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ABSTRACT

BOONE BOWLES: Conditional Information Acquisition.
(Under the direction of Adam Reed)

When a portion of institutional investors are prohibited from short selling, news that

generates differences of opinions also affects information acquisition. Investors facing a short-

sale prohibition (e.g., mutual funds) acquire less information when the sentiment of news

is positive, as positive sentiment increases the likelihood that they will be unable to trade.

Also, prices are more informative following news with negative sentiment than news with

positive sentiment. These novel predictions are tested empirically using new measures of

information acquisition derived from a hand-collected sample of mutual fund and hedge

fund IP addresses. When the sentiment of recent news has been negative instead of positive,

information acquisition by mutual funds increases by 16% relative to hedge funds, and prices

are up to 14% more informative.
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CHAPTER 1: INTRODUCTION

Investors acquire information hoping to profitably trade upon it. However, in many

settings, investors face constraints that inhibit their ability to trade on the information they

acquire. One constraint commonly faced by institutional investors is a prohibition on short

sales: up to 73% of mutual funds face such a restriction.1 While it is known that short-

sale prohibitions generally reduce incentives to acquire information, the conditions under

which this prohibition is most likely to bind, and therefore attenuate information acquisition,

are less understood.2 Further, unconstrained investors potentially modify their information

acquisition due to short-sale prohibitions faced by others, though this relationship is also

unclear. This paper expands our understanding of information acquisition by highlighting

an important interaction between short-sale prohibitions and recent news. In particular,

information acquisition is conditional on the sentiment of recent news when it generates

disagreement amongst investors.

To demonstrate this relationship, this paper extends the classic setting of Grossman and

Stiglitz (1980) by (i) imposing a short-sale prohibition on a subset of potentially informed

investors, and (ii) adding an initial stage in which the sentiment of news generates disagree-

ment. From the perspective of potentially informed investors, this sentiment leads prices

to predictably diverge from their estimate of the asset’s fundamental value. When the sen-

timent of news leads constrained investors to be relatively pessimistic, they expect to be

bound by their short-sale prohibition. Anticipating that they may be unable to trade, fewer

1Almazan, Brown, Carlson and Chapman (2004). Using Yahoo’s mutual fund screener and accounting for
mutual funds with at least $100 million in net assets shows that there are up to 50 times as many mutual
funds in the large, mid, and small stock categories as there are in the long-short category. When accounting
for funds having at least $500 million or $1 billion in assets, the ratio is as high as 86 and 140.

2Nezafat, Schroder and Wang (2017) shows that short-sale constraints adversely affect private information
acquisition.
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constrained investors become informed. In response, more unconstrained investors acquire

information. In summary, the model predicts that news with positive sentiment will induce

relatively less information acquisition from mutual funds (the constrained investors) and

more from hedge funds (the unconstrained). The model also predicts that prices will be less

informative when investors expect to be constrained as aggregate information acquisition is

reduced.

To test the predictions from the model, this paper uses a hand-collected dataset that

measures information acquisition by mutual funds and hedge funds. This dataset was cre-

ated using records of activity on the EDGAR filing system, the SEC’s online repository

for public information. Using a proprietary sample of unmasked IP addresses, I refine the

EDGAR data in order to produce measures of information acquisition that distinguish be-

tween mutual funds and hedge funds. This provides a unique environment in which to test

the predictions from the model. Empirical analysis verifies the model’s main predictions by

showing that relative to hedge funds, mutual funds request less information from EDGAR

when the sentiment of recent news has been positive. Additionally, when more IP addresses

from mutual funds and hedge funds are acquiring information, prices more closely reflect

fundamental value.

An overview of the underlying theory is useful to develop intuition for these results. A

single risky asset exists in random supply. There are three types of investors in the market:

mutual funds, hedge funds, and retail. Mutual funds and hedge funds (together referred

to as institutional investors) can acquire costly private information prior to trading. Retail

investors cannot. On the other hand, mutual funds cannot short sell, while hedge funds

and retail investors are unconstrained. All agents maximize expected profits, subject to a

quadratic inventory cost, and trade by submitting limit orders in a competitive market.

There are three dates. At time zero, all investors observe a public signal that is orthogonal

to the asset’s payoff. Retail investors erroneously consider the signal to be informative and
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use it to update their beliefs about the payoff.3 This creates a difference of opinions between

institutional and retail investors. Subsequent to observing the initial signal, institutional

investors endogenously determine whether to acquire costly private information. Finally,

investors trade, with institutional investors rationally updating given the price.4

Institutional investors consider the impact the initial signal will have on retail investors

when deciding whether to become informed. They do this because the signal provides infor-

mation regarding the likelihood that mutual funds will be bound by the short-sale prohibi-

tion. For example, when the initial signal is positive, retail investors believe the payoff will

be higher than institutional investors believe it will be. From the perspective of institutional

investors, demand from retail investors will, in expectation, push the price of the asset above

its fundamental value. Thus, it is likely that mutual funds will be bound by their short-sale

prohibition. Faced with the prospect of acquiring information they cannot utilize, fewer mu-

tual funds learn. In response to this, more hedge funds will choose to become informed due

to the substitutability of information acquisition. This example highlights the key channel

at work in the model: institutional investors condition their information acquisition on the

initial signal since it drives disagreement with retail investors, thereby providing valuable

information as to whether mutual funds will be bound by their short-sale prohibition.

The model predicts that, relative to hedge funds, fewer mutual funds will acquire infor-

mation when retail investors are relatively optimistic. Additionally, the model highlights an

asymmetry in the substitutability of information acquisition. When deciding whether to ac-

quire information, the chief concern of mutual funds is whether the initial signal will trigger

their short-sale prohibition. This relationship holds regardless of the existence or information

acquisition of hedge funds. On the other hand, when mutual funds are excluded from the

model, information acquisition by hedge funds is invariant to the initial signal. Hedge funds

3Similar specifications for retail investors are used in Hirshleifer, Subrahmanyam and Titman (2006), Mendel
and Shleifer (2012), Banerjee and Green (2015), and Crouzet, Dew-Becker and Nathanson (2018).

4Institutional investors update using insights from Breon-Drish (2015) since the price is non-linear. Consis-
tent with differences of opinions models, the retail investors do not update on the price. This is equivalent
to them assuming that institutional investors receive signals that are just noise.
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are primarily concerned with the signal to the extent that it influences the information ac-

quisition of mutual funds. Thus, the model predicts that hedge fund information acquisition

is more sensitive to that of mutual funds than vice versa.

Since the initial signal (i) provides information about whether mutual funds will be able

to trade and (ii) influences both mutual fund and hedge fund information acquisition, the

initial signal also influences the information content of prices. At first glance, the relationship

between price informativeness and the initial signal is unclear. While a positive signal

generates less information acquisition from mutual funds, it simultaneously increases the

amount of information acquired by hedge funds. However, mutual funds are more sensitive

to the initial signal than are hedge funds. For example, a positive signal will induce a large

number of mutual funds to forgo acquiring information, compared to a relatively smaller

number of hedge funds who now learn. The added informed hedge funds are unable to

impound the same amount of information into the price that the large amount of mutual

funds would have. Thus, the model predicts that positive signals generate less informative

prices than negative signals.

To empirically test the model’s predictions, the EDGAR data has been refined to produce

two measures of information acquisition. The first, Requests, captures the total number of

requests for information from mutual funds about a given stock over a period of time. The

second variable, IPs, records the total number of unique IP addresses from mutual funds

making requests for information. The resultant panel provides a unique setting in which

mutual fund information acquisition is measured at the stock level. Furthermore, as a proxy

for the initial signal, this paper uses the event sentiment score provided by RavenPack. This

score, which measures the sentiment of news articles, is viewed as a proxy for the initial

signal since it is found to be related to both retail trading and the probability that prices

will move away from fundamental value.

Consistent with the model, empirical analyses find that when the sentiment of news has

been negative mutual funds acquire relatively more information than hedge funds. Specifi-

cally, if sentiment has been negative instead of positive, a stock can expect up to 16% more
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requests from mutual funds relative to hedge funds. Further, if sentiment has been negative,

a stock can expect as much as 14% more IPs from mutual funds than hedge funds making

requests.

To test implications for price informativeness, this paper exploits earnings announcements

and utilizes the price jump ratio, a measure of price informativeness developed in Weller

(2017). The price jump ratio proxies for price informativeness by measuring price movements

in the days leading up to and including earnings announcements. The intuition behind this

measure is that earnings announcements will result in small price movements when the price

is informative. Alternatively, when the announcement causes large price movements, prices

contained less information. Using this proxy, among others, the model’s prediction that

prices are more informative following news with negative sentiment is verified: prices are up

to 14% more informative when sentiment has been negative instead of positive.

Finally, tests also verify the prediction that hedge fund information acquisition is more

sensitive to that of mutual funds than vice versa. When mutual funds anticipate that a small

amount of hedge funds will become informed, between 9% and 19% more mutual fund IP

addresses will acquire information. By contrast, when hedge funds anticipate a low level of

information acquisition from mutual funds, 40% more hedge fund IP addresses will request

information.

This paper is related to the literature studying information acquisition when investors

face multiple dimensions of uncertainty. In particular, it is related to papers such as Romer

(1993), Gervais (1997), Avery and Zemsky (1998), Li (2013), Back, Crotty and Li (2013),

and Wang and Yang (2016), which consider scenarios where the precision of signals or the

proportion of informed traders is unknown. These papers focus on implications for market

microstructure, while this paper studies whether uncertainty about other informed investors

impacts incentives to acquire costly information. In, Gao, Song and Wang (2013), the pro-

portion of informed traders is unknown, but information acquisition is exogenous and there

are no short-sale constraints. Banerjee and Green (2015) studies asset prices when some in-

vestors are uncertain whether others are trading with information. Similar to Banerjee and
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Green (2015), my paper utilizes both rational expectations and differences of opinions ap-

proaches, but in contrast, my paper uses a common short-sale constraint to drive uncertainty

about whether informed investors are participating in the market.5 Further, while Banerjee

and Green (2015) focuses on risk-premia and volatility, my paper focuses on conditional

information acquisition in the face of short-sale prohibitions.

Much of the existing work using rational expectations models employs a setting with

normally-distributed variables that generate linear prices. However, using insights from

Breon-Drish (2015), the model in this paper can handle non-linear prices generated by the

short-sale prohibition. Using the “residual demand” approach instead of the typical “con-

jecture and verify” approach, investors are able to update from the price even though they

are uncertain regarding the participation of informed investors.

This paper also contributes to a large literature regarding short selling.6 Although loosely

related, the closest paper in this respect is Nezafat, Schroder and Wang (2017), which ex-

amines information acquisition in the presence of short-sale constraints. Similar to Nezafat,

Schroder and Wang (2017), this paper allows information acquisition to be endogenously

determined when investors are prohibited from short selling. In contrast, my paper allows

for two sets of investors (constrained and unconstrained) who endogenously respond to each

other. Also, my paper focuses on the interaction between short-sale prohibitions and recent

news releases.

To date, empirical studies of information acquisition faced the difficulty of measuring

investors’ information acquisition activity. This has been overcome in part by inferring infor-

mation acquisition from returns around earnings announcements (Morse (1981), Meulbroek

(1992), Heflin, Subramanyam and Zhang (2003), Weller (2017)). Other papers have used

5Related papers utilizing the rational expectations approach include Grossman and Stiglitz (1980), Hellwig
(1980), and Verrecchia (1982), those using differences of opinion include Harrison and Kreps (1978), Banerjee
and Kremer (2010).

6Miller (1977), Diamond and Verrecchia (1987), Boehme, Danielsen and Sorescu (2006), Bris, Goetzmann and
Zhu (2007), Chang, Cheng and Yu (2007), Saffi and Sigurdsson (2010), Engleberg, Reed and Ringgenberg
(2012), Beber and Pagano (2013), Boehmer, Jones and Zhang (2013), and Kolanski, Reed and Thornock
(2013).
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Google or Yahoo searches to measure information acquisition (Da, Engleberg Gao (2011),

Drake, Roulstone and Thornock (2012), Lawrence, Ryans, Sun and Laptev (2018)). This

paper adds to this literature by using a rich measure of information acquisition derived from

EDGAR search records. By using a hand-unmasked sample of mutual fund and hedge fund

IP addresses, this paper is able to quantify information acquisition activity and clearly at-

tribute it to specific institutional investors. While other papers explore the EDGAR log files,

this is among the first to refine the data by focusing on a sample of identifiable institutional

investors.7

The remainder of this paper is structured as follows: Chapter 2 details the theoretical

model and its predictions. Chapter 3 describes the data and discusses the empirical results.

Chapter 4 provides a series of robustness checks. Chapter 5 contains concluding remarks.

7Other papers using the EDGAR log files data include, Drake, Roulstone and Thornock (2016), Dyer (2017),
Chen, Cohen, Gurun, Lou and Malloy (2018), Crane, Crotty and Umar (2018), and Gibbons, Iliev and
Kalodimos (2018).
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CHAPTER 2: A MODEL OF INFORMATION ACQUISITION

The model is an extension of the classic Grossman and Stiglitz (1980) setting. The

key modifications are (i) the imposition of a short-sale prohibition on a subset of poten-

tially informed investors, and (ii) the addition of an initial stage in which news generates

disagreement prior to the information acquisition decision.

Section 2.1. Assets, Investors, and Information

There is a single, risky asset with payoff θ, where θ ∼ N(0, τ−1
θ ). The supply of the risky

asset is random and denoted by u, where u ∼ N(0, τ−1
u ).1 There is also a risky-free asset

that has a gross return of one and is in perfectly elastic supply.

There are three types of investors: hedge funds, mutual funds, and retail. Hedge funds

(of measure ν) are institutional investors without a short-sale prohibition. Hedge funds can

learn θ perfectly by paying κθ. The portion of hedge funds who become informed is denoted

by µ. Mutual funds (of measure ω) are institutional investors who are prohibited from short

selling. Mutual funds can pay κα to observe a noisy signal: Sα = θ+α where α ∼ N(0, τ−1
α ).

