 36-hour period. The data shown represent three independent experiments and 
each data point represents the average of three technical replicates. (D) Organ burdens of mice 
three days post intranasal inoculation with WT Schu S4, ΔppdK, ΔpckA, or ΔppdKpckA mutants. 
Data are pooled from three independent experiments (*p<0.05, **p<0.01, ***p<0.001 as 
determined by Student’s t-test). 
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Figure 4.5. Intracellular growth characteristics of F. tularensis Schu S4 and mutant 
strains in J774A.1 macrophage cells. Representative intracellular bacterial growth kinetics of 
(A) ΔpfkA; (B) ΔglpX, ΔglpX pglpX; (C) ΔpckA; (D) ΔppdK, Δppdk pppdK; (E) ΔgdhA, ΔgdhA 
pgdhA; and (F) ΔglpKA, ΔglpKA pglpAF deletion strains carrying a LUX reporter for intracellular 
growth within J774A.1 macrophage cells cultured with and without glucose. Luminescence was 
measured every 15 minutes over a 36-hour period and each point represents the average of 
three technical replicates. Each panel is a representative of at least 2 independent experiments.  
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Figure 4.6. GdhA fuels gluconeogenesis by shuttling carbon into the TCA cycle.   
(A) Terminal OD600 of ΔgdhA after 48 hours of growth in CDM and CDM supplemented with 
glucose or glutamate at a final concentration of 0.4%. Data are pooled from three triplicate wells 
from three independent experiments (mean +/- SD). (B) The intracellular growth kinetics of WT 
Schu S4, ΔgdhA and ΔgdhA pgdhA within BMDMs as indicated via RLU measured every 15 
minutes over a 36-hour period. (C) ΔgdhA strains expressing the LUX reporter of intracellular 
growth in BMDMs cultured with or without 150µM AICAR and/or glucose at a concentration of 
4.5g/L. All growth curves represent one of three independent experiments and each data point 
represents the average of three technical triplicates. (D) Organ burdens of mice three days post 
intranasal inoculation with WT Schu S4, or the ΔgdhA mutant. Data are pooled from three 
independent experiments (*p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test). 
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Figure 4.7. GlpA, but not GlpK, is required for growth on glycerol-3P and in BMDMs. (A) 
Schematic representing the coding regions for glpK, glpA and glpF including the location of the 
missense substitution mutation (resulting in an arginine to cysteine substitution) introduced at 
position #1084 in glpK during the generation of the glpA insertion mutant. (glpK- glycerol kinase, 
isftu1- insertion sequence element, glpA- glycerol-3P dehydrogenase, glpF- glycerol uptake 
facilitator). (B) Terminal OD600 of WT Schu S4, the glpKA insertion mutant, and corresponding 
pglpAF complemented strain grown in CDM and CDM supplemented with glucose, glycerol or 
G3P after 48 hours of growth. (C) Terminal RLU values for BMDMs infected with WT Schu S4, 
ΔglpKA, or  ΔglpKA pglpAF strains harboring a LUX reporter for intracellular growth. The panel 
is representative of two independent experiments and data shown are averages of from three 
triplicate wells (mean +/- SD). Data are pooled from three triplicate wells from three independent 
experiments (mean +/- SD). 
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Figure 4.8. Glycerol metabolism is essential for F. tularensis intracellular replication. (A) 
Terminal OD600 of WT Schu S4, the glpKA insertion mutant, and corresponding pglpKAF 
complemented strain grown in CDM and CDM supplemented with glucose, glycerol or G3P after 
48 hours of growth. Data are pooled from three triplicate wells from three independent 
experiments (mean +/- SD). (B) Growth curve of WT Schu S4, the glpKA mutant and the 
glpKAF complemented strain harboring the LUX reporter within BMDMs. Intracellular bacterial 
growth was measured via luminescence (RLU), read every 15 minutes over a 36-hour period. 
(C) Growth of ΔglpA expressing the LUX reporter of intracellular growth in BMDMs cultured with 
or without 150µM AICAR and/or glucose at a concentration of 4.5g/L. All growth curves 
represent one of three independent experiments and each data point represents the average of 
three technical triplicates. (D) Organ burdens of mice three days post intranasal inoculation with 
WT Schu S4, and the glpKA insertional mutant. Data are pooled from three independent 
experiments (*p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test).  
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Figure 4.9. Active host cell lipolysis is required for efficient F. tularensis intracellular 
replication. (A) Growth curve of WT Schu S4 harboring a LUX reporter within BMDMs cultured 
in high glucose (4.5g/L) DMEM with our without Atglistatin at indicated concentrations. 
Intracellular bacterial growth was measured via luminescence (RLU), read every 15 minutes 
over a 24-hour period. Data represent the mean pooled from 3 replicates in 3 independent 
experiments. (B) Fold change in WT Schu S4 burden between 24 and 4 hours post-infection of 
WT and ATGL knockdown BMDMs. Data are pooled from three independent experiments 
(*p<0.05, **p<0.01, ***p<0.001 as determined by Student’s t-test).  
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Figure 4.10. ATGL inhibition reduces F. tularensis growth within BMDMs without 
cytotoxicity. (A) BMDMs were treated with various concentrations of Atglistatin or vehicle 
control and allowed to incubate for 36 hours before BMDM cytotoxicity was measured using a 
Vybrant MTT Assay. Data are pooled from three triplicate wells from three independent 
experiments (mean +/- SD). (B). qRT-PCR quantification of ATGL expression in WT or ATGL 
knockdown BMDMs in the presence or absence of Cre recombinase-containing gesicles. Data 
are represented as fold change relative to wild type. Data are pooled from three triplicate wells 
from three independent experiments (mean +/- SD) (*p<0.01 by Student’s t test). 
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Table 4.1 Growth of Schu S4 and glpKA strains in broth, BMDMs or J774A.1 
cells  

