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ABSTRACT 

 
Nicholas Ford Brazeau: The Molecular, Spatial, and Genetic Epidemiology of Malaria in the 

Democratic Republic of the Congo 
(Under the direction of Steven R. Meshnick) 

 
In 2018, the Democratic Republic of the Congo (DRC), accounted for nearly 12% of the 

global malaria case burden and 11% of the global malaria death toll. In my dissertation, I explore 

the molecular, spatial, and genetic epidemiology of malaria in the DRC and provide novel 

insights that will help inform malaria control policy in this high burden country.  

In the first aim of my dissertation, I investigate the recent finding that Plasmodium vivax 

transmission is occurring among Duffy-negative host in sub-Saharan Africa. Using data from 

approximately 18,000 adults, I found a 2.97% prevalence of P. vivax infections across the DRC. 

Nearly all infections were among Duffy-negative adults (486/489). Infections were not 

associated with typical risk-factors and were not geographically clustered. Mitochondrial 

genomes suggested that DRC P. vivax is an older clade with isolates from South America as its 

most recent common ancestor. Although P. vivax is more prevalent than previously expected, P. 

vivax in the DRC appears to be innocuous given its relatively flat distribution across space, lack 

of association with expected malaria risk factors, and potentially ancestral lineage. As a result, 

the first aim of my dissertation helps to provide public health officials with the information 

needed to form strategies for P. vivax in sub-Saharan Africa. 

In the second aim of my dissertation, I used 1,111 P. falciparum isolates genotyped at 

nearly 1,800 loci from across the DRC to analyze the decay of genetic and spatial relatedness 

across three measures of space: (1) greater-circle distance, (2) road distance, and (3) river 
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distance. I found that road distance best explained the genetic relatedness in the DRC under a 

classic isolation by distance model. In addition, I found evidence that suggests that highly related 

pairs in the DRC are more frequently connected between urban and rural settings. These results 

suggest that human movement may be driving falciparum parasite dispersion across the DRC. 

Characterization of how P. falciparum parasites are migrating in the DRC can direct 

policymakers where antimalarial interventions may be most effective. 
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CHAPTER ONE: SPECIFIC AIMS 

Aim 1:  Identifying the Risk, Distribution, and Origin of P. vivax in the Democratic 
Republic of the Congo  

In 2017, Plasmodium vivax was estimated to cause 14.3 million cases globally, with the 

majority of infections occurring outside of sub-Saharan Africa 1. However, recent evidence has 

shown that P. vivax is prevalent across the sub-Saharan Africa region, overturning the consensus 

of its absence from the region. Despite growing concern of P. vivax in the sub-Saharan region, 

no studies have systematically determined the prevalence, distribution, or clinical relevance of 

these infections to date 2–6. Similarly, no studies have identified the source of sub-Saharan P. 

vivax, which will be informative to determine the history of these infections in the region. 

Although the resurgence of P. vivax within sub-Saharan Africa has the potential to undermine 

malaria elimination campaigns, its clinical burden and relevance need to be determined prior to 

allocation of resources. Proper allocation of resources is becoming increasingly crucial for 

malaria elimination campaigns as malaria incidence is rebounding globally 7. This prompts the 

need to evaluate the infectious burden of P. vivax by determining where infections are occurring, 

who is at risk for infection, and the likely origin of these infections.  

To fill this critical gap in knowledge, I screened the 2013-2014 Demographic Health 

Survey (DHS) from the Democratic Republic of the Congo (DRC) for P. vivax. The 2013-2014 

DRC DHS was a nationally representative survey of approximately 18,000 adults with over 500 

demographic and behavioral covariates, geographical information, and a dried blood spot for 

each participant 8. 
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Using this rich resource, I aimed to do the following:  

Aim 1.1: Determine the environmental, behavioral, genetic, and spatial risk factors 
associated with P. vivax infection. 

Rationale. Although many of the risk factors associated with P. vivax infection are expected to 

be similar to P. falciparum, P. vivax is unique in its life cycle (i.e. hypnozoites) and its 

propensity to be infectious prior to the presentation of clinical symptoms (i.e. shortened intrinsic 

period) 9–12. Therefore, identifying areas of transmission (Aim 1.2) and risk factors that predict 

P. vivax infection will inform public health officials on who is being infected.  

Hypothesis. I hypothesize that important risk factors will include urbanicity and wealth -- but to 

a lesser extent than P. falciparum, due to the shorter P. vivax intrinsic period. 

Aim 1.2: Characterize the national prevalence and geographical distribution of P. vivax. 

Rationale. Previous reports on P. vivax prevalence and burden have only been conducted in a 

few field sites through convenience sampling and have lacked robust spatial sampling 4. As a 

result, there is a critical gap in our understanding of P. vivax prevalence across sub-Saharan 

Africa. Maps are needed to inform public health officials where disease is occurring. 

Hypothesis. I hypothesize that the unique biological characteristics of P. vivax will lead to 

increased local transmission, as relapses from dormant infections will cause “hotspots,” or local 

infection clusters. 

Aim 1.3: Using mitochondrial genomes, determine if P. vivax infections represent local 
transmission or importation from outside of the sub-Saharan African region. 

Rationale. To date, no studies have attempted to determine the origin of P. vivax infections 

among Duffy-negative hosts in sub-Saharan Africa. Differentiating between imported cases and 

cases of local transmission is critical for informing public health interventions and can be readily 

accomplished using measures of genetic differentiation and population structure.  
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Hypothesis. I hypothesize that the DRC P. vivax population is an ancient population that has 

lingered in the country among various non-human ape and human hosts and has not been 

recently imported into the country.  

This aim will provide the first population-based study to quantify the prevalence of P. 

vivax, to identify the epidemiological risk factors associated with P. vivax infection, and to 

determine the origin of these infections in a sub-Saharan African country. Collectively, this 

novel combination of epidemiological and population genetics data will provide public health 

officials and policymakers with the critical information they need to differentiate if P. vivax is a 

 reemerging infection or simply an innocuous threat in sub-Saharan Africa.  

Aim 2: Tracing the Genetic Relatedness of Plasmodium falciparum in the Democratic 
Republic of the Congo across Space 

Decreasing sequencing costs and advancing methods have allowed genomic data to 

become a standard tool in infectious disease epidemiology for tracking outbreaks and inferring 

transmission patterns. In the study of P. falciparum malaria, these genomic tools have been 

combined with epidemiological data to identify importation of drug-resistance, identify 

transmission networks, and track parasite migration 13–24. Leveraging these tools and approaches 

to identify areas where parasites are highly connected can help guide malaria control efforts.  

Patterns of identity by descent (IBD) have been recognized as an informative measure of 

P. falciparum parasite connectedness, particularly, spatial connectedness 21–25. However, many 

of the previous studies linking IBD and geographic space have focused on isolates originating 

from a few sites or being sourced from multiple countries. As a result, these studies have largely 

been limited to estimating patterns of local transmission or global transmission without any 

connection between these two dynamics.  
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To fill this critical gap in knowledge, I used a spatially robust dataset that included 351 

sites and 1,111 samples across the Democratic Republic of the Congo (DRC) to identify patterns 

of genetic and spatial connectedness among P. falciparum parasites. The DRC is an ideal 

location to study P. falciparum genetic-transmission dynamics: it is the second largest country in 

sub-Saharan Africa, it is a bridge linking East and West Africa P. falciparum genetic diversity, 

and it has a high burden of P. falciparum that exhibits spatial heterogeneity in prevalence 26–28. 

From this spatially rich dataset, I aim to do the following:  

Aim 2.1: Identify patterns of parasite dispersion.  

Rationale. Parasites may be dispersed by: (1) mosquito movement, which can be approximated 

by greater-circle distances, or (2) human travel, which can be approximated by road- and river-

distances. Differentiating between these two scenarios has important implications for malaria 

control efforts. For example, if parasites are more commonly spread to areas by mosquitoes, 

resources may be better allocated to vector control. In contrast, if parasites dispersion is 

dominated by human movements, control programs may want to prioritize importation 

surveillance and target major crossroads.   

Hypothesis. I hypothesize that there will be a strong spatial signal in the road-network model that 

approximates malaria dispersion by human migration. This would suggest that road-distance, or 

human travel, may drive parasite connectedness events more than mosquito dispersion.  

Aim 2.2: Determine the spatial, ecological, and malaria-interventional predictors of 
identity by descent among DRC parasites.   

Rationale. Identifying the covariates that are associated with IBD can inform malaria control 

programs on which interventions most decrease parasite genetic diversity. Decreasing genetic 

diversity is associated with a lower effective population size and potential culling of the malaria 

parasite. In order to avoid autocorrelation in the pairwise IBD-measure, I will aggregate IBD 
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within each province and between provinces as the outcomes of interest. Given that intervention 

planning is typically implemented on the province level, modeling province-level effects is likely 

to be most informative for malaria policymakers in the DRC.  

Hypothesis. I hypothesize that there will be few non-spatial predictors of IBD in the DRC given 

its high-transmission setting. However, I predict that there will be a strong signal between IBD 

and prevalence that will reflect the differing levels of transmission intensity in the region.  

In this aim, I will use a spatially-rich genomic dataset to determine the connectedness of 

P. falciparum infections across the DRC. By identifying regions of high parasite connectedness, 

I can provide targeted feedback for intervention planning and intervention efforts. Maps of 

spatial and genetic connectedness differ from traditional incidence or prevalence maps, as they 

provide a picture of how P. falciparum infections may be arising instead of simply where. 

Through these means, public health officials will be able to target the root of P. falciparum 

infections instead of chasing infections across the country.   
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CHAPTER TWO: INTRODUCTION 

Overview and Global Burden of Malaria  

There are five protozoan parasites that cause clinical malaria among human hosts, all 

within the Plasmodium genus: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Of 

these five species, P. falciparum and P. vivax account for the vast majority of the global malaria 

burden 1. In 2017, P. falciparum accounted for approximately 193.9 million cases of malaria, 

while P. vivax accounted for 14.3 million cases 2,3. Although the global burden has decreased 

over the past decade, recent evidence suggests that case-reduction rates have plateaued and 

malaria burden may be increasing globally 1. This plateau represents an impasse in malaria 

elimination efforts, as concerns of Plasmodium drug-resistance, donor-fatigue, change in vector 

behavior, and vector insecticide-resistance are mounting 1. 

Although current literature is evolving, it is generally believed that: (1) the burden of 

malaria is highest in sub-Saharan Africa, where P. vivax is absent; (2) P. falciparum is much 

more deadly than P. vivax; and (3) P. vivax is not associated with strong-seasonal outbreaks or 

epidemics like P. falciparum. These factors have long led to P. vivax being considered a “benign 

malaria” and has led to the neglect of P. vivax as a global burden, when compared to P. 

falciparum 4–6. 

Malaria Parasite Life-Cycle  

Malaria is a vector-borne disease transmitted by the Anopheles sp. mosquito. Specifically, 

inoculation occurs when an infected female anopheline mosquito takes a blood-meal from a 

susceptible host and releases sporozoites into the bloodstream. These sporozoites then migrate to 
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the liver and infect hepatocytes (Figure 1: Liver Stage). After a 5-8 day incubation period within 

the liver, the schizont hepatocyte erupts and spills merozoites into the peripheral circulation  

(Figure 1: Blood Stage) 7,8. From the peripheral circulation, merozoites invade red blood cells 

(i.e. erythrocytes, reticulocytes) through a series of interactions between merozoite surface 

invasion ligands and host-cell receptor that are both malaria-species and host-species dependent 

(i.e. host tropism) 9. Predominantly, malaria-species invasion ligands are contained within two 

protein families: the erythrocyte binding-like proteins and reticulocyte binding-like proteins 9,10. 

These protein-families are thought to dictate much of the host specificity of the Plasmodium 

genus 9.  

Following invasion of the erythrocyte, the merozoite enters a ring stage and starts to 

consume the different components of the cell while also altering the cellular cytoskeleton to 

facilitate the importation of nutrients 7. After a short incubation period, the infected erythrocyte 

erupts and releases merozoites and a subset of sexual-stage gametocytes into the peripheral 

circulation 7,8. The released merozoites will then infect new susceptible erythrocytes and 

propagate the blood stage cycle.  

Separately, gametocytes will remain in the peripheral circulation with the goal of 

inoculating a female Anopheles mosquito during a blood-meal. After the gametocytes have 

successfully inoculated the Anopheles mosquito, a “male” gamete and a “female” gamete fuse to 

form a zygote. At this point, the zygote undergoes meiosis and produces an ookinete 7,8. Through 

a not well-understood process, the ookinete invades the mosquito midgut cellular wall and 

travels through the endolymph to the mosquito salivary glands 11. Once in the mosquito salivary 

gland, the female Anopheles mosquito is infectious and can propagate the spread of malaria 

parasites.  
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Globally, there are approximately 41 dominant/competent vector species that can 

transmit malaria 12–14. The main vector depends on the country with some differences between 

Plasmodium species competences (reviewed in Sinka et al. 2010a, Sinka et al. 2010b, Sinka et 

al. 2011).  

P. vivax follows the typical malaria parasite life cycle described above with one 

additional stage: the hypnozoite stage (Figure 1: Hypnozoite Stage). After sporozoites have 

migrated to the liver and infected hepatocytes, a subset of sporozoites differentiate into hepatic 

schizonts (described above) and hypnozoites, respectively. Hypnozoites are a dormant stage of 

the parasite that can reemerge weeks to months after the primary infection has occurred, termed a 

“relapsing” infection 10,15. Although still debated, the periodicity of P. vivax relapses appears to 

correspond with climate -- temperate zones: relapse periodicity appears to be on the order of 

magnitude of months; tropical zones: relapse periodicity appears to be on the order of magnitude 

of weeks 15. 

 

 



 

 12 

 
Figure 1.1 – Malaria Life Cycle: Displayed is the malaria life cycle showing inoculation by an 
anopheline mosquito (vector) and subsequent liver and blood stage infections (figure adapted 
from White et al. 2014). For each stage, the number of infectious agents is displayed for P. 
falciparum, while the number of P. vivax infectious agents are expected to one order of 
magnitude lower (Baird, 2016). Hypnozoites (purple) are a unique feature of the P. vivax life 
cycle, which allow parasites to remain dormant for weeks to months.  

Diagnosis of Malaria  

Malaria typically presents with a low- to high-grade fever, malaise, anorexia, myalgias, 

arthralgias, gastrointestinal symptoms (i.e. vomiting, diarrhea, abdominal pain), and other 

nonspecific symptoms. In addition, splenomegaly is often appreciated on physical exam. 

Laboratory results typically show increased inflammation and signs of infection (i.e. elevated 

erythrocyte sedimentation rate, C-reactive protein, thrombocytopenia, elevated white blood cell 

count with a predominating lymphocytic pattern) and elevated lactate dehydrogenase levels with 

low hemoglobin (resulting from the destruction of erythrocytes). Some patients may also present 

with elevated liver function tests, elevated ferritin levels, and an altered basic metabolic panel, 

typically indicating acidosis. 
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 Diagnosis of malaria can be made with microscopy (gold standard), a rapid diagnostic 

test (RDTs), or with a polymerase-chain reaction (PCR) assay. Although PCR is likely the most 

sensitive and specific method for detecting malaria, it requires specialized laboratory conditions, 

reagents, and training. As such, sensitivities and specificities will range widely depending on 

resource-availability, primer-sets used, and laboratory conditions. 

 In resource limited settings, the diagnosis of P. falciparum has historically relied on 

microscopy, and more recently RDTs. P. falciparum RDTs typically target the P. falciparum 

histidine-rich protein 2 (pfHRP2) antigen, which has been shown to be heat-stable relative to 

other antigen targets 16. However, recent reports in the DRC and elsewhere in Africa have 

identified parasites with pfHRP2-gene deletions that are undetectable by traditional RDTs 16–19. 

These “stealth parasites” greatly complicate the diagnosis of P. falciparum in resource limited 

settings 19. 

The key difference between diagnosing P. falciparum versus P. vivax infections is the 

blood-stage parasite density, such that a P. vivax infection tends to have one order of magnitude 

fewer parasites than a P. falciparum infection 20. This systematically lower parasitemia in P. 

vivax makes diagnosis more challenging. In a systematic review from the Cochrane 

Organization, RDTs designed to specifically detect P. vivax lactate dehydrogenase (pvLDH) 

performed well, missing only 5% of infections relative to microscopy 21. However, RDTs 

designed to detect falciparum and non-falciparum malaria (pfHRP2/panLDH) had lower 

sensitivity for P. vivax infections, ranging from 78-89% 21. As a result, in regions where P. 

falciparum and P. vivax are co-endemic, the type of RDT used will have an impact on P. vivax 

diagnostic capacity. Despite varying levels of sensitivity, both vivax-specific and non-falciparum 

malaria RDTs had high specificity for P. vivax, ranging from 98-99% 21.  
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Finally, there is no diagnostic test available to detect hypnozoites. This inability to detect 

hypnozoites has been a long-standing barrier to P. vivax elimination 22,23. Recently, White et al. 

2014 demonstrated that the hypnozoite reservoir can propagate infections and maintain a steady-

state of infections if untreated 22. Put more simply, P. vivax elimination is likely impossible 

without treatment of hypnozoite parasites.  

Treatment and Management of Malaria 

Treatment of P. falciparum is primarily focused on eliminating liver-stage parasites 24. 

Due to widespread resistance of chloroquine (CQs) and antifolate-based agents, artemisinin-

combination therapies (ACTs) are the first-line treatment for P. falciparum malaria infections 

(recommendation since 2010) 24. ACTs are the last antimalarial drug-class that does not have 

near ubiquitous drug-resistance. However, artemisinin monotherapy drug-resistance has emerged 

in Southeast Asia, likely dating to 2008 24–26. In addition, ACT partner drug resistance (i.e. 

quinoline-based agents, antifolate/sulfur-based agents, and artemisinin-derivatives) continues to 

arise and proliferate across Southeast Asia 24–29. As a result of this growing antimalarial 

resistance in Southeast Asia, trials for artemisinin-triple therapies have been initiated.  

To date, artemisinin-resistance has not been identified at appreciable levels in sub-

Saharan Africa 30–32. However, as in Southeast Asia, ACT partner drug resistance is prevalent in 

sub-Saharan Africa 24–26,28,29. Partner drug resistance in sub-Saharan Africa appears to be mainly 

due to mutations in the multidrug resistance 1 (pfmdrl) locus (namely N76Y, Y184F, D1246Y) 

24. These mutations in the pfmdrl locus provide some resistance to partner drugs (e.g. 

lumefantrine, mefloquine), but selectional pressures at the pfmdrl locus appear to be variable and 

with potential balancing selection between various resistance phenotypes (or other biological 

functions) 24. Separately, CQ resistance is essentially fixed across Africa due to the CVIET 
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haplotype at the pfcrt locus, which also offers some resistance against other quinoline- and 

artemisinin-based agents 24,33,34. Given that ACT are the first-line treatment in Africa, 

importation or the emergence of ACT resistance in Africa could wreak havoc on malaria control 

and elimination programs.  

Treatment of P. vivax is separated into two categories: (1) active parasites (merozoites, 

schizonts, and gametocytes), and (2) dormant parasites (hypnozoites) based on the antimalarials 

needed to access each respective compartment. In order for radical cure to be achieved, both 

compartments must be addressed, which acquires the administrated of at least two different 

classes of medications. For the active infection, CQ (drug class: 4-aminoquinoline), is the first-

line antimalarial 35. However, in regions with high-CQ resistance, ACTs are indicated 35. In order 

to eliminate the hypnozoite reservoir, either primaquine or tafenoquine (drug class: 8-

aminoquinoline) must be used 35,36. However, both primaquine and tafenoquine are 

contraindicated in patients with glucose-6-phosphatase dehydrogenase (G6PD) deficiency, as the 

drugs have the potential to cause hemolytic anemia in these patients.  

In terms of P. vivax drug-resistance, both CQ, antifolate/sulfur-based agents, and ACT 

partner-drug resistance (e.g. mefloquine) have been identified; however, orthologous mutations 

that confer artemisinin-resistance in P. falciparum have not yet been recorded 37,38.  Similarly, 

although there have been reports of P. vivax primaquine resistance, many of these putatively-

resistant cases have been attributed to inappropriate administration of the drug, and primaquine 

appears to remain highly efficacious as a radical cure 39. 

Within-host Plasmodium Interactions 

There is evidence that P. falciparum and P. vivax compete within the host and within-

host interactions influence infectiousness and transmissibility 40. Bruce et al. 2000 suggested that 
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there is a density-dependent relationship between Plasmodium species, such that the emergence 

and growth of one parasite line has the potential to inhibit lower-density coinfections. This is 

important in the context of P. falciparum, which is associated with higher parasitemias than P. 

vivax, and thereby may suppress P. vivax intra-host expansion 40. This potential density-

dependent relationship is often observed in cases where P. vivax recurrences appear to be 

triggered by co-infections of P. falciparum or other infectious diseases 41–43. Specifically, Lin et 

al. 2011 showed that when patients were treated with ACTs, baseline P. falciparum gametocyte 

carriage was predictive of risk of P. vivax infection (or recurrence) during a 28-day follow-up 

period. This would suggest that P. falciparum parasites were inhibiting P. vivax growth and once 

removed by the blood-stage ACT treatment, allowed the P. vivax minor clones to expand from 

hypnozoites or merozoites that survived treatment. However, in Lin et al. 2011, patients were not 

isolated (or removed to a vivax free-zone) and sequencing was not performed. As a result, it was 

not possible to determine if follow-up infections were a new infection, recrudescence infection, 

or a relapse infection 43. Collectively, this suggests that there may be evidence for a within-host 

interaction -- or intra-host competition -- between P. falciparum and P. vivax but the evidence is 

currently incomplete. If an interaction does exist, the elimination of P. falciparum -- without the 

concurrent elimination of P. vivax -- may open a niche for P. vivax to propagate.  

Aim 1: Identifying the Risk, Distribution, and Origin of P. vivax in the Democratic 
Republic of the Congo  

Unique Features of the Plasmodium vivax Life Cycle and Biology 

 The P. vivax parasite has several key features that differentiate it from other types of 

malaria, including: (1) merozoites preferentially infect reticulocytes (i.e. young erythrocytes); (2) 

merozoite incubation within the reticulocytes typically lasts for 24-48 hours (i.e. “tertian 

malaria”); (3) gametocyte production occurs early in the infection, typically before presentation 
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of symptoms at the onset of the blood-stage; (4) gametocyte infectivity appears to be high, as it 

takes few gametocytes to infect an anopheline mosquito; (5) the hypnozoite stage 5,44–49. The 

duration of a single P. vivax life-cycle within the human host -- from inoculation to gametocyte 

production -- is estimated at approximately 7 days, although the point of infectivity may be later 

45. As a result of this short intrinsic period, individuals are likely to be infectious before seeking 

treatment. In addition, the hypnozoite reservoir and subsequent reactivation of P. vivax parasites 

weeks to months (or even years) after the primary infection can perpetuate transmission 15. The 

implications of the unique features of P. vivax biology for vivax malaria control and elimination 

efforts are discussed below (section: Plasmodium vivax Obstacles and Relevance to Public 

Health).  

Plasmodium vivax Invasion   

The invasion pathway of P. vivax is paradoxical, such that there appears to be a degree of 

host promiscuity, as strains can readily infect chimpanzees, gorillas, and human hosts, but there 

is a high degree of cellular tropism within the human host 9,50–52. As discussed above, within the 

host, P. vivax parasites preferentially infect reticulocytes. Reticulocyte invasion is mediated 

through the P. vivax Duffy-binding protein (pvDBP) ligand, which is part of the 

erythrocyte/Duffy binding protein family 53. The pvDBP ligand attaches to the host Duffy 

antigen/receptor chemokine (DARC; also known as the atypical chemokine receptor 1) and 

creates a junction-formation as the first-step in the cellular invasion process. This junction-

formation essentially acts as a bridge for the parasite to invade the cell 9,50,54–58. In addition to this 

DARC-parasite interaction, P. vivax also appears to use a series of P. vivax reticulocyte binding 

proteins, including PvRBP1a, PvRBP1b, PvRBP2a, and PvRBP2b to invade reticulocytes 53,59,60. 

The exact mechanism of reticulocyte invasion is still poorly understood but the repertoire of 
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antigens needed for cellular invasion may help to explain P. vivax reticulocyte selectivity 53,59,60. 

Regardless of the exact mechanism, the DARC gene and expression of DARC on the surface of 

reticulocytes has long been considered a key-criterion for P. vivax infection.   

The Duffy-Negative Phenotype  

The DARC blood group system was first discovered in 1950 following a hemolytic 

transfusion reaction in a patient with hemophilia 61. Following this discovery, the underlying 

codominant phenotype of the DARC blood group was resolved as: Fya,b, Fya-,b, Fya,b-, and Fya-,b- 

62. In particular, the Fya-,b-  phenotype results from a single-point mutation in the GATA-1 

transcription factor (-33 T:C) of the FY*B gene that abrogates expression of the DARC antigen 

54. The absence of the DARC antigen on the RBC surface is commonly referred to as the Duffy-

negative phenotype (Fya-,b- ). This phenotype is extremely common among individuals of African 

descent (Figure 1.2) and was shown to provide resilience to P. vivax infection 55,56.  

However, despite the evidence that the Duffy-negative phenotype provides resilience to 

P. vivax infection, several recent studies have shown that contemporary P. vivax strains can 

infect Duffy-negative individuals 50,63–75. Much recent work has tried to identify the alternative 

invasion pathway for P. vivax in Duffy-negative hosts, with two predominating hypotheses: (1) 

Expansion of the pvDBP1 ligand and increased copy-number variation, which may provide low-

affinity binding to Duffy-like antigens on host reticulocytes 50; (2) Erythrocyte binding protein 

(EBP2) as an alternative ligand for invasion of Duffy-null erythrocytes 76,77.  However, both 

hypotheses have largely been shown to be incorrect 9,53,78,79. More recent evidence suggests that 

P. vivax tryptophan-rich antigen (pv-fam-a) and merozoite surface protein 3 (pvMSP3) families 

may be involved in Duffy-negative invasion, but the study consisted of only a few monkeys with 

limited differential RNA-sequencing results 80.  As a result, the mechanism of how P. vivax is 
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infecting Duffy-negative cells remains unknown (for a review on potential ligands, see Gunalan 

et al. 2018, Table 2).  

Plasmodium vivax Obstacles and Relevance to Public Health 

Of the numerous unique features of P. vivax biology, two features thwart intervention 

efforts most: (1) the hypnozoite reservoir and 21) the production of gametocytes before 

symptoms (shortened intrinsic period). The hypnozoite reservoir and subsequent reactivation of 

P. vivax parasites weeks to months after a primary infection has significant potential to 

perpetuate transmission. The potential reactivation of hypnozoites emphasizes the need of radical 

cure with 8-aminoquinoline medications (e.g. primaquine or tafenoquine) in order to stop 

transmission. However, 8-aminoquinoline medications are contraindicated in patients with 

G6PD-deficiency (discussed above).  G6PD-deficiency is prevalent in regions of high-malaria 

endemicity, as it provides some resilience against malaria infection (Figure 1.2) 81. As a result, a 

paradoxical situation arises as a mutation that was historically beneficial for conferring a malara-

resilient phenotype is now interfering with contemporary medical practices to eliminate the 

hypnozoite reservoir. As noted above, gametocytes are often produced before or at the onset of 

symptoms, which means individuals infected with P. vivax are often infectious before they seek 

treatment. As a result, isolation or quarantine efforts based on P. vivax clinical presentation are 

relatively futile.  
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Figure 1.2 - Global Distribution of P. vivax Incidence, Glucose-6-Phosphate-Dehydrogenase 
deficiency allele frequency, and the Duffy-Negative allele frequency: (A) Over 14 million 
infections of P. vivax were predicted across the globe in 2017. However, much of sub-Saharan 
Africa was predicted to have a very low incidence to no incidence of disease (figure reproduced 
from Battle et al. 2019); (B) The allele conferring glucose-6-phosphate dehydrogenase (G6PD) 
deficiency is highly prevalent in sub-Saharan Africa. This high prevalence of the G6PD deficient 
phenotype poses a paradox for P. vivax prevalence and treatment, as 8-aminoquinoline drugs 
needed for radical cure of P. vivax are contraindicated in G6PD deficient individuals (figure 
reproduced from Howes et al. 2012); (C) Prevalence of the Duffy-negative phenotype (Fya-,b-  
phenotype) is highest in regions of sub-Saharan Africa (figure reproduced from Howes et al. 
2011). 
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Plasmodium vivax in Sub-Saharan Africa 

The origin, age, and evolutionary history of human P. vivax has been debated for a 

number of years, with two predominant hypotheses: (1) a Southeast Asian origin, likely resulting 

from a Southeast Asian macaque zoonotic transmission event 82,83 or (2) a sub-Saharan African 

origin, likely resulting from a non-human ape zoonotic transmission event 51,52,84–87. Recent 

evidence suggests that the latter hypothesis is more likely, with a zoonotic transmission from an 

ancestral Pan troglodytes (chimpanzee) lineage to a hominid in sub-Saharan Africa 51,87. 