The portion of mutual funds who become informed is denoted by δ.

Retail investors (of measure one) have access to a free signal, which they believe provides

information about the payoff: they think Sη = θ + η where η ∼ N(0, τ−1
η ). Institutional

investors also observe this initial signal, but know that it is just noise: Sη = η. Retail

investors do not update their beliefs upon observing the price as they believe the information

acquired by institutional investors is only noise.2

1Noisy supply is included in the model to prevent prices from being fully revealing. Modeling shares of the
risky asset to be in random supply is equivalent to a setting where shares are in zero net supply and noise
traders submit random demands.

2This disagreement is akin to the differences of opinions approach.
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Sη is observed.
Retail investors

update their beliefs.

0

Institutional investors
choose whether to learn,
signals are observed, and

informed institutional
investors update.

1

Investors submit
optimal demand
schedules, X?.

2

Figure 2.1: Model Timeline

The order of events is as follows: Upon observing the initial signal, retail investors believe

that E[θ|Sη] = τηSη
τθ+τη

. Importantly, institutional investors decide whether to become informed

after observing Sη. From their perspective, Sη generates predictable price pressure from retail

investors. For example, a positive signal leads retail investors to believe the payoff of the

risky asset will be greater than zero, whereas the correct expectation of θ is still zero. In

expectation, retail investors will demand positive shares of the risky asset, thereby pushing

the price of the asset above its payoff.

Institutional investors who choose to become informed receive their additional signals and

update their beliefs regarding θ. Trading then occurs in a rational expectations equilibrium

where investors submit optimal demand schedules, X?, which condition on the information

in the price, P . All investors are risk-neutral and maximize their expected profits, Π, subject

to quadratic inventory cost γ:3

Π =
(
θ − P

)
X − γ

2
X2. (2.1)

Following trading, the payoff of the risky asset is observed and trading gains/losses are

realized. The timeline of events in this model is shown below.

3Results are expected to be similar in a setting with risk-averse investors, but given the non-linearity in
prices, characterizing the results would be more difficult. Vives (2011), Rostek and Weretka (2012), Duffie
and Zhu (2017), and Banerjee, Davis and Gondhi (2018).
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Section 2.2. Equilibrium

An equilibrium consists of the optimal proportion of mutual funds and hedge funds who

become informed, δ? and µ?, such that: (i) investor demands are optimal, (ii) the price

clears the market, (iii) hedge funds and mutual funds are indifferent between becoming

informed and remaining uninformed, and (iv) institutional investors rationally update from

the market clearing price.

Given the universal objective function, the optimal demand for every investor type can

be expressed with the following equations:

X? =
1

γ

(
E
[
θ|I
]
− P

)
or X?

M = max

{
0,

1

γ

(
E
[
θ|I
]
− P

)}
. (2.2)

The optimal demand for investors who face a short-sale prohibition, X?
M , includes the

maximization function to ensure they can only demand positive shares. The information

sets, I, of all investor types contain the price and the initial signal; in addition, informed

hedge funds know θ perfectly while informed mutual funds have observed Sα.

The market clearing condition requires that total demand from mutual funds, hedge

funds, and retail investors is equal to total supply:4

νµXHθ + ν(1− µ)XHP + ωδXMS + ω(1− δ)XMP +XR = u. (2.3)

In equilibrium, institutional investors must be indifferent between becoming informed

and remaining uninformed. Put differently, the marginal benefit of becoming informed must

4The subscripts to optimal demands refer to investor types and their information sets. Hθ represents hedge
funds who have observed θ while HP represents hedge funds who rely on the price. The subscripts for
mutual funds and retail investors follow.
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be equal to its marginal cost:

E
[(
θ − P

)
XHθ −

γ

2
X2
Hθ

∣∣∣Sη]− E[(θ − P)XHP −
γ

2
X2
HP

∣∣∣Sη] = κθ, (2.4a)

E
[(
θ − P

)
XMS −

γ

2
X2
MS

∣∣∣Sη]− E[(θ − P)XMP −
γ

2
X2
MP

∣∣∣Sη] = κα. (2.4b)

Updating from the price is typically straightforward in this class of models. Following

the conjecture and verify approach, the price is expressed as a linear function of the payoff,

noise, and other factors. Then, the price can be transformed into a normally-distributed

signal of the payoff and standard Bayesian updating leads to a tractable expression for the

posterior belief regarding θ.

This conventional updating procedure does not apply in this setting for two reasons.

First, due to the maximization function in the optimal demand of mutual funds, the price

is non-linear. Second, uninformed investors are uncertain regarding the quality of the signal

they observe from the price. The quality of the price’s signal is determined by the trading

activity of informed investors: as more informed investors trade, the information content of

the price increases. In this model, the trading activity of informed, potentially-constrained

investors (i.e., informed mutual funds) is unknown to uninformed investors. As a result,

uninformed investors cannot update in the typical fashion.

Instead, uninformed mutual funds and hedge funds use the price to update as follows: At

the trading stage, uninformed investors have observed Sη and the price, thus they know their

own demand as well as the demand from retail investors. The uninformed remain uncertain,

however, regarding the demands from informed mutual funds and hedge funds as well as

noisy supply. With this in mind, uninformed investors construct an observable signal, S, by

rearranging the market clearing condition according to what they know and what they do

not know:

S = ν(1− µ)XHP + ω(1− δ)XMP +XR︸ ︷︷ ︸
Known/Observable

= u− νµXHθ − ωδXMS︸ ︷︷ ︸
Unknown

. (2.5)
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Using optimal demand functions XHθ and XMS, the expression for S can be updated:

S = u− νµ1

γ

(
θ − P

)
− ωδmax

{
0,

1

γ

(
E
[
θ|Sα, P

]
− P

)}
. (2.6)

Equation (2.6) cannot be transformed into a standard, normally-distributed signal due

to the maximization function in the optimal demand of informed mutual funds. Instead,

the signal, S, comes from one of two regimes. The first arises when informed mutual funds

believe the risky asset is undervalued (E
[
θ|Sα, P

]
> P ) and demand positive shares. In the

second regime, informed mutual funds believe the asset is overvalued (E
[
θ|Sα, P

]
< P ) and

demand zero shares as their short-sale prohibition binds. Although the signal extracted from

the price is observable by uninformed investors using equation (2.5), which regime produces

the signal is unclear: there is not a one-to-one mapping from price to regime. However, since

the uninformed hold coherent beliefs regarding the likelihood of either regime being realized,

they can update from the price using S. With this insight, the uninformed can form an

expectation of the payoff upon observing the price:

E
[
θ|P
]

=

∞∫
−∞

θf(θ|P )dθ =

∞∫
−∞

θ
f(θ, P )

f(P )
dθ, (2.7)

where

f(θ, P ) = fθ(θ)

∞∫
−∞

fα(α)
[
Fu(ũ)fu(u1) + [1− Fu(ũ)]fu(u2)

]
dα. (2.8)

The joint density of the payoff and the price accounts for the probabilities of being in

either of the two regimes and the probability of observing S. The first regime is realized

when E
[
θ|Sα, P

]
> P . Given θ and α, this occurs with probability Fu(ũ). The second

regime is realized when E
[
θ|Sα, P

]
< P , which occurs with probability [1 − Fu(ũ)]. The

cutoff point between the two regimes is denoted with ũ. The probability of observing S
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given the first regime is realized is fu(u1), while fu(u2) is the probability of observing S in

the second regime.5

Informed mutual funds know which regime will be realized. As such, they use the price

and the market clearing condition to construct an observable signal, SI , and update as

follows:6

E
[
θ|Sα, P

]
=
ταSα + τISI
τθ + τα + τI

, (2.9)

where

SI = θ −
( γ
νµ

)
u, (2.10)

and τI = (νµ
γ

)2τu.

Given the non-linearity of the price and the complexity of E[θ|P ], the equilibrium price

cannot be expressed analytically. Numerical simulation is required to solve for the price and

to produce comparative statics. The objective of the simulation is to solve for the equilibrium

proportions of mutual funds and hedge funds that become informed (δ?, µ?). An overview of

the simulation procedure is as follows: First, holding δ fixed and for a given Sη, a numerical

solver is used to find the market clearing price for 10, 000 random draws of the (θ, α, u) triplet.

For each of the 10, 000 draws, investors trade optimally (equation (2.2)), the price satisfies

the market clearing condition (equation (2.3)), and investors use the price to rationally

update (equations (2.7) and (2.9)). Next, the average profit differential between informed

and uninformed hedge funds is calculated using the 10, 000 random draws. A numerical

solver is used to find the optimal proportion of hedge funds who become informed, µ?, such

that this average profit differential is equal to the cost hedge funds pay to become informed

(equation (2.4a)).

This procedure is followed across a grid of δ values from zero to one. Then, for each δ, the

average profit differential between informed and uninformed mutual funds is calculated using

5A detailed derivation of E[θ|P ] is provided in Appendix A.

6The derivation of E[θ|Sα, P ] is provided in Appendix B.

13



the 10, 000 random draws. The optimal proportion of mutual funds who become informed,

δ?, is identified as the δ such that the average profit differential is equal to the cost mutual

funds pay to become informed (equation (2.4b)). Taken together, this process uses model

parameters and a given Sη to find µ? and δ?.7

The relationship between the initial signal, Sη, and average profit differentials between

informed and uninformed mutual funds is illustrated in Figure 2.2. This figure shows that

average profit differentials decrease with increasing Sη. Recall, Sη generates differing opinions

between institutional investors and retail. Increasing the initial signal increases the likelihood

that retail investors will have an optimistic view of the risky asset and will push its price

above its fundamental value. The probability that mutual funds will refrain from trading and

earn zero profits (whether informed of uninformed) thus increases with Sη. This is especially

costly for informed mutual funds who are unable to benefit from their acquisition of costly,

private information.

Figure 2.2 also shows that for a given Sη, average profit differentials strictly decrease

with increasing δ: as more mutual funds become informed, the price will be more informa-

tive, providing a relative benefit to uninformed mutual funds. Furthermore, average profit

differentials are relatively more sensitive to Sη than to δ. For example, Figure 2.2 shows

that, holding Sη fixed, the difference in average profit differentials between δ = 0 and δ = 1

is less than 0.02. By contrast, fixing δ, the difference in average profit differentials between

Sη = −2 and Sη = +2 is at least 0.06, which is three times as much as the previous case. It

follows that when deciding whether to acquire private information, mutual funds are more

sensitive to Sη than to δ. Thus, a common response of mutual funds to Sη will be to either

all become informed (δ? = 1) or to all remain uninformed (δ? = 0).

The relationship between the initial signal, Sη, and optimal hedge fund information

acquisition, µ?, is illustrated in Figure 2.3. This figure highlights the effect of constrained

mutual funds on the information acquisition of hedge funds. When mutual funds all remain

7The simulation algorithm is explained in more detail in Appendix C.
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Figure 2.2: Mutual Fund Differential Profits
This figure illustrates the relationship between mutual fund differential profits (ΠI −ΠU ) and the initial signal (Sη). The figure

also highlights differential profits when mutual funds optimally acquire information, δ?.

uninformed (δ = 0), hedge funds do not condition their information acquisition on the initial

signal. Under this scenario, the quality of the price’s signal is perfectly known since there are

zero informed mutual funds to be influenced by Sη. Hedge funds do condition their behavior

on Sη when some proportion of mutual funds become informed (δ > 0). When hedge funds

expect more trading from informed mutual funds, they will acquire less information. Thus,

hedge funds acquire less information given negative Sη and more when Sη is positive. This

argument is made formally in the next section.
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Figure 2.3: Hedge Fund Information Acquisition in Equilibrium
This figure illustrates the relationship between µ? and the initial signal, Sη . Mutual fund learning, δ, is taken as both exogenous

and endogenous.

Section 2.3. Model Predictions

The model produces a series of novel predictions. First, the model generates predictions

regarding the information acquisition of mutual funds and hedge funds. The model also pre-

dicts that the informativeness of prices is related to the initial signal and to the composition

of informed investors. Finally, extending the model provides a unique prediction regarding

information acquisition and institutional ownership.

Subsection 2.3.1. Information Acquisition and the Initial Signal

Figure 2.4 shows the optimal proportions of informed mutual funds and hedge funds with

respect to the initial signal. It is clear that mutual funds prefer to become informed following

a negative signal and prefer to remain uninformed following a positive signal. Consider the
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Figure 2.4: Relative Institutional Information Acquisition
This figure shows the optimal information acquisition of mutual funds (δ?) and hedge funds (µ?) in equilibrium. This figure

also shows their difference (δ? − µ?).

case where the initial signal is positive, resulting in retail investors holding a relatively

optimistic opinion of the payoff. From the perspective of mutual funds, retail investors are

likely to generate upward price pressure by demanding positive shares of the asset. Thus, in

expectation the asset will be overpriced and mutual funds will be constrained by their short-

sale prohibition. Since a positive initial signal leads mutual funds to anticipate being unable

to trade, their incentive to acquire costly information is diminished. Following positive Sη,

mutual funds endogenously choose to remain uninformed. The opposite occurs when the

initial signal is negative: mutual funds expect to trade profitably and are more willing to

pay the cost to acquire information.
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More hedge funds acquire information when they perceive fewer mutual funds will become

informed and when these mutual funds are less likely to trade on their information. Following

a negative signal, the pessimistic opinion of retail investors makes it more likely that mutual

funds will be able to trade. More mutual funds will acquire information in this scenario,

and in expectation more of their information will be impounded into the price. Hedge funds

respond by substituting out the costly acquisition of private information and relying more

on the freely observed and increasingly informative price.

Prediction 1. Relative to hedge funds, mutual funds acquire more (less) information when

the initial signal is negative (positive).

