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ABSTRACT 

Robin Leigh Armstrong: Epigenetic regulation of DNA replication 
(Under the direction of Robert J. Duronio) 

 

How origins of DNA replication are specified and activated in the context of an intact 

metazoan genome remains poorly understood. In contrast to Saccharomyces cerevisiae, 

replication initiation in metazoan genomes is not directed by well-defined sequence motifs. 

Rather, local chromatin environments have emerged as potential regulators of replication, 

yielding early and late replicating regions of the genome. Transcriptionally active, accessible 

euchromatin typically replicates early during S phase, whereas transcriptionally repressive, 

inaccessible heterochromatin typically replicates late. Current models of replication posit a 

stochastic process in which a higher density of specified origins in euchromatin compared to 

heterochromatin increases the probability of replication initiation, resulting in the earlier 

replication of euchromatin relative to heterochromatin. Despite strong genome-wide 

correlations between replication and chromatin, a true causal relationship between the two 

has yet to be determined. We investigated how chromatin organization impacts replication in 

Drosophila using our genetic platform in which endogenous histone genes are replaced with 

transgenic histone genes encoding mutations that prevent modification of specific histone 

residues. To explore the relationship between euchromatin and replication, we implemented a 

whole-genome sequencing method to produce genome-wide replication timing profiles. We 

analyzed the X Chromosome, which in Drosophila is 2-fold more transcriptionally active, 
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replicates earlier, and is hyper-acetylated at H4K16 in XY males relative to XX females. 

H4K16R mutation prevents transcriptional hyper-activation and earlier replication of the 

male X chromosome, consistent with the notion that transcription promotes early replication. 

To determine whether perturbation of heterochromatin affects late replication, we generated 

replication profiles from H3K9R mutant tissue. Despite well-known correlations between 

late replication and heterochromatin, perturbation of heterochromatin structure through 

H3K9R mutation does not result in large-scale changes in replication timing suggesting 

critical regulation beyond chromatin structure. To identify other contributors to replication 

timing control, we explored the relative contributions of cell lineage, cell cycle, and the 

trans-acting factor Rif1. We identified that cell lineage, rather than changes in cell cycle 

status, drive replication timing programs. Furthermore, Rif1 regulates replication timing in a 

tissue-specific manner supporting the notion that additional mechanisms beyond chromatin 

structure are key regulators of replication of metazoan genomes. 
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CHAPTER 1 – INTRODUCTION 

 
DNA replication of metazoan genomes 

 In an average human lifetime, 1016 cell divisions occur within the body (Milo et al. 

2010). During each cell division, the genetic information encoded from one parent cell is 

passed to two daughter cells. Genome integrity is maintained during cell division through the 

coordination of many tightly controlled mechanisms that ensure complete and accurate 

genome duplication while preventing deleterious mutation and chromosome mis-segregation. 

If these mechanisms go awry, severe developmental outcomes, such as the onset of disease, 

can occur. Therefore, understanding how DNA replication is regulated in space and time is 

critical to understanding the fundamental aspects of cell division and disease. 

 Proliferating animal cells are faced with the difficult task of duplicating a large, 

complex genome in a short period of time during each cell division cycle. In mammals, this 

is accomplished through replication of the genome in temporally and spatially separated 

segments of approximately 400-800 kilobases, termed replication domains (Pope et al. 2014). 

DNA replication initiates from thousands of sites across the genome each S phase, termed 

origins of replication, to replicate large genomes in a timely manner. To ensure that the 

genome replicates once and only once per S phase, origin licensing and origin activation 

occur in two distinct cell cycle phases. Origins of replication are licensed during G1 phase of 

the cell division cycle through the concerted activities of the origin recognition complex 

(ORC), Cdc6, Cdt1, and the mini-chromosome maintenance (MCM) complex (Bell and 



 
2 

 

Stillman 1992; Liang et al. 1995; Coleman et al. 1996; Rowles et al. 1996; Nishitani et al. 

2000). The first step in origin licensing involves ORC binding to chromatin (Duzdevich et al. 

2015). Next, Cdc6 binds to ORC, which is necessary to recruit a single Cdt1-bound MCM2-7 

hexamer (Duzdevich et al. 2015). The origin of replication is considered licensed when a 

second Cdt1-bound MCM2-7 hexamer is loaded adjacent to the first to form a head-to-head 

double hexamer (Evrin et al. 2009; Remus et al. 2009).  

 Upon S phase entry, licensed origins of replication become competent to activate, 

primarily through the activity of two major kinases, cyclin-dependent kinases (CDKs) and 

Dbf4-dependent kinases (DDKs). CDKs and DDKs phosphorylate a host of replication 

initiation factors, stimulating the recruitment of proteins necessary to form, and initiate 

bidirectional DNA synthesis from, the mature Cdc45/MCM2-7/GINS (CMG) replicative 

helicase. Importantly, while tens of thousands of origins are licensed in mammalian genomes 

each G1 phase, only a small fraction successfully activate DNA synthesis during S phase. 

This regulation is controlled in part by a subset of replication initiation factors (Sld2, Sld3, 

Dbf4, and Dpb11) that exist at limiting concentrations, providing a temporal order in which 

replication origins activate (Mantiero et al. 2011; Collart et al. 2013). Because origin 

activation is a stochastic process, only a small fraction of origins initiate synthesis during S 

phase, possibly due to differential activation efficiency of individual origins (Rhind et al. 

2010). Although we now know the 42 protein factors required for origin activation (Yeeles et 

al. 2015), many unanswered questions remain regarding the mechanisms that dictate 1) 

where origins of replication are licensed in G1, 2) how origins of replication are selected for 

activation during S phase, and 3) when an origin activates DNA replication during S phase. 
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Regulation of DNA replication timing 

Initiation of bidirectional DNA synthesis from origins of replication is staggered in 

space and time during S phase. This results in spatially separated regions of actively 

replicating DNA; this asynchrony of replication is termed the DNA replication timing (RT) 

program (Taylor 1958; Taylor 1960; Woodfine et al. 2004; Ryba et al. 2010; Pope et al. 

2014). Although asynchronous origin firing is evolutionarily conserved among eukaryotes, 

the biological function and control mechanisms of RT programs are not completely 

understood. Importantly, altered RT of cancer-related genes correlates with changes in gene 

expression and contributes to malignant states (De and Michor 2011; Koren et al. 2012; 

Black et al. 2013; Fritz et al. 2013; Sima and Gilbert 2014; Polak et al. 2015; Rivera-Mulia 

and Gilbert 2016). Furthermore, genome-wide RT changes observed in cancer cells have 

been postulated to occur early during disease progression and may be sufficient to predict 

common disease-associated translocations (Koren et al. 2012; Donley and Thayer 2013; 

Rivera-Mulia et al. 2017; Du et al. 2019). We still do not understand whether RT change is a 

cause or consequence of disease progression, necessitating further understanding of the 

mechanisms regulating RT programs in both normal and disease contexts.   

Local chromatin structure 

One proposed mechanism for the regulation of RT is chromatin structure. Genome 

replication occurs in the context of chromatin, which is comprised of structures termed 

nucleosomes where ~147 bp of DNA wraps around an octamer of histone proteins. Two 

polypeptides each of histones H2A, H2B, H3, and H4 make up the protein octamer core of 

the nucleosome, and histone H1 serves as the linker histone. Histone post-translational 

modification (PTM) of the unstructured N-terminal histone tails modulates nucleosome 
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function and density along DNA, establishing chromatin states that are either “open” 

(euchromatin, enriched in H3/H4 acetylation (ac) and H3K4 methylation (me)) or “closed” 

(heterochromatin, enriched in H3K9me2/3, H4K20me3, and H3K27me3). The chromatin 

landscape influences the binding of trans-acting factors primarily through either direct 

binding of factors to specific histone PTMs or through recruitment of factors to open, 

accessible chromatin. In metazoans, chromatin is thought to influence both recruitment of 

abundant trans-acting factors (ORC, Cdc6, Cdt1 and MCM2-7) that license origins in G1 and 

accessibility of DNA to limiting replication initiation factors (Sld2, Sld3, Dbp11, and Dbf4) 

that activate origins of replication in S phase (Mantiero et al. 2011; Collart et al. 2013; Das et 

al. 2015; Miotto et al. 2016). This is in contrast to S. cerevisiae, where origins of replication 

are sequence defined such that ORC binds to a conserved motif termed the autonomously 

replicating sequence (ARS) (Stinchcomb et al. 1979). As all other eukaryotes studied to date 

lack sequence-defined origins of replication, the exact mechanisms through which chromatin 

dictates the genome-wide landscape of licensed origins remain unclear.  

ORC preferentially binds to G-rich, accessible chromatin, resulting in more licensed 

origins within “open” euchromatic regions of the genome relative to “closed” 

heterochromatic regions (Delgado et al. 1998; MacAlpine et al. 2010; Cayrou et al. 2011). 

Furthermore, current models suggest that increased chromatin accessibility promotes the 

loading of more MCM complexes per ORC, further increasing the density of origins in 

euchromatic regions relative to heterochromatic regions (Das et al. 2015). Upon entry into S 

phase, replication initiation is thought to follow a stochastic model based largely on 

chromatin accessibility (Yang et al. 2010; Comoglio and Paro 2014; Gindin et al. 2014; Das 

et al. 2015). Replication initiation factors are recruited to euchromatic origins with a higher 
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probability than heterochromatic origins due to an increased density of licensed origins in 

accessible regions of the genome relative to inaccessible regions.  Differential origin 

activation within euchromatic and heterochromatic regions of the genome contributes to the 

relatively earlier RT of euchromatin relative to heterochromatin (Mantiero et al. 2011; 

Collart et al. 2013; Das et al. 2015). However, correlations between early RT and 

euchromatin and late RT and heterochromatin are not absolute, suggesting additional modes 

of regulation beyond chromatin structure.  

Transcriptional activity 

Transcriptionally active regions of the genome tend to replicate earlier during S phase 

whereas transcriptionally repressive regions tend to replicate later during S phase (Goldman 

et al. 1984; Lubelsky et al. 2014). Because transcriptional activity is also strongly correlated 

with chromatin structure, it remains unclear whether the relationship between transcriptional 

activity and RT is a consequence of chromatin structure or if transcriptional activity directly 

influences RT. Despite strong correlations between active transcription and early RT, 

extremely high levels of transcription have been shown to inhibit replication initiation 

(Martin et al. 2011). Furthermore, transcriptional activity can displace the MCM complex, 

changing the origin location from the initial site of ORC binding (Gros et al. 2015; Powell et 

al. 2015). Although transcriptional activity can directly influence origins of replication, 

increasing evidence suggests that RT and transcriptional activity are regulated by a common 

chromatin environment (Lubelsky et al. 2014).  

Transcriptionally active, euchromatic regions of the genome contain more origins of 

replication than lowly transcribed, heterochromatic regions of the genome (MacAlpine et al. 

2010; Eaton et al. 2011; Miotto et al. 2016). Enrichment of active replication origins at 
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promoters is thought to be driven by the open chromatin conformation of promoters—active 

transcription maintains accessibility at promoters, thus promoting origin licensing in G1 or 

activation in S phase (MacAlpine et al. 2010; Dellino et al. 2013; Miotto et al. 2016). Dellino 

et al. mapped ~13,000 ORC1 binding sites and found that almost all mapped origins were 

associated with transcription start sites of either coding or noncoding RNAs (Dellino et al. 

2013). Similarly, Miotto et al. mapped ORC2 binding genome-wide and found similar 

binding profiles to the independently derived ORC1 data (Miotto et al. 2016). Importantly, 

the ORC enrichment at promoters is most likely a consequence of the open chromatin 

environment as there is only a modest genome-wide correlation between ORC binding and 

transcriptional activity (Miotto et al. 2016).  

Three-dimensional genome architecture 

While both local chromatin structure and transcriptional activity influence genome-

wide RT from yeast to humans, emerging evidence points to three-dimensional genome 

architecture as a previously unappreciated, key contributor to RT control (Rivera-Mulia and 

Gilbert 2016). The genome is organized within subnuclear compartments such that early 

replicating regions tend to be located at the nuclear interior (active compartment “A”), and 

late replicating regions tend to be located at the nuclear or nucleolar periphery (inactive 

compartment “B”) (Visser et al. 1998; Lieberman-Aiden et al. 2009). Within each 

compartment, the genome is further organized into topologically associated domains (TADs), 

sub megabase-sized DNA sequences that display frequent physical interaction within three-

dimensional space. Remarkably, replication domain boundaries share a near one-to-one 

correlation with topologically associated domain (TAD) boundaries (Moindrot et al. 2012; 

Pope et al. 2014). It is now understood that bioinformatically-defined replication domains 
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and TADs and cytologically-defined replication foci likely represent the same structures 

(Xiang et al. 2018). However, TAD boundaries are not absolutely required for maintenance 

of RT as TAD boundary disruption, either through deletion of DNA sequences at TAD 

boundaries or depletion of the protein components required for establishing interactions 

between adjacent TADs, has no effect on RT (Oldach and Nieduszynski 2019; Sima et al. 

2019). Interestingly, while TAD boundaries are not required for RT maintenance, emerging 

evidence suggests that sequence elements within TADs (early-replication control elements, 

ERCEs) drive interactions between TADs required for maintenance of early RT (Sima et al. 

2019). While further study is necessary to provide mechanistic insight into the relationship 

between three-dimensional genome architecture and RT, our understanding of RT control 

mechanisms is beginning to parse out correlative versus causal relationships.   

Cell lineage 

During animal development, cells undergo progressive changes in genome structure 

and function in order to generate more differentiated cell types. Transcriptional programs 

differ between cell types, and cell type-specific transcriptomes are reflected by genome-wide 

changes in both three-dimensional arrangement of DNA within the nucleus and local 

chromatin structure. Interestingly, replication domain boundaries and TAD boundaries are 

stable structural units during cellular differentiation where the RT and subnuclear 

localization of individual replication domains/TADs differs in a lineage-specific manner 

(Pope et al. 2014). Approximately 50% of the genome displays differential RT between cell 

types, where constant timing regions (CTRs) display unchanged RT during development and 

timing transition regions (TTRs) progressively advance RT during development (Hiratani et 

al. 2008). The subnuclear position of TTRs changes coincidentally with RT change—the 
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TTR is positioned in compartment A in cells where RT has advanced. In fact, Heinz et al. 

demonstrated that manipulating the nuclear position of pericentric heterochromatin was 

sufficient to advance its RT in mammalian cells (Heinz et al. 2018).  

Cellular differentiation provides a unique system to track the dynamics of RT, 

transcription, chromatin accessibility, and three-dimensional genome architecture in 

developmental time. Studying RT in this fashion has revealed multiple instances where 

genome architecture and RT are mechanistically separable. Studies in the early Drosophila 

embryo have demonstrated that the onset of late replication precedes the establishment of 

constitutive heterochromatin suggesting that the hallmarks of heterochromatin (H3K9me2/3 

and HP1a enrichment) are not required for late RT (Yuan and O'Farrell 2016). Furthermore, 

establishment of RT programs was shown to anticipate transcriptional programs in the early 

zebrafish embryo (Siefert et al. 2017) while transcriptional change often preceded RT change 

during differentiation of mammalian cells (Rivera-Mulia et al. 2015). From studies 

conducted in mammalian cells, we now know that correlations between RT, transcription, 

chromatin, and three-dimensional genome architecture become stronger as cells differentiate. 

Interestingly, strong correlations were shown to be restricted to genes located in CTRs 

(Rivera-Mulia et al. 2015), and these correlations are much weaker in TTRs (Besnard et al. 