Following this zoonotic transmission, it is hypothesized that there was an “Out-of-Africa” 

migration event, where a specific lineage of P. vivax escaped Africa, spread to Europe, and then 

seeded Asia and the Americas 51,84,85,87–90. 

This “Out-of-Africa” migration of P. vivax is supported by human genomics, as the 

origin of the Duffy-negative mutation (GATA-1, -33 T:C) was dated to approximately 42 kya 91–

93. The Duffy-negative mutation was then shown to have undergone a hard sweep with the allele 

reaching near fixation in the Africa population at approximately 33 kya 91–93. This sweep of the 

Duffy-negative phenotype has one of the highest -- if not highest -- selection coefficients in the 

human genome 93. This suggests that this mutation was extremely advantageous and that at one 

point, P. vivax may have exerted a strong effect on the African population’s fitness. However, it 

must be noted that this P. vivax “Out-of-Africa” hypothesis is still highly debated and not dated 

well within the context of human evolution 51,87,94.  

Regardless of the origin of P. vivax, contemporary strains appear to segregate into 2-5 

genomic sub-populations (hereafter referred to as demes) depending on the type of genetic 

sequencing used 37,90,95–97.  When comparing global isolates with whole-genome sequencing, two 

large demes emerge: (1) an American deme and (2) an Asian Deme 37,95–97. Among these demes, 
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finer population-structuring has been recognized with potential introgression and admixture 

between deme subpopulations and even demes as a whole 37,95–97. However, these whole-genome 

sequencing studies all lack robust sampling of P. vivax isolates from sub-Saharan Africa. 

Similarly, when comparing global isolates with mitochondrial Sanger-sequencing, several 

demes emerge with population substructuring in Central America, South America, the Atlantic 

Forest (related to P. simium), Africa, Melanasia, Southeast Asia, and East Asia 90. However, 

there are few African sequences and most are sourced from travelers returning to Western 

countries with P. vivax 86,90. As a result, there is a very limited data on P. vivax sequences from 

Africa, particularly sub-Saharan Africa. This prompts the critical need for P. vivax sequences 

from the region to resolve P. vivax evolutionary history and contemporary transmission 

dynamics.  

Reports of Plasmodium vivax in Sub-Saharan Africa   

Recent reports have documented P. vivax infections among Duffy-negative hosts 

throughout western and central Africa. Among these studies, P. vivax has been reported with a 

prevalence of up to 15.5%, produced symptomatic cases, been identified in circulating 

mosquitoes, and been identified within red blood cells on standard microscopy 50,63–75,98. 

Additionally, a recent meta-analysis of P. vivax in Africa combining vector, community, clinical, 

and traveler surveys demonstrated that the distribution of P. vivax in Sub-Saharan Africa may be 

widespread and not necessarily concentrated in countries with a large Duffy-positive population 

98. Together these results suggest ongoing, active transmission. Given the resilience of P. vivax to 

control and elimination efforts, the presence of P. vivax in sub-Saharan Africa is concerning for 

malaria elimination programs and raises several questions about its reemergence.  



 

 23 

Despite these concerns, no studies have systematically evaluated the burden, spatial 

distribution, or risk factors associated with P. vivax in sub-Saharan Africa to date. Previous 

reports on P. vivax in the region have only been conducted at a few field sites through 

convenience sampling and have lacked robust epidemiological analyses 50,63–75. Convenience 

sampling may result in bias that is nonrandom and may be difficult to account for in any 

statistical model (e.g. selection bias can cause bias in any direction). In addition, a study 

population created through convenience sampling will lack generalizability 99. As a result, 

additional analyses with robust study designs are needed to estimate the burden of P. vivax 

across sub-Saharan Africa.  

Similarly, no studies have attempted to determine the origins of these infections, which 

may represent imported cases or an independent sub-Saharan African lineage. Genetic 

sequencing can be leveraged to identify the origin of the DRC P. vivax population by comparing 

it to other publicly available global isolates.  

Aim 1 Summary 

P. vivax has the potential to cause significant disease and morbidity if its reemergence is 

allowed to become a resurgence in sub-Saharan Africa. However, to date, no studies have 

systematically determined the level of threat that P. vivax poses in the region. Identifying the 

clinical burden of P. vivax in Sub-Saharan Africa is critical, as P. vivax is considered more 

difficult to diagnose, treat, and eliminate than P. falciparum 20,100,101. As a result, differentiating 

P. vivax in sub-Saharan Africa as an innocuous threat versus an imposing threat is a public health 

priority.  
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Aim 2: Tracing the Genetic Relatedness of Plasmodium falciparum in the Democratic 
Republic of the Congo across Space 

P. falciparum Genomics 

It is widely accepted that P. falciparum emerged as a human pathogen due to a zoonotic 

transmission between a human host in Africa and a gorilla host within the past 10,000 years 

84,102,103. This relatively recent transmission is consistent with the lack of diversity seen in the P. 

falciparum genome relative to the  P. vivax genome, as zoonotic jumps typically cause extreme 

bottlenecks 84,102–104. Despite a lack of global diversity, P. falciparum appears to be separated 

into three relatively isolated subpopulations, or demes: (1) an American deme; (2) an Asian 

deme; and (3) an African deme 32,105. These three demes correlate with regions of high P. 

falciparum prevalence (Figure 1.3) 2.  
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Figure 1.3 - Incidence and Population Structure of Global P. falciparum: (A) In 2017, there 
were 193.9 million predicted P. falciparum infections across the globe, with the vast majority 
occurring in children under ten-years of age in sub-Saharan Africa (Figure reproduced from 
Weiss et al. 2019). (B) P. falciparum global population structuring is correlated with regions of 
transmission (Figure reproduced from Pearson & Amato et al. 2019).  

Within these three global populations, within-deme population substructuring has largely 

been driven by selection for drug-resistance mutations 27,106–108. For example, in Asia, population 

substructuring has resulted from selection for resistance to artemisinin and ACT partner drugs 

27,106–108. In contrast, in Africa, population substructuring within Africa appears to be driven by 

resistance to other antimalarial drugs, including CQ, sulfonamides, antifolates, and ACT partner 
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drugs 109. These differing patterns may be due to the lack of artemisinin-resistance in Africa to 

date 30–32. Additional population substructuring in Africa appears to be due to geographical 

barriers and nonrandom mating among human hosts (identified by linguistic groups) 109,110. 

Although there is a degree of deme-isolation in Africa, admixture appears to be frequent, 

potentially due to contemporary travel or historical migrations of Bantu populations 109,110.  

Identity by Descent and Identity by State 

Identity by descent (IBD) is the process of inheriting segments of DNA from a common 

ancestor. Segments of DNA are inherited due to meiotic recombination during successive 

generations, resulting in an expectation that any two haploid individuals separated by m meiosis 

will have 2-m proportion of their genome be identical by descent (Figure 1.3) 111. Given this 

straightforward pattern of inheritance, IBD has long been a centerpiece of population genetic 

studies 111–114.  

It is worth noting, that historically IBD has been considered under two different 

frameworks. In the first framework presented by Gustave Malécot, IBD is defined as the 

proportion of the genome (or segments) that are inherited by a common ancestor (i.e. identical by 

descent) and have not been broken by mutation 114,115. Separately, IBD has been defined as the 

probability that two individuals reach a common ancestor at some time in the past, termed the 

most recent common ancestor (MRCA) 114,116–120. As a result, the latter definition assumes that 

shared IBD segments and IBD block lengths have accumulated mutations at a rate proportional 

to the time (i.e. branch length) to the MRCA 114,116–120. IBD segments that contain multiple 

mutations are often “deep” events that represent historic recombination and relatedness events. 

In this dissertation, I will focus on recent IBD events and Malécot’s definition of IBD, under the 

assumption that recent transmission is more relevant for public health. 
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Identity by state (IBS) -- a similar concept to IBD -- is defined as the number of shared 

loci between pairs of individuals (also termed runs of homozygosity in some fields) 120. Given 

that alleles only need to be identical to considered IBS, IBS include alleles that are IBD as well 

as alleles that are identical due to mutation, other IBD events, drift/draft, or chance alone (i.e. 

IBS reflects the population allele frequencies). As a result, depending on the number of 

alternative alleles at a given loci and the frequencies of those alleles in a population, IBS can be 

relatively uninformative in determining the relatedness in a population 121. Given that IBS is not 

rooted in population genetic theory -- and is not a true estimator of relatedness -- it’s utility is 

largely rooted in its simplicity to calculate 121. As a result, I elected to not use IBS in my 

dissertation. 

 
Figure 1.4 - Schematic of Identity by Descent in Malaria: (A) Identity by descent is the 
process of inheriting segments of DNA from previous generations. These segments can be 
tracked to determine genetic relatedness among probands. (B) DNA segments are mixed by 
meiotic recombination. Within the malaria life cycle, meiotic recombination occurs in the 
mosquito midgut. In the schematic above, a single mosquito bites two infectious hosts with two 
distinct parasite haplotypes (red; purple). Parasites then undergo recombination to form progeny 
with new haplotypes that are a mix of their parental haplotypes. 
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P. falciparum Genetics and IBD  

Most infectious agents do not undergo recombination and have a relatively high per-

generation mutation rate. This lack of recombination coupled with a high mutation rate allows 

for direct application of the coalescent and phylogenetics, as mutations are expected to 

accumulate with respect to the divergence time from the MRCA 114. This technique of 

“divergence dating” is widely applied in viral and bacterial studies and is often coupled with 

epidemiological data for phylodynamic analysis 122,123. Phylodynamic approaches have been 

used to model the evolution of HIV, ebola, influenza, and several other infectious diseases and 

are, arguably, the gold-standard for outbreak investigation and disease surveillance 124–127.  

However, phylodynamic methods have remained elusive in the field of malaria genetic 

epidemiology due to recombination, a relatively low nucleotide mutation rate, and the 

phenomenon of complexity of infection (COI) 128. COI is defined as a single host being 

inoculated with more than one distinct clone or malaria haplotype: a monoclonal infection versus 

a polyclonal infection. Polyclonal infections arise through two distinct processes: (1) 

superinfection or (2) cotransmissoin. In the case of superinfection, a single individual receives 

multiple infectious bites from different mosquitoes that harbor distinct parasites (Figure 1.5). In 

contrast, cotransmission occurs when multiple distinct haplotypes harbored within the mosquito 

midgut are transferred to the host during one infectious bite (Figure 1.5). Superinfections are 

thought to predominate in high-transmission settings, while cotransmissions are thought to 

predominate in low-transmission settings 129,130. However, this assumption of cotransmission 

relating to low-transmission settings has recently been challenged, as cotransmission events may 

be common in high transmission settings 131.  Regardless of infection dynamics, polyclonal 
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infections that are the result of cotransmission are expected to be highly related and frequently 

meiotic siblings (Figure 1.5) 130.   

 
 

Figure 1.5 - Polyclonality in Malaria: Polyclonality, or multiple malaria haplotype clones 
within a host arise through two processes: (1) superinfection (left) and (2) cotransmission (right). 
Superinfection occurs when a host receives more than one infectious bite from mosquitoes with 
different clones. Cotransmission occurs when multiple distinct clones within the mosquito vector 
midgut are transferred to the host during a single innocuous bite. Given that parasites undergo 
recombination in the mosquito midgut, clones that are transferred by cotransmission are expected 
to be highly related and frequently meiotic siblings. At the top of the figure, parent haplotypes 
(blue, purple, red) are broken down by recombination to form progeny with new distinct 
haplotypes that then go on to infect new hosts. 

Inferring genetic relatedness is a typical goal in any malaria genetic epidemiology study, 

as relatedness estimates can be used to identify migration patterns, population demography, and 

several other applications 121,132. Recently, there has been an explosion in using IBD measures to 

quantify genetic relatedness between malaria parasites 30,109,129,130,133–142. This recent attraction to 

IBD as a measure of genetic relatedness among malaria parasite is in part due to its ability to 

capture transmission dynamics and spatial processes 129,137.  For example, recent work has shown 

that IBD decays at an exponential as prevalence increases (Figure 1.6) 129,133. These results 
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recapitulate the expected inverse relationship between linkage disequilibrium (LD) and the 

population level recombination rate, and have been observed in real data among P. falciparum 

parasites (e.g. lower LD in Africa than Southeast Asia) 143–145.   

 Similarly, recent work has shown that IBD among malaria parasites decays 

exponentially over geographical space (isolation by distance) and was able to capture spatial 

patterns that were missed by Wright’s Fst  (Figure 1.7) 115,137,146. IBD is likely a superior 

estimator of isolation by distance, as space is considered as a continuum, while Wright’s Fst 

assumes discrete populations and discrete space (see Wright, 1949 in reference to 

“neighborhoods”). 

Collectively, these results demonstrate the power of IBD to capture spatial and 

transmission-based processes that are critical in characterizing malaria transmission dynamics. 

IBD, as an estimator of genetic relatedness, can be leveraged to answer questions pertinent to 

malaria control efforts, most notably through elucidating the connectedness of malaria parasites.   
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Figure 1.6 - IBD and Transmission Dynamics: Pairwise IBD estimates were generated under a 
structured Wright-Fisher model. The full mathematical formulation of the model can be found in 
the Supplementary Materials of Verity, Aydemic, Brazeau et al. 2019. As a brief lay summary, 
the authors assume that each individual host can be represented by a deme, or a subpopulation 
within a large population. The authors then allow a number of parasites (that reside within the 
host population) to mate at random with the previous generation of parasites and produce a large 
number of parasite progeny. During mating, genetic recombination has the potential to occur 
based on the length of the genome and the recombination rate. Progeny are then allowed to 
migrate to a new host or stay in the same host at a rate dependent on the number of individuals in 
the population. Progeny are then culled down to a smaller number of parasites per host by 
drawing from a Poisson distribution with lambda set to the mean complexity of infection (COI). 
From the simulations, the proportion of pairs of samples that have any segments of IBD 
decreases as the effective population size increases. As populations move increasingly towards 
panmixia (Migration: 1) -- which approximates an exclusively superinfection setting -- the rate 
of pairwise IBD decay decreases (with the exception of migration set to zero). Finally, as COI 
increases, the decay in pairwise IBD slows.  
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Figure 1.7 - IBD and Spatial Distance: As physical distance increases, genetic relatedness is 
expected to decrease exponentially, a phenomenon termed isolation by distance. Among malaria 
parasites, measures of identity by descent (A) appear to capture this process of isolation by 
distance while measures of Wright’s Fst may not (B). Differences between these two estimators 
of genetic relatedness likely are rooted in differing assumptions of geographical space.  

Leveraging IBD in the DRC  

Despite increased interventions in the DRC, case-burden and mortality have remained 

relatively stagnant over the past five years 1,147,148. Moreover, the World Health Organization 

(WHO) recently recognized the DRC as a high impact, high burden country that was not on track 

to meet the goals for malaria control by 2030 laid in the Global Technical Strategy 1,149. As a 

result, there is a critical need for new methods and approaches to address the burden and stalled 

progress of elimination in the DRC.  

Recently, Verity, Aydemir, Brazeau et al. 2019 analyzed over 1,100 P. falciparum 

isolates sequenced at approximately 1,800 loci from the DRC. In this study, the authors found 

that the DRC acts as a watershed region, or bridge, between West and East African falciparum 
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parasites 30. When focusing in on the DRC, the authors found that allele frequencies among 

falciparum followed North-South and East-West spatial clines 30. The East-West spatial clines 

appeared to be strongly associated with differences in drug resistance mutations among East 

versus West parasites, particularly at the pfcrt and dhps loci 30. These allele frequency clines 

likely indicate events at least 6-12 generations in the past based on the extended haplotype 

heterozygosity segment lengths 150. In addition to these “historic” relationships, they also found 

three samples with pairwise IBD along at least 90% of the genome 30. Based on the visualization 

of pairs terminal points, the authors hypothesized that these highly related pairs may be due to 

travel along the Congo river 30.  

In this dissertation, I will further investigate this pattern of IBD in the DRC and 

determine the connectedness of P. falciparum infections across the DRC. By identifying regions 

of high parasite connectedness, I can provide targeted feedback for intervention planning and 

intervention efforts. Maps of spatial and genetic connectedness differ from traditional incidence 

or prevalence maps, as they provide a picture of how P. falciparum infections may be arising 

instead of simply where. Targeting the source of P. falciparum may be the spark needed to help 

alleviate the stalled burden of P. falciparum malaria in the DRC. 

Aim 2 Summary 

The case-burden and mortality due to P. falciparum in the DRC has remained relatively 

constant over the past five years despite numerous intervention roll-outs and campaigns 1,147,148. 

New methodological approaches are needed to address this stagnated progress. Recent work has 

shown that IBD captures both the spatial processes and transmission dynamics of P. falciparum 

malaria 129,133,137. By leveraging a spatially rich-dataset of P. falciparum genetics from the DRC, 
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I analyzed the connectedness of P. falciparum infections across the DRC and identified hubs of 

relatedness that may be prime sites for intervention targeting.  
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CHAPTER THREE: IDENTIFYING THE RISK, DISTRIBUTION, AND ORIGIN OF P. 

VIVAX IN THE DEMOCRATIC REPUBLIC OF THE CONGO 

Introduction  

Plasmodium vivax is the most prevalent malaria-causing parasite outside of Africa, 

accounting for approximately 14.3 million cases in 2017 1. The relative absence of P. vivax in 

Africa has long been attributed to the high prevalence of the Duffy-negative phenotype 

throughout most of sub-Saharan Africa (SSA) 2–4. However, recent evidence has demonstrated 

that P. vivax infections are occurring throughout SSA among Duffy-negative hosts 5. Although 

these P. vivax infections have been associated with clinical cases, the distribution and extent of 

asymptomatic versus symptomatic disease in SSA remains unclear 1,5,6. 

Despite growing concern, no studies have systematically evaluated the burden, risk 

factors, spatial distribution, or origins of these SSA P. vivax infections. This lack of research is 

problematic as resources have begun to be directed towards diagnosing and addressing SSA P. 

vivax. While the return of P. vivax to SSA has the potential to undermine years of malaria control 

and elimination efforts, its threat-status has not yet been characterized. To address this critical 

gap in knowledge, I used samples from the Democratic Republic of the Congo (DRC) 2013-14 

Demographic Health Survey (DHS) to screen a nationally representative population of over 

17,000 adults for P. vivax. Surveys from the DHS program are community based and are 

expected to contain mostly healthy, asymptomatic participants. The DRC is situated in the center 

of Africa and is the second-largest country in SSA. Moreover, previous work has indicated that 

the DRC is a watershed region that appears to link East and West Africa malaria 7,8. As a result, 

findings from the DRC may be generalizable to much of SSA.  
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Using this nationally representative survey, I provide the first national level estimate of 

P. vivax prevalence, associated risk factors, and the geographical distribution of cases in the SSA 

region. In addition, I use mitochondrial genomes to identify the potential origin of these 

infections. By coupling a nationally-representative, spatially-rich dataset with cutting edge 

spatial statistics, novel machine learning techniques, and genomics, I advance efforts to uncover 

the hidden distribution and history of P. vivax in SSA. 

Methods 

Study Participants & Malaria Detection  

I studied men and women aged 15 - 59 years and 15 - 49 years, respectively, that were 

surveyed in the 2013-2014 DRC DHS. Each participant answered an extensive questionnaire and 

provided a dried blood spot (DBS) for HIV and other biomarker screening. Spatial and ecological 

data were collected for each sampling cluster (Appendix 3.1). DNA was extracted from each 

DBS using Chelex-100 (Bio-Rad, Hercules, CA) and Saponin and then screened all participants 

for P. falciparum using quantitative PCR (qPCR) targeting the P. falciparum lactate 

dehydrogenase gene as previously described 9. In addition, samples were screened for P. vivax 

using qPCR targeting the 18S ribosomal RNA gene 10. Samples that screened positive by 18S-

qPCR underwent reflex confirmatory screening using a nested-PCR assay targeting 18S rRNA 

(Appendix 3.1) 11. To ensure the quality of DNA extraction, I excluded samples that failed to 

amplify human-beta-tubulin from analysis. Finally, participants were excluded if they had 

missing data or were not a part of the DHS sampling schematic (Appendix 3.1 Figure 2) 12. This 

study reanalyzes previously published P. falciparum data (sample size differences are due to 

different inclusion criteria) 9. 
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Duffy Genotyping 

Host Duffy antigen/chemokine receptor (DARC) genotype was determined using a 

previously validated High-Resolution Melt (HRM) assay 13. Genotypes that could not be 

definitely resolved by HRM were reconciled by Sanger sequencing 6. In addition, HRM results 

were validated by sequencing approximately 10% samples (Appendix 3.1).  

Risk Factor Modeling  

P .vivax risk factors were identified from a comprehensive literature search and previous 

work from the 2013-2014 DRC DHS identifying P. falciparum risk factors 9. Risk factors were 

derived from the DHS questionnaires and other open-data sources (Appendix 3.1). All 

continuous risk factors were standardized in order to promote model stability and ease of 

comparability. For dichotomized risk factors, the a priori protective level was selected as the 

referent level (e.g. HIV-negative) or the largest group if a protective level was not obvious (e.g. 

female for biological sex).  

 For each risk factor, confounding covariates were identified using a directed acyclic 

diagram (DAG) built from an a priori causal framework of covariate and outcome relationships 

(Appendix 3.1 Figure 3). I then used inverse-probability weighting (IPW) to obtain marginal 

structural models and control for confounding between the risk factors and outcome of interest, 

malaria. IPWs were calculated with a super learning algorithm, which uses a loss-based approach 

with V-fold cross-validation to maximize predictions from an ensemble of candidate algorithms 

14. I extended the standard super learning algorithm to account for spatial dependence among 

observations using spatial cross validation (Appendix 3.1) 15. The super learner algorithm was 

selected for IPW calculations to account for known issues and biases of functional form in fitting 

the exposure dose-response curve 16. Using the IPWs, I performed weighted regression using 
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generalized estimating equations (GEE) with a logit-link function and binomial variance. IPWs 

and DHS sampling weights were accounted for in the GEE under the assumption that the 

distribution of the sampling was independent of the distribution of confounding covariates, 

which allows for weights to be considered jointly, .  

In addition, I considered several alternative explanations for the pattern of P. vivax 

infections. These alternative explanations included: (1) interactions between non-human ape 

(NHA) ranges and P. vivax cluster-level prevalences using permutation tests; (2) within-host 

interactions of P. vivax and P. falciparum using a multinomial likelihood-based model that 

assumes independent infection acquisition; and (3) post-hoc power calculations (Appendix 3.1).  

P. vivax Prevalence Maps  

I considered spatial autocorrelation with Moran’s I using a province adjacency matrix as 

well as a matrix of greater-circle distances between clusters.17 Greater circle distances were 

calculated using a geodesic approach 18. Significance was evaluated using a permutation test with 

100,000 iterations and a one-sided p-value.  

To determine the spatial distribution of P. vivax, I fit two types of Bayesian mixed spatial 

models: (1) a province-level areal model and (2) a cluster-level point process model. Province-

based spatial models are important for intervention-planning, as most interventions in the DRC 

are implemented at the province-level. However, cluster-level models with Gaussian processes 

may be more representative of the intrinsic malaria distribution under the assumption of a 

continuous, and potentially heterogeneous, spatial process. Both sets of spatial models were fit 

with generalized linear mixed models using the logistic link function and a binomial error 

distribution with a spatial random effect (Appendix 3.1). For each of the respective spatial-
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levels, I fit an intercept-only model and a model with all significant risk factors. Gelman’s 

deviance information criterion (DIC) was used to assess model fit 19. 

P. vivax Mitochondrial Genomics   

Three DRC P. vivax samples among children previously identified by the University of 

North Carolina Infectious Disease Epidemiology and Ecology group from the 2013-2014 DRC 

DHS were considered to have the highest quality DNA and were prepared for sequencing 20. All 

analyses were subsetted to the mitochondrial genome (mtDNA) due to lack of coverage in the 

nuclear genome. Nucleotide variants were identified among all samples and used to create 

consensus haplotypes (Appendix 3.1). Using these three DRC isolates and 685 globally sourced 

sequences, I created subpopulations based on geographical K-means clustering. Genetic distance 

measures, phylogenetic trees, and genetic summary statistics were generated to explore 

population diversity and differentiation (Appendix 3.1).  

Results 

Study Population and Molecular Validation  

Among the 17,972 samples successfully shipped to the University of North Carolina for 

processing, 17,934 (99.79%) were linked to the 2013-2014 DRC DHS survey. Of these 17,934 

samples, 169 samples failed to amplify human beta-tubulin, 1,402 individuals had missing 

geospatial data, and 484 individuals were classified as de facto (visitors rather than household 

members) and were excluded from analysis. In total, the final dataset consisted of 15,574 

individuals across 489 clusters (Appendix 3.1 Figure 2). 

The P. vivax qPCR assay achieved an analytical sensitivity of 94% and analytical 

specificity of 100% (zero false positive calls) when at least 1.25x10-7 ng/μL of 18S target 

(approximately 6 genomes/μL) was present. No off-target amplification was observed when the 

qPCR assay was challenged with highly concentrated DNA template from other Plasmodium 
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species (Appendix 3.1 Figure 1). P. vivax infection was confirmed by a separate, nested-PCR in 

534 of 579 (93.6%) of qPCR-positive samples, with strong agreement between the initial and 

reflex confirmatory assays (Cohen’s  = 0.80, p < 0.05). All samples selected for Duffy-

Genotyping validation had concordant HRM-qPCR and Sanger sequencing results, except for 

one sample that failed genotyping (Appendix 3.1). 

Prevalence of P. vivax among Adults in the DRC  

I restricted the prevalence estimates to 467 P. vivax infections that were confirmed by 

both qPCR and reflex nested-PCR  (nweighted: 459.18, 95% CIweighted: 346.54, 571.82) and were 

among the 15,574 adults included in the study (nweighted: 15,490.20, 95% CIweighted: 14,060.60, 

16,919.80). The national weighted prevalence of P. vivax among adults was 2.96% (95% 

CIweighted: 2.28, 3.65%), with cluster point-prevalences ranging from 0 - 46.15% (Figure 1). Most 

clusters only contained a single P. vivax infection, although the weighted count of infections 

ranged from 0 - 30.63 infections per cluster. In contrast, I identified 5,179 P. falciparum 

infections (nweighted: 4,651.94, 95% CIweighted: 4,121.93, 5,181.94) accounting for a weighted 

national prevalence of 30.03% (95% CIweighted: 27.87, 32.19%). Overall, there were 174 (nweighted: 

145.29, 95% CIweighted: 108.11, 182.48) P. falciparum - P. vivax coinfections.  
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Figure 3.1 - The Distribution of P. vivax Infections across the Democratic Republic of the 
Congo: For clusters with P. vivax infections, the prevalence is indicated by a blue-red spectrum, 
while the size of the point indicates the size of the cluster denominator. Clusters with no P. vivax 
infections are represented with white X-marks. P. vivax infections appeared to be diffusely 
spread throughout the country with cluster prevalences ranging from 0 - 46.15%. 