Subsection 2.3.2. Price Informativeness

At first glance, it is unclear whether the price should be more informative following

positive or negative initial signals. More hedge funds and fewer mutual funds are acquiring

information when the signal is positive, but when the signal is negative fewer hedge funds and

more mutual funds become informed. Closer examination of the model, however, provides

both the answer and intuition.

Recall that mutual funds are acutely sensitive to the initial signal and their short-sale

prohibition. As the signal moves from negative to positive, a relatively large portion of mu-

tual funds will refrain from acquiring information, and for those who do become informed,

they have a decreased likelihood of trading. A relatively large amount of information, there-

fore, is not acquired and not impounded into prices by mutual funds. On the other hand,

more hedge funds become informed in response to fewer expected informed mutual funds.

But whereas a large portion of mutual funds change their behavior, only a relatively small

amount of hedge funds change from being uninformed to acquiring information. This rel-

atively small group of informed hedge funds are unable to inject into the price the same

amount of information that the large bloc of mutual funds would have.

Prediction 2. Prices are more informative following negative signals than following positive

signals.

18



One way to see Prediction 2 is by measuring price informativeness as the covariance of the

price and the payoff scaled by the variance of the price.8 In other words, the informativeness

of the price is the ratio of its signal and its noise. Using this terminology, Figure 2.5 illustrates

that both the signal and the noise increase with Sη. That is, when the initial signal is positive,

the price is both more variable and more closely associated with the payoff. Changes in the

price’s variance, however, are larger than changes in its covariance with the payoff. Figure

2.5 indicates that the variance of the price increases by approximately 45% as Sη changes

from negative to positive, while the price’s covariance with the payoff increases by only 25%.

It follows that the informativeness of the price decreases with the initial signal since the

price is becoming relatively more noisy.

Another way to view price informativeness is to consider the price’s accuracy by measur-

ing how close the equilibrium price is to the asset’s payoff. This can be done by measuring

the absolute difference between θ and the equilibrium price. While it is expected that this

measure is smallest when the initial signal is near zero, comparing this measure between

positive and negative signals should be instructive as to when prices are more informative.

Figure 2.6 shows that it is when the initial signal is positive that the absolute difference

between θ and the price is the largest, and thus the price is least accurate. This supports

the evidence from Figure 2.5: prices are more informative following negative signals than

positive.

Prediction 3. Prices are more informative when relatively more mutual funds than hedge

funds are acquiring information.

Prediction 3 follows from Figures 2.5 and 2.6 and from the discussion above. When the

signal is negative and relatively more mutual funds than hedge funds are informed, the price

is more informative in terms of both the signal-to-noise ratio and price accuracy.

8Bai, Philipon and Savov (2016) suggests this ratio as a measure of price informativeness.
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Figure 2.5: Price Informativeness: Signal-to-Noise
This figure shows the variance of the price, the covariance between the price and the payoff, and the price informativeness with

respect to Sη . Price informativeness is defined as the covariance between the price and the payoff divided by the variance of

the price.

Subsection 2.3.3. Information Acquisition and Other Investors

In addition to highlighting the relationship between information acquisition and the initial

signal, the model also describes how mutual funds and hedge funds respond to each other.

Consider the model analyzed without hedge funds. In this scenario, the initial signal still

generates buying or selling pressure from retail investors and mutual funds remain prohibited

from short selling. Since the initial signal changes the likelihood that mutual funds will be

able to trade, they still consider the signal when deciding whether to acquire information.

Further, Figure 2.4 shows that when hedge funds are present in the model, their level of

information acquisition has a small influence on how many mutual funds become informed.
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Figure 2.6: Price Informativeness: Accuracy
This figure shows the absolute difference between the payoff of the risky asset and its price as a function of Sη .

When deciding whether to acquire information, the chief concern of mutual funds is whether

the initial signal will trigger their short-sale prohibition.

Now consider the model without mutual funds. This scenario is depicted by the horizontal

line in Figure 2.3, which shows that without informed mutual funds, hedge funds acquire

information independent of the initial signal. Hedge funds only condition their information

acquisition on the signal to the extent that it influences the behavior of mutual funds.

When deciding whether to become informed, hedge funds are primarily concerned with the

information acquired by mutual funds, thus they are only indirectly affected by the signal,

Sη.
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Prediction 4. In terms of information acquisition, hedge funds are sensitive to the behavior

of mutual funds: more hedge funds acquire information when they expect fewer informed

mutual funds. In comparison, mutual funds are less sensitive to the information acquisition

behavior of hedge funds.

Subsection 2.3.4. Information Acquisition and Institutional Ownership

The model can be readily extended to account for mutual funds who are not prohibited

from short selling because they either own the asset or do not subject themselves to such

a prohibition. If it is assumed that these unconstrained mutual funds can acquire private

information, the model extension speaks to the responses of hedge funds and constrained

mutual funds to institutional ownership.

Similar to an earlier argument, hedge funds primarily care about the activity of other

informed investors, while constrained mutual funds are mainly concerned with the initial

signal and their short-sale prohibition. As the mass of unconstrained mutual funds increases,

constrained mutual funds do not alter their information acquisition. On the other hand, fewer

hedge funds acquire information due to the substitutability of information. In other words,

hedge funds substitute out costly private information and instead rely on a more informative

and costless signal from the price.

Prediction 5. Fewer hedge funds acquire information as institutional ownership increases.

In comparison, information acquisition by constrained mutual funds is less sensitive to in-

stitutional ownership.
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CHAPTER 3: EMPIRICAL ANALYSIS

Testing the model’s predictions requires data measuring the information acquisition ac-

tivity of institutional investors. Given the model explicitly differentiates between types of

institutions (mutual funds and hedge funds), the data should also distinguish between these

institutional investor types. This paper uses a dataset that captures the information acqui-

sition of investors and classifies them as mutual funds or hedge funds. The predictions from

the model are empirically tested using this unique dataset.

Section 3.1. Data Sources and Sample Construction

The primary dataset used to test the predictions from the model has been derived from

the EDGAR log files, which record requests to view documents on the EDGAR filing system,

the SEC’s online repository for public information. An observation in the EDGAR log files

contains details from an electronic request to view, for example, a 10-K filing for IBM. This

request is recorded along with the date, the time, the CIK of the filer, the specific filing

requested, the size of the electronic file requested, and a masked version of the IP address

from whence the request originated. Requesting IP addresses are masked as the last of their

four octets is reported as a random set of three letters in place of the actual digits.1 For

example, the SEC reports the IP address 152.19.255.34 as 152.19.255.xxx, where xxx is a

combination of three letters. Using the first three octets of an IP address combined with

historical IP registration records, many IP addresses requesting information from EDGAR

have been linked to specific financial institutions.2 The result is a hand-unmasked sample

of mutual fund and hedge fund IP addresses and their history of requesting (acquiring)

1In terms of IP addresses, an octet is a group of eight bits, or the one to three digit numbers separated by
periods in the example above.

2IP registration records were acquired from MaxMind, https://www.maxmind.com/en/home.
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information from EDGAR. Over 400 mutual fund and hedge fund companies have been

unmasked, and 17.9 million of their requests for information between January 2012 and

June 2017 have been included in the sample.

Mutual fund and hedge fund information acquisition are defined at the stock level and

aggregated both monthly and in the weeks leading up to earnings announcements. Two vari-

ables measuring information acquisition are derived from the EDGAR data: (i) Requestsmit

counts the total number of requests for information by mutual funds regarding stock i during

time period t, and (ii) IPsmit records the total number of unique IP addresses from mutual

funds requesting information (superscript h in place of m would indicate hedge funds in-

stead of mutual funds). These two variables are referred to as the Learning variables in

what follows, and serve as proxies for δ and µ from the model.

This study also uses data from RavenPack, which provides a history of news releases

linked to specific firms. In addition, RavenPack conducts sentiment analysis of news items

and produces an event sentiment score, which ranges from zero to 100, with 50 indicating

neutral sentiment.3 These stock-level sentiment scores are aggregated both monthly and in

the weeks leading up to earnings announcements. The main variable derived from RavenPack

is ESSit, which is calculated as the median event sentiment score across all news stories

regarding stock i over period t. This measure is used as a proxy for the model’s initial

signal, Sη.
4

This paper also utilizes the CRSP, Compustat, TAQ, MIDAS, and Thomson Reuters

databases.5

Section 3.2. Information Acquisition and the Sentiment of Recent News

Prediction 1 states that, relative to hedge funds, mutual funds will acquire more infor-

mation when the sentiment of recent news is negative compared to when it is positive. This

3Previous work to utilize the RavenPack event sentiment scores include Green, Hand and Penn (2012), Ho,
Shi and Zhang (2013), and Dang, Moshirian and Zhang (2015).

4The mapping from the model’s Sη to ESS from RavenPack is discussed in more detail in Section 4.1.

5Further details regarding the sources of data are provided in Appendix D.

24



prediction is tested using the following regression model:

Diffit = β1Negativeit + β2Positiveit + β3Xit + ζi + φt + εit, (3.1)

where Diff is equal to the difference between mutual fund and hedge fund information

acquisition. For instance, when using Requests to measure information acquisition, Diff is

equal to total requests from mutual funds less total requests from hedge funds (Requestsmit −

Requestshit). The independent variable Negative is an indicator equal to one when ESS ≤

47. The variable Positive takes the value of one when ESS ≥ 53 (recall that neutral

sentiment is 50). The matrix X contains the natural logarithm of the following control

variables: the number of news releases (Articles), total trading volume (V olume), average

market capitalization over the time period, the number of owning institutional investors

(No. Inst.), and total institutional ownership of shares (Inst. Own.). The X matrix also

contains the average daily price volatility over the period (V olatility) and indicator variables

for whether period t contains or corresponds to stock i’s quarterly or annual filings. Stock

and year-month fixed effects (ζi and φt) are included to control for unobserved heterogeneity

at the stock-level and in the time dimension.

Two different settings are considered. In the first, t refers to monthly time periods: ESS,

Diff and all other variables are measured monthly. The second setting focuses on the weeks

leading up to earnings announcements. In this setting, all variables are measured in the four

week period prior to stock i’s earnings announcement. This second setting is considered for

two reasons. First, the EDGAR data show that mutual funds and hedge funds acquire more

information in the weeks leading up to earnings announcements. Second, the model makes

predictions regarding price informativeness. These predictions will be tested by examining

prices and information acquisition leading up to earnings announcements.

Testing Prediction 1 is done by analyzing the difference between β1 and β2. Finding β1 >

β2 would provide support for the prediction that relative to hedge funds, more mutual funds
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acquire information when the sentiment of news has been negative. Results are reported in

Table 3.1.

Table 3.1 shows that relative to hedge funds, mutual funds acquire more information

when the sentiment of news is negative. As an example, column (4) shows that when news

sentiment is negative instead of positive in the weeks leading up to an earnings announce-

ment, mutual funds will make 7 more requests relative to requests by hedge funds. Given that

on average mutual funds make 45 more requests than hedge funds, mutual funds increase

their information acquisition by 16% relative to hedge funds when sentiment is negative.

Similarly, column (2) shows that mutual funds make 3.75 more requests, relative to requests

by hedge funds, when sentiment has been negative for a given month. The average monthly

difference between mutual fund and hedge fund requests is 22; thus an increase of 3.75 re-

quests indicates that mutual funds increase their information acquisition by 17% relative to

hedge funds when sentiment is negative for the month.

When focusing on IPs, column (8) of Table 3.1 shows that almost 2 additional mutual

fund IP addresses, relative to hedge fund IPs, acquire information when the sentiment of

news is negative. This suggests that when measured by IP addresses, mutual funds increase

their information acquisition by 14% relative to hedge funds when sentiment is negative.

Overall, Table 3.1 provides support for Prediction 1: relative to hedge funds, more mutual

funds acquire information when the sentiment of news is negative instead of positive.

Section 3.3. Price Informativeness

The model makes two predictions regarding the informativeness of prices. Prediction 2

states that prices should be more informative when the sentiment of news is negative instead

of positive. Prediction 3 states that prices should be more informative when relatively more

mutual funds are acquiring information compared to hedge funds. Both of these predictions

can be tested using the data previously detailed with the addition of price informativeness

measures.

One proxy for the information content of prices is the price jump ratio (PJR), a measure

developed in Weller (2017). The price jump ratio compares price movements in the weeks
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Table 3.1: Information Acquisition and the Sentiment of Recent News

This table presents results from testing the relationship between information acquisition and the sentiment of recent news.
The tests use the regression model in equation (3.1). The dependent variable, Diff is measured with either Requests or IPs
and both the monthly setting and the earnings announcement (EA Dates) setting are utilized. The variable ESSit captures
the sentiment of recent news regarding stock i during period t. ESS is measured using the median sentiment rating from
RavenPack. The indicator variable Negative takes on the value of one if ESS ≤ 47. The indicator variable Positive takes on
the value of one if ESS ≥ 53. The table presents Neg−Pos as a test of whether negative and positive news induce differential
information acquisition. The matrix Xit contains the natural logarithm of the following control variables: the number of
news releases (Articles), total trading volume (V olume), average market capitalization over the time period (not shown), the
number of owning institutional investors (No. Inst.), and total institutional ownership of shares (Inst. Own.). The X matrix
also contains the average daily price volatility over the period (V olatility) and indicator variables for whether period t contains
or corresponds to stock i’s quarterly or annual filings. Stock and year-month fixed effects are included. Standard errors are
clustered by stock and year-month. The sample is made up of approximately 3,300 stocks and 66 months.