  CDM CDM + 
Glucose 

CDM + 
Glycerol 

CDM + 
G3P 

BMDM J774A.1 

WT + ++ ++ ++ ++ ++ 
ΔglpKA + ++ - - - + 
ΔglpKA 
pglpAF + ++ - ++ ++ + 

ΔglpKA 
pglpKAF + ++ ++ ++ ++ + 

 
 
 
Table 4.2. Summary table of Schu S4 WT and mutant strain growth in 
described infection models 

  CDM CDM + 
Glucose 

CDM + 
Glutamate 

CDM + 
Glycerol-3P BMDM J774A.1 C57 

BL6/J 
WT + ++ ++ ++ ++ ++         ++ 
ΔpfkA + - ++ n/a ++ ++  ++ 
ΔglpX - ++ - n/a - - - 
ΔpckA + ++ ++ n/a ++ ++ + 
ΔppdK - ++ - n/a ++ + ++ 
ΔgdhA - ++ - n/a - - + 
ΔglpKA + ++ n/a - - + - 
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CHAPTER 5 
SUMMARY OF RESULTS AND DISCUSSION 

 
Antibiotic treatment failure is a complex, multifaceted issue that imposes a heavy 

burden on global public health. Conventional views surmise that bacterial resistance 

alone can explain treatment failure, and that developing new broad-spectrum 

therapeutics will prevent the spread of deadly pathogenic strains. Economically, 

however, the risk associated with antibiotic development is high, and profitability low. 

Consequently, the number of new antibiotics reaching market has plummeted while the 

number of reported cases of infection by resistant pathogens continues to increase 

exponentially[1,2,315]. Unlike drugs for chronic illnesses (e.g. diabetes, heart disease), 

antibiotic regimens are relatively short (typically days to weeks), often curative, and 

overuse of the drug renders it useless. New therapeutics also face steep hurdles prior to 

FDA approval and commercialization that require a significant investment of time and 

money[316]. Together, these factors have led to a steep decline in new antibiotic 

development.  

To prevent the coming antibiotic ‘apocalypse’ prophesized by clinicians and 

researchers alike, we must look to alternative means for eradicating difficult-to-treat 

bacterial populations within the host before these populations develop resistance 

mechanisms that render our current arsenal useless. First and foremost, we must 

understand how and why our treatments fail to resolve chronic and relapsing bacterial 
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infection in the absence of genetically heritable resistance mechanisms. Second, we 

must develop new therapeutics that exploit the molecular mechanisms underlying 

antibiotic tolerance in order to resensitize tolerant populations to antibiotic killing. 

Finally, we must develop specialized approaches for resolving infections by bacterial 

populations that are innately recalcitrant to broad-spectrum antibiotic action due to the 

niche they occupy within the host. The aim of this thesis was to identify factors present 

in the complex infection environment that alter antibiotic efficacy in order to overcome 

and exploit relevant mechanisms of antibiotic antagonism and potentiation, respectively. 

 

SUMMARY- CHAPTER 2: INTERSPECIES INTERACTION DURING 
POLYMICROBIAL INFECTION ALTERS S. AUREUS PHYSIOLOGY AND 

SUSCEPTIBILITY TO ANTIBIOTICS.  
 

Within complex polymicrobial communities, inter- and intra- species interactions 

can influence the pathogenicity and antibiotic susceptibility of individual organisms. 