2012; Takebayashi et al. 2012; Dileep et al. 2015). Collectively, these data raise the 

possibility that RT may be regulated differently between CTRs and TTRs and further 

emphasize that our current understanding of RT control in metazoan species is incomplete.  
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Replication timing: Genome instability and human disease 

Normal RT programs contribute to genome instability 

Many biological processes contribute to genomic instability, including the normal RT 

program. RT has been proposed to contribute to the non-random genome-wide distribution of 

mutations, where early replicating regions are more susceptible to trans chromosomal 

rearrangements and late replicating regions are more prone to cis translocations and to point 

mutations (Watanabe et al. 2002; Stamatoyannopoulos et al. 2009; Cui et al. 2012; Sima and 

Gilbert 2014; Supek and Lehner 2015; Du et al. 2019). Furthermore, late replicating regions 

and origin-depleted regions that are passively replicated by an adjacent origin (TTRs), 

experience a greater overall mutational burden than early replicating regions (Watanabe et al. 

2002; Hiratani et al. 2008; Watanabe and Maekawa 2010; De and Michor 2011). Many 

common structural mutations, fragile sites, hotspots for copy number alterations, and 

genomic rearrangement sites in cancer are found in TTRs, possibly due to the complicated 

nature of replicating these origin-depleted regions (Watanabe et al. 2002; Donley and Thayer 

2013; Rhind and Gilbert 2013).  It has been postulated that minimizing the mutational burden 

in early replicating regions of the genome helps to prevent mutation of ubiquitously 

expressed “housekeeping” genes. Consequently, tissue-specific genes located in TTRs and 

late replicating gene-poor regions of the genome experience the bulk of the mutational 

burden.  

RT alterations in cancer 

Recent single cell RT profiling studies demonstrate that RT programs are highly 

stable between individual cells of the same cell type, whereas properties such as epigenetic 

marks and transcription show dynamic cell-to-cell heterogeneity (Dileep and Gilbert 2018; 
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Ozgyin et al. 2019; Takahashi et al. 2019). The robustness of RT programs is further 

highlighted by the fact that almost every attempt to disrupt RT, including genetic 

perturbation of key RT control factors, results in little to no effect on genome-wide RT 

(Yokochi et al. 2009; Pope et al. 2014; Foti et al. 2016; Armstrong et al. 2018; Oldach and 

Nieduszynski 2019; Sima et al. 2019). Despite the robust nature of RT, RT programs are 

commonly altered in cancer, and altered RT programs have been proposed to be an early 

epigenetic event in disease progression (Ryba et al. 2012; Koren et al. 2014; Rivera-Mulia et 

al. 2017). Importantly, the proportion of, and the specific loci within, the genome that display 

altered RT are cancer type-specific with, for example, LNCaP prostate cancer cells 

displaying altered RT at 5.7% of the genome and acute lymphoblastic leukemia patient cells 

displaying altered RT at 9-18% of the genome (Ryba et al. 2012; Du et al. 2019). Because, in 

some instances, RT can differentiate disease and normal tissue in ways conventional 

transcriptomic analysis cannot, RT profiling has been proposed as a potential diagnostic tool 

for cancers with unique RT signatures (Rivera-Mulia et al. 2017).  

Amongst the classes of RT alterations observed in cancer is asynchronous replication, 

or the differential replication timing of homologous loci that normally replicate at the same 

time during S phase (Amiel et al. 1998; Litmanovitch et al. 1998; Korenstein-Ilan et al. 

2002). Interestingly, asynchronous replication has not only been observed for cancer-related 

genes in cancer cells, but has also been observed in peripheral lymphocytes of patients with 

solid tumors, pre-malignant cells, and in cells of individuals with a predisposition to cancer, 

suggesting that asynchronous replication may be an early event in cancer progression (Amiel 

et al. 1998; Reish et al. 2003; Cytron et al. 2011). Furthermore, in cancer cells, the RT of at 

least one entire chromosome is commonly severely delayed, and its replication may persist 
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into G2 phase or even into mitosis (Smith et al. 2001; Donley and Thayer 2013; Platt et al. 

2018). A chromosome-wide delay in RT is unsurprisingly associated with highly aneuploid 

karyotypes and a 30 to 80-fold increase in chromosomal rearrangement of the affected 

chromosome (Smith et al. 2001; Breger et al. 2004; Breger et al. 2005). Altogether, RT 

programs influence the non-random mutation distribution within cells, contribute to the early 

events of disease progression, and propagate genome instability of cancer cells emphasizing 

the need for a better understanding of the molecular mechanisms regulating RT programs in 

both normal and disease contexts.  
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CHAPTER 2- CHROMATIN CONFORMATION AND TRANSCRIPTIONAL 
ACTIVITY ARE PERMISSIVE REGULATORS OF DNA REPLICATION 

INITIATION IN DROSOPHILA1 
 

Introduction 

Animal cells duplicate large, complex genomes by initiating replication at distinct 

locations within the genome at different times during S phase. An evolutionarily conserved 

feature of this regulatory paradigm is a temporal order of DNA replication initiation events 

that results in characteristically early and late replicating regions of the genome (Rhind and 

Gilbert 2013). Such “replication timing” (RT) programs appear at early stages of animal 

development and ensure genome integrity during cell proliferation (Shermoen et al. 2010; 

Mantiero et al. 2011; Collart et al. 2013; Hamperl and Cimprich 2016; Yuan and O'Farrell 

2016; Almeida et al. 2018). Importantly, RT is associated with mutational burden and SNP 

density, as spontaneous mutations occur less frequently in early compared to late replicating 

regions of the genome (Stamatoyannopoulos et al. 2009; Donley and Thayer 2013). 

Furthermore, perturbed RT is thought to be an early epigenetic event that predisposes cancer 

and disease-associated genome rearrangement (Ryba et al. 2012; Donley and Thayer 2013). 

Notwithstanding their importance, mechanisms that control where and when DNA 

replication initiates within an animal genome remain poorly understood.  

 
1 This chapter previously appeared as an article in Genome Research. The original citation is as follows: 
Armstrong, R.L., Penke, T.J.R., Strahl, B.D., Matera, A.G., McKay, D.J., MacAlpine, D.M., and Duronio, R.J., 
2018. Chromatin conformation and transcriptional activity are permissive regulators of DNA replication 
initiation in Drosophila. Genome Research. Accepted. 
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In contrast to replication initiation in single-celled eukaryotes such as budding yeast, 

replication of animal genomes does not initiate at well-defined sequence motifs (Bell and 

Stillman 1992; MacAlpine et al. 2010; Miotto et al. 2016). Rather, two levels of genome 

organization have emerged as putative regulators of replication initiation: three dimensional 

arrangement of DNA within the nucleus and local chromatin structure, characterized in part 

by differential DNA accessibility (i.e. differential nucleosome occupancy) (Hiratani et al. 

2008; Pope et al. 2014; Heinz et al. 2018). Current models posit that these features of 

genome organization regulate replication by influencing trans-acting factor recruitment to 

sites of replication initiation (i.e. origins) (Mantiero et al. 2011; Collart et al. 2013; Pope et 

al. 2014; Das et al. 2015; Miotto et al. 2016; Rivera-Mulia and Gilbert 2016). In all metazoan 

organisms examined to date, transcriptionally active, accessible euchromatin generally 

replicates early during S phase, whereas transcriptionally repressive, inaccessible 

heterochromatin generally replicates late (Bell et al. 2010; Eaton et al. 2011; Lubelsky et al. 

2014). Despite strong genome-wide correlations between replication and chromatin structure 

in animal cells, efforts to determine a causal relationship between the two have been 

hampered by imprecise methods for manipulating chromatin structure in vivo. We therefore 

developed an approach for altering the distribution of accessible chromatin throughout the 

genome and determined if and how these changes in chromatin structure affect genome 

replication.  

Strategies to manipulate chromatin structure in animal cells often involve perturbation 

of factors that establish, interpret, or remove histone post-translational modifications (PTMs). 

Although informative, these studies cannot precisely determine functional roles for histone 

PTMs in DNA replication because most histone-modifying enzymes also have non-histone 
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substrates that may participate in DNA replication (Glozak et al. 2005; Huang and Berger 

2008). Therefore, to reduce potential pleiotropic effects of mutating histone-modifying 

enzymes, we employed a strategy in Drosophila to more precisely manipulate chromatin 

structure by mutating the histone genes themselves, an approach that is not currently feasible 

in other animal models. This strategy involves deleting the endogenous wild type histone 

genes and replacing them with transgenic copies encoding a single amino acid substitution 

that prevents PTMs of a particular histone residue (Günesdogan et al. 2010; McKay et al. 

2015). Here, we determine how two different histone mutations that affect chromatin 

organization and transcription in heterochromatin (H3K9R) and euchromatin (H4K16R), 

respectively, affect DNA replication initiation throughout the genome. 

 

Materials and Methods 

Complete genotypes 

 “12xHWT” (Histone Wild Type) refers to a control Bac-based transgene containing 12 copies 

of the 5kb histone wild type repeat unit containing all five replication dependent histone 

genes (McKay et al. 2015). “12xH3K9R” and “12xH4K16R” are identical transgenes except 

with a Lys to Arg substitution mutation at the 9th residue of histone H3 and 16th residue of 

histone H4, respectively. 

HWT: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-2xEYFP; 12xHWT/+ (McKay et al. 2015) 

H3K9R: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-2xEYFP; 12xH3K9R/+ (Penke et al. 2016) 

H4K16R: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-2xEYFP; 12xH4K16R/+ 

H3.3WT; H3WT: yw; H3.3A2x1, ΔHisC, twi-Gal4/Df(2L)BSC110, ΔHisC,UAS-2xEYFP; 

12xHWT/+ (Penke et al. 2018) 
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H3.3K9R; H3K9R: yw, H3.3BK9R; H3.3A2x1, ΔHisC, twi-Gal4/Df(2L)BSC110, ΔHisC,UAS-

2xEYFP; 12xH3K9R/+ (Penke et al. 2018) 

Zygotic, replication-dependent HWT: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-2xEYFP; 

12xHWT/+ 

Zygotic replication-dependent H4K16R: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-2xEYFP; 

12xH4K16R/+ 

Maternal/zygotic, replication-dependent HWT: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-

2xEYFP; 12xHWT/+ (from mothers of genotype ΔHisC, UAS-2xeYFP; 12xHWT) 

Maternal/zygotic, replication-dependent H4K16R: yw; ΔHisC, twi-Gal4/ΔHisC,UAS-

2xEYFP; 12xH4K16R/+ (from mothers of genotype ΔHisC, UAS-2xEYFP; 12xH4K16R) 

Zygotic, replication-dependent and replication-independent HWT: yw; ΔHisC, twi-

Gal4/ΔHisC,UAS-2xEYFP; 12xHWT, His415-4/His4r15-4 

Zygotic replication-dependent and replication-independent H4K16R: yw; ΔHisC, twi-

Gal4/ΔHisC,UAS-2xEYFP; 12xH4K16R, His4r15-4/His4r15-4 

Generation of H3K9R and H4K16R mutant genotypes 

All fly stocks were maintained on standard corn medium and crossing schemes to generate 

replication-dependent histone genotypes were performed as in (Penke et al. 2016). For first 

instar larval brain EdU experiments, the following crosses were performed: H3.3WT; H3WT) 

yw; H3.3A2x1, ΔHisC, twi-Gal4/CyO females were crossed to yw; Df(2L)BSC110, 

ΔHisC,UAS-2xEYFP/CyO; 12xHWT males and for H3.3K9R; H3K9R)  yw, H3.3K9R; 

H3.3A2x1, ΔHisC, twi-Gal4/CyO females were crossed to H3.3K9R; Df(2L)BSC110, 

ΔHisC,UAS-2xEYFP/CyO; 12xH3K9R/+ males. Note that only animals containing either the 

12xHWT or 12xH3K9R transgenes can complete embryogenesis as in Penke et al. 2018. To 
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generate zygotic, replication-dependent HWT and H4K16R mutants, ΔHisC, twi-Gal4/CyO 

mothers were crossed to ΔHisC, UAS-2xEYFP/CyO; 12xHWT/12xHWT or ΔHisC, UAS-

2xEYFP/CyO; 12xH4K16R/12xH4K16R fathers, respectively. To generate flies where both 

the maternal and zygotic contribution of histones were HWT or H4K16R mutant, ΔHisC, 

UAS-2xeYFP; 12xHWT or ΔHisC, UAS-2xEYFP; 12xH4K16R mothers, respectively, were 

crossed to ΔHisC, twiGal4/CyO fathers. To generate zygotic, replication-dependent and 

replication-independent HWT and H4K16R mutants, ΔHisC, twi-Gal4/CyO; His4r15-4 

mothers were crossed to ΔHisC, UAS-2xEYFP/CyO; 12xHWT, His4r15-4 or ΔHisC, UAS-

2xEYFP/CyO; 12xH4K16R, His4r15-4 fathers, respectively. For each H4K16R viability 

experiment, groups of fifty GFP+ first instar larvae of each genotype were separated from 

their wild type siblings into vials of standard corn medium and allowed to complete 

development. 

CRISPR-Cas9 Mutagenesis of His4r 

Two different gRNA oligos targeting the 5’UTR (target sequence: 5’-

CCTGTCAAATGAACGTTTACCTT-3’) and the 3’ adjacent intergenic region (target 

sequence: 5’- CCGAAAATAAGGTCCAACAAACT-3’) of the His4r gene were inserted 

into the pCFD3 vector. gRNA constructs were co-injected into embryos expressing Cas9 

from the nanos promoter (nanos-cas9) (Kondo and Ueda 2013). A 721-bp deletion spanning 

the entire His4r CDS (His4r15-4) was identified by PCR and is referred to as His4rΔ in this 

manuscript. The His4rΔ allele removes sequence between the following 5’ and 3’ 20nt 

flanking sequences, respectively: 5’-CTTATTAACAACAGTTTTCA-3’ and 5’-

CGCTTAGGGAGCACACAAAT-3’.  
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Culture conditions for embryo sorting 

A Union Biometrica BioSorter for large particle flow cytometry equipped with a 488-

nm solid state laser and accompanying FlowPilot software was used for identification and 

high throughput isolation of GFP-positive ΔHisC, UAS-2xEYFP/ΔHisC, twi-GAL4 mutant 

embryos from their GFP-negative siblings. For this purpose, three hundred to four hundred 

ΔHisC, twi-Gal4/CyO females and 100 ΔHisC, UAS-2xEYFP/CyO; 12xHWT/12xHWT, 100 

ΔHisC,UAS-2xEYFP/CyO; 12xH3K9R/12xH3K9R, or 100 ΔHisC,UAS-2xEYFP/CyO; 

12xH4K16R/12xH4K16R males were placed in a large embryo collection cage (fits 100mm 

petri dishes) at 25°C and allowed to lay eggs on apple juice agar plates. Overnight collections 

were dechorionated in 100% bleach for two minutes and collected in embryo wash buffer 

(0.7% NaCl, 0.07% Triton X-100) prior to embryo sorting. Aliquots of one hundred GFP-

positive embryos were transferred to vials containing standard corn medium and cultured at 

25°C to obtain third instar larvae.  

Sample preparation for FACS and sequencing  

Third instar wing imaginal discs were dissected over a period of four hours and stored 

in Grace’s insect medium (supplemented with L-Glutamine, 3.33g/L Lactalbmin 

Hydrolysate, and 3.33g/L Yeastolate) on ice prior to nuclear isolation. Nuclear isolation was 

performed similarly to (Ma and Weake 2014) with the following adjustments. In brief, a 2mL 

dounce homogenizer was pretreated with nuclear extraction buffer (NEB; 10mM HEPES-

KOH, pH 7.5; 2.5 mM MgCl2; 10mM KCl) supplemented with 5% BSA and placed on ice. 