Requests IPs

Monthly EA Dates Monthly EA Dates

(1) (2) (3) (4) (5) (6) (7) (8)

Negative 2.25*** 1.42* 4.85*** 4.39*** 1.03*** 0.77*** 1.28*** 1.18***

(s.e.) (0.65) (0.71) (1.27) (1.44) (0.15) (0.16) (0.20) (0.23)

Positive -2.49*** -2.32*** -4.62*** -2.67** -0.71*** -0.52*** -0.87*** -0.70***

(0.54) (0.59) (1.03) (1.11) (0.07) (0.09) (.141) (0.17)

Articles 4.28*** 6.17*** 1.27*** 1.66***

(0.38) (0.60) (0.09) (0.10)

V olume 4.46*** 5.00*** 1.25*** 1.29***

(0.45) (0.50) (0.11) (0.09)

No. Inst. 0.91 1.15 0.04 -0.030

(0.98) (1.15) (0.19) (0.19)

Inst. Own. -0.23 -0.50 -0.15 -0.04

(0.55) (0.56) (0.10) (0.09)

V olatility -0.92*** -0.68** -0.19*** -0.07

(0.23) (0.27) (0.05) (0.05)

Neg − Pos 4.74*** 3.75*** 9.47*** 7.05*** 1.74*** 1.29*** 2.15*** 1.88***

(s.e.) (0.96) (1.11) (2.03) (2.26) (0.18) (0.19) (.305) (0.36)

R2 .560 .568 .595 .601 .778 .799 .811 .820

Observations 141,146 141,146 48,782 48,782 141,146 141,146 48,782 48,782
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leading up to an earnings announcement to price movements at the announcement:

PJRit =
CAR

(T−1,T+1)
it

CAR
(T−30,T+1)
it

(3.2)

where CAR
(T−1,T+1)
it is the cumulative abnormal return from the day before stocks i’s earn-

ings announcement to the day after, while the denominator contains the cumulative abnormal

return beginning one month before an earnings announcement.6

The intuition behind this measure can be developed with an example. Consider that at

its earnings announcement a stock’s price experiences a significant jump, especially compared

to how much the price moved over the last month. It can be said that the price just prior to

the earnings announcement was weakly informative as to the content of the announcement.

On the other hand, consider that at the earnings announcement, the stock’s price moved

very little, particularly when compared to how much the price moved over the last month.

This is an example of a price accurately corresponding to the content of the announcement.

Following this intuition, high price jump ratios indicate low levels of price informativeness

while low price jump ratios are indicative of high price informativeness.

Following the same logic, the numerator from the price jump ratio can be used as a second

proxy for price informativeness. This second measure is referred to as the price jump (PJ).

Using both PJR and PJ , Predictions 2 and 3 can be tested using the following regression

model:

{
PJRit or ln|PJit|

}
= β1Lit−1 + β2Negativeit + β3Positiveit + β4Xit + ζi + φt + εit (3.3)

where,

Lit−1 ∈
{
ln(Learningmit−1), ln(Learninghit−1), Diffit−1

}
. (3.4)

6Abnormal returns are calculated using the three-factor model (Fama and French (1993)).
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This model is similar to the regressions used previously. The independent variable, L,

measures learning from either mutual funds or hedge funds, and also measures their differ-

ence, Diff . Testing whether prices are more informative when news sentiment is negative is

done by comparing β2 to β3. Finding β2 < β3 would provide support for Prediction 2. The

prediction that prices are more informative when relatively more mutual funds are learning

is tested by analyzing β1 in the specification where L = Diff . If β1 < 0 in this specification,

then Prediction 3 would be supported.

Using Learning instead of Diff as an independent variable provides a validity check for

the data. For instance, finding β1 ≮ 0 would imply that as institutional investors acquire

more information, the price of a stock fails to become more informative. However, it should

be the case that more information acquisition will lead to more informative prices. If in-

stitutional information acquisition as measured from the EDGAR data is a good proxy, it

should provide estimates for β1 that are less than zero.

Finally, L is lagged one time period. This is done to address reverse causality. If β1 < 0

using Learningit, it could be the case that investors are acquiring more information when

they believe the price is more informative. This reverse causality story is ruled out by using

lagged Learning.

Results using equation (3.3) are displayed in Table 3.2. In this table, odd-numbered

columns measure price informativeness with PJR and even-numbered columns use PJ ,

while Learning is measured using IPs. Notice that β1 is significantly less than zero in the

first four columns. This indicates that prices are more informative when more information

is acquired by mutual funds and hedge funds. Specifically, the estimate in column (1) of

−0.017 indicates that the price jump ratio will fall by 50 basis points when 30% more mutual

fund IP addresses request information. In terms of the price jump, the estimate of −0.056

in column (4) suggests that it will decrease by 1% when 18% more hedge funds acquire

information.

Prediction 2 is supported as negative sentiment leads to price jump ratios being reduced

by 4 percentage points. Given that the average price jump ratio in the sample is 50 percentage
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Table 3.2: Price Informativeness

This table presents results from testing whether information acquisition and the sentiment of recent news are related to price
informativeness. The tests use the regression model in equation (3.3). Odd-numbered columns use PJR as the dependent
variable while even-numbered columns use PJ . Learning is measured using IPs and is lagged one period in all specifications.
ESS is measured using the median sentiment rating from RavenPack. The indicator variable Negative takes on the value of
one if ESS ≤ 47. The indicator variable Positive takes on the value of one if ESS ≥ 53. The table presents Neg − Pos as
a test of whether negative and positive news induce differential price informativeness. The matrix Xit contains the natural
logarithm of the following control variables: the number of news releases (Articles), total trading volume (V olume), average
market capitalization over the time period (not shown), the number of owning institutional investors (No. Inst.), and total
institutional ownership of shares (Inst. Own.). The X matrix also contains the average daily price volatility over the period
(V olatility) and indicator variables for whether period t contains or corresponds to stock i’s quarterly or annual filings. Stock
and year-month fixed effects are included. Standard errors are clustered by stock and year-month. The sample is made up of
approximately 3,300 stocks and 66 months.

Price Jumps

Mutual Funds Hedge Funds Difference

(1) (2) (3) (4) (5) (6)

Learning -.017*** -.063*** -.012** -.056*** -.0013** -.007***

(s.e.) (.005) (.013) (.006) (.012) (.0006) (.001)

Negative -.022* -.079*** -.022* -.078*** -.023* -.080***

(.011) (.026) (.011) (.026) (.011) (.026)

Positive .018 .065*** .018 .064*** .018 .064***

(.011) (.019) (.011) (.019) (.011) (.019)

Articles -.018*** -.046*** -.019*** -.047*** -.019*** -.047***

(.004) (.009) (.004) (.009) (.004) (.009)

V olume -.052*** .036** -.052*** .034** -.053*** .033**

(.006) (.014) (.006) (.013) (.006) (.013)

No. Inst. -.017 .073** -.017 .071** -.017 .074**

(.017) (.033) (.017) (.033) (.017) (.033)

Inst. Own. .018* -.018 .018* -.017 .018* -.018

(.010) (.017) (.010) (.017) (.010) (.017)

V olatility .000 .098*** .000 .098*** .000 .098***

(.003) (.007) (.003) (.007) (.003) (.007)

Neg − Pos -.040** -.144*** -.040** -.143*** -.041** -.144***

(s.e.) (.018) (.036) (.018) (.037) (.018) (.036)

R2 .304 .233 .304 .232 .304 .233

Observations 10,613 39,643 10,613 39,643 10,613 39,643
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points, price jump ratios are 8% lower when news sentiment is negative compared to when

it is positive. In other words, negative sentiment improves price informativeness by 8%, as

measured by the price jump ratio. When measuring price informativeness with price jumps,

Table 3.2 shows that prices are 14% more informative following news with negative sentiment

instead of positive.

Columns (5) and (6) provide support for Prediction 3. These columns show that as mutual

funds acquire more information relative to hedge funds, prices become more informative.

Highlighting column (5), the price jump ratio drops by 1.3 percentage points when 10 more

mutual fund IP addresses request information. This suggests that prices are 2.6% more

informative when, compared to hedge funds, 10 more mutual fund IP addresses acquire

information.

Section 3.4. Information Acquisition and Other Investors

Prediction 4 states that hedge funds acquire less information when they expect more

mutual funds will be learning. In comparison, mutual funds are less sensitive to hedge funds’

level of information acquisition. This prediction can be tested using similar techniques to

the previous section, but requires two steps. In the first step, news sentiment and other

information from period t − 1 are used to predict the level of information acquisition in

period t from hedge funds or mutual funds. For the sake of exposition, suppose that the first

step predicts information acquisition by hedge funds using the following regression equation:

ln(Learninghit) = β1Negativeit−1 + β2Positiveit−1 + β3Xit−1 + ζi + φt + εit, (3.5)

which is similar to equation (3.1) except the right-hand-side variables are calculated from

period t − 1 and the dependent variable measures hedge fund learning instead of Diff . In

the second step, the following regression is utilized to test the response of mutual funds to

the expected level of information acquisition from hedge funds:

ln(Learningmit ) = β1Low
h
it + β2High

h
it + β3Yit + ζi + φt + εit. (3.6)
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In this setup, the level of hedge fund information acquisition predicted from the first step

is used to create variables indicating whether hedge funds are expected to acquire a high or

low amount of information. The indicator variable Lowh is equal to one when hedge fund

information acquisition is predicted to be in the lower quartile for a given stock. Similarly,

Highh is equal to one when hedge fund learning is predicted to be in the upper quartile.7

The control variables contained in Y include Negative, Positive, and X, similar to previous

specifications. Again, the regressions include stock and year-month fixed effects.

Equations (3.5) and (3.6) detail how to test whether mutual funds are sensitive to hedge

funds. These same equations can be used to test whether hedge funds are sensitive to mutual

funds by making the obvious changes. Testing these sensitivities is done by analyzing the

difference between β1 and β2 from the second-step regression. Finding β1 > β2 when Lowm

and Highm represent predicted mutual fund learning would indicate that hedge funds acquire

more information when they expect mutual funds are acquiring less.

Table 3.3 reports results using monthly time periods (odd-numbered columns) and the

weeks prior to earnings announcements (even-numbered). Three points can be made about

these results. First, in terms of acquiring information, hedge funds are highly sensitive to

the expected level of mutual fund learning. In Panel A, hedge funds increase their level of

information acquisition by as much as 42% when they anticipate a low level of mutual fund

information acquisition. Second, mutual funds are sensitive to the expected level of hedge

fund learning. Mutual funds increase their own level of information acquisition by between

9% and 19% when they anticipate low information acquisition by hedge funds.

Third, hedge funds are more sensitive to mutual funds than vice versa. This can be seen

by comparing the estimates of β1−β2 between hedge funds and mutual funds from Panel A.

Notice that hedge fund estimates are between 38% and 42%, while mutual fund estimates

7In addition to defining Low and High using quartiles, extreme deciles and terciles are also used.
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Table 3.3: Information Acquisition and Other Investors

This table presents results from testing whether hedge funds and mutual funds condition their information acquisition on
expected learning from each other. The tests utilize the regression model in equation (3.5) to calculate the expected level of
learning from the other investor type. Then the regression model in equation (3.6) is used to test whether investors learn
more when it is expected that the other investors will learn less. Odd-numbered columns define t in monthly terms. Even-
numbered columns define t as the time period 15 days prior to an earnings announcement date while t−1 corresponds to 15 day
period just prior to t. The dependent variables Learningh and Learningm are measured using either Requests or IPs. The
independent variable ESS captures the sentiment of recent news. ESS is measured using the median sentiment rating from
RavenPack. The indicator variable Negative takes on the value of one if ESS ≤ 47. The indicator variable Positive takes on
the value of one if ESS ≥ 53. The matrix Xit contains the natural logarithm of the following control variables: the number of
news releases (Articles), total trading volume (V olume), average market capitalization over the time period (not shown), the
number of owning institutional investors (No. Inst.), and total institutional ownership of shares (Inst. Own.). The X matrix
also contains the average daily price volatility over the period (V olatility) and indicator variables for whether period t contains
or corresponds to stock i’s quarterly or annual filings. Low is equal to one when learning from the other investor type for a
given stock is predicted to be in the lower quartile (Panel A), decile (Panel B), or tercile (Panel C). High is equal to one when
learning from the other investor type for a given stock is predicted to be in the upper quartile, decile, or tercile. The table
presents Low − High as a test of whether low expected learning from others results in different information acquisition than
when learning from others is expected to be high. The control variables contained in Y include Negative, Positive, and X.
Stock and year-month fixed effects are included. Standard errors are clustered by stock and year-month and the Murphy-Topel
correction has been applied for predicted regressors. The sample is made up of approximately 3,300 stocks and 66 months.

Panel A. Quartile Cutoff

Mutual Funds Hedge Funds

Requests IPs Requests IPs

(1) (2) (3) (4) (5) (6) (7) (8)

Low .054** .131*** .063*** .121*** .329*** .279*** .288*** .234***

(s.e.) (.024) (.034) (.017) (.024) (.106) (.094) (.065) (.055)

High -.033 -.038 -.028 -.070*** -.092** -.119** -.114*** -.148***

(.025) (.031) (.017) (.022) (.037) (.049) (.027) (.029)

Low −High .087** .168*** .091*** .192*** .422*** .398*** .402*** .382***

(s.e.) (.037) (.048) (.024) (.034) (.120) (.116) (.070) (.071)

R2 .745 .688 .819 .776 .611 .592 .688 .663

Observations 126,574 38,983 126,574 38,983 126,574 38,983 126,574 38,983

Panel B. Decile Cutoff

Low .068* .165*** .093*** .157*** .600*** .421*** .457*** .337***

(s.e.) (.039) (.048) (.025) (.034) (.166) (.152) (.090) (.080)

High -.048* -.075** -.033* -.098*** -.133*** -.254*** -.148*** -.178***

(.029) (.036) (.019) (.032) (.049) (.072) (.042) (.040)

Low −High .116** .239*** .126*** .255*** .733*** .675*** .605*** .514***

(s.e.) (.050) (.063) (.030) (.046) (.180) (.177) (.102) (.097)

R2 .745 .688 .819 .776 .612 .592 .689 .663

Observations 126,574 38,983 126,574 38,983 126,574 38,983 126,574 38,983

Panel C. Tercile Cutoff

Low .044* .132*** .050*** .130*** .283*** .264*** .249*** .214***

(s.e.) (.022) (.032) (.015) (.021) (.088) (.081) (.055) (.047)

High -.042* -.029 -.038** -.051** -.086** -.091** -.095*** -.120***

(.022) (.034) (.016) (.023) (.033) (.043) (.023) (.027)

Low −High .086** .162*** .089*** .181*** .369*** .355*** .343*** .333***

(s.e.) (.034) (.046) (.022) (.031) (.101) (.101) (.063) (.060)

R2 .745 .688 .819 .776 .610 .592 .688 .663

Observations 126,574 38,983 126,574 38,983 126,574 38,983 126,574 38,983
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are between 9% and 19%. Furthermore, when comparing the 95% confidence intervals of

these estimates, the intervals are disjoint for three out of the four settings considered.8

Overall, Table 3.3 provides supporting evidence for Prediction 4: when it comes to infor-

mation acquisition, hedge funds are more sensitive to mutual funds than vice versa.