Staphylococcus aureus is commonly co-isolated with the opportunistic pathogen 

Pseudomonas aeruginosa, and these co-infections are generally more virulent and/or 

more difficult to treat than infections caused by either pathogen alone[220,317,318]. The 

interaction between S. aureus and P. aeruginosa is complex, with P. aeruginosa 

producing a number of molecules that interfere with S. aureus growth, metabolism, and 

cellular homeostasis including HQNO, rhamnolipids, and the endopeptidase 

LasA[197,198,200]. In Chapter 2 we investigated the impact of P. aeruginosa/S. aureus 

interaction on S. aureus antibiotic susceptibility. We observed that the bactericidal 

activities of three major classes of antibiotics were altered by the presence of P. 

aeruginosa secreted exoproducts and aimed to determine the mechanism(s) by which 
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P. aeruginosa alters S. aureus antibiotic susceptibility. 

Adaptation to the CF lung during chronic infection promotes significant 

heterogeneity in virulence factor production among clinical P. aeruginosa 

isolates[319,320]. Consequently, P. aeruginosa production of HQNO, rhamnolipids and 

LasA varies drastically among isolates, with some isolates overproducing these factors 

and some isolates producing none at all[84,224]. Production of HQNO by P. aeruginosa 

isolates correlated perfectly with protection from ciprofloxacin killing. Through mutational 

analysis and exogenous addition of clinically relevant concentrations of HQNO, we 

demonstrated that HQNO induces a multidrug-tolerant state in S. aureus by inhibiting 

respiration and depleting intracellular ATP levels. We then demonstrated that 

subinhibitory concentrations of P. aeruginosa rhamnolipids potentiated tobramycin 

killing of S. aureus by destabilizing the membrane to induce tobramycin influx, and that 

this combinational therapy facilitated the rapid eradication of S. aureus persisters. 

Furthermore, P. aeruginosa isolates that were strong producers of rhamnolipids 

significantly potentiated tobramycin killing of S. aureus, thus demonstrating that the 

presence of P. aeruginosa can positively and negatively influence S. aureus tobramycin 

susceptibility via the differential production of rhamnolipids and HQNO, respectively. 

Finally, we observed that P. aeruginosa supernatant from many of our isolates 

significantly potentiated vancomycin killing of S. aureus. The P. aeruginosa secreted 

endopeptidase, LasA, cleaves pentaglycine cross bridges in S. aureus 

peptidoglycan[198]. Supernatant from a lasA transposon mutant lost the ability to 

potentiate vancomycin activity, implicating LasA in this phenotype. Quantification of 

LasA activity in P. aeruginosa clinical isolates demonstrated a strong correlation 
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between LasA activity and vancomycin potentiation, and we further developed a murine 

burn wound model of P. aeruginosa/S. aureus infection to demonstrate that the 

presence of P. aeruginosa increases S. aureus susceptibility to vancomycin in a LasA 

dependent manner. In all, the data presented in Chapter 2 demonstrate that interaction 

with P. aeruginosa has a major, and varying impact on S. aureus antibiotic 

susceptibility, and suggested that therapeutic outcome of S. aureus infection may 

depend on the activity of co-infecting P. aeruginosa strains.  

 

Interspecies interaction may play an underappreciated role in dictating antibiotic 
treatment outcome.  
 

Though studies of bacterial pathogenesis and antibiotic susceptibility are 

conventionally performed in isolation, recent strides in understanding the infection 

environment suggest that polymicrobial infections are extremely common [321–323]. 

Exploratory 16S sequencing studies of the skin, respiratory passages, intestinal lumen, 

and urinary tract have revealed that these niches are rife with microorganisms of the 

mammalian microbiome[324]. Pathogen colonization of these niches therefore cannot 

occur without extensive interaction with both the resident microflora and other co-

infecting pathogens. Members of a polymicrobial community are subject to a variety 

ecological pressures that may alter cellular physiology and metabolism of individual 

microorganisms. These include nutrient competition, metabolic cross feeding, and 

exposure to microbial-produced signaling or antimicrobial molecules [80,325–327]. 

Studying a pathogen in the context of its microbial interaction network reveals subtle 

factors that may influence antibiotic susceptibility that go otherwise unnoticed when 

studied in isolation[72,328]. Identifying key interspecies interactions that improve or 



161 

impair antibiotic action will advance our understanding of antibiotic efficacy, and help us 

to move away from common reductionist approaches to susceptibility testing.  

 The polymicrobial CF lung environment presents an interesting opportunity to 

explore how extrinsic ecological factors influence antibiotic treatment outcome. 

