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ABSTRACT

Timothy M. Weigand: On the Use of Entropy Production to Improve Mathematical Models and
Numerical Methods for Non-Dilute Flow and Transport in Porous Media

(Under the direction of Cass T. Miller)

Non-dilute flow and transport in porous media plays an important role in many natural and

engineered systems, however a mature understanding is lacking. As environmental conditions change

and water resources become scarcer, the need for a more complete understanding of non-dilute flow and

transport will be necessary to address future challenges, for example, assessing impacts of climate

change on fresh water supplies and examining mitigation strategies. The thermodynamically constrained

averaging theory (TCAT) is an approach for developing mathematical models that ties together

conservation and thermodynamic laws and connects all spatial scales. This approach is used to develop a

new macroscale model for non-dilute flow and transport in porous media. This model is found to more

accurately describe a set of non-dilute laboratory displacement experiments as compared to existing

models. Through the development of the model, an entropy production rate is derived and a new

numerical method is formulated that utilizes the entropy production rate to improve computational

efficiency. The general framework of this new approach can be applied to other models where the

entropy production rate is known. To further improve macroscale models and our understanding of

non-dilute behavior, microscale simulations are performed. As TCAT relates all spatial scales, the

microscale simulations are averaged to gain insight on macroscale behavior. The importance that density,

viscosity, and activity have on macroscale transport is assessed and microscale velocity distributions are

analyzed to explain gravity stabilization and macroscale transport behavior.
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CHAPTER 1: INTRODUCTION

1.1 Non-Dilute Flow and Transport

The flow and transport of fresh and saline water in porous media play an important role in many

natural and engineered environments. Seawater intrusion, or the displacement of fresh groundwater

by saline water, can result in the contamination of fresh water supplies that are used for human con-

sumption or to meet agricultural demand (Barlow and Reichard, 2010; Werner et al., 2013). Toxic

and radioactive materials are often injected in subsurface rock salt formations as a disposal method

(Kolditz et al., 1998; Oldenburg and Pruess, 1995). Brines, or concentrated saline waters, have also

been injected into the subsurface as a strategy to prevent migration of dense non-aqueous phase liquids

and other toxic chemicals into drinking water supplies (Hill et al., 2001; Miller et al., 2000; Wright

et al., 2009).

Recent studies have shown that additional research is required for these applications due to chang-

ing environmental conditions and flawed assumptions. For seawater intrusion, climate change and

sea level rise will further compound and reduce valuable fresh groundwater reserves (Ketabchi et al.,

2016). Rock salts have been shown to not be impermeable to fluid flow, as previously believed, which

raises significant concerns for toxic and radioactive waste disposal and the migration of chemicals

(Ghanbarzadeh et al., 2015). To address these problems, a mechansitic understanding of the flow and

transport of fresh and saline water in porous media is needed.

The interaction of fresh and saline water in porous media is a function of many factors, including

the fluid properties (i.e. density, viscosity, chemical activity, pressure and temperature), the pore mor-

phology and topology and operating conditions (Diersch and Kolditz, 2002; Gray and Miller, 2009;

Homsy, 1987; Landman et al., 2007b; Sharp, 1984; Simmons et al., 2001; Watson et al., 2002b; Welty

and Gelhar, 1991; Wright et al., 2009). Due to the salt species being at a high enough concentration

to impact the fluid properties, the interaction of fresh and saline water is also referred to as non-dilute
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flow and transport. This term is more general as it includes any chemical species that can affect fluid

properties and not just salt.

Non-dilute flow and transport can be viewed as an extension of dilute flow and transport. For a

dilute system, the flow and and transport components can be examined independently as the chem-

ical species of concern does not impact the flow. The dilute species will move with the fluid while

spreading from higher concentrations to lower concentrations due to molecular diffusion. For non-

dilute flow and transport, the flow and transport components cannot be isolated because the species of

interest affects the fluid properties and the flow field. The movement of the fluid in porous media is al-

ready complex when fluid properties are constant due to the tortuous path caused by pore morphology

(Bijeljic et al., 2011). When the fluid properties become functions of the species concentration, fluid

flow behavior becomes significantly more complicated and additional physical phenomena need to be

considered such as gravity stabilization (Fernandez et al., 2002).

1.2 Non-Dilute Flow and Transport Models

1.2.1 Length Scales

The length scale of a model is one of its defining features and in this work we are concerned with

the microscale and the macroscale. At the microscale, the smallest of the two scales considered in

this work, the exact pore morphology and topology are known as well as the exact boundaries of each

phase present in the system (Gray and Miller, 2014). For most practical porous media applications,

exact microscale information is unknown. At the macroscale, the phase boundaries are no longer

known and a macroscale point is represented by the average microscale conditions among all entities.

The averaging region used to determine macroscale variables needs to be sufficiently large such that

the average is well-defined and insensitive to small changes in the size of the region. This is known as

a representative elementary volume (REV) (Bear, 2012).

1.2.2 Existing Models

The traditional approach for formulating macroscale non-dilute flow and transport models is to

ignore the microscale, where we have a better understanding of system behavior, and apply conserva-

tion of mass and momentum equations directly at the macroscale (Bear, 2012; Simmons et al., 2001).
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Empirical relations are then posed to have a closed system. As an example, many researchers have

used the macroscale dilute flow and transport model to simulate non-dilute behavior by forcing the

dispersivity parameter to agree with laboratory data (Boufadel et al., 1999; Frolkovic and Schepper,

2000; Ibaraki, 1998). Dispersivity is a measure of how a chemical species spreads due to variations of

the microscale velocities but is only a property of the porous medium and not a function of the fluid

properties. Rather than deriving a model from a mechanistic understanding of non-dilute behavior,

macroscale parameters are forced to describe the empirical evidence thus severely limiting the applica-

bility and predictive capabilities of the model (Jiao and Hötzl, 2004; Konz et al., 2009; Landman et al.,

2007a,b; Starr and Parlange, 1976; Watson et al., 2002c).

More formal attempts at developing macroscale models for non-dilute flow and transport in porous

media have been unable to provide a mechanistic description of non-dilute behavior and are not de-

veloped with a sound fundamental basis (Demidov, 2006; Hassanizadeh and Leijnse, 1995; Landman

et al., 2007b). The most popular approach is by Hassanizadeh and Leijnse (1995) that combined aver-

aged microscale conservation laws but used macroscale thermodynamics. While models should obey

all conservation and thermodynamic laws, the thermodynamic equations should use microscale ther-

modynamic equations to have consistency across all spatial scales (Gray et al., 2013). To account for

the complex non-dilute microscale behavior, a fitting parameter was introduced that is not explicitly

related to any physical phenomena. While the model was able to adequately simulate non-dilute labo-

ratory experiments, the usefulness and applicability of the model is reduced as the dependencies and

physical phenomena that the fitting parameter represent are unknown (Watson et al., 2002c). There

is a need for a macroscale model of non-dilute flow and transport in porous media that begins with

a mechanistic understanding of microscale behavior, is developed on a sound fundamental basis and

includes, if necessary, parameters that are applicable to a wide range of chemical species and porous

media systems.

1.2.3 Thermodynamically Constrained Averaging Theory

The thermodynamically constrained averaging theory (TCAT) is an approach to formulate math-

ematical models that couples conservation laws and the laws of thermodynamics (Gray and Miller,

2005, 2014). All conservation and thermodynamic equations, and variables are first written at the mi-

croscale. A formal averaging approach is then used to upscale the microscale equations and variables
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to the desired scale. As is often the case, the number of equations is less than the number of unknowns

and additional relations are required to obtain a closed model. With TCAT, an entropy inequality is

formed to guide the development of the closure relations such that the posited relations must obey the

second law of thermodynamics. Evolution equations can be derived from the averaging theorems to ac-

count for larger scale geometric quantities that also need closure. The combination of the conservation

equations, state equations, entropy-based closure relations, and evolution equations compose a closed,

parameterized model.

The TCAT approach ensures that all physical and thermodynamic laws are obeyed. The models

are formulated for the most complex scenario and then assumptions are made. This ensures that all

assumptions are explicit and that the resulting models reduce to their simpler versions. For example,

as the concentration of a species approaches the dilute limit, the non-dilute model should be able

to accurately model dilute behavior. As model formulation begins at the microscale, all larger scale

equations and variables are written in terms of microscale averages and therefore all variables are

well-defined. The sum of these features is unique to TCAT.

Gray and Miller (2009) developed a closed macroscale model for non-dilute flow and transport

using TCAT. This model includes all of the features described above and includes physics ignored

by other models including dissipative terms related to gradients in activity and pressure. A simulator

for this model has not been implemented. Additionally, the relations posited to close the model have

not been evaluated and only relate terms through closure coefficients. Parameterization of the closure

coefficients is still needed and should be based on a mechanistic understanding of non-dilute behavior.

1.3 Subscale Modeling

As mentioned, one of the features of the TCAT approach is that all variables are written in terms

of microscale averages. While an improved model is needed for non-dilute flow and transport at the

macroscale, microscale simulations can be preformed to gain a mechanistic understanding of macro-

scale behavior by averaging the microscale results. The governing equations that describe microscale

behavior are better understood and high-fidelity simulators already exist (Weller et al., 1998). The use

of smaller scale simulations to validate large scale models, parameterize unknown closure coefficients,

and assess macroscale assumptions is known as subscale modeling.
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Subscale modeling also allows for simulations where specific behavior can be isolated. For exam-

ple, if we wanted to examine the effects that density has on non-dilute flow and transport but ignore

other aspects such as activity and viscosity, we could simply force the activity and viscosity to be con-

stant in the simulations. This is difficult in a laboratory setting as we are constrained to the combined

properties of the species selected for the experiments.

Microscale non-dilute flow and transport simulations have been limited to the membrane literature

where no porous media is present (Gruber et al., 2011, 2016). Dilute flow and transport in porous

media has been studied extensively (Aramideh et al., 2018; Bijeljic et al., 2011, 2004, 2013; Icardi

et al., 2014). Using subscale modeling as a tool to improve TCAT models has seen success for two-

fluid-phase flow in porous media where closure coefficients have been parameterized, improved state

equations have been developed, and enhanced understanding of microscale and macroscale physics has

been provided (Bruning and Miller, 2019; Dye et al., 2016; McClure et al., 2017).

1.4 Numerical Methods for Non-Dilute Flow and Transport Problems

Obtaining an accurate solution to the existing macroscale models for non-dilute flow and trans-

port is nontrivial (Landman et al., 2007a). The class of problems that include non-dilute flow and

transport are known as sharp front problems and the defining feature is an advective term that is large

as compared to the dispersive term, if present at all (Farthing and Miller, 2000; Smith et al., 1991;

Widdowson et al., 1988). The characteristic of sharp front problems is a near instantaneous transition

of the solution variable in space. Low-order numerical methods for sharp front problems will pro-

duce a solution free of non-physical oscillations but to obtain an accurate solution, a large number of

degrees of freedom are needed to adequately resolve the front (LeVeque, 2002). A large number of

degrees of freedom increases the computational cost and for many problems this may not be an op-

tion due to computational constraints and higher order numerical methods are needed. According to

Godunov’s theorem, only nonlinear higher-order methods and linear first-order methods can provide

non-oscillatory solutions (Godunov, 1959).

The literature is rife with nonlinear higher-order methods for sharp front problems however low-

order approximations have typically been used for solving non-dilute flow and transport models (Guer-

mond and Popov, 2017; Hassanizadeh and Leijnse, 1995; Johannsen et al., 2002; Landman et al.,
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2007b; LeVeque, 2002; Miller et al., 2013; Watson et al., 2002c). Many of the nonlinear higher-order

methods are not ideal for irregularly shaped domains, which commonly occur in non-dilute flow and

transport applications (Miller et al., 2016). Methods where an irregularly shaped domain can easily

be incorporated, such as finite element methods (FEM), are not as mature for sharp front problems

(Guermond and Popov, 2017; Kuzmin, 2006).

One class of FEM approaches is based on introducing artificial viscosity (or diffusion) into the

solution to remove non-physical oscillations (Harten et al., 1976, 1997; Lax, 1971; LeVeque, 1992;

Osher and Chakravarthy, 1984; Smoller, 1994). The difficulty with this method is determining the

optimal amount of artificial viscosity to introduce; if too little artificial viscosity is included, the so-

lution will oscillate, if too much artificial viscosity is added, the solution will be smeared. The op-

timal amount of viscosity to add is not known a priori. One approach for determining the amount

of artificial viscosity to include is the entropy viscosity method (EV) that scales the amount of artifi-

cial viscosity based on a measure of the mathematical entropy, which is not inherently related to the

thermodynamic entropy (Guermond and Nazarov, 2014; Guermond et al., 2010, 2017, 2014, 2011;

Guermond and Popov, 2014, 2017). There is no rigorous definition of the optimal entropy function

and the choice is problem dependent.

As discussed, an entropy production rate is derived when developing a TCAT model to guide

model closure. Pairing the TCAT entropy production rate with the EV method, where a measure of

entropy is needed, may produce an efficient solution scheme. This could potentially improve the nu-

merical methods used for solving non-dilute flow and transport problems by using the known physics

to improve the numerics. This method can easily incorporate irregular boundaries and potentially

reduce the high computational cost associated with solving non-dilute flow and transport models.

1.5 Research Objectives

The research presented herein is focused on advancing the fundamental understanding of non-

dilute flow and transport in porous media. This includes inspecting the physical phenomena that occur

and improving numerical methods used to solve non-dilute flow and transport models. The specific

objectives for this research are as follows:
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• to develop and solve a parameterized macroscale model to describe non-dilute flow and trans-

port in porous media using the thermodynamically constrained averaging theory (Chapter 2);

• to improve the numerical methods used to solve the newly developed macroscale model for

non-dilute flow and transport in porous media by using the physics to improve the numerical

methods (Chapter 3); and

• to advance fundamental mechanistic understanding of non-dilute transport in porous media

using a microscale approach (Chapter 4).
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CHAPTER 2: MODELING NON-DILUTE SPECIES TRANSPORT USING THE THERMODY-
NAMICALLY CONSTRAINED AVERAGING THEORY

2.1 Introduction

The use of models to describe the flow and transport of non-dilute systems and fresh water is

commonplace. Applications include seawater intrusion in coastal aquifers, dense non-aqueous phase

liquid remediation and management, and underground injection of hazardous materials (Hill et al.,

2001; Kolditz et al., 1998; Miller et al., 2000; Werner et al., 2013; Wright et al., 2009). While existing

uses for non-dilute flow and transport models will remain, newer applications are emerging, such

as assessing the impacts that climate change and sea level rise will have on fresh water reserves and

exploring approaches to mitigate climate change (Ketabchi et al., 2016).

The classical approach for modeling mass transport in porous media for a dilute species involves

the use of conservation of mass equations for the fluid and species of interest, Darcy’s law as an

approximate conservation of momentum of the fluid, and Fick’s law to represent deviations from

the mean flow for the species (Bear, 1979). The form of the dispersion tensor used with Fick’s law

consists of a term related to molecular diffusion and a term that is a function of the Darcy velocity

weighted by a longitudinal and transverse dispersivity. The dispersivity coefficients are solely func-

tions of the porous medium and not a function of the fluid properties. For non-dilute systems, the

density and viscosity are functions of the fluid composition, which affects species transport. Therefore,

it is understood that the standard Fickian dilute model cannot be applied to non-dilute systems, even

for restrictive laboratory cases of a homogeneous isotropic porous media in a system well above the

representative elementary volume (REV) scale which is needed for Fickian transport to be a reason-

able approximation of reality.

Experimental and theoretical work on gravitationally stable, non-dilute displacements in porous

media has demonstrated that the observed dispersion is dependent on fluid properties (Anderson,

1997; Brigham et al., 1961; Hassanizadeh and Leijnse, 1995; Slobod, 1964; Welty and Gelhar, 1991).

While Darcy’s Law has been found to be applicable for approximating the momentum equation for
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the fluid phase in these systems, Fick’s law has been shown to be inadequate for describing deviations

from mean transport for a non-dilute species (Konz et al., 2009; Starr and Parlange, 1976; Watson

et al., 2002b; Wright et al., 2009). Dispersion in non-dilute systems has been found to depend on

the density gradients, viscosity gradients, and mean flow rate, in addition to properties of the porous

media (Broeke and Krishna, 1995; Jiao and Hötzl, 2004; Konz et al., 2009; Landman et al., 2007a,b;

Noordman and Wesselingh, 2002; Starr and Parlange, 1976; Watson et al., 2002c). Due to gravity

stabilization, the dispersion is reduced for larger density gradient displacements compared to the dilute

transport case, and the density gradient has been shown to be the dominant factor in comparison to

the viscosity gradient for systems evaluated to date (Landman et al., 2007a). The effects of chemical

activity on non-dilute flow and transport have not been reported in the literature.

While some have applied the standard Fickian dilute model to non-dilute systems despite the

inherent issues and shortcomings, others have attempted to develop new models to describe non-dilute

species transport (Gray and Miller, 2009, 2014; Hassanizadeh, 1990, 1996; Hassanizadeh and Leijnse,

1995; Landman et al., 2007b). A variety of physical mechanisms can affect the observed behavior

of non-dilute systems. Therefore, any new model requires significant validation by comparison to

experimental data. Ideally, a model should functionally represent the observed data when parameter

estimation is performed and successfully predict species transport in systems for which all parameters

have been estimated independently. The wider the variety of conditions a model is exposed to, the

more confidence one can have in the usefulness of the model. With these guiding principles in mind,

non-dilute species transport models have been developed and evaluated with respect to the operative

mechanisms.

The nonlinear Fickian model developed by Hassanizadeh and Leijnse (1995) is based on the

theory of rational thermodynamics and is a macroscale model, which is the scale at which a point is

represented by the average conditions among all phases (Hassanizadeh, 1986). In this model, the stan-

dard Fickian dispersion model is expanded by a Taylor series to include a new parameter to account

for non-ideal dispersion (Hassanizadeh, 1986; Hassanizadeh and Leijnse, 1995). Chemical potential

is used in the formulation of the model, however, an assumption is made that the chemical potential

is only a function of the mass fraction of the salt. The nonlinear Fickian model has been applied to

laboratory experiments (Hassanizadeh and Leijnse, 1995; Nick et al., 2009; Schotting et al., 1999;

Watson et al., 2002c) as well as a set of numerical data (Landman et al., 2007b). All of the laboratory
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experiments used NaCl as the non-dilute species. Multiple flow rates and coarse and medium grain

sands were examined as well as different flow regimes including constant head and constant flow rate

experiments. The optimized parameter in the nonlinear expansion has been found to be sensitive to the

difference between the displacing and displaced fluid densities and has been shown to be a function

of the velocity of the fluid, where the log of the parameter varies linearly with the log of the Darcy

velocity (Landman et al., 2007b; Watson et al., 2002c).

The model of Demidov (2006) was formulated from the microscale, where the boundaries of all

phases are resolved in space and in time, and homogenization was applied to derive a macroscale

model. This approach requires knowledge of the characteristic pore morphology and topology and a

parameterization of the flow field at the microscale. The model neglects viscosity and activity impacts

at both scales. This model has only been applied to one set of numerically generated data (Landman

et al., 2007b). Landman et al. (2007b) used the characteristic pore size parameter that appears in the

model as a fitting parameter to allow for comparison to the numerically generated data, and an empiri-

cal relationship was used to represent the microscale flow fluid. An accurate fit for two types of porous

media and various flow rates was obtained, however the fitting parameter depended upon system condi-

tions.

The homogenization model of Egorov (Landman et al., 2007b) was formulated at the mesoscale,

which is a scale above the macroscale used to account for heterogeneity at the macroscale. This model

assumes that the dilute flow and transport model is an accurate model at the macroscale for non-dilute

systems, which has been shown to be false (Anderson, 1997; Brigham et al., 1961; Hassanizadeh

and Leijnse, 1995; Slobod, 1964; Welty and Gelhar, 1991). The macroscale permeability distribution

field must be known and homogenization was used to derive a mesoscale model. This model neglects

viscosity and activity effects at both scales. As with the homogenization model of Demidov (2006),

this model has only been applied to a numerically generated set of data (Landman et al., 2007b) and

success of the model was limited.

In addition to the three models described above, a model has been derived based on the thermo-

dynamically constrained averaging theory (TCAT) (Gray and Miller, 2009). This approach poses all

equations at the microscale and uses formal averaging approaches to derive the model at the scale

of interest. The fluid and solid phases are considered, as well as the interface between the two. Mi-

croscale thermodynamic relations, based on classical irreversible thermodynamics, are also averaged
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and an entropy inequality is formulated, through the use of Lagrange multipliers, to provide permissi-

bility conditions for closure relations. An entity-based momentum equation, as well as a species-based

momentum equation, model was derived (Gray and Miller, 2009). The TCAT model includes disper-

sion associated with activity and pressure gradients. This model has not yet been solved or compared

to experimental data.

Currently, a mature level of understanding for modeling non-dilute transport has not yet been

achieved. Only limited experimental data is available and all models posed to date have some com-

bination of limited evaluation and validation or certain limitations in describing non-dilute systems

mechanistically. Opportunities exist to advance understanding of non-dilute transport using both exper-

imental methods that investigate a broader range of physical conditions than have been considered and

alternative approaches for mechanistic modeling of these challenging systems.

The overall goal of this work is to improve the understanding of the behavior of non-dilute species

transport in porous medium systems. The specific objectives of this work are: (1) to observe sys-

tems with a wide range of variability in fluid density, viscosity, and chemical activity of the reference

species; (2) to advance a multiscale model formulation approach for describing such systems; (3) to

develop efficient numerical approximation methods for the formulated model; (4) to compare exper-

imental observations with the formulated model description in both an explanatory and predictive

sense; and (5) to assess the importance of previously neglected phenomena, including species transport

due to variations in chemical activity.

2.2 Experimental Materials and Methods

The purpose of the experimental work was to investigate non-dilute transport for systems that have

not been studied to date to build the universe of data available for model evaluation and validation.

As such, the intent was to investigate systems with a relatively large range in density, viscosity, and

chemical activities in order to provide a challenging set of conditions to model. The materials and

methods used to collect this experimental data are detailed in the sections that follow.
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2.2.1 Materials

The materials used for this work included a uniform sand for the porous medium, water as a sol-

vent, a radioactive tracer, and a non-dilute solute. A 12/20 Accusand was used for the porous medium,

which is a uniform quartz sand with a reported mean particle diameter of 1.105 mm (σ = 0.014 mm),

uniformity coefficient of 1.231 (σ = 0.043), and a saturated hydraulic conductivity of 30.19 cm/min

(σ =1.00 cm/min) (Schroth et al., 1996). De-aired, deionized, and distilled (DDD) water was used for

all experiments and dilutions. Tritium was used as a conservative tracer, and calcium bromide (CaBr2)

was the non-dilute solute (Dead Sea Bromine Group).