Section 3.5. Information Acquisition and Institutional Ownership

The final prediction from the model speaks to the influence of institutional ownership on

information acquisition. Prediction 5 states that when it comes to information acquisition,

hedge funds are more sensitive to institutional ownership than are mutual funds. Hedge

funds will acquire less information when institutional ownership is higher. Mutual fund

information acquisition, on the other hand, is less sensitive to institutional ownership.

Institutional ownership has been included in each of the previous tests using both the

number of owning institutions and the number of shares owned by institutions. Table 3.3

included these two variables in the regression models explaining mutual fund and hedge fund

information acquisition. For mutual funds, Table 3.3 provides evidence that they acquire

more information as the number of owning institutions increases. However, the number of

shares owned by institutions is insignificant for mutual funds. With respect to hedge funds,

Table 3.3 shows that the number of owning institutions has no relationship with information

acquisition, but the number of shares owned by institutions does. The results suggest that

increasing institutional ownership decreases hedge fund information acquisition.

Causal interpretations should not be drawn from Table 3.3 as institutional ownership

and information acquisition are measured contemporaneously. It could be the case that

information acquisition leads to changes in institutional ownership, not the other way around.

To account for reverse causality, Table 3.4 displays results using equation (3.1) in the monthly

setting with lagged institutional ownership and Learning for mutual funds or hedge funds

as the dependent variable.

8The comparison must be done within similar settings. For example, column (1) compares to column (5)
while column (2) compares to column (6).
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Table 3.4: Information Acquisition and Institutional Ownership

This table presents results from testing the relationship between information acquisition and institutional ownership. The tests
use the regression model similar to equation (3.1). All columns utilize the monthly setting. The dependent variable Learning
is measured with either Requests or IPs. The variable ESSit captures the sentiment of recent news regarding stock i during
period t. ESS is measured using the median sentiment rating from RavenPack. The indicator variable Negative takes on the
value of one if ESS ≤ 47. The indicator variable Positive takes on the value of one if ESS ≥ 53. The matrix Xit contains the
natural logarithm of the following control variables: the number of news releases (Articles), total trading volume (V olume),
average market capitalization over the time period (not shown), the number of owning institutional investors (No. Inst.), and
total institutional ownership of shares (Inst. Own.). Importantly, No. Inst. and Inst. Own. are lagged one month. The X
matrix also contains the average daily price volatility over the period (V olatility) and indicator variables for whether period
t contains or corresponds to stock i’s quarterly or annual filings. Stock and year-month fixed effects are included. Standard
errors are clustered by stock and year-month. The sample is made up of approximately 3,300 stocks and 66 months.

Panel A. Mutual Funds

Requests IPs

(1) (2) (3) (4) (5) (6)

No. Inst. .024 .056*** .010 .034***

(s.e.) (.015) (.017) (.010) (.012)

Inst. Own. -.006 -.030** -.008 -.022***

(.010) (.011) (.007) (.008)

R2 .745 .745 .745 .818 .818 .818

Observations 126,619 126,619 126,619 126,619 126,619 126,619

Panel B. Hedge Funds

Requests IPs

(1) (2) (3) (4) (5) (6)

No. Inst. -.045** .009 -.031*** .010

(s.e.) (.021) (.025) (.011) (.013)

Inst. Own. -.046*** -.050*** -.033*** -.037***

(.011) (.014) (.006) (.008)

R2 .609 .609 .609 .684 .684 .684

Observations 126,619 126,619 126,619 126,619 126,619 126,619
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With respect to mutual funds, Table 3.4 provides inconsistent evidence for the influence

of institutional ownership on their information acquisition. When using both institutional

ownership variables in the regression, it appears that institutional ownership matters, but

the two variables disagree as to the direction. As the number of institutional owners in-

creases mutual funds acquire more information. However, as the number of shares owned

by institutions increases, mutual funds acquire less information. Overall, there is no clear

relationship between mutual fund information acquisition and institutional ownership.

When focusing on hedge funds, Table 3.4 provides support for Prediction 5. That is,

as institutional ownership increases, hedge funds acquire less information. In particular, as

institutional ownership increases by 20%, hedge funds acquire between 0.7% and 1.0% less

information. In summary, Prediction 5 is supported as hedge fund information acquisition is

clearly related to institutional ownership, but mutual fund information acquisition is not.
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CHAPTER 4: ROBUSTNESS TESTS

Table 3.1 through Table 3.4 provide the main empirical findings of this paper. In this

section, these findings are subject to several checks for robustness. These checks include

using subsamples and alternative measurements of key variables. This section also provides

detail regarding the mapping from the model’s Sη to ESS derived from the RavenPack data.

Section 4.1. Mapping Between Sη and ESS

Recall that ESS is measured using event sentiment scores from news stories collected by

RavenPack. The measurement of ESS uses stories from a variety of sources, including the

Dow Jones Newswires, Wall Street Journal, NBC, Reuters, New York Times, and Yahoo!

News, among others. Also, news stories containing tabular (i.e., quantitative) information

as well as commentary are included in this measurement. Thus, by construction ESS is not

solely a measure of fundamental information type, but also includes sentiment or tone. For

this reason, ESS is used as a proxy for Sη.

Further, for ESS to be a reasonable proxy for the initial signal, it should be related to

trading pressure from retail investors. To test whether this is the case, the buy-sell ratio using

signed odd-lot trades is used as a proxy for retail trading pressure.1 A two-step approach

is used in order to account for algorithmic trading since odd-lots are not solely from retail

investors, as demonstrated in O’Hara, Yao, and Ye (2014). In the first step, odd-lot buys and

sells are explained using the cancel-to-trade ratio (CTR), which is a proxy for algorithmic

trading. In this specification, oddTradesit is either the total amount of odd-lot buys or sells

1The idea that small trades, or odd-lot trades, are more likely to come from retail traders has been promoted
in papers such as, Lamont and Frazzini (2007), Hvidkjaer (2008), and Barber, Odean and Zhu (2009).
Trading data is taken from TAQ. The results presented use the Lee and Ready (1991) algorithm to sign
trades. Results are robust to using the algorithms developed by Ellis, Michaely and O’Hara (2000) and
Chakrabarty, Li, Nguyen and Van Ness (2007).
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for stock i during time period t. Stock and year-month fixed effects are included:

ln(oddTradesit) = β1ln(CTRit) + ζi + φt + εit. (4.1)

The buy-sell ratio from odd-lot trades (OddBSR) is then calculated using the residuals

from the first-step regressions. These residuals are interpreted as odd-lot trades that are

orthogonal to algorithmic trading, thus they are more likely to represent retail trading. Next,

the influence of ESS on this retail buy-sell ratio is tested using the following regression:

LowBSRit = β1Negativeit + β2Positiveit + β3RoundBSRit + β4Xit + ζi + φt + εit, (4.2)

where the dependent variable, LowBSR, takes the value of one when OddBSR is below

either 0.50 or 0.25. Thus, LowBSRit indicates whether stock i has experienced relative

selling pressure from retail investors in time period t. The control variable RoundBSR is

the buy-sell ratio from round lots. Using residual odd-lot trades from the first stage controls

for algorithmic trading, and using RoundBSR in the second stage controls for general trading

direction. The X matrix contains control variables such as the absolute difference between

OddBSR and 0.50 (RatioSize) and the natural logarithm of the number of news releases

(Articles). Stock and year-month fixed effects are included.

If ESS is a reasonable proxy for the initial signal, it should be the case that news with

negative sentiment leads to more selling pressure from retail investors and news with positive

sentiment leads to more buying pressure. Thus, following equation (4.2), β1 should be greater

than β2. This would indicate that negative sentiment increases the probability that there

will be significant selling pressure from retail investors. Results using equation (4.2) are

reported in Panel A of Table 4.1.

Panel A shows that news with negative sentiment increases the probability of selling

pressure from retail investors while news with positive sentiment decreases that probability.

Specifically, examining β1 − β2 shows that when the sentiment of news has been negative,
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Table 4.1: ESS as a Proxy for the Initial Signal

This table presents results from testing the relationships between the sentiment of recent news, retail trading (Panel A), and
price movements around earnings announcements (Panel B). The OddBSR variable is created using residual buys and sells
from regressions using equation (4.1). The results below use the regression model in equation (4.2). The dependent variable
LowBSR is an indicator of whether OddBSR is below 0.50 or 0.25. The variable RatioSize measures the absolute difference
between OddBSR and 0.50. RoundBSR measures the buy-sell ratio from round-lot trading. Under (Over) is equal to one
when stock i’s stock price jumps up (down) by at least 25% at its earning announcement. JumpSize is the absolute value
of a stock’s price jump. The matrix Xit contains the natural logarithm of the the number of news releases (Articles). Stock
and year-month fixed effects are included. Standard errors are clustered by stock and year-month . The sample is made up of
approximately 3,300 stocks and 42 months.

Panel A. ESS and Retail Trades

Monthly Earnings Announcements

OddBSR < 0.50 OddBSR < 0.25 OddBSR < 0.50 OddBSR < 0.25

(1) (2) (3) (4) (5) (6) (7) (8)

Negative .013* .014* .011 .012 .064*** .039** .053*** .030*

(s.e.) (.007) (.007) (.008) (.007) (.021) (.017) (.017) (.016)

Positive -.013** -.011* -.010 -.009 -.030** -.013 -.027** -.012

(.006) (.006) (.006) (.006) (.012) (.010) (.012) (.011)

RoundBSR -5.87*** -5.82*** -6.00*** -5.40***

(0.16) (0.15) (0.23) (0.16)

RatioSize -.580*** -.675*** 2.23*** 2.139*** -1.09*** -1.24*** 4.94*** 4.81***

(.063) (.090) (0.12) (0.14) (0.02) (0.10) (.210) (0.21)

Articles -.033*** -.021*** -.031*** -.020*** -.049*** -.037*** -.038*** -.027***

(.003) (.003) (.003) (.003) (.007) (.005) (.007) (.005)

Neg − Pos .026*** .025*** .022** .021** .094*** .052** .080*** .042*

(s.e.) (.010) (.010) (.011) (.010) (.029) (.024) (.027) (.025)

R2 .043 .218 .054 .229 .057 .234 .117 .284

Observations 99,803 99,803 99,803 99,803 35,058 35,058 35,058 35,058

Panel B. ESS and Earnings Announcements

Under Over

Raw Abnormal Raw Abnormal

(1) (2) (3) (4) (5) (6) (7) (8)

Negative .001 .001 .002** .001 -.001 -.001 -.001 -.001

(s.e.) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)

Positive -.001 -.001** -.001 -.001** .002** .001 .002* .001

(.000) (.000) (.001) (.000) (.001) (.001) (.001) (.001)

JumpSize .154*** .149*** .180*** .190***

(.021) (.020) (.015) (.015)

Articles .000 .000* .001 .000 .000 .000 .000 .000

(.000) (.000) (.000) (.000) (.003) (.000) (.000) (.000)

Neg − Pos .002* .002** .003** .002* -.003** -.002** -.003* -.002

(s.e.) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)

R2 .098 .229 .121 .235 .141 .237 .140 .243

Observations 44,722 44,722 44,722 44,722 44,722 44,722 44,722 44,722
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the probability of selling pressure from retail investors is increased by between 2 and 10

percentage points. This finding supports the use of ESS as a proxy for the initial signal

described in the model.

In addition to being related to retail trading, ESS should also be related to prices moving

away from fundamental value. This relationship is investigated using techniques similar to

equation (4.2) and examining price movements around earnings announcements:

Underit = β1Negativeit−1 + β2Positiveit−1 + β3Xit + ζi + φt + εit. (4.3)

In this setup, Under equals one when a stock experiences a price jump above 25% at its

earnings announcement.2 Thus, Under indicates undervaluation, or scenarios where prices

jump upward to reflect the new fundamental information provided in the earnings announce-

ment. The Negative and Positive variables have been previously described. However, in

this test they are lagged such that they measure news sentiment in a four week period, but

do not include the two weeks immediately prior to the earnings announcement. The X ma-

trix contains similar control variables to the previous tests, with the addition of JumpSize,

which is the absolute value of the earnings announcement price jump.

If ESS is a reasonably proxy for the initial signal, negative sentiment should increase

the probability that stocks will be undervalued while positive sentiment will decrease that

probability. Thus, following equation (4.3), β1 should be greater than β2. This would indi-

cate that when compared to positive sentiment, negative sentiment increases the probability

of undervaluation. Results are shown in Panel B of Table 4.1. The results show that when

compared to positive sentiment, negative sentiment increases (decreases) the probability of

undervaluation (overvaluation). These results hold whether measuring earnings announce-

ment returns using raw returns or abnormal returns.3

2Defining Under using jumps between 20% and 50% provide similar results.