Throughout this thesis work we have primarily focused on P. aeruginosa/S. aureus, 

however the CF lung is a complex microbial environment colonized by several core 

genera including (but not limited to) Streptococcus, Stenotrophomonas, Prevotella, 

Veillonella, Neisseria and Porphorymonas[329]. It is unlikely that antibiotic antagonizing 

or potentiating interactions within the CF lung are limited to the examples discussed in 

Chapter 2. Further investigation may reveal other ways that polymicrobial interaction 

alters antibiotic efficacy in this environment. For instance, aminoglycoside resistance-

encoding genes (e.g. aminoglycoside-modifying enzymes, AME) are typically located on 

mobile genetic elements such as plasmids or transposons[330]. The formation of 

polymicrobial biofilm increases the frequency of horizontal gene transfer (HGT) by 

increasing bacterial rates of conjugation[331–333]. Enzymatic aminoglycoside 

deactivation allows S. aureus to proliferate in the presence of antibiotic without the 

fitness cost of adopting a SCV lifestyle, thus there is likely a strong selective pressure 

for AME acquisition in this environment. Indeed, in Chapter 3 we observed that 75% of 

our S. aureus CF isolates were resistant to extreme concentrations of tobramycin (MICs 

ranged from .78μg/mL- 3.2mg/mL), and none of these isolates were SCVs. Thus, 

infection by a single AME-expressing microorganism may lead to the acquisition of 

aminoglycoside resistance among co-infecting pathogens. 

CF exacerbation and lung deterioration corresponds with an outgrowth of P. 
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aeruginosa[334,335]. Patients receive high-dose regimens of inhaled tobramycin 

therapy that reach concentrations of approximately 737μg per gram of sputum[336]. In 

children suffering from acute infection, inhaled tobramycin is sufficient to eradicate P. 

aeruginosa from the CF lung[337]. However, as they mature, adult patients inevitably 

become chronically colonized by P. aeruginosa, and these infections are almost 

impossible to clear, even when isolates are genetically susceptible to tobramycin 

killing[338,339]. At this stage, the same therapy that once resolved infection in children 

is used merely to reduce P. aeruginosa burden and palliate disease during periods of 

exacerbation. It is unclear why high-dose tobramycin therapy no longer resolves chronic 

P. aeruginosa infection in CF adults. Treatment failure could result from poor drug 

penetration through the thick mucus layers that build up over time within the CF 

lung[340]. Alternatively, impaired aminoglycoside uptake following bacterial respiration 

inhibition may promote treatment failure. CF disease progression is associated with 

deteriorating lung function partially due to chronic neutrophil influx and pro-inflammatory 

activity[341]. Aberrant neutrophil degranulation and macrophage activities during 

chronic inflammation increase the concentration of respiration inhibitors (e.g. NO�) 

within CF lung tissue, and may inadvertently induce transient tolerance to 

aminoglycosides among infecting populations[62,342]. Interspecies microbial 

interactions could also contribute to progressive treatment failure. P. aeruginosa-

produced respiration inhibitors have long been known to induce transient 

aminoglycoside tolerance in S. aureus[53]. As antibiotic deactivation by a single 

bacterial species can lead to the de facto resistance of the entire community[73,74,328], 

it is possible that the proliferation of AME-expressing populations within this 
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environment may contribute to the stable lung colonization of P. aeruginosa over time 

as the expansion of an AME-expressing population could reduce the concentration of 

aminoglycosides present in the sputum.  

The finding that P. aeruginosa-secreted exoproducts alter S. aureus antibiotic 

susceptibility may have broad implications for improving CF patient health, as these co-

infections are common and notoriously difficult to treat[220]. However, one major caveat 

of the study described in Chapter 2 is that the bulk of the experimentation was 

performed in vitro on planktonic cultures. Future studies are necessary to probe these 

interactions in the context of the CF lung. This will address many unanswered questions 

prompted by our study, including whether these two organisms interact within this 

environment, and whether these interactions are relevant for the physiological 

conditions of the CF lung (i.e. does respiration inhibition influence S. aureus fitness in 

response to antibiotic challenge, or does S. aureus already exist in a non-respiring state 

in this niche?). A recent ex vivo study examining S. aureus, P. aeruginosa spatial 

organization in explanted lung tissue suggested that mixed communities of these two 

pathogens can be found together in the CF lung[202]. Further studies have used 

peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) techniques to 

characterize the spatial organization of P. aeruginosa/S. aureus aggregates in 

expectorated CF sputum[343]. The authors of this study observed that both pathogens 

reside primarily in separate monospecies aggregates with minimal inter-aggregate 

mixing between microcolonies. In the absence of physical cell-to-cell contact, diffusible 

secreted exoproducts may represent the primary mediator of interspecies interaction. 

However, the question remains whether the P. aeruginosa exoproducts discussed in 
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Chapter 2 significantly influence S. aureus physiology within this environment. The 

biggest challenge to answering this question is the current lack of a suitable model of 

CF lung disease capable of fostering long-term P. aeruginosa/S. aureus co-

infection[344].  