2.2.2 Measurement Methods

The measurements involved in this work included fluid density, fluid viscosity, and the concentra-

tion of the radioactive tracer. The methods used to make these measurements are described in turn.

Density was measured using a density meter (Anton Paar DMA 48), where measurements are

typically ±0.0001 g/mL. The instrument was calibrated using air (0.0012 g/ml at 25◦C) and DDD

water (0.9970 g/ml at 25◦C). The density of the saturated brine was monitored through the course of

this work and determined to be 1.7039 g/ml.

For determining the density of the solution as a function of the CaBr2 mass fraction, a series of

solutions were made to characterize density across the mass fractions of interest. Specifically, 30

solutions were analyzed, including pure water. Solutions of brine and water were made by combining

volumetric ratios of saturated brine to DDD water starting at 3.33% brine (i.e., 1 part brine to 14 parts

water), increasing the ratio of brine of 3.33% (i.e., 2:13, 3:12, 4:11, etc.), and ending with 100% brine

(15:0). To ensure the solutions were mixed properly, the mass of each component was also measured

and compared with the expected mass, given the known density of both water and brine. Solutions

were allowed to equilibrate overnight prior to measuring. The glass tube in the density meter was

rinsed several times with water and ethanol, dried with air, and equilibrated back to the known density

of air between each measurement.

For the column experiments, the density meter was placed in-line with the column effluent to

provide continuous measurements of density. The read-out from the density meter was recorded every

30 seconds using a time-lapsed camera.
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Viscosity measurements were used to develop an equation of state between viscosity and CaBr2

mass fraction at 25◦C. Viscosity was measured using a falling ball viscometer (Haake Model B). To

verify the measurements, results from the viscometer were compared to standards that spanned the

range of the unknowns. The measured viscosity for water was compared to a value from the literature

(0.890 mPa·s at 25◦C). The error in the measurement was less than 5%. Similarly, the viscosity was

measured for a commercial viscosity standard much higher than that of water (Cannon Instrument

Company, General Purpose Viscosity Standard N10, 15.79 mPa·s 25◦C). The error in the measurement

was 11%.

A series of solutions were made to characterize viscosity across the CaBr2 mass fractions of in-

terest. Specifically, 10 solutions were made by combining volumetric ratios of brine to DDD water

starting at 10% brine (i.e., 1 part brine to 9 parts water), increasing in 10% increments, and ending

with 100% brine. Solutions were allowed to equilibrate overnight prior to measuring. Viscosity mea-

surements were made by first adding each solution to the falling ball apparatus. Next, one of the cali-

brated balls was dropped through the fluid and the amount of time to travel the length of the apparatus

was measured and used to calculate an estimate of the viscosity. A minimum of three measurements

were made for each solution. An average of these measurements was used when fitting the data for the

equation of state.

To measure the concentration of the radioactive tracer, samples were collected in plastic scin-

tillation vials and samples were mixed with Fisher 30% scintillation cocktail. A Packard 1900TR

scintillation counter measured the disintegrations per minute (DPM) for two minutes for the different

samples and the results were averaged. These results were then converted to have units of mCi.

2.2.3 Displacement Experiment Methods

A set of stable brine displacement experiments were performed in a column packed with homo-

geneous porous media. A cylindrical glass column, 90 cm in length and 2.5 cm in diameter was used.

Fluids were pumped through the column using syringe pumps (Harvard Apparatus) equipped with

glass, air-tight syringes (Hamilton Model 1100). The Darcy velocity for all experiments was 5 m/day.

The column was dry-packed with the 12/20 Accusand. The dry-packed columns were vibrated and

purged with gaseous CO2. Column A was packed to a length of 88.9 cm and Column B to a length of

88.0 cm. We differentiate between the two columns as we had to repack the column and the lengths
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of the columns changed and potentially the pore morphology and topology. The porosity for both

columns was 0.33, which was determined by weighing the mass of sand added to the column and

using the density of the sand (2.65 g/cm3). To calculate the tortuosity (τ̂ ) for each column, the relation

for a random homogeneous isotropic sphere packing was used, which is dependent on the porosity, and

was calculated to be 1.33 for both columns (Shen and Chen, 2007).

For the tracer displacement experiments, 2-mL aliquots from the effluent were collected in 10-

mL plastic scintillation vials. The experiment continued until at least 1.75 pore volumes had passed

through column. The results from the end of the column were normalized by dividing by the radioac-

tivity of the incoming fluid.

For the brine displacement experiments, the resident fluid was displaced with a fluid of greater

density, such that all displacements were always density stable (i.e., ρwd > ρwr , where ρw is the density

of the fluid, and the subscripts d and r refer to the displacing fluid density and resident fluid density,

respectively). Two types of experiments were conducted: (1) a series where the resident fluid in the

column was pure water and and the concentration of the CaBr2 in the displacing fluid was varied; and

(2) a series where both the resident and displacing fluid CaBr2 concentrations were varied to result

in a constant density difference between the two fluids. This second sequence of experiments had

variations in viscosity and chemical activity for each pair of resident and displacing mass fractions to

provide a means to examine the importance of changes in these variables. Both types of experiments

were conducted in Column A and the second type of experiment was repeated in Column B as the

column needed to be repacked midway through the replicates for the second type of experiment.

2.3 Model Formulations

The experimental data was designed to be macroscopically one-dimensional in space and the

models used to simulate this data were similarly one-dimensional. Since the conditions examined are

intentionally homogeneous and isotropic, and the systems are well above the REV limit, parameter

variation due to changes in material properties and non-local effects was not considered. The focus

was thus on evaluating the ability of models to describe non-dilute transport under stable displace-

ments in homogeneous systems.
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The nomenclature for all variables follows the TCAT convention (Gray and Miller, 2014). A

superscript on a variable refers to an intrinsic average of a microscale variable to produce a macroscale

variable. A single overbar on the superscript means that the term is a density weighted average of a

microscale variable, and a double overbar is a unique average, which is defined. Terms with carats

are coefficients that may be determined from experimental data using parameter estimation. Three

models are considered: the standard Fickian model, a nonlinear Fickian model, and a TCAT model for

non-dilute systems, which are summarized in turn in the sections that follow.

2.3.1 Fickian Model

The classical single-fluid-phase flow and Fickian dilute species transport model for a homoge-

neous, isotropic porous media has been used to describe non-dilute flow and transport by allowing the

density and viscosity of the fluid phase to vary as functions of the species concentration (e.g. Steefel

et al., 2015; Voss, 1984; Wright et al., 2009). This model is composed of a conservation of mass equa-

tion for the water phase
∂
(
εwρw

)
∂t

= − ∂

∂z

(
εwρwvw

)
, (2.1)

and a conservation of mass equation for the solute species

∂
(
εwρwωAw

)
∂t

= − ∂

∂z

(
εwρwωAwvw

)
− ∂

∂z

(
εwρwωAwuAw

)
, (2.2)

where z is positive upwards, εw is the porosity, ρw is the density of the water phase, vw is the velocity

of the water phase, ωAw is the mass fraction of solute species A, and uAw is the deviation velocity

from the mean for species A. Darcy’s law is used to solve for the velocity of the fluid phase

εwvw = − k̂
µ̂

(
∂pw

∂z
+ ρwgw

)
, (2.3)

where k̂ is the intrinsic permeability, µ̂ is the viscosity of the water, pw is the pressure of the water

phase, and gw is the gravitational acceleration.
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A Fickian approximation for the mass flux resulting from the deviation velocity can be written as

(Bear, 1979)

JAw = εwρwωAwuAw = −εwρwD̂∂ω
Aw

∂z
, (2.4)

where JAw is defined as the mass flux of species A and D̂ is the hydrodynamic dispersion for porous

media systems. The hydrodynamic dispersion consists of a term related to molecular diffusion and a

term that approximates variations in the microscale velocity. The most commonly used form in one

dimension is

D̂ =
D̂Aw

τ̂
+ α̂Lv

w , (2.5)

where τ̂ is the tortuosity of the porous medium, which is defined as the actual distance traveled by

a species over a unit length of the medium and is greater than or equal to one, D̂Aw is the molecular

diffusion coefficient, and α̂L is the longitudinal dispersivity (Bear, 1979).

2.3.2 Nonlinear Fickian Model

The nonlinear Fickian model approximates the dependency of the dispersion on fluid properties. A

series expansion of Fickian model yields

(
1 + β̂

∣∣∣JAw∣∣∣) JAw = −εwρwD̂∂ω
Aw

∂z
, (2.6)

where β̂ is a parameter and D̂ is defined in Eqn (4.103). The nonlinear Fickian model was derived us-

ing rational thermodynamics (Hassanizadeh, 1986; Hassanizadeh and Leijnse, 1995), and it is assumed

that the chemical potential is solely a function of the mass fraction of the species.

An alternative nonlinear Fickian model can also be written in the following form

JAw = −εwρw
(
D̂Aw

τ̂
+ α̂BLv

w

)
∂ωAw

∂z
, (2.7)

where

α̂BL =
2α̂L

1 +
√

1− 4β̂εwρwα̂Lvw
∂ωAw

∂z

. (2.8)
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Eqns (2.7) and (2.8) result from assuming that only the mechanical dispersion component of Eqn (2.6)

is nonlinear in the dispersive flux and that the molecular diffusion component does not depend upon

JAw, although D̂m may depend upon other solution variables.

2.3.3 Thermodynamically Constrained Averaging Theory Model

TCAT is a method for formulating models that provides a firm connection between the microscale,

or pore scale, and the macroscale for conservation equations as well as thermodynamics (Gray and

Miller, 2005, 2014; Miller and Gray, 2005). A formal averaging approach is used to upscale the mi-

croscale conservation and thermodynamic equations to the scale of interest. To solve the closure prob-

lem, the conservation equations and thermodynamic relations are combined in an entropy inequality.

Explicit, formally-stated approximations are used to simplify the entropy inequality to a strict flux-

force form. Closure relations are then posited, constrained by a requirement of consistency with the

simplified entropy inequality (SEI), and a closed model results. Parameters in the closure relations can

be determined with macroscale data using a parameter estimation approach such as nonlinear regres-

sion. Alternatively, due to the connection between all spatial scales, subscale or microscale modeling

can be performed to determine the parameters in the closure relations (Gray et al., 2015; Miller et al.,

2018b).

TCAT differentiates between primary restrictions, SEI approximations, and secondary restrictions

(Gray and Miller, 2014). Primary restrictions specify the thermodynamic theory to be used, the system

and scale to be considered, and the physical phenomena to be considered. For this problem, classical

irreversible thermodynamics is used to describe both equilibrium and near-equilibrium states. The sys-

tem of interest consists of a wetting phase, a relatively immobile solid phase, and an interface between

the wetting and solid phase. The properties of the wetting phase are dependent on species composition.

The scale of the system of interest is the macroscale and system length scales are well separated. The

macroscale is defined at a scale that is consistent with the size of the REV (Gray and Miller, 2009).

Additionally, the physical phenomena to be considered are the transport of mass, momentum, and

energy for each phase and the interface.

From the primary restrictions, an exact constrained entropy inequality (CEI) is derived. Assump-

tions are made to the CEI so that all terms are in a strict macroscale force-flux form so that closure

relations can be posited. The SEI approximations are based on mathematical approximations. Exam-
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ples of the approximations made for this system include breaking of average quantities and elimination

of terms that are expected to be small Gray and Miller (2009). Secondary restrictions are based on the

specific system of interest. In this work, the following assumptions are made: the system is isothermal,

the interface between the wetting phase and the solid can be neglected, the wetting phase consists of a

species A fully dissolved in a solvent B, no reactions occur, no diffusion of the species into the solid

phase, and the porous media is isotropic.

Miller and Gray (2008) and Gray and Miller (2009) have derived two different TCAT models

for non-dilute species transport. One form uses a phase-based conservation of momentum equation,

while the other uses a species-based conservation of momentum equation. Both of these models have

features that are lacking in other attempts to describe non-dilute flow and species transport including

gradients related to the pressure and activity that appear in the species conservation of mass equation.

As with all TCAT models, the macroscale variables in these models are expressed explicitly in terms

of specific averages of microscale quantities making a firm connection between the pore scale and the

macroscale.

The phase-based momentum equation TCAT model for non-dilute species transport from Gray

and Miller (2009) was extended in this work to include a cross-coupled closure. This formulation is

detailed in the appendix, and the final model formulation is summarized as follows.

The simplified conservation of momentum equation for the fluid is

R̂Awv vw = −εw ∂p
w

∂z
− εwρwgw −RGθw

(
MW 3

W

MW 2
AMW 2

B

)
D̂Aw
v

∂ωAw

∂z

−RGθw
(
xAw

γ̂Aw

)(
MWW

MWAMWB

)
D̂Aw
v

∂γ̂Aw

∂z

− ωAw
(
ρwV Aw − 1

)( MW 2
W

MWAMWB

)
D̂Aw
v

∂pw

∂z
, (2.9)

where species A is defined as the salt and species B is the water, R̂Awv and D̂Aw
v are closure coeffi-

cients that need to be parameterized, RG is the universal gas constant, θw is the temperature, MWA

and MWB are the molecular weights of species A and B, MWW is the molecular weight of the fluid

mixture, xAw is the mole fraction of species A, γ̂Aw is the activity of species A, and V Aw is the partial

mass volume of species A.
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The conservation of mass equation for species A is

∂
(
εwρwωAw

)
∂t

+
∂

∂z

[
εwρw

(
ωAw − R̂Awu

)
vw
]

− ∂

∂z

[
εw
(

MW 2
W

MWAMWB

)(
ρwV Aw − 1

)
ωAwD̂Aw

u

∂pw

∂z

]
− ∂

∂z

[
εwρwRGθ

w

(
MW 3

W

MW 2
AMW 2

B

)
D̂Aw
u

∂ωAw

∂z

]
− ∂

∂z

[
εwρwRGθ

w

(
ωAw

γ̂Aw

)(
MW 2

W

MW 2
AMWB

)
D̂Aw
u

∂γ̂Aw

∂z

]
= 0 , (2.10)

where R̂Awu and D̂Aw
u are non-negative closure coefficients. The conservation of mass equation for the

water phase is given in Eqn (2.1).

Preliminary work demonstrated that the cross-coupled terms are not significant for this system,

therefore we set D̂Aw
v and R̂Awu to zero. We define R̂Awv as

R̂Awv =
εw

2
µ̂

k̂
(2.11)

so that Eqn (2.9) becomes Darcy’s law, which has been shown to be valid for non-dilute systems (Wat-

son et al., 2002b).

The remaining issue deals with the parameterization of D̂Aw
u . In addition to satisfying the entropy

inequality constraint, the posited model should also reduce to the standard Fickian model for dilute

systems in the limit of a small mass fraction for the solute species, and to an established form for non-

dilute diffusion in the absence of advective transport. We posit a form that meets these criteria, which

resulted from the examination of many potential forms.

For the remaining parameter in the conservation of mass equation for the species, we pose the

following form

D̂Aw
u =

(
MW 2

AMW 2
B

MW 3
WRGθ

w

)(
D̂Aw

τ̂
+ α̂TLv

w

)
, (2.12)

where

α̂TL =
2α̂L

1 +

√
1− β̂T1 εwρwα̂Lvw ∂ω

Aw

∂z − β̂
T
2 ε

wρw ω
Aw

γ̂Aw

MWB
MWW

α̂Lvw
∂γ̂Aw

∂z

. (2.13)
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From the SEI, D̂Aw
u must be greater than or equal to zero. For our upward stable displacement

experiments, the spatial gradient of the mass fraction is always negative, however, the spatial gradient

of the activity, at low mass fractions, is positive. To ensure the SEI is obeyed, we restrict the two

parameters
(
β̂T1 and β̂T2

)
to be greater than or equal to zero and we neglect the activity portion of α̂TL

when the spatial gradient of the activity is positive, which occurs over a relatively small range of small

mass fractions of the salt. The two TCAT parameters are fitting parameters that allow the model to

vary the amount of dispersion based on chemical composition.

Thus, the conservation of mass equation for a species becomes

∂
(
εwρwωAw

)
∂t

+
∂

∂z

(
εwρwωAwvw

)
− ∂

∂z

[
εw
(
MWAMWB

MWWRGθw

)(
ρwV Aw − 1

)
ωAw

(
D̂Aw

τ̂
+ α̂TLv

w

)
∂pw

∂z

]

− ∂

∂z

[
εwρw

(
D̂Aw

τ̂
+ α̂TLv

w

)
∂ωAw

∂z

]

− ∂

∂z

[
εwρw

(
ωAw

γ̂Aw

)(
MWB

MWW

)(
D̂Aw

τ̂
+ α̂TLv

w

)
∂γ̂Aw

∂z

]
= 0 . (2.14)

For ease of notation, the conservation of mass equation for a species may be rewritten in terms of

diffusive and dispersive flux terms related to each spatial gradient

∂
(
εwρwωAw

)
∂t

+
∂

∂z

(
εwρwωAwvw + PDz + PDm

z + ΩD
z + ΩDm

z + ΓDz + ΓDm
z

)
= 0 , (2.15)

where the D superscript refers to a dispersive flux and Dm refers to diffusive flux, and Pz, Ωz and Γz

represent the terms associated with the pressure, mass fraction and activity gradient, respectively.

2.3.4 Additional Relations

While commonly neglected or set as a constant in the literature, the diffusion coefficient is known

to depend on the properties of the species (Bashar and Tellam, 2011; Bird et al., 2007; Gordon, 1937).
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For the diffusion coefficient, we used the following form

D̂Aw = D̂0
µ̂0

µ̂

1

ρwV Bw

1 +mAw
d
(

ln γ̂Aw
)

dmAw

 , (2.16)

where D̂0 is the dilute diffusion coefficient, V Bw is the partial mass volume of species B, mAw is the

molality of species A, and µ̂0 is the viscosity of the pure water (Bashar and Tellam, 2011). This form

was used for all three models.

The molecular weight of the fluid is calculated as

MWw =

(
ωAw

MWA
+

ωBw

MWB

)−1

. (2.17)

The partial mass volume of species A
(
V Aw

)
is defined as

V Aw =
1

ρw
+
(
1− ωAw

) ∂

∂ωAw

(
1

ρw

)
, (2.18)

and the partial mass volume of species B
(
V Bw

)
is

V Bw =
1

ρw
− ωAw ∂

∂ωAw

(
1

ρw

)
. (2.19)

2.4 Model Solution

2.4.1 Model Approximation

The governing equations for the models include a conservation of momentum equation for the

water phase, and a conservation of mass equation for the water phase and species A in the water phase.

The differences among the three models occur in the conservation of mass equation for species A. The

conservation of momentum equation is substituted into the two conservation of mass equations, allow-

ing us to solve for the water phase pressure and mass fraction of the salt as the dependent variables.

The numerical approximation method is formulated using a method of lines approach applied to

a system of differential algebraic equations (DAE). To derive the desired form of the equations, we

assume that the volume fraction of the water phase is invariant with respect to time and apply the chain
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rule to Eqn (2.1) yielding

ρw
′
εw
∂ωAw

∂t
= − ∂

∂z

(
εwρwvw

)
, (2.20)

where

ρw
′

=
∂ρw

∂ωAw
. (2.21)

Next, we multiply Eqn (2.15) by ρw
′
, apply the product rule and the chain rule, and rearrange

giving

ρw
′
εw
∂ωAw

∂t
=

− ρw
′

ρw + ρw′ωAw
∂

∂z

(
εwρwωAwvw + PDz + PDm

z + ΩD
z + ΩDm

z + ΓDz + ΓDm
z

)
. (2.22)

Eqn (2.20) is subtracted from Eqn (2.22), which eliminates the temporal derivative term and yields

∂

∂z

(
εwρwvw

)
− ρw

′

ρw + ρw′ωAw
∂

∂z

(
εwρwωAwvw + PDz + PDm

z + ΩD
z + ΩDm

z + ΓDz + ΓDm
z

)
= 0 . (2.23)

Upon approximation of the spatial derivatives, Eqns (2.20) and (2.23) are a pair of index-1 DAE.

The same procedure is performed for the Fickian and nonlinear Fickian models, with the appropri-

ate species conservation of mass equation.

For the initial conditions, the following relations are used

ωAw = ωAwres in Ω, t = 0 , (2.24)

pw = ρwresg
w (L− z) in Ω, t = 0 , (2.25)

where ωAwres is the mass fraction of CaBr2 in the resident fluid and ρwres is the density of the resident

fluid.

The following boundary conditions are used to match the experimental conditions

εwρwvw =
Q

A
ρwin at z = 0,∀t , (2.26)
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εwρwωAwvw + PDz + PDm
z + ΩD

z + ΩDm
z + ΓDz + ΓDm

z =
Q

A
ρwinω

Aw
in at z = 0,∀t , (2.27)

pw = 0 at z = L,∀t , (2.28)

∂ωAw

∂z
= 0 at z = L,∀t , (2.29)

where Q is the constant flow rate into the column, A is the cross-sectional area of the column, ρwin is

the density of the displacing fluid and ωAwin is the mass fraction of the CaBr2 in the displacing fluid.

The method of lines approach is used to decouple the spatial and temporal approximations (Miller

et al., 2006). This allows for the use of mature DAE integration methods for time integration. A

fixed-leading-coefficient backward difference approximation implemented using variable step-size

and variable order methods (up to fifth order) was used (Kees and Miller, 1999, 2002). The implicit

differential-algebraic solver (IDA) software package from SUNDIALS (version 2.7) was used for time

integration, and both the nonlinear and linear algebraic solvers (Hindmarsh et al., 2005). IDA uses a

modified Newton iteration where the Jacobian is typically out-of-date. A banded direct linear solver in

IDA was used with LAPACK and BLAS support. The time integration algorithm requires the residual

function of the differential algebraic equations to equal zero with the given initial conditions. IDA’s

built-in function was used to calculate the time derivative of the solution variables to ensure that the

residual function is zero at the beginning of the simulation.

For the spatial derivatives, a cell-centered finite difference approximation was used. The cell-

centered scheme was preferred over the node-centered method as it allowed for a more natural imple-

mentation of the flux boundary conditions (Weiser and Wheeler, 1988). Generally speaking, the front

sharpens when the brine concentration increases, therefore, the use of a uniform domain discretization

can become costly (Hassanizadeh and Leijnse, 1995; Landman et al., 2007a; Li et al., 2007). For the

experiments being examined, a single front exists and that front is the only location that needs to be

highly resolved. A spatially-adaptive method of lines algorithm (SAMOL) was adapted from Miller

et al. (2006) to adaptively refine the spatial discretization around the location of the front while using

a coarser grid away from the front. This algorithm greatly reduced the required number of nodes for a

grid-independent solution compared to a fixed-length spatial grid.
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2.4.2 Parameter Estimation

To determine the unknown parameters, which include α̂L for all models, β̂ for the nonlinear Fick-

ian model, and β̂T1 , and β̂T2 for the TCAT model, the `2 error norm of the difference between model

simulation and the experimental data was minimized. A variety of algorithms, constraints on the min-

imum and maximum values of the parameters, and initial guesses were used to ensure the optimal

values, and not local minima, were obtained for the parameters. Algorithms that were used include the

Method of Moving asymptotes (Svanberg, 1987), which is a local-gradient based technique, the Con-

strained Optimization by Linear Approximations method (Powell, 1994), and the DIRECT algorithm

which is a global optimization approach (Gablonsky and Kelley, 2001), all of which are built-in to the

software package NLopt (version 2.4.2) (Johnson, 2014). All three of the algorithms converged to the

same solution.