3In Panel B of Table 4.1, Over is the opposite of Under.
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Together, finding that ESS derived from RavenPack is related to both retail trading and

mispricing provides support for its use as a proxy for the model’s initial signal, Sη.

Section 4.2. Information Acquisition and the Sentiment of Recent News - Ro-

bustness

Table 3.1 tests the differential effect of negative and positive sentiment on institutional

information acquisition using contemporaneous measures of ESS and Learning. In other

words, in the monthly setting Learning and ESS were both measured in the same month.

However, it could be the case that learning takes place at the beginning of the month

while news articles cluster near the end of the month. Also, it could be the case that

information acquisition is driving news sentiment, not the other way around. To control

for these hypotheticals, the tests from Table 3.1 are repeated using lagged ESS. That is,

equation (3.1) is amended by using Negative and Positive from period t − 1. As can be

seen in the first four columns of Table 4.2, similar results are obtained. Column (2) shows

that mutual funds increase their requests relative to hedge funds by almost 3 requests when

news sentiment is negative, which is an increase of 6%. Thus, it can be said that negative

sentiment in April leads mutual funds to acquire relatively more information in May.

Also in Table 3.1, ESS of 50 was considered neutral. However, average ESS over the

sample is 52, suggesting that 52 instead of 50 may better indicate neutral sentiment. With

this in mind, the last four columns of Table 4.2 show results from measuring Negative and

Positive considering ESS scores of 52 as neutral. As can be seen, the results hold and

Prediction 1 is again confirmed.

Recall that Negative and Positive have been defined as news sentiment at least three

units away from neutral. It could be the case that other cutoffs provide better definitions of

negative and positive news sentiment. Table 4.3 reproduces the results from Table 3.1 while

using cutoffs of two and four units away. The results are quantitatively and qualitatively

similar to those presented in Table 3.1.

RavenPack measures how relevant news releases are to a given stock, with their relevance

metric ranging from zero to 100. Relevance has not been considered in the results presented
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Table 4.2: Information Acquisition and the Sentiment of Recent News - Lags and Neutral

This table presents results from testing the relationship between information acquisition and the sentiment of recent news while
accounting for lagged news and using a different value for neutral. The tests use the regression model in equation (3.1). Odd-
numbered columns utilize the monthly setup. Even-numbered columns define t as the 30 days prior to an earnings announcement
date. The dependent variable, Diff is measured with either Requests or IPs. The variable ESSit captures the sentiment of
recent news regarding stock i during period t. In the first four columns, ESS is measured similar to Table 3.1, but is lagged
one period, thus ESSit−1 is used to derive Negative and Positive. In the last four columns, ESS is used contemporaneously,
but 52 instead of 50 is considered neutral sentiment. ESS is measured using the median sentiment rating from RavenPack.
For columns (1) through (4), the indicator variable Negative takes on the value of one if ESS ≤ 47 and the indicator variable
Positive takes on the value of one if ESS ≥ 53. For columns (5) through (8), the indicator variable Negative takes on the value
of one if ESS ≤ 49 and the indicator variable Positive takes on the value of one if ESS ≥ 55. The table presents Neg−Pos as
a test of whether negative and positive news induce differential information acquisition. The matrix Xit contains the natural
logarithm of the following control variables: the number of news releases (Articles), total trading volume (V olume), average
market capitalization over the time period (not shown), the number of owning institutional investors (No. Inst.), and total
institutional ownership of shares (Inst. Own.). The X matrix also contains the average daily price volatility over the period
(V olatility) and indicator variables for whether period t contains or corresponds to stock i’s quarterly or annual filings. Stock
and year-month fixed effects are included. Standard errors are clustered by stock and year-month. The sample is made up of
approximately 3,300 stocks and 66 months.

Lagged ESS Neutral ESS = 52

Requests IPs Requests IPs

(1) (2) (3) (4) (5) (6) (7) (8)

Negative -0.85 0.69 0.14 0.19 3.52*** 5.83*** 1.24*** 1.72***

(s.e.) (0.66) (0.75) (0.12) (0.14) (0.77) (1.53) (0.16) (0.24)

Positive -0.58 -2.11*** -0.41*** -0.31** -3.28*** -2.93** -0.81*** -1.11***

(0.54) (0.67) (0.08) (0.12) (0.63) (1.40) (0.12) (0.21)

Articles 4.62*** 1.95*** 1.35*** 0.56*** 4.26*** 6.11*** 1.26*** 1.64***

(0.39) (0.28) (0.08) (0.05) (0.38) (0.60) (0.09) (0.10)

V olume 5.21*** 3.60*** 1.47*** 1.05*** 4.44*** 4.98*** 1.25*** 1.29***

(0.51) (0.43) (0.12) (0.08) (0.45) (0.50) (0.10) (0.09)

No. Inst. 1.01 1.33 0.13 -0.01 0.91 1.14 0.04 -0.03

(1.11) (1.07) (0.21) (0.22) (0.99) (1.15) (0.19) (0.18)

Inst. Own. -0.53 -0.68 -0.23* 0.01 -0.22 -0.48 -0.15 -0.03

(0.64) (0.53) (0.12) (0.11) (0.55) (0.56) (0.10) (0.09)

V olatility -1.04*** -0.38* -0.21*** -0.02 -0.91*** -0.68** -0.19*** -0.07

(0.25) (0.20) (0.06) (0.04) (0.23) (0.27) (0.05) (0.05)

Neg − Pos -0.27 2.80** 0.55*** 0.51** 6.79*** 8.76*** 2.05*** 2.82***

(s.e.) (0.86) (1.21) (0.15) (0.21) (1.20) (2.62) (0.23) (.395)

R2 .566 .507 .797 .770 .568 .601 .799 .820

Observations 127,116 39,352 127,116 39,352 141,146 48,782 141,146 48,782
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Table 4.3: Information Acquisition and the Sentiment of Recent News - Cutoffs

This table presents results from testing the relationship between information acquisition and the sentiment of recent news while
using various cutoffs to define Negative and Positive. The tests use the regression model in equation (3.1). Odd-numbered
columns utilize the monthly setup. Even-numbered columns define t as the 30 days prior to an earnings announcement date.
The dependent variable, Diff is measured with either Requests or IPs. The variable ESSit captures the sentiment of recent
news regarding stock i during period t. ESS is measured using the median sentiment rating from RavenPack. The indicator
variable Negative takes on the value of one if ESS ≤ 50 − C. The indicator variable Positive takes on the value of one if
ESS ≥ 50+C. The first four columns use C = 2 while the last four columns use C = 4 as the cutoffs between negative, neutral,
and positive sentiment. The table presents Neg − Pos as a test of whether negative and positive news induce differential
information acquisition. The matrix Xit contains the natural logarithm of the following control variables: the number of
news releases (Articles), total trading volume (V olume), average market capitalization over the time period (not shown), the
number of owning institutional investors (No. Inst.), and total institutional ownership of shares (Inst. Own.). The X matrix
also contains the average daily price volatility over the period (V olatility) and indicator variables for whether period t contains
or corresponds to stock i’s quarterly or annual filings. Stock and year-month fixed effects are included. Standard errors are
clustered by stock and year-month. The sample is made up of approximately 3,300 stocks and 66 months.

Cutoff = 2 Cutoff = 4

Requests IPs Requests IPs

(1) (2) (3) (4) (5) (6) (7) (8)

Negative 0.44 3.72*** 0.57*** 0.99*** 1.80** 5.03*** 0.84*** 1.16***

(s.e.) (0.72) (1.37) (0.16) (0.22) (0.76) (1.52) (0.16) (0.25)

Positive -0.03 -1.40 -0.01 -0.36** -2.49*** -2.60** -0.60*** -0.71***

(0.64) (0.99) (0.10) (0.15) (0.60) (1.14) (0.09) (0.18)

Articles 4.31*** 6.17*** 1.27*** 1.66*** 4.28*** 6.17*** 1.27*** 1.66***

(0.38) (0.60) (0.09) (0.10) (0.38) (0.60) (0.09) (0.10)

V olume 4.45*** 5.01*** 1.25*** 1.29*** 4.45*** 5.00*** 1.25*** 1.29***

(0.45) (0.50) (0.10) (0.09) (0.45) (0.50) (0.11) (0.09)

No. Inst. 0.87 1.15 0.03 -0.03 0.91 1.16 0.04 -0.03

(0.99) (1.15) (0.19) (0.19) (0.98) (1.15) (0.19) (0.18)

Inst. Own. -0.23 -0.50 -0.15 -0.04 -0.23 -0.51 -0.15 -0.04

(0.55) (0.56) (0.10) (0.09) (0.55) (0.56) (0.10) (0.09)

V olatility -0.94*** -0.69** -0.19*** -0.08 -0.92*** -0.68** -0.19*** -0.07

(0.23) (0.27) (0.05) (0.05) (0.23) (0.27) (0.05) (0.05)

Neg − Pos 0.47 5.12** 0.58*** 1.36*** 4.29*** 7.63*** 1.44*** 1.87***

(s.e.) (1.16) (2.07) (0.21) (0.33) (1.17) (2.36) (0.20) (0.38)

R2 .568 .601 .799 .820 .568 .601 .799 .820

Observations 141,146 48,782 141,146 48,782 141,146 48,782 141,146 48,782
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thus far. Table 4.4 takes relevance into account by limiting the set of news articles to those

with relevance scores of at least 80 or 90. The results shown in Table 4.4 are qualitatively

unchanged from Table 3.1.

It may be the case that the relationship between news sentiment and information acquisi-

tion is different based on the size of the stock. It may also be the case that the results found

in the previous tables are driven by one subset of stocks, either small or large. To explore

these ideas, Table 4.5 provides results using size-based subsamples. Large, small, and micro

stocks are identified using the NYSE Breakpoints following Fama and French (2012). The

relationship between information acquisition and sentiment holds within each subsample.

Finally, in unreported results the same tests were repeated using different years within the

2012 through 2017 period and by measuring ESS using mean instead of median sentiment

scores. In all cases, the results hold and provide the same qualitative interpretations as Table

3.1. Overall, the finding that mutual funds acquire relatively more information than hedge

funds when sentiment is negative is robust.

Section 4.3. Price Informativeness - Robustness

Similar to the previous section, the robustness checks from Section 4.2 have been applied

to the results in Table 3.2, and again, the main findings hold. To further test the price

informativeness predictions and the findings in Table 3.2, this section uses Requests as

the measure of Learning. Table 4.6 recreates Table 3.2 using Requests instead of IPs.

The results hold: increased learning by either hedge funds or mutual funds improves price

informativeness. As relatively more mutual funds become informed compared to hedge

funds, PJR and PJ are reduced. This finding provides additional support to Prediction 3.

Furthermore, Table 4.6 shows that price jumps are lower following negative sentiment than

following positive; providing additional support for Prediction 2.

Price jumps have also been analyzed within size-based subsamples. Table 4.7 shows that

the previous findings generally hold for large, small, and micro stocks. Indeed, prices are

between 11% and 15% more informative following negative sentiment than positive.
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Table 4.4: Information Acquisition and the Sentiment of Recent News - Relevance

This table presents results from testing the relationship between information acquisition and the sentiment of recent news while
accounting for the relevance of news. The tests use the regression model in equation (3.1). Odd-numbered columns utilize
the monthly setup. Even-numbered columns define t as the 30 days prior to an earnings announcement date. The dependent
variable, Diff is measured with either Requests or IPs. The variable ESSit captures the sentiment of recent news regarding
stock i during period t. In the first four columns, only news items with a relevance score of 80 or more are used to measures ESS.
In the last four columns, only news with relevance of greater than 90 are used. ESS is measured using the median sentiment
rating from RavenPack. The indicator variable Negative takes on the value of one if ESS ≤ 47. The indicator variable
Positive takes on the value of one if ESS ≥ 53. The table presents Neg− Pos as a test of whether negative and positive news
induce differential information acquisition. The matrix Xit contains the natural logarithm of the following control variables:
the number of news releases (Articles), total trading volume (V olume), average market capitalization over the time period (not
shown), the number of owning institutional investors (No. Inst.), and total institutional ownership of shares (Inst.Own.). The
X matrix also contains the average daily price volatility over the period (V olatility) and indicator variables for whether period
t contains or corresponds to stock i’s quarterly or annual filings. Stock and year-month fixed effects are included. Standard
errors are clustered by stock and year-month. The sample is made up of approximately 3,300 stocks and 66 months.