Much attention has recently been placed on understanding trends in P. 

aeruginosa phenotypic and genotypic adaptation to the lung environment 

[220,224,319,320]. The results from these studies suggest that P. aeruginosa virulence 

factor production is highly variable between early and late stage CF infection. As 

clinicians and researchers continue to collect data describing the phenotypic and 

genotypic adaptations that accompany chronic P. aeruginosa lung colonization, an 

alternative approach to assessing the relevance of P. aeruginosa/S. aureus co-infection 

on antibiotic treatment outcome may be through retrospective study. Future projects in 

the lab could contrast antibiotic treatment outcome with P. aeruginosa phenotypic 

characterization of pertinent exoproduct production to determine if, for instance, P. 

aeruginosa production of rhamnolipids correlates with improved resolution of S. aureus 

by aminoglycosides. The results from such studies may improve antibiotic-mediated 

resolution of chronic co-infections. 

 

SUMMARY- CHAPTER 3: RHAMNOLIPIDS INDUCE PMF-INDEPENDENT 
AMINOGLYCOSIDE UPTAKE TO RESTORE SENSITIVITY TO TOLERANT AND 

RESISTANT S. AUREUS POPULATIONS. 

  
Non-respiring bacterial populations are inherently tolerant to aminoglycoside 

antibiotics that require PMF for bacterial internalization[50]. S. aureus frequently 

colonizes microaerophillic or anaerobic niches during infection of the bone, within an 
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abscess, or in the late-stage cystic fibrosis lung[103]. Thus, aminoglycoside efficacy is 

limited against anaerobic, SCV, biofilm-associated, and persister subpopulations of S. 

aureus due to decreased respiration and decreased PMF-dependent drug uptake. In 

Chapter 3 we further explored the ability of aminoglycoside/rhamnolipid combinational 

therapy to restore antibiotic susceptibility to resistant and tolerant S. aureus populations.  

We demonstrated that subinhibitory, non-cytotoxic concentrations of 

rhamnolipids induce aminoglycoside uptake in the absence of PMF. By bypassing the 

PMF requirement for drug influx, rhamnolipids restore aminoglycoside sensitivity to 

otherwise tolerant persister, biofilm, SCV, and anaerobic populations of S. aureus. 

Strikingly, in most cases rhamnolipid/aminoglycoside combinational therapy led to the 

complete and rapid sterilization of these populations that are otherwise completely 

tolerant to aminoglycoside killing. Furthermore, we demonstrated that this combinational 

therapy prevents the rise of tobramycin resistance, restores sensitivity to highly resistant 

S. aureus clinical isolates, and is effective against other aminoglycoside resistant, 

Gram-positive pathogens such as Listeria monocytogenes, Enterococcus faecalis, and 

Clostridium difficile. Further, while we observed that other membrane-targeting 

compounds synergize with tobramycin, only rhamnolipids stimulated PMF-independent 

uptake under these conditions and thus were the strongest potentiators of 

aminoglycoside activity.  

 

Destabilizing membrane activity during aminoglycoside therapy is a promising 
approach for targeting recalcitrant populations.  
 

The biggest foreseeable barrier preventing implementation 

rhamnolipid/aminoglycoside combinational therapy is that high concentrations of 
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rhamnolipids are cytotoxic to host cells[250]. Other RL congeners differ structurally, and 

we observed that changes in carbon tail length or number of rhamnose sugar moieties 

alter tobramycin potentiating activity (Figure 3.2E) and hemolytic and cytotoxic effects 

on host cells indicating that there may be room to develop a modified rhamnolipid 

congener. Furthermore, trends in cytotoxicity between prokaryotic and eukaryotic cells 

do not always align as there are distinct differences in prokaryotic and eukaryotic 

membrane composition[139]. Future investigation into the practicality of using 

rhamnolipids has an antibiotic adjuvant should begin by identifying a specific congener 

that exhibits maximal tobramycin-potentiating activity and minimal eukaryotic 

cytotoxicity. It is also possible that the optimum adjuvant for improving aminoglycoside 

uptake may not be a rhamnolipid molecule, but instead another small molecule capable 

of inducing PMF-independent aminoglycoside uptake. A small molecule screen that 

assesses bacterial aminoglycoside uptake under conditions of respiration inhibition 

would be ideal for identifying putative adjuvant candidates.  

The finding that rhamnolipids resensitize tolerant and resistant Gram-positive 

bacterial species to aminoglycoside killing came from a single study of interspecies 

interaction, and suggests that future screening of other competitive microbial 

interactions in the presence of antibiotics may reveal novel antibiotic sensitizers with 

clinical relevance. Rhamnolipid biosurfactants not only potentiate aminoglycoside 

uptake in S. aureus, but in other important Gram-positive pathogens as well. For C. 

difficile in particular, 30μg/mL of rhamnolipids reduced the MIC of tobramycin over 

1000-fold (Table 3.1), rendering what is considered an aminoglycoside-resistant 

pathogen completely susceptible to killing. Further, biosurfactant production is not 
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unique to P. aeruginosa. Indeed, many other glycolipid molecules with properties similar 

to rhamnolipids have been characterized from various Mycobacterium, 

Corynebacterium, and Candida species[345]. If other glycolipid molecules improve 

antibiotic penetrance across the bacterial membrane, the broad implications of microbial 

biosurfactant production during polymicrobial infection will require further investigation. 