Risk Factors  

 Among the 579 qPCR-positive samples, only three had a putative Duffy-positive 

phenotype, all of whom were heterozygous at the loci associated with Duffy-negative phenotype 

(-33T:T/C). These three hosts  (nweighted: 1.61, 95% CIweighted: -1.11, 4.34) were a part of the final 

study cohort, which led to an overall putative Duffy-positive phenotype frequency of 0.64% 

(Prevalenceweighted: 0.35%, 95% CIweighted: 0.21, 0.58%) among those individuals infected with P. 
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vivax included in this study. From the cross-species interference model that assumes independent 

acquisition of infections, I failed to find any significant interactions between P. falciparum-P. 

vivax co-infections (p > 0.05; Appendix 3.1 Figure 5). Similarly, I did not find an association 

between NHA habitats and P. vivax cluster prevalence (p > 0.05; Appendix 3.1 Figure 6). 

Although baseline characteristics differed by infection status, the differences appeared to be most 

pronounced between P. falciparum infections and uninfected-individuals rather than P. vivax 

infections and uninfected-individuals (Table 1).   
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Covariate P. vivax 
Infection 

P. falciparum 
Infection Uninfected 

Nweighted 459.2 4651.9 10524.4 

Vivax-Falciparum Coinfection 145.3 - 

Urbanicity (Rural, %) 195.8 (42.6) 1573.2 (33.8) 4445.3 (42.2) 

Lagged Precipitation (mm, SD) 131.9 (25.8) 137.8 (25.0) 138.3 (24.7) 

Lagged Temperature (C, SD) 29.7 (3.2) 30.8 (2.7) 30.5 (3.6) 

Altitude (m, SD) 771.5 (489.1) 617.6 (310.4) 749.6 (473.8) 

Distance to Water (m, SD) 6695.7 
(7745.5) 7762.3 (8096.5) 6364.5 (7074.8) 

Distance to Nearest Public Hospital 
(m, SD) 224.2 (48.8) 2709.7 (58.3) 5338.4 (50.72) 

HIV (Positive, %) 8.1 (1.8) 26.8 (0.6) 118.0 (1.1) 

Sex (Male, %) 235.9 (51.4) 2435.4 (52.4) 4790.0 (45.5) 

Age (years, SD) 29.4 (11.4) 28.2 (10.8) 30.4 (11.0) 

Farmer (Farmer, %) 275.5 (60.0) 2541.7 (54.6) 5527.7 (52.5) 

Housing Materials (Traditional, %) 262.1 (57.1) 3127.1 (67.2) 5555.2 (52.8) 

Wealth (Comp. Score, SD) 0.1 (1.0) -0.1 (1.0) 0.3 (1.2) 

Education (Lower, %) 181.8 (39.6) 1975.9 (42.5) 4063.9 (38.6) 

Number of Household Members (N, 
SD) 6.6 (3.1) 6.7 (3.1) 6.8 (3.3) 

ITN Use (No, %) 213.8 (46.6) 2611.9 (56.2) 5301.4 (50.4) 

 
Table 3.1 - Baseline Distributions of Identified Risk Factors among Individuals with P. 
vivax Infections, P. falciparum Infections, and those that are Uninfected: Risk factor 
distributions appeared to differ by infection status, with more noticeable differences between P. 
falciparum infections and uninfected individuals. For dichotomized risk factors, the counts and 
percentages for each category are provided. For continuous risk factors, the mean and standard 
deviation (SD) are provided. Abbreviations: N - number of individuals, mm - millimeters, m - 
meters, Comp. Score - composite score, ITN - insecticide-treated net. 

In order to formally assess the risk-factor prevalence odds ratios (pORs) among P. vivax 

and P. falciparum, I adjusted for confounding using IPW. IPWs that were calculated with the 
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spatially cross-validated super learner algorithm appeared to be stable with approximately log-

normal distributions (Appendix 3.1 Figure 8). Additionally, for most covariates, IPW resulted in 

a considerable decrease in the average correlation among baseline covariates as compared to 

unadjusted baseline correlations (mean fold-reduction: 3.14, range: 0.85 - 7.63; Appendix 3.1 

Figure 9).  

When P. vivax was considered as the outcome of interest, higher levels of precipitation 

were found to reduce prevalence (IPW-pOR: 0.79, 95% CI: 0.63, 0.99) while being a farmer 

appeared to increase prevalence (IPW-pOR: 1.42, 95% CI: 1.08, 1.89). In contrast, when 

considering P. falciparum infections as the outcome of interest, several risk factors were 

associated with prevalence: an urban setting reduced prevalence (IPW-pOR: 0.70, 95% CI: 0.54, 

0.89), lack of insecticide-treated net (ITN) use increased prevalence (IPW-pOR: 1.23, 95% CI: 

1.07, 1.42), increasing altitude reduced prevalence (IPW-pOR: 0.73, 95% CI: 0.65, 0.82), 

temperature increased prevalence (IPW-pOR: 1.41, 95% CI: 1.05, 1.90), lower levels of 

education increased prevalence (IPW-pOR: 1.44, 95% CI: 1.25, 1.67), higher levels of wealth 

reduced prevalence (IPW-pOR: 0.82, 95% CI: 0.73, 0.92), older age reduced prevalence (IPW-

pOR: 0.81, 95% CI: 0.77, 0.86), while being male increased prevalence (IPW-pOR: 1.31, 95% 

CI: 1.20, 1.43).  

Based on the post hoc power calculations for P. vivax, I was able to detect harmful pOR 

estimates of at least 1.54, 1.36, 1.29 with at least 80% power when the exposure probability was 

10%, 25%, and 50%, respectively. In contrast, for P. falciparum, I was able to detect harmful 

pOR estimates of at least 1.18, 1.12, 1.10 with at least 80% power when the exposure probability 

was 10%, 25%, and 50%, respectively (Appendix 3.1 Figure 12). 

 
 



 

 56 

 
Figure 3.2- Inverse Probability Treatment Weight Adjusted Prevalence Odds Ratios for 
Expected Malaria Risk Factors: The inverse probability weight adjusted prevalence odds ratios 
(IPW-pORs) demonstrated a lack of risk factors for P. vivax infection, as all risk factors contain 
the null estimate (red line) with the exception of precipitation and farming. In contrast, numerous 
risk factors were associated with P. falciparum, including living in a rural area, ITN use, altitude, 
education, wealth, age, and biological sex. For both species, hospital distance, traditional housing 
materials, distance to water, and HIV-status were not significant risk factors. The unadjusted 
pORs effect estimates and confidence intervals as well as the IPW-pORs are provided in 
Appendix 3.1 Table 6 for reference. Abbreviations: Hospital Dist. – Distance to a hospital, 
Water Dist. – Distance to water, Rur. - rural, Trad. - traditional, ITN - insecticide-treated net.  

Spatial Distribution of P. vivax 

When considering spatial autocorrelation, I found that the province-level showed a slight 

signal of structure for P. vivax prevalence (Moran’s I: 0.16; p = 0.05), but this structure did not 

hold at the cluster-level (Moran’s I: 0.02; p > 0.05). Among the P. vivax province-level models 

considered, I found that the best fitting model contained the precipitation, night light intensity, 

and farming covariates (Appendix 3.1 Table 7). Means-fitted province prevalences ranged from 

1.24 - 7.61% (Figure 3A). Standard errors for the province prevalence estimates ranged from 

4.46 x 10-3  - 2.30 x 10-2 (Appendix 3.1 Figure 11A). 
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Similarly, when I modeled the spatial distribution of P. vivax at the cluster-level, I found 

that the best fitting model contained the precipitation, night light intensity, and farming 

covariates (Appendix 3.1 Table 7). Based on the model predictions, P. vivax fitted prevalence 

ranged from 0.50 - 11.20% across the DRC (Figure 3B). The standard errors around the 

prevalence predictions ranged from 1.62 x 10-8 - 2.30 x 10-6 (Appendix 3.1 Figure 11B). Most 

P. vivax prevalence predictions were less than the observed national prevalence (19,903/20,000; 

99.52%). 

 
Figure 3.3 - Spatial Model Posterior Means: Shown are the means of the posterior prevalence 
distribution for the cluster-level (left) and province-level (right) models. At the province-level, P. 
vivax infections appeared to be more common in the north. However, this process was not 
recapitulated at the cluster-level, where very local transmission appeared to dominate with a few 
focal regions of high prevalence amidst a relatively uniform background of P. vivax prevalence.  

P. vivax Diversity, Differentiation, and Phylogeography 

The three sequenced P. vivax DRC isolates had high-quality coverage in ≥98.0% of the 

mtDNA genome, with an average mtDNA base-depth of 40.85. Among the 636 publicly 

available Illumina sequenced P. vivax isolates that passed QC-thresholds, I detected 57 unique 

mitochondrial haplotypes (Appendix 3.1 Figure 13). Among the haplotypes, I identified 65 
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biallelic sites and 1 polyallelic site, with most mutations occurring in the non-protein coding 

regions (Ti:Tv = 1.2). Overall, the NHA and the Asian P. vivax population demonstrated the 

greatest within-population nucleotide and haplotype diversity, while there was limited within-

population diversity among the isolates from the DRC (Appendix 3.1 Table 9). Based on 

between-population measures of nucleotide diversity, the DRC samples were most similar to 

samples from the Americas. However, when considering pairwise measures of Fst between 

populations, the DRC population appeared to be relatively isolated from other populations 

(Appendix 3.1 Table 10). When considering the evolutionary relationship of the DRC samples 

with samples sourced from across the globe, I found that the DRC samples formed a separate 

monophyletic clade (Bootstrap Support: 62.0%). The DRC monophyletic clade had a most recent 

common ancestor (MRCA) with a clade that contained a subset of samples from Peru (Figure 4; 

Bootstrap Support 11.8%). Although the DRC haplotype appeared to be most closely related to 

haplotypes circulating in the Americas, the DRC haplotype was similar to haplotypes from the 

Asian and Oceanic populations (Figure 5).  
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Figure 3.4 - Phylogenetic Tree of P. vivax Global Isolates: Comparison of DRC P. vivax with 
636 globally sourced P. vivax isolates showed that P. vivax shared a most recent common 
ancestor with samples from Peru. Although the DRC-Peru node did not have strong support, 
collapsing the node still results in the same conclusion of P. vivax sharing a most recent common 
ancestor with isolates from South America. The full phylogenetic tree is provided (left), with 
various clades not along the DRC ancestry collapsed for a focused view of the DRC clade 
(right). Isolates from the Americas are colored in shades of blue and included Brazil (BR), 
Colombia (CO), Mexico (MX), and Peru (PE). Asian countries are indicated in shades of green 
and included China (CN), Indonesia (ID), Cambodia (KH), Laos (LA), Myanmar (MM), 
Malaysia, Papua New Guinea, Thailand (TH), and Vietnam (VN). India (IN) and Sri Lanka (LK) 
are indicated in shades of purple, while Ethiopia (ET) and Madagascar (MG) are indicated in 
shades of orange. Finally, the Democratic Republic of the Congo (CD) is shown in red and non-
human apes (NHA) are shown in magenta. P. cynomologi was set as the tree root and is indicated 
in black.  
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Figure 3.5 - Haplotype Genetic Distances among Global Isolates with respect to the DRC. 
Although DRC samples may share a most recent common ancestor with isolates from South 
America, DRC haplotypes contain elements from both South America, Asia, and the Oceanic 
regions. Given that DRC haplotypes are more similar to haplotypes in South America and Asia 
than in Africa, this suggests that the DRC P. vivax may be an ancestral strain that potentially 
seeded those regions. All unique haplotypes with respect to country of origin are provided for 
comparison and context (Appendix 3.1 Figure 13).  

Discussion 

P. vivax infections among adults in the DRC are more common than previously realized. 

From the spatially robust dataset across the DRC, I detected 467 P. vivax infections 

corresponding to a national prevalence of 2.96% (95% CIweighted: 2.28, 3.65%). Among those 

infected, nearly all were Duffy-negative (576/579, 99.48%).  

Malaria risk-factors typically associated with P. falciparum infection, such as ITN use 

and wealth, were not associated with P. vivax infection. Instead, only precipitation and farming 

were identified as P. vivax risk factors. This relationship between P. vivax prevalence and 

precipitation has been previously described, although the underlying effect is likely complicated 

by other ecological factors, such as vector habitats, seasonality, altitude, and temperature 21. 

Similarly, increased prevalence of malaria has previously been attributed to agriculture and 
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farming in the DRC 22. Overall, the P. vivax malaria risk factors differed greatly from risk factors 

found for P. falciparum in this study using the same methodological approach. This contrast 

between P. vivax and P. falciparum risk factors may be the result of the shortened intrinsic 

period in P. vivax or hypnozoite infections being resilient to typical antimalarial interventions 23. 

P. vivax infections were found throughout the entire country with a few focal regions of 

relatively high prevalence (Figure 3.2). The highest prevalence of P. vivax was found in the Ituri 

province. This may be due to cross-border migration with South Sudan and Uganda, which 

border countries that are endemic for P. vivax (P. vivax infections have been reported in both 

countries).1,5 However, the sources of infection in the other provinces are not clear. 

Microheterogeneity in P. vivax prevalence has previously been reported in the Amazon and was 

found to be associated with human movement 24. Future P. vivax epidemiological studies in the 

DRC should consider human mobility data, particularly with respect to Kinshasa and regions 

along the eastern border where interactions with Duffy-positive immigrants may be more 

frequent. 

Although there appears to be small-scale heterogeneity of P. vivax in the DRC, more than 

half of predicted prevalences were less than one-percent and 99.95% of predicated prevalences 

were less than the observed national average. These localized regions of prevalence, or 

“hotspots,” contrast the broad spatial distribution of P. falciparum infections previously observed 

in the 2007 and 2013 DRC DHS.9,25 As a result, I suggest that P. vivax has been unable to gain a 

foothold in the region and is persisting rather than spreading.    

The relatively large differences in the DRC P. vivax and the NHA mitochondrial 

genomes likely negates recent zoonotic transmission as the source of DRC P. vivax. I identified a 

MRCA between the DRC samples and a subset of samples from Peru during phylogenetic 
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analysis. Although the node support for the DRC-Peru relationship was weak (11%), collapsing 

the node does not alter the conclusion that the DRC MRCA was most similar to extant South 

American parasites. This finding that Africa may have seeded American P. vivax has recently 

gained traction based on analysis of a historical sample originating from the Ebro Delta in Spain, 

circa 1944 26–28. Using this historical sample, the authors demonstrated that now extinct 

European P. vivax was closely related to extant P. vivax from the Americas, potentially dating to 

the European colonial expansion during the 15th century 26,27. When I included the Erbo-1944 

sample in my comparisons, I found that the mitochondrial haplotype differed by only a single 

base-pair from the DRC haplotypes. As a result, I hypothesize that DRC P. vivax may have 

migrated from Africa to Europe prior to being transported to the New World on the wave of 

European expansion. 

However, the history of DRC P. vivax is not straightforward. The haplotypes differed 

from samples collected in Asia, Oceania, and the Americas by only a single base pair. This close 

relationship may indicate ongoing or historical mixing with Asian and Oceanic P. vivax, an idea 

supported by the genetic measures of population differentiation. In addition, the Erbo-1944 

consensus haplotype also matched haplotypes from the Americas, Asia, and Oceania 

populations. These similarities may have arisen due to waves of historical introgression and 

panmixia among P. vivax globally or may be an artifact of my conservative approach to variant 

filtering. Consistent with previous reports, I found relatively few informative sites in the P. vivax 

mitochondria 28. Despite this low variation, the mitochondria is a non-recombining region with 

putatively neutral SNPs that is ideal for phylogenetic analysis to resolve ancestry 28. 

The DRC is a critical region for the study of malaria in SSA due to its size, central 

location, and evidence that bridges East and West Africa malaria 7. These characteristics allow 
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the DRC to serve as a microcosm of the region 7,8. The main limitations of this study are the 

cross-sectional design, which limits inference of effects with a temporal component (e.g. 

seasonality) and restricts the study population largely to asymptomatic individuals, and the small 

number of high-quality DRC mitochondrial sequences generated. Future efforts will require 

more biological material than DBS to improve the likelihood of successful genomic sequencing. 

Whole genomes from the DRC would provide more insights on the demographic history of P. 

vivax in SSA and putative regions of selection for adaptation to the Duffy-negative host.  

Until recently, P. vivax, was an unrecognized cause of disease in SSA. This study 

provides the first systematic and nationally representative survey of P. vivax in a SSA country 

not considered endemic for the disease. I demonstrated that P. vivax is circulating at prevalences 

higher than previously thought, despite a high frequency of Duffy-negativity 1. However, P. 

vivax infections were not associated with classic malaria risk factors, were spread diffusely 

throughout the country, and may represent an old lineage. These findings suggest that P. vivax 

may have been circulating in SSA as an innocuous, chronic infection that was overlooked in past 

studies due to frequently sub-microscopic or low parasitemia infections. This hypothesis is 

consistent with previous work that suggests P. vivax infections among Duffy-negative 

individuals are frequently mild and asymptomatic compared with Duffy-positive individuals 5,6. 

Finally, emerging research suggests that genotypically Duffy-negative hosts express the Duffy 

antigen among erythroid progenitors in the bone marrow and that P. vivax gametocytes are able 

to mature and proliferate in the bone marrow of non-human primate animal models 29,30. 

Collectively, this suggests that P. vivax in Sub-Saharan Africa may be persisting as low 

parasitemic, asymptomatic, or relatively innocuous infections, by hiding in the bone marrow of 

Duffy-negative hosts. While the malaria community should remain mindful of P. vivax in SSA, 



 

 64 

its distribution and low prevalence support continued investments targeting P. falciparum as 

likely having the greatest impact on malaria elimination, morbidity, or mortality. 

  



 

 65 

REFERENCES 
 
1. Battle KE, Lucas TCD, Nguyen M, et al. Mapping the global endemicity and clinical burden 

of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 2019; 394: 
332–43. 

2. Miller LH, Mason SJ, Clyde DF. The resistance factor to Plasmodium vivax in blacks: the 
Duffy-blood-group genotype, FyFy. New England Journal 1976. 
http://www.nejm.org/doi/full/10.1056/nejm197608052950602. 

3. Tournamille C, Colin Y, Cartron JP, Van Kim CL. Disruption of a GATA motif in the 
Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals. 
Nat Genet 1995; 10: 224–8. 

4. Howes RE, Patil AP, Piel FB, et al. The global distribution of the Duffy blood group. Nat 
Commun 2011; 2: 266. 

5. Twohig KA, Pfeffer DA, Baird JK, et al. Growing evidence of Plasmodium vivax across 
malaria-endemic Africa. PLoS Negl Trop Dis 2019; 13: e0007140. 

6. Ménard D, Barnadas C, Bouchier C, et al. Plasmodium vivax clinical malaria is commonly 
observed in Duffy-negative Malagasy people. Proc Natl Acad Sci U S A 2010; 107: 5967–
71. 

7. Verity RJ, Aydemir O, Brazeau NF, Watson OJ. The Impact of Antimalarial Resistance on 
the Genetic Structure of Plasmodium falciparum in the DRC. bioRxiv 2019. 
https://www.biorxiv.org/content/10.1101/656561v1.abstract. 

8. Taylor SM, Antonia AL, Parobek CM, et al. Plasmodium falciparum sulfadoxine resistance 
is geographically and genetically clustered within the DR Congo. Sci Rep 2013; 3: 1165. 

9. Molly Deutsch-Feldman, Nicholas F. Brazeau, Jonathan B. Parr, Kyaw L. Thwai, Jérémie 
Muwonga, Melchior Kashamuka, Antoinette K. Tshefu, Jessie K. Edwards, Robert Verity, 
Michael Emch, Emily W. Gower, Jonathan J. Juliano, Steven R. Meshnick. Spatial and 
epidemiological drivers of P. falciparum malaria among adults in the Democratic Republic 
of the Congo. . 

10. Srisutham S, Saralamba N, Malleret B, Rénia L, Dondorp AM, Imwong M. Four human 
Plasmodium species quantification using droplet digital PCR. PLoS One 2017; 12: 
e0175771. 

11. Snounou G, Singh B. Nested PCR analysis of Plasmodium parasites. Methods Mol Med 
2002; 72: 189–203. 

12. Croft TN, Marshall AMJ, Allen CK, Others. Guide to DHS statistics. Rockville, Maryland, 
USA: ICF 2018. 



 

 66 

13. Tanaka M, Takahahi J, Hirayama F, Tani Y. High-resolution melting analysis for 
genotyping Duffy, Kidd and Diego blood group antigens. Leg Med  2011; 13: 1–6. 

14. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol 2007; 6: 
Article25. 

15. Brenning A. Spatial cross-validation and bootstrap for the assessment of prediction rules in 
remote sensing: The R package sperrorest. In: 2012 IEEE International Geoscience and 
Remote Sensing Symposium. 2012: 5372–5. 

16. Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators’ 
robustness to model misspecification using super learner. Am J Epidemiol 2015; 181: 108–
19. 

17. Moran PAP. Notes on continuous stochastic phenomena. Biometrika 1950; 37: 17–23. 

18. Karney CFF. Algorithms for geodesics. J Geodesy 2013; 87: 43–55. 

19. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A. Bayesian data analysis. 2013. 
https://www.taylorfrancis.com/books/9780429113079. 

20. Brazeau NF, Whitesell AN, Doctor SM, Keeler C, Mwandagalirwa MK, Tshefu AK, 
Likwela JL, Juliano JJ, Meshnick SR. Plasmodium vivax Infections in Duffy-Negative 
Individuals in the Democratic Republic of the Congo. Am J Trop Med Hyg 2018; published 
online Nov. DOI:10.4269/ajtmh.18-0277. 

21. Chowell G, Munayco CV, Escalante AA, McKenzie FE. The spatial and temporal patterns 
of falciparum and vivax malaria in Perú: 1994–2006. Malar J 2009; 8: 142. 

22. Janko MM, Irish SR, Reich BJ, et al. The links between agriculture, Anopheles mosquitoes, 
and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: 
a population-based, cross-sectional, spatial study. The Lancet Planetary Health 2018; 2: 
e74–82. 

23. Olliaro PL, Barnwell JW, Barry A, et al. Implications of Plasmodium vivax Biology for 
Control, Elimination, and Research. Am J Trop Med Hyg 2016; 95: 4–14. 

24. Carrasco-Escobar G, Gamboa D, Castro MC, et al. Micro-epidemiology and spatial 
heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A 
multilevel analysis. Sci Rep 2017; 7: 8082. 

25. Taylor SM, Messina JP, Hand CC, et al. Molecular Malaria Epidemiology: Mapping and 
Burden Estimates for the Democratic Republic of the Congo, 2007. PLoS One 2011; 6: 
e16420. 

26. Gelabert P, Sandoval-Velasco M, Olalde I, et al. Mitochondrial DNA from the eradicated 



 

 67 

European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta 
in Spain. Proc Natl Acad Sci U S A 2016; 113: 11495–500. 

27. van Dorp L, Gelabert P, Rieux A, de Manuel M. Plasmodium vivax Malaria viewed through 
the lens of an eradicated European strain. bioRxiv 2019. 
https://www.biorxiv.org/content/10.1101/736702v1.abstract. 

28. Rodrigues PT, Valdivia HO, de Oliveira TC, et al. Human migration and the spread of 
malaria parasites to the New World. Sci Rep 2018; 8: 1993. 

29. Dechavanne C, Dechavanne S, Metral S, et al. Duffy Antigen Expression in Erythroid Bone 
Marrow Precursor Cells of Genotypically Duffy Negative Individuals. bioRxiv. 2018; : 
508481. 

30. Obaldia N 3rd, Meibalan E, Sa JM, et al. Bone Marrow Is a Major Parasite Reservoir in 
Plasmodium vivax Infection. MBio 2018; 9. DOI:10.1128/mBio.00625-18. 

  



 

 68 

 

 
CHAPTER FOUR: TRACING THE GENETIC RELATEDNESS OF PLASMODIUM 

FALCIPARUM IN THE DEMOCRATIC REPUBLIC OF THE CONGO ACROSS 
SPACE 

 
Introduction 

 Using genetic relatedness to infer transmission chains, migration patterns, and 

population demographic histories are fundamental goals of infectious disease genetic 

epidemiology. For many infectious diseases, relatedness can be estimated from coalescent 

methods, which allows for phylodynamic modeling and inference of transmission dynamics. 

However, malaria pathogens undergo recombination, exhibit low nucleotide mutation rates, and 

can be polyclonal infections -- all factors that violate classic coalescent assumptions 1. Instead, 

there has been a resurgence in using identity by descent (IBD) methods to quantify genetic 

relatedness among malaria parasites 2–15. 

Identity by descent (IBD) is the process of inheriting segments of DNA from a common 

ancestor through meiotic recombination. Under a classic Wright-Fisher population, two haploid 

individuals are expected to share 2-G proportion of their genome by IBD, where G is the number 

of generations that separate the pair 16–19. As part of the malaria life-cycle, recombination among 

parasites occurs within the mosquito midgut prior to host inoculation 20. Although generation 

intervals vary widely depending on treatment, seasonality, and transmission intensity, P. 

falciparum generation times are assumed to be approximately 1-3 months long 21,22. As a result, 

IBD is an ephemeral signal that captures recent relatedness, which is relevant for public health. 

IBD reflects the interplay between effective population sizes (Ne) and geographical space 

and is expected to decrease exponentially as both entities increase. IBD is expected to decrease 
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exponentially as the Ne increases due to a lower chance of inbreeding 23. Previous research has 

shown that as P. falciparum prevalence increases, pairwise IBD decays exponentially 14. This 

suggests that although the census size and Ne are not necessarily the same, P. falciparum 

transmission intensity is proportional to Ne. Similarly, IBD is expected to decay exponentially as 

the spatial distance between individuals increases, a process termed  isolation by distance 24,25. 

This process of isolation by distance has previously been identified in P. falciparum parasites 

along the Thailand-Myanmar border and the Democratic Republic of the Congo (DRC) 6,8. In 

addition, IBD was shown to capture spatial process at a much higher resolution than traditional 

statistics of genetic differentiation (i.e. F-statistics) 6. 

Identifying and quantifying perturbations to expectations of isolation by distance are 

likely informative for malaria control efforts, as they may indicate reservoirs of malaria 

transmission, importation events, or heterogeneity in transmission over geographical space. This 

latter point is critical, as previous work quantity P. falciparum isolation by distance has focused 

on greater-circle distances and not considered other spatial distances as measures of 

connectedness. Other geographical distances, such as road distance or distance along rivers, will 

approximate migration of parasites through human movement, while greater-circle distances 

approximate migration by mosquito movement.  

In this study, I used a spatially robust dataset of 1,111 samples from 351 geographic 

clusters to explore how geographic distance affect patterns of IBD in the DRC. The DRC is an 

ideal location to analyze patterns of isolation by distance in P. falciparum, as it exhibits a large 

degree of spatial heterogeneity in prevalence and has previously been shown to be a bridge 

between West and East Africa parasite genetic diversity 8,26. As a result, I was able to capture 

regions of low-transmission and high-transmission as well as genetic demes with varying levels 



 

 70 

of admixture. I found that parasite dispersion appeared to be driven by human movement and not 

necessarily mosquito movement. In addition, I identified cities as potential genetic hubs and 

discuss their importance for malaria control. By combining these spatial and genetic approaches, 

I provide a picture of how P. falciparum infections may be arising in the DRC instead of simply 

where. 

Materials and Methods 

Parasite Genetic Data and Genetic Calculations 

This study utilizes the genetic data and samples from the DRC previously analyzed in 

Verity et al. 2019. In brief, dried blood spots from adults and children in the 2013-2014 

Demographic Health Survey (DHS) in the DRC underwent DNA-extraction using Chelex-100 

(Bio-Rad, Hercules, CA) and Saponin 27,28. Samples with cycle-threshold values of less than 30 

from a P. falciparum lactate-dehydrogenase quantitative PCR reaction were identified for 

sequencing using molecular inversion probes 8,29. Sequences then underwent alignment, variant 

calling, and filtering as previously described. Briefly, samples were genotyped at 1,890 sites 

across the genome (“genome-wide panel”), and sites were filtered based on Phred-scaled quality 

score of <20, low-coverage and lack of genetic segregation. Variants were then limited to 

biallelic loci. Separately, samples were excluded if more than half of the loci were determined to 

be low-coverage 8,29.  