2.4.3 Computational Environment

All numerical simulations were run on a machine operating with Mac OSX 10.12, equipped

with two quad-core 2.5 GHz Intel i7 processors, and 16 GB of RAM. All codes were compiled with

g++/gcc version 6.3 with -O3 optimization. All code was implemented in C.

2.5 Results and Discussion

To advance understanding of non-dilute species transport we applied the previously detailed ex-

perimental methods and modeling approaches. The subsections that follow detail the experimental

work performed, compare the models, and show the importance of various physicochemical transport

phenomena.

2.5.1 Equations of State

Equations of state for density and viscosity as a function of the mass fraction of CaBr2 at 25◦C

were determined experimentally. A least squares fit was used to determine the unknown coefficients.

The mass density was fit to the following function

ρw (ω) = ρ0

(
1 + ρ1ω

Aw + ρ2ω
Aw2

+ ρ3ω
Aw3

)
, (2.30)
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where ρ0 = 0.9971 g/cm3, ρ1 = 0.8414, ρ2 = 0.4827, and ρ3 = 0.8640.

The following equation of state was fit from experimental data for the dynamic viscosity

µ̂ (ω) = cµ̂ exp
(
µ̂0 + µ̂1ω

Aw + µ̂2ω
Aw2

+ µ̂3ω
Aw3

)
, (2.31)

where cµ̂ = 0.01 g/(cm-s), µ̂0 = −0.1165, µ̂1 = 1.318, µ̂2 = −2.636, and µ̂3 = 11.49.

For the activity coefficient, the following form and coefficients presented by Goldberg and Nuttall

(1978) were used

γ̂Aw = exp

[
(γ0I)1/2

1 + (γ1I)1/2
+ γ2m

Aw +
(
γ3m

Aw
)2

+
(
γ4m

Aw
)3

+
(
γ5m

Aw
)4

+
(
γ6m

Aw
)5

+
(
γ7m

Aw
)6
]
, (2.32)

where mAw is the molality of species A and I = 3mAw is the ionic strength. The coefficients have the

following values with units of kg/mol: γ0 = 5.52, γ1 = 3.20, γ2 = 0.324, γ3 = 0.456, γ4 = −0.384,

γ5 = 332, γ6 = −0.264, and γ7 = 0.191.

The dilute molecular diffusion coefficient
(
D̂0

)
of tritium in water is 2.23×10−5 cm2/s (Mills,

1973) and 1.05×10−5 cm2/s for CaBr2 in water at 25◦C (Bashar and Tellam, 2011). The dilute molec-

ular diffusion coefficient for tritium was used for the dilute tracer experiments.

2.5.2 Displacement Experiments

Two series of column experiments were performed, which are referred to as A and B. The same

media was used for both of the columns. We differentiate between the two columns, as column B had

to be repacked. Variability of the porosity and tortuosity were not considered in this work. For both

columns, dilute tracer experiments, as well as a series of non-dilute species transport experiments,

were completed. These are discussed below.

Four dilute tracer experiments were performed. Tracer experiments were the first experiments

performed for each column. Partially through the non-dilute displacement experiments, an additional

tracer experiment was ran for each column to evaluate the extent to which conditions might have
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changed during the set of non-dilute displacement experiments. The dilute tracer experiments were

used to determine the longitudinal dispersivity (α̂L) for the columns.

Two different types of non-dilute displacement experiments were conducted. For experimental

set 1, pure water was the resident fluid and was displaced by solutions containing varying amounts of

CaBr2. With experimental set 2, the mass fraction of CaBr2 in the displacing and displaced fluids was

varied so that the density difference between the two fluids was the same for each experiment. Exper-

imental sets 1 and 2 were performed in Column A and only experimental set 2 was run in Column B.

Table 2.1 shows the fluid properties of the incoming and resident fluids for the experiments. For the

tracer and non-dilute displacement experiments, the minimum percent mass recovered was 99.93%,

which is consistent with the accuracy of the density meter. The naming convention for the experiments

first specifies which column was used, the experimental set, and finally the experiment number. The

mass fraction of the CaBr2 of the displacing fluid increased for each experimental number and T repre-

sents a tracer study.

Table 2.1: Experimental conditions for displacement experiments showing the difference in the fluid
properties between the displacing and displaced fluids.

ID ωAwres ωAwin ∆ρw (g/cm3) ∆µ̂ (g/cm-s) ∆γ̂Aw (-) `2 Error Norm
ColA 11 0 0.0125 0.011 2.2× 10−4 -0.43 -
ColA 12 0 0.025 0.021 4.2× 10−4 -0.48 1.92× 10−5

ColA 13 0 0.05 0.043 8.0× 10−4 -0.51 -
ColA 14 0 0.1 0.090 15× 10−4 -0.49 3.74× 10−5

ColA 15 0 0.2 0.19 29× 10−4 -0.31 -
ColA 16 0 0.4 0.47 120× 10−4 2.4 2.30× 10−4

ColA 21 0 0.15 0.14 21× 10−4 -0.43 -
ColA 22 0.27 0.37 0.14 53× 10−4 1.38 -
ColA 23 0.37 0.45 0.14 106× 10−4 5.33 -
ColA 24 0.45 0.53 0.14 276× 10−4 27.23 -
ColB 21 0 0.15 0.14 21× 10−4 -0.43 1.00× 10−6

ColB 22 0.15 0.27 0.14 24× 10−4 0.46 3.77× 10−7

ColB 23 0.27 0.37 0.14 53× 10−4 1.38 6.17× 10−7

ColB 24 0.37 0.45 0.14 106× 10−4 5.33 6.12× 10−7

ColB 25 0.45 0.53 0.14 276× 10−4 27.23 2.14× 10−7

For experiments where duplicates were run, the `2 error norms were calculated and are included

in Table 2.1. To determine the error norm, the phase error was first removed between the duplicate

experiments. At a fixed pumping rate, the normalized mass fraction of CaBr2 was assumed to be equal
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to 0.5 when one pore volume of displacing fluid was pumped into the system, where one pore vol-

ume is equal to the total volume of water in the column. Due to fluctuations in the pumping rate and

errors in the time measurements, this was not observed. To correct the phase error, a time correction

parameter was applied to match the assumed condition; these corrections were typically small and

well within the expected experimental error. Once the phase error was removed, the outflow mass frac-

tion of CaBr2 was splined for the duplicate experiment so that the data could be compared at identical

times. The `2 error norm was then calculated at each time step and normalized by the number of data

points. The error norms for the experiments in Column B were at least an order of magnitude lower

for each duplicate experiment than for Column A. The columns were reused for many experiments.

The fitted tracer dispersivities for Column A changed more than Column B, which is consistent with

the experimental error norms and is a result of minor changes in pore structure with time. No changes

in the experimental set-up or procedure changed between the two columns. The error norms for the

duplicate experiments provide a bound on the accuracy that would be expected from an ideal model

and provides a means to evaluate model error versus experimental error.

The published works on validating non-dilute transport models have focused on the lower end

of the non-dilute spectrum. Watson et al. (2002c) examined a displacing fluid with maximum mass

fraction of NaCl of 0.177 (∆ρw = 0.130 g/cm3 and ∆µ̂ = 4.46 × 10−3 g/cm-s) and a resident

fluid of pure water was used for all experiments. Hassanizadeh and Leijnse (1995) also conducted

and modeled displacement experiments with the displacing fluid having a maximum mass fraction

of 0.235 of NaCl (∆ρw = 0.175 g/cm3 and ∆µ̂ = 7.84 × 10−3 g/cm-s), however the resident fluid

had dilute levels of NaCl present. Landman et al. (2007a) generated numerical experiments without

directly representing a salt species and simulated a maximum density difference of 0.2 g/cm3, while

viscosity variations were neglected and the underlying macroscale model was assumed to be correct.

Activity was not calculated or considered in these works, however at the maximum NaCl mass fraction

of 0.235, ∆γ̂Aw = −0.1 at 25◦C (Hamer and Wu, 1972). For our dataset, the maximum mass fraction

of CaBr2 is 0.56, with a maximum density difference of 0.47 g/cm3, maximum viscosity difference

of 27.6 ×10−3 g/cm-s, and activity differences that are both positive and negative, with a maximum

activity difference of 27.23.
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2.5.3 Dilute Flow and Transport

The laboratory experiments were modeled as a one-dimensional system, therefore, only the lon-

gitudinal dispersivity coefficient needed to be fit to the dilute experiments to fully parameterize the

dispersion. The dilute flow and transport model was used to determine the longitudinal dispersivity for

the four dilute experiments that were performed.

For the parameter estimation, the `2 error norm between the observed outflow mass fraction from

the model and the laboratory experiments was minimized. A time correction parameter was fit to the

data to adjust for any phase error, which was previously discussed. Phase error in the experimental

results stemmed from time measurement errors, and variations in tubing lengths and flow rates. The

optimized longitudinal dispersivity values and time correction factors for the four tracer experiments

are included in Table 2.2. The time correction parameters were within expected error bounds and small

compared to the duration of the experiments, where 15,400 seconds were required for one pore volume

of fluid to pass through column A and 15,200 seconds for column B. For the non-dilute simulations,

the optimized longitudinal dispersivity value of the tracer experiment that preceded the experiment

was used.

Table 2.2: Fitted Longitudinal Dispersivity

Experiment α̂L (cm) tcorr (s)
Col AT1 0.137 -40.7
Col AT2 0.155 -42.7
Col BT1 0.108 -19.1
Col BT2 0.098 -11.7

A dispersion coefficient
(
D̂
)

was also fit to the non-dilute displacements using the dilute flow

and transport model. This was done as a measure of the front sharpening observed in the non-dilute

cases. The fitted dispersion coefficients ranged from 0.569 - 9.18×10−4 cm/s2, where the smallest

dispersion coefficient was from experiment Col A16 and the largest from experiment Col AT2, which

was a dilute tracer experiment. Figure 2.1 shows the fitted Fickian model profiles for these two ex-

periments. While the dilute flow and transport model works well for the dilute tracer experiment, for

the non-dilute displacement, the dilute model is not able to represent accurately either the leading or

the trailing portion of the front. With a constant dispersion coefficient and density, the dilute flow and

transport model can only produce a symmetric outflow profile, however, for non-dilute systems the
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outflow profile is asymmetric according to our laboratory data. For the sharpest experiment, the fitted

dispersion coefficient approaches the effective molecular diffusion coefficient of 0.096×10−4 cm/s2.

It can be observed from these two cases that non-dilute transport can result in marked sharpening of a

breakthrough curve compared to an ideal dilute tracer.
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Figure 2.1: Results from fitting the Fickian dispersion coefficient with the dilute flow and transport
model for the least and most disperse scenarios. The least disperse experiment had an incoming CaBr2

mass fraction of 0.4 and pure water as the resident fluid.

2.5.4 Non-Dilute Parameter Estimation Results

The unknown parameters in the nonlinear Fickian and TCAT models, as well as time correction

parameters, were fit by selecting a subset of the experimental data that was representative of the entire

dataset. This was done for both of the columns as the packing of the porous media changed slightly

between the two columns.

For Column A, the subset of data selected for the parameter estimation included a low (ColA 12),

medium (ColA 21), and high concentration (ColA 16) displacement as well as a case in which the

resident fluid was brine (ColA 24). The sum of the `2 error norms was minimized and the error norms
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were normalized by the total number of observations for each experiment so all experiments were

weighted the same.

The results of the nonlinear Fickian Model and TCAT model for Column A experiments are

shown in Figure 2.2. For the nonlinear Fickian model, the optimized parameter (β̂) was 5.97±0.21×106

g/cm2-s and the sum of the `2 error norms was 11.3× 10−4. This optimized value is the same order of

magnitude as reported in other work (Hassanizadeh and Leijnse, 1995; Landman et al., 2007b; Watson

et al., 2002c). For the TCAT model, the optimized parameters were β̂T1 = 2.53± 0.01× 107 g/cm2-s

and β̂T2 = 1.31± 0.05× 108 g/cm2-s and the error measure was 4.43× 10−4.
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Figure 1: Parameter estimation results and error for the nonlinear Fickian Model (left) and the TCAT model (right) for Column A.

1

Figure 2.2: Parameter estimation results and error for the nonlinear Fickian Model (left) and the TCAT
model (right) for Column A.
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From the parameter estimation, we see that the TCAT model produces a better fit for each of the

experiments compared to nonlinear Fickian model, with the most noticeable improvements for the low

concentration displacement (ColA 12) and the scenario where there is a non-dilute fluid initially in the

column (ColA 24). The difference between the resident and displacing fluid properties for these two

experiments vary by orders of magnitude, however the experimental results show a similar outflow pro-

file. The literature suggests that as the mass fraction, or density difference, between the displacing and

displaced fluids increases, the dispersion should decrease (Landman et al., 2007a; Schotting and Land-

man, 2004; Watson et al., 2002c). Our experimental results however suggest otherwise as ColA 24 has

a mass faction difference between the displacing and resident fluids of 0.08 (∆ρw = 0.14 g/cm3) while

ColA 12 has a mass fraction difference of 0.025 (∆ρw = 0.021 g/cm3). The nonlinear Fickian model

only considers dispersion due to the gradient of the mass fraction, however from the laboratory data it

is apparent that the dispersion is not just a function of the gradient of the mass fraction.

The `2 error norm for ColA 16 for the TCAT model (1.42 × 10−4) is less than the `2 error norm

for the duplicate laboratory runs (2.30 × 10−4) and the nonlinear Fickian model error norm for this

experiment (2.36× 10−4) is approaching this value as well. For ColA 12, both the TCAT model error

norm (0.53 × 10−4) and the nonlinear Fickian model error norm (2.19 × 10−4) are larger than the

error norms for the experiment (0.19× 10−4), but the TCAT model is of the same order. No duplicate

laboratory experiments were performed for the other two displacements included in the parameter

estimation. These results show that for Column A, the error in the TCAT model is on the same order of

magnitude as the error in the laboratory experiments.

Only two experiments were used for the fit for Column B and this parameter estimation was done

to determine the impacts of the porous media repacking and to examine the scenario where we have

a constant density difference between the incoming and resident fluids. The extremes of the dataset

(ColB 21 and ColB 25) were used for the parameter estimation.

For the nonlinear Fickian model, the optimized parameter (β̂) was found to be 5.20 ± 0.27 ×

106 g/cm2-s with a error norm of 4.76 × 10−4 and for the TCAT model the optimized parameters

were β̂T1 = 2.01 ± 0.01 × 107 g/cm2-s and β̂T2 = 2.05 ± 0.04 × 108 g/cm2-s, with an error norm

of 3.45 × 10−4. The optimized parameters for the TCAT model changed relatively more than the

parameter for the nonlinear Fickian model from Column A to Column B, and as shown in Figure 2.3,

the TCAT model produced better fits to the observed data. The nonlinear Fickian model for Column
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B produces a profile that is too sharp for ColB 25 while the exact opposite behavior is observed for

the TCAT model for ColB 25, with the TCAT model producing a better fit. The simulated profiles for

ColB 21 are similar for both of the models. This demonstrates the need for additional dispersive terms

that are included in the TCAT model. The longitudinal dispersivity determined from the dilute tracer

experiments were both slightly lower for Column B than Column A, which shows that the packings

were similar but not identical in this measure.
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Figure 1: Parameter estimation results and error for the nonlinear Fickian Model (left) and the TCAT model (right) for Column A.

1

Figure 2.3: Parameter estimation results and error for the nonlinear Fickian model (left) and the TCAT
model (right) for Column B.

Unlike the parameter estimation results from Column A, the error norms of both the TCAT model

and nonlinear Fickian model were larger than the experimental error norm for Column B. While the
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model errors are of the same magnitude for both of the columns, the laboratory errors were less for

Column B as compared to Column A.

While the `2 error norm for the TCAT model is less than that of the nonlinear Fickian model for

the two parameter estimations, the TCAT model has three parameters that must be fit to the exper-

imental data (αL, β̂T1 , β̂
T
2 ) while the nonlinear Fickian model has only two parameters (αL, β̂). To

accurately compare the two models, the Akaike information criteria (AIC) and the Bayesian infor-

mation criteria (BIC) were calculated (Aho et al., 2014). Both of the measurements account for the

number or parameters involved in the model, as well as the accuracy of the model. For both of the

measures and for both of the parameter estimations, the TCAT model is the best option. While having

an additional parameter, as compared to the nonlinear Fickian model, and having lower `2 error norms,

the TCAT model also includes additional physical phenomena that is not accounted for in these model

selection criteria.

2.5.5 Forward Simulation Results

The optimized parameters were used to determine how well each of the models can predict the

results of experiments not used in the parameter estimation procedure. Table 2.3 shows the `2 error

norm for each experiment for both the nonlinear Fickian and TCAT models, where the `2 error norm

was averaged when replicate experiments were performed. The average error for the TCAT model is

1.33× 10−4 and 2.50× 10−4 for the nonlinear Fickian model. The TCAT model reduces the error by

46% as compared to the nonlinear Fickian model.

Figure 2.4 shows the results for the nonlinear Fickian and TCAT models for experimental Set

1. The TCAT model outperforms the nonlinear Fickian model for all experiments shown except for

ColA 15, ColA 21, and Col B21. with the latter two experiments being used in the parameter esti-

mation. While the nonlinear Fickian model can accurately predict the sharpest displacement shown

(ColA 15), the optimized parameters are not capable of simulating the lower concentration displace-

ments as accurately. The accuracy of the TCAT model is nearly independent of the salt concentration

of the displacing fluid. The TCAT model is able to more accurately capture the trailing end of the out-

flow mass fraction profile as opposed to the leading end for the lowest concentration displacement.

This may be a result of the uncertainty in the activity function at low mass fractions (Goldberg and

Nuttall, 1978).
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Table 2.3: Forward Simulation Results for Both Models and Columns

Experiment ID Nonlinear Fickian Model TCAT Model
`2 × 10−4 `2 × 10−4

ColA 11 4.07 1.63
ColA 12* 2.19 0.53
ColA 13 3.82 1.52
ColA 14 1.24 0.89
ColA 15 1.48 1.61
ColA 16* 2.36 1.42
ColA 21* 0.50 0.95
ColA 22 1.68 0.92
ColA 23 4.21 1.58
ColA 24* 6.24 1.53
ColB 21* 1.10 1.26
ColB 22 1.40 1.08
ColB 23 1.02 0.51
ColB 24 2.52 2.42
ColB 25* 3.66 2.19
*Used in parameter estimation

The results for experiment Set 2 are shown in Figure 2.5. Only minor changes are observed in the

outflow mass fraction profiles for the nonlinear Fickian model. As mentioned, the literature suggests

that the reduction of dispersion is solely a function of the density difference between the two fluids,

however the experimental data suggests that dispersion is dependent on other factors. The slight vari-

ation in the nonlinear Fickian model breakthrough curves is due to a smaller mass fraction difference

that is required to maintain a constant density as the mass fraction increases. This trend can be seen as

the nonlinear Fickian model predicts a sharper profile with a larger mass fraction difference between

the fluids. The TCAT model, where activity gradients are included, is better at capturing the laboratory

data.

For the constant density experiments, the activity and viscosity are the two parameters that are not

controlled and both are varying by orders of magnitude and the activity is changing signs. Theoreti-

cally, a more viscous fluid would have less dispersion than a less viscous fluid because the velocities

in the pore throats do not vary as greatly. We see in the constant density experiments more dispersion

despite an increase in the viscosity. This suggest that the activity is the dominating term for dispersion

as compared to the viscosity.
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Figure 1: Forward simulations results and model error for the nonlinear Fickian model (left) and the TCAT model (right) for experiments
when pure water was initially in the column.

1

Figure 2.4: Forward simulations results and model error for the nonlinear Fickian model (left) and the
TCAT model (right) for experiments when pure water was initially in the column.

2.5.6 Components of Mass Flux

The four components of the dispersive mass flux at two different times for four simulations are

shown in Figure 2.6. The four simulations include a low (ColA 11), medium (ColA 15), and high

(ColA 16) concentration displacement, as well as a displacement where brine is initially in the column

(ColA 24). The terms associated with the gradients of pressure are neglected as the values were so

small that no impacts were observed.

Beginning with the low concentration displacement, the dispersive term associated with gradient

of the activity (ΓDz ) is always negative. In the dilute limit, the activity approaches one and as the mass

fraction increases, the activity decreases quickly to a minimum value of 0.49 when the mass fraction is
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Figure 1: Forward simulations results and model error for the nonlinear Fickian model (left) and the TCAT model (right) for experiments
when brine was initially in the column.
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Figure 2.5: Forward simulations results and model error for the nonlinear Fickian model (left) and the
TCAT model (right) for experiments when brine was initially in the column.

0.063. As the mass fraction continues to increase past this point, the activity increases exponentially.

For the low mass fraction scenario, the gradient of the activity will always have an opposite sign of

the gradient of the mass fraction. The dispersive term related to the gradient of the activity reduces the

total dispersion in the system. For this experiment, the diffusive terms are negligible.

For the medium and high displacement scenarios, ΓDz is both positive and negative. On the leading

front, the dispersive activity flux is negative, however once the activity is larger than the inflection

point of the activity function, the flux becomes positive. This results in the sum of the fluxes being

asymmetric. Comparing the medium and high displacement scenarios, the dominance of the dispersive

flux related to the mass fraction (ΩD
z ) reduces for the high concentration displacement, while the other
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Figure 1: The four flux terms and the sum of the fluxes, for a low (top left), medium (top right), high (bottom left) concentration displacement,
and a displacement experiment where brine is initially in the column (bottom right).
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Figure 2.6: The four flux terms and the sum of the fluxes, for a low (top left), medium (top right), high
(bottom left) concentration displacement, and a displacement experiment where brine is initially in the
column (bottom right).

three flux terms become more significant. Additionally, the diffusive activity flux (ΓDm
z ) is larger than

the diffusive mass fraction flux (ΩDm
z ) for the most concentrated displacement. The activity function

is exponential after the inflection point, therefore small gradients in the mass fraction for the high

concentration displacement result in large gradients in the activity.