Subsequently, wing imaginal discs were transferred to the empty dounce and incubated in 

NEB for five minutes on ice, disrupted twenty times with the loose pestle, incubated for ten 

minutes on ice, and disrupted 15 times with the tight pestle. Homogenate was filtered over a 
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CellTrics 30 μm filter and isolated nuclei were stained with 1.5μg/mL DAPI prior to FACS. 

Nuclei were sorted into G1, S, and G2 populations based on DNA content as measured by 

DAPI intensity on a FACSAria II or III (using NEB-0.1% Tween sheath). Gates were chosen 

conservatively to prevent contamination of either fraction with nuclei from a neighboring 

fraction. Analyses of cell cycle indices were performed on DAPI profiles generated from 

FACS using the Dean-Jett Fox model included with the FlowJo software (Dean and Jett 

1974; Fox 1980). Isolated populations of nuclei were pelleted, flash frozen, and stored at -

80°C prior to DNA isolation and library preparation. Genomic DNA libraries were prepared 

with the Rubicon ThruPLEX DNA-seq kit and sequencing was performed on an Illumina 

HiSeq 2500 in the UNC-Chapel Hill High Throughput Sequencing Facility. 

Sequence data analysis 

Analyses were performed using R (Team 2017). 

Replication Timing Profiles 

Single-end 50-bp reads from G1, S, and G2 samples were aligned to the dm6 

reference genome (Release 6.04) using Bowtie 2 (v2.3.2) default parameters (Langmead et 

al. 2009). Two S phase replicates and one G1 replicate were generated for each genotype. 

Reads with a MAPQ score greater than 10 were retained using SAMtools (v1.6) (Li et al. 

2009). BEDTools coverage (v2.25.0) was used to determine the number of reads mapping to 

100kb windows across the genome (10kb slide) (Quinlan and Hall 2010). Read counts at 

each 100kb window were normalized to read depth (reads per million; RPM). Other window 

sizes were processed similarly. To generate a replication timing (RT) value for a particular 

window, the RPM value of each S phase replicate was divided by the RPM G1 value and the 

resulting quotient was log2 transformed. The log2 S/G1 quotients for each duplicate sample 
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were then averaged. As an additional control, another RT value was generated using half the 

G2 value, which should be equivalent to the G1 value. RT profiles were generated by 

plotting the RT value at each window versus the genomic location. RT profiles normalized to 

G1 or G2 copy number controls were very similar; we therefore used G1 for all subsequent 

analyses. LOESS regression lines using loess.model were created to smooth RT profiles 

(span=0.02 for chromosome arms, span=0.05 for Chromosome 4). Although the genomic 

location where RT regression lines changed direction was similar across all genotypes and 

replicates, we note that the range of RT values for HWT female samples was slightly smaller 

than the other two genotypes. HWT female samples exhibited a higher percentage of cells in 

S phase, which decreased the clarity of the G1/S boundary when performing FACS. We 

speculate that a small increase in the number of late G1 cells in S phase populations limited 

the dynamic range of HWT female RT values. We therefore used quantile normalization 

through the preprocess Core R package to equalize the dynamic range of RT values for each 

female genotype (Bolstad 2016). We note that regions altered in H3K9R mutants compared 

to HWT were similar without quantile normalization. The limma statistical package was used 

to identify windows with significantly altered RT values between HWT and H3K9R female, 

HWT and H4K16R female, and HWT and H4K16R male samples (lmFit, adjusted p value 

Benjamini and Hochberg, p<0.01) (Newville et al. 2014). The adjusted p value corrects for 

multiple testing. An additional significance parameter of an absolute log2 fold-change greater 

than 0.1 was included to increase stringency of the significance threshold obtained from 

limma. Similar results were obtained using reads not filtered by MAPQ score. Differences in 

RT profiles were not due to differences in G1 samples (Fig S1). Coordinates of various 
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chromatin states were obtained from (Kharchenko et al. 2011) and converted to dm6 

coordinates using the UCSC liftOver tool (Karolchik et al. 2004). 

Wild-type Replication Timing Characterization 

To calculate replication domain sizes, we identified the genomic coordinates halfway 

between each peak and valley of an RT profile and determined the distance from one halfway 

point to the next. We used modENCODE ChIP-seq data from whole 3rd instar larvae to 

calculate histone PTM enrichment at 100kb windows across the genome 

(ftp://data.modencode.org/D.melanogaster/Histone-Modification/ChIP-seq/raw-

seqfile_fastq/). Accession numbers for each data set are as follows: H3K36me3 (GSE47248), 

H3K4me1 (GSE47282), H3K4me2 (GSE47261), H3K4me3 (GSE49491), H3K79me1 

(GSE49492), H3K27ac (GSE49488), H3K79me2 (GSE49493), H3K79me3 (GSE49494), 

H4K20me1 (GSE47254), H2Bubi (GSE49487), H3K36me1 (GSE47249), H3K23ac 

(GSE47257), H3K9ac (GSE48510), H3K9me1 (GSE47289), H3K9me2 (GSE47260), 

H3K9me3 (GSE47258), H3K9acS10P (GSE47288), H2Av (GSE47259), and H4K16ac 

(GSE49497) (Roy et al. 2010). For each histone PTM, raw reads for two ChIP replicates and 

two input replicates were aligned to the genome using Bowtie 2 (v2.3.2) (Langmead et al. 

2009). BEDTools coverage (v2.25.0) was used to count the number of reads mapping to each 

100kb window, and the resulting counts were normalized to read depth (Quinlan and Hall 

2010). Histone PTM enrichment for each replicate was calculated by dividing the ChIP 

normalized read counts by the input for each replicate; the resulting values were then 

averaged. All windows were ordered by RT value and split into five equally sized categories 

(early, early/mid, mid, mid/late, and late). Average PTM enrichment values of all windows in 

a category were calculated and represented as a heatmap using the R package pheatmap. 

ftp://data.modencode.org/D.melanogaster/Histone-Modification/ChIP-seq/raw-seqfile_fastq/
ftp://data.modencode.org/D.melanogaster/Histone-Modification/ChIP-seq/raw-seqfile_fastq/
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RNA-seq data from 3rd instar imaginal wing discs (from  GSE85374) (Penke et al. 2016) was 

used to calculate transcript density or transcript activity at 100kb windows. The imaginal 

wing disc transcriptome was assembled using Cufflinks (v2.2.1) (Trapnell et al. 2012) with 

the following parameters: library-type fr-firsttrand, masked rRNA, and provided dm6 

transcriptome obtained from Flybase release 6.04. Subsequently, the number of transcripts 

overlapping each 100kb window was determined. To calculate transcript activity of a 

window, the normalized read per million of each transcript overlapping a window was 

summed.  

FAIRE, HP1a, and RNA Analyses 

For H3K9R experiments, RNA reads from three HWT and three H3K9R replicates 

were aligned using TopHat default parameters (v2.1.1) (Trapnell et al. 2012), and a 

transcriptome was generated using Cufflinks (v2.2.1, see above for parameters). Previously, 

we showed that the H3K9R mutation causes widespread de-repression of transposons (Penke 

et al. 2016). Therefore, in the current analysis, we combined the Cufflinks generated 

transcriptome with transposons annotated by RepeatMasker (Smit et al. 2013-2015). For 

H4K16R experiments, 30 wing imaginal discs per replicate were homogenized in Trizol and 

flash frozen in liquid nitrogen. RNA was chloroform extracted and isopropanol precipitated 

before column purification on Qiagen RNeasy purification with DNase digestion. 

Transcriptomic libraries were prepared from cDNA from total RNA (ribo-minus) with the 

Total RNA TruSeq Stranded Ribo Zero Gold kit. ERCC spike-in Mix 1 (ThermoFisher 

Scientific) was included and RNA-seq reads were normalized to the total number of reads 

mapping to the ERCC reference. Sequencing was performed on an Illumina HiSeq 2500 in 

the UNC-Chapel Hill High Throughput Sequencing Facility. Single-end 50bp RNA reads 
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from three HWT female, three HWT male, three H4K16R female, and three H4K16R male 

replicates were aligned using TopHat default parameters (v2.1.1) (Trapnell et al. 2012), and a 

transcriptome was generated using Cufflinks (v2.2.1, see above for parameters). For both 

H3K9R and H4K16R experiments, raw counts of RNA reads at each transcript were used as 

input for edgeR statistical analysis (p value <0.01) (Robinson et al. 2010; McCarthy et al. 

2012). We then identified transcripts within or that overlapped each 10kb window and 

selected the transcript with the lowest p value. 

To determine RT values at 10kb windows, we used the previously calculated log2 

fold-change and p values from 100kb windows. We used RT values from 100kb windows as 

this size closely matches average replication domain size (~100-200kb), but similar results 

were obtained using RT values determined from 10kb windows (Fig S1). For each 10kb 

window, we calculated the median fold change and median p value of all overlapping 100kb 

windows. 10kb windows were identified as having significantly altered RT between H4K16R 

or H3K9R and HWT if p<0.05 (adjusted for multiple testing) and the absolute log2 fold-

change was at least 0.1. To focus our analysis on more mappable regions of the genome, we 

analyzed 10kb windows on the major chromosome scaffolds (Chr 2L, Chr 2R, Chr 3L, Chr 

3R, Chr 4, and Chr X) that, for H3K9R experiments, had an average FAIRE and HP1a counts 

per million (CPM) value of greater than zero. Comparisons of RT, FAIRE, HP1a, and RNA 

signal between H3K9R and HWT samples were performed with all reads or “uniquely” 

mapping reads (MAPQ>10) with similar results.  

To calculate transposon families with significantly altered RNA levels, we summed 

raw counts of all individual transposons within a family and used edgeR as described above 

to determine significance (p value <0.05). In addition to transposon families, all transcripts 
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identified in Cufflinks were included in this edgeR analysis to facilitate modeling of 

variability. Data was visualized using the Integrative Genomics Viewer.  

Immunofluorescence  

Third instar wandering larvae were dissected and the carcasses inverted to expose 

attached imaginal discs and incubated for 60’ in 0.1mg/mL EdU. Tissues were then fixed in 

3.7% paraformaldehyde in PBS for 25 min. EdU incorporation was detected using the Click-

It EdU Alexa Fluor 488 Imaging Kit (ThermoFisher Scientific). Carcasses were washed for 

10 min in PBS-Tx (3% Triton X-100), then treated with 200ug/mL RNaseA in PBS-Tx for 

2h and washed for 1 h in PBS-Tx. Individual imaginal discs were then separated from the 

carcass and groups of discs were successively incubated for 20 min in each of four pre-

hybridization solutions: 1) 80% PBS-Tx, 20% pHM (50% formamide, 4xSSC, 100mM 

NaH2PO4 pH 7.0, 0.1% Tween 20), 2) 50% PBS-Tx, 50%pHM, 3) 20%PBS-Tx, 80% pHM, 

4) 100%pHM. Denatured 359bp probe (Joyce et al. 2012) was hybridized with wing discs 

overnight at 37°C at 450rpm in an Eppendorf tube. Discs were successively incubated in four 

post-hybridization solutions for 20 min at 37°C at 800rpm: 1) 50% formamide, 2XSSC, 2) 

40% formamide, 2XSSC, 3) 30% formamide, 70% PSS-Tw (1x PBS, 0.1% Tween20), 4) 

20% formamide, 80% PBS-Tw and three post-hybridization solutions at 25°C: 1) 10% 

formamide, 90% PBS-Tw, 2) PBS-Tw, 3) PBS-Tx. DNA was stained with DAPI, and the 

discs were mounted in ProLong Gold antifade reagent and imaged on a Leica confocal 

microscope. 

First instar larval brains were incubated in 0.1mg/mL EdU for 60’ and subsequently 

fixed for 40 minutes in 3.7% paraformaldehyde. EdU was detected using the Click-It EdU 

Alexa Fluor 488 Imaging Kit (ThermoFisher Scientific). 



 
24 

 

Results 

Profiling replication timing in a Drosophila tissue 

To probe the relationship between chromatin structure and replication in an intact 

animal, we adapted a genome-wide measure of RT for use in Drosophila wing imaginal 

discs, a relatively simple epithelium of proliferating diploid cells (Koren et al. 2014; Sasaki 

et al. 2017; Siefert et al. 2017). Our method is based on the premise that in S phase cells early 

replicating DNA sequences are over-represented relative to late replicating ones, due to a 

higher probability of replication initiation (Rhind et al. 2010; Mantiero et al. 2011; Collart et 

al. 2013; Das et al. 2015). Consequently, RT data are a proxy for the propensity of replication 

initiation in a particular region of the genome. We performed whole-genome sequencing on 

DNA isolated from populations of G1 and S phase nuclei collected from wing discs by 

fluorescence-activated cell sorting (FACS) (Fig 2.1A). Replication profiles were generated 

by determining the log2 transformed S/G1 read count at 100kb intervals using a 10kb slide 

across the genome (Materials and Methods; Fig 2.1B; Fig 2.2, 2.3A), where larger values 

indicate earlier replication and smaller values indicate later replication. We chose 100kb 

windows with a 10kb slide because they produced the least amount of noise relative to 

smaller windows (Fig 2.2). RT values generated from independent S phase samples were 

highly reproducible (Fig 2.4).  
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Figure 2.1. Measuring genome-wide replication timing in vivo.  

A) Experimental paradigm: (1) Nuclei were FACS sorted into G1 (yellow), S (red) and G2 

(blue) populations based on DNA content. (2) Sequenced DNA was mapped to the dm6 

genome. More reads map to early than late replicating sequences. (3) Log2 S/G1 ratio 

generates RT profiles. Normalizing to G1 or G2 phase controls gave similar results. B) 

LOESS regression line showing average yw (“yellow, white” control genetic background 

used for all fly lines) RT values (log2 S/G1) in 100kb windows with 10kb slide across Chr 2 

and 3. Chromosome schematics show approximate locations of constitutive pericentric 

heterochromatin (green) and largely euchromatic arms (blue) (Riddle et al. 2011; Hoskins et 

al. 2015). C) Heatscatter plot of yw log2 S/G1 (RT) versus gene density at all 10kb windows 

across the genome with LOESS regression line (black). D) Heatmap of relative 

modENCODE histone PTM enrichment in bins of equally sized RT quintiles (early, 

early/mid, mid, mid/late, and late) generated using RT values (log2 S/G1) within 100kb 

windows. modENCODE data is from third instar larvae (Celniker et al. 2009) (see 

supplementary materials for accession numbers). Color indicates average enrichment of all 

windows within a quintile. Scale of heatmap was capped at 1.4 to better represent distribution 

of values as H3K9me2/me3 was greatly enriched in late replicating domains compared to 

other PTMs (see Fig S2E for non-capped H3K9me2/me3 heatmap). E) Plot of transposon 

number in 100kb windows across Chr 3R with RT quintile (as determined in D) indicated by 

color. Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.2. Generation of wild type replication timing profiles. 