From these filtered variants, I evaluated the autocorrelation among loci using Pearon’s 

correlation coefficient on the within-sample allele frequencies. I then calculated pairwise IBD 

between all samples using a maximum-likelihood estimator that has been previously described 8. 

The estimator is based on the classic definition of IBD proposed by Malécot, where pairs of 

DNA segments not broken by mutation are followed back to a common ancestor 19,30.  
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Measures of Geographic Distance 

I calculated pairwise greater-circle distance between clusters using the greater-circle 

distance in the R package, `sf` 31. Greater-circle distance is essentially the shortest euclidean 

distance along a curved surface.   

In order to build road networks for the DRC, I downloaded geographical data from 

Geofabrik (https://www.geofabrik.de/data/download.html; accessed August 23, 2019) and 

formatted it for the Open Source Routing Machine API (Figure 1B) 32. I then calculated pairwise 

road distances between clusters using the `orsm` R-package. Among the 351 clusters considered, 

one cluster (ID: 469) could not be resolved by `osrm`. I imputed the road distances for the 469 

cluster based on cluster 313 (nearest neighbor of cluster 469) road distances with an offset of 

2,000 meters: the approximate greater-circle distance between the two clusters. Given that only 

distances along roads was considered, clusters that do not directly lie on a road are snapped to 

the nearest road. This snapping effect will result in shorter path estimates if any roads were not in 

the database or were unmarked (i.e. dirt paths).  

In order to calculate distances along rivers between clusters, I created a river network 

using waterway lines downloaded from the Humanitarian OpenStreetMap Team database for the 

DRC (https://data.humdata.org/dataset/hotosm_cod_waterways; accessed October 30, 2019) and 

DIVA-GIS (http://www.diva-gis.org/gdata; accessed January 3, 2020). Using the GRASS (v7.4) 

and QGIS (v3.8) programs, I merged the two data sources and fixed topology of the river 

network with the `v.clean` suite (`rmsa`, `break`, `rmdup`, `rmline`, `rmdangle`, `snap` (0.05)). I 

then simplified the river network using the `generalize` function and the Douglas-Peuker 

algorithm 33. Finally, I limited the simplified river network to the single largest connected 

component, thereby removing islands using the `shp2graph` R-package (Figure 1C). From this 
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newly created river network, I calculated the pairwise river distance between clusters by 

snapping clusters to the nearest node and calculating the shortest edge lengths -- mimicking the 

road network behavior described above. For clusters that snapped to the same river vertex, I 

included a 5,000 meter offset (approximate minimum between clusters snapped to different 

vertices). 

Feature Engineering for IBD Parametric Models   

I identified potential predictors of genetic relatedness among P. falciparum parasites from 

a comprehensive literature review. I then downloaded the raster for each available predictor from 

open source venues (Table 4.1).  

Temperature data from the MYD11C3 (v6) product was downloaded from the Level-1 

and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center 

(Goddard Space Flight Center, Greenbelt, MA; accessed September 20, 2019) 34. Similarly, I 

downloaded precipitation data from the Climate Hazards Group Infrared Precipitation with 

Stations (CHIRPS) server using an R-wrapper package, (GitHub: `environmentalinformatics-

marburg/heavyRain`) for the CD2013 study period 35. Both temperature and precipitation data 

were downloaded at a 0.05° x 0.05° spatial resolution. Given the 2013-2014 Demographic 

Health Survey in the DRC was conducted over six months, I calculated the mean temperature 

and precipitation across the study period 36.  

For the remaining rasters, I aggregated raster cells to a 0.05° x 0.05° spatial resolution by 

taking the mean values within cells. Covariates encoded as proportions were logit-transformed 

back to the real line. Due to extreme collinearity among the night light intensity, population 

density, and travel time covariates, I created an overall “urbanicity” factor score. The urbanicity 

factor score for each geographic location was calculated by performing a principal component 
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analysis on the night light intensity, population density estimates, and travel times rasters and 

extracting the eigenvalues of the first principal component. The upper bound of the urban factor 

score was set to the 99.9th percentile of the original distribution to truncate outliers. Each 

covariate was aggregated at the province-level by taking the mean value with respect to province 

boundaries. All province-aggregated covariates were then standardized (mean-centered and 

scaled by the standard deviation). Province-level models were selected because most 

intervention-planning and intervention-implementation occurs at the province-level in the DRC.   
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Covariate Source Manipulations Year Citation 

Elevation Elevatr Standardize -  37 

Precipitation CHIRPS Standardize 2013-2014 35 

Temperature LAADS Standardize 2013-2014 34 

 
Urbanicity 

WorldPop Standardize 2013 38,* 

Travel Time 
(MAP) Standardize 2015 

 
39 Friction Surface 

(MAP) Standardize 2015 

NOAA (VIIRS) Zero-truncated 
Standardize 2015 40,41 

Cropland ESA Binary 2013 42 

Falciparum 
Parasite Rate MAP Logit transform, 

Standardize 2015 
43 

Net Use MAP Logit transform, 
Standardize 2015 

House MAP Logit transform, 
Standardize 2015 44 

 
Table 4.1 - Risk Factors Covariate Source and Transformations: Covariates were 
downloaded from several open source platforms, including: the Malaria Atlas Project (MAP), the 
European Space Agency and Copernicus Atmosphere Monitoring Services (ESA), the Earth 
Observations Group at National Oceanic and Atmospheric Administration/National Centers for 
Environmental Information (NOAA), the Level-1 and Atmosphere Archive & Distribution 
System Distributed Active Archive Center (LAADS), WorldPop (*https://www.worldpop.org/), 
and Amazon Web Services Open Data Terrain Tiles via the `elevatr` R package. For each spatial 
raster, the year of data collection is indicated. Covariates were then curated and transformed for 
model fitting depending on the functional form of the data.  
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Feature Engineering for Non-Parametric Tests   

Based on my a priori assumptions, I explored the relationship between IBD and 

urbanicity and IBD and prevalence at the cluster level, respectively. Urbanicity was recoded as a 

binary measure (urban vs. rural) using a 95th percentile cutoff in my previously created urban 

factor score. To account for the offset used by the DHS to anonymize clusters, I extracted raster 

cells within 2 km (urban clusters) or 10 km (rural clusters) of each cluster location 45,46. Clusters 

that had at least 50% of raster cells coded as urban in their catchment area were considered as 

urban. A new urban-rural variable was created in light of previous evidence indicating that the 

DHS coding of urbanicity may be biased in the DRC 47. Similarly, cluster level prevalence was 

calculated as the mean prevalence within the DHS catchment area, using the Malaria Atlas 

Project parasite-rate raster (Table 4.1). The catchment area for one cluster (ID: 54) was 

increased from 2 km to 6 km due to issues of missing data.   

Permutation Tests and Edge Density    

Correlations among the genetic relatedness measures and the geographic distances were 

assessed using a Mantel’s test with 10,000 iterations 48. A Mantel’s test is essentially a 

permutation approach, where each permuted iteration accounts for the autocorrelation among 

cells in a distance adjacency matrix. 

To determine if urbanicity (binary, cluster-level covariate) differed between highly 

related pairs, I performed permutation testing with 10,000 iterations. For each permutation, I 

drew 86 cluster urban/rural observations (maximum number of cluster observations between 43 

pairs under an independence assumption) using the distribution of urbanicity found among the 

351 observed clusters. To form the null distribution, I then calculated the proportion of simulated 
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urban clusters from each iteration. The null distribution was then compared to the observed 

proportion of urban clusters among the highly related pairs. 

For each sample that was a part of a highly related pair, I calculated the weighted edge-

density, or the mean of the IBD measures between pairs. This approach approximates the degree 

centrality measure in network analysis 49. Correlations between cluster parasite rate and sample 

edge densities were calculated using the Szekely-Rizzo-Bakirov distance correlation test with 

10,000 permutations using the `energy` R package 50–52. The Szekely-Rizzo-Bakirov distance 

correlation test measure multivariate dependence through euclidean distances and thus can 

capture nonlinear patterns 50–52.   

Spatial Distance and Genetic Relatedness Likelihood    

 In order to determine which geographic and genetic distance best approximated the 

isolation by distance framework, I created a likelihood function based on Malécot’s original 

formulation of genetic isolation by distance 30,53. For this likelihood, I made several simplifying 

assumptions: (1) pairwise-IBD between sample  and sample ,  is known and fixed; (2)  

is stationary and at equilibrium, such that ; (3) the mutation rate in the population is 

negligible. Furthermore, let samples reside within non−overlapping regions of interest, or 

clusters, where clusters are indexed by . Given that generational relatedness is at an 

equilibrium, time is considered as a binary: present and past. Let  represent a given cluster in the 

present and  represent the same cluster in the past. Further, let  represent all other clusters in 

the population, indexed by . The probability of migration between clusters is exponentially 

distributed with respect to the geographic distance, such that . I assume that   can be 

derived from the differences in geographic location  between the two clusters: 

 and is scaled by . Finally, let the cluster-level inbreeding 
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coefficient for each sample pair be represented by  and made up of two parts, such that 

. Given that  is known and fixed, the mean pairwise IBD between 

two clusters can be calculated as . Using these model components the probability of cluster 

relatedness given its distance to all other clusters can be caluclated: .   

The model components can be calculated as:  

 

 

 

From these probabilities, I can calculate the likelihood of the distance data as:  

 

Bayesian Spatial Generalized Linear Mixed Models Predictors   
Predictors of pairwise-IBD aggregated at the province level were assessed using 

generalized linear models within a Bayesian framework with two outcomes of interest: (1) 

within-province mean pairwise IBD and (2) between-province mean pairwise IBD. For within-

province models, I fit a generalized linear mixed model with spatially correlated random effects. 

Following the framework described in Lee 2017, I assume that there are  total provinces that 

are non-overlapping regions that are indexed by , such that:  

 

 

I modeled spatial autocorrelation, , using a conditional autoregressive (CAR) prior. The 

CAR prior followed the formulation provided in Leroux et al. 2000, where dependence is 
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assumed to consist of two joint random effects: (1) dependence among observations, and (2) 

spatial dependence among observations. Model priors were as follows:  

 

 

 

 

 

The multivariate Gaussian mean prior  vector consisted of zeroes and the diagonal elements of 

the covariance matrix, , were set to 50,000 54. I allowed the  parameter to vary under the 

model in order to fit the spatial process that was most consistent with the data 54,55. For context, 

when , the CAR term assumes all spatial autocorrelation is modeled by the random effects 

(i.e. the Intrinsic CAR or Besag model). In contrast, when , the CAR term assumes no 

spatial autocorrelation. The adjacency matrix, , was a neighborhood matrix, where cells were 

scaled distances between province centroids 56. Scaled distances were expected to follow an 

exponential distribution, with .  

For models with between-province mean pairwise IBD as the outcome of interest, 

generalized linear models without random effects were considered. Provinces are now indexed 

by  . and  . Each model contained a covariate for the difference in 

distance between province centroids and an indicator value if the province pairwise-comparison 

was from the same province (i.e. when  ). The covariate matrix consisted of pairwise 

squared-differences among the observed predictors. As such, the model was formulated as:  
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As above, the covariates were assumed to have a multivariate Gaussian mean prior, where  

was a series of zeros and the diagonal elements of the covariance matrix, , were set to 50,000 

54. Although the province-province indicator parameter is binomial, it was assumed to be 

Gaussian for computational efficiency. This province-province indicator parameter is included to 

account for the variance in the sample size and observation differences among provinces.  

 All models were first fit with 1,000,000 sample iterations and a 10,000 iteration burn-in. 

For each model, the minimum effective size of each parameter was assessed to determine how 

well the posterior was sampled. An a priori cutoff of 100,000 for the minimum effective size for 

all parameters was set as the minimum cutoff to indicate model convergence. Models were then 

compared using the Deviance Information Criterion (DIC) 57. Once the best models were 

identified for each respective distance category, a final set of models was considered with 

10,000,000 sample iterations and a 10,000 iteration burn-in. For these final models, I reported 

the posterior median, 2.5th percentile, and 97.5th percentile values (95% credible interval) for 

each model parameter. 

Results 

Summary Statistics 

Using previously published data, I analyzed 1,111/2,039 P. falciparum isolates at 

1,079/1,890 loci across 351/492 geographic clusters across the DRC (Figure 4.1) 8. The number 

of isolates sequenced per cluster ranged from 1-11. Genetic autocorrelation among loci was low 

(mean  = 0.004, range: 0 - 0.017 with respect to the fourteen nuclear chromosomes; Appendix 

4.1 Figure 1). 
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Among the 1,111 samples considered, the mean IBD estimate was 0.021 (range: 0 - 

0.999). As expected, most pairwise comparisons had IBD estimates of zero 

(n=325,967/616,605). However, 62 sample-pairs had an IBD estimate of at least 0.5 (mean: 

0.725, range: 0.502 - 0.999). Under a Wright-Fisher model with outgroup mating, these pairs are 

expected to be at least meiotic siblings and represent transmission events that are separated by 

only a single generation (hereafter referred to as “highly related pairs”).    

Figure 4.1 - Sampling Locations, Road & River Spatial Network: The 351 sampling 
locations are shown (red) alongside clusters from the 2013-2014 DRC DHS that were not 
included in this study (blue). Clusters sizes are scaled by the number of isolates sequenced from 
each sampling location (Left). Cluster locations (red) are displayed over the primary road 
network used to calculate road-distance between clusters. For aesthetics, only roads that were 
coded as “primary”, “secondary”, “tertiary”, “motorway”, “trunk”, or “road” in the Geofabrik 
dataset were plotted. Additional roads were calculated in the shortest-path calculations (Center). 
Cluster locations (red) are displayed over the pruned river network that was used to calculate 
river-distance between clusters. For aesthetics, the river network plot only includes those rivers 
classified as “permanent” or “rivers” by DIVA-GIS and OSM, respectfully (Right).  

Genetic Relatedness versus Geographic Distance 

In order to determine how genetic relatedness varied with space, I compared measures of 

IBD across three geographic distances: greater-circle distance, road distance, and river distance. I 

first used Mantel tests to measure the correlation between the pairwise IBD relatedness measures 
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and the pairwise spatial distances. Mantel tests were statistically significant when considering 

each spatial category (Table 4.2). 

Genetic 
Relatedness 

Geographic 
Distance Category 

Expected 
Disperser 

Mantel-Test 
p-value Log Likelihood 

IBD Greater-Circle Mosquito <0.01 -3,821,114,081.484 

IBD Road Human <0.01 -3,821,108,379.258 

IBD River Human <0.01 -3,821,112,409.554 

 
Table 4.2 - Genetic-Geographic Statistics: Mantel test p-values comparing the correlation 
between genetic and geographic distances. For each of the respective geographical distances, 
10,000 permutations were simulated and results were evaluated with a two-sided p-value. Log 
likelihoods were calculated using a non-parametric approach based on the classic isolation-by-
distance model. Parameters are consistent between the distance-categories allowing for the direct 
comparison of log likelihoods. The road distance model demonstrated the best fit under the 
isolation by distance model framework. 

To further explore the relationship between measures of genetic relatedness and space, I 

calculated the likelihood for spatial distance versus IBD using an isolation by distance 

framework. Although measures of pairwise IBD demonstrated a strong signal of isolation by 

distance across all three levels of spatial distance (Figure 4.2), I found that road distance 

provided the best fit (log-likelihood: -743205.502, Table 4.2). This finding is consistent with the 

observed nearly monotonic trend of decay in pairwise IBD as road distance increased. In 

contrast, greater-circle distance and river-distance had tails of higher than expected relatedness at 

far distances (Figure 4.2).  
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Figure 4.2 - Mean IBD Across Three Spatial Distances: The distribution of mean IBD with 
respect to the different distance metrics considered: greater-circle (Left), road (Center), river 
(Right). Distances were categorized following the distributions used in Verity, Aydemir, Brazeau 
et al. 2019.  

Province Aggregation & Predictors of IBD 

Mean within-province IBD ranged from 0.024 in Kasai to 0.090 in Nord-Ubangi 

(Appendix 4.1 Figure 2). Among the 512 models that I considered with mean within-province 

IBD as the outcome of interest, the minimum effective sample size for any parameter was 

approximately, 127,575, 125,717, and 127,521 for greater-circle, road, and river distance, 

respectively. The DIC among all 512 models had a small range, indicating that additional 

covariates did not greatly improve model fit (range: -96.810, -85.0855). Based on the DICs, the 

best fitting models for greater-circle, road, and river distance were the same and included a 
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prevalence and precipitation covariate (Table 4.3). For all models, the precipitation and 

prevalence parameter effect estimates were negatively associated with the increasing levels of 

IBD. However, the magnitude of each effect estimate was small (Table 4.3). Among the three 

models, the estimation of autocorrelation was the same (  = 0.683).  

Overall, between province IBD did not appear to differ greatly from the DRC-wide 

measure of mean pairwise IBD (mean: 0.021, range: 0.007 - 0.090; Appendix 4.1 Figure 3). 

When considering mean between-province IBD as the outcome of interest, the minimum 

effective sample size for a given parameter among the 512 model evaluated was 937,868, 

935,889, and 93,4704 for greater-circle, road, and river distance, respectively. As above, the DIC 

range among the models was small, which indicates that covariates did not greatly improve 

model fit (range: -2,283.413, -2,251.783). Among the between-province models, the best fitting 

model included a housing, urbanicity, and precipitation covariate for all spatial frameworks 

considered (Table 4.3). In all cases, the housing, urbanicity, and precipitation parameter effect 

estimates were negatively associated with IBD. This suggests that a larger difference in 

covariates between province results in less between-province relatedness. 
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Outcome 
Distance 

Category 
Parameter Median 2.50% 97.50% Effective Size 

Within 

Province 

Greater Circle 

Int. 0.059 0.043 0.075 10,000,000 

Precip. -0.014 -0.033 0.006 5,575,000 

Par. Rate -0.017 -0.036 0.002 5,721,569 

 0.002 0.001 0.003 5,730,592 

 0.003 0.001 0.008 2,142,403 

 0.683 0.222 0.965 1,514,903 

Road 

Int. 0.059 0.043 0.075 10,002,764 

Precip. -0.014 -0.033 0.005 5,713,636 

Par. Rate -0.017 -0.036 0.002 5,801,656 

 0.002 0.001 0.003 5,718,237 

 0.003 0.001 0.008 2,134,699 

 0.683 0.221 0.966 1,511,499 

River 

Int. 0.059 0.043 0.075 9,990,267 

Precip. -0.014 -0.033 0.006 5,629,140 

Par. Rate -0.017 -0.036 0.002 5,771,800 

 0.002 0.001 0.003 5,672,075 

 0.003 0.001 0.008 2,136,912 

 0.683 0.223 0.966 1,521,384 
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Between 

Province 

Greater Circle 

Int. 0.017 0.015 0.019 10,000,000 

Housing -0.001 -0.002 0.000 10,000,000 

Precip. -0.002 -0.003 -0.001 10,000,000 

Urban -0.002 -0.003 0.000 10,000,000 

Prov. 0.006 0.001 0.012 10,000,000 

Dist. -0.008 -0.011 -0.006 10,000,000 

 0.000 0.000 0.000 9,662,049 

Road 

Int. 0.023 0.021 0.024 10,000,000 

Housing -0.001 -0.002 0.000 10,020,694 

Precip. -0.002 -0.003 -0.001 10,000,000 

Urban -0.002 -0.003 0.000 10,000,000 

Prov. 0.007 0.001 0.012 10,000,000 

Dist. -0.004 -0.006 -0.003 10,000,000 

 0.000 0.000 0.000 9,669,512 

River 

Int. 0.021 0.020 0.023 9,966,331 

Housing -0.001 -0.002 0.000 10,000,000 

Precip. -0.002 -0.003 0.000 10,007,827 

Urban -0.002 -0.003 0.000 10,000,000 

Prov. 0.005 -0.001 0.010 10,000,000 

Dist. -0.006 -0.008 -0.005 10,000,979 

 0.000 0.000 0.000 9,644,796 

Table 4.3 - Bayesian Spatial Generalized Linear Mixed Models: The relationship between 
province-level IBD and hypothesized predictors of IBD was modeled using spatial generalized 
linear mixed models. Models were evaluated using within-province mean pairwise-IBD and 
between-province mean pairwise-IBD as outcomes of interest. Parameter effect estimates are 
provided for precipitation (Precip.), parasite rate (Par. Rate), mean urbanicity (Urban), housing 
quality (Housing), the province-level indicator (Prov.), between-province distance (Prov.), and 
the scaling parameter for the variance of the outcome (Gaussian distribution). The covariate 
effective sample size is also provided.  
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Highly Related Samples 

I identified 62 highly related pairs across 58/351 (16.5%) clusters. Among the 62 highly 

related pairs, 19 pairs were from the same cluster, indicating likely local transmission events 

(Figure 4.3). Of the highly related pairs that had only a single connection (n=25), most were 

from different clusters (n=13; Figure 4.4A). Similarly, most highly related pairs were from 

different clusters (n=30) among the 37 pairs that had more than one connection (Figure 4.4B). 

One set of pairs in cluster 284 formed a quadrad, where all four samples had at least 0.721 of the 

genome IBD but were from four separate households (Figure 4.4B). Both putative local and 

long-range transmission events among the highly related samples appeared to be relatively 

dispersed across the DRC (minimum geographic distance: 25.12 km, Appendix 4.1 Table 3). 

Two samples violated the expectation of transitivity among pairwise IBD estimates and 

have a dyadic and triadic relationship with network clusters that are unconnected. Both of these 

IBD estimates hovered around 0.50 and are likely error due to the IBD-MLE calculation and not 

true violations of transitivity.  
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Figure 4.3 - Putative Within and Between Cluster Transmission Among Highly Related 
Pairs across the DRC: Highly related pairs are mapped across the DRC with the color of the 
edges corresponding to the pairwise IBD. Clusters that contain at least one highly related pair 
with both samples originating and terminating in the same cluster are marked in blue. These pairs 
likely represent local transmission events. The majority of pairs were between clusters, where the 
minimum distance between clusters was 25.12 km, which exceeds the maximum flight distance 
of an anopheline mosquito (Kaufmann & Briegel 2004). This suggests that human movement 
between cluster may be driving these connections.  
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Figure 4.4 - Pairwise IBD Networks among Highly Related Samples: (A) Highly related pairs 
with one connection are displayed with cluster identifiers as the nodes. Overall, most highly 
related pairs with only a single connection were split between originating from the same cluster 
(n=12) or different clusters (n=13) (B) In contrast, among those highly related pairs with more 
than one connection, most stretched across multiple cluster locations (n=30). This indicates 
likely long-range transmission events. Most long-range transmission events exceed mosquito 
flight distances and were likely dispersed by human movement.   

Given the finding that road networks were most consistent with the genetic isolation-by-

distance pattern, I examined if urbanicity was associated with highly related pairs. Among the 

351 clusters sampled in this study, I identified 130 urban clusters. Among the highly related 

pairs, I identified 14 unique urban clusters among the 48 clusters that had at least one sample 

within a highly related pair. Using the permutation test, I found that there were fewer urban 

clusters than would be expected under an assumption of independence (Appendix 4.1 Figure 4). 
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However, this result was not statistically significant (p > 0.05). Overall, I identified 18 pairs that 

had both nodes in rural clusters, 22 pairs with urban-rural nodes, and 3 pairs with urban-urban 

nodes. Visualization of the urban and highly related pairs relationship suggests that the edges of 

highly-related pairs were more densely concentrated in urban areas across the DRC (Figure 4.5).  

 
Figure 4.5 - Between Cluster Highly Related Samples and Urbanicity across the DRC: The 
binary urbanicity raster is overlain with the highly related pairs from different clusters. 
Urbanicity is considered as a binary with urban areas marked in red while rural areas are marked 
in blue. Overall, the highly related pairs show a high number urban-rural connections, which 
suggests that cities may be acting as hubs for parasite transmission. 

I did not find evidence for a relationship between edge-density and cluster level parasite 

when all samples in highly related pairs were considered (distance-correlation: 0.282, p > 0.05). 
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Similarly, I did not find an association between edge density and parasite rate when evaluating 

only urban samples (distance-correlation: 0.340, p > 0.05) or rural samples (distance-correlation: 

0.297, p > 0.05), respectively.   

Discussion 

In this study I used pairwise measures of IBD and different measures of geographical 

space to analyze patterns of genetic relatedness across the DRC. Given the interaction between 

IBD, geographic distance, and transmission intensity, measures of IBD can be used to better 

understand P. falciparum gene-flow and transmission across space. I showed that pairwise road 

distance was most consistent with the classical isolation by distance model among the DRC 

samples. In addition, I demonstrated that the minimum spatial distance between highly related 

pairs that were not from the same cluster was 25.12 km. This minimum exceeds the expected 

maximum flight pattern of an anopheline mosquito by at least 10-15 km 58. This suggests that 

migration of P. falciparum parasites may be largely driven by human movement instead of 

mosquito ranges. This finding is consistent with several previous studies that have suggested that 

human movement is a major contributor to the dispersion of P. falciparum across large 

geographic regions 6,59. 

Analysis of highly related pairs can offer insights into contemporary infection dynamics, 

as they represent very recent transmission events. P. falciparum parasites with pairwise-IBD 

measures of 0.5 or greater is consistent with shared ancestry in the previous generation, which is 

expected to be within the last 1-3 months 21,22. Here I found evidence that suggested that highly 

related pairs were more frequently between urban and rural settings, although this result was not 

statistically significant. However, this indicates that cities and urban areas may be acting as hubs 

for genetic relatedness across the DRC.  
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From the province-aggregated models, I found that precipitation and parasite rate were 

negatively associated with within-province IBD. This suggests that as precipitation and parasite 

rates increase, within-province relatedness decreases. Previous work has shown that precipitation 

was negatively associated with P. falciparum prevalence in the DRC 60. This negative 

relationship between P. falciparum prevalence and precipitation likely reflects vector dynamics, 

where too much rainfall may “wash away” vector breeding sites 61,62. Assuming that prevalence 

is proportional to the effective population size, these findings fit with the expected pattern of 

IBD decreasing in larger populations  3,14,63. When considering the between-province IBD 

models, I found that larger differences in mean urbanicity, housing quality, and precipitation 

resulted in less relatedness between provinces. This finding suggests that provinces with similar 

sociodemographics and weather patterns are more likely to share parasites. Although a distance 

covariate was considered in the between-province models, these findings likely reflect regional 

similarities and isolation by distance dynamics. In all models, the parameter effect estimates 

were small. This lack of signal may be partly due to the low variation in the within- and 

between-province IBD measures.  

A major limitation of this study was that all genotypes were coerced to be monoclonal 

despite an overall mean complexity of infection of 2.23 among the samples 8. Previous work has 

shown that this coercion results in a downward bias when calculating IBD with the MLE 

approach used in this study, such that relatedness between samples is underestimated as 

complexity of infection increases (see Supplementary Materials 2, Verity, Aydemir, Brazeau et 

al. 2019) 8. As a result, my findings are likely conservative. Future work leveraging the 

information encoded in polyconal infections may be able to resolve finer levels of IBD and 

detect more nuanced transmission patterns.  



 

 92 

A second limitation of the study was the few loci (n=1,079) that I considered for IBD 

measurements. Overall, the autocorrelation among the genomic positions was very low, which 

suggests limited linkage-disequilibrium for detecting recombination blocks. Given that I 

primarily focused on highly related pairs to infer connectedness between regions and that highly-

related pairs are expected to share at least half of their genome, few markers are needed to infer 

relatedness 8,64. However, future studies attempting to identify relatedness in more minute detail 

may require additional loci, depending on the study site transmission intensity and extent of the 

past queried. Finally, measures of IBD as a binary relationship between pairs of genomes in a 

pedigree framework is potentially underpowered 65. Instead, methods characterizing the most 

recent common ancestors for each locus may be needed to truly resolve detailed measures of 

genetic relatedness.  

A final limitation of this study is the curation of the river network used to calculate river 

distances between cluster pairs. Given that this included a component of manual-cleaning and 

editing, a degree of arbitrariness and misclassification bias is likely introduced into the dataset. 

Unfortunately, without an open-source API like Open Source Routing Machine, these are 

inherent limitations when working with this type of data.  