For ColA 24, the resident brine has a mass fraction greater than the inflection point of the activity

function so ΓDz is strictly positive. For this experiment, ΓDz and ΓDm
z are the dominant terms making

up >80% of the total mass flux. For displacements where the mass fraction of salt in the displacing

fluid is large, whether the resident fluid is a brine or not, the diffusive terms become important. Addi-

tionally, for experimental Set 2, as the mass fraction increases, ΩD
z decreases monotonically while ΓDz
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and ΓDm
z increase monotonically. This shows that the inclusion of the activity in the TCAT model is

why the model is able to correctly simulate the constant density difference experiments.

As noted with the mass flux terms, the activity allows for asymmetry in the sum of the mass flux.

The dilute flow and transport model is unable to capture the tails of the outflow mass concentration for

non-dilute displacements (Figure 2.1). The asymmetry in the mass flux terms allows the TCAT model

to correctly model the tails, which is lacking in the more symmetric nonlinear Fickian model. Figure

2.7 shows the skewness of the outflow concentration for the laboratory data, and the nonlinear Fickian

and TCAT models for all simulations. The skewness of the TCAT model differs significantly from

zero as the difference in the incoming and resident mass fraction increases, which is where laboratory

data shows asymmetry. Overall, the TCAT model is able to correctly capture the skewness of the

underlying data due to the inclusion of the activity in the model.
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Figure 2.7: The skewness of the outflow concentration for all simulations for the laboratory data and
the Nonlinear Fickian and TCAT models.
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2.5.7 Model Alternatives

The TCAT model consists of two parameters, one related to the dispersive flux due to the gradient

in the mass fraction and the other due to the gradient of the activity. The two parameters ensure that

the entropy of the system is always increasing and allows the flexibility to accurately model non-dilute

behavior where the gradient of the density is constant but the gradients of the activity and viscosity

vary. The optimized parameters are believed to be functions of the Darcy velocity as has been shown

with the nonlinear Fickian model (Watson et al., 2002c). At our current level of understanding, how-

ever, these parameters are simply model parameterizations that are fit to match the experimental data.

Through many attempts, the current form was found. The addition of the terms multiplying the pa-

rameters and gradients of the mass fraction and activity yielded better fits. Model attempts included

parameters multiplying the gradients of the fluid properties (density, viscosity, mass fraction, and ac-

tivity) and various combinations thereof, however, no attempted version improved on the current form

despite the addition of more parameters.

The species transport equation for the TCAT model includes a gradient of pressure term that is

multiplied by the dispersion coefficient that was not discussed. Unlike the dispersive terms involving

the gradients of the mass fraction and the activity, the inclusion of this term and an additional param-

eter in the model did not result in any improvements. Additionally, the diffusive and dispersive terms

related to the gradient of the pressure were negligible for every simulation.

2.5.8 Limitations

The laboratory data in this work isolated different physical phenomena and examined higher mass

fractions, and density and viscosity differences between the two fluids than the experimental data

published to date. However, all of the experiments were performed with one flow rate and one type

of media and no internal probes were used. Watson et al. (2002c) developed a dataset that included

two types of porous media, different flow rates, constant flow and constant head boundary conditions,

as well as including internal probes that measured the pressure and mass fraction of NaCl. From this

dataset, additional information was obtained that allowed for the determination of the dependency of

the nonlinear Fickian model on different experimental conditions. This dataset however did not in-

clude the large differences in the fluid properties examined in this work. Applying the TCAT model to
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data with varying media, flow rates, and for cases in which additional model variables were measured

would provide an opportunity to further evaluate and validate the TCAT model.

2.6 Summary and Conclusions

The following can be concluded from this analysis:

• A TCAT model was developed to simulate non-dilute flow and species transport in porous me-

dia. This model has the advantages of a firm connection between the microscale, or pore scale,

and the macroscale; a thermodynamically consistent basis; and the explicit inclusion of a dissipa-

tive term that arises from a spatial gradient in chemical activity.

• An experimental dataset was collected that improved understanding of non-dilute flow and trans-

port by examining systems where the mass fraction, density and viscosity differences between

the fluids were greater than previously published. A series of experiments was also performed

where the density difference between resident and displacing fluids was held constant but the

mass fractions of CaBr2 were varied. The experimental data set allowed for the comparison of

the existing nonlinear Fickian model and the TCAT model.

• The dispersion for stable displacements is not solely a function of the density gradient or the

mass fraction gradient, and activity effects need to be considered for cases in which changes in

activity are large.

• The TCAT model outperformed the nonlinear Fickian model. The inclusion of the activity in the

TCAT model is the likely reason why this model was better suited at simulating the laboratory

data.

• Non-dilute displacements result in an asymmetric mass flux, which can be seen by attempting

to fit the dilute flow and transport model to non-dilute experiments and the failure to accurately

capture the tails of the breakthrough profile. The mass flux in the TCAT model can be asymmet-

ric, due to the inclusion of the activity.
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CHAPTER 3: A PHYSICALLY-BASED ENTROPY PRODUCTION RATE METHOD TO SIMU-
LATE SHARP FRONT TRANSPORT PROBLEMS IN POROUS MEDIA

3.1 Introduction

Sharp-front problems arise routinely in the geosciences. Examples include dilute species transport

in fluids that are dominated by advection, non-dilute transport, and biochemically reactive systems

(Farthing and Miller, 2000; Smith et al., 1991; Weigand et al., 2018b; Widdowson et al., 1988). These

problems arise for both porous media and transport phenomena in surface waters. They are typically

described using mechanistic models that in some cases are formally hyperbolic and in many cases

involve behavior that may tend toward a hyperbolic limit (LeVeque, 1992).

The numerical approximation of hyperbolic operators in applied mathematics and the geosciences

is considered mature (Guermond and Popov, 2017; LeVeque, 2002; Miller et al., 2013). A variety

of Godunov-type methods based upon flux-limiting or slope-limiting approaches arising from the

solution of a Riemann problem have been developed using finite volume approaches. The maturity of

these approaches is manifest in the availability of general-purpose solvers, and the routine use of these

approaches in the geosciences (LeVeque, 2002).

The success of mature finite volume methods notwithstanding, unstructured-mesh approaches

are often useful for problems in the geosciences due to the occurrence of irregular boundaries of the

domain and the irregular distribution of materials with markedly different physical properties within

the domain that must be resolved for accurate simulations (Miller et al., 2016). FEMs for sharp-front

problems are, however, much less mature than Godunov-type finite volume methods (Guermond and

Popov, 2017; Kuzmin, 2006).

The use of entropy has a long history in the theory for hyperbolic PDEs and in numerical methods

(Harten et al., 1976, 1997; Lax, 1971; LeVeque, 1992; Osher and Chakravarthy, 1984; Smoller, 1994).

Entropy conditions and functions can ensure that weak solutions converge to the physically relevant

solution. E-schemes are a class of numerical approaches that ensure entropy inequalities are satisfied

(Osher, 1984). Lee and Wheeler (Lee and Wheeler, 2017) and Puppo (Puppo, 2003) use entropy as
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a measure for grid refinement and shock tracking, respectively. The entropy viscosity schemes from

Guermond et al. (Guermond and Nazarov, 2014; Guermond et al., 2010, 2017, 2014, 2011; Guermond

and Popov, 2014, 2017) have received considerable recent attention in the literature as a means to add

sufficient dissipation to a FEM solution to suppress the undesirable numerical errors associated with

approximating hyperbolic operators using standard conforming FEMs. Entropy-viscosity methods

advanced to date have relied upon classical, mathematical entropy-flux pairs to guide the dissipation

added to the numerical approximation, which is often referred to as artificial viscosity.

On the other hand, continuum mechanical work over the last 15 years has led to the development

of the thermodynamically constrained averaging theory (TCAT) (Gray and Miller, 2014). TCAT is an

approach for formulating mechanistic macroscale models that are consistent with microscale physics

and thermodynamics. TCAT models assure that the resultant models are consistent with the second

law of thermodynamics, which is based upon the formulation of an entropy inequality (EI). The TCAT

EI is an expression for the rate of entropy production based upon the operative dissipative processes

in a system. Whether a physically-based entropy production rate provides useful information that can

be used to formulate a dissipation function that leads to an efficient FEM model for sharp-front prob-

lems is an open question. If an EI can serve such a purpose, existing continuum mechanical theory

could be leveraged to develop efficient numerical methods to approximate complex multiphase, multi-

component systems that fall outside the range of classical models for which traditional mathematical

entropy-flux pairs are well established.

3.2 Objectives

The overall goal of this work is to advance and evaluate a FEM for sharp-front problems based

upon the physical rate of entropy production. The specific objectives of this work are: (1) to formulate

the entropy production rate for general species transport in a porous medium system; (2) to formulate a

scheme where the numerical viscosity is based upon the physical production of entropy; (3) to evaluate

the new approach for dilute and non-dilute species transport; and (4) to examine ways in which the

method can be extended to other problems.
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3.3 Background

The background needed to meet the objectives of this work includes entropy viscosity methods,

and the TCAT approach for model formulation and the calculation of a physically-based entropy pro-

duction. The status of knowledge on these two components are considered in turn.

Standard conforming Galerkin finite elements can produce non-physical oscillations for hyper-

bolic or advection-dominated problems that are not strictly hyperbolic. To reduce these oscillations,

either artificial viscosity (or diffusion) can be added to the solution or the computational mesh can be

refined, which lowers the mesh Peclet number (Baliga and Patankar, 1980; Carver and Hinds, 1978).

Both of these options have shortcomings. Adding artificial viscosity to a solution will dampen oscil-

lations but will also smear the solution and the amount of artificial viscosity to add is not known a

priori. For large simulations, refining the underlying computational mesh may not be possible given a

constraint on available computational resources.

For the artificial viscosity approach, the amount of required viscosity to eliminate oscillations is

dependent on the steepness of the solution relative to a given mesh resolution, with more artificial vis-

cosity needed near large gradients in the dependent variable, which is where non-physical oscillations

occur. Naturally, as the mesh is refined, less artificial viscosity is needed to produce a smooth solution.

Von Neumann and Richtmyer (VonNeumann and Richtmyer, 1950) introduced this method by includ-

ing a nonlinear viscosity term with a tuning parameter that was identical to a second-order truncation

error.

The original work of Von Neumann and Richtmyer (VonNeumann and Richtmyer, 1950) has seen

many improvements and extensions. Tadmor (Tadmor, 1990) examined the use of artificial viscosity in

the context of spectral methods and introduced a method where the artificial viscosity is only included

for higher frequencies. Inspired by the work of Tamdor, Calhoun-Lopez and Gunzburger (Calhoun-

Lopez and Gunzburger, 2006) developed a method for finite elements based on hierarchical basis

functions, which allows artificial viscosity to only be added at smaller scales. With that approach, the

introduction of the viscosity does not compromise the accuracy of the solution. Xin and Flaherty (Xin

and Flaherty, 2006) introduced artificial viscosity at shocks with discontinuous Galerkin finite ele-

ments, where the discontinuous Galerkin residual was used to scale the amount of artificial viscosity.

Their approach is dependent on a tuning parameter that can be determined a priori for some systems.
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The entropy viscosity (EV) method proposed by Guermond et al (Guermond and Nazarov, 2014;

Guermond et al., 2018, 2010, 2017, 2014, 2011; Guermond and Popov, 2014, 2017) is an approach to

parameterize the amount of artificial viscosity needed to produce a non-oscillatory solution based on

the entropy production of the system and has seen significant developments in recent years. As origi-

nally formulated in (Guermond et al., 2011), the entropy viscosity approach is a higher order approach

for continuous finite elements that does not depend on flux or slope limiters. The original formulation

used the weak form of the Laplacian, which (Guermond and Nazarov, 2014) does not guarantee the

maximum principle is obeyed. The entropy viscosity was dependent on two tuning parameters, the lo-

cal mesh size, and the entropy, which was normalized by the global entropy average (Guermond et al.,

2011). Guermond and Nazarov (Guermond and Nazarov, 2014) improved the EV approach by formu-

lating an explicit second-order, maximum-preserving scheme for arbitrary meshes, any Lipschitz flux,

and any spatial dimension. This was accomplished by introducing a graph Laplacian for the viscosity,

introducing a correction term to the lumped mass matrix to approximate the inverse of a consistent

mass matrix, and using the flux-corrected transport paradigm. The entropy viscosity in this updated

approach is no longer dependent on the mesh size and includes an edge-based stabilization term but

still includes two tuning parameters (Guermond and Nazarov, 2014).

A recent formulation by Guermond et al. (Guermond et al., 2018) is a second-order, parameter-

free, edge-based viscosity approach. This approach first determines a maximum-preserving artificial

viscosity by either a local-extremum-diminishing approach or a guaranteed maximum-speed approach.

The guaranteed maximum-speed approach is preferred because the local-extremum-diminishing ap-

proach can violate the entropy condition for transonic rarefactions (Guermond et al., 2018). An ex-

tension to the low-order viscosity was developed where the viscosities are smoothed to mimic the

flux-limiting approach, while still maintaining the maximum principle (Guermond and Popov, 2017).

The higher order viscosity is constructed by taking the minimum of the low-order viscosity and the

nondimensional entropy residual, which is a function of the difference between the current solution

and the Galerkin solution (Guermond et al., 2018). The entropy residual, as posited in (Guermond and

Popov, 2017), includes the time discretization between the Galerkin and current solution, so a “com-

mutator” approach was proposed in (Guermond et al., 2018) so the choice of time discretization does

not impact the entropy residual.
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TCAT is an approach that can be used to formulate continuum mechanical models based upon mi-

croscale principles at some combination of larger length scales in each spatial dimension, which may

be macroscale or megascale (Gray and Miller, 2014). The microscale is the smallest scale at which

continuum mechanical approaches are applicable and applied to a given entity (phase, interface, com-

mon curve, common point), and the boundaries of juxtaposed entities are fully resolved in space and

time. The macroscale is a length scale at which a point represents the centroid of an averaging region

that may contain all entities in some measure. At the macroscale, the boundaries of entities are not

explicitly resolved, but measures of the average extent of the entities are evolved (volume fractions,

specific interfacial areas, etc). The megascale is the system scale and all phenomena are resolved only

through transport through the boundaries of the domain; the entire domain is treated in an averaged

sense with no spatial resolution in any megascale dimension. Larger scale three-dimensional domains

may be modeled with any combination of macroscale and megascale approaches. Larger scale ap-

proaches are necessary for essentially all natural porous medium systems, and many engineered and

organismic system as well, due to the computationally intractable nature of microscale approaches for

such applications.

The TCAT approach has several attractive features (Battiato et al., 2019; Gray and Miller, 2005,

2014; Miller and Gray, 2005; Miller et al., 2017). These features include a uniform microscale basis

for all conservation and thermodynamics, a precise upscaling of all quantities from the microscale

to larger scales, the inclusion of interfaces, common curves, and common points, the formulation

and use of entropy inequalities to constrain closure relations to be consistent with the second law of

thermodynamics, the development and use of evolution equations based on averaging theorems to

reduce the set of closure relations needed, geometrically based state equations that are hysteretic free

(Miller et al., 2019a), and, because of the rigorous connection between scales, the ability to evaluate

and validate larger scale models unambiguously with microscale observations or simulations (Gray

et al., 2015). While other upscaling approaches are available (Battiato et al., 2019; Gray et al., 2013),

no other upscaling method provides the entire desirable set of attributes annotated above for TCAT.

The TCAT approach involves the following steps. Conservation of mass, momentum, and energy

equations, balance of entropy equations, thermodynamic equations, and equilibrium conditions are

developed at the microscale for each entity in the system. Averaging operators are applied to each

equation and multiscale averaging theorems (Gray et al., 1993; Gray and Miller, 2013, 2014; Miller

45



and Gray, 2008) are applied to transform the larger scale equations into forms containing the fewest

number of variables possible; this transformation results in differentials of averaged quantities rather

than averages of differential quantities. A larger scale entropy inequality is developed for the system

and connected to the dissipative processes that produce entropy, which are specified in the conserva-

tion equations. A resultant flux-force form is developed for entropy production, which is in turn used

to constrain the permissible form of closure relations that can be used to formulate a closed, solvable

model at the larger scale. Evolution equations, derived purely from the averaging theorems (Gray et al.,

2015; Gray and Miller, 2010, 2014), and equations of state (Gray et al., 2019; McClure et al., 2018;

Miller et al., 2019a) also are used to resolve the closure problem and produce closed, solvable models

for which all quantities are described in terms of microscale precursors. The TCAT approach has been

used to derive macroscale models for single-fluid flow (Gray and Miller, 2006), single-fluid flow and

species transport (Gray and Miller, 2009; Miller and Gray, 2008; Weigand et al., 2018b), two-fluid

flow (Jackson et al., 2009), and two-fluid flow and species transport (Rybak et al., 2015), all for porous

medium systems. TCAT model hierarchies have also been developed for single fluid flow in a porous

medium at the megascale (Gray and Miller, 2009), the transition between a two-fluid-phase porous

medium system and a single-fluid system (Jackson et al., 2012), and for sediment transport in turbulent

surface waters (Miller et al., 2018a, 2019b).

The TCAT entropy inequality yields an expression for the rate of entropy production resulting

from dissipative processes (Gray and Miller, 2014; Miller and Gray, 2005). This physically-based

entropy production rate could be of use in formulating artificial dissipation in numerical methods, such

as the EV method. Such an approach has not been applied or evaluated.

3.4 TCAT Formulation

3.4.1 Non-Dilute Species Transport Model

To explore the use of the physically-based entropy production rate, we consider a specific TCAT

application known to yield sharp-front problems at the macroscale: non-dilute species transport in a

single-fluid porous medium system (Gray and Miller, 2009, 2014; Weigand et al., 2018b). Specifically,

we consider a TCAT model from a general hierarchy subject to restrictions that include: entity-based

conservation of momentum; isothermal conditions; no mass transfer between entities; an incompress-
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ible, immobile solid phase; a binary species composition of the fluid phase; a first-order flux-force

closure for all fluxes except the stress tensors, which are considered macroscopically inviscid and

of zero order; neglect of higher order kinetic energy terms; neglect of inertial effects in the conser-

vation of momentum equations; and a spatially one-dimensional model is considered in which the

compositional evolution is gravitationally stable at the macroscale. Further details on the TCAT model

development process, restrictions imposed, and approximations made are available in the literature

detailing the development of the model hierarchy and the simplification to the specific model instance

considered herein (Gray and Miller, 2009, 2014; Weigand et al., 2018b). This non-dilute transport

model has been shown to represent observed systems accurately.

The resultant closed model consists of a conservation of mass equation for the water phase given

by
∂
(
εwρw

)
∂t

=
∂

∂z

[
k̂ρw

µ̂

(
∂pw

∂z
+ ρwg

)]
, (3.33)

where the conservation of momentum equation reduces to Darcy’s law, which has been used to rep-

resent the specific discharge, εwvw; t is time, εw is the volume fraction, ρw is the density, vw is the

velocity, z is the direction of flow oriented opposite to the gravitational acceleration, k̂ is the intrin-

sic permeability of the media, µ̂ is the dynamic viscosity, pw is the pressure, g is the magnitude of

the gravitational acceleration, and the superscript w denotes the water phase. Note that µ̂ and ρw are

functions of the composition, which are detailed in the literature (Weigand et al., 2018b).

The non-dilute model also includes a conservation of mass equation for species A in a two-species

system, which may be written as

∂
(
εwρwωAw

)
∂t

+
∂

∂z

(
εwρwωAwvw

)
− ∂

∂z

[
εwρw

(
D̂Aw

τ̂
+ α̂TLv

w

)
∂ωAw

∂z

]

− ∂

∂z

[
εwρwωAwMWB

γ̂AWMWW

(
D̂Aw

τ̂
+ α̂TLv

w

)
∂γ̂Aw

∂z

]
= 0 , (3.34)

where the non-dilute dispersivity is
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α̂TL =
2α̂L

1 +

√
1− εwρwα̂Lvw ∂ω

Aw

∂z

(
β̂T1 − β̂T2

ωAwMWB

γ̂AwMWW

∂γ̂Aw

∂ωAw

) , (3.35)

the non-dilute molecular diffusion coefficient is

D̂Aw = D̂0
µ̂0

µ̂

1

ρwV Bw

(
1 +mAw dln γ̂Aw

dmAw

)
, (3.36)

the molecular weight of water is

MWW =

(
ωAw

MWA
+

ωBw

MWB

)−1

, (3.37)

the partial mass volume of species B is

V Bw =
1

ρw
− ωAw ∂

∂ωAw

(
1

ρw

)
, (3.38)

where D̂Aw is the molecular diffusion coefficient, τ̂ is the tortuosity of medium, α̂TL is the dispersivity

that depends upon composition, α̂L is the dilute limit dispersivity, γ̂Aw is an activity coefficient, µ̂0 is

the dilute viscosity, MW denotes the molecular weight, A and B are species indexes, β̂Ti are constant

model coefficients, and mAw is the molality of species A. A term related to a gradient in pressure has

been found to be small and dropped (Weigand et al., 2018b).

The auxiliary conditions for the TCAT non-dilute model are

ωAw(z ∈ Ω, t = 0) = ωAwres , (3.39)

pw(z ∈ Ω, t = 0) = ρwresg(L− z) , (3.40)

εwρwvw(z = 0, t > 0) =
Qρwin
A

, (3.41)

FAw(z = 0, t > 0) =
Q

A
ρwinω

Aw
in , (3.42)

pw(z = L, t > 0) = 0 , (3.43)
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and
∂ωAw

∂z

∣∣∣∣
z=L,t>0

= 0 , (3.44)

where the spatial domain is Ω = [0, L], the subscript res denotes a constant resident value, the sub-

script in denotes a constant value of the displacing fluid, Q is a volumetric flow rate coming into the

domain, which has cross-sectional area A, and FAw is the total advective and dispersive flux, which is

equivalent to the sum of the terms that are differentiated with respect to z in Eqn (3.34)—the advective

term within the parenthesis on line 1, and the two dispersive terms within brackets on lines 2 and 3.

3.4.2 Dilute Species Transport Model

As the species concentration becomes vanishingly small, the density, viscosity, and activity are no

longer dependent on the species concentration. In this limit, the conservation of mass equation for the

water phase becomes
∂

∂z

[
k̂ρw

µ̂

(
∂pw

∂z
+ ρwg

)]
= 0 , (3.45)

and the conservation of mass equation for species A becomes

∂
(
εwωAw

)
∂t

+
∂

∂z

(
εwωAwvw

)
− ∂

∂z

[
εw

(
D̂0

τ̂
+ α̂Lv

w

)
∂ωAw

∂z

]
= 0 , (3.46)

where the dissipative term related to the gradient of the activity is zero, the diffusion coefficient is con-

stant, and the dispersivity is the dilute dispersivity. The dilute form of the species transport equation

has a constant, linear diffusion coefficient as opposed to the nonlinear non-dilute form. The conserva-

tion of mass for the water phase is no longer a function of the species concentration, thus the flow and

transport equations are uncoupled.