 A) To determine the most appropriate window size for analyzing replication timing, we 

considered windows of 1kb (top left), 10kb (top right), 10kb with 1kb slide (bottom left), and 

100kb with 10kb slide (bottom right). Chr 3R coordinates 10000000-15000000 are shown. A 

heatscatter of raw log2 S/G1 values (grey) and LOESS regression line (red) are included. All 

window sizes yielded highly similar replication timing profiles with 100kb windows and 

10kb slide producing raw data that is virtually superimposable with the LOESS regression 

line. Furthermore, 100kb windows with a 10kb slide fit most closely with the size of 

replication domains in Drosophila (Figure 2.3). Using windows of this large size also 

reduces complications that might arise from regions of poor mappability when using small 

windows. B) Scatterplot of the ratio of H3K9R G1 reads per million (RPM)/HWT G1 RPM 

on Chr 2 and Chr 3. Differences in replication timing profiles between H3K9R and HWT are 

not due to differences in the G1 copy number control. Experiments were performed in 

collaboration with Taylor Penke.                 
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Figure 2.3. Replication timing in Drosophila wing discs correlates with features of active 
and repressive chromatin. 
 
A) Representative 5Mb region on Chromosome 3R of S/G1 (log2) replication timing values 

within 100kb windows with a 10kb slide. RT values are an average of replicate yw samples. 

LOESS regression line is indicated in red. B) LOESS regression line showing average yw 

S/G1 (log2) replication timing values at 100kb windows using a 10kb slide across 

Chromosome X and 4 scaffolds. Approximate locations of constitutive heterochromatin 

(green) and largely euchromatic regions (blue) are indicated (Riddle et al. 2011; Hoskins et 

al. 2015). C) Histogram of yw replication domain sizes. D) Heatscatter plot of yw S/G1 (log2) 

replication timing values and RNA expression levels within all 10kb windows across the 

genome with LOESS regression line in black. E) Heatmap of relative H3K9me2 and 

H3K9me3 enrichment in bins of equally sized RT quintiles (early, early/mid, mid, mid/late, 

and late) generated using S/G1 (log2) RT values within 100kb windows and normalized 

modENCODE H3K9me2/me3 data from third instar larvae. Color indicates average 

enrichment of all windows within each replication timing quintile. F) Average modENCODE 

histone PTM enrichment for all 100kb windows within each of the equally sized replication 

timing quintiles (E=early, E/M=early-mid, M=mid, M/L= mid-late, and L=late). G) Number 

of transposons within 100kb windows plotted versus genomic location. The color of each dot 

indicates the replication timing quintile of the window. H) Boxplot of number of transposons 

within 100kb windows in early (E), early/mid (E/M), mid (M), mid/late (M/L), and late (L) 

replication timing quintiles. Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.4. Replication timing profiling in Drosophila tissue is highly reproducible. 

Quantile normalized S/G1 (log2) replication timing values for each replicate for the indicated 

genotypes were plotted versus genomic coordinate for all major chromosome scaffolds. Each 

replicate yw, HWT, and H3K9R profile is shown in a different shade of grey, yellow, and 

purple, respectively. Experiments were performed in collaboration with Taylor Penke. 
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Our wing disc replication profiles are similar to those previously generated from 

Drosophila cell lines and most closely correlate with RT data obtained from a cell line 

derived from the same developmental stage as wing discs (Fig 2.5) (Lubelsky et al. 2014). 

Replication domain sizes ranged from 20kb-570kb (Fig 2.3C), closely matching previous 

measurements (MacAlpine et al. 2004). Consistent with previous studies in zebrafish 

embryos and in fly and mammalian cultured cells (Bell et al. 2010; Eaton et al. 2011; 

Lubelsky et al. 2014; Petryk et al. 2016; Siefert et al. 2017), we found that earlier replication 

correlates with higher gene density (Fig 2.1C), higher levels of transcription (Fig 2.3D), and 

the presence of activating histone PTMs such as H3K4me and H3K9ac (Fig 2.1D). In 

contrast, later replication occurred in gene-poor regions (Fig 2.1C) and was enriched in 

transposons (Fig 2.1E, Fig 2.3G,H) and repressive histone PTMs, such as H3K9me2/me3 

(Fig 2.1D, Fig 2.3E,F). Our RT data revealed that in wild type wing discs the pericentric 

heterochromatin replicates later than the mostly euchromatic chromosome arms (Fig 2.1B; 

Fig 2.3B), consistent with prior cytological observations (Taylor 1960; Shermoen et al. 

2010). Despite replicating at largely different times on average, both pericentric and 

euchromatic regions contained earlier and later replicating domains within them, such that 

the earliest replicating domains in pericentric heterochromatin exhibited similar values to the 

latest replicating domains on euchromatic chromosome arms. Thus, highly reproducible 

replication profiles from Drosophila tissue can be generated that match general features of 

replication found in other systems. 
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Figure 2.5. Wild-type 3rd instar imaginal wing discs and cell culture replication timing 
profiles are highly correlated. 
 
A) Heatscatter plot of S/G1 (log2) replication timing value at 100kb windows from yw 

imaginal wing discs and previously generated timing profiles from three Drosophila cell 

culture lines (Kc, S2, and Bg3) (Lubelsky et al. 2014). Top row shows correlations between 

each of the three cell culture lines, and bottom row shows the correlations between yw wing 

discs and the three cell culture lines. Windows with earlier timing values in S2 cells 

compared to other cell types are located in the pericentromeres and may be due to copy 

number differences in these regions. B) Comparison of replication timing profiles between 

yw wing discs and each of the three cell culture lines on Chromosome 3R. Experiments were 

performed in collaboration with Taylor Penke. 
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Replication timing is largely unchanged in H3K9R mutants 

To determine how chromatin structure influences replication, we first tested if 

modification of H3K9 determines the difference in RT between heterochromatin and 

euchromatin. Defining features of heterochromatin are the presence of methylated H3K9 

(H3K9me) and Heterochromatin Protein 1a (HP1a). HP1a binds H3K9me and facilitates 

heterochromatin formation through multimerization of HP1a molecules and recruitment of 

other factors (Canzio et al. 2011; Larson et al. 2017; Strom et al. 2017). Previously, we 

showed that H3K9R mutants are depleted of H3K9me and HP1a within pericentric 

heterochromatin (Penke et al. 2016). In addition, we found that loci within the pericentric 

heterochromatin of H3K9R mutants are nucleosome depleted relative to controls, as 

measured by increased FAIRE-seq signal (Formaldehyde-Assisted Isolation of Regulatory 

Elements) (Penke et al. 2016). 

If increasing chromatin accessibility directly resulted in earlier replication initiation, 

we would expect large-scale advancement of RT at nucleosome-depleted H3K9R 

pericentromeres. We assigned RT values to 100kb windows tiled 10kb across the genome 

and used stringent significance thresholds (p<0.01 (adjusted for multiple testing), absolute 

log2 fold change>0.1; limma) to identify differential RT between H3K9R and control. 

Approximately 97% of the H3K9R genome has a similar replication profile compared to 

control, including much of the pericentric heterochromatin (Fig 2.6A; Fig 2.7). Consistent 

with these findings, cytological analysis of H3K9R imaginal cells revealed colocalization of 

the 359bp pericentric satellite repeat on the X with late-patterned EdU incorporation at 

DAPI-bright chromocenters (Fig 2.8A), demonstrating that X pericentric heterochromatin 

remains late replicating. Late replicating H3K9R pericentric heterochromatin is not due to 
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compensation by H3.3 variant histones because H3.3K9R; H3K9R mutants incapable of 

producing any H3K9me also contain late-patterned EdU incorporation at DAPI-bright 

chromocenters (Fig 2.6C,D). FACS analysis revealed a small but statistically significant 

decrease in the number of S phase cells in H3K9R wing discs, indicating that cell cycle 

phasing is only slightly perturbed (Fig 2.6E). These data show that H3K9 modification is 

dispensable for RT across most of the genome and that pericentric heterochromatin lacking 

HP1a and a closed chromatin configuration generally remains late replicating. 
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Figure 2.6. Analysis of replication timing in H3K9R mutants. 

A) Log2 S/G1 RT values at 100kb windows with 10kb slide for 12x HWT (histone wild type; 

yellow) and 12x H3K9R (purple) plotted across Chr 3R. See Fig S5 for other chromosomes. 

B) ~5 Mb region of the pericentromeric heterochromatin of Chr 3R. Red vertical bars 

designate significant RT changes between H3K9R and HWT (p<0.01, p value adjusted for 

multiple testing; absolute log2 fold change>0.1; limma). C) H3.3WT H3WT and H3.3K9R H3K9R 

(see supplementary materials for full genotype) first instar brains pulse labeled for 1hr with 

EdU (yellow) and stained for DNA (blue; DAPI). White arrowheads designate late patterned 

EdU incorporation. D) Percentage of EdU+ cells with early or late EdU incorporation 

patterns from ~200 cells per genotype. There is no difference between genotypes (p>0.05, 

Chi-squared test). E) Cell cycle indices for HWT (yellow) and H3K9R (purple) wing disc 

cells acquired via FACS (calculated using the Dean-Jett-Fox model). Error bars indicate 

standard deviation of three experiments (* = p<0.05). F) All advanced (red) or delayed (blue) 

10kb windows in H3K9R mutants were assigned to the nine chromatin states defined in flies 

(Kharchenko et al. 2011). Shown are the percentage of windows that overlap each chromatin 

state. G) Average enrichment of modENCODE H3K9ac, me2, me3, and H3K27me3 signal 

from third instar larvae at 10kb windows of advanced (red), delayed (blue), or randomized 

set of windows (Celniker et al. 2009). Experiments were performed in collaboration with 

Taylor Penke. 
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Figure 2.7. Replication timing profile for H3K9R mutants and control.  

LOESS regression line applied to S/G1 (log2) averaged replicates from HWT (yellow) and 

H3K9R (purple) plotted across all major chromosome scaffolds at 100kb windows with a 

10kb slide. Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.8. Characterization of altered replication timing in H3K9R mutants.  

A) HWT and H3K9R eye imaginal discs labeled for 60’ with EdU (yellow), stained for 359-

bp FISH probe (X Chromosome pericentromere; magenta), and counterstained with DAPI 

(blue). White arrow indicates colocalization of EdU late replication focus and 359-bp FISH 

probe. Shown is a single slice from a Z projection (top). Box plot of the percentage of 

colocalization between the 359-bp FISH focus and late-patterned EdU focus in HWT and 

H3K9R eye imaginal discs (bottom; * = P < 0.05, Student’s T-test). B) Histogram of the 

number of domain sizes with advanced (red), delayed (blue), or all replication timing change 

(grey). C) Correlation analysis of the absolute H3K9R/HWT log2 RT fold change versus the 

average enrichment of H3K9me2 (top) or H3K9me3 (bottom) signal at 10kb windows with 

significantly advanced (left) or delayed (right) replication. ChIP-seq enrichment was 

determined from modENCODE datasets from wild-type whole 3rd instar larvae. Experiments 

were performed in collaboration with Taylor Penke. 
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Advanced replication occurs at newly accessible chromatin in H3K9R mutants 

Despite largely unchanged RT in H3K9R mutants, 3% of the genome nevertheless 

exhibited altered RT (~2% advanced and ~1% delayed). Importantly, these changes do not 

result from pre-existing copy number differences between the G1 genomes of H3K9R and 

control (Fig 2.2). We used these changes to investigate the relationship between chromatin 

structure and replication initiation (Fig 2.8B). We found that the majority (82.1%) of earlier 

replicating 100kb windows in H3K9R mutants are located in pericentric heterochromatin (Fig 

2.6B) or on the small 4th Chromosome (Fig 2.7), which is primarily heterochromatic (Haynes 

et al. 2007). Importantly, these changes are unlikely to be caused by changes in the 

expression of genes encoding replication factors or other protein-coding genes, as the H3K9R 

mutation does not significantly affect their expression (File 2.3; (Penke et al. 2016)). By 

contrast, 76.2% of later replicating 100kb windows are located along euchromatic 

chromosome arms (Fig 2.6A; Fig 2.7).  

To compare our RT data to other genome features like histone PTMs, we assigned a 

RT value to non-overlapping 10kb windows across the entire genome (see supplementary 

materials). Notably, 10kb windows with advanced replication in H3K9R mutants are 

enriched for H3K9me2/me3 in a wild type genome and not for other histone PTMs such as 

H3K27me3, a marker of facultative heterochromatin (Fig 2.6F,G; Fig 2.8C). This 

observation suggests that advanced replication is a direct effect of the H3K9R mutation, even 

though most regions enriched for H3K9me2/me3 do not change RT in H3K9R mutants. In 

contrast, delayed replication was not correlated with H3K9me2/me3 and instead occurred 

preferentially in chromatin environments relatively devoid of histone PTMs, referred to as 

“Black” chromatin (Fig 2.6F,G; Fig 2.8C) (Filion et al. 2010).  
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We hypothesized that if chromatin structure directly influences replication, then RT 

changes should occur at newly accessible chromatin in H3K9R mutants. To compare 

chromatin accessibility and RT in H3K9R mutants, we compared FAIRE-seq and RT values 

at 10kb windows across the genome (Materials and Methods) (Penke et al. 2016). While 

most pericentric regions included in the current genome assembly are more accessible in 

H3K9R mutants compared to control (Penke et al. 2016), we found that the vast majority 

(92.9%) of windows with increased FAIRE signal do not display altered RT (Fig 2.9A). 

Thus, despite established correlations between accessible chromatin and early replication, 

increasing chromatin accessibility by H3K9R mutation does not invariably result in earlier 

replication. 

Importantly, this conclusion does not mean that high chromatin accessibility makes 

no contribution to early replication. Indeed, nearly all windows (230/243) that exhibit 

significantly advanced replication in H3K9R mutants also have increased FAIRE signal (Fig 

2.9A-D; Fig 2.10A,E). This result suggests that a more accessible chromatin environment 

may be necessary for earlier replication in H3K9R mutants. In contrast, most windows with 

delayed RT exhibit no change in FAIRE signal, suggesting that delayed replication occurs 

independently from chromatin accessibility changes in H3K9R mutants (Fig 2.9A-D; Fig 

2.10A,F).  

We made similar observations when considering HP1a chromatin binding (Fig 

2.10B), which we previously showed is depleted from regions of the H3K9R genome that 

largely overlap regions of increased chromatin accessibility (Fig 2.10C) (Penke et al. 2016). 

HP1a is depleted at 217 of the 243 10kb windows that advanced RT in H3K9R mutants (Fig 

2.9C,D; Fig 2.10B,D,F). However, the majority (94.7%) of windows that lose HP1a in 
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H3K9R mutants do not have altered RT. These results indicate that HP1a loss does not 

invariably result in advanced replication in H3K9R mutants, although it may be necessary. 

Overall our observations are surprising in that the hallmarks of heterochromatin – high levels 

of H3K9me and HP1a within a relatively inaccessible chromatin environment – are not 

necessary for maintaining late replication of most pericentric heterochromatin in animal cells.  
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Figure 2.9. Open chromatin is permissive to advancement but not delay of replication 
timing. 
 
A) Heatscatter plot of the H3K9R/HWT ratio of RT values (log2 S/G1) versus the 

H3K9R/HWT ratio of FAIRE signal at all 10kb windows across the major chromosome 

scaffolds. 10kb windows with significantly advanced (red) or delayed (blue) RT are 

indicated. Darker color indicates higher density of windows. B) Cumulative count of 

advanced (red) or delayed (blue) 10kb windows ordered by increasing FAIRE signal in 

H3K9R compared to HWT. C) Heatscatter plot of the H3K9R/HWT ratio of HP1a ChIP signal 

versus the H3K9R/HWT ratio of FAIRE signal at all 10kb windows across the major 

chromosome scaffolds. D) Venn-diagram of all 10kb windows with significantly altered 

FAIRE or HP1a signal in H3K9R compared to HWT (p<0.01; edgeR). For all panels, 

significantly different RT was determined as p<0.05, log2 fold change>0.1 using limma. 

Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.10. Disrupting heterochromatin does not always result in altered replication.  

A) Venn-diagram of 10kb windows with significantly altered FAIRE signal and significantly 

advanced or delayed replication in H3K9R mutants compared to control. B) Heatscatter plot 

of the H3K9R/HWT ratio of normalized replication timing values (S/G1 (log2)) plotted versus 

the H3K9R/HWT ratio of normalized HP1a ChIP signal at all 10kb windows across the major 

chromosome scaffolds. C) Venn-diagram of 10kb windows with significantly increased 

FAIRE signal and decreased HP1a ChIP signal. D) Venn-diagram of 10kb windows with 

significantly altered HP1a ChIP signal and significantly advanced or delayed RT. E-F) 

Absolute change in FAIRE signal (E) or HP1a ChIP signal (F) between H3K9R mutants and 

controls plotted versus the absolute change in replication timing between the two genotypes. 

The magnitude of altered chromatin accessibility or HP1a localization is not correlated with 

the magnitude of replication timing change. Experiments were performed in collaboration 

with Taylor Penke.  
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Elevated transposon expression accompanies advanced replication in H3K9R mutants 

We next considered the transcriptional activity of domains of altered replication. We 

compared our newly generated RT profiles with our previously generated wing disc 

transcriptome profiles from H3K9R and control (Penke et al. 2016). We focused on 

transcripts (genes or transposons) most likely to drive RT changes by identifying the 

transcript that was most significantly different within each 10kb window between H3K9R 

and control (i.e. the transcript with the lowest p-value in differential expression analysis; 

edgeR). We then compared the fold change of this transcript to the RT value assigned to the 

same 10kb window. We found that only a small fraction (6.8%) of the 3,371 10kb windows 

containing a transcript with a significant expression change also exhibited a RT change (Fig 

2.11A,B; Fig 2.12A). This observation indicates that, despite strong correlations between 

active transcription and early replication (MacAlpine et al. 2004; Liu et al. 2012; Lubelsky et 

al. 2014; Rivera-Mulia and Gilbert 2016), transcriptional activity and RT are separable. 

Conversely, we found that the majority (76.5 %) of windows with advanced replication in 

H3K9R mutants exhibited a change in gene expression (Fig 2.11A,B; Fig 2.12B). Because 

most (97.3%) changes were increases in expression, we speculate that transcription might 

promote early replication initiation in pericentric heterochromatin. Similar results were 

obtained by using the average expression change of all transcripts that overlap each window 

with advanced RT, rather than the transcript with the most significant change in expression 

across the window (Fig 2.12G).  

Windows with advanced replication in H3K9R mutants have a high transposon 

density, unlike delayed windows which are gene-rich (Fig 2.11D; Fig 2.13A). Low sequence 

mappability of most transposons likely inhibited our ability to detect all transcriptional 
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changes within advanced replication domains (Fig 2.12C). Therefore, we also identified 

transposons belonging to families that were differentially expressed between H3K9R and 

control (Materials and Methods; Fig 2.11C; Fig 2.12C-F). All 243 windows of advanced 

replication in H3K9R mutants contain either a transposon belonging to a family that was 

differentially expressed in H3K9R compared to control (96.4%) or that neighbored a window 

containing multiple differentially expressed transcripts (Fig 2.11C,D). Although we cannot 

determine whether individual transposons within all 243 advanced windows changed 

expression, these data suggest that altered transcription may promote advancement of 

replication in H3K9R mutants. 

Along with transposon enrichment (Fig 2.13A,B), advanced replication domains in 

H3K9R mutants are normally enriched for H3K9me2/me3 (Fig 2.13C) and exhibited a lower 

GC content (Fig 2.13D) compared to domains of increased chromatin accessibility or 

increased RNA expression with unaltered replication (FAIRE only and RNA only, 

respectively). Although transposon density distinguished advanced domains, the majority of 

domains with altered transposon expression have no change in RT (Fig 2.11C; Fig 2.12D). 

Therefore, we surmise that altered transposon expression is necessary, but additional events 

must occur within accessible chromatin to advance replication. 

Our data thus far indicate that increased chromatin accessibility and gene expression 

act upstream of advanced replication within pericentric heterochromatin in H3K9R mutants 

(Fig 2.11D). To further understand the relationship between transcription and DNA 

replication within transcriptionally active euchromatin, we investigated the Drosophila male 

X Chromosome, which replicates earlier in males than in females (Schwaiger et al. 2009; 

Bell et al. 2010; Lubelsky et al. 2014). In addition, a two-fold hyper-activation of gene 
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expression from the male X results in matched X-linked gene expression between XY males 

and XX females (Kuroda et al. 2016). We therefore generated a replication dependent (RD) 

histone genotype (H4K16R) predicted to disrupt dosage compensation and determined the 

effect on gene expression and RT and whether these two processes could be uncoupled.  
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Figure 2.11. Altered transposon expression occurs at advanced replication domains in 
H3K9R mutants.  
 
A) Heatscatter plot of the H3K9R/HWT ratio of RT values (log2 S/G1) plotted versus the 

H3K9R/HWT ratio of RNA-seq signal at all 10kb windows across major chromosome 

scaffolds. RNA-seq differences were determined based on the transcript with the lowest p-

value across the 10kb window. 10kb windows with significantly advanced (red) and delayed 

(blue) RT are indicated (p<0.05, log2 fold change>0.1; limma). B) Histogram of the number 

of differentially expressed transcripts in 10kb windows of advanced replication (red; left). 

Venn-diagram comparing the number of windows with differentially expressed transcripts 

and number of windows with advanced replication (right). C) Histogram of the number of 

transposons belonging to a differentially expressed transposon family in 10kb windows of 

advanced replication (red; left). Venn-diagram comparing the number of windows with a 

transposon belonging to a differentially expressed transposon family to the number of 

windows with advanced replication (right). D) Browser shot of a 10kb window (Chr 3R-

2130000-2140000) with advanced replication. HWT (yellow) and H3K9R (purple) FAIRE-

seq, HP1a ChIP-seq, and RNA-seq data plotted in the context of mappability, genes, and 

transposons. Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.12. Regions of advanced replication in H3K9R mutants exhibit altered 
transposon expression. 
 
 A) Histogram of the number of differentially expressed transcripts in 10kb windows of 

delayed replication (blue; left). Venn-diagram comparing the number of windows with 

differentially expressed transcripts and number of windows with delayed replication (right). 

B) Venn-diagram comparing the number of advanced windows in H3K9R mutants compared 

to control containing a differentially expressed transposon and/or a differentially expressed 

transcript. C) Genome browser shot of a 10kb window with significantly advanced 

replication in H3K9R mutants but no detectable accompanying change in RNA expression 

via edgeR analysis. FAIRE-seq, HP1a ChIP-seq, or RNA-seq signal are shown for H3K9R 

(purple) and HWT (yellow) samples. Note the low mappability of this region due to high 

transposon density. Red transposons indicate individual transposons belonging to a family 

that is differentially expressed in H3K9R mutants. Browser shot provides a representative 

example of transcriptional changes that are likely occurring but cannot be directly examined 

due to low mappability. D) Venn-diagram comparing the number of windows with a 

differentially expressed transposon to the number of windows with advanced replication (see 

also Figure 4C). Because high transposon density (Figure 2.12A,B) and low sequence 

mappability of these regions likely masked our ability to detect transcriptional changes, we 

examined expression levels of transposon families rather than individual transposons 

(Materials and Methods). Counts from individual transposons were summed based on 

RepeatMasker categorization of transposon families. E) MA plot showing differential 

expression of transposon families between HWT control and H3K9R samples. Each dot 

represents a transposon family with red indicating statistical significance as determined by 

edgeR (p<0.01; see Materials and Methods). Blue lines indicate two-fold change. F) 
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Histograms in the top left panel show the number of transposons belonging to a family that is 

differentially expressed in H3K9R mutants compared to control at 57 10kb windows that 

exhibited advanced replication in H3K9R mutants but no initially detected transcriptional 

change (see also Venn diagram in Figure 4B). Bottom left panel shows number of 

transposons bellowing to a differentially expressed family at all 10kb windows that exhibit a 

transcriptional change but no replication timing change (RNA only). Histograms in right 

panel show the number of transposons at the 57 advanced windows (top) and RNA only 

windows (bottom). 52 of the 57 windows we did not initially score as having changed 

expression (Figure 4B) contained at least one transposon belonging to a family with 

significantly altered expression in H3K9R mutants. The remaining 5 windows were 

surrounded by 10kb windows containing several transposons with significantly altered 

expression. These data suggest that altered transcription is necessary for advanced replication 

in H3K9R mutants. G) Scatterplot of RNA RPM at significantly advanced (top, red), delayed 

(middle, blue), or a randomized set of 10kb windows (bottom, black) in H3K9R versus 

control. RNA expression increases in windows that advance RT in H3K9R mutants compared 

to control. Experiments were performed in collaboration with Taylor Penke. 
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Figure 2.13. Transposon density and H3K9me2/me3 status are distinguishing features 
of regions with advanced replication.  
 
A) Histogram of the number of significantly advanced (red) or delayed (blue) 10kb windows 

within 10 bins representing two categories: the percentage of each window covered by genes 

(left panels) or transposons (right panels). B) Histogram of the number of transposons in 

10kb windows of advanced replication (red), delayed replication (blue), FAIRE change 

without replication change (FAIRE only), RNA change without replication change (RNA 

only), and all 10kb windows. C) Average enrichment of modENCODE H3K9me2 and 

H3K9me3 signal from wild-type whole third instar larvae at 10kb windows within the 

categories described in panel B. D) Boxplot of the percent GC content of 10kb windows 

within the categories described in panel B. Experiments were performed in collaboration 

with Taylor Penke.  
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H4K16 is necessary for hyper-expression of the Drosophila male X Chromosome 

The Drosophila dosage compensation mechanism is mediated by the Male-Specific 

Lethal (MSL) complex, which specifically localizes to and promotes higher gene expression 

from the male X. The MSL complex includes MOF, a histone acetyltransferase that 

acetylates lysine 16 of histone H4, resulting in higher levels of H4K16ac on male X 

Chromosomes relative to autosomes or the female X (Hilfiker et al. 1997; Smith et al. 2000; 

Gelbart et al. 2009). Furthermore, hyper-acetylation of H4K16 correlates with increased 

chromatin accessibility of the male X (Bell et al. 2010). These data suggest that H4K16ac is 

required for dosage compensation in flies. In accordance with these findings, MOF mutations 

cause a male-specific lethal phenotype; however, MOF performs both H4K16-dependent and 

-independent functions (Hilfiker et al. 1997; Buscaino et al. 2003; Sykes et al. 2006). A 

requirement for H4K16 in dosage compensation, therefore, has not been directly tested.  

Similar to observations made using mutations in MOF and other MSL complex 

members (Lucchesi 1998), we found that male viability is significantly reduced in zygotic, 

RD H4K16R mutants (Fig 2.14A). However, unlike mutation of MSL complex members, 

which causes fully penetrant male lethality (Lucchesi 1998), these H4K16R males can 

develop to adulthood (Fig 2.14A), although they eclose later than their female siblings. A 

further reduction in male viability occurred when both maternal and zygotic sources of 

histones were RD H4K16R mutant (Fig 2.14A). The Drosophila genome also contains a 

single copy replication-independent His4r gene, which is not located in the RD gene cluster 

but encodes an identical H4 protein. Combining the RD H4K16R zygotic genotype with a 

CRISPR-derived homozygous deletion of His4r resulted in complete male lethality (Fig 

2.14A). We therefore conclude that H4K16 function is required for male development. In 
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contrast, females of all these H4K16R genotypes are viable, indicating that H4K16 

modification is not generally required for organismal viability. 

We next performed gender-specific total RNA-seq from replication dependent 

H4K16R and control wing discs, generated transcriptomes (Cufflinks), and identified 

differentially expressed transcripts between H4K16R males and females and their respective 

controls (Trapnell et al., 2012). We observed 1789 differentially expressed transcripts (608 

increased and 1181 decreased) in H4K16R males relative to control males and 105 

differentially expressed transcripts in H4K16R females relative to control females (39 

increased and 66 decreased) indicating that the H4K16R effect on gene expression is greater 

in males than in females (p<0.05, edgeR; Fig 2.14B). Of the 1181 genes with decreased 

expression in H4K16R males, 72% are located on the X. In addition, the majority (92%) of 

the down-regulated, X-linked genes in H4K16R males have a log2 fold change less than 1, 

which would be expected for a disruption in X Chromosome dosage compensation. In 

contrast, only 3.6% of genes with increased expression in H4K16R males are on the X. 

We further examined chromosome-specific differential gene expression by assessing 

transcript abundance for the X separately from autosomes. We compared our H4K16R wing 

disc RNA-seq data to previously published data from the male Drosophila S2 cell line in 

which MSL2 or MOF had been depleted by RNAi (Zhang et al. 2010). Similar to MSL2 or 

MOF knockdown, global transcript abundance is decreased for genes on the X in H4K16R 

male wing disc cells compared to control, but not for genes located on the autosomes or the 

female X (p<0.05; Fig 2.14C). Importantly, 10kb windows containing a significantly 

decreased transcript from the H4K16R male X are enriched in a wild type genome for 

H4K16ac (p<0.05; Fig 2.14D). By contrast, windows in H4K16R males from autosomes 
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containing a decreased transcript, those with an increased transcript (either from the X or the 

autosomes), or all windows with a transcriptional change were not normally enriched for 

H4K16ac (Fig 2.14D). These data directly demonstrate that H4K16 is a critical component of 

the Drosophila dosage compensation machinery. Moreover, this residue is not required for 

basal genome function, as female gene expression, viability, and fertility are unaffected. 
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Figure 2.14. H4K16 promotes hyper-expression of the Drosophila male X chromosome. 

A) Table of observed HWT and H4K16R adult females and males where first instar larvae of 

each genotype were isolated from their wild-type siblings and mono-cultured in aliquots of 

50 larvae per vial (see supplementary materials for crosses and complete genotypes: Rows 1 

and 2) zygotic, replication-dependent HWT and H4K16R; Rows 3 and 4) maternal/zygotic, 

replication-dependent HWT and H4K16R; and Rows 5 and 6) zygotic, replication-dependent 

and replication-independent HWT and H4K16R (left; Chi squared comparisons performed 

against the male to female ratio of zygotic, HWT, p<0.01;). Percentage of viable male (grey) 

and female (black) adults for H4K16R and HWT (right). B) Heatscatter plot of the 

H4K16R/HWT ratio of RNA-seq signal from wing imaginal discs. Statistically different 

transcripts between H4K16R and HWT males (left panel) and H4K16R and HWT females 

(right panel) are indicated in red (p<0.05). Blue lines indicate a two-fold change. C) Box plot 

of RNA-seq signal from autosomes and ChrX after MSL2 or MOF knockdown in male S2 

cells (Zhang et al. 2010) and in H4K16R/HWT male and female wing discs on autosomes 

(Auto) and ChrX. D) Average enrichment of modENCODE H4K16ac signal from male third 

instar larvae at 10kb windows of significantly (p<0.05) decreased (dec) or increased (inc) 

transcript expression between H4K16R and HWT males on ChrX and autosomes (Auto) or at 

all 10kb windows (GSE49497) (Celniker et al. 2009).  
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H4K16 promotes early replication of the Drosophila male X Chromosome 

We next profiled RT in replication dependent H4K16R and control male and female 

wing discs. When considering the major chromosome scaffolds using overlapping 100kb 

windows, we observed very few significant replication changes between H4K16R and control 

in either females or males (0.04% and 1%, respectively) (Fig 2.15; Fig 2.16). These data 

indicate that H4K16 is not globally required for maintenance of RT in flies. However, when 

we considered 100kb windows only from the X Chromosome, we observed that the normally 

earlier replication of the male X relative to the female X was largely abrogated in H4K16R 

mutants (p<0.05; Fig 2.17A,B), suggesting that H4K16ac promotes early replication of the 

male X Chromosome.  