To the best of my knowledge, this is the first study to use multiple measures of 

geographic space to explore patterns of P. falciparum IBD in a high burden region. Despite the 

high incidence in the DRC, I was still able to detect signals of isolation by distance due to human 

movement. Given the potential mixing between urban and rural regions, I hypothesize that 

infected individuals from high transmission rural areas may be importing parasites into low 

transmission urban areas, allowing for the long-range mixing of parasites 67. Future control 

efforts may benefit from further characterizing and identifying these hubs for increased 
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interventions. Despite IBD and genetic relatedness measures having several limitations in high-

transmission settings, relatedness can provide policymakers with an idea of where and how 

parasites are migrating across a country. In addition, identifying patterns of gene flow and 

migration patterns among P. falciparum parasite can help characterize how drug-resistance is 

likely to spread through a given region. Identifying these paths is critical for drug-resistance 

control efforts with respect to the imminent threat of artemisinin resistance being imported into 

the DRC 68,69. Although there are current limitations in inferring relatedness among P. 

falciparum parasites in high-burden settings, these methods can help to inform public health 

officials on the likely migration patterns of parasites and warrant application. 
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CHAPTER FIVE: DISCUSSION 

Summary of Results 

Aim 1 

 Plasmodium vivax infections among adults in the Democratic Republic of the Congo 

(DRC) are more prevalent than previously realized. In Aim 1 of my dissertation, I detected 

467 P. vivax infections among 15,574 adults from the 2013-2014 Demographic Health Survey in 

the DRC. Overall, this resulted in a national prevalence of 2.96% (95% CIweighted: 2.28, 3.65%). 

Among those adults that were infected with P. vivax, nearly all were Duffy-negative (576/579, 

99.48%). Among the fourteen malaria risk factors considered, only higher-levels of precipitation 

were found to reduce P. vivax prevalence while being a farmer appeared to increase P. vivax 

prevalence. 

When including these covariates in the spatial prediction models, the prevalence of P. 

vivax mapped relatively uniformly across the DRC with the exception of a few focal locations of 

relatively high prevalence (prevalence range: 0.50 - 11.20%). These “hotspots” are consistent 

with previous reports of spatial microheterogeneity in P. vivax transmission 1. However, despite 

the presence of a few hotspots, P. vivax prevalence mostly ranged from 0.5 - 1.5% across the 

country, suggesting widespread low-level prevalence. Finally, when considering the evolutionary 

history of the DRC P. vivax infections, I found that the DRC samples shared a most recent 

common ancestor (MRCA) with a subset of samples from Peru. This MRCA with samples from 

South America suggests that the DRC samples may be part of an ancient lineage. However, the 

ancestry of these DRC P. vivax samples is not straightforward, as there were several limitations 
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to my phylogenetic analyses. As a result, I concluded that there was sufficient evidence to state 

that the DRC P. vivax infections were not the result of recent zoonotic transmission but further 

sequencing was needed to resolve the recent origins of these samples. Given the relatively flat 

prevalence of P. vivax across the DRC, the few associated risk factors, and the indication of a 

potentially ancestral lineage, I hypothesized that much of the burden of P. vivax in the DRC is 

clinically innocuous.  

Aim 2 

Based on measures of genetic relatedness, dispersion of Plasmodium falciparum 

infections in the DRC is likely dominated by human movement versus mosquito movement. 

In Aim 2 of my dissertation, I used measures of identity by descent (IBD) to analyze patterns of 

genetic isolation by distance based on three different measures of geographic distance: (1) 

greater-circle distance, (2) road distance, and (3) river distance. Greater-circle distance is 

expected to represent dispersion by mosquitoes, while road and river distance are expected to 

represent dispersion by humans. From the 1,111 P. falciparum isolates that were sequenced from 

the 2013-2014 Demographic Health Survey in the DRC, I found that road distance best 

explained the expected pattern of isolation by distance. This suggests that migration of P. 

falciparum parasites may be largely driven by human movement along roads instead of 

dispersion by mosquitoes. This indication of human movement being a main contributor of P. 

falciparum parasite dispersion was recapitulated by analyzing highly related pairs of isolates. 

When comparing highly related pairs of P. falciparum isolates, I found that pairs were more 

frequently between urban and rural areas (not statistically significant). Given that there are fair 

fewer urban areas than rural areas in the DRC, I hypothesized that urban areas were acting as 

hubs for genetic relatedness across the DRC. This hypothesis of urban regions serving as hubs of 
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genetic relatedness in the DRC is consistent with my finding that road distances best explained 

P. falciparum parasite dispersion. Overall, human movement -- particularly between urban and 

rural areas -- may be promoting genetic diversity by continually supplying parasites from high-

transmission settings, which are predominantly in rural regions in the DRC, to low-transmission 

settings, which are typically cities in the DRC 2.  

Context and Importance  

Until recently, P. vivax, was an unrecognized cause of disease in sub-Saharan Africa. 

Vivax malaria is more difficult to diagnose, treat, and eliminate than other malarias due to its 

complex life-cycle and complicated treatment algorithm 3–5. Although my results show it is much 

more common than previously thought, I have hypothesized that these infections are relatively 

innocuous and do not pose a substantial threat to malaria control efforts in the DRC (at this 

time).  

Although controversial to call an infectious disease a relatively innocuous threat, the P. 

vivax data from the DRC indicates this use of language and a conservative approach. These 

“controversial calls” are needed if resources are to be allocated properly in an effort to maximize 

malaria control, as progress towards malaria elimination have plateaued in recent years 6. This 

plateau in malaria elimination progress is occurring despite increases in long-lasting insecticidal 

net use and access to care 6. Taken together, this slowing of case-reductions, despite increased 

intervention uptake, suggests that the cost-effectiveness of preventing each case of malaria is 

decreasing. Although costs are expected to be highest at the end of elimination campaigns, many 

malaria-endemic countries are far from this “endgame” consideration. For example, the DRC -- 

the main focus of my dissertation -- recorded approximately 27-million cases and 40,000 deaths 

due to malaria in 2018 6. In 2017, malaria cases and deaths were approximately 27-million and 

40,000, respectively 6. These numbers reflect the overall pattern that case-burden and mortality 
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have remained relatively stagnant in many countries with high prevalences despite intervention 

uptake 2,6,7.  

 

Figure 5.1 - Global Malaria Incidence: Based on the 2019 World Malaria Report from the 
World Health Organization (WHO), malaria incidence has declined from 2000 - 2018 (red line). 
However, in recent years, the rate of decline has shrunk dramatically. When considering previous 
WHO reports, global malaria incidence is no longer decreasing monotonically, and instead 
shows a complex pattern (black line). Although discrepancies between the two curves may be 
due to numerous factors, both curves suggest global malaria elimination progress has stalled. 
This figure was publicly posted by Ric Price (@ricprice99) on Twitter on December 5, 2019.  

In response to stagnated progress in many high burden countries, the World Health 

Organization (WHO) announced a new strategy in 2019: High Burden, High Impact (HBHI) 6. 

HBHI targets eleven countries with the highest burden of malaria with the intent of bringing 

these “countries back on track to achieve the 2025 [Global Technical Strategy] milestones” 

(DRC is ranked second in global malaria burden) 6. In order to accomplish the goals of HBHI, 

new methods and approaches are needed.  
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Although molecular epidemiology has long been used to track drug-resistance among 

malaria parasites, recently, its capacity for identifying patterns of gene flow and parasite 

connectedness has been increasingly recognized 8–21. Using various measures of genetic 

relatedness in combination with other epidemiological data sources, researchers can reconstruct 

likely “sources,” or identify locations where parasites likely originated, and “sinks,” where 

parasites reside. These migration models would provide public health officials with critical 

information, as interventions could then target the ultimate pool (i.e. the source) of the infectious 

reservoir instead of chasing the proximal pool (i.e. sinks or prevalence maps). Similar techniques 

have been used in epidemic modeling targeting “super-spreaders” to optimize intervention-

distribution during outbreaks 22–24. In this dissertation, I showed that falciparum malaria in the 

DRC is likely being spread by human movements along roads with an emphasis on cities as 

potential reservoirs. These data suggest that targeting malaria in cities -- despite an overall lower 

P. falciparum prevalence in urban areas versus rural areas -- would be a more effective strategy 

for control in the DRC. These findings are likely critical to reignite malaria elimination progress 

in HBHI countries, where current interventions are faltering if the goal of malaria eradication is 

to be realized by 2040 25. 

Future Work 

If the status of P. vivax in sub-Saharan Africa shifts and P. vivax becomes a more virulent 

infection, malaria elimination efforts will be greatly complicated 25,26. As a result, continued 

efforts to understand P. vivax in sub-Saharan Africa are necessary. In my thesis, I have only 

provided a small glimpse -- limited to only three mitochondrial genomes -- of the potential 

genetic diversity of sub-Saharan P. vivax. Future work should focus on collecting whole blood or 

higher parasitemic samples with a greater likelihood of whole genome sequencing success. With 

whole genomes, researchers would be able to identify regions of positive selection and putative 
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sites associated with erythrocyte/reticulocyte-invasion among Duffy-negative hosts. Whole 

genomes would also provide enough variant sites for demographic modeling, which could be 

combined with coalescent simulations and infectious disease mathematical models (i.e. SIR 

models) to predict the burden of P. vivax across Sub-Saharan Africa forward-in-time 27,28. 

Demographic models would also allow for inference on the evolutionary origins and the 

effective population size of P. vivax in the distant past 29,30. Additionally, a more complicated 

landscape genetics study could be undertaken that considers within-country phylogeography, 

genetic corridors, and migration patterns with programs such as EEMS 31. 

From an epidemiological perspective, continued surveillance of P. vivax in sub-Saharan 

Africa is indicated to assess if disease prevalence is increasing. Future studies should consider 

incorporating travel data in efforts to resolve potential small-scale heterogeneity (as observed in 

my dissertation). Additionally, longitudinal sampling to assess for fluctuations in P. vivax 

incidence in the region due to seasonality is needed. Further work to incorporate mathematical 

models specific to P. vivax in sub-Saharan Africa may also identify populations at risk, shed 

light on transmission dynamics, and identify optimal intervention strategies 32,33.  

Although IBD has proven to be extremely useful for characterizing malaria transmission 

dynamics, gene flow, and other population demographics, studies to date have largely been 

limited to monoclonal infections or methods that coerce polyclonal samples to monoclonal 

genotypes 12,14,18,34. Previous work has shown that the coercion of polyclonal infections to 

monoclonal genotypes greatly reduces the power to detect pairwise IBD (see Supplementary 

Materials 2, Verity, Aydemir, Brazeau et al. 2019). However, characterization of gene-flow and 

migration patterns in high-transmission regions is likely to greatly aid in malaria elimination 

efforts (discussed above). Additionally, the characterization of gene-flow in sub-Saharan Africa 



 

 105 

is urgent due to the emerging threat of importation of artemisinin-resistance mutations from 

Southeast Asia 35,36. As a result, new methods are needed to account for polyclonality in IBD 

calculations. IBD calculations may also benefit by extending the definition of relatedness from a 

binary-measure at each locus (IBD Yes/No) to measuring time to the most recent common 

ancestor at each locus 37. These latter methods are possible using the coalescent with 

recombination and ancestral recombination graph theory. Additionally, future work is needed to 

define what constitutes a “source” and “sink” with respect to malaria endemicity 38. 

Identification and targeting of malaria parasite sources should cause genomic bottlenecking and 

potential collapse of the malaria population.  

Conclusions  

Although Plasmodium vivax is more prevalent in the DRC than previously recognized, 

these infections are likely innocuous and do not warrant urgent public health action. Additional 

surveillance of P. vivax in sub-Saharan Africa is needed, but current control measures aimed at 

reducing the burden of P. falciparum in the region should continue to mitigate the threat of P. 

vivax.   

The dispersion of P. falciparum parasites in the DRC appears to be largely driven by 

human movement -- particularly along roads -- and not mosquito movement. Characterization of 

genetics hubs and gene-flow in high-transmission settings is crucial for identifying optimal 

intervention sites and routes to slow malaria transmission and the spread of emerging drug-

resistance. Although counterintuitive, the targeting of urban settings in the DRC may reduce 

malaria prevalence country-wide.   
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APPENDIX 3.1: IDENTIFYING THE RISK, DISTRIBUTION, AND ORIGIN OF P. 
VIVAX IN THE DEMOCRATIC REPUBLIC OF THE CONGO 

Molecular Diagnostics 

P. vivax Infection Detection  

DNA was extracted from dried blood spots using Chelex-100 (Bio-Rad, Hercules, CA) 

and Saponin as previously described 1,2. P. vivax infections were detected using a two-stage 

approach that combined a TaqMan quantitative PCR (qPCR) assay targeting the 18S rRNA gene 

and a confirmatory nested-PCR assay 3,4. A two-step approach was utilized to increase specificity 

and limit potential false positives given the range of cycle-threshold (CT) values considered. The 

qPCR recipe was as follows: 6 μL FastStart Universal Probe Master Mix (Roche Diagnostics, 

Indianapolis, IN), 0.24 μL of forward primer (20 μM), 0.24 μL of reverse primer (20 μM), 0.24 

μL of probe (10 μM) and 3.28 μL of molecular grade water (Appendix 3.1 Table 1). Reactions 

were ran on a QuantStudio 6 Flex Real-Time PCR System (ThermoFisher Scientific, Waltham, 

MA, USA) using the following thermocycler conditions: 50 °C for 2-minutes, 95 °C for 10-

minutes, followed by 45 cycles of annealing at 95 °C for 15-seconds and denaturing at 60 °C for 

1-minute. All bulk qPCR reactions included two replicates of positive controls (serial dilutions 

from 4,550 parasites/μL (10-4 ng/μL) to 4.55 parasites/μL (10-7 ng/μL), assuming 6 copies of 18S 

parasite), and four negative template controls 5,6. 

The nested confirmatory PCR assay involved two steps: (1) amplification of a general 

region of the Plasmodium 18S gene (outer reaction); (2) amplification of a P. vivax specific 

region (inner reaction). For both the outer- and inner-reaction, the PCR recipe was as follows: 

12.5 μL HotStarTaq Master Mix (Qiagen©, Venlo, Netherlands), 0.5μL (20uM primers) of the 

forward and reverse primer, and 6.5 μL of molecular grade water (25 μL final reaction volume; 

Appendix 3.1 Table 2). Reactions were performed on a BioRad T100 Thermal Cycler (Applied 
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Biosystems, Foster City, CA, USA) using the following conditions: 95°C for 15-minutes, 

followed by 35 cycles of 94°C for 1-minute, 50°C for 1-minute (inner)/62°C for 1-minute 

(outer), and 72°C for 1-minute, with a final extension of 72 °C for 10-minutes. For the inner 

reaction, product from the outer reaction was used as the template (no cleaning was performed 

between reactions). The product of the inner reaction was then visualized with gel 

electrophoresis to confirm the presence of P. vivax DNA (expected band size was 121 base-

pairs). For each confirmatory PCR reaction, two reviewers independently assessed the gel for the 

presence/absence of a band. A confirmed infection was only considered when the reviewers were 

in agreement. Among the 579/17,972 qPCR-positive samples, the inter-observer agreement 

between the absence/presence of a PCR band was high (Agreement: 564/579, Cohen’s  = 0.80, 

p < 0.05). 

To test the specificity and sensitivity of the qPCR approach, the qPCR assay was 

challenged with high concentrations (1x10-4 ng/μL) of P. falciparum (MRA-177, BEI 

Resources), P. ovale (MRA-180, BEI Resources), and P. malariae (MRA-179, BEI Resources) 

18S plasmid DNA. For each species, 22 replicates were performed. For all reactions, no off-

target amplification was appreciated (Appendix 3.1 Figure 1). In addition, P. vivax plasmid was 

serially diluted from 1x10-6 ng/μL to 0.03125x10-6 ng/μL to detect the assay lower limit of 

detection. The qPCR assay was able to detect P. vivax parasites with a sensitivity of 

approximately 90% (20/22) when the concentration of 18S plasmid was at least 1.25x10-7 ng/μL. 

Below this concentration, the assay was less reliable (Appendix 3.1 Figure 1). 
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Assay Primer Sequence Ref. 

Diagnostic 
qPCR 

PvForward 5’-ACGCTTCTAGATTAATCCACATAACT 

3 PvReverse 5’-ATTTACTCAAAGTAACAAGGACTTCCAAGC 

Pv-probe  
(FAM-IowaBlack) 5’-TTCGTATCG/ZEN/ACTTTGTGCGCATTTTGC 

Appendix 3.1 Table 1 - P. vivax qPCR Assay Primers: The primers and citations used for the 
qPCR assay. Adaptations to the probe from the original publication are indicated.  
 
 

Assay Primer Sequence Ref. 

Confirmatory 
PCR 

Plu1 5’-TCAAAGATTAAGCCATGCAAGTGA 

4 
Plu5 5’- CCTGTTGTTGCCTTAAACTCC 

rVivi1 5’-CGCTTCTAGCTTAATCCACATAACTGATAC 

rVivi2 5’-ACTTCCAAGCCGAAGCAAAGAAAGTCCTTA 

Appendix 3.1 Table 2 - P. vivax Confirmatory PCR Reaction Primers: The primers used for 
the inner- and outer-reactions in the confirmatory PCR reaction are listed. The original reference 
for the reactions is also provided.  
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Appendix 3.1 Figure 1 - P. vivax qPCR Challenge: The qPCR assay was challenged with 22 
replicates of highly concentrated DNA from three non-vivax 18S targets. Among these 66 
replicates, no off-target amplification was appreciated. In addition, the lower limit of detection of 
the assay for P. vivax 18S was determined as approximately 1.25x10-4 ng/μL (section 3).  
 
 
Duffy-Genotype 

For each sample that was positive by qPCR, I used a previously validated high-resolution 

melt (HRM) assay to genotype the GATA-1 transcription factor (-33 T:C) point mutation that 

has been previously shown to silence Duffy Antigen/Chemokine Receptor (DARC) expression 

7,8. Each HRM reaction contained a final concentration of 1x MeltDoctor HRM Master Mix 

(Applied Biosystems, Foster City, CA, USA), 0.3 μM forward primer (DARCf), 0.3 μM reverse 

primer (DARCr), 100 pg of template DNA in a final volume of 20 μM (Appendix 3.1 Table 3). 

Reactions were performed using the following thermocycler conditions: denaturation at 95°C for 

10 minutes, followed by 45 cycles of 95°C for 15 seconds, 60°C for 1 minute, 95°C for 10 

seconds, 60°C for 1 minute, 95°C for 15 seconds, and 60°C for 15 seconds on a QuantStudio 6 

Flex Real-Time PCR System (ThermoFisher Scientific, Waltham, MA, USA). Each HRM plate 
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contained a DARC-positive (-33 C:C), DARC-negative (-33 T:C), and a non-template control 

which were used to call HRM results on each plate independently.  

 Samples that could not be definitively determined by HRM and a 10% random subset of 

P. vivax qPCR-positive samples underwent confirmatory Sanger sequencing genotyping at Eton 

Bioscience (Research Triangle, NC). PCR products were generated from a previously validated 

assay 9. Final reactions contained 0.25 μL of FastStart High Fidelity Taq (Enzyme Blend; Roche, 

Indianapolis, IN), 2.5 μL of 10x FastStart High Fidelity reaction buffer with 18 mM MgCl2, 0.36 

μM forward primer, 0.36 μM reverse primer, 250 μM dNTPs and 3 μL of template DNA in a 

volume of 25 μL. Reactions were amplified using the following thermocycler conditions: 

denaturation at 94°C for 15 minutes followed by 40 cycles of 94°C for 30 seconds, annealing at 

58°C for 30 seconds, extension at 72°C for 90 seconds, and a final extension at 72°C for 10 

minute on a BioRad T100 Thermal Cycler (Applied Biosystems, Foster City, CA, USA). PCR 

products and Sanger sequences were also generated for a DARC-positive control  

(-33 C:C) and DARC-negative control (-33 T:C). 

 For each sample, forward and reverse sequences were analyzed using Geneious 10.1.3 

(Biomatters Limited, Auckland, New Zealand). First, the 5’ and 3’ ends of each sequence was 

trimmed using Geneious `Trim Ends` tool with a 0.05 error probability limit. For each sample, 

forward and reverse sequences were then de novo assembled using the Geneious `Assembler` 

tool with the sensitivity flag set to “Highest Sensitivity/Slow”. Of the 51 randomly samples 

sequenced, one sample was unable to be assembled due to low sequencing quality. Of the 17 

samples that underwent confirmatory sequencing, all samples were assembled. The mapped 

sequences were then visually assessed for the DARC (-33 T:C) point mutation. Duffy-Genotypes 
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by Sanger sequencing were concordant with the HRM results among the remaining 50/51 

samples selected for validation.  

 
 

Assay Primer Sequence Ref. 

HRM 
Genotyping 

DARCf 5’-CGTGGGGTAAGGCTTCCTGA 
7 

DARCr 5’-CTGTGCAGACAGTTCCCCAT 

Confirmatory 
PCR 

ESf 5’-GTGGGGTAAGGCTTCCTGAT 
9 

ESr 5’-CAAACAGCAGGGGAAATGAG 

Appendix 3.1 Table 3 - DARC-Genotyping Primers: All samples that were positive by qPCR 
underwent genotyping at the Duffy Antigen/Chemokine Receptor (DARC) promoter region 
using High Resolution Melt (HRM) analysis. A subset of randomly selected samples and those 
samples that could not be absolutely confirmed by HRM underwent confirmatory Sanger 
sequencing of a GATA-1 transcription factor amplicon that contained the region of interest.   

Epidemiological Analyses 

Study Population and Data Sources 

In the DRC, the DHS aims to create a nationally representative survey using a two-stage 

stratified cluster sampling design 10. In the first stage, clusters, or enumeration area, are selected 

with a known and fixed probability. During the second stage, within each cluster, a subset of 

households are selected. Finally, among those adults residing in selected households, a subset are 

consented for HIV and other biomarker testing. To control for this sampling scheme, the DHS 

weights each individual with an inverse probability weights of selection, hereafter, sampling 

weights 10. 

The Democratic Republic of the Congo (DRC) 2013-2014 DHS-VI survey was 

conducted from August 2013 - September 2013 and November 2013 - February 2014. 
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Specifically, DHS surveyors screened Kinshasa and surrounding areas from August 2013 - 

September 2013 and then subsequently administered the survey across the rest of the country 

from November 2013 - February 2014.  

For each household, DHS surveyors acquired informed consent and administered a 

substantial questionnaire to all individuals that had slept in the household the night prior to the 

interview 10. Individuals that permanently reside in the household are classified as de jure while 

individuals that were coincidentally in the household the night preceding the interview were 

classified as de facto 10. Given that household variables were considered as potential malaria risk 

factors, I subsetted observations to the de jure population, as de facto individuals’ homes may 

differ substantially from the home that they were visiting 10. 

Among those adults that agreed to undergo HIV and other biomarker testing, a dried 

blood spot (DBS) was taken. DBS were then punched into 96-well plates and associated 

barcodes were manually recorded in a spreadsheet in the DRC. The 96-well plates were then sent 

to the University of North Carolina-Chapel Hill (UNC) for malaria testing.  

In total, 17,959/17,972 samples with properly formatted barcodes were screened by 

qPCR at UNC. These samples were then linked to the DHS HIV (AR) recode excluding the 288 

samples that were contaminated during shipment from the DRC to UNC. On the initial merge, 

17,859/17,959 samples were successfully linked. In order to recover more samples, I allowed for 

a one-character mismatch between the manually recorded DBS barcode and the DHS barcode 

among those samples that did not have a match in the preliminary merge. Using this strategy, I 

successfully recovered an additional 75 samples accounting for the total of 17,934/17,959 

samples that were screened by qPCR. Among these 17,934 samples, 169 samples failed to 

amplify human beta-tubulin, which was used as a within-sample positive control, and thus, were 
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excluded from the study population 1. Of these 17,765 samples, 1,402 were missing geospatial 

data (44 clusters), 237 individuals were not de jure household members, 535 have sampling-

weights set to zero, and 22 had missing risk-factor covariate information and were excluded from 

the study. As a result, the total study population consisted of 15,571 individuals Appendix 3.1 

Figure 3). 

 

 
Appendix 3.1 Figure 2 - Flow Chart of Study Participants that were Included in the Study: 
Of the 18,257 Demographic Health Survey (DHS) records that had a dried blood spot, 15,574 
were included in the final study population. Dried blood spots were lost due to contamination 
during transport or barcode errors. A small portion (n=169) samples failed to amplify the human 
beta-tubulin gene used as a positive control. Abbreviations: Quantitative polymerase chain 
reaction - qPCR.  
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Covariate Feature Engineering 

 From the DHS questionnaires, I used data from the household members recode (PR), the 

HIV testing recode (AR), the geospatial covariate (GC) dataset, and the geographical dataset 

(GE) 10. Data from the CD2013 was downloaded using the `rDHS` package 11. 

In addition to the data provided by the DHS, I downloaded data from several open 

sources, including: (1) waterways lines and polygon shape-files for the DRC from the 

Humanitarian OpenStreetMap Team database 

(https://data.humdata.org/dataset/hotosm_cod_waterways; accessed October 30, 2019); (2) 

Locations of public hospitals within sub-Saharan Africa 

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JTL9VY; Accessed 

October 30, 2019) 12; and (3) non-human ape (NHA) territories from the International Union for 

Conservation of Nature Red List database (https://www.iucnredlist.org/; accessed January 21, 

2019). Temperature data for the 2013-2014 DRC DHS study period was downloaded from the 

Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive 

Center (Goddard Space Flight Center, Greenbelt, MA). Specifically, I downloaded monthly 

layers of land surface temperature and emissivity data from the MYD11C3 (v6) product with a 

0.05° x 0.05° spatial resolution (accessed September 20, 2019) 13. Monthly precipitation data 

with a 0.05° x 0.05° spatial resolution was downloaded from the Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS) server using an R-wrapper package (GitHub: 

`environmentalinformatics-marburg/heavyRain`) for the CD2013 study period 14. 

OpenStreetMap extracts from Geofabrik (https://www.geofabrik.de/data/download.html) for 

Africa (accessed August 23, 2019) were downloaded and used as input into the Open Source 

Routing Machine(`ORSM`) tool 14. Finally, additional map features included: (1) ocean spatial 
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polygons from Natural Earth (naturalearthdata.com); (2) Geographical base-map layers from the 

Database of Global Administrative Areas (http://www.gadm.org/); (3) Country geographies from 

the R-package, `rnaturalearth` 15. 

Prior to analysis, I identified risk factors for P. vivax and P. falciparum from a 

comprehensive literature review 1,16–18. The relationships among risk factors and my outcome of 

interest, malaria (i.e. either P. vivax or P. falciparum) was modeled using a directed acyclic 

graph (DAG) with the `daggity` graphical user interface and R-package (Appendix 3.1 Figure 

3) 19. As a result, not all risk factors identified were measured and included in the analysis. 

Although anemia and anti-malarial use were considered to be a priori risk factors, both were 

determined to have cyclic relationships with the outcome of interest, malaria, and were excluded 

(i.e. anemia and antimalarial use could not be resolved by the DAG). 
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Appendix 3.1 Figure 3 - Malaria Risk Factor Directed Acyclic Diagram: Risk factors were 
identified from an extensive literature search. Similarly, causal relationship among risk factors 
were based on previous literature and putative associations. Based on the directed acyclic 
diagram (DAG), I expected urbanicity, cluster altitude, age, and biological sex to all be 
unconfounded in expectation (no ancestor nodes).   

 
 
The majority of risk factors were abstracted from the DHS recodes and kept in their 

original form with the exception of standardizing continuous variables. Dichotomized variables 

were set to have an a priori protective referent level. Housing type was coded as either 

“traditional” or “modern” based on a composite score of floor, wall, and roof type as previously 

outlined by Tustings et al. 2017. I also considered any house that had a metal roof as “modern”, 

given recent findings that metal roofs alone appear to be protective against malaria 20. 
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Given that the DHS wealth variable accounts for housing type in its calculation, I 

recreated the wealth variable in order to avoid issues of collinearity and non-independence 

between the wealth and housing covariates 10,18,21. The wealth covariate was recreated using the 

factor-score approach based on the instructions by Rustein 2015 and Tustings et al. 2017. Wealth 

factor scores were then considered as a continuous covariate in order to smooth over issues of 

positivity in wealth and residual confounding. 