3.4.3 Entropy Production Rates

The entropy density production rate is formulated to guide model closure in the TCAT approach,

and this inequality is used to ensure the derived closure relations are consistent with the second law of

thermodynamics. The non-dilute TCAT entropy production rate is (Weigand et al., 2018b)

Λ =
1

θw
µ̂

k̂

(
εwvw

)2
+

εwρwRG
ωAwωBw

(
D̂Aw

τ̂
+ α̂TLv

w

)
×

49



(
MWB

MWAMWW

)(
MWW

MWB

∂ωAw

∂z
+
ωAz

γ̂Aw

∂γ̂Aw

∂z

)2

, (3.47)

where Λ is the entropy density production rate, θw is the temperature, assumed constant in this work,

and RG is the universal gas constant. The entropy density production rate has an advective and dis-

persive component, which must each be greater than or equal to zero. Note that this entropy density

production rate is only valid under the assumptions made within this model formulation.

In the dilute limit, the entropy density production rate simplifies to

Λ =
1

θw
µ̂

k̂

(
εwvw

)2
+

εwρwRG
ωAwωBwMWA

(
D̂0

τ̂
+ α̂Lv

w

)(
∂ωAw

∂z

)2

. (3.48)

3.5 Solution Approach

3.5.1 Finite Element Formulation

For the weak formulation of the governing equations, we define V ≡ H1 (Ω), where H1 (Ω) is

the standard Sobolev space defined over the spatial domain Ω. Showing the formulation for the more

complex TCAT non-dilute model, we multiply the governing equations (Equations A.132 and 3.34)

by the test functions, integrate over the domain, and impose the boundary conditions. We then seek a

solution of determining
(
pw, ωAw

)
∈ V × V

∂
(
εwρw

)
∂t

, v


Ω

−

(
k̂ρw

µ̂

(
∂pw

∂z
+ ρwg

)
,
∂v

∂z

)
Ω

=

〈
Q

A
ρwin, v

〉
Γ0

∀v ∈ V (3.49)

∂
(
εwρwωAw

)
∂t

, v


Ω

+

(
εwρwωAwvw − εwρwD, ∂v

∂z

)
Ω

=

〈
Q

A
ρinωin, v

〉
Γ0

+

〈
Q

A
ρin, v

〉
Γ0

∀v ∈ V , (3.50)
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where ( , )Ω and 〈 , 〉 represent the standard inner products over L2 (Ω), and Γ0, respectively. In our

case, the inflow boundary, Γ0 is simply the point z = 0 and

D =

(
D̂Aw

τ̂
+ α̂TLv

w

)
∂ωAw

∂z

+

(
ωAw

γ̂AW

)(
MWB

MWW

)(
D̂Aw

τ̂
+ α̂TLv

w

)
∂γ̂Aw

∂z
. (3.51)

For our finite element discretization, we first define a computational meshMh = {Ωk}, where

Ω = ∪Nh
k=1Ωk. We use conforming piecewise linear Galerkin spaces defined as

Vh =
{
vh ∈ V ∩ C0 (Ω) : vh|Ωk

∈ P 1 (Ωk)
}
. (3.52)

where P 1 (Ωk) denotes first order Lagrange polynomials, and seek the solution of (p̂, ω̂) ∈ Vh × Vh.

The two governing equations are solved as decoupled PDEs. The velocity is determined through Equa-

tion A.132, however the mass fraction for the velocity calculation is always taken from the previous

timestep, so the velocity is not a function of the mass fraction when solving the species transport equa-

tion. For the non-dilute model, spurious currents can form as result of using similar basis functions for

the pressure and species mass fraction as only the gradient of the pressure appears in the the conserva-

tion of mass equation for the phase. To combat this, the approach by (Knabner and Frolkovic, 1996) is

used to ensure a consistent velocity.

3.5.2 TCAT Viscosity Method

To utilize the TCAT SEI, we first convert the species transport equation to a hyperbolic form,

which we do by way of operator splitting. Our splitting approaches are detailed in sections 3.5.3 and

3.5.4. With operator splitting, the advective portion of the equation becomes

∂
(
εwρwωAw

)
∂t

+
∂

∂z

(
εwρwωAwvw

)
= 0 . (3.53)
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To deal with the nonlinear form of the density, we utilize the conservation of mass equation for the

water phase to transform the equation to the following non-conservative form

εwρw
∂ωAw

∂t
+ εwρwvw

∂ωAw

∂z
= 0 . (3.54)

As our governing equation is not in a conservative form nor is it a truly hyperbolic equation, the EV

approach is not strictly suitable. However, we use some of the key features for our scheme.

To lay out our discrete approximation, we define φi, i = 1, . . . , Ndof as our global basis functions

for the space Vh. We label the support of φi as Si and Sij = Si ∩ Sj . The indices of shape functions that

are non-zero over a region S are defined as I (S). We also define an approximation of ωAw ≈ ωh =∑
i∈Ndof

φiωi. We seek to find ωh ∈ Vh such that

mi
∂ωh
∂t

+
∑

j∈I(Si)

KI
ijω

n
j +

∫
Γ0

Q

A
ρinωinφi dz = 0;∀i ∈ I (Si) , (3.55)

with

mi =

∫
Si

εwρwφi dz , (3.56)

KI
ij = −

∫
Sij

εwρwvwφj
∂φi
∂z

dz . (3.57)

As with the EV scheme (Guermond et al., 2018), we introduce a low-order viscosity approxima-

tion

mi
∂ωh
∂t

+
∑

j∈I(Si)

(
KI
ij + dL,nij

)
ωnj +

∫
Γ0

Q

A
ρinωinφi dz = 0;∀i ∈ I (Si) , (3.58)

where

dL,nij = max
(∣∣KI

ij

∣∣ , ∣∣KI
ji

∣∣) . (3.59)

This low order viscosity approximation is a local extrema diminishing (LED) scheme (Kuzmin and

Turek, 2002). While this form does reduce oscillations and is the equivalent of first-order upwinding in

some cases, it is not strictly maximum principle preserving (Guermond et al., 2018). Accuracy is often

lost with the introduction of the dissipative operator due to the addition of too much artificial viscosity.
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To achieve higher rates of convergence, a higher order viscosity can be formulated based on an

entropy residual. As a point of reference, we briefly consider the generic hyperbolic equation

∂ω

∂t
+
∂f(ω)

∂z
= 0 . (3.60)

To define an entropy-residual based viscosity using the scheme presented by (Guermond and Popov,

2017), first define the Galerkin solution at time step n + 1, ωn+1
g , as the solution to the following

problem ∫
Ω

[
ωn+1
g − ωnh

∆t
+
∂f (ωnh)

∂z

]
v dr ∀v ∈ V , (3.61)

where ωnh is the solution from time step n. The entropy residual (R) for Equation 3.60, given an en-

tropy pair (η, F ), is defined as

R(u) =
∂η(ω)

∂t
+
∂F (ω)

∂z
≤ 0 , (3.62)

where η is a convex entropy function and F (ω) =
∫ s

0 η
′ (s) f ′ (s) ds. The entropy residual at the nodal

values (Rni ) can be approximated as

Rni =
2

∆ηi

∫
Ω

(
ωng − ωnh

∆t
+ f ′ (ωnh)

∂ωnh
∂z

)
η′ (ωnh)φi dr , (3.63)

with ∆ηi = ηmax
i − ηmin

i and

ηmax
i = max

j∈I(i)
|η (ωni )| , (3.64)

ηmin
i = min

j∈I(i)
|η (ωni )| . (3.65)

The entropy-residual based viscosity is then defined as

dEV,nij = max
(
|Rni | ,

∣∣Rnj ∣∣) . (3.66)

For the TCAT viscosity approach, we instead formulate the entropy residual directly from the

TCAT entropy production rate,

R̂ni = cE
he
∆t

Λni
∆Λn

(3.67)
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where ∆Λn = Λnmax − Λnmin and Λnmax = maxi Λn and Λnmin = mini Λn, he is the grid spacing, and cE

is a dimensionless scaling parameter. The TCAT entropy viscosity dissipative operator is defined as as

the maximum of the nodal TCAT entropy residual R̂ni

d̂EV,nij = max
(∣∣∣R̂ni ∣∣∣ , ∣∣∣R̂nj ∣∣∣) . (3.68)

Our higher order viscosity approximation is then formulated as

∑
j∈I(Si)

Mij
∂ωj
∂t

=
∑

j∈I(Si)

(
KI
ij + dH,nij

)
ωnj +

∫
Γ0

Q

A
ρinωinφi dz = 0;∀i ∈ I (Si) , (3.69)

where we use the consistent mass matrix defined as

Mij =

∫
Ω
εwρwφiφj dz , (3.70)

and

dH,nij = min
(
dL,nij , d̂EV,nij

)
. (3.71)

For the EV formulation presented by (Guermond and Popov, 2017), the higher order viscosity

approximation selects from dEV,nij , as opposed to the TCAT entropy viscosity dissipative operator

d̂EV,nij . The higher order artificial dissipative operator selects the minimum of the low-order dissipative

operator or the entropy viscosity dissipative operator. The entropy viscosity dissipative operator is

motivated by the fact that that entropy production increases at sharp fronts and shocks in hyperbolic

problems.

3.5.3 Dilute Model

For this work, the incoming mass flow rate and permeability of the porous medium are constant.

For the dilute case, the result is a constant velocity of the water phase for all time and space. To solve

the species transport equation, we take three different decoupling/operator splitting approaches, all of

which decouple the flow and transport equations. Additionally, the flow equation is only solved once

as it is not a function of the salt mass fraction.
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The first approach solves the species transport equation with standard Galerkin finite elements

without any stabilzation or numerical viscosity. We refer to this model as unsplit. With the next two

approaches we use operator splitting to separate the advective and dispersive operators of the transport

equation. This allows us to tailor the numerical approximation to the operator. For sake of notation, we

present Equation 3.46 in operator form as

∂
(
εwωAw

)
∂t

= AD(ωAw) +DD(ωAw) , (3.72)

where AD represent the dilute advective operator and DD the dilute dispersive operator. For the sec-

ond approach, we use the sequential split operator approach, which has a splitting error O (∆t), re-

quires two solves for each time step, and each operator uses the previous solution as its initial condi-

tions (Kanney et al., 2002). This takes the form of

1.
∂(εω̃)

∂t
= AD(ω̃) for t ∈ [t, t+ ∆t]

where ω̃ = ω(z, t) (3.73)

2.
∂(εω)

∂t
= DD(ω) for t ∈ [t, t+ ∆t]

where ω = ω̃(z, t+ ∆t) , (3.74)

where this is repeated for every time step and we use Equation 3.39 as initial conditions.

For the third and final formulation we use the alternating split operator approach, which has split-

ting error that is O
(
∆t2

)
and requires three solves for each time step (Kanney et al., 2002). For each

time step we solve the transport equation as

1.
∂(εω̃)

∂t
= AD(ω̃) for t ∈ [t, t+ ∆t/2]

where ω̃ = ω(z, t) (3.75)

2.
∂(εω̂)

∂t
= DD(ω̂) for t ∈ [t, t+ ∆t]

where ω̂ = ω̃(z, t+ ∆t/2) (3.76)

3.
∂(εω)

∂t
= AD(ω) for t ∈ [t+ ∆t/2, t+ ∆t]

where ω = ω̂(z, t+ ∆t) . (3.77)
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Using the split operator approach, we can choose our numerical approximation to suit each opera-

tor. For the advection solve, we can use higher order techniques, such as the methods described above,

to improve the accuracy of our solutions.

3.5.4 Non-Dilute Model

For the dilute flow and transport model, we decoupled the flow and transport equations. For the

non-dilute flow and transport equations, we are unable to do so as the density and viscosity both ap-

pear in the conservation of mass equation for the water phase and are functions of the salt mass frac-

tion. As with the dilute model, we examine three different operator splitting approaches. We first

define a new operator for Equation A.132 as

∂
(
εwρw

)
∂t

= FT (pw, ωAw) (3.78)

and for Equation 3.35, where we consider the non-conservative form

εwρw
∂ωAw

∂t
= AT (pw, ωAw) +DT (pw, ωAw) , (3.79)

where DT consists of the flux terms related to both the mass fraction and activity and AT is the advec-

tive term. Note that the three operators are nonlinear functions of both the pressure and the salt mass

fraction, our two dependent variables.

In the first approach, we decouple the flow and transport equations and solve them sequentially

using standard Galerkin finite elements. We refer to this as the unsplit approach and again note that

the flow and transport equations are decoupled for all three implementations. For the second approach,

we use use a sequential split operator for the transport equation. For every time step, we solve the

equations in the following order

1.
∂(ερ)

∂t
= FT (p, ω) for t ∈ [t, t+ ∆t]

where p = p(z, t) and ω = ω(z, t) (3.80)

2. ερ
∂ω̃

∂t
= AT (p, ω̃) for t ∈ [t, t+ ∆t]

where p = p(z, t+ ∆t) and ω̃ = ω(z, t) (3.81)
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3. ερ
∂ω

∂t
= DT (p, ω) for t ∈ [t, t+ ∆t]

where p = p(z, t+ ∆t) and ω = ω̃(z, t+ ∆t) , (3.82)

where Equations 3.39 and 3.40 are used for the initial conditions for p(z, 0) and ω(z, 0).

For the final approach, we use a variation of the alternating split-operator approach with the fol-

lowing form, that is solved for every time step

1.
∂(ερ)

∂t
= FT (p̃, ω)for t ∈ [t, t+ ∆t/2]

where p̃ = p(z, t) and ω = ω(z, t) (3.83)

2. ερ
∂ω̃

∂t
= AT (p̃, ω̃)for t ∈ [t, t+ ∆t/2]

where p̃ = p̃(z, t+ ∆t/2) and ω̃ = ω(z, t) (3.84)

3. ερ
∂ω̂

∂t
= DT (p̃, ω̂)for t ∈ [t, t+ ∆t]

where p̃ = p̃(z, t+ ∆t/2) and ω̂ = ω̃(z, t+ ∆t/2) (3.85)

4. ερ
∂ω

∂t
= AT (p̃, ω)for t ∈ [t+ ∆t/2, t+ ∆t]

where p̃ = p̃(z, t+ ∆t/2) and ω = ω̂(z, t+ ∆t) (3.86)

5.
∂(ερ)

∂t
= FT (p, ω)for t ∈ [t+ ∆t/2, t+ ∆t]

where p = p̃(z, t+ ∆t/2) and ω = ω(z, t+ ∆t) . (3.87)

In this approach, the splitting of the transport equation solves is identical to the dilute transport solve

with the difference being that the pressure and in turn the velocity is solved over a half time step. The

flow equation is also split but steps 1 and 5 can be combined into a single step after the first solve.

3.5.5 Implementation Details

All of the models were implemented in the open source finite element software package Proteus

(https://proteustoolkit.org). Linear basis functions were used for both the pressure and species mass

fraction for all versions. Newton’s method was used as the nonlinear solver and LU decomposition as

the linear solver, to eliminate any errors due to the linear solver choice. Implicit Euler was used for
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time integration for the flow equation and for the dispersion solves when operator splitting was used.

No stabilization schemes were used for these two operators.

For the advective operator, a standard Galerkin approach (CG), a local extremum diminishing

approach for artificial viscosity (AV), and the TCAT entropy-based viscosity approach were examined.

For comparison in some cases, we consider the EV scheme by treating the advection equation as a

nonlinear scalar PDE without reference to the other components of the full transport system. The

entropy function considered with this approach was the power function, the most common in the

literature, which can be written as

η(ωAw) =
1

2
ωAw

2
. (3.88)

Explicit Euler time integration was used for the advective operator solves. The time step was

controlled by the CFL number for all three operators. The max CFL number was 0.125 for the dilute

model and 0.25 for the non-dilute model.

Dense grid solutions were found for both the dilute and non-dilute code with an existing spatially

adaptive cell-centered finite difference code (Weigand et al., 2018b). This code was also compared to

the analytical solution for the dilute model and was in agreement. All parameters found in (Weigand

et al., 2018b) were used and for the non-dilute model, β̂T1 = 2.53× 107 and β̂T2 = 1.31× 108.

3.6 Results and Discussion

3.6.1 Dilute Species Transport

Four different Peclet numbers (Pe = vL/D) were examined by adjusting the longitudinal dis-

persivity producing a range of Pe from 66–2.1×104. For the TCAT viscosity approach, the tuning

parameter cE in Equation 3.67 was found by performing an optimization for each discretization that

minimized the `2 error norm that was normalized by the degrees of freedom. The Nelder-Mead algo-

rithm in the SciPy software package was used for the optimization (Virtanen et al., 2019).

Table 3.4 shows the average convergence rate for each approach examined. The alternating split-

operator approach with the TCAT viscosity had the highest rate of convergence. An example of the

error norms can be seen in Figure 3.8, which shows the error norm vs degrees of freedoms (DOFs)
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for the highest Pe number for the alternating split operator approach. The convergence rate increases

for the alternating split TCAT method as the Pe number increases, however the `2 error norm also

increases as the Pe increases (Figure 3.9). The AV method added too much artificial viscosity to the

solution and was always too diffuse as compared to the dense grid solution, while the CG approach

had non-physical oscillations as no stabilization was used and the Pem (Pem = vL/(D∆z)) was

greater than unity for all simulations except the most refined with the lowest Pe.

Table 3.4: Average Convergence Rate for the Dilute Simulations

Unsplit CG AV Power TCAT

Sequential Rate
1.76

2.16 1.28 1.98 2.16
Alternating Rate 2.07 1.27 2.45 2.43
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Figure 3.8: Convergence for the largest Pe and the alternating split-operator algorithm for the dilute
model.
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Figure 3.9: Convergence for the TCAT alternating split operator-approach for each Pe Number for the
dilute model.

While the TCAT method produced the lowest errors and highest rates of convergence, the results

are dependent on an optimized parameter. Figure 3.10 shows the optimized cE parameter vs the Pem.

For the higher Pe numbers, we see that the optimized cE decreases as the mesh becomes more refined

(and the Pem decreases) meaning that less artificial viscosity is needed for an accurate solution. For

the lowest Pe number simulation, the optimized cE parameter increases as Pem decreases. This re-

sult is counter intuitive but can be explained by examining the sensitivity of the solution on the cE

parameter.

To test the sensitivity of the solution on the cE parameter, a simple naive average of the optimized

values was found and the simulations were re-run using the average value (Figure 3.11). The two

highest Pe number simulations are the most sensitive to the cE parameter. The two lowest Pe number

simulations are less sensitive to the cE parameter as the solutions are fairly disperse and do not require

much stabilization as the solution tends to not oscillate. For the optimizations, the initial guess for cE
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Figure 3.10: Optimized cE for the TCAT alternating split-operator approach for the dilute model.

was 1.0 × 10−3. Since the solutions for the low Pe numbers and low Pem simulations are relatively

insensitive to cE , the optimization quickly converges to a value close to the initial guess. To determine

an optimal cE for all simulations, the simulations with a higher Pem and higher Pe should be more

heavily weighted to achieve even better agreement with the true solutions.

Noting, that for the dilute case, our transport model essentially reduces to conservative advective-

diffusive transport, we next compare the TCAT entropy-based stabilization to an EV approximation

(Guermond and Popov, 2017), in order to better understand its performance. Specifically, the nodal en-

tropy residual (R) for both functions is examined (Figure 3.12). Loosely speaking, the objective with

the use of entropy-based stabilization is to have non-zero contributions around sharp fronts, i.e. where

the gradient of the solution is large, with values decreasing as the gradient’s magnitude decreases. This

is so that more artificial viscosity can be added near the sharp gradients to prevent oscillatory behavior

while minimizing non-physical smearing away from the front. The TCAT approach’s nodal entropy
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Figure 3.11: Error for the dilute TCAT approach with the alternating split-operator approach for
optimized (filled circles) and averaged (non-filled circles) values of the cE parameter vs the mesh Pe
number.

residual has its maximum value at the inflection point of the mass fraction curve and decreases sym-

metrically away from this point. For the power function, the solution is too disperse, asymmetric, and

the nodal entropy residual actually decreases near the inflection point. With the power function, the

leading edge of the solution contains too much artificial viscosity and it appears that not enough arti-

ficial viscosity is being added to the trailing edge. Additionally, the less refined mesh has phase error

with the power function that vanishes as the grid becomes more refined.

The key is that the TCAT entropy production rate is a function of the species mass fraction gradi-

ent, while the power entropy function is only dependent on the mass fraction and are not capable of

describing the behavior of the species mass fraction gradient. In both approaches the nodal entropy

residual decreases as the grid becomes more refined. For these simulations, the nodal entropy residual

62



is always less than the low order viscosity (dLij) so the higher order viscosity approximation is always

the minimum of the nodal entropy residual.
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Figure 3.12: Solution and entropy residual (R) for the dilute model for the largest Pe using the alternat-
ing split-operator approach with 400 DOFs (dashed) and 800 DOFs (solid).

3.6.2 Non-Dilute Species Transport

For the TCAT non-dilute flow and transport model, six different experiments were considered and

the dense grid solutions are shown in Figure 3.13. For the experiments with no salt initially present,

the salt front sharpens as the incoming salt mass fraction increases. For the two experiments with a

nonzero salt mass fraction initially present, the front is more disperse with the higher mass fractions.

Additionally, the average velocity is slightly dependent on the incoming and resident mass fractions as

the mass fraction profile curves do not all intersect at a normalized mass fraction of 0.5.
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Figure 3.13: Dense grid solutions for the experiments considered for the TCAT non-dilute flow and
transport model.

Average convergence rates for the non-dilute experiments are shown in Table 3.5 for all ap-

proaches considered. As with the dilute model, the TCAT viscosity approach has the highest rate

of convergence as well as the lowest `2 error norms. While the sequential split-operator implementa-

tion for the TCAT viscosity had a slightly higher rate of convergence than the alternating split-operator

approach, the alternating split-operator approach had lower `2 error norms. The CG methods rate of

convergence is misleading as oscillations were present in the solution for multiple discretizations and

this resulted in a higher convergence rate.

The convergence rates are a function of the non-linearity of the simulation. Figure 3.14 shows the

`2 error norm vs DOFs for the alternating split TCAT viscosity approach. For the simulations with no

salt initially present, the convergence rate decreases as the incoming salt mass fraction increase. While

the experiment with ωin = 0.5 and ωres = 0.4, is the second most disperse experiment, the density,

viscosity, and activity functions are highly nonlinear and this is reflected in the convergence rate. This
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same trend can be seen with the sequential split-operator, TCAT-viscosity approach so it appears to not

be a function of operator splitting.

Table 3.5: Average Convergence Rate for the Non-Dilute Simulations

Unsplit CG AV Power TCAT

Sequential Rate
1.12

1.37 0.99 1.27 1.71
Alternating Rate 1.31 0.98 1.33 1.68
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Figure 3.14: Convergence of the alternating split-operator, TCAT-viscosity approach for the non-dilute
model.