Further, within and without the host, bacteria produce an extensive array of secondary 

metabolites in order to survive within densely populated microbial environments. Mono- 

vs. pairwise culturing of competitive species under conditions that induce secondary 

metabolite production and in the presence of antibiotic could prove a fruitful approach 

for identifying new molecules for sensitizing tolerant populations to antibiotic killing. 

 

Identifying the underlying mechanism(s) of antibiotic tolerance may reveal new 
paths to eradication.  
 

Intrinsically tolerant bacterial populations often tolerate multiple classes of 

antibiotics with distinct mechanisms of action. This has led many to believe that there 

exists a single molecular mechanism that pushes bacteria into an antibiotic tolerant 

state. Because slow-growing and metabolically dormant bacteria tolerate antibiotic 

killing, it has long been proposed that bacterial persisters reflect a stochastic decline 

towards cell death[346]. Indeed, until recently it was believed that aberrations in toxin-

antitoxin (TA) module expression or stringent response activation represented the 

primary drivers of population heterogeneity that lead to persister cell formation[347]. 

However, neither TA expression nor stringent response activity contribute to persister 

formation in S. aureus[26]. Instead, S. aureus persister cell formation is associated with 

stochastic entrance into a stationary phase-like, low energy state which may result from 
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stochastic variations in TCA cycle enzyme expression[29]. These findings have 

prompted a “low energy” hypothesis proposing that persister formation is a direct result 

of ATP depletion[26]. In support of this, many of the TA-mediated mechanisms of 

persister cell formation originally described induce tolerance by depleting intracellular 

ATP. For instance, overexpression of the TisB toxin in E. coli leads to disruption of the 

membrane and dissipation of PMF[348]. This inhibits ATP production through the F1F0 

ATPase and induces a metabolically dormant, antibiotic tolerant state[349]. However, 

instead of being the sole mechanism of bacterial persister formation as was once 

proposed, TA and stringent response aberrations may simply represent a small subset 

of molecular interactions that fall under the much larger category of induced tolerance 

through ATP depletion.  

 Recently, however, several groups have questioned the conclusion that ATP 

depletion and metabolic dormancy represent the underlying cause of antibiotic 

tolerance. Pontes et al. demonstrated that Salmonella cultures treated with the 

bacteriostatic antibiotic chloramphenicol tolerate ciprofloxacin and cefotaxime challenge 

while maintaining high intracellular ATP concentrations[36]. Similarly, within infected 

macrophages, S. Typhimurium persisters were demonstrated to exist in a metabolically 

active, non-growing state[35]. These intracellular populations were shown to be 

transcriptionally and translationally active, but tolerant to killing by β-lactam 

antibiotics[35]. Based on these findings some claim that ATP-depletion cannot be the 

underlying mechanism driving antibiotic tolerance, and we agree. Instead, we propose 

that in the same way that TA module activation promotes antibiotic tolerance by 

inducing ATP depletion, ATP depletion drives antibiotic tolerance by reducing antibiotic 
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target activity. Antibiotic target inhibition is not restricted to ATP depletion, thus this 

model accommodates ATP-independent determinants of antibiotic tolerance. 

As with cancer, where many extrinsic factors like carcinogens, radiation, or viral 

infection can elicit a similar state of uncontrolled growth, we propose that many extrinsic 

factors in the host can decrease antibiotic target activity to promote tolerance. 

Sometimes this occurs through ATP depletion, and sometimes not. For the cases 

described above, it is logical to conclude that treating Salmonella with chloramphenicol 

(a translation inhibitor) will result in increased intracellular ATP concentrations, as 

protein synthesis is an energy-demanding process. However, as chloramphenicol is a 

bacteriostatic antibiotic that inhibits bacterial growth and replication, chloramphenicol-

treated cells are no longer replicating DNA or synthesizing new cell wall. Thus, these 

populations will no longer be susceptible to killing by antibiotics that corrupting active 

DNA (ciprofloxacin) or cell wall (cefotaxime) biosynthesis. Similarly, though Stapels et 

al. demonstrated that transcriptionally and translationally active, non-dividing 

Salmonella are tolerant to β-lactam antibiotics, it remains to be seen whether these 

populations are tolerant to antibiotics that specifically target transcription or translation 

in this state.  