I defined insecticide treated net (ITN) usage based on the definition outlined in Tustings 

et al. 2017, which limits the ITN classification to long-lasting insecticidal nets less than or equal 

to three-years-old at the time of the survey, convention ITNs that were less than or equal to one-

year-old at the time of the survey, or any net that was retreated within a year of the survey. All 

other net-usage was coded as “no net” alongside those individuals that reported not using a net 

the night prior to the survey 10.  

The distance from a hospital covariate was coded as the average duration of travel in 

minutes between a respective cluster and all public hospitals within the cluster’s catchment area. 

A catchment area was defined as a circle with a 100 km radius with the cluster’s location as the 

centroid. Catchment areas were considered in order to better approximate overall cluster 

accessibility to health-sites, which may otherwise be biased if a cluster is close to a single 

hospital but far from all others. If all hospitals were farther than 100 km from a given cluster, the 

minimum duration between the cluster and all hospitals was considered in place of the catchment 

area. Travel times were calculated using the Open Street Routing Machine (OSRM) tool 14. 

Among the 489 clusters considered, one cluster (469) could not be resolved by OSRM. As a 

result, the hospital distance for cluster 469 was considered as the average duration among its five 

nearest-neighbor clusters. Clusters were then coded as “near” or “far” from a public hospitals if 
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they were within 120 minutes of average travel time or not, respectively 12. Distance to water 

was measured as the minimum greater circle distance between a cluster and a body of water that 

was either labeled as a “river” or “lake” by the OpenStreetMap water-type (Humanitarian 

OpenStreetMap Team database). Greater circle distances were measured using the R `sf` 

package 22,23. 

Given that the 2013-2014 DRC DHS was conducted in two phases, with the first phase 

contained to Kinshasa and surrounding areas during months that coincided with the dry-season, 

while the remaining areas were surveyed during months mostly coinciding with the rainy-season, 

I elected to take the average monthly temperature and monthly precipitation across the six-

months included in the study. Although previous studies have shown that lagging precipitation 

and temperature can improve predictions of malaria transmission in some cases, I felt that I was 

unable to lag the weather covariates without introducing spatial confounding 24–28. As a result, 

for each cluster in a given study-period month, I first took the average amount of precipitation or 

daytime temperature among all raster squares within 2 km or 10 km radius of the cluster. The 2 

versus 10 km boundary depended on the cluster’s designation as urban or rural designation, 

respectively. This approximates the offsets of geographical coordinates applied by the DHS for 

each cluster 10,29. I then aggregated these catchment-area averages for each month into a final 

study period average. Among the 489 clusters considered, four urban clusters (200, 225, 271, 

419) had missing values for temperature and/or precipitation. For these four clusters, the radius 

was extended to 6km and precipitation and temperature means were calculated as described 

above. 

Correlations among risk factors were evaluated using the Szekely-Rizzo-Bakirov distance 

correlation with the `energy` R package 30–32. Based on the covariate-pairwise correlations, I 
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determined that covariate collinearity was manageable and no covariates needed to be excluded 

from the analysis (Appendix 3.1 Figure 4). 

 
Appendix 3.1 Figure 4 - Covariate Collinearity: The correlation between each pair of 
covariates were explored for potential bias due to extreme collinearity. Although there were 
strong correlations that were consistent with a priori expectations (e.g. wealth and urbanicity), 
these correlations did not appear to be completely dependent. As a result, all covariate were kept 
in the analysis.  

Species Interactions  

Interactions between P. vivax and P. falciparum were examined using an extended 

version of the independent acquisition of infection model put forth by Akala & Watson et al. 

2019 to account for individuals that were not infected but still considered in the study population. 

As in the previous model, I used the observed frequency of each parasite species to fit the 

expected frequencies of monospecies and cospecies infections using a multinomial likelihood. 
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An additional category -- uninfected -- was added as a parameter to the multinomial model to 

account for the case when no successful infectious bites occurred. As a result, the unobserved 

sequence of species,  that can be passed to a host is now modeled as: 

 

 
 
Where  was previously defined as the set of Plasmodium species of interest and  as the number 

of infectious bites a host received 33. Otherwise, the model was unchanged. For the P. vivax-P. 

falciparum model, I considered  as a Poisson distribution and drew 50,000 bootstrap iterations 

to form the expected infection compositions. Expected infection compositions were then 

compared against the observed mono- and co-infection data. Overall, mono-infection and co-

infection compositions were consistent with the expectation of independent acquisition of 

parasites, as the observed data fell within the simulated data (Appendix 3.1 Figure 5). 
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Appendix 3.1 Figure 5 - Composition of P. vivax and P. falciparum Co-infections: The 
expected versus observed composition of P. vivax and P. falciparum infections were explored 
using a multinomial probability likelihood model. The plot shows the expected distribution for 
individuals without infection (“noinfxn”), P. falciparum infections (“pf”), P. vivax infections 
(“pv”), and P. falciparum- P. falciparum coinfections (“pf/pv”). The blue shading indicates the 
95% bootstrapped interval and the red-dotted line indicates the observed number of cases for 
each infection category.  

 Interactions between NHA territories and P. vivax prevalence were assessed using a 

permutation test with 10,000 iterations. Null distributions for the permutation test were 

calculated by drawing  clusters at random, where  was the number of 2013-2014 DRC 

DHS clusters that overlapped with NHA territories. I then calculated the prevalence of P. vivax 

infections among the selected clusters. I considered NHA territories for (1) Pan troglodytes and 

Gorilla sp. and (2) Pan troglodytes, Pan paniscus, and Gorilla sp., separately, as P. paniscus 
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(bonobos) have only recently been shown to harbor P. vivax-like parasites at a single field-site 

(TL2) 34. In contrast, Pan troglodytes (chimpanzees) and Gorilla sp. have previously been shown 

to harbor P. vivax-like parasites at various prevalences across the DRC 35. From the permutation 

tests, NHA territories and P. vivax prevalence were not associated (p > 0.05). This lack of an 

association is also evident when visualizing a map of NHA territories and cluster level P. vivax 

prevalences (Appendix 3.1 Figure 6).   
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Appendix 3.1 Figure 6 - P. vivax and Non-Human Ape Distributions: Based on visual 
inspection, P. vivax prevalence did not appear to be associated with non-human ape habitat 
distribution. This lack of a P. vivax - non-human ape association was recapitulated with 
permutation testing. Clusters with P. vivax infections are shaded on a yellow-red spectrum with 
respect to the cluster-level prevalence. Clusters without P. vivax infections are indicated by blue 
X-ticks. Finally, the distribution of each non-human ape habitat is indicated in shades of green 
for the Gorilla genus and blue for the Pan genus. 



 

 127 

Inverse Probability Weights and Prevalence Odds Ratios 

 The average effect of each risk-factor, , on the binary outcome of interest  (i.e. malaria 

infection), was estimated using marginal structural models (MSMs):  

, where  is a logit link for our prevalence odds ratio effect 

estimates 36–39. For each MSM, I adjusted for confounders, , using inverse probability weights 

(IPWs) 36–39. IPWs were modeled as  for each individual,  in the study 

population, . Each weight was stabilized by the marginal mean of the risk factor, such that final 

weights were:  . In the case of a binary risk factor,   was a 

probability mass function with each level of  representing the predictive probability of 

receiving a risk factor given a sequence of confounders. Similar, in the case of a continuous 

treatment,  was a probability density function with each level of  representing the 

predictive probability of receiving a dose of the risk factor given a sequence of confounders. In 

the continuous setting, I assumed that  and  followed normal distributions and 

could be estimated with a standard normal density 36,38,40. 

 IPWs were calculated using the super learner algorithm with spatial cross-validation 41–44. 

I used a diverse set of candidate algorithms, as the super learner is expected to asymptomatically 

outperform any individual candidate algorithm as the number of candidate algorithms becomes 

polynomial in sample size (Appendix 3.1 Table 4) 41–43. In some cases, if IPWs appeared to be 

unstable, I subsetted the candidate algorithm library to either logistic or linear regression, 

depending on the outcome type (Appendix 3.1 Table 5).  
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Base Learner R-package, 
Function 

Relevant 
Hyperparameters 

Justification 

Generalized Linear 
Regression*  

stat, lm/glm 45 - - 

Cross-Validated 
L1/L2 Regularized 

Regression (x3) 

glmnet, cvglmnet 
46 

α: 1 
α: 0.5 
α: 0 

 

Shrinkage of 
covariates based on 

fit 

Boosted 
Generalized 

Additive Modeling   

mboost, 
gamboost 47 

- Non-linearity in 
covariates 

K-Nearest Neighbor kknn, kknn 48 k: 7 
Kernel: optimal 

Interactions, Non-
linearity in Covariates 

Single Vector 
Machines 

e1071, svm 49 Cost: 1 
Kernel: radial 

 

Interactions, Non-
linearity in Covariates 

Neural Net nnet, nnet 50 Hidden Layers: 1 
Units in Hidden Layer: 3 

Interactions, Non-
linearity in Covariates 

Random Forest ranger,  ranger 51 Number of Trees: 500 
Variables at Node split: √p  

Interactions, Non-
linearity in Covariates 

Appendix 3.1 Table 4 - Base Learners used in the Super Learner Algorithm: Various base 
learners were inputted into the super learner algorithm. The super learner algorithm is an 
ensemble based method that optimizes the predictions of base learners using a loss-based 
approach that minimizes the prediction error. A diverse suite of base learners was selected to 
account for various non-linear effects as well as interactions among covariates.  

Folds for cross-validation were based on K-means clustering of geographical coordinates 

to account for potential spatial autocorrelation among observations 44. I selected a K of 15, as it 

was the inflection point that appeared to minimize the within-cluster sum of squares while 

avoiding overfitting (Appendix 3.1 Figure 7). 
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Appendix 3.1 Figure 7 - Spatial Cross-Validation K-Clusters: The DRC was partitioned into 
K-clusters for spatial cross-validation. Based on the geographical K-means total within-cluster 
sum-of-squares, 15 clusters appeared to be a reasonable inflection point that did not overfit the 
data but still captured natural geographic partitions in the DRC (left). The fifteen partitions are 
mapped to show the geographical partition (right).  

All machine-learning models were built and analyzed using the `mlr` package, which 

provides a machine-learning infrastructure within the R-environment 52. The super learner 

algorithm was selected for IPW calculations to account for issues of functional form and non-

linearity that can bias predictions 53 . I assumed that a single iteration of the super learner 

algorithm was adequate to predict the IPWs. For each risk factor, I considered all descendants 

and ancestors of the risk factor and the outcome that were not on the causal pathway as 

predictors in the IPW-model to account for any “backdoor” paths not considered in the DAG, 

(i.e. the IPW adjustment set).36 For risk-factors that were unconfounded in expectation (i.e. 
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biological sex, age, urbanicity, and altitude), no adjustment set was considered. Weights were 

incorporated with the R `survey` package and base R functions 54. 

Overall stability of the IPWs were assessed visually and were determined to have log-

transformed standard normal distribution (Appendix 3.1 Figure 8). IPW distributions that are 

not definitively centered may suffer from lingering issues of structural positivity or may be 

correctly identifying multimodal distributions in risk-factor distributions.  

 
Appendix 3.1 Figure 8 - Distribution of Inverse Probability Weights: For each covariate, the 
distribution of weights for the 15,571 individuals included in the study are shown. Distributions 
have been log-transformed and appear to be approximately normally distributed.  

The effects of the IPW on baseline risk-factor associations (i.e. putative confounding) 

were assessed using Szekely-Rizzo-Bakirov distance correlations for each risk-factor pair 30–32. 

Given that a weight option is not specified in the Szekely-Rizzo-Bakirov distance correlation 
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calculation, I applied my IPWs by sampling observations according to their IPWs. To account 

for variability in sampling, I created 100 IPW-pseudopopulations for each risk-factor pair. The 

distribution of pairwise distance correlations for the risk factors was then plotted and compared 

with no weights applied and with IPWs applied (Appendix 3.1 Figure 9).  
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Appendix 3.1 Figure 9 - Correlation among Covariates at Baseline and After Application of 
Inverse Probability Weights: A classic measure of confounding is baseline correlations among 
covariates, or the unequal distribution of covariates among different treatment classes. Shown for 
each covariate are the measures of pairwise covariate correlation at baseline (top) and after 
inverse probability weights (IPWs) have been considered (bottom). Baseline covariates show a 
large degree of correlation -- potentially indicating confounding -- while, for the most part, 
covariates with IPWs applied show a considerable reduction in pairwise covariate correlations 
(mean fold-reduction: 3.14, range: 0.85 - 7.63). Interesting, temperature appeared to still have 
somewhat high pairwise correlations even after applying IPWs. Abbreviations: Hospital Dist. – 
Distance to hospital, Trad. – traditional, ITN – insecticide treated net, Num. – number, Water 
Dist – Distance to water.  
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Covariate Cross-Validated 
Risk Coefficient Base Learner 

Precipitation 1 regr 

Temperature 0.16 Simple Linear Regression 

Temperature 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Temperature 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Temperature 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Temperature 0.19 Support Vector Machines (libsvm) 

Temperature 0.12 K-Nearest-Neighbor regression 

Temperature 0.51 Gradient Boosting with Smooth 
Components 

Temperature 0.03 Neural Network 

Temperature 0 Random Forests 

Water Dist. 0.10 Simple Linear Regression 

Water Dist. 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Water Dist. 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Water Dist. 0.31 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Water Dist. 0 Support Vector Machines (libsvm) 

Water Dist. 0 K-Nearest-Neighbor regression 

Water Dist. 0 Gradient Boosting with Smooth 
Components 

Water Dist. 0.20 Neural Network 

Water Dist. 0.39 Random Forests 
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HIV (+) 1 regr 

Farmer 0 Logistic Regression 

Farmer 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Farmer 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Farmer 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Farmer 0.56 Gradient boosting with smooth components 

Farmer 0.23 Support Vector Machines (libsvm) 

Farmer 0.01 k-Nearest Neighbor 

Farmer 0.18 Neural Network 

Farmer 0.02 Random Forests 

Wealth 0 Simple Linear Regression 

Wealth 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Wealth 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Wealth 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Wealth 0.02 Support Vector Machines (libsvm) 

Wealth 0.41 K-Nearest-Neighbor regression 

Wealth 0.57 Gradient Boosting with Smooth 
Components 

Wealth 0 Neural Network 

Wealth 0 Random Forests 

Education 1 regr 

Housing Materials 
(Trad.) 1 regr 
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ITN Use (No) 1 regr 

Hospital Dist. 0 Logistic Regression 

Hospital Dist. 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Hospital Dist. 0 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Hospital Dist. 0.98 GLM with Lasso or Elasticnet 
Regularization (Cross Validated Lambda) 

Hospital Dist. 0 Gradient boosting with smooth components 

Hospital Dist. 0 Support Vector Machines (libsvm) 

Hospital Dist. 0.02 k-Nearest Neighbor 

Hospital Dist. 0 Neural Network 

Hospital Dist. 0 Random Forests 

 
Appendix 3.1 Table 5 - Cross-Validated Risk and Contribution of Base Learners for each 
Covariate: Given that the Super Learner algorithm optimizes the contribution of individual base 
learners, not all base learners are included in the final predictions for each covariate. In some 
instances, Super Learner predictions result in unstable weights. As a result, I culled the base 
learner library to either a linear or logistic regression algorithm for continuous and dichotomous 
covariates, respectively (indicated by a 1 in the Cross-Validated Risk Coefficient column and 
“regr” in the Base Learner column). Abbreviations: Hospital Dist. – Distance to hospital, Trad. – 
traditional, ITN – insecticide treated net, Num. – number, Water Dist – Distance to water. 
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Risk Factor Species IPTW-
pOR 

IPTW-
pOR, 
L95 

IPTW-
pOR, 
U95 

pOR pOR, 
L95 

pOR, 
U95 

Age Pv 0.97 0.87 1.07 0.97 0.87 1.07 
Altitude Pv 1.13 0.88 1.45 1.13 0.89 1.44 

Education (Lower) Pv 0.91 0.64 1.3 0.99 0.74 1.34 
Farmer Pv 1.42 1.08 1.88 1.32 1 1.75 
HIV (+) Pv 0.93 0.33 2.67 1.86 0.76 4.54 

Hospital Dist. Pv 0.86 0.53 1.4 0.86 0.53 1.38 
Housing Materials (Trad.) Pv 1.12 0.62 2.04 1 0.64 1.57 

ITN Use (No) Pv 0.76 0.55 1.04 0.8 0.58 1.09 
Precipitation Pv 0.79 0.63 0.99 0.78 0.63 0.97 
Sex (Male) Pv 1.17 0.89 1.53 1.17 0.89 1.54 

Temperature Pv 0.83 0.62 1.11 0.78 0.62 0.97 
Urbanicity (Rur.) Pv 1.13 0.7 1.83 1.13 0.7 1.82 

Water Dist. Pv 1.19 0.93 1.52 0.97 0.79 1.19 
Wealth Pv 1.12 0.78 1.59 0.93 0.81 1.07 

Age Pf 0.81 0.77 0.86 0.81 0.77 0.86 
Altitude Pf 0.73 0.65 0.82 0.73 0.66 0.8 

Education (Lower) Pf 1.44 1.25 1.67 1.18 1.02 1.35 
Farmer Pf 1.03 0.9 1.18 1.08 0.94 1.24 
HIV (+) Pf 0.54 0.18 1.58 0.5 0.26 0.93 

Hospital Dist. Pf 1.15 0.89 1.48 1.37 1.1 1.7 
Housing Materials (Trad.) Pf 1.25 0.98 1.61 1.84 1.54 2.19 

ITN Use (No) Pf 1.23 1.07 1.42 1.27 1.11 1.45 
Precipitation Pf 0.96 0.83 1.12 0.99 0.87 1.12 
Sex (Male) Pf 1.31 1.2 1.43 1.31 1.2 1.43 

Temperature Pf 1.41 1.05 1.9 1.07 0.97 1.19 
Urbanicity (Rur.) Pf 0.7 0.54 0.89 0.7 0.56 0.86 

Water Dist. Pf 0.87 0.77 0.99 1.12 0.99 1.28 
Wealth Pf 0.82 0.73 0.92 0.75 0.69 0.81 

 
Appendix 3.1 Table 6 - Inverse Probability Weight (IPW) Adjusted and Unadjusted 
Prevalence Odds Ratios for the Malaria Risk Factors: Inverse probability weight (IPW) 
adjusted and unadjusted prevalences odd ratios (pOR) risk factor effect estimates for P. vivax 
(Pv) and P. falciparum (Pf) are provided with corresponding 95% confidence intervals. IPW 
adjustments were performed using the super learner algorithm. Unadjusted estimates are 
modeled using generalized estimating equations with a logit-link and binomial variance 
accounting for the DHS sample-weights. These bivariate association models are essentially two-
by-two tables weighted for the 2013-2014 Demographic Health Survey in the Democratic 
Republic of the Congo sampling scheme. In instances where the adjusted and unadjusted 
estimates are the same (age, biological sex, urbanicity, and altitude), the risk factor was expected 
to be unconfounded at baseline and IPWs were not considered (Appendix  3.1Figure 3). 
Abbreviations: Hospital Dist. – Distance to hospital, Trad. – traditional, ITN – insecticide treated 
net, Rur. - rural, Num. – number, Water Dist – Distance to water. 
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Spatial and Raster Feature Engineering 

In order to incorporate the risk factor covariate information into the spatial models, I 

downloaded spatial raster data for significant risk factors identified by the MSMs. The 

precipitation raster was used from above, with the surface consisting of mean values over the 

study period. To account for the risk factor associated with farming, I downloaded a raster of 

light intensity and land coverage for the DRC.  Specifically, I used the 2015 annual night-light 

composite vcm-orm-ntl version raster 

(https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html, accessed Nov 8, 2019), which 

provides an average night-light intensity for each point in the DRC at a 15 arcsecond resolution 

55,56. In addition, the vcm-orm-ntl version has been pre-processed to exclude outliers and 

spurious measurements due to fires or cloud coverage 55,56. The 2015 annual night-light 

composite raster was selected as rasters for 2013 and 2014 were not available. Land coverage in 

the DRC was accessed through the Land Cover Climate Change Initiative (CCI) Climate 

Research Data Package from the European Space Agency Climate Change Initiative, which 

provides yearly land coverage maps at 300 x 300 meter resolution for 1992-2015 

(https://maps.elie.ucl.ac.be/CCI/, accessed Nov 8, 2019). Specifically, I used the 2013 land 

coverage raster and reclassified raster points as a binary of cropland or not-cropland based on the 

CCI classifications (values 10, 20, 30, 40, Yes; all others, No; Appendix 3.1 Figure 10).  

From these raster surfaces, I then aggregated raster points to fit within the DHS cluster 

design and DHS province boundaries. Specifically, for each cluster and covariate of interest, I 

took the mean value from all raster squares within a 2 km or 10 km radius with respect to the 

cluster urban/rural designation 10,29. For each province, all raster cells within the province 

boundary were aggregated and summarized as a mean value. 
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As described above, precipitation values were standardized. Similarly, cropland 

proportion was transformed onto the real-line using a logit-transformation and was then 

standardized. Given that most points in the DRC had no measured light-intensity throughout the 

year, night-light standardization was performed under a zero-truncated framework (i.e. 

standardization did not include zeros). Standardization was performed in favor of model 

stability.  

 

Appendix 3.1 Figure 10 - Spatial Raster Covariates: Spatial covariates that were associated 
with P. vivax infection by the risk factor analysis were included in the spatial prediction prevalence 
models, and included: precipitation (A) and farming (B, C). Farming was captured through the 
proportion of crops (B) at each raster cell as well as with the night-light intensity (C) in a raster 
cell across the DRC. 

Bayesian Mixed Spatial Prediction Models  

Prevalence maps were fit as mixed generalized linear models with spatially correlated 

random effects in a Bayesian framework. I modeled prevalence at two different levels: (1) 

Province-level using the `CARBayes` R-package and (2) Cluster-level using the `PrevMap` R-

package 57,58. DHS sampling weights were accounted for by rounding the number of cases, 

,  to the nearest whole individual in order to conform with the binomial error distribution of 

the model. For the province-level models, there are  total survey regions, such that , 

and survey regions are defined as non-overlapping areal units with defined boundaries: 

. For the cluster model, the survey region is the DHS second-level enumeration 
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area, which is a collection of households aggregated at a single set of GPS coordinates (i.e. 

clusters) 10. In total, there are there are  total clusters, where  and clusters are 

indexed as:   . Risk factors that were identified as significant were included 

as linear predictors,  . As a result, the model can be specified as:  

 

 

 
 

Following Lee 2017, for the province-level model, the spatial ( ) and non-spatial ( ) 

random effects were modeled using a random effect,  with the conditional-autoregressive prior 

proposed in Leroux et al. 2000 (hereafter referred to as the Leroux CAR model). Specifically,  

 

 

 

 

 

The adjacency matrix, , was a simple neighborhood matrix, where border sharing was 

indicated as a binary 59. Models with the  parameter fixed at one assume complete spatial 

autocorrelation among the random effects (i.e. the Intrinsic CAR or Besag model), while models 

the  parameter fixed at zero assume independence 60–62. By allowing  to vary under the model, 

as specified above, I can fit this spatial autocorrelation process 57,60. Finally, I set the multivariate 

Gaussian mean prior  as a vector of zeros and the diagonal elements of the covariance matrix, 

, to 50,000 57. 
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 For the cluster model, the survey region is the DHS second-level enumeration area, 

which is a collection of households aggregated at a single set of GPS coordinates (i.e. clusters) 

10. In total, there are there are  total clusters, where  and clusters (i.e. sampling 

locations) are indexed as:   . As a result, the model was specified as:  

 

 

 

Following the model presented in Giorgi and Diggle 2017, the spatial random effect, , 

was modeled as a stationary isotropic Gaussian process with variance  and a Matérn 

covariance function, . Here,  is the distance between any two clusters, . 

Based on an exploratory analysis of the  that maximized the log-likelihood of our logit-

transformed prevalence data, we fixed  at 1. The remainder of the model was specified using 

diffuse priors:  

 

 

 

 

 

 Each model was first evaluated with four diagnostic chains using 1,000 burn-in iterations 

and 10,000 sample iterations. Chains were then visually assessed for convergence and 

appropriate mixing patterns. A final long chain with 10,000 burn-in iterations and 100,000 

sampling iterations was then considered for each model. Chains were again visually assessed and 

all parameters were required to have an effective sample size of at least 500.  
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Predictions were performed using the fitted values for the province level. Similarly, for 

the cluster level, predictions were made out-of-sample using the fitted covariates under the 

assumption of a multivariate Gaussian distribution as previously described in Giorgi and Diggle 

2017. Covariate observations for predictions were taken from the precipitation, crop-proportion, 

and night light intensity rasters described above. For the crop-proportion and night light intensity 

raster, I aggregated the rasters to a 0.05° x 0.05° resolution by taking the mean and sum of raster 

cells, respectively (a 0.05° x 0.05° resolution was selected as this was the least precise spatial 

resolution among the covariates). For each of the prediction sampling locations, the covariate 

matrix was calculated by taking the mean value for each raster cell within a six km radius (mean 

of DHS maximum offset) 10,29. Given that I was performing interpolation, any value in the 

covariate prediction matrix that exceeded the observed maximum in the fitted covariate matrix 

was truncated (i.e. the observed maximum for each covariate served as an upper bound among 

the predictions to avoid extrapolation).  