As with the dilute model, the cE parameter was optimized by minimizing the `2 error norm

at each discretization and for every experiment. The same optimization scheme was used for the

non-dilute case as with the dilute case. Figure 3.15 shows the optimized cE for the alternating split-

operator, TCAT-viscosity implementation. The general trend is that the value of cE increases as the

number of DOFs increases. This is counter intuitive. As the computational mesh becomes more re-
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fined, less artificial viscosity should be needed. We see this trend however, because, the TCAT viscos-

ity method is causing an over-sharpening of the solution and more artificial viscosity is adding more

dispersion to the solution and thus is in better agreement with the dense-grid solutions.
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Figure 3.15: Optimized cE for the alternating split-operator, TCAT-viscosity approach for the non-
dilute model.

As was done previously, a simple average of the cE parameter was calculated and used to re-run

the simulations (Figure 3.16). The TCAT-viscosity approach is more dependent on the cE value at

fewer DOFs. Additionally, the sharper the front, the more dependent the solution is on the tuning

parameter. In other words, the `2 error norm is greater for the sharper front experiments when the

averaged cE value is used. This is particularly noticeable at the most refined cases. As mentioned, the

TCAT viscosity approach tends to over-sharpen the front and needs more artificial viscosity as the grid

is refined and the average cE value is less than the optimized values for these specific discretizations

and experiments.
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Figure 3.16: Difference between `2 error norms for optimized and averaged cE for the alternating
split-operator, TCAT-viscosity approach.

Figure 3.17 shows the solutions for each of the non-dilute displacements for the alternating split-

operator case with 400 DOFs for the power function and the TCAT-viscosity approach. The power

entropy function produces results that are too disperse and as the salt mass fraction increases the solu-

tions becomes even more disperse, which is the opposite behavior that occurs with the actual solution.

For the non-dilute experiments, we are not solving the conservative form of the advection equation,

therefore there is no reasonable expectation for this formulation to be able to accurately simulate the

dense grid solutions. For the TCAT viscosity, the solution is slightly sharper for every simulation

except for the case when ωin = 0.5 and ωres = 0.4, but the results are in general agreement with

the dense-grid solutions. Adding more artificial viscosity to the solution makes the TCAT-viscosity

solutions more disperse, which occurs when cE is increased, slight phase error is introduced. This

produces a higher `2 error norm as opposed to an overly sharp solution that has no phase error, which

is why the optimization yielded a sharper solution.
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Figure 3.17: Solutions obtained using the alternating split-operator algorithm for both EV approaches
with 400 DOFs.

To further determine the underlying behavior of the different entropy formulations, the nodal

entropy residual (R) was examined (Figure 3.18). The power function does not do a good job of re-

solving the large gradient region. More artificial diffusion is added to the trailing portion of the front

as opposed to the leading edge and this produces an asymmetric profile that does not match the dense

grid solution.
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The TCAT entropy function is a function of the gradient of the salt mass fraction, which is an

advantage for the problems considered herein. For the TCAT approach, the entropy production rate

is normalized by the maximum and minimum production rate through the entire system and not just

locally. The non-dilute flow and transport model is known to produce asymmetric salt fronts (Weigand

et al., 2018b), and the TCAT entropy production rate is also asymmetric where the leading edge has

more entropy production than the trailing edge. Thus, less artificial viscosity is added to the trailing

edge and we see over-sharpening. While only one experiment is shown for the entropy and residual,

the same trend exists for all other experiments considered.

For these simulations, the maximum of the nodal entropy residual (R̂) for the TCAT viscosity

approach over the support of each element was always smaller than the lower order artificial viscosity

(dL), therefore the TCAT viscosity was always used for the higher order viscosity. The artificial vis-

cosity was found to be of the same order of magnitude as the actual physical dispersion in the system.

The relationship between the artificial viscosity and physical dispersion is inversely related. As the

physical dispersion decreases, the artificial viscosity increase as the front becomes sharper.

Since TCAT has been used to formulate entropy production rates for several model hierarchies,

it is reasonable to speculate that the advantages of using a physically based entropy production rate

to guide artificial dissipation observed in this work could apply to other problems as well. The sort of

problems where we envision this to be the case include species transport in multiphase flow and heat

transport in single and two-fluid flow.

3.7 Conclusions

The following can be concluded from this analysis:

• The physically-based entropy production rate that comes from the TCAT approach for model de-

velopment can be used to improve the accuracy of numerical approximations of the formulated

model.

• The TCAT entropy viscosity approach for dilute flow and transport shows higher rates of conver-

gence and lower `2 error norms as compared to the entropy viscosity approach.
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Figure 3.18: Solution and nodal entropy residual for an incoming mass fraction of 0.2 and pure water
resident fluid for the alternating split-operator approach with 400 DOFs (dashed) and 800 DOFs
(solid).

• For the non-dilute flow and transport model, the TCAT entropy viscosity approach also has

higher convergence rates and lower error norms than unstabilized finite elements and a non-

conservative form of the entropy viscosity method.

• The TCAT entropy viscosity method utilizing the physically-based entropy production rate is

dependent on a fitted parameter, however, this value can be fit to a subset of the data and yield

reasonable results for the rest of the dataset.

• The general framework of the TCAT viscosity approach can be applied to other models derived

within the TCAT framework.
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CHAPTER 4: MICROSCALE MODELING OF NON-DILUTE FLOW AND TRANSPORT

4.1 Introduction

Non-dilute solutions occur in a variety of porous medium physics applications, such as salt water

intrusion, leachate transport, and density-motivated remediation strategies (Hill et al., 2001; Johnson

et al., 2004; Miller et al., 2000). Species transport in such systems differs markedly from common

dilute system. Macroscale mathematical models are used to represent the behavior of such systems in

an averaged sense over a representative regions of the porous structure.

Laboratory experiments for non-dilute flow and transport in porous media are complicated and

time consuming. Experimental work has consisted of column experiments where various fluids and

salts are used to adjust density, viscosity, chemical activity, fluid velocities, and pore morphology and

topology characteristics (Brigham et al., 1961; Slobod, 1964; Watson et al., 2002c; Weigand et al.,

2018a). While these experiments provide insight on observed displacement patterns and solute profiles,

it is difficult to extract a mechanistic understanding from the results due to the scale of the experiments

and the complex and competing physical phenomena that are operative in such systems. An additional

downside to such experimental work is the inability to isolate different physical phenomena, since

such systems are constrained by the properties of the solutions investigated.

Attempts to model gravitationally-stable non-dilute flow and transport in porous media have rep-

resented limited sets of laboratory data (Watson et al., 2002c; Weigand et al., 2018a). However, these

models are dependent on fitting parameters that are not firmly tied to underlying physical phenomena

that impact the transport phenomena observed (Landman et al., 2007b; Watson et al., 2002c). Because

our mechanistic understanding is lacking, extant modeling approaches are not rigorously predictive.

The use of highly resolved microscale, or pore scale, computational experiments is one approach

at overcoming the drawbacks of traditional laboratory experiments and obtaining mechanistic insight

(Gray and Miller, 2014). Microscale modeling can be used to simulate complex systems at a scale

at which continuum mechanical models can be formulated rigorously and consistently with well-
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understood physics. The results from such simulations can in turn be used to gain fundamental insight

needed to advance, evaluate, and validate macroscale models that are needed for the size of typical

applications of concern. Additionally, microscale computational approaches enable a fuller exploration

of potential physical phenomena because individual model parameters can be isolated and controlled.

Despite the apparent benefits of microscale modeling to advance understanding of non-dilute species

transport in porous medium systems, such approaches have not been reported in the literature. A fun-

damental understanding of non-dilute flow and transport in porous media at all spatial scales is lacking,

and the predictive capabilities of macroscale models for non-dilute transport are limited as a result.

4.2 Objectives

The goal of this to work is to advance mechanistic understanding of non-dilute flow and transport

in porous medium systems. The specific objectives are: (1) to formulate and approximate a microscale

non-dilute flow and transport model for porous media; (2) to examine microscale simulation results

qualitatively and quantitatively to aid mechanistic understanding; (3) to upscale microscale simulation

results and compare to extant experimental observations; and (4) to examine the effect of a set of

physical phenomena on observed macroscale solute dispersion.

4.3 Background

The spatial scale of a mechanistic model is one of its defining features and determines the phenom-

ena that need to be considered (Gray and Miller, 2014). For a porous medium system, the microscale

(also known as the pore scale) is where the boundaries of all phases and interfaces are known in both

space and time. The macroscale is defined as the scale at which a point is represented by an average

over a region of the system that contains all phases present. The minimum size of such an averaging

region, such that averaged quantities are insensitive with respect to changes in the size of the region,

is termed a representative elementary volume (REV) (Bear, 1972). At the macroscale, variables such

as porosity and volume fraction exist, both of which are ill-defined at the microscale. As a macroscale

point is an average of the microscale behavior, the distribution of the underlying variable is lost. Due

to the loss of information, underlying microscale transport phenomena may need to be parameterized

in larger scale models. An example of this is the inclusion of mechanical dispersion in macroscale
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species transport models to account for the varied movement of the species due to the microscale fluid

phase velocity distribution (Bear, 1972).

Dilute microscale and macroscale fluid flow and species transport in porous media has been stud-

ied extensively and the use of microscale computational experiments is commonplace (Aramideh et al.,

2018; Bijeljic and Blunt, 2007; Bijeljic et al., 2011, 2004, 2013; Crevacore et al., 2016; Icardi et al.,

2014). Microscale simulations are frequently used to evaluate existing macroscale relationships for

species transport (Bijeljic et al., 2004; Icardi et al., 2014), to investigate non-Fickian transport for vari-

ous types of porous media (Aramideh et al., 2018; Bijeljic et al., 2013), or to improve understanding of

subscale effects on observed macroscale behavior (Boccardo et al., 2014). Microscale simulations are

preferred over laboratory experiments because the microscale flow field can be analyzed to better un-

derstand macroscale behavior. For example, the work of Aramideh et al. (2018) found flow conditions

needed for the existence of recirculation zones for media comprised of overlapping spheres. These

zones resulted in regions of negative velocities relative to the mean direction of flow and explained the

observed non-Fickian behavior. Much of the research for microscale dilute flow and transport has fo-

cused on examining microscale velocity distributions and correlations to describe macroscale behavior

(Aramideh et al., 2018; Bijeljic et al., 2013; Siena et al., 2014).

As compared to dilute flow and transport, microscale non-dilute flow and transport studies have

been limited to the membrane literature (Gruber et al., 2011, 2016). Gruber et al. (2016) implemented

a microscale model to assess impacts of concentration polarization on reverse osmosis and forward

osmosis performance. The slightly compressible version of the Navier-Stokes equation were used to

solve for the velocity field and the microscale transport equation was used to model the salt species.

The impacts of non-dilute behavior, including the resulting velocity field distribution, were not dis-

cussed or analyzed.

The thermodynamically constrained averaging theory (TCAT) is a continuum mechanical ap-

proach for deriving mechanistic macroscale models by directly averaging microscale conservation and

thermodynamic equations and closing the macroscale models using an entropy inequality (Gray and

Miller, 2009, 2014). All variables, conservation equations, and thermodynamic laws are first written

at the microscale and formal averaging approaches are used to derive the macroscale equations and

variables. A constrained entropy inequality is formulated and used to guide model closure and ensure

the resulting model obeys the second law of thermodynamics. TCAT models for single phase flow and
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transport in porous media (Gray and Miller, 2006; Miller and Gray, 2008), non-dilute flow and trans-

port in porous media (Gray and Miller, 2009; Weigand et al., 2018a) and two phase flow and transport

in porous media have been developed (Jackson et al., 2009; Rybak et al., 2015). The TCAT approach

also uses specific notation to discern between scales and types of averages. For this work, we follow

the TCAT notation and note only that variables adorned with subscripts are microscale variables and

macroscale variables are adorned with superscripts.

With the TCAT approach, variables across all possible scales are consistent, well-defined, and

connected. Due to this, microscale simulations can be performed and the results may be averaged to

examine larger scale variables and phenomena. This is known as subscale modeling and is an approach

to validate models where experiments at the scale of the model are not required. The benefit of this

approach is that the physics at the microscale are typically well-defined and understood and variables

that can be difficult to analyze and isolate experimentally are more easily quantified. This approach

has seen success in other application including two-fluid-phase flow in porous media (Bruning and

Miller, 2019; Dye et al., 2016; McClure et al., 2017; Miller et al., 2019a).

The most successful attempts at modeling macroscale non-dilute flow and transport have extended

Fick’s law such that dispersion is a function of the composition (Demidov, 2006; Egorov et al., 2005;

Gray and Miller, 2009; Hassanizadeh, 1990; Landman et al., 2007b; Watson et al., 2002c; Weigand

et al., 2018a). Hassanizadeh (1990) first developed the nonlinear Fickian model, which is a Taylor

expansion of Fick’s law and includes a fitting parameter to account for non-dilute behavior. Weigand

et al. (2018a) expanded on the nonlinear Fickian model by including activity impacts as well as an

additional fitting parameter. This model was formulated with TCAT and outperformed the nonlinear

Fickian model for the one dataset considered. However, the major drawback with these models is

the lack of understanding of the mechanistic factors affecting the fitting parameters. The parameter

in the nonlinear Fickian model has an exponential relation to the Darcy velocity but no fundamental

mechanistic basis has been advanced to support the empirical form (Landman et al., 2007b; Schotting

et al., 1999; Watson et al., 2002c). Applying the TCAT model to the same dataset used by Watson et al.

(2002c) found a similar relationship where the fitting parameters were functions of the Darcy velocity

(Weigand et al., 2017).

Mechanistic insight into macroscale non-dilute flow and transport is limited and has been provided

solely from laboratory experiments with a limited number of salt species considered. Computational
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experiments have also been performed but are fundamentally flawed as they solve the governing equa-

tions at the macroscale (Landman et al., 2007a; Welty and Gelhar, 1991). Furthermore, to simulate

transport, the dilute form of Fick’s law has been used despite attempting to gain insight on non-dilute

flow and transport at the macroscale, where Fick’s law has been shown to be invalid (Konz et al., 2009;

Starr and Parlange, 1976; Watson et al., 2002c; Weigand et al., 2018a; Wright et al., 2009). From the

laboratory experiments, we know that the salt species front tends to sharpen as compared to a dilute

tracer under the same operating conditions. The sharpness of the salt mass fraction front, in response

to a step change in salt mass fraction at the inflow boundary, has been shown to increase as the in-

coming mass fraction of the salt species increases. However, if a salt species is initially present in

the porous medium, the difference between the displacing and displaced mass fraction affects the

sharpness of the front (Weigand et al., 2018a). For a laboratory data set that used CaBr2, chemical

activity effects were found to be significant for constant density difference experiments (Weigand et al.,

2018a). Additionally, laboratory experiments show that non-dilute displacements produce skewed

breakthrough curves and they become more asymmetric as the mass fraction difference between the

resident and displacing fluids increases (Weigand et al., 2018a). Mechanistic understanding of these

macroscale experimental observations is lacking.

4.4 Model Formulation, Approximation, and Application

4.4.1 Microscale Model

Fluid flow was modeled at the microscale using the compressible Navier-Stokes equations (Gray

and Miller, 2014). These equations consist of a conservation of mass equation and conservation of

momentum equations both of which are written for the fluid phase. The conservation of mass equation

is
∂ρw
∂t

+∇· (ρwvw) = 0 , (4.89)

where ρw is the density, t is time, and vw is the fluid phase velocity vector. The conservation of mo-

mentum equations for a compressible fluid with variable density and dynamic viscosity are

∂

∂t
(ρwvw) +∇· (ρwvwvw)−∇·

[
µ̂w

(
∇vw +∇vTw −

2

3
(∇·vw) I

)]
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+∇pw,rgh + gw·h∇ρw = 0 , (4.90)

where pw,rgh = pw − ρwgw·h, pw is the pressure of the fluid phase, h is a position vector of the

water surface oriented opposite to the direction of the gravitational vector, gw is the gravitational ac-

celeration vector, µ̂w is the dynamic viscosity of the fluid phase, and the superscript T is the transpose

operator. Both ρw and µ̂w are functions of the solution composition for the non-dilute case considered.

The system is assumed to be isothermal, and the solid phase is immobile.

The microscale species conservation of mass equation is

∂

∂t
(ρwωAw) +∇· (ρwvwωAw)−∇· (ρwDAw∇ωAw) = 0 , (4.91)

where the qualifier A refers the the salt species, ωAw is the mass fraction, and DAw is the diffusion

coefficient of species A in the fluid phase. The non-dilute diffusion coefficient is approximated as

(Bashar and Tellam, 2011; Gordon, 1937)

DAw = D0
µ̂0

µ̂w

1

ρwVBw

[
1 +mAw

d (ln γ̂Aw)

dmAw

]
, (4.92)

where D0 is the dilute diffusion coefficient, µ̂0 is the viscosity of pure water, VBw is the partial mass

volume of the water (species B), mAw is the molality, and γ̂Aw is the activity coefficient. The depen-

dence of ρw, µ̂w, and γ̂Aw on composition for CaBr2-water solutions were taken from the literature

(Weigand et al., 2018a).

4.4.2 Non-dimensional Microscale Model

The non-dimensional form of the governing microscale equations can provide additional insight

on the relative importance of each term. Defining the following non-dimensional variables

t∗ =
vwin
d50

t; x∗ =
x

d50
; v∗w =

vw
vwin

; g∗w =
gw
G

; h∗ =
h

d50
; ∇∗ = d50∇;

µ̂∗w =
µ̂w
µ̂0

; ρ∗w =
ρw
ρ0

; p∗w,rgh =
pw,rgh
d50ρ0G

; D∗Aw =
DAw

D0
, (4.93)
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where the ∗ superscript refers to a non-dimensional quantity, vwin is the macroscale inlet velocity, d50 is

the mean grain diameter and G is the magnitude of the gravity vector. The non-dimensional conserva-

tion of mass equation for the phase is

∂ρ∗w
∂t∗

+∇∗· (ρ∗wv
∗
w) = 0 , (4.94)

the non-dimensional phase momentum equation is

∂

∂t∗
(ρ∗wv

∗
w) +∇∗· (ρ∗wv

∗
wv
∗
w)− 1

Re0
∇∗·

[
µ̂∗
(
∇∗v∗w +∇∗v∗Tw −

2

3
(∇∗·v∗w) I

)]
+

1

Fr2

(
∇∗p∗w,rgh + g∗·h∗∇∗ρ∗w

)
= 0 , (4.95)

where

Re0 =
ρ0d50v

w
in

µ̂0
and Fr =

vwin√
d50G

. (4.96)

The non-dimensional species mass conservation equation is

∂

∂t∗
(ρ∗wωAw) +∇∗· (ρ∗wv

∗
wωAw)− 1

Pe0
∇∗· (ρ∗wD

∗
Aw∇∗ωAw) = 0 , (4.97)

where

Pe0 =
d50v

w
in

D0
. (4.98)

4.4.3 Macroscale Model

In this work, we are using microscale simulations to investigate dilute and non-dilute flow and

transport at both the micro- and macroscale. For dilute flow and transport at the macroscale, well-

established models have been developed and consist of macroscale conservation of mass and momen-

tum equations. We assume that the dilute microscale simulations can be modeled as macroscopically

one-dimensional systems. For the definition of the macroscale variables refer to (Gray and Miller,

2009, 2014).

We summarize the Fickian solute transport model for an immobile and incompressible solid phase

for macroscale flow and transport in one spatial dimension, which we denote as z. The macroscale
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conservation of mass equation for the fluid phase is

∂
(
εwρw

)
∂t

= − ∂

∂z

(
εwρwvw

)
; (4.99)

an approximate momentum conservation in the form of Darcy’s law is

εwvw =
k̂

µ̂w

(
∂pw

∂z
+ ρwgw

)
; (4.100)

and a species conservation of mass equation for the fluid phase is

∂
(
εwρwωAw

)
∂t

= − ∂

∂z

(
εwρwωAwvw

)
− ∂

∂z

(
εwρwωAwuAω

)
, (4.101)

where z is positive upwards, εw is the porosity, vw is the density averaged macroscale fluid velocity

in the z direction, k̂ is the intrinsic permeability, pw is the macroscale pressure of the water phase, ρw

is the macroscale density, which for our work is constant as we are only applying these equations to

the dilute simulations, gw is the magnitude of the gravitational acceleration, ωAw is the macroscale

mass fraction of species A (salt in this work) in the water phase, and uAw is the macroscale deviation

velocity for species A in the water phase.

The deviation velocity for dilute transport is generally parametrized by using a Fickian approxima-

tion for the mass flux which can be written as (Bear, 1979)

JAw = εwρwωAwuAω = −εwρwD̂∂ω
Aw

∂z
, (4.102)

where JAw is defined as the mass flux of species A and D̂ is the hydrodynamic dispersion for porous

media systems. The most commonly used form, in one-dimension, is

D̂ =
D̂Aw

τ̂
+ α̂Lv

w , (4.103)

where τ̂ is the tortuosity of the porous medium, which is defined as the average microscale distance

traveled by a species per unit macroscale length of the medium and is greater than or equal to one; and
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α̂L is the longitudinal dispersivity (Bear, 1979). It should be noted that this macroscale model is only

valid for and applied to the dilute simulations.

4.4.4 Model Approximations

To solve the microscale model for non-dilute flow and transport, a solver was created within the

OpenFOAM framework (v1712) (Weller et al., 1998). OpenFOAM is an open-source, finite volume

method, computational fluid dynamics software package that allows for easy parallelization and is

packaged with mesh generation software (www.openfoam.com). The existing compressible Navier-

Stokes solvers were not suitable for solving our model as they either couple the density and viscosity

through an energy equation as opposed to a species transport equation, lack the necessary gravitational

terms, and/or assume constant viscosity.

The governing equations were solved using an implementation of the PIMPLE algorithm (Green-

shields, 2019). This algorithm is a combination of the Semi-Implicit Method for Pressure-Linked

Equations (SIMPLE) algorithm (Ferziger and Perić, 2002) used for steady-state simulations and the

Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa, 1986; Kaslusky and Udell, 2002).

The PIMPLE implementation allows for larger time steps, than generally allowed by the CFL con-

dition, by iteratively solving the equations and applying under-relaxation. The OpenFOAM solver

rhoPimpleFoam was used as a template for our model, where we replaced the energy equation with

the species transport equation, included the gravitational terms and allowed the density and viscosity

to be functions of the salt species mass fraction. To isolate the impacts that the density, viscosity, and

activity have on non-dilute transport, solvers were also created for models where each of the three

functions were forced to equal their dilute value.