 To evaluate this effect more thoroughly, we assigned RT values to 10kb windows 

across the genome using significance thresholds as for the H3K9R RT data. We identified 57 

individual 10kb windows in H4K16R males with delayed RT, and most (78%) of these were 

located on the X (Fig 2.17C; Fig 2.18A). We identified 92 10kb windows in H4K16R males 

with advanced RT, with most (94%) located on the autosomes (including 61 windows on Chr 

3R) (Fig 2.17C; Fig 2.18A). Windows from the H4K16R male X with delayed replication are 

enriched for H4K16ac in a wild type genome, whereas those advanced windows (on the X or 

autosomes) or delayed windows on autosomes are not (p < 0.05; Fig 2.17D; Fig 2.18B). 

These data suggest that delayed replication in H4K16R males is a direct result of the H4K16R 

mutation, while regions of advanced replication may occur indirectly.  

 We were concerned that the small number of windows with a RT change identified 

using our significance cutoffs was masking a more general effect as many X Chromosome 

replication delays in H4K16R males might be less than a log2 fold change of 0.1, and 
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therefore not scored as significant. Indeed, chromosome-wide RT of the X in control males is 

advanced less than a log2 fold change of 0.1 relative to control females (Fig 2.17A,B) in 

accordance with previous analyses (e.g. a change of ~0.1 as described by (Schwaiger et al. 

2009; Lubelsky et al. 2014)). Therefore, we analyzed replication in H4K16R males by 

assessing, as a group, all 10 kb windows located on an individual chromosome (X and 4) or 

an individual chromosome arm (2L, 2R, 3L, and 3R). Using this approach, replication of the 

X was found to be significantly delayed in H4K16R males relative to control males (Fig 

2.17E). No such effect was observed for the autosomes, consistent with a specific role for 

H4K16ac in promoting early replication of the male X. The small, heterochromatic 4th 

Chromosome replicated earlier in both H4K16R males (Fig 2.17E) and females (Fig 2.18C) 

which may result from an H4K16 function that is independent of X Chromosome dosage 

compensation. We conclude that H4K16 promotes early replication of the male X in 

Drosophila. 
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Figure 2.15. Replication timing profile for H4K16R females and control. LOESS 

regression line applied to S/G1 (log2) averaged replicates from HWT female (yellow) and 

H4K16R female (black) plotted across all major chromosome scaffolds at 100kb windows 

with a 10kb slide. 
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Figure 2.16. Replication timing profile for H4K16R males and control.  LOESS 

regression line applied to S/G1 (log2) averaged replicates from HWT male (maroon) and 

H4K16R male (blue) plotted across all major chromosome scaffolds at 100kb windows with 

a 10kb slide.   
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Figure 2.17. H4K16R mutation reduces gene expression and delays replication of the male X. A) 

Boxplot of HWT male/female and H4K16R male/female ratios of RT values (log2 S/G1) on Chr X. B) 

LOESS regression line applied to log2 S/G1 averaged replicates from HWT female (yellow) and HWT 

male (maroon) and H4K16R female (black) and HWT male (blue) plotted across Chr X (100kb 

windows, 10kb slide). Note that the male X Chromosome generally replicates earlier in HWT, but not 

in H4K16R mutants. C) Histogram of 10kb windows with advanced (red) or delayed (blue) RT 

between H4K16R and HWT males on major chromosome scaffolds (p<0.05; absolute log2 fold 

change>0.1; limma). D) Average enrichment of modENCODE H4K16ac signal from male third instar 

larvae at 10kb windows of delayed (del) or advanced (adv) replication between H4K16R and HWT 

males on Chr X and autosomes (Auto) or at all 10kb windows (GSE49497) (Celniker et al. 2009). E) 

Box plot of the H4K16R/HWT ratio of male RT values (log2 S/G1) on all major chromosome 

scaffolds. F) Box plot of the H4K16R/HWT ratio of male RT values (log2 S/G1) at 10kb windows of 

decreased or increased RNA-seq signal on Chr X or autosomes (Auto) (p<0.05). G) Box plot of the 

H4K16R/HWT ratio of male RNA-seq signal at 10kb windows of delayed or advanced RT (p<0.05). 

H) Heatscatter plot of the H4K16R/HWT ratio of male RT values (log2 S/G1) plotted versus the 

H4K16R/HWT ratio of male RNA-seq signal at all 10kb windows across the autosomes (left) and Chr 

X (right). RNA-seq differences were determined based on the transcript with the lowest p-value 

across the 10kb window. The percentage of 10kb windows present in each quadrant is indicated. 
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Figure 2.18. Characterization of altered replication timing in H4K16R mutants. A) 

LOESS regression line applied to S/G1 (log2) averaged replicates from HWT male (maroon) 

and H4K16R male (blue) plotted across Chromosome X at 100kb windows with a 10kb slide. 

B) Correlation analysis of H4K16R/HWT male log2 RT fold change versus the average 

enrichment of H4K16ac signal at 10kb windows on autosomes (top) and Chr X (bottom) with 

significantly at advanced (left) and delayed (right) replication. ChIP-seq enrichment was 

determined from modENCODE datasets from male wild-type whole 3rd instar larvae. C) Box 

plot of the H4K16R/HWT female ratio of normalized replication timing values (S/G1 (log2)) 

on all major chromosome scaffolds at 100kb windows with a 10kb slide.  
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H4K16R mutation concurrently reduces gene expression and delays replication of the 

male X  

To explore the relationship between gene expression and RT of individual windows 

on the male X, we identified 10kb windows containing a differentially expressed transcript in 

H4K16R males relative to controls and determined whether these windows also displayed 

altered replication. For the X, we found a significant correlation between decreased gene 

expression and later replication in H4K16R males, as well as a correlation between increased 

gene expression and earlier replication (p<0.05; Fig 2.17F). No such correlation exists for 

windows on the autosomes (Fig 2.17F). These correlations hold when we consider the 

converse relationship: 10kb windows in H4K16R males with significantly delayed replication 

have decreased gene expression whereas 10kb windows with significantly advanced 

replication have increased gene expression (p<0.05; Fig 2.17G). These data indicate that 

changes in RT correlate with changes in gene expression for the male X in H4K16R males. 

 Furthermore, scatterplots comparing transcription and replication between H4K16R 

males and controls resulted in different distributions. We found that 53% of all 10kb 

windows on Chromosome X had both lower gene expression and later replication in H4K16R 

males compared to 23% on autosomes (Fig 2.17H). A two-dimensional Peacock test 

(Peacock 1983) revealed that the distributions resulting from simultaneous comparison of the 

log2 fold change of the H4K16R/control ratio of transcript abundance and RT for all 10kb 

windows on the X and the autosomes are statistically different (P < 5.9*10-317). These data 

indicate that H4K16 promotes the strong correlation between elevated gene expression and 

early replication of the Drosophila male X Chromosome. 
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Discussion 

Studies of animal cells have revealed strong, genome-wide correlations between early 

replication of highly transcribed, accessible chromatin and late replication of lowly 

transcribed, inaccessible chromatin (Bell et al. 2010; Eaton et al. 2011; Lubelsky et al. 2014). 

Here we explored potential causal relationships underlying these correlations by combining 

perturbation of chromatin structure using two different histone mutations (H3K9R and 

H4K16R) with genome-wide RT data. 

We found that the male X Chromosome of H4K16R mutants experiences both 

reduced transcription and delayed RT, consistent with previous studies showing a strong 

correlation between transcriptional activity and RT (Aggarwal and Calvi 2004; MacAlpine et 

al. 2004; Schwaiger et al. 2009; Liu et al. 2012; Lubelsky et al. 2014). However, we also 

show that correlations between transcription and RT can be uncoupled: active transposon 

expression in H3K9R mutants was not accompanied by earlier replication of most pericentric 

heterochromatin. Thus, activation of transcription does not always result in earlier 

replication. In addition, our analysis of H4K16R mutants show for the first time that H4K16 

is required for proper dosage compensated expression of the Drosophila male X 

Chromosome, as predicted by previous studies of factors that acetylate H4K16 (Hilfiker et al. 

1997; Smith et al. 2000; Kuroda et al. 2016). The changes in autosomal gene expression we 

observed in H4K16R males are likely a secondary consequence of wholesale changes in gene 

expression on the X, as transcription factors are encoded on the X Chromosome. 

HP1a binding to H3K9me is a defining feature of constitutive heterochromatin and is 

thought to be critical for most if not all aspects of heterochromatin function (Canzio et al. 

2011; Larson et al. 2017). Therefore, we were surprised to find that pericentric 
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heterochromatin generally remained late replicating relative to the euchromatic chromosome 

arms in H3K9R mutants. Indeed, despite decreased nucleosome density and loss of HP1a, 

replication at ~97% of the genome remained unchanged in H3K9R mutants. Studies of the 

onset of late replication in the early fly embryo show that chromatin condensation and late 

replication of pericentric heterochromatin occur prior to H3K9me and HP1a recruitment, 

indicating that these two features of heterochromatin are not always required for late 

replication (Shermoen et al. 2010; Yuan and O'Farrell 2016). In fact, we observe a DAPI-

bright heterochromatic chromocenter in H3K9R diploid nuclei, similar to that of wild type 

nuclei, that colocalizes with late patterned replication foci. Thus, pericentric heterochromatin 

retains many of its hallmarks despite loss of H3K9me and HP1a, suggesting additional 

features define heterochromatin function.  

Our data support a model in which compartmentalization of euchromatin and 

heterochromatin into different nuclear compartments is not disrupted by the loss of H3K9 

modification. Furthermore, the arms and pericentric regions of Drosophila chromosomes 

may correspond, respectively, to the largely euchromatic compartment “A” and 

heterochromatic compartment “B” previously identified in human cells (Lieberman-Aiden et 

al. 2009). Accordingly, factors other than HP1a may remain associated with compartment 

“B” in H3K9R mutants, preventing large-scale advancement of RT at the pericentromere. 

One such factor could be Rif1, which is required for the onset of late replication of 

heterochromatin during early fly embryogenesis as well as for late replication in other 

species (Peace et al. 2014; Foti et al. 2016; Seller and O’Farrell 2018). 

Nevertheless, we found reproducible and significant RT changes in H3K9R 

pericentric heterochromatin. By carefully analyzing features of these altered RT domains, we 
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conclude that accessible chromatin does not invariably result in early replication, although 

early replication may require accessible chromatin.  We propose that H3K9R mutation alters 

RT by disrupting local chromatin accessibility without affecting overall 

compartmentalization of heterochromatin (Larson et al. 2017; Strom et al. 2017). The events 

that function within accessible chromatin to dictate RT could include origin specification or 

origin activation. Origins of replication are licensed during G1 phase by the activity of origin 

specification factors (e.g. the origin recognition complex; ORC), and during S phase DNA 

replication initiates at a subset of licensed origins (Bell and Stillman 1992). Certain models 

describing temporal programs of replication initiation posit a stochastic process in which a 

higher density of licensed origins in accessible euchromatin increases the probability of 

replication initiation compared to inaccessible heterochromatin (Rhind et al. 2010; Das et al. 

2015; Miotto et al. 2016). These models are consistent with observations that ORC 

complexes are most abundant where chromatin accessibility is also high (MacAlpine et al. 

2010; Lubelsky et al. 2014; Miotto et al. 2016). However, other factors function within the 

licensed origin landscape to either promote or inhibit origin activation (Foti et al. 2016). 

Thus, changes in either origin licensing or activation could demarcate domains that advance 

replication within the permissive open chromatin environment created by the H3K9R 

mutation.  

We also found that delayed replication domains are largely independent of altered 

chromatin accessibility or transcriptional changes in H3K9R mutants. We hypothesize that 

elevated accessibility of pericentric heterochromatin in H3K9R mutants functions as a “sink” 

for limiting replication factors, resulting in delayed replication of domains along chromatin 

arms as proposed for other replication factors (Foti et al. 2016). Another possible explanation 
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for delayed replication in H3K9R mutants is the relocalization of HP1a to chromosome arms 

(Penke et al 2016). Previous work has shown that tethering HP1a to a euchromatic domain 

delays RT (Pokholkova et al. 2014). However, we did not observe a strong correlation 

between 10kb windows that gain HP1a and those that delay replication, perhaps because the 

amount of HP1a relocalization in H3K9R mutants was below a threshold necessary to affect 

replication. We note that domains of altered RT in H3K9R mutants do not match those 

previously identified after HP1a knockdown in Drosophila cultured cells (Fig 2.19) 

(Schwaiger et al. 2010), potentially due to H3K9-independent functions of HP1a or to the 

exclusion of repetitive DNA from the microarray based assay used in the previous study. 

In summary, our study shows that correlations among chromatin configuration, 

transcription, and RT in animal cells can be mechanistically separated by mutation of specific 

histone residues, indicating modes of control for replication initiation that are independent of 

these features of animal genome structure and activity. 
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Figure 2.19. Domains of altered replication in H3K9R mutants do not overlap those 
identified after HP1a knockdown.  
 
A-B) Heatscatter plot of the H3K9R/HWT ratio of normalized replication timing values 

(S/G1 (log2)) plotted versus the H3K9R/HWT ratio of normalized FAIRE (A) or RNA-seq 

(B) signal at Hidden Markov Model determined replication domains identified by (Schwaiger 

et al. 2010). Significantly advanced windows are indicated in red and significantly delayed 

windows are indicated in blue. Domains identified as significantly altered in H3K9R mutants 

are shown in the left panels and domains identified by Schwaiger et al. using BrdU ChIP 

coupled with microarrays are shown in the right panels. Differences between the two datasets 

could be due to H3K9-independent roles for HP1 or tissue specific differences (3rd instar 

imaginal wing disc vs. embryo derived Kc cells). We speculate that regions of advanced 

replication timing identified in our study that were not identified in Schwaiger et al. were due 

to the removal of repetitive DNA sequences in the microarray designed used previously. 
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CHAPTER 3- H3K9 PROMOTES UNDER-REPLICATION OF 
PERICENTROMERIC HETEROCHROMATIN IN DROSOPHILA SALIVARY 

GLAND POLYTENE CHROMOSOMES2 
 

Introduction 

Proper genome duplication is essential for normal development and tissue 

homeostasis. In diploid cells, genome duplication and cell proliferation occur via canonical 

G1SG2M cell cycles in which origins of replication are specified during G1 phase, 

DNA replication occurs during S phase, and chromosome segregation and cell division 

occurs during M phase (Bell 2017). Many diploid organisms, including humans, contain 

tissues composed of cell types with a polyploid genome, a phenomenon called 

endopolyploidy that serves as a developmental strategy for tissue growth and generating cells 

with high biosynthetic capacity (Lee et al. 2009; Zielke et al. 2013; Orr-Weaver 2015). 

Although endopolyploidy is a common feature of normal development in both plants and 

animals, polyploidy can also result from mis-regulation of the canonical diploid cell cycle 

and is commonly associated with human disease (Lee et al. 2009; Fox and Duronio 2013). 

Therefore, determining mechanisms that regulate polyploid cell cycles is important for 

understanding both normal and pathological development. 