Conversely, data presented in Chapter 3 demonstrated that inducing PMF-

independent aminoglycoside uptake allowed for the eradication of ATP-depleted S. 

aureus populations. Arsenate treatment depletes S. aureus intracellular ATP levels and 

pushes the population into a non-dividing state that is completely tolerant to 

ciprofloxacin killing[26]. Recently, Pu et al demonstrated that non-growing, ATP-

depleted persister cells maintain low levels of translation[257]. This may explain why 
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ATP-depleted persister cells are tolerant to ciprofloxacin (DNA synthesis) but not 

aminoglycosides (protein synthesis) as these cells are no longer dividing but are still 

synthesizing new protein. Together, these findings support our hypothesis that antibiotic 

tolerance occurs when target activity is inhibited and that populations remain 

susceptible when antibiotics can access active targets, independent of ATP levels. 

Understanding which metabolic processes are active in persisters will improve our 

ability to treat these populations.  

Shifting attention away from strictly considering the factors that deplete 

intracellular ATP levels and towards the factors that influence antibiotic target activity 

may reveal how other extrinsic factors present within the host contribute to antibiotic 

treatment failure. For instance, many core bacterial processes are facilitated by metal-

dependent metalloenzymes[350]. Within the host, the concentrations of transition 

metals like iron, zinc, manganese, etc. are tightly regulated through host mechanisms of 

sequestration[351]. It is possible that metal starvation by the host may inadvertently 

lead to antibiotic tolerance in infecting bacterial populations by reducing target activity. 

For example, host calprotectin readily binds excess zinc in the host as a form of 

nutritional immunity against invading pathogens[352]. Bacteria require zinc for a number 

of important cellular processes including the binding of zinc-dependent transcription 

factors during RNA synthesis. We have observed that zinc starvation through exposure 

to the heavy metal chelator TPEN inhibits transcription in S. aureus in vitro cultures, and 

that this reduction corresponds to a population-wide induction of tolerance to rifampicin 

(unpublished data). Importantly, ATP levels following TPEN treatment is approximately 

twice that of untreated, rifampicin sensitive cultures, suggesting that target inactivation 
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through zinc starvation induces antibiotic tolerance through an ATP-independent 

mechanism, perhaps through the slowing of bacterial transcription. Future studies in the 

lab will determine the precise mechanism by which zinc starvation induces antibiotic 

tolerance, as well as if zinc concentration influence antibiotic susceptibility within the 

host.  

 

SUMMARY- CHAPTER 4 FRANCISELLA TULARENSIS UTILIZES NON-GLUCOSE 
CARBON SUBSTRATES TO FUEL RAPID INTRACELLULAR PROLIFERATION.  

 
Intracellular pathogens are sheltered from both host- and antibiotic- mediated 

mechanisms of killing that occur in the extracellular space. Identifying and inhibiting the 

pathways these pathogens use to modify the intracellular niche to survive within this 

environment is a promising approach to target these populations when other antibiotics 

fail. However, for most pathogens the bacterial metabolic pathways and host-derived 

nutrients required for intracellular proliferation are poorly understood. In Chapter 4, we 

used systematic mutational analysis to identify the carbon catabolic pathways and host-

derived nutrients required for intracellular replication of the BSL-3 F. tularensis strain, 

SchuS4. We demonstrated that the glycolytic enzyme phosphofructokinase (PfkA), and 

thus glycolysis, is dispensable for F. tularensis SchuS4 virulence, and highlighted the 

importance of the gluconeogenic enzyme fructose 1,6-bisphosphatase (GlpX). We 

found that the specific gluconeogenic enzymes that function upstream of GlpX varied 

based on infection model, indicating that F. tularensis alters its metabolic flux according 

to the nutrients available within its replicative niche. For instance, pyruvate-phosphate 

dikinase (PpdK)-mediated conversion of pyruvate to PEP (required for growth on 

lactate) was required for growth within J774A.1 transformed macrophages but not within 



172 

primary cells or a mouse. Transformed cell lines produce significant concentrations of 

lactate through aerobic glycolysis[281], and this availability may dictate the preferred 

metabolic pathway, perhaps through catabolite repression. Despite this flexibility, we 

found that glutamate dehydrogenase (GdhA) and glycerol 3-phosphate dehydrogenase 

(GlpA) are essential for F. tularensis intracellular replication in all infection models 

tested. Finally, we used the small molecule inhibitor, Atglistatin, and ATGL knockdown 

BMDMs to demonstrate that host cell lipolysis is required for F. tularensis intracellular 

proliferation, suggesting that host triglyceride stores may inadvertently fuel F. tularensis 

intracellular replication. These findings reveal new therapeutic strategies for targeting 

this highly infectious pathogen and may provide insight for improved targeting of 

intracellular pathogens in general. 

 

Disrupting niche modification to target recalcitrant pathogen populations.  