To solve the macroscale dilute flow and transport equations, a cell-centered finite difference code

was used (Weigand et al., 2018a). To determine the permeability and longitudinal dispersivity, the

method of moving asymptotes algorithm in the software package NLopt (version 2.4.2) (Johnson,

2014) was used to minimize the `2 error norm between the solution to the macroscale equations results

and the averaged microscale simulation results.
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4.4.5 Microscale Domain Generation

For the microscale simulations, 12/20 Accusand was used for the media to be consistent with the

experimental work of Weigand et al. (2018a). The sphere packing code of Baranau and Tallarek (2014)

was used to generate the media. With this code, the mean grain diameter (d50 = 0.11 cm), the standard

deviation (σd50 = 0.2 cm) of the grain diameter, and the porosity (εw = 0.35) were matched to the

literature values by sampling from a lognormal distribution (Hauswirth, 2019). The parameters used

for the 12/20 Accusand are in agreement with other studies (Schroth et al., 1996).

We examined both a representative elementary volume (REV) scale and a sub-REV-scale. The

sub-REV-scale was examined to allow for storage and visualization of the microscale results. Only

macroscale variables could be saved for the REV-scale simulations due to memory limitations. For the

sub-REV simulations, 180 spheres were packed in a cube, with each side equal to 0.514 cm. For the

REV simulations, more than 7,400 spheres were packed in a rectangular column, where the height to

cross-sectional area had a ratio of 6:1 and the dimensions were 6.54 cm × 1.09 cm × 1.09 cm. This

aspect ratio was used to allow for more averaging regions along the direction of flow while still having

a large enough cross section to ensure a REV.

The distributions and packed media are shown in Figures 4.19 and 4.20 for the REV-scale and sub-

REV-scale, respectively. The porosity for both of the domains was 0.35. The tortuosity was calculated

for the sub-REV domain using (Duda et al., 2011; Koponen et al., 1996)

τ =

∫
|vw| dx∫
vz dx

, (4.104)

where vz is the velocity in the main direction of flow.

4.4.6 Model Implementation

The sphere-packing code provided sphere centroids and radii that were discretized in OpenFOAM

using snappyHexMesh. The work of Icardi et al. (2014) found a near grain refinement level of 2 in

snappyHexMesh was sufficient to produce a solution that was grid independent, however only the

flow field was examined and not species transport. To confirm their conclusions and ensure the salt

species was also independent of the grid for our simulations, a grid independence study was performed
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Figure 4.19: Sphere packing results (a) and grain diameter distribution (b) for the REV-scale domain.
The direction of flow for all simulations was upwards and the blue box represents the domain that was
simulated.

on the sub-REV domains. We found a strong dependency on the grid that must be supplied before the

mesh is refined around the solid grains but a near grain refinement level of 2 was sufficient.

For the microscale simulations, wall boundary conditions were assumed for the sides of the

packed column, where the sides are specified as the direction orthogonal to gravity. At the top of the

column, outflow boundary conditions were specified, which fixed the pressure to atmospheric pressure

and forced a zero gradient for the velocity and salt mass fraction. For the inlet boundary condition, a

fixed mass flow rate was enforced for all simulations, and the incoming salt mass fraction was constant.

By using a fixed mass flow rate, the volumetric flow rate, and in turn the macroscale velocity, varied

because the density of the incoming fluid depended upon salt mass fraction.
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Figure 4.20: Sphere packing results (a) and grain diameter distribution (b) for the sub-REV-scale
domain. The blue box represents the domain that was simulated.

The simulations performed consisted of varying the incoming salt mass fraction (ωin), the salt

mass fraction initially present in the column (ωres), and the incoming mass flow rate. For the initial

conditions, the steady-state incompressible Navier-Stokes equations were solved based on the resident

fluid properties and the resulting pressure and velocity fields were used as the initial conditions for the

transient simulations. This was done so that the system began with a fully developed flow field.

Macroscale averages were calculated on the fly for the REV-scale simulations as the microscale

data could not be stored due to memory limitations. The macroscale averages were calculated accord-

ing to (Gray and Miller, 2009, 2014). The domain was split into seven different overlapping REVs

and macroscale average values were calculated in each volume. Each REV contained the entire cross-

section of the domain and had a height in the direction of flow of 3.27 cm. The REVs overlapped by

0.545 cm. Additionally, averaged microscale values were calculated at seven different cross sections

along the height of the column separated by a distance of 1.09 cm. For the sub-REV simulations, all

data could be stored however microscale averages were also calculated for five different volumes and

at eight different cross sections.
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For the salt species, calcium bromide (CaBr2) was selected due to the complex nature of its ac-

tivity coefficient and its use in previous studies. The density, viscosity, and activity coefficients from

Weigand et al. (2018a) were used. The dilute diffusion coefficient (D0) was set to 1.05× 10−5 cm/s2.

The REV scale simulations were run with OpenFoam v1712 on UNC Research Computings Dog-

wood cluster with 2,107 processors. OpenFOAM’s implementation of Scotch was used for domain de-

composition (Pellegrini, 2008). For the sub-REV scale simulations, the number of processors changed

to four.

4.5 Results and Discussion

4.5.1 Dilute Simulations

4.5.1.1 Dilute REV-Scale Simulations

Dilute experiments at three different mass flow rates (ṁw
in) were first performed so that a baseline

could be established to allow for comparisons between dilute and non-dilute flow and transport. The

dilute experiments also allowed us to characterize the porous media to ensure that the model produces

expected values for the media being simulated.

The microscale simulation results were averaged and the resulting macroscale breakthrough curve

was used to determine the longitudinal dispersivity (α̂L). This was accomplished by performing a pa-

rameter estimation where the dilute macroscale flow and transport equation was fit to the averaged mi-

croscale results at a cross-section by optimizing the longitudinal dispersivity, as shown in Figure 4.21.

The first two averaging regions were excluded from the fits to avoid any entrance effects. To determine

the intrinsic permeability of the porous media (k̂), Eqn (4.100) was used with the averaged microscale

results for fluid pressure at the inlet and outlet of the domain. The sub-REV-scale domain dilute sim-

ulation results were used with Eqn (4.104) to estimate a value of the tortuosity of 1.22, which agrees

with the literature (Aramideh et al., 2018; Icardi et al., 2014). This value was used for the dilute macro-

scale transport equation.

The conditions and resulting estimated parameters for three dilute simulations performed at an

REV-scale are reported in Table 4.6. The α̂T reported by Weigand et al. (2018a) for a similar medium

ranged from 0.098–0.16 cm and were based on laboratory experiments. The increase of the dispersiv-

ity for the highest Pe0 agrees with the literature (Icardi et al., 2014); the Re0 also increases and offers
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Table 4.6: Experimental values and optimized macroscale parameters for the REV-scale dilute simula-
tions.

ṁw
in (g/s) Re0 Pe0 α̂L (cm) k̂ (cm2)
10−6 3.1×10−5 0.026 0.049 7.4× 10−6

10−4 3.1×10−3 2.6 0.035 7.4× 10−6

10−2 3.1×10−1 260 0.15 7.4× 10−6

a mechanistic rationale for this observation. Schroth et al. (1996) report an intrinsic permeability of

4.6 × 10−6 cm2 for 12/20 Accusand, which is slightly lower than our estimated value, however they

also report different mean grain diameters and porosities than used in this work, and spheres are an

idealized representation of Accusand.

4.5.1.2 Dilute Sub-REV-Scale Simulations

To assess how the microscale velocity distribution impacts macroscale dispersion, sub-REV-scale

dilute simulations were performed for set of Re0 that matched the REV-scale simulations. Complete

microscale simulation details were stored and analyzed for the sub-REV-scale simulations. The sub-

REV-scale velocities were sampled along cross-sections orthogonal to the direction of flow near the

outflow boundary.

Figure 4.22 shows the distribution of the microscale velocity components for the lowest and high-

est Re0 for the sub-REV domain. For all three simulations, the means of the velocities in direction

orthogonal to the flow (vx and vy) are approximately zero. For the velocity in the direction of flow, the

mean is equal to the superficial face velocity. This agrees with Aramideh et al. (2018), however Icardi

et al. (2014) stated that the bin with the highest frequency corresponded to their superficial velocity.

This suggests an error in their results as the density weighted mean of the velocity in the direction of

flow must equal the superficial velocity. Additionally, the mean and standard deviation for the velocity

in the z-direction are equal. Aramideh et al. (2018) showed that the microscale velocity distribution at

low porosities are nearly exponentially distributed. To test this, the velocity in the z-direction was fit to

an exponential distribution but failed both the Kolmogorov-Smirnov and Andersen-Darling goodness-

of-fit tests (Evans et al., 2008).

The microscale velocities in the mean direction of flow are all positive for every flow rate con-

sidered. Icardi et al. (2014) observed negative velocities at similar Re0 but there porous media con-
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Figure 4.21: Results of fitting the dilute macroscale model (lines) to REV-scale cross-section averaged
microscale data (points) for Pe = 0.026 (a), 2.6 (b), and 260 (c).

sisted of irregular and polydisperse objects that contained local blockages that resulted in the negative

velocities in the mean direction of flow. The work of Aramideh et al. (2018) examined mono- and

polydisperse spheres and while they observed negative velocities at similar Re0, they considered it to

be negligible. For non-dilute flow and transport, negative velocities in the mean direction of flow can

develop due to gravity stabilization, however for dilute flow and transport they represent recirculation

zones. Since we did not observe any negative velocities in our dilute simulations, if we observe neg-

ative velocities in the mean direction of flow in our non-dilute simulations they can be attributed to

gravity stabilization effects. The velocity distributions and ranges for the three experiments are nearly

identical but scaled. This shows that, with the Re0 considered, no new flow pathways are forming

(Andrade et al., 1997).

4.5.2 Non-Dilute

4.5.2.1 Non-Dilute REV-Scale Simulations

The laboratory work by Weigand et al. (2018a) consisted of a single incoming flow rate that had

a Re0 of 0.07. While we did not directly match that Reynolds number, Figure 4.23 shows the macro-

scale mass fraction breakthrough curves for our most similar set of experiments (Re0 ≈ 10−1). The

length of the column in the laboratory experiments was more than ten times longer than the REV-size

domains for the microscale experiments. We observe that the averaged microscale results follow the

same trend as the experimental data. The dilute model produces the most disperse solution and the

breakthrough curve sharpens as the incoming mass fraction increases, while the resident initial con-

dition fluid mass fraction remains zero. For the experiment with a non-zero resident initial condition
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Figure 4.22: Dilute microscale sub-REV velocity distributions for Re0 = 3.1×10−5 (a) and Re0 = 0.31
(b). The means and standard deviations of the velocity are included. The distributions were sampled at
a cross-section orthogonal to the mean direction of flow.
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Figure 4.23: Laboratory experiments (a) from (Weigand et al., 2018a) and averaged REV-scale mi-
croscale simulations (b). Both the laboratory experiments and simulations use CaBr2 as the salt
species but the results shown are at different Re and the column lengths differ.

salt mass fraction, the averaged microscale simulation results also show breakthrough curve profiles

similar to those previously reported based upon laboratory studies despite the different mass fractions

used.

The REV-scale non-dilute simulations were performed at the same three mass flow rates that were

used with the dilute microscale simulations and five different combinations of initial mass fractions

and displacing mass fractions for the salt species were examined for each flow rate. For the non-dilute

simulations, the Re and Pe vary throughout the domain as the densities, viscosities and diffusion coeffi-

cient are functions of the mass fraction. We define these numbers, and an additional non-dimensional

gravity number, Ng, to aid interpretation of the simulated results as

Re =
ρind50v

w
in

µ̂in
Pe =

d50v
w
in

DAw,in
Ng =

(
ρin − ρres

)
k̂G

µ̂inv
w
in

. (4.105)

Ng is a measure of the ratio of gravitational forces to advective forces. For large Ng, gravity stabiliza-

tion becomes dominant compared to advective transport. Table 4.7 shows the Re, Pe and Ng for the

two highest mass flow rate experiments. The decrease in the Re and Pe as the incoming mass fractions

increase is due to a decrease in the inlet velocity.

The breakthrough curves for Re ≈ 10−3 experiments are shown in Figure 4.24. The breakthrough

curves for Re ≈ 10−5 (not shown) only differ in that the solutions are more diffuse and the displace-
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Table 4.7: Non-dilute REV-scale simulation parameters for the two highest mass flow rates considered.
The two highest flow rate experiments have Re ≈ 10−3 and Re ≈ 10−1, respectively.

ωin
ṁw

in = 10−4 g/s ṁw
in = 10−2 g/s

Re (10−3) Pe Ng Re Pe Ng

Dilute 3.1 2.6 0 0.31 260 0
0.01 3.0 3.1 81 0.30 310 0.81
0.1 2.7 2.3 840 0.27 239 8.4
0.2 2.4 1.6 1800 0.24 160 18
0.4 1.3 0.99 2900 0.17 99 29
0.5 0.73 0.99 2500 0.073 99 25

ment experiment where ωin = 0.1 is more diffuse than the dilute displacement at the lowest flow

rate. These experiments depict behavior that is in contrast to the current understanding of macroscopic

non-dilute transport. The front is thought to sharpen as the incoming mass fraction increases but we

observe the opposite behavior at these Pe (Broeke and Krishna, 1995; Jiao and Hötzl, 2004; Konz

et al., 2009; Landman et al., 2007a,b; Noordman and Wesselingh, 2002; Starr and Parlange, 1976;

Watson et al., 2002c). The molecular diffusion coefficient as a function of mass fraction is shown in

Figure 4.25. The sharpness of the non-dilute fronts is correlated to the diffusion coefficient with one

exception. For the case where ωin = 0.1, the diffusion coefficient is slightly larger (2%) than the dilute

diffusion coefficient and the Pe is slightly lower than the dilute displacement, however, the non-dilute

displacement breakthrough is sharper than the dilute breakthrough curve. This demonstrates that we

are observing non-dilute behavior for these displacement experiments as a higher diffusion coefficient

and lower Pe should produce a more diffuse breakthrough curve for a dilute displacement experiment.

The macroscale breakthrough curves for Re ≈ 10−1 are shown in Figure 4.23b. This set of ex-

periments is in good agreement with existing experimental work and the current understanding of

non-dilute behavior (Hassanizadeh and Leijnse, 1988; Landman et al., 2007b; Watson et al., 2002c;

Weigand et al., 2018a). The curves sharpen as the incoming mass fraction increases and when the

resident fluid has a non-zero salt concentration, the difference between the fluid properties controls

behavior. At this high of a Pe number, the non-dilute behavior is a result of the non-dilute effects on

the flow field. While molecular diffusion will still impact the solution, it becomes a higher order effect

as can be seen with the ωin = 0.4 experiment having the highest molecular diffusion coefficient but

also having the sharpest breakthrough curve at this flow rate.
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Figure 4.24: Averaged REV-scale non-dilute breakthrough curves for Re ≈ 10−3.
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Figure 4.25: Molecular diffusion sensitivity to density, viscosity, and activity (see Eqn (4.92)).
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4.5.2.2 Non-Dilute Sub-REV Simulations

As was done with the dilute experiments, sub-REV simulations were performed to examine mi-

croscale behavior. Figure 4.26 shows the normalized microscale mass fractions at a cross-section

along the mean flow direction for the dilute tracer and for the ωin = 0.4 displacement experiment at

Re ≈ 10−3, where flow is moving upwards. The higher incoming salt mass fraction displacements

experiments were more disperse than the dilute simulation at this Re.

By examining the microscale mass fractions, we can see the effects of gravity stabilization. For

the dilute case, the salt concentration varies significantly as we move across the domain orthogonal to

the direction of flow. This is due to mechanical dispersion. For the non-dilute simulation, there is less

variation in the mass fraction as we move along a cross section. When a denser fluid is above a less

dense fluid, which can be caused by the tortuous path of a porous media, gravity will force the denser

fluid downwards. By examining the non-dimensional form of the compressible Navier-Stokes equation

(Equation 4.95), we can see the relative importance of each term. For the non-dilute displacement with

ωin = 0.4, Re−1 is 7.6 × 102 and Fr−2 is 4.2 × 108, therefore the dominant term in Eqn (4.95) is

the term with the Fr. Ignoring all other terms, the gradient of the pressure-like term (p∗w,rgh) and the

density must equal, as gravity is assumed constant in this work, but have opposite signs. When a more

dense fluid is above a less dense fluid, the gradients of the pressure and density have the same sign.

This can produce either negative velocities in the direction of gravity or slow down the velocities in

the mean direction of flow. This stabilization restricts the movement of the salt species and produces a

more uniform microscale mass fraction field along a given cross-section orthogonal to gravity.

To further ensure that we were observing gravity stabilization, the microscale velocities and mass

fractions were sampled at a cross-section orthogonal to the gravitational vector (Figure 4.27). For our

dilute microscale simulations, no negative velocities in the direction of gravity were observed at the

Reynolds numbers considered. For our non-dilute simulations, we observe negative velocities that

are a result of gravity stabilization. The velocity distribution in the mean direction of flow becomes

increasingly more skewed to the left as the incoming salt mass fraction increases, resulting in larger

negative velocities. The variance of the velocity components orthogonal to gravity increases as the

salt front passes through as compared to the dilute simulations. Gravity stabilization not only impacts
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(a) (b)

Figure 4.26: Normalized microscale mass fraction for the dilute (a) and ωin = 0.4 and ωres = 0 (b)
experiments at Re ≈ 10−3. The direction of flow is upwards.

the velocities in the direction of gravity but also the velocities orthogonal to gravity as gravity acts to

stabilize the front.

The same sub-REV analysis was performed for the experiments with Re ≈ 10−1 and the normal-

ized microscale mass fractions for the dilute and ωin = 0.4 displacement experiment are shown in

Figure 4.28. As with the lower Re experiments, the non-dilute displacement is smoother than the dilute

tracer when moving along a cross-section orthogonal to the mean direction of flow. Additionally, the

length of the mixing zone from the bottom to the top of the figure is much thinner for the non-dilute

experiment compared to the dilute tracer, which produces a sharper macroscale breakthrough curve for

the non-dilute system. At this larger Re however, we observe locations where a higher density fluid

is above a lower density fluid which was not observed at the lower Re experiments. Comparing the

gravity numbers for the ωin = 0.4 displacement experiments at the two different Re shows that at the

larger Re simulation, gravity does not have as much time to stabilize the front and we observe loca-

tions were instabilities remain. For this simulation, Re−1 = 7.6 and Fr−2 = 4.2× 105, which means the

Fr term is still dominating behavior. Since we are observing denser fluid above less dense fluid, gravity

stabilization is causing reduced velocities in the direction of flow as opposed to negative velocities. At
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Figure 4.27: Velocity and mass fraction distributions for ωin = 0.1 (a) and ωin = 0.4 (b) at Re ≈
10−3. The fields were sampled at a cross-section orthogonal to the mean direction of flow.

92



(a) (b)

Figure 4.28: Normalized microscale mass fraction for the dilute (a) and ωin = 0.4 (b) experiments at
Re ≈ 10−1. For the non-dilute displacement, higher density fluids can be seen above lower density flu-
ids where grains of sand touch.

this Re and Pe number, the gradient of the pressure term must always have a larger magnitude than the

magnitude of the density gradient.

To confirm these observations, the microscale velocity distributions for the non-dilute experiment

at the largest Re are shown in Figure 4.29. No negative velocities are observed in the direction of

gravity for the non-dilute displacements at this Re. However, the variance in the velocity decreases and

we no longer observe the large positive velocities. For the non-dilute displacement with ωin = 0.4,

the initial standard deviation in the z-direction is 0.063 cm/s and is reduced to a minimum value of

0.043 cm/s and occurs when the front is approximately halfway through the domain. For the lower Re

experiments, the standard deviation of the z-component velocity increased as the front moved through.

For the lower Re experiments, where the gravity numbers are two orders of magnitude larger, there

is enough time for the fluid to re-arrange to a gravitational-stable distribution before the front fully

moves through, which is not the case at higher Re.

The distribution of the mass fraction at the higher Re simulations is also skewed, which from a

macroscale perspective produces a breakthrough curve that is asymmetric. This macroscale behavior
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Figure 4.29: Velocity and mass fraction distributions for ωin = 0.4 ate Re ≈ 10−1. The velocity field
was sampled at a cross-section orthogonal to the mean direction of flow.

has been observed by Weigand et al. (2018a) and was attributed to activity effects but this does not

seem to be true as the lower Re simulations would also have a skewed or asymmetric distribution at

the microscale. We attribute the asymmetry to the nonlinear density function. As the mass fraction

increases so does the density gradient. Therefore, gravitational stabilization affects higher mass frac-

tions more than lower mass fractions, which can be seen from the gravity number. This explains the

skewness in the mass fraction histogram as well as the observed increase in size of negative velocities

as the mass fraction increases at lower Re.

4.5.3 Isolation of Phenomena

One of the benefits of computational experiments over laboratory experiments is the ability to

isolate different phenomena. Figure 4.30 shows the REV-scale macroscale breakthrough curves for

Re ≈ 10−3 where we independently set the activity, density, and viscosity such that they are no longer

functions of the salt species and are equal to their dilute values. Figure 4.31 depicts the same experi-

ment set but at the sub-REV scale and at Re ≈ 10−1. For the simulations where the resident fluid had

a non-zero salt mass fraction, we fixed the density and viscosity to the values that correspond to the

resident salt mass fraction.
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Figure 4.30: REV-scale macroscale breakthrough curves for Re ≈ 10−3 (a) and the breakthrough
curves where the activity (b), viscosity (c), and density (d) are switched to their dilute values.
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Figure 4.31: Sub-REV-scale breakthrough curve sensitivity for ωin = 0.4 (a) and ωin = 0.5 (b) with
ωres = 0.4 with Re ≈ 10−1.
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4.5.3.1 Activity

Activity only appears in the molecular diffusion coefficient and when we neglect activity effects,

the molecular diffusion coefficient monotonically decreases as the mass fraction increases (Figure

4.25). For the non-dilute experiments with Re ≈ 10−3, the macroscale breakthrough curves were

correlated to the diffusion coefficient with the exception of the experiment with ωin = 0.1, which

was sharper than could be described by just examining the diffusion coefficient and Pe. Additionally,

by examining the microscale flow field, we observed gravitational stabilization effects that produced

negative velocities for the non-dilute simulations at this flow rate.

When the activity is turned off for the experiments with Re ≈ 10−3, we observe a different trend

in the data. The displacement experiment with ωin = 0.4 is still the most diffuse. This indicates that

the activity is not the cause for the diffuse profile, because the diffusion coefficient is the lowest as

this mass fraction as compared to the other experiments that have ωres = 0. All other breakthrough

curves are sharper than the dilute curve when we ignore activity, with the experiment with ωin = 0.5

and ωres = 0.4 switching from the second most diffuse to the sharpest breakthrough curve. This is

caused by the reduced diffusion coefficient and gravity stabilization effects. At this mass flow rate and

corresponding Re and Pe, activity effects must be considered.

For the higher Re experiments (Figure 4.31), turning the activity off does not cause any change in

macroscale behavior. The breakthrough curves lie on top of the curves where activity was included in

the experiments. This shows that at higher Re and Pe numbers the activity is a higher order phenom-

ena for macroscale non-dilute transport.