Relevance ≥ 80 Relevance ≥ 90

Requests IPs Requests IPs

(1) (2) (3) (4) (5) (6) (7) (8)

Negative 1.50** 4.07*** 0.78*** 1.10*** 1.51** 4.10*** 0.78*** 1.11***

(s.e.) (0.72) (1.43) (0.16) (0.23) (0.72) (1.43) (0.16) (0.23)

Positive -2.41*** -2.85** -0.55*** -0.74*** -2.42*** -2.83** -0.55*** -0.73***

(0.59) (1.10) (0.09) (0.17) (0.59) (1.10) (0.09) (0.17)

Articles 8.10*** 13.8*** 2.24*** 3.54*** 8.12*** 14.0*** 2.24*** 3.58***

(0.57) (1.10) (0.12) (0.19) (0.58) (1.13) (0.12) (0.19)

V olume 4.16*** 4.92*** 1.20*** 1.29*** 4.16*** 4.92*** 1.20*** 1.29***

(0.43) (0.48) (0.10) (0.09) (0.43) (0.48) (0.10) (0.09)

No. Inst. 0.84 1.27 0.03 0.01 0.83 1.24 0.03 -0.00

(0.98) (1.16) (0.19) (0.19) (0.98) (1.16) (0.19) (0.19)

Inst. Own. -0.22 -0.61 -0.15 -0.07 -0.22 -0.61 -0.15 -0.07

(0.55) (0.56) (0.10) (0.09) (0.55) (0.56) (0.10) (0.09)

V olatility -1.05*** -0.86*** -0.22*** -0.12** -1.06*** -0.88*** -0.23*** -0.13**

(0.23) (0.27) (0.05) (0.05) (0.23) (0.27) (0.05) (0.05)

Neg − Pos 3.91*** 6.91*** 1.32*** 1.83*** 3.92*** 6.94*** 1.33*** 1.84***

(s.e.) (1.08) (2.24) (0.19) (0.35) (1.08) (2.24) (0.19) (0.35)

R2 .570 .603 .802 .822 .570 .603 .802 .822

Observations 141,146 48,782 141,146 48,782 141,146 48,782 141,146 48,782
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Table 4.6: Price Informativeness - Requests

This table presents results from testing whether information acquisition and the sentiment of recent news are related to price
informativeness. The tests use the regression model in equation (3.3). Odd-numbered columns use PJR as the dependent vari-
able while even-numbered columns use PJ . Learning is measured using Requests and is lagged one period in all specifications.
ESS is measured using the median sentiment rating from RavenPack. The indicator variable Negative takes on the value of
one if ESS ≤ 47. The indicator variable Positive takes on the value of one if ESS ≥ 53. The table presents Neg − Pos as
a test of whether negative and positive news induce differential price informativeness. The matrix Xit contains the natural
logarithm of the following control variables: the number of news releases (Articles), total trading volume (V olume), average
market capitalization over the time period (not shown), the number of owning institutional investors (No. Inst.), and total
institutional ownership of shares (Inst. Own.). The X matrix also contains the average daily price volatility over the period
(V olatility) and indicator variables for whether period t contains or corresponds to stock i’s quarterly or annual filings. Stock
and year-month fixed effects are included. Standard errors are clustered by stock and year-month. The sample is made up of
approximately 3,300 stocks and 66 months.

Price Jumps

Mutual Funds Hedge Funds Difference

(1) (2) (3) (4) (5) (6)

Learning -.013*** -.041*** -.006* -.028*** -.0002*** -.001***

(s.e.) (.003) (.008) (.003) (.006) (.0001) (.000)

Negative -.022* -.079*** -.022* -.079*** -.023** -.081***

(.011) (.026) (.011) (.026) (.011) (.026)

Positive .018 .064*** .018 .065*** .018* .064***

(.011) (.019) (.011) (.019) (.011) (.019)

Articles -.019*** -.047*** -.019*** -.048*** -.019*** -.050***

(.004) (.009) (.004) (.009) (.004) (.009)

V olume -.051*** .036*** -.052*** .034** -.053*** .030**

(.006) (.013) (.006) (.013) (.006) (.013)

No. Inst. -.017 .073** -.017 .070** -.017 .073**

(.017) (.034) (.017) (.033) (.017) (.033)

Inst. Own. .018* -.017 .018* -.017 .018* -.017

(.010) (.017) (.010) (.017) (.010) (.017)

V olatility .000 .098*** .000 .098*** .000 .098***

(.003) (.007) (.003) (.007) (.003) (.007 )

Neg − Pos -.040** -.143*** -.040** -.143*** -.041** -.146***

(s.e.) (.018) (.037) (.018) (.037) (.018) (.037)

R2 .304 .233 .304 .232 .304 .232

Observations 10,613 39,643 10,613 39,643 10,613 39,643
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Table 4.7: Price Informativeness - NYSE Breakpoints

This table presents results from testing whether information acquisition and the sentiment of recent news are related to price
informativeness when measured using price jumps at earnings announcements and partitioning the sample by size using NYSE
Breakpoints. Panel A uses large stocks only. Panel B uses small stocks. Panel C uses micro stocks. The tests use the regression
model in equation (3.3). Odd-numbered columns use Requests and the Learning variable. Even-numbered columns use IPs.
Learning is lagged one period in all specifications. The dependent variable, PJ , measures price informativeness. ESS is
measured using the median sentiment rating from RavenPack. The indicator variable Negative takes on the value of one if
ESS ≤ 47. The indicator variable Positive takes on the value of one if ESS ≥ 47. The table presents Neg − Pos as a test of
whether negative and positive news induce differential price informativeness. The matrix Xit contains the natural logarithm
of the following control variables: the number of news releases (Articles), total trading volume (V olume), average market
capitalization over the time period (not shown), the number of owning institutional investors (No.Inst.), and total institutional
ownership of shares (Inst.Own.). The X matrix also contains the average daily price volatility over the period (V olatility) and
indicator variables for whether period t contains or corresponds to stock i’s quarterly or annual filings. Stock and year-month
fixed effects are included. Standard errors are clustered by stock and year-month. The sample is made up of approximately
3,300 stocks and 66 months.

Panel A. Large Stocks

Mutual Funds Hedge Funds Difference

(1) (2) (3) (4) (5) (6)

Learning -.059*** -.103*** .022* .036 -.000 -.003*

(s.e.) (.016) (.026) (.012) (.022) (.000) (.002)

Negative -.073* -.073* -.073* -.073* -.081** -.081**

(.041) (.040) (.041) (.041) (.040) (.040)

Positive .060* .061* .062* .062* .071** .070**

(.035) (.035) (.035) (.035) (.035) (.035)

Neg − Pos -.133** -.134** -.134** -.135** -.152** -.151**

(s.e.) (.062) (.062) (.062) (.062) (.062) (.062)

Panel B. Small Stocks

Learning -.001 -.006 .002 -.013 -.001* -.010***

(s.e.) (.014) (.022) (.012) (.024) (.001) (.003)

Negative -.110** -.110** -.110** -.109** -.095** -.093**

(.042) (.042) (.042) (.042) (.043) (.043)

Positive .021 .021 .021 .021 .024 .023

(.037) (.037) (.037) (.037) (.035) (.035)

Neg − Pos -.131* -.130* -.131* -.130* -.118* -.116*

(s.e.) .070 .070 .069 .069 .067 .067

Panel C. Micro Stocks

Learning -.023 -.050** -.007 -.032 -.002*** -.011***

(s.e.) (.015) (.022) (.011) (.022) (.001) (.004)

Negative -.058 -.058 -.059 -.059 -.070* -.070*

(.040) (.040) (.040) (.040) (.038) (.038)

Positive .057 .057 .058 .058 .056 .056

(.036) (.036) (.036) (.036) (.035) (.035)

Neg − Pos -.114* -.114* -.117* -.117* -.126** -.127**

(s.e.) .059 .059 .059 .059 .057 .058
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Section 4.4. Information Acquisition and Other Investors - Robustness

The robustness checks from the previous section have been applied to the results in Table

3.3. The results quantitatively and qualitatively remain unchanged. Table 3.3 defines Low

and High as the lower and upper quartiles, deciles, and terciles of expected learning by

other investors. Upon observing Table 3.3, it could be said that the results are stronger

when using a more strict definition of Low and High (i.e., when using deciles instead of

quartiles or terciles). However, the main takeaway is that the results remain qualitatively

the same. That is, when it comes to acquiring information, hedge funds care more about

what mutual funds are doing than vice versa.

As another robustness check and to further study Prediction 4, the analysis is repeated

on sized-based subsamples. The results in Table 4.8 show that the relationship described in

Prediction 4 is strongest among large and small stocks.
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Table 4.8: Information Acquisition and Other Investors - NYSE Breakpoints

This table presents results from testing whether hedge funds and mutual funds condition their information acquisition on
expected learning from their each other and partitions the sample by size using NYSE Breakpoints. Panel A uses large stocks
only. Panel B uses small stocks. Panel C uses micro stocks. The tests utilize the regression model in equation (3.5) to calculate
the expected level of other investor type learning. Then the regression model in equation (3.6) is used to test whether investors
learn more when it is expected that the other investor type will learn less. Odd-numbered columns define t in monthly terms.
Even-numbered columns define t as the time period 15 days prior to an earnings announcement date while t− 1 corresponds to
15 day period just prior to t. The dependent variables Learningh and Learningm are measured using either Requests or IPs.
The matrix Xit contains the natural logarithm of the following control variables: the number of news releases (Articles), total
trading volume (V olume), average market capitalization over the time period (not shown), the number of owning institutional
investors (No. Inst.), and total institutional ownership of shares (Inst. Own.). The X matrix also contains the average daily
price volatility over the period (V olatility) and indicator variables for whether period t contains or corresponds to stock i’s
quarterly or annual filings. Low is equal to one when learning from the other investor type for a given stock is predicted
to be in the lower quartile. High is equal to one when learning from the other investor type for a given stock is predicted
to be in the upper quartile. The table presents Low − High as a test of whether low expected learning from others results
in different information acquisition than when learning from others is expected to be high. The control variables contained
in Y include Negative, Positive, and X. Stock and year-month fixed effects are included. Standard errors are clustered by
stock and year-month and the Murphy-Topel correction has been applied for predicted regressors. The sample is made up of
approximately 3,300 stocks and 66 months.

Panel A. Large Stocks

Mutual Funds Hedge Funds

Requests IPs Requests IPs

(1) (2) (3) (4) (5) (6) (7) (8)

Low .016 .020 .030 .070** .380** .346*** .323*** .330***

(s.e.) (.032) (.047) (.021) (.028) (.145) (.107) (.091) (.071)

High -.055 -.044 .013 -.018 -.083 -.128 -.127** -.163**

(.036) (.049) (.030) (.040) (.081) (.112) (.054) (.062)

Low −High .071 .064 .017 .089* .463*** .474*** .450*** .493***

(s.e.) (.052) (.062) (.038) (.047) (.164) (.154) (.103) (.090)

R2 .677 .626 .783 .742 .588 .565 .698 .656

Observations 42,473 13,956 42,473 13,956 42,473 13,956 42,473 13,956

Panel B. Small Stocks

Low -.016 .018 .026 .040 .254** .292** .207*** .190**

(s.e.) (.027) (.047) (.018) (.031) (.121) (.123) (.078) (.078)

High .010 .042 .018 -.023 -.046 -.052 -.061 -.078

(.032) (.052) (.023) (.039) (.084) (.107) (.038) (.059)

Low −High -.026 -.024 .008 .063 .300** .344*** .268*** .268***

(s.e.) (.042) (.070) (.030) (.047) (.144) (.167) (.086) (.092)

R2 .564 .494 .664 .587 .523 .502 .601 .565

Observations 37,838 11,926 37,838 11,926 37,838 11,926 37,838 11,926

Panel C. Micro Stocks

Low .039 .123*** .048** .093*** .257*** .136 .184*** .125***

(s.e.) (.024) (.032) (.020) (.025) (.075) (.084) (.042) (.046)

High .003 -.028 -.013 -.046 .025 .088 -.038 -.031

(.027) (.040) (.021) (.030) (.049) (.067) (.025) (.037)

Low −High .035 .152*** .061** .138*** .232** .048 .223*** .157***

(s.e.) (.038) (.054) (.031) (.040) (.092) (.106) (.050) (.058)

R2 .575 .496 .649 .571 .468 .450 .504 .470

Observations 48,900 13,480 48,900 13,480 48,900 13,480 48,900 13,480

50



CHAPTER 5: CONCLUSION

This paper extends the classic Grossman and Stiglitz (1980) setting to explore the in-

teraction between short-sale prohibitions and information acquisition. When news gener-

ates differences of opinions, constrained investors will be relatively optimistic or pessimistic.

When relatively pessimistic, they expect to be bound by their short-sale prohibition. Fewer

constrained investors acquire costly information in this scenario since they anticipate being

unable to trade. In response, more unconstrained investors acquire information.

The model makes several unique predictions. First, relative to hedge funds, fewer mutual

funds acquire information following news with positive sentiment than following news with

negative sentiment. Second, hedge fund information acquisition is more sensitive to the

information acquisition of mutual funds than vice versa. Third, since the informativeness

of prices depends on information acquisition, the model also highlights a link between the

sentiment of recent news and the information content of prices: prices are more informative

following negative sentiment than following positive sentiment.

A new dataset is employed to verify the model’s predictions. This dataset was derived

from records of activity on the EDGAR filing system and a hand-collected sample of IP

addresses from hedge funds and mutual funds. Using direct measures of mutual fund and

hedge fund information acquisition, tests verify that relatively more mutual fund’s acquire

information following news with negative sentiment than positive. Also, the data show that

hedge funds are more sensitive to the information acquisition of mutual funds than vice versa.

Finally, tests verify that prices are more informative when more information is acquired and

when the sentiment of recent news has been negative.
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Overall, this paper highlights an important link between short-sale prohibitions and in-

formation acquisition. Namely, in the presence of short sale prohibited investors, information

acquisition is conditional on the sentiment of recent news.
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APPENDIX A: UPDATING BY UNINFORMED MUTUAL FUNDS AND
HEDGE FUNDS

Deriving E[θ|P ] entails following the logic developed in Section 2.2. The uninformed do

not know which regime will obtain, but they do know that there are only two possibilities.

Using this insight, the uninformed can update by considering being in either regime, and

accounting for the probability that either one obtains.