 
2 2 This chapter previously appeared as an article in Genes. The original citation is as follows: 
Armstrong, R.L., Penke, T.J.R., Chao, S.K., Gentile, G.M., Strahl, B.D., Matera, A.G., McKay, D.J., and 
Duronio, R.J., 2018. H3K9 promotes under-replication of pericentromeric heterochromatin in Drosophila 
salivary gland polytene chromosomes. Genes. Accepted. 
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Polyploidy often arises from endoreplication, a cell cycle in which repetitive rounds 

of DNA replication occur without intervening mitosis and cell division (Edgar and Orr-

Weaver 2001; Lilly and Duronio 2005; Lee et al. 2009; Fox and Duronio 2013; Zielke et al. 

2013; Orr-Weaver 2015; Hua and Orr-Weaver 2017). The giant polytene chromosomes of 

the polyploid cells of the Drosophila larval salivary gland have long served as a model 

experimental tissue for understanding endoreplication (Lilly and Duronio 2005; Zielke et al. 

2011). During late embryonic and larval development, approximately ten endoreplication 

cycles yield a final ploidy of ~1350C in salivary gland cells (Hammond and Laird 1985; 

Zielke et al. 2011). These polyploid cells use the same trans-acting factors as diploid cells to 

control DNA replication initiation (Zielke et al. 2011), which occurs stochastically from 

many origins of replication throughout S phase, yielding reproducibly earlier and later 

replicating domains (Kolesnikova et al. 2018). However, replication is not uniform across the 

salivary gland polyploid genome as it is in diploid cells. Whereas the earlier replicating 

regions of the genome are duplicated each endocycle, the latest replicating regions are not 

replicated each endocycle, resulting in under-replicated domains (Hammond and Laird 1985; 

Spradling and Orr-Weaver 1987). Stalled replication forks at these under-replicated domains 

cause DNA damage, resulting in deletions that contribute to copy number reduction (< 

1350C) (Andreyeva et al. 2008; Yarosh and Spradling 2014). Under-replicated domains also 

occur in mammalian polyploid cells (Hannibal et al. 2014) and share characteristics of 

mammalian diploid cell fragile sites (Hua and Orr-Weaver 2017). Thus, the study of the 

origin and properties of under-replicated domains in polyploid genomes will help us 

understand general features of genome organization and stability. 
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The mechanistic basis for under-replication is not completely understood, but recent 

studies suggest contributions from regulating origin firing and replication fork progression 

(Sher et al. 2012; Hua and Orr-Weaver 2017). In both diploid and polyploid cells the timing 

of DNA replication initiation during S phase correlates with chromatin organization: 

transcriptionally active, accessible euchromatin generally replicates earlier during S phase 

whereas transcriptionally repressive, inaccessible heterochromatin generally replicates later 

(MacAlpine et al. 2004; Bell et al. 2010; Eaton et al. 2011; Lubelsky et al. 2014; Pokholkova 

et al. 2015; Prioleau and MacAlpine 2016; Armstrong et al. 2018). This differential 

replication timing is regulated, in part, by non-uniform distribution of origins of replication 

throughout the genome. Euchromatic regions of the genome have a higher density of origins 

relative to heterochromatic regions, resulting in a higher probability of DNA replication 

initiation in euchromatin relative to heterochromatin (Rhind et al. 2010; Sher et al. 2012; Das 

et al. 2015; Miotto et al. 2016). However, a paucity of origins is an insufficient explanation 

for under-replication in polyploid cells because some regions of the genome that 

constitutively lack origins are not under-replicated in all Drosophila polyploid cell types 

(Sher et al. 2012; Hua et al. 2018). Rather, reduced origin density coupled with inhibition of 

replication fork progression contribute to under-replication within polyploid genomes (Sher 

et al. 2012; Kolesnikova et al. 2013; Hua et al. 2018; Munden et al. 2018). The latest 

replicating regions located within pericentric heterochromatin experience the greatest degree 

of under-replication.  

Several heterochromatin-associated proteins contribute to under-replication in the 

Drosophila salivary gland. Heterochromatin Protein 1a (HP1a) binds di- and tri-methylated 

H3K9, which is enriched in pericentric heterochromatin, and facilitates heterochromatin 
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formation through multimerization of HP1a molecules and recruitment of other 

heterochromatin-associated factors (Canzio et al. 2011; Larson et al. 2017; Strom et al. 

2017). The SuUR (Suppressor of Under-Replication) protein, a SNF2-like component of 

silent chromatin in both diploid and polyploid cells (Makunin et al. 2002), localizes to late 

replicating heterochromatin and inhibits DNA replication fork progression to promote under-

replication (Belyaeva et al. 1998; Makunin et al. 2002; Kolesnikova et al. 2013; Nordman et 

al. 2014). HP1a and SuUR recruitment to Drosophila salivary gland chromosomes are 

interdependent on one another: both the absence and over-expression of HP1a disrupt SuUR 

chromatin binding, and over-expression of SuUR results in mis-localization of HP1a to 

ectopic SuUR sites (Pindyurin et al. 2008). Furthermore, tethering either SuUR or HP1a to 

earlier replicating regions of salivary gland polytene chromosomes is sufficient to delay 

replication but not to induce under-replication (Pokholkova et al. 2015). Rif1 (Rap1-

Interacting Factor 1) and the linker histone H1 both directly interact with SuUR and are 

required for under-replication (Andreyeva et al. 2017; Munden et al. 2018). H1 functions 

upstream of SuUR and is required for SuUR chromatin binding (Andreyeva et al. 2017). 

Furthermore, although Rif1 directly regulates replication fork progression in a SuUR-

dependent manner, SuUR localization to under-replicated regions is independent of Rif1 

(Munden et al. 2018). 

In contrast to our current understanding of the contributions of trans-acting factors, 

the roles in endoreplication and under-replication of individual histone tail residues that 

impact chromatin organization have not been determined. The ninth lysine on histone H3 

(H3K9) and the sixteenth lysine on histone H4 (H4K16) have been implicated in promoting S 

phase progression through studies that modulate factors that catalyze (writers) or bind 
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(readers) the post-translational modifications of these residues (De Lucia et al. 2005; Peng 

and Karpen 2009; Li et al. 2010; Zhao et al. 2013). Notwithstanding their importance, these 

studies cannot directly determine whether H3K9 and H4K16 themselves regulate S phase 

progression, as histone modifying enzymes also modify non-histone substrates (Glozak et al. 

2005; Huang and Berger 2008; Sims and Reinberg 2008). To address this issue, we employed 

a strategy in Drosophila to generate histone mutant genotypes, an approach that is not 

currently feasible in other animals due to the large number of replication-dependent histone 

genes. The strategy involves deleting the endogenous wild type histone genes and replacing 

them with transgenic copies encoding an amino acid substitution that prevents post-

translational modification of a particular histone residue (Günesdogan et al. 2010; McKay et 

al. 2015). 

We recently demonstrated that, in contrast to mutation of H3K9 writers, readers, and 

erasers,  H3K9R mutant Drosophila diploid wing imaginal discs have only a modestly 

reduced S phase index, suggesting a small role played by H3K9 in canonical S phase 

progression (Armstrong et al. 2018). We observed a similarly modest effect on S phase 

progression in H4K16R wing imaginal disc cells (Armstrong and Duronio). Here, we utilize 

H3K9R and H4K16R mutations to probe the role of heterochromatin and euchromatin, 

respectively, in cell cycle phasing, DNA replication timing, and under-replication in 

Drosophila salivary gland polytene chromosomes. We demonstrate that H3K9 regulates 

endoreplication whereas H4K16 is largely dispensable. Furthermore, we demonstrate that 

H3K9 promotes under-replication of pericentric heterochromatin whereas under-replication 

along chromosome arms is H3K9-independent.  
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Materials and Methods 

Drosophila larval culturing  

All fly stocks were maintained on standard corn medium and crossing schemes to 

generate engineered replication-dependent histone genotypes were performed as in 

(Armstrong et al. 2018). Fifty GFP-positive Histone Wild Type (HWT), H3K9R, or H4K16R 

larvae were cultured independently of their phenotypically wild type, GFP-negative siblings 

by manually moving first-instar larvae into vials of standard corn medium and allowing them 

to develop until third instar larvae. Note that only the replication-dependent H3 and H4 

histone genes were mutant in this study. 

Salivary gland polytene chromosome immunofluorescence 

Pre-wandering third-instar larvae were staged using the following criteria: crawling 

on top of the media, not displaying wandering behavior on vial edges, and no longer eating. 

Salivary glands were dissected from pre-wandering third-instar larvae in 1xPBT (0.1% Triton 

X-100 in PBS, pH 7.5). Glands were permeabilized and fixed in the following solutions: 1) 2 

minutes in (3.7% Paraformaldehyde, 1xPBT), 2) 2 minutes in (3.7% Paraformaldehyde, 50% 

Acetic Acid), and moved to 3) 1:2:3 Lactic Acid: dH20: Acetic Acid on a siliconized 

coverslip. Spread polytene chromosomes were flash frozen in liquid N2 and stored in 1xPBT 

until all slides were completed. Polytene chromosome spreads were incubated in Image-iT 

FX Signal Enhancer (Thermo Fisher) for 30 minutes at room temperature, stained with 1:500 

mouse anti-PCNA (Abcam; ab29) and 1:1500 mouse anti-HP1a (DSHB; C1A9) in 1xPBT 

overnight at 4 degrees, treated with 0.2ug/mL DAPI for 5 minutes at room temperature, 

mounted in ProLong Gold antifade reagent, and imaged on a Leica confocal microscope. 
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PCNA patterns were staged according to the following criteria: ER) dim PCNA signal across 

chromosome arms with few gaps between bands of PCNA signal; E-MR) bright PCNA 

signal across chromosome arms with few, distinct gaps between bands of PCNA signal; M-

LR) thick bands of PCNA signal across chromosome arms with large gaps between bands of 

PCNA signal and bright chromocenter PCNA signal; LR) thin bands of PCNA signal across 

chromosome arms with large gaps between bands of PCNA signal and chromocenter PCNA 

signal; VL-R) dim, sparse PCNA signal primarily at the chromocenter; NR) no PCNA signal. 

Sample preparation for genome sequencing 

Salivary glands from female, wandering third-instar larvae were isolated and flash 

frozen in liquid N2 until all samples were collected. Nuclei were isolated from replicates of 

25 salivary glands and sonicated with a Branson Sonifier 450 to an average fragment size 

distribution of 500-1000bp. Sonicated samples were treated with 100 µg/mL RNaseA at 

37°C for 1 hour and with 200 µg/mL proteinase K at 37°C for 2 hours. Genomic DNA was 

phenol chloroform extracted and stored at -80°C prior to library preparation. Libraries were 

prepared from 20 ng of genomic DNA with the ThruPLEX DNA-seq kit (Rubicon 

Genomics) and sequenced on an Illumina HiSeq2500 at the UNC High-Throughput 

Sequencing Core Facility. Sequencing data can be obtained using GEO accession number 

GSE125505. 

Bioinformatics 

Paired-end 100bp reads were trimmed using Trimmomatic (v0.36) with 

LEADING:30 and TRAILING:30 parameters and aligned to the dm6 reference genome 

(release 6.04) using Bowtie2 (v2.3.2) default parameters. Reads with a MAPQ score greater 
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than 10 were retained with SAMtools (v1.6) which removes reads with low confidence 

mappability that often include simple repeats. Thus, reads within heterochromatin map 

uniquely; see (Penke et al. 2016; Armstrong et al. 2018; Penke et al. 2018). BEDTools 

coverage (v2.25.0) was used to quantify the number of reads mapping to 10kb windows tiled 

across the genome, with results normalized to read depth (Quinlan and Hall 2010). CNVnator 

0.3.3 was used for detection of under-replicated sequences using a bin size of 1000 (Abyzov 

et al. 2011). Under-replicated domains were called if they were: 1) detected by CNVnator 

and 2) greater than 10kb in size. Pericentromeric and chromosome arm boundaries were 

defined by high levels of H3K9me2 enrichment as in (Riddle et al. 2011; Hoskins et al. 

2015). A p value of 0.001 was used as the statistical significance cutoff for all bioinformatic 

analyses. modENCODE H3K9me2 ChIP-seq data from whole third instar larvae (GEO 

accession number GSE47260) was used for analyses and LOESS regression lines were 

generated with span = 0.02. 

 

Results 

We used our histone gene replacement platform to generate H3K9R and H4K16R 

mutant larvae and determine whether replication-dependent H3K9 and H4K16 are necessary 

for endoreplication in the Drosophila salivary gland. The approximately ten salivary gland 

endoreplication cycles occur from 7-96 hours after egg deposition and are completed by the 

wandering third-instar larval stage of development (Hammond and Laird 1985; Zielke et al. 

2011). To visualize nuclei actively undergoing DNA replication, we prepared salivary gland 

polytene chromosome spreads from pre-wandering third-instar larvae and stained them with 

an antibody against Proliferating Cell Nuclear Antigen (PCNA), as done previously 
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(Andreyeva et al. 2017; Kolesnikova et al. 2018). PCNA travels with the replisome and 

functions as a DNA polymerase processivity factor (Slade 2018), and thus serves as a 

cytological marker of active replication forks (Figure 3.1A) (Grant et al. 2018). 

Consequently, PCNA-positive polytene chromosome spreads are undergoing endo-S phase 

whereas PCNA-negative polytene chromosome spreads are not (i.e. G phase) (Figure 3.1A). 

As a general assessment of endocycle progression, we first determined an S phase 

index for each mutant genotype. Whereas approximately 60% of Histone Wild Type control 

(HWT; n = 211) and H4K16R mutant (n = 284) polytene chromosome spreads were in S 

phase (i.e. PCNA-positive) (Figure 3.1B), only ~30% of H3K9R (n = 286) mutant salivary 

glands were in S phase (Figure 3.1B; p < 0.0001). These data suggest that H3K9 is required 

for proper endocycle progression in the Drosophila salivary gland whereas H4K16 is 

dispensable. Consistent with this interpretation, H3K9R mutant salivary glands are smaller 

than HWT control glands at early larval stages (Figure 3.1C). However, because development 

is delayed by ~24 hours in H3K9R mutants (Penke et al. 2016), they eventually attain a 

similar size as HWT control glands by the pre-wandering stage (Figure 3.1C). 

In the salivary gland polytene chromosome spreads, the largely euchromatic 

chromosome arms extend from a single chromocenter composed of the pericentric 

heterochromatin from each of the four chromosomes (Figure 3.1A). Genome-wide patterns 

of active replication change throughout the duration of S phase, with chromosome arms 

replicating earlier and the chromocenter replicating later. In addition, the euchromatin along 

chromosome arms (DAPI-dim inter-bands; Figure 3.1E) replicates earlier than intercalary 

heterochromatin (DAPI bright bands; Figure 3.1E), resulting in changing patterns of PCNA 

staining that can be used to monitor S phase progression. As performed previously 



 
92 

 

(Kolesnikova et al. 2013; Andreyeva et al. 2017), we binned polytene chromosome spreads 

from pre-wandering third-instar larvae into one of six RT categories based on the pattern of 

active replication as determined by PCNA staining: early-replicating (ER), early/mid-

replicating (E-MR), mid/late-replicating (M-LR), late-replicating (LR), very late-replicating 

(VLR), and non-replicating (NR) (Figure 3.1A; Materials and Methods). If either histone 

mutation affected endoreplication, such as the time during S phase when either euchromatin 

or heterochromatin replicates (i.e. replication timing or RT), we would expect a change in 

PCNA staining patterns and/or a change in the distribution of these categories relative to 

control. 