In identifying factors required for F. tularensis intracellular replication in Chapter 

4, we began to unravel the complex host-microbe interactions that occur during F. 

tularensis infection. We identified the gluconeogenic pathway as well as glycerol and 

glutamate catabolism as essential for F. tularensis intracellular proliferation. However, 

these central metabolic pathways are equally essential to host cell metabolism, and as 

such, direct targeting of these pathways may have undesired effects on host health. 

Instead, we propose that disrupting F. tularensis re-programming of host metabolism is 

a more practical approach to limiting pathogen growth.  

Bacterial strategies for obtaining host-derived trace metals such as iron are 

relatively well defined. Previous studies have identified an array of siderophores, 
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hemoglobin-binding modules or active transport system that scavenge and import 

precious iron from the host[276,353,354]. However, to date, relatively few active carbon 

acquisition mechanisms are described for intracellular bacterial pathogens. A few 

examples include M. tuberculosis secretion of lipases that free up fatty acids from host 

lipid droplets, and S. Typhimurium secreted protein effector molecules that redirect 

vesicular trafficking of nutrients to the Salmonella-containing vacuole[168,170]. As 

carbon acquisition is essential to intracellular replication, there are likely many other 

unidentified mechanisms by which intracellular pathogens actively modulate this 

environment to derive nutrients. 

Following intracellular invasion, F. tularensis subverts host xenophagy and 

hijacks host metabolism through the secretion of various effector molecules that aid in 

establishing a permissive niche[355,356]. This includes inhibiting phagosome 

acidification, inhibiting reactive oxygen species generation by the host, and inducing 

host cell autophagy to provide free amino acids[282,357–359]. F. tularensis intracellular 

replication occurs in the presence of host autophagy inhibitors[282], suggesting that the 

pathogen consumes additional nutrients besides host autophagy-derived amino acids. 

We observed that inhibition of host cell lipolysis reduced F. tularensis intracellular 

burden. It is possible that commandeering both host lipolysis and autophagy provides F. 

tularensis with the bulk of the host-derived carbon necessary for replication. Future 

studies by the lab will determine whether treating cells simultaneously with autophagy 

inhibitors (e.g. 3-methyladenine) and lipolysis inhibitors (e.g Atglistatin) are sufficient to 

abrogate F. tularensis replication within the host.  
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Future screening of host-acting compounds against F. tularensis infected 

macrophages may reveal new therapeutics that reduce intracellular permissibility to F. 

tularensis replication. Many viral and bacterial pathogens manipulate host signaling 

through the major metabolic regulators AMP-activated protein kinase (AMPK)[360]. 

AMPK is a major eukaryotic regulator of energy homeostasis that responds to an 

increase in ADP:ATP ratios by stimulating nutrient acquisition and reducing energy 

consuming processes within the cell[361]. Previously we observed that F. tularensis 

infection stimulates host AMPK activation, and that AMPK-/- host cells do not support 

wild-type levels of F. tularensis growth (unpublished data). Furthermore, in Chapter 4 

we observed that stimulating AMPK activation with an AMP analogue (AICAR) rescued 

the intracellular growth defects observed for ΔglpX, ΔgdhA, and ΔglpKA mutants. As 

this rescue only occurred when cells were cultured in excess glucose, AICAR 

presumably restored the viability of these mutants by increasing host glucose uptake 

and availability thus subverting the growth defect caused by inhibiting these metabolic 

pathways. Additionally, AMPK activation triggers host cell autophagy, and autophagy-

derived amino acids support F. tularensis intracellular replication[282,361]. Together 

these results suggest that inhibiting F. tularensis-mediated AMPK activation may 

represent an alternative approach for reducing intracellular burden by decreasing the 

availability of free nutrients. Future in vivo experiments will explore whether 

pharmacologically inhibiting F. tularensis activation of AMPK reduces bacterial virulence 

and burden within a host.   

One potential caveat of inhibiting F. tularensis nutrient acquisition during 

intracellular replication is that this approach will presumably reduce the metabolic 
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activity of the pathogen and may inadvertently render it tolerant to subsequent antibiotic 

challenge. The extreme intracellular growth rate of F. tularensis likely contributes to its 

broad susceptibility to antibiotics and may explain why even aminoglycosides that 

normally penetrate poorly into the intracellular space are effective at clearing F. 

tularensis following long-term treatment. Antibiotic tolerance is poorly understood for F. 

tularensis, and few studies have probed the clinical relevance of F. tularensis persister 

formation. As F. tularensis is adept at inhibiting host-mediated clearance during 

intracellular replication, future studies are required to determine how long an energy-

starved population of F. tularensis can persist within the intracellular space in order to 

prevent selection for persister populations that perpetuate relapsing infection following 

cessation of treatment.  
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