Predictions were then calculated for each of the 100,000 sampling iterations. For the sake 

of computational burden, I subsetted the approximately 160,000 potential prediction sampling 

locations in the DRC that would need to be estimated at 100,000 sampling iterations (16 billion 

estimates) to 20,000 randomly selected sampling locations. Local interpolation was performed 

using inverse distance weighting and an inverse power parameter of two with the R `gstat` 

package 63,64. 
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Level Model Parameter Mean Median 2.5%  
CI 

97.5%  
CI Effective N DICg 

Province 

Intercept 

Intercept -3.59 -3.58 -3.72 -3.45 27,459 

-57.4  0.02 0.46 0.20 1.13 13,731 

 0.22 0.31 0.02 0.87 11,257 

Covariate 

Intercept -0.23 -3.59 -3.71 -3.47 9,920 

-52.1 

Precip. 0.45 0.02 -0.28 0.35 808 

Crop Prop. 0.29 0.21 -0.07 0.52 1,232 

Night Light -3.58 -0.23 -0.48 0.02 1,960 

 0.52 0.39 0.15 1.07 4,847 

 0.35 0.24 0.01 0.83 8,447 

Cluster 

Intercept 

Intercept -2.66 -2.64 -6.49 1.20 92,453 

1331975.7 
 7.57 5.30 0.78 20.60 4,543 

 37.21 38.91 19.55 50.00 18,353 

 3.16 3.11 2.24 4.21 1,844 

Covariate 

Intercept -2.66 -2.64 -5.37 -0.11 71,797 

157849.2 

Precip. -0.04 -0.04 -0.32 0.24 19,276 

Crop Prop. 0.06 0.06 -0.22 0.34 18,305 

Night Light -0.08 -0.08 -0.55 0.40 19,862 

 3.59 2.78 0.64 8.80 6,757 

 35.44 36.98 16.82 50.00 13,206 

 3.22 3.18 2.23 4.25 1,949 

 
Appendix 3.1 Table 7 - Spatial Model Parameter Estimates and Fits: The mean, median, and 
95% credible interval (CI) summary statistics are provided for each parameter with respect to the 
models evaluated. The fit of each model was calculated using Gelman’s deviance information 
criteria and compared at the province-level and cluster-level, respectively. Overall, the best 
fitting province-level and cluster-level models included a precipitation, crop, and night light 
intensity covariate. For reference, the posterior  values for each province are also provided 
(Appendix 3.1 Table 8).  
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Model Province Mean Median 2.5% CI 97.5% CI Effective N 

Intercept 

Bas-Uele -0.27 -0.26 -0.92 0.30 51,421 

Equateur 0.92 0.91 0.51 1.35 5,159 

Haut-Katanga -0.32 -0.32 -0.80 0.14 20,460 

Haut-Lomami -0.24 -0.23 -0.84 0.31 60,477 

Haut-Uele -0.20 -0.19 -0.96 0.45 51,822 

Ituri 1.03 1.03 0.59 1.47 2,529 

Kasai -0.06 -0.05 -0.56 0.42 58,972 

Kasai-Central -0.36 -0.35 -0.85 0.10 46,118 

Kasai-Oriental 0.30 0.30 -0.15 0.74 6,079 

Kinshasa -0.81 -0.80 -1.24 -0.40 11,908 

Kongo-Central -0.69 -0.68 -1.26 -0.18 25,429 

Kwango -0.38 -0.38 -0.85 0.06 32,753 

Kwilu 0.15 0.15 -0.26 0.58 5,662 

Lomami -0.01 0.00 -0.44 0.40 43,101 
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Lualaba -0.50 -0.48 -1.22 0.13 58,352 

Mai-Ndombe -0.26 -0.26 -0.73 0.17 37,980 

Maniema 0.35 0.35 -0.07 0.76 24,416 

Mongala 0.83 0.84 0.42 1.25 15,558 

Nord-Kivu 0.45 0.47 -0.02 0.82 1,445 

Nord-Ubangi -0.18 -0.17 -0.89 0.45 61,027 

Sankuru -0.13 -0.12 -0.72 0.40 62,775 

Sud-Kivu -0.07 -0.06 -0.52 0.37 3,666 

Sud-Ubangi 0.09 0.09 -0.46 0.58 34,199 

Tanganyika -0.31 -0.30 -0.96 0.28 65,937 

Tshopo 0.80 0.80 0.39 1.21 26,513 

Tshuapa -0.13 -0.12 -0.70 0.37 52,301 

Covariate 

Bas-Uele -0.23 -0.23 -0.99 0.49 2,408 

Equateur 1.08 1.08 0.59 1.59 2,218 

Haut-Katanga -0.28 -0.28 -0.76 0.16 13,191 
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Haut-Lomami -0.01 -0.01 -0.69 0.67 4,683 

Haut-Uele -0.22 -0.21 -1.02 0.50 5,160 

Ituri 0.71 0.70 0.09 1.38 898 

Kasai -0.15 -0.14 -0.69 0.37 4,648 

Kasai-Central -0.44 -0.43 -0.97 0.04 5,819 

Kasai-Oriental 0.21 0.21 -0.21 0.62 5,105 

Kinshasa -0.10 -0.10 -1.17 1.01 1,925 

Kongo-Central -0.86 -0.84 -1.54 -0.23 2,879 

Kwango -0.35 -0.35 -0.85 0.12 5,531 

Kwilu -0.01 -0.01 -0.47 0.44 1,862 

Lomami 0.21 0.20 -0.33 0.80 2,675 

Lualaba -0.30 -0.29 -1.07 0.41 7,447 

Mai-Ndombe -0.13 -0.12 -0.64 0.36 4,720 

Maniema 0.25 0.25 -0.21 0.72 3,230 

Mongala 0.56 0.56 0.05 1.12 2,077 



 

 146 

Nord-Kivu 0.28 0.28 -0.27 0.79 893 

Nord-Ubangi -0.26 -0.26 -1.03 0.46 3,612 

Sankuru -0.20 -0.18 -0.81 0.34 8,963 

Sud-Kivu -0.17 -0.16 -0.81 0.45 1,154 

Sud-Ubangi -0.06 -0.05 -0.65 0.52 3,050 

Tanganyika -0.18 -0.17 -0.86 0.45 12,109 

Tshopo 0.72 0.72 0.28 1.18 3,767 

Tshuapa -0.08 -0.07 -0.65 0.44 18,725 

 
Appendix 3.1 Table 8 - Summary of the  posterior for each province: The mean, median, 
and 95% credible interval for  posterior was calculated with respect to the province. These are 
provided as reference. 
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Appendix 3.1 Figure 11 - Spatial Model Standard Errors: The standard errors of the posterior 
prevalence distribution for the final cluster-level (left) and province-level (right) model. For the 
cluster-level model, the standard error range was small (range: 1.62 x 10-8, 2.30 x 10-6). Standard 
errors were highest where the prevalence estimates were greatest, indicating a degree of 
uncertainty that coincides with higher covariates values (Appendix 3.1 Figure 10). The province-
level models also exhibited a small standard error range (range: 5.0 x 10-3, 3.43 x 10-2). Standard 
errors at the province-level appeared to be greatest along the Eastern and Western borders. 

post-hoc Power Calculations  

Power calculations were simulated from a population of 15,490 individuals (the weighted 

 from the study population), where the probability of exposure,  was varied at 10%, 25%, 

and 50% within the population. For the P. vivax models, the overall prevalence of the outcome, 

, was set at 3% but was varied in the unexposed group from 0.01 - 3.0% ( ). In contrast, for 

P. falciparum models, the overall prevalence of the outcome was set at 30% and was varied in 

the unexposed group from 1.0 - 30.0%. ORs were simulated under the following framework:  
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As a result, from the exposure status, , and disease status, , I can calculate the simulated OR 

using the standard generalized linear model function with a logit-link in R. Power was calculated 

as the number of iterations that the parameter estimate  was less than 0.05 with respect to each 

OR.  

 

 
 
Appendix 3.1 Figure 12 - Power Calculations for P. vivax and P. falciparum: I performed a 
posteriori power calculations to determine the minimum detectable risk factor at varying levels 
of exposure with 80% power given the prevalence of P. vivax and P. falciparum identified in the 
study. At the lowest exposure probability (lowest expected power), I could detect a harmful 
prevalence odds ratio of approximately 1.54 and 1.18 for P. vivax (“Pv”) and P. falciparum 
(“Pf”), respectively. 
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 Population Genetics  

Hybrid Selection and Next Generation Sequencing 

Samples from the DRC were amplified using the Illustra Genomic Phi V2 DNA 

Amplification Kit (GE Healthcare Life Sciences, Pittsburgh, PA) and prepared for sequencing 

using the NEBNext Ultra DNA Library Prep Kit for Illumina (New England BioLabs Inc., 

Ipswich, MA). Amplified libraries were then enriched using custom MYbaits targeting the P. 

vivax genome (version 3.0; MYcroarray: The Oligo Library Company, Ann Arbor, MI). 

Enriched genomes were sequenced on MiSeq 150 base-pair paired-end and HiSeq2500 125 base-

pair paired-end chemistry (Illumina, San Diego, CA).  

Publicly Available Whole Genome Sequences 

I downloaded 684 publicly available Illumina paired-end P. vivax or P. vivax-like whole 

genome sequences from across the globe from the European Nucleotide Archive (Appendix 3.2) 

65–78. In addition, I downloaded Illumina single-end sequences for a single isolate that was 

recovered from a microscopy slide dating to Spain, 1944 79. P. cynomologi Illumina paired-end 

sequences were downloaded for both the M- and B-strains (Accessions: DRS000258, 

ERS001838, ERS023609) 80,81. 

Alignment, Quality Control, and Variant Discovery  

Reads were aligned to the P. vivax P01 reference genome 

(ftp://ftp.sanger.ac.uk/pub/project/pathogens/gff3/CURRENT/PvivaxP01.genome.fasta.gz) with 

`bwa mem` (v0.7) after undergoing adaptor-trimming with `cutadapt` (v1.16) 82. Alignments 

were then deduplicated and mate-tags were added using `samblaster` (v0.1.24). The quality of 

the alignments were assessed using the Genome Analysis Toolkit (GATK) `CallableLoci` tool 

(v3.8-0). I defined a “callable” loci as sites with greater than or equal to five high-quality reads 

(MQ >= 10, BQ >= 20). Upon inspection of the DRC isolates, I found that genomic coverage 
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was sparse and only the mitochondria passed quality-thresholds. As a result, all further analyses 

were limited to the mitochondria. I then performed short variant discovery using GATK 

`HaplotypeCaller` followed by joint genotyping across all P. vivax samples with GATK 

`GenotypeGVCFs` (v4.0.3) 83. 

Variant Filtering and Consensus Haplotypes  

  Samples were excluded from downstream processing if less than 95% of their 

mitochondrial genome was callable (24/685 samples). Loci were then filtered using the GATK 

“hard filtering” approach, following previously established guidelines for both single nucleotide 

variants (SNVs) and insertion-deletions (INDELs) 84. Specifically, I filtered loci with a quality-

depth of less than two (QD < 2), position bias (ReadPosRankSum < -8.0 for SNV, 

ReadPosRankSum < -20.0 for INDELs), strand bias (FS > 60 for SNV, FS > 200 for INDEL, 

SOR > 3 for SNV, SOR > 10 for INDELs), and low mapping-quality (MQ < 35, MQSR < -12.5) 

using the GATK `VariantFiltration` and `SelectVariants` tools (v4.0.3).  

Following hard-filtering, I performed post-processing of loci and samples using the 

`vcfR` package and other custom scripts (GitHub: IDEELResearch/vcfRmanip) 85. Passed loci 

were first limited to SNVs and sites that encoded a deletion as an alternative allele were excluded 

(i.e. `*` in the ALT category). Samples with more than 20% of SNV genotyped as heterozygous 

were excluded under an assumption of heteroplasmy. I then imputed the genotype of missing loci 

based on the sample’s within-country allele frequency. Two samples that were the only isolate 

from their country of origin, ERS347479 (Laos) and ERS040109 (Sri Lanka), were combined 

into Thailand and India for imputation, respectively. Following imputation, heterozygous sites 

were recoded as the major allele. Finally, I removed alleles within a country if the within-country 
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allele frequency was less than . In a large population, this expression simplifies to 

removing alleles that are at less than 10% frequency within a country. 

From the resulting stringently filtered genotype calls, I created a consensus haplotype for 

each sample using the P01 mitochondrial sequence as a backbone. Two samples -- both a part of 

the P. vivax-like Clade 2 from Gilabert et al. 2018 -- were found to have a higher-order of 

diversity than expected (ERS333076, ERS352725) and were subsequently excluded from further 

analysis.  

In total, 636/685 samples passed quality thresholds and were included in analyses. The 

Ebro-1944 sample was originally excluded at the callable loci stage (3,148/5,989 bases callable) 

but was later recovered for visual comparison (Appendix 3.1 Figure 13).   

Separately, the P. cynomolgi samples also underwent variant discovery, joint genotyping, 

and hard-filtering as described above. The resulting hard-filtered variants among the three P. 

cynomolgi isolates were then processed by recoding heterozygous alleles as homozygous based 

on the major allele. Variants were then limited to SNVs and for each variant site, the most 

common allele among the three isolates was selected. Using these consensus SNVs, I then used 

the P. vivax P01 backbone to create a P. cynomolgi consensus haplotype using the `SeqinR` and 

`Biostrings` packages 86,87. 
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Appendix 3.1 Figure 13 - Consensus Haplotypes: Haplotypes are shown for each isolate that 
passed quality-control (QC) threshold with the exception of the sample from Spain (ES) dating to 
1944 in the Ebro region (Ebro-1944). As described above, the Ebro-1944 sample did not initially 
pass QC thresholds but was later recovered for visual comparison. Abbreviations: DRC – 
Democratic Republic of the Congo, NHA – non-human apes, Brazil (BR), Colombia (CO), 
Mexico (MX), Peru (PE), China (CN), Indonesia (ID), Cambodia (KH), Laos (LA), Myanmar 
(MM), Malaysia, Papua New Guinea, Thailand (TH), and Vietnam (VN). India (IN), Sri Lanka 
(LK), Ethiopia (ET), Madagascar (MG), Democratic Republic of the Congo (CD), Cameroon 
(CM), and Gabon (GA).  

Population Genetic Statistics and Phylogenetics  

Isolates were first divided into global regions using geographic K-means clustering. I 

selected K to be four based on minimizing the within-cluster sum of squares while avoiding 

overfitting. Samples from the DRC and NHA samples were also designated separate clusters 

(Appendix 3.1 Figure 14). 
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Appendix 3.1 Figure 14 - Spatial Cross-Validation K-Clusters: Countries with P. vivax 
isolates included in the study were partitioned into K-groups for diversity and population-
structure measures. Based on the geographical K-means total within-cluster sum-of-squares, four 
sub-populations appeared to be a reasonable balance between minimizing the total within-cluster 
sum of squares while avoiding overfitting the data (left). The DRC samples and non-human ape 
samples were included as separate populations based on the overall study question and prior 
assumptions (right). Abbreviations: DRC – Democratic Republic of the Congo, NHA – non-
human apes. 

To explore patterns of diversity among the global isolates, I first measured within-region 

nucleotide and haplotype using the R-package, `PopGenome` (Appendix 3.1 Table 8) 88–91. I 

then evaluated the degree population differentiation among parasite using measures of between-

region nucleotide and haplotype diversity as well as pairwise measures of Hudson’s Fst 

(Appendix 3.1 Table 9) 88,89,92,93. Population differentiation was also calculated using a 
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Hamming’s distance between consensus haplotypes with the `ape` R-package 94. Haplotype 

differences were then mapped and visualized directly for the DRC (Figure 3.5). 

 

Population Nucleotide Diversity Haplotype Diversity 

Americas 0.7 0.38 

Africa 0 0 

Asia 1.8 0.77 

Oceania 1.65 0.68 

NHA 0.67 0.67 

DRC 0 0 

 
Appendix 3.1 Table 8 - Within Population Measures of Diversity: For each population, the 
within-population nucleotide diversity and haplotype diversity were evaluated. Overall, there 
was little within population diversity among samples from Africa as a whole. This lack of 
diversity may be an effect of the sample size. Abbreviations: DRC – Democratic Republic of the 
Congo, NHA – non-human apes.   
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Pop1 Pop2 
Between 

Haplotype 
Diversity 

Between 
Nucleotide 
Diversity 

Hudson’s 
Fst 

Africa Americas 0.97 1.14 0.81 

Asia Americas 0.7 1.5 0.18 

Asia Africa 0.97 1.74 0.61 

Oceania Americas 0.95 1.93 0.44 

Oceania Africa 1 2.26 0.66 

Oceania Asia 0.95 2.56 0.23 

NHA Americas 1 3.05 0.48 

NHA Africa 1 3.67 0.67 

NHA Asia 1 3.86 0.28 

NHA Oceania 1 4.25 0.32 

DRC Americas 1 1.39 0.81 

DRC Africa 1 2 1 

DRC Asia 1 2.19 0.62 

DRC Oceania 1 2.58 0.66 

DRC NHA 1 3.67 0.67 

Global Fst - - 0.81 

 
Appendix 3.1 Table 9 - Between Population Measures of Diversity and Population 
Structure: Pairwise comparisons were made for each population (Pop1 versus Pop2) with 
respect to genetic diversity and population differntiation. Overall, the DRC differed from 
samples from the Americas the least. However, based on Hudon’s Fst this similarity was 
ancestral and did not represent recent mixing. Instead, the DRC samples appeared to be relatively 
isolated based on Hudson’s Fst. Overall lack of haplotype sharing is likely -- in part -- due to 
small sample sizes. Abbreviations: DRC – Democratic Republic of the Congo, NHA – non-
human apes.  
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Evolutionary relationships among the isolates were explored using phylogenetic analysis. 

I first identified the mutational model that best fit the observed data by comparing the Jukes-

Cantor versus the General Time Reverse substitution model (GTR + ) using maximum 

likelihood estimation with the `ape` and `phangorn` R-packages 94–97. For both substitution 

models, the tree topology, base frequencies, rate matrix, and gamma rate parameters were 

simultaneously optimized while finding the maximum likelihood. Model fit was compared using 

AIC, with the GTR model demonstrating a lower AIC and a better model fit. I then performed 

1,000 bootstrap iterations of my phylogenetic tree under the GTR model. The phylogenetic tree 

with the bootstrapped node support was then plotted using the R-package `ggtree`. Finally, I set 

P. cynomologi as the outgroup to orient the tree.  
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APPENDIX 3.2: NEXT GENERATION SEQUENCES USED IN THIS DISSERTATION 

Accession PMCID/PMID Host 
SRS1061002 PMC5167194 Homo sapiens 
SRS1061003 PMC5167194 Homo sapiens 
SRS1061040 PMC5167194 Homo sapiens 
SRS1061084 PMC5167194 Homo sapiens 
SRS1061134 PMC5167194 Homo sapiens 
SRS1061155 PMC5167194 Homo sapiens 
SRS1061166 PMC5167194 Homo sapiens 
SRS1061211 PMC5167194 Homo sapiens 
SRS1061258 PMC5167194 Homo sapiens 
SRS693907 PMC5347536 Homo sapiens 
SRS693915 PMC5347536 Homo sapiens 
SRS696215 PMC5347536 Homo sapiens 
SRS694268 PMC5347536 Homo sapiens 
SRS693978 PMC5347536 Homo sapiens 
SRS693582 PMC5347536 Homo sapiens 
SRS693927 PMC5347536 Homo sapiens 
SRS693491 PMC5347536 Homo sapiens 
SRS693551 PMC5347536 Homo sapiens 
SRS693939 PMC5347536 Homo sapiens 
SRS693916 PMC5347536 Homo sapiens 
SRS693976 PMC5347536 Homo sapiens 
SRS693917 PMC5347536 Homo sapiens 
SRS693940 PMC5347536 Homo sapiens 
SRS693928 PMC5347536 Homo sapiens 
SRS693934 PMC5347536 Homo sapiens 
SRS693910 PMC5347536 Homo sapiens 
SRS693578 PMC5347536 Homo sapiens 
SRS693922 PMC5347536 Homo sapiens 
SRS693278 PMC5347536 Homo sapiens 
SRS3371819 PMC6130405 Pan troglodytes 
SRS3371817 PMC6130405 Pan troglodytes 
SRS3371818 PMC6130405 Pan troglodytes 
SRS3371815 PMC6130405 Pan troglodytes 
SRS3371816 PMC6130405 Pan troglodytes 
SRS3371814 PMC6130405 Gorilla gorilla 
SRS941624 PMC4667588 Homo sapiens 
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SRS1566636 PMC5461743 Homo sapiens 
SRS1566640 PMC5461743 Homo sapiens 
SRS1566641 PMC5461743 Homo sapiens 
SRS1566642 PMC5461743 Homo sapiens 
SRS1566602 PMC5461743 Homo sapiens 
SRS694262 PMC5347536 Homo sapiens 
SRS693274 PMC5347536 Homo sapiens 
SRS694239 PMC5347536 Homo sapiens 
SRS694233 PMC5347536 Homo sapiens 
SRS694234 PMC5347536 Homo sapiens 
SRS694230 PMC5347536 Homo sapiens 
SRS693584 PMC5347536 Homo sapiens 
SRS694257 PMC5347536 Homo sapiens 
SRS694264 PMC5347536 Homo sapiens 
SRS693897 PMC5347536 Homo sapiens 
SRS693580 PMC5347536 Homo sapiens 
SRS693296 PMC5347536 Homo sapiens 
SRS694265 PMC5347536 Homo sapiens 
SRS694263 PMC5347536 Homo sapiens 
SRS693489 PMC5347536 Homo sapiens 
SRS694235 PMC5347536 Homo sapiens 
SRS694241 PMC5347536 Homo sapiens 
SRS693267 PMC5347536 Homo sapiens 
SRS693950 PMC5347536 Homo sapiens 
SRS693947 PMC5347536 Homo sapiens 
SRS694231 PMC5347536 Homo sapiens 
SRS693938 PMC5347536 Homo sapiens 
SRS693575 PMC5347536 Homo sapiens 
SRS693442 PMC5347536 Homo sapiens 
SRS694258 PMC5347536 Homo sapiens 
SRS694251 PMC5347536 Homo sapiens 
SRS693577 PMC5347536 Homo sapiens 
SRS693951 PMC5347536 Homo sapiens 
SRS694242 PMC5347536 Homo sapiens 
SRS694247 PMC5347536 Homo sapiens 