4.5.3.2 Viscosity

Not only does the viscosity appear in the microscale conservation of momentum equation, but

it also appears in the molecular diffusion coefficient. With the viscosity turned off, the molecular

diffusion coefficients increases as the mass fraction increases (Figure 4.25). If we examine the non-

dimensional form of the Navier-Stokes equation, we see that the viscosity appears in a term that is

multiplied by the Re−1. From our previous analysis, we expect viscosity to be a higher order effect

as the term associated with Fr−2 is dominant. The viscosity is also in the denominator in the gravity
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number. A decrease in the viscosity, increases the gravity number and allows more time for gravity to

stabilize the front.

For the lower Re simulations, the ωin = 0.4 breakthrough curve and the ωin = 0.5 with

ωres = 0.4 breakthrough curve are nearly identical with the viscosity fixed to a constant value (Figure

4.30c), but with the variable viscosity simulations, the experiment with ωin = 0.5 and ωres = 0.4

had a sharper breakthrough curve (Figure 4.30a). The viscosity function for CaBr2 is an exponential

function so it is expected to see the most dramatic impacts at the higher mass fractions. Moreover, the

diffusion coefficient for the higher mass fractions with a fixed viscosity is approximately twice as large

than with a variable viscosity, resulting in more diffuse breakthrough curves at higher mass fractions.

With the other displacement experiments, the differences are minor and the same trends are observed

for a constant viscosity as when the viscosity is variable. From this, viscosity impacts on macroscale

dispersion seem to be a higher order effect except at very high salt concentrations.

For the highest Re experiments, the viscosity impacts on the macroscale breakthrough curve

are negligible. The microscale velocity distribution with fixed viscosity is nearly identical to the mi-

croscale velocity distribution with a variable viscosity, which is consistent with the observation of

limited viscosity effects for this case. Pe for these simulations are large enough that diffusion is small

compared to mechanical dispersion. The flow profile is relatively insensitive to the viscosity due to

the choice of a fixed incoming mass flow rate boundary condition. The pressure increases when the

viscosity is variable and minor changes in the velocities are observed in the pore throats but they do

not change enough to impact macroscale transport. Alternative boundary conditions are required to

determine the effects that viscosity has on macroscale non-dilute transport.

The work of Landman et al. (2007a) agree with this and concluded that viscosity impacts are only

important at lower gravity numbers and larger flow rates. In their work, they found viscosity to be

important at a gravity number of 0.2 but unimportant at a number of 1.64. In this work, the lowest

gravity number for a non-dilute displacement is 0.81.

4.5.3.3 Density

As with the viscosity, the density appears in the conservation of momentum equation and diffusion

coefficient. When the density is fixed, the governing microscale equations reduce to the incompress-

ible form of the Navier-Stokes equations and gravity stabilization cannot occur. This can also be seen
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from the gravity number. Additionally, as the choice of boundary conditions masques viscosity effects,

only the diffusion coefficient will differentiate the dilute and non-dilute displacement experiments

when the density is fixed.

From Figure 4.30, we see that without density, we lose all non-dilute behavior as the breakthrough

curve for every displacement experiment becomes similar to the dilute breakthrough curve. The molec-

ular diffusion, activity, and viscosity are still variable in these simulations and contribute to the minor

differences in the breakthrough curves. The same conclusions can be drawn from the breakthrough

curves for the higher Re experiments (Figure 4.31). The non-dilute breakthrough curves collapse down

to the dilute breakthrough curve. This shows that the density gradient is of leading order importance.

4.5.4 Macroscale Models

Recent attempts at modeling macroscale non-dilute flow and transport have used a Taylor series

expansion of Fick’s law to include at least one new parameter to account for non-dilute behavior (Wat-

son et al., 2002c; Weigand et al., 2018a). For both of these macroscale models, the new parameters

have been shown to be functions of the macroscale velocity, where the parameter decreases expo-

nentially as the velocity increases (Watson et al., 2002c; Weigand et al., 2017). From this work, we

observed that as the flow rate increases for the non-dilute displacements, the microscale flow field

in the direction opposite to the gravity vector transitions from a distribution with negative velocities

and a large variance to an exponential like distribution with a reduced variance as compared to dilute

simulations. This is in agreement with the findings that dispersion decreases as the macroscale velocity

increases and explains why the non-dilute model parameters are functions of the macroscale velocity.

Macroscale dispersion is however not solely a function of the macroscale velocity and a fitting

parameter. The gravity number should also be included in macroscale models because it quantifies the

amount of gravity stabilization that occurs for a given macroscale velocity and includes the density

differences. Ergorov (Landman et al., 2007a) developed a model that was parameter free and included

the gravity number but the model was unable to correctly describe macroscale non-dilute transport.

The continued use of microscale simulations to increase our understanding of non-dilute behavior will

be necessary for the development of high-fidelity macroscale models where the parameters are tied to

the microscale physics.
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4.6 Conclusions

This work is the first step in obtaining a fundamental understanding of microscale non-dilute flow

and transport that can lead to improved and parameterized closure relations for macroscale models.

From this work, we conclude that

• Microscale modeling is an efficient and effective tool for advancing a fundamental understand-

ing of complex non-dilute behavior. Microscale modeling approaches are the preferred route for

obtaining a mechanistic understanding as compared to macroscale laboratory experiments.

• Non-dilute behavior can produce macroscale breakthrough curves that can be more or less dis-

perse than dilute breakthrough curves at the same operating conditions. Additionally, an in-

crease in the incoming salt mass fraction does not necessarily result in a sharper macroscale

breakthrough curve.

• Density gradients are of leading order importance for non-dilute flow and transport. At low

Reynolds and Peclet numbers, the chemical activity and viscosity can also affect macroscale

breakthrough curves.

• Gravity stabilization can result in negative microscale velocities in the mean direction of flow or

a reduced variance in the mean direction of flow dependent on operating conditions.

• Asymmetric non-dilute macroscale breakthrough curves are due to non-linear density functions

and not a result of chemical activity.

• The importance of viscosity needs to be further analyzed.
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CHAPTER 5: CONCLUSIONS

5.1 Conclusions

The research presented herein focused on improving the understanding of non-dilute flow and

transport at both the micro- and macroscale, as well as developing a more computationally efficient

numerical method to solve models that simulate non-dilute flow and transport at the macroscale. The

macroscale model was formulated using the TCAT approach and thus has all the benefits of a TCAT

model such as a connection between all spatial scales, explicit assumptions, and an entropy production

rate that was used to derive closure relations. The entropy production rate was also used to develop a

new numerical approach that improved computational efficiency as compared to the low-order meth-

ods that are commonly used to solve macroscale models for non-dilute flow and transport. This ap-

proach connects physical behavior to the numerical approximation to obtain a more accurate solution.

Microscale simulations were performed to provide mechanistic insight into non-dilute flow and trans-

port in porous media. Simulation results were used to explain observed experimental results in light of

underlying mechanisms.

When the macroscale TCAT model was developed, no microscale simulations had been performed

for non-dilute flow and transport in porous media and the closure coefficients were based on empirical

observations. Developing parameterized closure coefficients for high-fidelity macroscale models, re-

gardless of the methodology used to develop that model, is more successful when a microscale under-

standing and quantification of microscale behavior is available. Closure relations based on macroscale

empirical evidence can limit the utility of the model as the model must be verified for every applica-

tion and system.

The TCAT approach for model formulation has many attractive features that can be seen in this

work. While the ultimate goal of TCAT is to develop improved larger scale models, the benefits of the

approach, specifically the entropy production rate and firm connection between spatial scales, can also

be used to improve numerical methods and allow for subscale modeling. With the traditional approach
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to model formulation, where equations are posed directly at the scale of interest and thermodynamics

are ignored, only larger scales equations are derived and the opportunities such as improved numerical

approximations based on entropy production and an approach to obtain a mechanistic understanding

from microscale simulations are unavailable.

5.2 Future Work

Improved parameterizations of the closure coefficients are needed for the macroscale model and

should be based on the insight gained from microscale modeling work. This includes the applicability

of Darcy’s law for non-dilute flow at the macroscale. The literature suggests that Darcy’s law is valid

and is used in all existing closed macroscale models (Watson et al., 2002a), however, the methods used

to determine the validity of Darcy’s law are questionable as the work was conducted at the macroscale

and assumed a sharp interface. Once the closure coefficients are better parameterized, the macroscale

model should be extended for multiple dimensions.

Microscale simulations are preferred over any additional laboratory experiments to gain insight

on non-dilute behavior. Laboratory experiments can be used to further validate the macroscale models

but they are more prone to error than averaged microscale simulations. Additional microscale work

should include simulations with different porous media types, larger Reynolds and Peclet numbers as

well as lower gravity number experiments. Dilute microscale work has shown non-Fickian behavior

for different porous media types and higher Reynolds numbers than considered in this work, where

we only observed Fickian behavior. How non-dilute flow and transport would change for a porous

media where dilute non-Fickian transport can occur is unknown and should be examined. Different

density, viscosity, and molecular diffusion relations should also be explored as well as alternative

boundary conditions. The effects of viscosity were found to be unimportant in this work for non-dilute

transport, but this was due to the choice of boundary conditions. The nonlinear density function caused

asymmetric breakthrough curves that may not exist for other density functions and this should be

examined.

Extensions for the TCAT viscosity approach include using the conservative form of the trans-

port equation. This allows for a more direct comparison of the TCAT viscosity approach to the EV

approach. While the fitting parameter in the TCAT viscosity method was found to not vary between

101



experiments, additional tests cases should be performed. Ideally, an alternative formulation could

be developed where the numerical approach is no longer dependent on a fitting parameter. The use

of the TCAT viscosity approach for a different TCAT model and entropy production function would

effectively test the robustness of the numerical scheme.
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APPENDIX 1: DETAILED TCAT NON-DILUTE MODEL FORMULATION

The model formulation is based on the macroscale model derived by Gray and Miller (2009) using

an entity-based momentum approach where the fluid phase, w, consists of a binary system containing

two constituents, A and B, where A is defined as the salt and the water as constituent B. Following

the formulation based on TCAT (Gray and Miller, 2005, 2014), we obtain the following simplified

entropy inequality (SEI)

1

θw

(
εwpwI + εwtw

)
:dw − 1

θw
εwρwωAwuAw·∇

(
µAw + ψAw − µBw − ψBw

)
−

∑
i∈Is

[
εwρwωiw∇

(
µiw + ψiw

)
+ εwρwωiwgiw

]
−∇

(
εwpw

)
+
ws→w
T

 ·v
w,s

θw

= Λ ≥ 0 , (A.106)

where the identity

ωAwuAw + ωBwuBw = 0 (A.107)

has been used to derive Eqn (A.106) for this binary species system and θw is the temperature, I is the

identity tensor, dw is the rate of strain tensor, tw is the stress tensor, uAw is the dispersion vector of

species A, µAw is the chemical potential of species A, ψAw is the gravitational potential of species A,

Is is the index set of species, giw is the body force potential acting on species i,
ws→w
T is the momen-

tum transfer from species i to the water phase, vw,s is the velocity of the water phase relative to the

solid phase, and Λ is the entropy production rate density.

Closure relations can be posited directly from the given form of the SEI, however, chemical poten-

tials are not convenient quantities to use for this work. The chemical potentials can be transformed to

more convenient quantities using the macroscale Gibbs-Duhem equation as well as other relations for

a binary species system. The macroscale Gibbs-Duhem equation for the w phase can be written for the

isothermal case as

∑
i∈Is

ρwωiw∇µiw −∇pw +

〈∑
i∈Is

ρwωiw∇
(
µiw − µiw

)
−∇ (pw − pw)

〉
Ωw,Ωw

= 0 , (A.108)
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and for a body force due to gravity we have

∑
i∈Is

ρwωiw∇ψiw + ρwgw +

〈∑
i∈Is

ρwωiw∇
(
ψiw − ψiw

)〉
Ωw,Ωw

= 0 . (A.109)

The angled brackets, as well the subscripts after the brackets, shown Equations A.108 and A.109

represent a formula for an average of microscale quantities. The definition of the formal average can

be found in Gray and Miller (2014).

The summation of these two relations yields

∑
i∈Is

ρwωiw∇
(
µiw + ψiw

)
−∇pw + ρwgw

+

〈∑
i∈Is

ρwωiw∇
(
µiw − µiw + ψiw − ψiw

)
−∇ (pw − pw)

〉
Ωw,Ωw

= 0 (A.110)

As an initial approximation, we will assume that the deviations between the microscale and macro-

scale potentials are negligible. The pressure deviation term in Eqn (A.110) can be approximated as

〈∇ (pw − pw)〉Ωw,Ωw
≈ R̂p∇εw . (A.111)

The SEI then becomes

1

θw

(
εwpwI + εwtw

)
:dw − 1

θw
εwρwωAwuAw·∇

(
µAw + ψAw − µBw − ψBw

)
−

∑
i∈Is

εwρwωiwgiw + εw∇pw − εwρwgw + εwR̂p∇εw

−∇
(
εwpw

)
+
ws→w
T

}
·v

w,s

θw
= Λ ≥ 0 , (A.112)

which can be simplified for a constant gravity force independent of species to

1

θw

(
εwpwI + εwtw

)
:dw − 1

θw
εwρwωAwuAw·∇

(
µAw + ψAw − µBw − ψBw

)
−
{
εwR̂p∇εw − pw∇εw +

ws→w
T

}
·v

w,s

θw

= Λ ≥ 0 , (A.113)
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The sum of the Gibbs-Duhem equation and the gravitational potential equation for a species in the

w phase can be written as

ρwωiw∇
(
µiw + ψiw

)
−Xiw∇pw + ρwωiwgiw − ρwωiw∇µiw

∣∣∣
pw,θw

+
〈
ρwωiw∇

(
µiw + ψiw − µiw − ψiw

)
−
(
Xiw∇pw −Xiw∇pw

)〉
Ωw,Ωw

−
〈
ρwωiw∇

(
µiw|pw,θw − µiw

∣∣∣
pw,θw

)〉
Ωw,Ωw

= 0 , (A.114)

which can be rearranged as

∇
(
µiw + ψiw

)
=

Xiw

ρwωiw
∇pw − giw + ∇µiw

∣∣∣
pw,θw

− 1

ρwωiw

〈
ρwωiw∇

(
µiw + ψiw − µiw − ψiw

)
−
(
Xiw∇pw −Xiw∇pw

)〉
Ωw,Ωw

+
1

ρwωiw

〈
ρwωiw∇

(
µiw|pw,θw − µiw

∣∣∣
pw,θw

)〉
Ωw,Ωw

. (A.115)

where Xiw is the partial mass volume fraction of species i and ∇µiw
∣∣∣
pw,θw

is the gradient of the chem-

ical potential of species i with the density and temperature of the water phase held constant.

The deviations between the microscale and macroscale potentials are assumed to be negligible.

We also assume the product terms in the average of deviation pressures are separable. This produces

∇
(
µiw + ψiw

)
=

Xiw

ρwωiw
∇pw − giw + ∇µiw

∣∣∣
pw,θw

+
Xiw

ρwωiw
〈∇pw −∇pw〉Ωw,Ωw

(A.116)

For a two species system, where there the gravity force is constant and independent of species and

using Eqn (A.111), we have

∇
(
µAw + ψAw − µBw − ψBw

)
= ∇µAw

∣∣∣
pw,θw

− ∇µBw
∣∣∣
pw,θw

+
XAw − ωAw

ρwωAwωBw

(
∇pw + R̂p∇εw

)
(A.117)
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The chemical potential is defined as

µiw
∣∣∣
pw,θw

= µiw0 (pw, θw)
∣∣∣
pw,θw

+
RGθ

w

MWi
ln
(
xiwγ̂iw

)
, (A.118)

and the gradient of the chemical potential as

∇ µiw
∣∣∣
pw,θw

=
RGθ

w

MWiγ̂iw
∇γ̂iw

∣∣∣∣∣
pw,θw

+
RGθ

w

MWixiw
∇xiw

∣∣∣∣∣
pw,θw

. (A.119)

The following two relations for a binary system will also be used:

∇xAw = −∇xBw (A.120)

and

γ̂Bw∇
(
γ̂AwxAw

)∣∣∣
pw,θw

+ γ̂Aw∇
(
γ̂BwxBw

)∣∣∣
pw,θw

= 0 . (A.121)

The gradient of the chemical potentials, which can be seen in Eqn (A.117), can then be trans-

formed into the following form

∇µAw
∣∣∣
pw,θw

− ∇µBw
∣∣∣
pw,θw

= RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)
∇xAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]
. (A.122)

To convert the mole fraction to mass fraction, we use the following relation

∇xAw =

(
MW 2

w

MWAMWB

)
∇ωAw, (A.123)

where the molecular weight of the solution (MWw) is defined as

MWW = xAwMWA + xBwMWB =

(
ωAw

MWA
+

ωBw

MWB

)−1

. (A.124)

The gradients of the chemical potentials then becomes
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∇µAw
∣∣∣
pw,θw

− ∇µBw
∣∣∣
pw,θw

=

RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]
. (A.125)

Inserting Eqns (A.117) and (A.125) into the SEI, we have

1

θw

(
εwpwI + εwtw

)
:dw

− 1

θw
εwρwωAwuAw·

{
XAw − ωAw

ρwωAwωBw

(
∇pw + R̂p∇εw

)
+RGθ

w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}

−
{
εwR̂p∇εw − pw∇εw +

ws→w
T

}
·v

w,s

θw

= Λ ≥ 0 , (A.126)

For the case of constant porosity, the SEI becomes

1

θw

(
εwpwI + εwtw

)
:dw

− 1

θw
εwρwωAwuAw·

{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}

−
ws→w
T ·v

w,s

θw
= Λ ≥ 0 , (A.127)

Eqn (A.127) includes three terms in force-flux form, which will be considered in turn. For the first

term, we will use a zero-order closure, which leads to a flux that is independent of the conjugate force
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that can be written as

tw = −pwI . (A.128)

Eqn (A.128) is a standard macroscale inviscid flow approximation. Momentum transfer from the water

phase to the water-solid interface is likely to be the dominant process, and at the macroscale the flow

velocity is invariant at steady state. This is equivalent to neglecting wall effects.

The second term requiring an approximation is the term uAw, which is defined as the macroscale

deviation from the mass-averaged velocity for species A. A variety of physicochemical mechanisms

can result in this deviation velocity. These include, molecular diffusion, and variations in flow caused

by not only the pore morphology and topology but also variations in fluid density, viscosity, and ac-

tivity. Thus some of these mechanisms are related to solution properties and some are related to vari-

ations in fluid flow. We will depart from previous closure approximations of this model (Gray and

Miller, 2009) by using cross-coupled approximations in terms of forces yielding the approximations

ωAwuAw = −xAwxBwD̂Aw

u ·
{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}
− R̂

Aw

u ·vw,s (A.129)

and

ws→w
T = −xAwxBwD̂Aw

v ·
{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}
− R̂

Aw

v ·vw,s (A.130)

where D̂
Aw

u , R̂
Aw

u , D̂
Aw

v and R̂
Aw

v are second-order, cross-coupled closure tensors. The addition of the

product of the mole fractions ensures that the model reduces properly in the dilute limit. The equa-

tions we wish to close are the conservation of mass equations for the w phase and the case of no mass
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exchange among entities given by

Dw
(
εwρwωAw

)
Dt

+ εwρwωAwI:dw +∇·
(
εwρwωAwuAw

)
= 0 , (A.131)

where Dw

Dt is the material derivative with respect to the water phase. This can be summed over both

species yielding
Dw
(
εwρw

)
Dt

+ εwρwI:dw = 0 , (A.132)

and the conservation of momentum equation for the w phase given by

Dw
(
εwρwvw

)
Dt

+ εwρwvwI:dw −∇·
(
εwtw

)
−
∑
i∈Is

εwρwωiwgiw −
ws→w
T = 0 . (A.133)

Inserting Eqns (A.128) and (A.130) into Eqn (A.133), where we have assumed the porosity is

constant and the gravitational force is constant and independent of species, yields

Dw
(
εwρwvw

)
Dt

+ εwρwvwI:dw + εw∇pw − εwρwgw + xAwxBwD̂
Aw

v ·
{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}
+ R̂

Aw

v ·vw,s = 0 . (A.134)

Eqn (A.132) can be used to simplify Eqn (A.134) to

εwρw
Dwvw

Dt
+ εw∇pw − εwρwgw + xAwxBwD̂

Aw

v ·
{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}
+ R̂

Aw

v ·vw,s = 0 . (A.135)

Neglecting inertial terms yields
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εw∇pw − εwρwgw + xAwxBwD̂
Aw

v ·
{
XAw − ωAw

ρwωAwωBw
∇pw

+RGθ
w

[(
1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

+

(
1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]}
+ R̂

Aw

v ·vw,s = 0 . (A.136)

Eqns (A.131) and (A.129) can be combined to give

Dw
(
εwρwωAw

)
Dt

+ εwρwωAwI:dw −∇·
(
εwρwR̂

Aw

u ·vw,s
)

−∇·
[
εwρwxAwxBwD̂

Aw

u ·
(
XAw − ωAw

ρwωAwωBw

)
∇pw

]

−∇·
[
εwρwxAwxBwRGθ

wD̂
Aw

u

·
(

1

MWAxAw
+

1

MWBxBw

)(
MW 2

w

MWAMWB

)
∇ωAw

]

−∇·
[
εwρwxAwxBwRGθ

wD̂
Aw

u ·
(

1

MWAγ̂Aw
+

xAw

MWB γ̂AwxBw

)
∇γ̂Aw

]
= 0 . (A.137)

After manipulations and using the following relation

xAwxBw

ωAwωBw
=

MW 2
W

MWAMWB
, (A.138)

Eqn (A.136) becomes

εw∇pw − εwρwgw + R̂
Aw

v ·vw,s +

[
xAwxBw

ωAwωBw

][(
RGθ

wMWW

MWAMWB

)
D̂
Aw

v ·∇ωAw

+

(
RGθ

wxAw

MWW γ̂Aw

)
D̂
Aw

v ·∇γ̂Aw +

(
XAw − ωAw

ρw

)
D̂
Aw

v ·∇pw
]

= 0 . (A.139)

and Eqn (A.137) becomes

∂
(
εwρwωAw

)
∂t

+∇·
[
εwρw

(
ωAwI− R̂

Aw

u

)
·vw,s

]

110



−∇·

εwρw
xAw

(
1− xAw

)
ωAw (1− ωAw)

[(XAw − ωAw

ρw

)
D̂
Aw

u ·∇pw

+

(
RGθ

wMWW

MWAMWB

)
D̂
Aw

u ·∇ωAw +

(
RGθ

wxAw

MWW γ̂Aw

)
D̂
Aw

u ·∇γ̂Aw
]}

= 0 . (A.140)
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