Being in this Regime 1 means (i) informed mutual funds demand positive shares and (ii)

informed mutual funds believe the asset to be undervalued. The observable signal, denoted

here by Sin, can be derived from equation (2.6) by removing the maximization function since

informed mutual funds have positive demand:

Sin = u− νµ

γ

(
θ − P

)
− ωδ

γ

(
E
[
θ|Sα, P

]
− P

)
. (A.1)

This signal can be refined by expanding E
[
θ|Sα, P

]
using equations (2.9) and (2.10):

S1 =

[
P (νµ+ ωδ)− Sinγ

][
τθ + τα + τI(

νµ+ ωδ
)(
τα + τI

)
+ νµτθ

]
︸ ︷︷ ︸

Observable Signal

= θ + Z1. (A.2)

Thus, the price has been transformed into a signal equal to the payoff plus Z1, where,

Z1 =
α
(
ωδτα

)
− u
(
γ
νµ

)[
(νµ+ ωδ)τI + νµ(τθ + τα)

]
(
νµ+ ωδ

)(
τα + τI

)
+ νµτθ

. (A.3)

Notably, Z1 contains only two unknowns, α and u. These two variables are indepen-

dent normal random variables and are combined additively after being multiplied by known

scalars. As such, Z1 is a mean-zero normal random variable with precision τ1. To see τ1,

rewrite equation (A.3) using scalars A and B:

Z1 = Aα +Bu. (A.4)
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Since A and B are known and α and u are independent normal random variables, the

precision of Z1 is as follows:

τ1 =
(A2

τα
+
B2

τu

)−1

. (A.5)

Being in Regime 2 means (i) informed mutual funds do not trade and (ii) informed

mutual funds believe the asset to be overvalued. The observable signal, denoted here by

Sout, can be written from equation (2.6) by replacing the maximization function with zero

since informed mutual funds do not trade:

Sout = u− νµ

γ

(
θ − P

)
. (A.6)

This signal can be refined into the sum of θ and noise:

S2 =

[
Pνµ− Soutγ

][
1

νµ

]
︸ ︷︷ ︸

Observable Signal

= θ + Z2. (A.7)

Z2 is a mean-zero normal random variable with precision τ2. Deriving Z2 and τ2 is shown

as follows:

Z2 = −u
( γ
νµ

)
, (A.8)

τ2 =
(νµ
γ

)2

τu. (A.9)

Uninformed investors observe only one signal from the price, S = Sin = Sout. However,

they can transform this signal into two different refined signals, S1 and S2. Uninformed

investors cannot simply use the refined signal from the regime that is more likely, since there

remains some probability that the observable signal comes from the less-likely regime. Up-

dating from the price requires using the explicit function for E
[
θ|P
]

and giving consideration

to both regimes. Indeed, the goal of understanding the price’s signal to uninformed investors
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is to calculate E[θ|P ], which can be written by definition as follows:

E
[
θ|P
]

=

∞∫
−∞

θf(θ|P )dθ =

∞∫
−∞

θ
f(θ, P )

f(P )
dθ. (A.10)

The joint density of θ and P can be expanded to recognize that the price can exist under

two regimes:

f(θ, P ) = f(θ, P,E[θ|Sα, P ] > P )︸ ︷︷ ︸
Regime 1

+f(θ, P,E[θ|Sα, P ] ≤ P )︸ ︷︷ ︸
Regime 2

. (A.11)

To explicitly write out the density functions comprising equation (A.11), note that each

contains three random variables that remain unknown to the uninformed, θ, α, and u. The

joint density of the payoff, the price, and the realization of Regime 1, for example, is the

probability that θ, α, and u combine such that a given θ is observed, Regime 1 is realized,

and a given price is obtained (equivalent to S1 being observed). This joint probability density

can be written as follows:

f(θ, P,E[θ|Sα, P ] > P ) = f(θ, S1,Regime 1) = fθ(θ)

∞∫
−∞

fα(α)Fu(ũ)fu(u1)dα. (A.12)

This density can be understood as follows: First, take the probability of obtaining any

given payoff, fθ(θ). For every payoff there exists infinite combinations of α and u that

produce the observed price (or S1) and Regime 1. Thus, the density function integrates over

every possible combination by integrating over every possible α. For every (θ, α) pair, the

probability that Regime 1 obtains is equivalent to the probability that u is below a certain

threshold, denoted ũ, which is the cutoff point between regimes. That is, ũ is the value at

which E[θ|Sα, P ] = P . Finally, for every (θ, α) pair, there exists only one possible u that will

produce the observed S1 in Regime 1. When matched with the (θ, α) pair, u1 is the value

that produces the S1 observed.
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The joint density of the payoff, the price, and the realization of Regime 2 can be written

in similar fashion:

f(θ, P,E[θ|Sα, P ] ≤ P ) = f(θ, S2,Regime 2) = fθ(θ)

∞∫
−∞

fα(α)[1− Fu(ũ)]fu(u2)dα. (A.13)

The joint density of the payoff and the price can be seen by combining equations (A.12)

and (A.13):

f(θ, P ) = fθ(θ)

∞∫
−∞

fα(α)
[
Fu(ũ)fu(u1) + [1− Fu(ũ)]fu(u2)

]
dα. (A.14)

Finally, the marginal density of the price, needed in the denominator of equation (A.10),

can be found by integrating equation (A.14) over θ. Thus, using equations (A.10) through

(A.14), uninformed investors can update their beliefs using the price.

The variables used in equation (A.14) are derived below. As noted, u1 is the value that

when combined with a given θ and α produces S1. Recall, equation (A.2) shows that S1 is

the sum of θ with Z1. Using this identity combined with the derivation of Z1 in equation

(A.3), u1 can be written as follows:

u1 =

[
θ − S1 + α

( ωδτα
(νµ+ ωδ)(τα + τI) + νµτθ

)][(νµ+ ωδ)(τα + τI) + νµτθ
(νµ+ ωδ)τI + νµ(τθ + τα)

][
νµ

γ

]
. (A.15)

Similarly, u2 is the value that when combined with a given θ produces S2. Using equations

(A.7) and (A.8), u2 can be seen as follows:

u2 =
[
θ − S2

]νµ
γ
. (A.16)

Finally, ũ is the cutoff point between Regime 1 and Regime 2. That is, ũ is the value

that when combined with θ and α equates the price with E[θ|Sα, P ]. The complete form of
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ũ can be shown using equations (B.2a), (B.2b), and (B.3):

ũ =
[
θ
(
τα + τI

)
+ ατα − P

(
τθ + τα + τI

)]( νµ
γτI

)
. (A.17)
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APPENDIX B: UPDATING BY INFORMED MUTUAL FUNDS

At the trading stage, informed mutual funds have observed the initial signal (Sη), the

noisy signal (Sα), and the price, thus they know their own demand as well as the demand

from retail investors and the uninformed. Informed mutual funds remain uncertain, how-

ever, regarding the demand from informed hedge funds and noisy supply. With this in mind,

informed mutual funds consider what they know upon receipt of the price to form an observ-

able signal. They produce this signal by rearranging the market clearing condition according

to what they know and what remains unknown:

−ν(1− µ)XHP − ωδXMS − ω(1− δ)XMP −XR︸ ︷︷ ︸
Known/Observable

= νµXHθ − u︸ ︷︷ ︸
Unknown

. (B.1)

This signal can by refined by expanding the optimal demand function of informed hedge

funds into known and unknown elements:

SI =
(
− ν(1− µ)XHP − ωδXMS − ω(1− δ)XMP −XR

)( γ
νµ

)
+ P︸ ︷︷ ︸

Observable Signal

(B.2a)

= θ −
( γ
νµ

)
u. (B.2b)

Informed mutual funds can transform the price into a signal that is the sum of θ and

noise. Equipped with SI , informed mutual funds update their beliefs on θ:

E
[
θ|Sα, P

]
=
ταSα + τISI
τθ + τα + τI

, (B.3)

where τI = (νµ
γ

)2τu.
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APPENDIX C: STEPS IN NUMERICAL SIMULATION

Numerical simulation is required to solve for equilibrium learning and produce compar-

ative statics. The steps to solve for equilibrium are detailed below. The parameters used in

the simulation are summarized in Table ??.
1. Set model parameters (i.e., masses, precisions, and costs). Fix δ and pick an initial

signal, Sη.

2. Make a conjecture for the portion of informed hedge funds in equilibrium, µ.

3. Draw a random triplet, (θ, α, u) and conjecture a market clearing price. Compute

updated beliefs from the price using equations (2.7) and (2.9). Compute optimal

demands using equation (2.2). Alter the price conjecture until the market clearing price

has been found (i.e., equation (2.3) holds). Repeat this step 10, 000 times, collecting

the realized profits for each investor type using equation (2.1). Compute the average

difference in realized profits between informed and uninformed hedge funds.

4. Repeat Steps 2 and 3, altering the µ conjecture, until the average profit differential

is equal to κθ (i.e., enforce hedge funds’ indifference condition, equation (2.4a)). The

resultant µ represents the optimal portion of informed hedge funds given the parameters

chosen in Step 1.

5. Repeat Steps 1 through 4 over a grid of δ values ranging from zero to one. For each δ,

collect the average profit differential between informed and uninformed mutual funds

which is the numerical equivalent to the left-hand side of equation (2.4b). Select δ?

from the grid of δ values. If the average profit differential from each δ is larger than

κα then δ? = 1. If the average profit differential from each δ is smaller than κα then

δ? = 0. If neither of the previous cases fit, δ? is selected as the δ which produces

the average profit differential nearest to κα. The µ from Step 4 and δ? from this step

constitute equilibrium, (µ?, δ?).
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Table C.1: Summary of Simulation Parameters

This table summarizes the simulation parameters used to provide the figures shown in this paper. The simulation process is
summarized in Section 2.2 of the text and is more detailed in the Appendix.

Parameter Symbol Values

Mass of Hedge Funds ν 1.00
Mass of Mutual Funds ω 1.00
Precision of Payoff τθ 1.00− 3.00
Precision of Initial Signal τη 1.00− 3.00
Precision of Noisy Signal τα 1.00− 3.00
Precision of Noisy Supply τu 1.00− 3.00
Inventory Holding Cost Parameter γ 1.15− 2.00
Cost to Observe θ κθ 0.10− 0.40
Cost to Observe Sα κα 0.025− 0.10
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APPENDIX D: DATA SOURCES AND SUMMARY STATISTICS

The EDGAR log files contain records of requests from masked IP addresses to view filings

within the SEC’s EDGAR database. An example of data from the log files is found in Panel

A of Table D.1. While the fourth octet of every IP address has been masked with a random

set of three letters, the IP address can nevertheless be linked to investments firms using

the first three octets. This is due to the fact that organizations typically register blocks

of IP addresses, with the most common block containing 256 IPs. All 256 IP addresses

usually have the same first three octets. Thus, investment firms that have acquired blocks

of IP addresses are not fully masked by the randomized fourth octet. Using historical IP

address records from MaxMind, many investment firms and their activity on EDGAR are

identifiable. As an example, Panel B of Table D.1 shows that the masked IP addresses in

Panel A can be linked to actual investment firms.

A summary of the data derived from the EDGAR log files is provided in Table D.2. Also

included in Table D.2 is a summary of the RavenPack data. The RavenPack data is used to

measure ESS, which is calculated as the median event sentiment score from all articles on

RavenPack over a given time period, with 50 indicating neutral sentiment.

Data on stock returns, market capitalization, and trading volume has been acquired

from CRSP. Weller (2017) has been followed in order to calculate price jump ratios using

returns from CRSP. The TAQ dataset has been used to measure trading volumes and to

calculate buy-sell ratios. Earnings announcement dates and other stock-level information has

been acquired from Compustat. Institutional ownership data has been taken from Thomson

Reuters. The SEC’s MIDAS data has been used to measure trading and quote-cancellation

activity.
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Table D.1: EDGAR Log File Example

This table shows an example of the data contained in the EDGAR log files. Panel A shows the data as it appears in raw form.
Panel B shows an example of how the data appears after investment firms have been unmasked and after filings have been
specified.

Panel A. Example of EDGAR Log Files

IP Address Date Time CIK Accession

154.61.131.ecg 20170531 09:47:33 051143 000104746917001061

205.173.24.fhf 20170531 11:07:28 274191 000002741917000008

216.230.48.igg 20170924 12:27:02 320193 000032019317000009

165.71.0.aah 20170924 16:12:55 831259 000083125917000016

Panel B. Example of Unmasked EDGAR Log Files

Investment Firm Date Time Ticker Filing

Dodge & Cox 20170531 09:47:33 IBM 10-K for 2016

Eaton Vance 20170531 11:07:28 TGT 10-K for 2016

American Century 20170924 12:27:02 AAPL 10-Q for Q2 2017

John Hancock 20170924 16:12:55 FCX Earnings for Q2 2017
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Table D.2: Summary of EDGAR Log Files, Stocks, and RavenPack

This table provides summary statistics for the activity of mutual funds and hedge funds in the EDGAR log files and for the
RavenPack data. Between the 444 investment firms unmasked, a total of 17.9 million requests from EDGAR have been observed.
Panel A summarized the unmasked institutions and their activity on EDGAR. Panel B summarizes institutional activity on
EDGAR at the stock level. The variables in Panel B measure the average activity for stocks either monthly or in the 30 days
leading up to earnings announcements (EA Date). The figures in parentheses in Panel B are averages for large stocks only. The
RavenPack data consists of almost 19 million news items for over the sample of 3,300 stocks. Panel C shows a summary of the
RavenPack data. For example, the average stock has 56 news items per month and a median event sentiment score (ESS) of
52.68.

Panel A. Institutions, Stocks, and EDGAR Activity

Number

Mutual Fund Companies 171 (80% of AUM; 66% of total funds)

Hedge Fund Companies 273

Stocks 3,375 (58% large/small; 42% micro)

Months 66 (Jan. 2012 - June 2017)

EA Dates 48,782

Total Requests 17,912,730

Total Requests prior to EA Date 3,365,703

Panel B. Stock-Level EDGAR Activity

Mean

Mutual Funds Difference

Monthly Requests per Stock 28 (124) 22 (93)

EA Date Requests per Stock 59 (130) 45 (91)

Monthly IPs per Stock 8 (38) 6 (31)

EA Date IPs per Stock 17 (41) 13 (32)

Panel C. RavenPack Summary

Mean Median

No. Items per Month 56.24 24.47

No. Items per EA Date 68.79 34.00

Median ESS Monthly 52.68 52.23

Median ESS EA Date 52.60 51.92

Std. Dev. of ESS Monthly 7.57 7.19

Std. Dev. of ESS EA Date 5.40 5.22
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