ERS1452911 PMC6130868 Pan troglodytes 
ERS333071 PMC6130868 Pan troglodytes 
ERS333073 PMC6130868 Pan troglodytes 
ERS333077 PMC6130868 Pan troglodytes 
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ERS333070 PMC6130868 Pan troglodytes 
ERS352729 PMC6130868 Pan troglodytes 
ERS333076 PMC6130868 Pan troglodytes 
ERS434568 PMC6130868 Pan troglodytes 
ERS333055 PMC6130868 Anopheles gambiae 
ERS352726 PMC6130868 Pan troglodytes 
ERS352725 PMC6130868 Pan troglodytes 
SRS696222 PMC5347536 Homo sapiens 
SRS805922 PMC5347536 Homo sapiens 
SRS807702 PMC5347536 Homo sapiens 
SRS807711 PMC5347536 Homo sapiens 
SRS807712 PMC5347536 Homo sapiens 
SRS805942 PMC5347536 Homo sapiens 
SRS805943 PMC5347536 Homo sapiens 
SRS807544 PMC5347536 Homo sapiens 
SRS807701 PMC5347536 Homo sapiens 
SRS2746073 PMC5784252 Homo sapiens 
SRS2746025 PMC5784252 Homo sapiens 
SRS2745931 PMC5784252 Homo sapiens 
SRS2745827 PMC5784252 Homo sapiens 
SRS2745833 PMC5784252 Homo sapiens 
SRS2745857 PMC5784252 Homo sapiens 
SRS2745842 PMC5784252 Homo sapiens 
SRS2745858 PMC5784252 Homo sapiens 
SRS2745937 PMC5784252 Homo sapiens 
SRS2745959 PMC5784252 Homo sapiens 
SRS2745846 PMC5784252 Homo sapiens 
SRS2745815 PMC5784252 Homo sapiens 
SRS2745933 PMC5784252 Homo sapiens 
SRS2746083 PMC5784252 Homo sapiens 
SRS2746099 PMC5784252 Homo sapiens 
SRS2746066 PMC5784252 Homo sapiens 
SRS2745934 PMC5784252 Homo sapiens 
SRS2746116 PMC5784252 Homo sapiens 
SRS2746061 PMC5784252 Homo sapiens 
SRS2746071 PMC5784252 Homo sapiens 
SRS2746197 PMC5784252 Homo sapiens 
SRS2745879 PMC5784252 Homo sapiens 
SRS2745892 PMC5784252 Homo sapiens 
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SRS2745886 PMC5784252 Homo sapiens 
SRS2745999 PMC5784252 Homo sapiens 
SRS2746067 PMC5784252 Homo sapiens 
SRS2746210 PMC5784252 Homo sapiens 
SRS2746138 PMC5784252 Homo sapiens 
SRS2746090 PMC5784252 Homo sapiens 
SRS2746088 PMC5784252 Homo sapiens 
SRS2745935 PMC5784252 Homo sapiens 
SRS2745942 PMC5784252 Homo sapiens 
SRS2745839 PMC5784252 Homo sapiens 
SRS2745840 PMC5784252 Homo sapiens 
SRS2745835 PMC5784252 Homo sapiens 
SRS2745922 PMC5784252 Homo sapiens 
SRS2745838 PMC5784252 Homo sapiens 
SRS2746207 PMC5784252 Homo sapiens 
SRS2746069 PMC5784252 Homo sapiens 
SRS2745932 PMC5784252 Homo sapiens 
SRS2745986 PMC5784252 Homo sapiens 
SRS2746070 PMC5784252 Homo sapiens 
SRS2746255 PMC5784252 Homo sapiens 
SRS2745973 PMC5784252 Homo sapiens 
SRS2746064 PMC5784252 Homo sapiens 
SRS2746209 PMC5784252 Homo sapiens 
SRS2746213 PMC5784252 Homo sapiens 
SRS2745866 PMC5784252 Homo sapiens 
SRS2746214 PMC5784252 Homo sapiens 
SRS2745868 PMC5784252 Homo sapiens 
SRS2746216 PMC5784252 Homo sapiens 
SRS2745998 PMC5784252 Homo sapiens 
SRS2746215 PMC5784252 Homo sapiens 
SRS2745883 PMC5784252 Homo sapiens 
SRS2746205 PMC5784252 Homo sapiens 
SRS2746206 PMC5784252 Homo sapiens 
SRS2746112 PMC5784252 Homo sapiens 
SRS2746208 PMC5784252 Homo sapiens 
SRS2746065 PMC5784252 Homo sapiens 
SRS2746109 PMC5784252 Homo sapiens 
SRS2746068 PMC5784252 Homo sapiens 
SRS2746043 PMC5784252 Homo sapiens 
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SRS1061259 PMC5167194 Homo sapiens 
SRS1061004 PMC5167194 Homo sapiens 
SRS1061005 PMC5167194 Homo sapiens 
SRS1061008 PMC5167194 Homo sapiens 
SRS1061007 PMC5167194 Homo sapiens 
SRS1061011 PMC5167194 Homo sapiens 
SRS1061014 PMC5167194 Homo sapiens 
SRS1061030 PMC5167194 Homo sapiens 
SRS1061034 PMC5167194 Homo sapiens 
SRS693900 PMC5347536 Homo sapiens 
SRS694248 PMC5347536 Homo sapiens 
SRS694266 PMC5347536 Homo sapiens 
SRS693902 PMC5347536 Homo sapiens 
SRS694259 PMC5347536 Homo sapiens 
SRS694255 PMC5347536 Homo sapiens 
SRS693265 PMC5347536 Homo sapiens 
SRS693908 PMC5347536 Homo sapiens 
SRS694246 PMC5347536 Homo sapiens 
SRS694244 PMC5347536 Homo sapiens 
SRS693462 PMC5347536 Homo sapiens 
SRS694245 PMC5347536 Homo sapiens 
SRS694256 PMC5347536 Homo sapiens 
SRS693273 PMC5347536 Homo sapiens 
SRS694229 PMC5347536 Homo sapiens 
SRS693576 PMC5347536 Homo sapiens 
SRS694237 PMC5347536 Homo sapiens 
SRS693463 PMC5347536 Homo sapiens 
SRS694267 PMC5347536 Homo sapiens 
SRS694260 PMC5347536 Homo sapiens 
SRS694232 PMC5347536 Homo sapiens 
SRS694243 PMC5347536 Homo sapiens 
SRS694254 PMC5347536 Homo sapiens 
SRS694249 PMC5347536 Homo sapiens 
SRS694227 PMC5347536 Homo sapiens 
SRS694261 PMC5347536 Homo sapiens 
SRS694236 PMC5347536 Homo sapiens 
SRS693271 PMC5347536 Homo sapiens 
SRS1061036 PMC5167194 Homo sapiens 
SRS1061038 PMC5167194 Homo sapiens 
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SRS1061042 PMC5167194 Homo sapiens 
SRS1061044 PMC5167194 Homo sapiens 
SRS1061045 PMC5167194 Homo sapiens 
SRS1061046 PMC5167194 Homo sapiens 
SRS1061049 PMC5167194 Homo sapiens 
SRS1061078 PMC5167194 Homo sapiens 
SRS1061080 PMC5167194 Homo sapiens 
SRS1061081 PMC5167194 Homo sapiens 
SRS1061082 PMC5167194 Homo sapiens 
SRS1061083 PMC5167194 Homo sapiens 
SRS1061085 PMC5167194 Homo sapiens 
SRS1061086 PMC5167194 Homo sapiens 
SRS1061088 PMC5167194 Homo sapiens 
SRS1061090 PMC5167194 Homo sapiens 
SRS1061091 PMC5167194 Homo sapiens 
SRS1061094 PMC5167194 Homo sapiens 
SRS1061098 PMC5167194 Homo sapiens 
SRS1061119 PMC5167194 Homo sapiens 
SRS1061125 PMC5167194 Homo sapiens 
SRS1061128 PMC5167194 Homo sapiens 
SRS1061129 PMC5167194 Homo sapiens 
SRS1061135 PMC5167194 Homo sapiens 
SRS1061136 PMC5167194 Homo sapiens 
SRS1061142 PMC5167194 Homo sapiens 
SRS1061143 PMC5167194 Homo sapiens 
SRS1061147 PMC5167194 Homo sapiens 
SRS1061151 PMC5167194 Homo sapiens 
SRS1061152 PMC5167194 Homo sapiens 
SRS1061153 PMC5167194 Homo sapiens 
SRS1061154 PMC5167194 Homo sapiens 
SRS1061156 PMC5167194 Homo sapiens 
SRS1061157 PMC5167194 Homo sapiens 
SRS1061158 PMC5167194 Homo sapiens 
SRS1061159 PMC5167194 Homo sapiens 
SRS1061160 PMC5167194 Homo sapiens 
SRS1061161 PMC5167194 Homo sapiens 
SRS1061162 PMC5167194 Homo sapiens 
SRS1061163 PMC5167194 Homo sapiens 
SRS1061164 PMC5167194 Homo sapiens 
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SRS1061165 PMC5167194 Homo sapiens 
SRS1061191 PMC5167194 Homo sapiens 
SRS1061192 PMC5167194 Homo sapiens 
SRS1061193 PMC5167194 Homo sapiens 
SRS1061194 PMC5167194 Homo sapiens 
SRS1061197 PMC5167194 Homo sapiens 
SRS1061196 PMC5167194 Homo sapiens 
SRS1061199 PMC5167194 Homo sapiens 
SRS1061202 PMC5167194 Homo sapiens 
SRS1061200 PMC5167194 Homo sapiens 
SRS1061212 PMC5167194 Homo sapiens 
SRS1061214 PMC5167194 Homo sapiens 
SRS1061226 PMC5167194 Homo sapiens 
SRS1061231 PMC5167194 Homo sapiens 
SRS1061232 PMC5167194 Homo sapiens 
SRS1061234 PMC5167194 Homo sapiens 
SRS1061238 PMC5167194 Homo sapiens 
SRS1061252 PMC5167194 Homo sapiens 
SRS1061253 PMC5167194 Homo sapiens 
ERS055892 PMC4966634 Homo sapiens 
ERS055878 PMC4966634 Homo sapiens 
ERS055895 PMC4966634 Homo sapiens 
ERS055889 PMC4966634 Homo sapiens 
ERS055896 PMC4966634 Homo sapiens 
ERS055885 PMC4966634 Homo sapiens 
ERS055881 PMC4966634 Homo sapiens 
ERS055887 PMC4966634 Homo sapiens 
ERS055888 PMC4966634 Homo sapiens 
ERS055877 PMC4966634 Homo sapiens 
ERS055882 PMC4966634 Homo sapiens 
ERS055884 PMC4966634 Homo sapiens 
ERS055893 PMC4966634 Homo sapiens 
ERS055886 PMC4966634 Homo sapiens 
ERS055883 PMC4966634 Homo sapiens 
ERS055891 PMC4966634 Homo sapiens 
ERS055890 PMC4966634 Homo sapiens 
ERS055880 PMC4966634 Homo sapiens 
ERS055894 PMC4966634 Homo sapiens 
ERS055879 PMC4966634 Homo sapiens 
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ERS142861 PMC4966634 Homo sapiens 
ERS241405 PMC4966634 Homo sapiens 
ERS241409 PMC4966634 Homo sapiens 
ERS241412 PMC4966634 Homo sapiens 
ERS241415 PMC4966634 Homo sapiens 
ERS241418 PMC4966634 Homo sapiens 
ERS241421 PMC4966634 Homo sapiens 
ERS241424 PMC4966634 Homo sapiens 
ERS241427 PMC4966634 Homo sapiens 
ERS241430 PMC4966634 Homo sapiens 
ERS241433 PMC4966634 Homo sapiens 
ERS241436 PMC4966634 Homo sapiens 
ERS241439 PMC4966634 Homo sapiens 
ERS241406 PMC4966634 Homo sapiens 
ERS241410 PMC4966634 Homo sapiens 
ERS241413 PMC4966634 Homo sapiens 
ERS241416 PMC4966634 Homo sapiens 
ERS241419 PMC4966634 Homo sapiens 
ERS241422 PMC4966634 Homo sapiens 
ERS241425 PMC4966634 Homo sapiens 
ERS241428 PMC4966634 Homo sapiens 
ERS241431 PMC4966634 Homo sapiens 
ERS241434 PMC4966634 Homo sapiens 
ERS241437 PMC4966634 Homo sapiens 
ERS241440 PMC6030216 Homo sapiens 
ERS241407 PMC4966634 Homo sapiens 
ERS241411 PMC4966634 Homo sapiens 
ERS241414 PMC4966634 Homo sapiens 
ERS241417 PMC4966634 Homo sapiens 
ERS241423 PMC6030216 Homo sapiens 
ERS241426 PMC6030216 Homo sapiens 
ERS241429 PMC4966634 Homo sapiens 
ERS241432 PMC4966634 Homo sapiens 
ERS347497 PMC4966634 Homo sapiens 
ERS347698 PMC4966634 Homo sapiens 
ERS347704 PMC4966634 Homo sapiens 
ERS403521 PMC4966634 Homo sapiens 
ERS403526 PMC4966634 Homo sapiens 
ERS403530 PMC4966634 Homo sapiens 
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ERS403534 PMC6030216 Homo sapiens 
ERS403538 PMC4966634 Homo sapiens 
ERS403542 PMC4966634 Homo sapiens 
ERS403550 PMC4966634 Homo sapiens 
ERS403554 PMC4966634 Homo sapiens 
ERS503258 PMC6030216 Homo sapiens 
ERS403562 PMC6030216 Homo sapiens 
ERS403517 PMC4966634 Homo sapiens 
ERS403522 PMC4966634 Homo sapiens 
ERS403527 PMC4966634 Homo sapiens 
ERS403531 PMC4966634 Homo sapiens 
ERS403535 PMC4966634 Homo sapiens 
ERS403539 PMC4966634 Homo sapiens 
ERS403543 PMC4966634 Homo sapiens 
ERS403547 PMC4966634 Homo sapiens 
ERS403551 PMC4966634 Homo sapiens 
ERS403555 PMC4966634 Homo sapiens 
ERS403559 PMC4966634 Homo sapiens 
ERS403563 PMC4966634 Homo sapiens 
ERS403518 PMC4966634 Homo sapiens 
ERS403523 PMC4966634 Homo sapiens 
ERS403528 PMC4966634 Homo sapiens 
ERS403532 PMC4966634 Homo sapiens 
ERS403536 PMC4966634 Homo sapiens 
ERS403540 PMC4966634 Homo sapiens 
ERS403544 PMC4966634 Homo sapiens 
ERS403548 PMC4966634 Homo sapiens 
ERS403552 PMC4966634 Homo sapiens 
ERS403556 PMC4966634 Homo sapiens 
ERS403560 PMC4966634 Homo sapiens 
ERS403564 PMC4966634 Homo sapiens 
ERS403519 PMC4966634 Homo sapiens 
ERS403524 PMC4966634 Homo sapiens 
ERS403529 PMC4966634 Homo sapiens 
ERS403533 PMC4966634 Homo sapiens 
ERS403537 PMC4966634 Homo sapiens 
ERS403541 PMC4966634 Homo sapiens 
ERS403545 PMC4966634 Homo sapiens 
ERS403549 PMC4966634 Homo sapiens 
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ERS564517 PMC6030216 Homo sapiens 
ERS564518 PMC6030216 Homo sapiens 
ERS564519 PMC6030216 Homo sapiens 
ERS564520 PMC6030216 Homo sapiens 
ERS980423 PMC6030216 Homo sapiens 
ERS980426 PMC6030216 Homo sapiens 
ERS980427 PMC6030216 Homo sapiens 
ERS980428 PMC6030216 Homo sapiens 
ERS980429 PMC6030216 Homo sapiens 
ERS980431 PMC6030216 Homo sapiens 
SRS2909995 PMC6032790 Homo sapiens 
SRS2909996 PMC6032790 Homo sapiens 
SRS1885934 PMC6032790 Homo sapiens 
SRS1885924 PMC6032790 Homo sapiens 
SRS1885936 PMC6032790 Homo sapiens 
SRS1885920 PMC6032790 Homo sapiens 
SRS1885929 PMC6032790 Homo sapiens 
SRS1885928 PMC6032790 Homo sapiens 
SRS1885938 PMC6032790 Homo sapiens 
SRS1885931 PMC6032790 Homo sapiens 
SRS1885941 PMC6032790 Homo sapiens 
SRS1885925 PMC6032790 Homo sapiens 
SRS1885932 PMC6032790 Homo sapiens 
SRS1885922 PMC6032790 Homo sapiens 
SRS1885930 PMC6032790 Homo sapiens 
SRS1885933 PMC6032790 Homo sapiens 
SRS1885923 PMC6032790 Homo sapiens 
SRS1885921 PMC6032790 Homo sapiens 
SRS1885937 PMC6032790 Homo sapiens 
SRS1885939 PMC6032790 Homo sapiens 
SRS1885935 PMC6032790 Homo sapiens 
SRS1885927 PMC6032790 Homo sapiens 
SRS2910041 PMC6032790 Homo sapiens 
SRS2909997 PMC6032790 Homo sapiens 
SRS2910026 PMC6032790 Homo sapiens 
SRS2910023 PMC6032790 Homo sapiens 
SRS2909991 PMC6032790 Homo sapiens 
SRS2909989 PMC6032790 Homo sapiens 
SRS2909999 PMC6032790 Homo sapiens 
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SRS2910011 PMC6032790 Homo sapiens 
SRS2910013 PMC6032790 Homo sapiens 
SRS2910007 PMC6032790 Homo sapiens 
SRS2910016 PMC6032790 Homo sapiens 
SRS2910009 PMC6032790 Homo sapiens 
SRS2910002 PMC6032790 Homo sapiens 
SRS2910049 PMC6032790 Homo sapiens 
SRS2910051 PMC6032790 Homo sapiens 
SRS2910045 PMC6032790 Homo sapiens 
SRS2910057 PMC6032790 Homo sapiens 
SRS2910046 PMC6032790 Homo sapiens 
SRS2910053 PMC6032790 Homo sapiens 
SRS2910052 PMC6032790 Homo sapiens 
SRS2910021 PMC6032790 Homo sapiens 
SRS2910019 PMC6032790 Homo sapiens 
SRS2910027 PMC6032790 Homo sapiens 
SRS2910017 PMC6032790 Homo sapiens 
SRS2910014 PMC6032790 Homo sapiens 
SRS2910024 PMC6032790 Homo sapiens 
SRS2910022 PMC6032790 Homo sapiens 
SRS2910031 PMC6032790 Homo sapiens 
SRS2910036 PMC6032790 Homo sapiens 
SRS2910035 PMC6032790 Homo sapiens 
SRS2910034 PMC6032790 Homo sapiens 
SRS2910054 PMC6032790 Homo sapiens 
SRS2910032 PMC6032790 Homo sapiens 
SRS2910042 PMC6032790 Homo sapiens 
SRS2910030 PMC6032790 Homo sapiens 
SRS2910029 PMC6032790 Homo sapiens 
SRS2910044 PMC6032790 Homo sapiens 
SRS2910043 PMC6032790 Homo sapiens 
SRS2910008 PMC6032790 Homo sapiens 
SRS2910000 PMC6032790 Homo sapiens 
SRS2910015 PMC6032790 Homo sapiens 
SRS2910001 PMC6032790 Homo sapiens 
SRS2910040 PMC6032790 Homo sapiens 
SRS2910028 PMC6032790 Homo sapiens 
SRS2910004 PMC6032790 Homo sapiens 
SRS2910005 PMC6032790 Homo sapiens 
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SRS2910033 PMC6032790 Homo sapiens 
SRS2910025 PMC6032790 Homo sapiens 
SRS2910038 PMC6032790 Homo sapiens 
SRS2910037 PMC6032790 Homo sapiens 
SRS2910055 PMC6032790 Homo sapiens 
SRS2910039 PMC6032790 Homo sapiens 
SRS2910056 PMC6032790 Homo sapiens 
SRS1885926 PMC6032790 Homo sapiens 
SRS1885940 PMC6032790 Homo sapiens 
SRS693277 PMC5347536 Homo sapiens 
SRS694228 PMC5347536 Homo sapiens 
SRS819436 PMC5347536 Homo sapiens 
SRS819437 PMC5347536 Homo sapiens 
SRS819479 PMC5347536 Homo sapiens 
SRS696218 PMC5347536 Homo sapiens 
SRS693979 PMC5347536 Homo sapiens 
SRS693263 PMC5347536 Homo sapiens 
SRS693264 PMC5347536 Homo sapiens 
SRS693270 PMC5347536 Homo sapiens 
SRS696214 PMC5347536 Homo sapiens 
SRS693490 PMC5347536 Homo sapiens 
SRS693569 PMC5347536 Homo sapiens 
SRS696223 PMC5347536 Homo sapiens 
SRS693272 PMC5347536 Homo sapiens 
SRS696221 PMC5347536 Homo sapiens 
SRS819493 PMC5347536 Homo sapiens 
SRS694240 PMC5347536 Homo sapiens 
SRS693933 PMC5347536 Homo sapiens 
SRS819579 PMC5347536 Homo sapiens 
SRS696220 PMC5347536 Homo sapiens 
SRS693911 PMC5347536 Homo sapiens 
SRS693268 PMC5347536 Homo sapiens 
SRS693953 PMC5347536 Homo sapiens 
SRS693923 PMC5347536 Homo sapiens 
SRS693941 PMC5347536 Homo sapiens 
SRS693949 PMC5347536 Homo sapiens 
SRS693276 PMC5347536 Homo sapiens 
SRS693977 PMC5347536 Homo sapiens 
SRS693972 PMC5347536 Homo sapiens 
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SRS693307 PMC5347536 Homo sapiens 
SRS693476 PMC5347536 Homo sapiens 
SRS696216 PMC5347536 Homo sapiens 
SRS696213 PMC5347536 Homo sapiens 
SRS693354 PMC5347536 Homo sapiens 
SRS693581 PMC5347536 Homo sapiens 
SRS693925 PMC5347536 Homo sapiens 
SRS696217 PMC5347536 Homo sapiens 
SRS693926 PMC5347536 Homo sapiens 
SRS693364 PMC5347536 Homo sapiens 
SRS693345 PMC5347536 Homo sapiens 
SRS693952 PMC5347536 Homo sapiens 
SRS693355 PMC5347536 Homo sapiens 
SRS693921 PMC5347536 Homo sapiens 
SRS693281 PMC5347536 Homo sapiens 
SRS693948 PMC5347536 Homo sapiens 
SRS693942 PMC5347536 Homo sapiens 
SRS819643 PMC5347536 Homo sapiens 
SRS693957 PMC5347536 Homo sapiens 
SRS819716 PMC5347536 Homo sapiens 
SRS693905 PMC5347536 Homo sapiens 
SRS693544 PMC5347536 Homo sapiens 
SRS819740 PMC5347536 Homo sapiens 
SRS694250 PMC5347536 Homo sapiens 
SRS696219 PMC5347536 Homo sapiens 
SRS693975 PMC5347536 Homo sapiens 
SRS693903 PMC5347536 Homo sapiens 
SRS693408 PMC5347536 Homo sapiens 
SRS819741 PMC5347536 Homo sapiens 
SRS693946 PMC5347536 Homo sapiens 
SRS693974 PMC5347536 Homo sapiens 
SRS693574 PMC5347536 Homo sapiens 
SRS819715 PMC5347536 Homo sapiens 
ERS040108 PMC4966634 Homo sapiens 
ERS010154 PMC4966634 Homo sapiens 
ERS123116 PMC4966634 Homo sapiens 
ERS164689 PMC4966634 Homo sapiens 
ERS164670 PMC4966634 Homo sapiens 
ERS164692 PMC4966634 Homo sapiens 
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ERS014174 PMC4966634 Homo sapiens 
ERS014175 PMC4966634 Homo sapiens 
ERS014176 PMC4966634 Homo sapiens 
ERS040110 PMC4966634 Homo sapiens 
ERS164662 PMC4966634 Homo sapiens 
ERS164674 PMC4966634 Homo sapiens 
ERS014177 PMC4966634 Homo sapiens 
ERS014179 PMC4966634 Homo sapiens 
ERS055897 PMC4966634 Homo sapiens 
ERS123117 PMC4966634 Homo sapiens 
ERS164691 PMC4966634 Homo sapiens 
ERS123119 PMC4966634 Homo sapiens 
ERS025405 PMC4966634 Homo sapiens 
ERS071835 PMC4966634 Homo sapiens 
ERS174573 PMC4966634 Homo sapiens 
ERS336352 PMC4966634 Homo sapiens 
ERS224881 PMC4966634 Homo sapiens 
ERS224901 PMC4966634 Homo sapiens 
ERS338595 PMC4966634 Homo sapiens 
ERS338597 PMC4966634 Homo sapiens 
ERS444642 PMC4966634 Homo sapiens 
ERS338598 PMC4966634 Homo sapiens 
ERS338599 PMC4966634 Homo sapiens 
ERS338601 PMC4966634 Homo sapiens 
ERS338602 PMC4966634 Homo sapiens 
ERS338603 PMC4966634 Homo sapiens 
ERS338605 PMC4966634 Homo sapiens 
ERS338607 PMC4966634 Homo sapiens 
ERS338610 PMC4966634 Homo sapiens 
ERS338611 PMC4966634 Homo sapiens 
ERS338612 PMC4966634 Homo sapiens 
ERS338617 PMC4966634 Homo sapiens 
ERS338618 PMC4966634 Homo sapiens 
ERS338619 PMC4966634 Homo sapiens 
ERS338621 PMC4966634 Homo sapiens 
ERS017708 PMC6030216 Homo sapiens 
ERS040112 PMC6030216 Homo sapiens 
ERS040113 PMC4966634 Homo sapiens 
ERS241435 PMC4966634 Homo sapiens 
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ERS241438 PMC4966634 Homo sapiens 
ERS241441 PMC4966634 Homo sapiens 
ERS403565 PMC4966634 Homo sapiens 
ERS666267 PMC6030216 Homo sapiens 
ERS150822 PMC4966634 Homo sapiens 
ERS150862 PMC4966634 Homo sapiens 
ERS012699 PMC4966634 Homo sapiens 
ERS164683 PMC4966634 Homo sapiens 
ERS150819 PMC4966634 Homo sapiens 
ERS164688 PMC4966634 Homo sapiens 
ERS012057 PMC4966634 Homo sapiens 
ERS404153 PMC4966634 Homo sapiens 
ERS404132 PMC4966634 Homo sapiens 
ERS404155 PMC4966634 Homo sapiens 
ERS404141 PMC4966634 Homo sapiens 
ERS010042 PMC4966634 Homo sapiens 
ERS123115 PMC4966634 Homo sapiens 
ERS010153 PMC4966634 Homo sapiens 
ERS040109 PMC4966634 Homo sapiens 
ERS013104 PMC4966634 Homo sapiens 
ERS012702 PMC4966634 Homo sapiens 
ERS164634 PMC4966634 Homo sapiens 
ERS012693 PMC4966634 Homo sapiens 
ERS012695 PMC4966634 Homo sapiens 
ERS012692 PMC4966634 Homo sapiens 
ERS012694 PMC4966634 Homo sapiens 
ERS164639 PMC4966634 Homo sapiens 
ERS164684 PMC4966634 Homo sapiens 
ERS164678 PMC4966634 Homo sapiens 
ERS336392 PMC4966634 Homo sapiens 
ERS143422 PMC4966634 Homo sapiens 
ERS143517 PMC4966634 Homo sapiens 
ERS174558 PMC4966634 Homo sapiens 
ERS040115 PMC4966634 Homo sapiens 
ERS040116 PMC4966634 Homo sapiens 
ERS040117 PMC4966634 Homo sapiens 
ERS123120 PMC4966634 Homo sapiens 
ERS123124 PMC4966634 Homo sapiens 
ERS403520 PMC4966634 Homo sapiens 
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ERS403525 PMC4966634 Homo sapiens 
ERS792599 PMC6030216 Homo sapiens 
ERS792600 PMC6030216 Homo sapiens 
ERS792602 PMC6030216 Homo sapiens 
ERS792603 PMC6030216 Homo sapiens 
ERS792610 PMC6030216 Homo sapiens 
ERS792611 PMC6030216 Homo sapiens 
ERS792618 PMC6030216 Homo sapiens 
ERS792620 PMC6030216 Homo sapiens 
ERS792621 PMC6030216 Homo sapiens 
ERS792624 PMC6030216 Homo sapiens 
ERS792626 PMC6030216 Homo sapiens 
ERS792627 PMC6030216 Homo sapiens 
ERS792629 PMC6030216 Homo sapiens 
ERS792630 PMC6030216 Homo sapiens 
ERS792631 PMC6030216 Homo sapiens 
ERS792632 PMC6030216 Homo sapiens 
ERS792633 PMC6030216 Homo sapiens 
ERS792634 PMC6030216 Homo sapiens 
ERS792636 PMC6030216 Homo sapiens 
ERS792637 PMC6030216 Homo sapiens 
ERS792643 PMC6030216 Homo sapiens 
ERS792644 PMC6030216 Homo sapiens 
ERS792648 PMC6030216 Homo sapiens 
ERS792649 PMC6030216 Homo sapiens 
ERS792650 PMC6030216 Homo sapiens 
ERS792651 PMC6030216 Homo sapiens 
ERS792652 PMC6030216 Homo sapiens 
ERS989898 PMC6030216 Homo sapiens 
ERS989900 PMC6030216 Homo sapiens 
ERS989872 PMC6030216 Homo sapiens 
ERS989873 PMC6030216 Homo sapiens 
ERS989833 PMC6030216 Homo sapiens 
ERS989874 PMC6030216 Homo sapiens 
ERS989875 PMC6030216 Homo sapiens 
ERS989876 PMC6030216 Homo sapiens 
ERS989878 PMC6030216 Homo sapiens 
ERS989881 PMC6030216 Homo sapiens 
ERS989882 PMC6030216 Homo sapiens 
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ERS989883 PMC6030216 Homo sapiens 
ERS989902 PMC6030216 Homo sapiens 
ERS989903 PMC6030216 Homo sapiens 
ERS989919 PMC6030216 Homo sapiens 
ERS989897 PMC6030216 Homo sapiens 
ERS989917 PMC6030216 Homo sapiens 
ERS989907 PMC6030216 Homo sapiens 
ERS989908 PMC6030216 Homo sapiens 
ERS347714 PMC4966634 Homo sapiens 
ERS174628 PMC4966634 Homo sapiens 
ERS347479 PMC4966634 Homo sapiens 
ERS386739 PMC4966634 Homo sapiens 
ERS403553 PMC4966634 Homo sapiens 
SRS693583 PMC5347536 Homo sapiens 
SRS693904 PMC5347536 Homo sapiens 
SRS694226 PMC5347536 Homo sapiens 
SRS693407 PMC5347536 Homo sapiens 
SRS694253 PMC5347536 Homo sapiens 
SRS693980 PMC5347536 Homo sapiens 
SRS693269 PMC5347536 Homo sapiens 
SRS693945 PMC5347536 Homo sapiens 
SRS693468 PMC5347536 Homo sapiens 
SRS693573 PMC5347536 Homo sapiens 
SRS693954 PMC5347536 Homo sapiens 
SRS693579 PMC5347536 Homo sapiens 
SRS693360 PMC5347536 Homo sapiens 
SRS693970 PMC5347536 Homo sapiens 
SRS693971 PMC5347536 Homo sapiens 
SRS693956 PMC5347536 Homo sapiens 
SRS693944 PMC5347536 Homo sapiens 
SRS693912 PMC5347536 Homo sapiens 
SRS693909 PMC5347536 Homo sapiens 
SRS693570 PMC5347536 Homo sapiens 
SRS1607662 PMC5068322 Homo sapiens 
SRS417747 PMC3836732 Homo sapiens 
SRS363193 PMC3435244 Homo sapiens 
SRS363192 PMC3435244 Homo sapiens 
SRS363171 PMC3435244 Homo sapiens 
SRS363191 PMC3435244 Homo sapiens 
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SRS363190 PMC3435244 Homo sapiens 
ERS564521 PMID: 30668735 Homo sapiens 
ERS564522 PMID: 30668735 Homo sapiens 
ERS564523 PMID: 30668735 Homo sapiens 
ERS564524 PMID: 30668735 Homo sapiens 
ERS666222 PMID: 30668735 Homo sapiens 
ERS666223 PMID: 30668735 Homo sapiens 
ERS666224 PMID: 30668735 Homo sapiens 
ERS666225 PMID: 30668735 Homo sapiens 
ERS666226 PMID: 30668735 Homo sapiens 
ERS666227 PMID: 30668735 Homo sapiens 
ERS666229 PMID: 30668735 Homo sapiens 
ERS666236 PMID: 30668735 Homo sapiens 
ERS666238 PMID: 30668735 Homo sapiens 
ERS666239 PMID: 30668735 Homo sapiens 
ERS666242 PMID: 30668735 Homo sapiens 
ERS666243 PMID: 30668735 Homo sapiens 
ERS666244 PMID: 30668735 Homo sapiens 
ERS666246 PMID: 30668735 Homo sapiens 
ERS666248 PMID: 30668735 Homo sapiens 
ERS666253 PMID: 30668735 Homo sapiens 
ERS666255 PMID: 30668735 Homo sapiens 
ERS666260 PMID: 30668735 Homo sapiens 
ERS666262 PMID: 30668735 Homo sapiens 
ERS666264 PMID: 30668735 Homo sapiens 
DRS000258 PMC3759362 P. cynomolgi (Lab) 
ERS001838 PMC5500898 P. cynomolgi (Lab) 
ERS023609 PMC5500898 P. cynomolgi (Lab) 

 

Appendix 3.2 Table 1 – Publicly Available Next-Generation Sequences Used in this 
Dissertation: Sequencing data was downloaded from the European Nucleotide Agency. The 
study citation (PMCID or PMC code) is provided for each isolate as well as the host (Homo 
sapiens: Homo sapiens, Pan troglodytes: Pan_troglodytes, Gorilla gorilla: Gorilla_gorilla). In 
addition, the P. cynomolgi lab strains are also indicated (P. cynomolgi Lab).  
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APPENDIX 4.1: SUPPLEMENT TO TRACING THE GENETIC RELATEDNESS OF 
PLASMODIUM FALCIPARUM IN THE DEMOCRATIC REPUBLIC OF THE CONGO 

ACROSS SPACE 

 
Appendix 4.1 Figure 1 - Genetic Autocorrelation among Loci: For each locus, the genetic 
autocorrelation is shown across the fourteen nuclear chromosomes. Most sites exhibit no 
autocorrelation, which suggests that the vast majority of the loci are relatively independent.  
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Appendix 4.1 Figure 2 - Mean Within-Province IBD: Within-province IBD is indicated on a 
purple-yellow spectrum with little spatial structure that can be visualized. Overall, the within-
province IBD variance was low.  
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Appendix 4.1 Figure 3 - Between province pairwise IBD: The pairwise mean IBD between-
province is indicated by a purple-yellow spectrum. Overall, between-province IBD was low and 
did not exhibit any strong spatial patterns.  
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Appendix 4.1 Figure 4 - Urbanicity Permutation Test Distribution: Shown is the distribution 
of the 10,000 iterations of permuted urbanicity proportions from the recoded DRC data (130/351 
urban clusters). Values less than the 2.75th percentile and greater than the 97.5th percentile are 
shaded in blue. The observed proportion of urban clusters among the highly related pairs is 
indicated by a red line. Although not statistically significant, there appears to be fewer urban 
samples among the highly related pairs than is expected under complete independence. This 
suggests that urban areas are connected more frequently than would be expected (i.e. fewer are 
needed to make the same number of pairs).  
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Dist. Cat. N Min. 
25th 
Perc. Median Mean Std. Dev. 

75th 
Perc. Max. 

GC 43 25.12 377.05 813.43 802.3 476.25 1274.6 1568.7 

Road 43 51.31 693.28 1364.73 1385.87 817.54 2108.19 3019.48 

River 43 32.88 581.9 1195.04 1149.78 638.05 1745.53 2097.45 
Appendix 4.1 Table 1 - Between Cluster Highly Related Pairs Pairwise Geographical 
Distances: The distribution of geographic distances (km) among the highly related pairs between 
clusters is summarized as the number of comparisons (N), the minimum distance (Min.), the 25th 
and 75th percentile, median, mean, standard deviation (Std. Dev.), and maximum (Max.) for 
each distance category.  
 