H4K16 acetylation is found in euchromatic regions of the genome while H3K9 

methylation is enriched in heterochromatin (Kharchenko et al. 2011). Consequently, H4K16R 

and H3K9R mutants might influence earlier and later replicating regions of the genome, 

respectively. However, we recently demonstrated that genome-wide RT in female diploid 

wing imaginal disc cells is unchanged in H4K16R mutants (Armstrong et al. 2018). 

Furthermore, pericentric heterochromatin in these cells generally remains late replicating in 

H3K9R mutants, although select domains within the pericentromeres advance replication 

timing (Armstrong et al. 2018). Despite modest RT effect in diploid cells of these histone 

mutant wing discs, we next asked whether H3K9 and H4K16 directly contribute to RT 

during endoreplication in the salivary gland. Our single-blind analysis revealed a significant 

difference in RT pattern distributions between both H3K9R (n = 65; p < 0.00001) and 

H4K16R (n = 101; p = 0.004956) when compared to HWT control (n = 96) (Figure 3.1D). 

The H4K16R and HWT RT distributions were similar, with M-LR as the most prevalent RT 

category in each genotype. However, the H4K16R RT distribution shifts from M-LR to 
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earlier replicating patterns (ER and E-MR) relative to HWT control (Figure 3.1D). In 

contrast, the M-LR RT category was the least prevalent in H3K9R mutants, and the overall 

distribution of H3K9R RT categories was obviously different than either HWT or H4K16R. 

This distribution shows a biphasic shift, with increases in both earlier (ER and E-MR) and 

VLR RT patterns relative to HWT control (Figure 3.1D). High magnification images revealed 

that for both histone mutants PCNA staining in early-mid S phase chromosomes occurs in 

DAPI-dim inter-bands, and in late S phase PCNA staining occurs in DAPI-bright bands, as in 

the HWT control (Figure 3.1E). These data suggest that the timing of replication of 

intercalary heterochromatin is not advanced in either histone mutant, and that large-scale 

changes in RT are not solely responsible for the change in distribution of RT categories.  
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Figure 3.1. H3K9 promotes endoreplication of the Drosophila salivary gland. A) 

Polytene chromosome spreads from HWT pre-wandering third-instar larvae stained for 

PCNA (green) and DAPI to detect DNA (blue). Representative early-replicating (ER), 

early/mid-replicating (E-MR), mid/late-replicating (M-LR), late-replicating (LR), very 

late-replicating (VLR) and non-replicating (NR) PCNA patterns are shown. White boxes 

designate the chromocenter as identified by HP1a staining (HWT and H4K16R) or 

cytologically (H3K9R) (not shown). B) Percentage of PCNA-positive (S phase; black) 

and PCNA-negative (G phase; grey) polytene chromosome spreads for HWT (n = 211), 

H3K9R (n = 286; p < 0.001) and H4K16R (n = 284; p > 0.05) genotypes. Significance 

was determined using the Chi-squared test. All S phase measurements were taken at the 

pre-wandering developmental stage. C) Salivary gland area of HWT and H3K9R at 67–

72 hours after egg deposition (p = 0.0229), 91–96 hours after egg deposition (p < 

0.0001) and at the pre-wandering third-instar larval stage (p = 0.1838) (Student’s T test). 

D) Percentage of PCNA-positive polytene chromosome spreads in each of the five 

replication timing pattern categories shown in A for HWT (n = 96), H3K9R (n = 65; p < 

0.00001) and H4K16R (n = 101; p = 0.004956) genotypes. Significance determined 

using the Chi-squared test and HWT data as the expected categories. E) Representative 

chromosome arms with E-MR and LR PCNA-patterns for HWT, H3K9R and H4K16R. 

In E-MR patterns, PCNA colocalizes with DAPI-dim inter-bands (green arrowheads) but 

not DAPI-bright bands (yellow arrowheads). In LR patterns, PCNA colocalizes with 

DAPI-bright bands (green/yellow double arrowheads). Experiments were performed in 

collaboration with Taylor Penke, Samuel Chao, and Gabrielle Gentile. 
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We posited that the increased proportion of H3K9R mutant chromosomes with a VLR 

PCNA pattern (where replication is occurring primarily at the chromocenter) represents more 

extensive replication of normally under-replicated sequences at the pericentromeres. This 

hypothesis predicts that following completion of all endoreplication cycles, H3K9R mutants 

would have increased copy number at normally under-replicated sequences compared to both 

H4K16R mutants and HWT controls. To test this hypothesis, we subjected genomic DNA 

isolated from H3K9R, H4K16R, and HWT wandering third-instar larval salivary glands to 

Illumina sequencing (Figure 3.2A-C; Figure 3.3A-D). At this developmental stage, 

endoreplication cycles have ceased and salivary gland cells have reached their final ploidy. 

DNA copy number profiles from two biological replicate samples were generated by 

determining the normalized read count of paired-end 100bp reads at 10kb windows tiled 

across the genome. The replicate samples from each of the three genotypes correlated well 

with each other (Figure 3.3D). Therefore, for all subsequent analyses, we used the averaged 

reads per million (RPM) normalized values of the two replicates per genotype (Figure 3.3A-

C). 

To identify DNA copy number differences genome-wide, we determined normalized 

copy number values at 10kb windows along all major chromosome scaffolds (2L, 2R, 3L, 

3R, 4, and X) for H3K9R or H4K16R and HWT control (Figure 3.3A-C). The data were 

plotted as a log2 transformed mutant/HWT ratio of normalized read counts, resulting in a 

relative copy number change for each 10kb window (Figure 3.2C). The most striking feature 

of these data is an increase in DNA copy number at H3K9R pericentromeres (p < 2.2 x 10-16; 

Student’s T test) (Figure 3.2A,C; Figure 3.3A-B). Some H3K9R pericentric regions are 

enriched sixteen-fold relative to HWT control. These whole genome sequencing data suggest 
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that increased copy number at pericentromeres may contribute to the observed 

disorganization and enlargement of H3K9R chromocenters that we reported previously 

(Figure 3.2D) (Penke et al. 2016). In addition, when considered as a whole, the DNA copy 

number along chromosome arms in H3K9R mutants shows a slight, but statistically 

significant (p < 2.2 x 10-16), decrease relative to HWT control (Figure 3.2C). This decrease 

may result from a larger proportion of H3K9R mutant reads mapping to pericentric regions, 

causing a corresponding relative decrease in the number of reads for other genomic regions, 

and thus is not likely biologically meaningful. In contrast to the H3K9R results, we find that 

DNA copy number in H4K16R mutants is not significantly different than HWT controls 

either at pericentric regions or along chromosome arms (Figure 3.2B,C; Figure 3.3A,C). In 

agreement with these data, the H4K16R chromocenter is cytologically similar to the HWT 

control (Figure 3.2D,E).  
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Figure 3.2. DNA copy number in pericentric heterochromatin is elevated in H3K9R 
mutants.  

A,B) Heatscatter plot of A) H3K9R/HWT log2 ratio and B) H4K16R/HWT log2 ratio of 

normalized copy number at 10kb windows along Chromosomes 2 and 3. LOESS 

regression line of modENCODE H3K9me2 ChIP signal is shown in red (GSE47260). C) 

Quantification of mutant/HWT ratio of normalized copy number at 10kb windows for all 

major chromosome scaffolds (Chromosomes 2L, 2R, 3L, 3R, 4 and X) separated into 

pericentromeres (Peri) and chromosome arms (Arms) (* = p < 0.001; Student’s T test). 

Coordinates for pericentromeres and chromosome arms were defined in References 

(Riddle et al. 2011; Hoskins et al. 2015) (see also Figure 3.3). D) Representative 

polytene chromosome chromocenter from HWT, H3K9R and H4K16R wandering third-

instar salivary glands stained with DAPI. Scale bar = 10 µM. E) Quantification of 

cytological categories for HWT and H4K16R chromocenters as performed in Reference 

(Penke et al. 2016). HWT and H4K16R chromocenters shown in panel D represent the 

organized category whereas the H3K9R chromocenter shown represents the severely 

disorganized category, which we previously reported comprises 72% of H3K9R 

chromocenters (Penke et al. 2016). The distribution of chromocenters among the three 

categories between HWT and H4K16R is not statistically different (p > 0.0001; Chi 

squared test). Experiments were performed in collaboration with Taylor Penke. 

  



 
99 

 

  



 
100 

 

Figure 3.3. DNA copy number in pericentric heterochromatin is elevated in H3K9R 
mutants.  
A–C) Heatscatter plot of A) HWT normalized copy number (log2), B) H3K9R 

normalized copy number (log2) and C) H4K16R normalized copy number (log2) at 10kb 

windows along Chromosomes 2 and 3. LOESS regression line of modENCODE 

H3K9me2 ChIP signal is shown in red (GSE47260). D) Heatscatter plot comparing 

normalized signal at 10kb windows of two replicates each for HWT, H3K9R and 

H4K16R genotypes along all major chromosome scaffolds (Chromosomes 2L, 2R, 3L, 

3R, 4 and X). Pearson’s correlation value is indicated. Experiments were performed in 

collaboration with Taylor Penke. 
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These whole genome sequencing data suggest that H3K9R mutants, but not H4K16R 

mutants, are defective in under-replication. To assess this possibility more directly, we next 

identified under-replicated domains in H3K9R, H4K16R, and HWT using CNVnator, a highly 

sensitive method for copy number variation detection based on a statistical analysis of read 

depth of short reads (Abyzov et al. 2011). This method was used previously in Drosophila 

(Munden et al. 2018). We required that under-replicated domains called by CNVnator be 

greater than 10kb. Using this criterion, we detected 101 under-replicated domains in HWT 

control salivary glands, 86 and 98 of which overlap with domains identified in H3K9R and 

H4K16R mutants, respectively. The size distribution of under-replicated domains in each of 

the three genotypes were similar, with sizes ranging from 11kb to over a megabase and 

medians ranging from 127kb to 138kb (Figure 3.4A).  

We used the 101 under-replicated domains identified in HWT salivary glands to more 

closely investigate under-replication in H3K9R and H4K16R mutants. We also included in 

our analysis previously published Illumina sequencing data from SuUR mutant salivary 

glands, which have reduced under-replication both at pericentromeres and along 

chromosome arms (Nordman et al. 2014). When we use 10kb windows to compare DNA 

copy number at under-replicated domains between each mutant genotype and their respective 

controls, we observe a significant reduction of under-replication in both SuUR and H3K9R 

mutants (p < 2.2 x 10-16; Student’s T test) (Figure 3.4B). In addition, we found a small, but 

statistically significant, decrease in copy number at fully replicated regions in H3K9R 

mutants (p = 8.25 x 10-7; Student’s T test), which as noted above most likely results from the 

way the sequencing data was analyzed rather than a biological phenomenon (Figure 3.4B). In 

contrast, we found no significant changes in copy number at either subset of genomic regions 
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in H4K16R mutants (Figure 3.4B). These data suggest that copy number differences between 

H3K9R and HWT are due to failure of the normal under-replication mechanism.  

We next partitioned the 101 under-replicated regions identified in HWT into those 

located on chromosome arms and those located within pericentric heterochromatin. For this 

purpose, pericentric heterochromatin was defined by high levels of H3K9me2 enrichment as 

described previously (Riddle et al. 2011; Hoskins et al. 2015). When considering all under-

replicated domains within pericentric heterochromatin, we observed a significant increase in 

copy number in H3K9R mutants (p < 2.2 x 10-16) relative to HWT control (Figure 3.4C,D). 

Furthermore, 10/48 (21%) under-replicated domains identified in HWT pericentric 

heterochromatin were not identified using CNVnator in H3K9R mutants, suggesting a strong 

suppression of under-replication in these 10 domains. When considering copy number at 

under-replicated domains along chromosome arms, we observed a small but statistically 

significant (p < 4.429 x 10-10) decrease in copy number in H3K9R mutants relative to HWT 

control (Figure 3.4C,D). This decrease in copy number may result from the 18 newly 

identified under-replicated domains in H3K9R that were not identified in HWT or may result 

from the sequencing analysis as noted above. In contrast to these data, SuUR mutants have 

reduced under-replication both at pericentric heterochromatin and along chromosome arms 

(Figure 3.4C) (Nordman et al. 2014; Munden et al. 2018). We found no significant changes 

in copy number either at under-replicated regions in pericentric heterochromatin or along 

chromosome arms in H4K16R mutants (Figure 3.4C,D). These data demonstrate that H3K9 

is required for normal under-replication at pericentric heterochromatin and suggest that 

under-replication along chromosome arms occurs in an H3K9-independent manner. 
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Figure 3.4. Under-replication of pericentric heterochromatin is H3K9-dependent. 

A) Histogram of under-replicated domains identified by CNVnator (Abyzov et al. 2011) 

for HWT, H3K9R and H4K16R genotypes. Bin size is set to 10kb. B) Boxplot of the 

SuUR/OregonR, H3K9R/HWT and H4K16R/HWT log2 ratios of DNA copy number at 

10kb windows at fully replicated (Full) and under-replicated (UR) domains as defined 

by CNVnator (Abyzov et al. 2011) in HWT (* = p < 0.001; Student’s T test). C) Boxplot 

of the SuUR/OregonR, H3K9R/HWT and H4K16R/HWT log2 ratios of normalized signal 

at 10kb windows at under-replicated domains (top panel) and fully replicated domains 

(bottom panel) in pericentromeres (Peri) or chromosome arms (Arms) (* = p < 0.001; 

Student’s T test). D) Heatscatter plot of normalized signal at 10kb windows at under-

replicated domains in HWT versus H3K9R (top panels) or versus H4K16R (bottom 

panels) at pericentromeres (left panels) and chromosome arms (right panels). 

Experiments were performed in collaboration with Taylor Penke. 
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Discussion 

Here, we utilized a genetic platform for histone gene replacement to interrogate the 

function of replication-dependent H3K9 and H4K16 in Drosophila salivary gland 

endoreplication. We found that while H3K9 is important for salivary gland endoreplication, 

H4K16 is largely dispensable. We observed three phenotypes in H3K9R mutant salivary 

glands: i) a decrease in the S phase index, ii) a biphasic shift in replication timing toward 

both earlier and the very latest (i.e. chromocenter replication) patterns, and iii) a reduction in 

the level of under-replication at pericentric heterochromatin, but not along chromosome 

arms.  

A decrease in the S phase index could result from a reduction in the number or 

duration of endo-S phases, an increase in the duration of G phase, or both. The H3K9R 

mutant salivary glands reach the same size as control, consistent with completion of the 

endoreplication program. In addition, the slower development of H3K9R mutant animals may 

result in longer G periods between endo S phases, thus further reducing the S phase index. 

Another possibility is that the endoreplication timing program is generally condensed in 

H3K9R mutants such that S phase occurs more quickly, accounting for the change in 

distribution of RT categories and contributing to the decrease in S phase index. These 

changes unlikely indirectly result from changes in transcription, as we did not detect 

significant changes in the expression of protein coding genes, including those encoding 

replication factors, in the replication-dependent H3K9R mutant (Penke et al. 2016; 

Armstrong et al. 2018).  

The latest replicating sequences of polyploid salivary gland cells are not fully 

replicated each endocycle, yielding regions of the genome with decreased copy number, 
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particularly in pericentric heterochromatin but also at specific loci along chromosome arms 

(Spradling and Orr-Weaver 1987). We suggest that the elevated number of H3K9R mutant 

salivary gland nuclei with a very late replication pattern, represented by PCNA staining of 

the chromocenter, results from more extensive replication of pericentric heterochromatin 

each endocycle. Consistent with such a failure of normal under-replication, in H3K9R 

mutants we detected an increase in DNA copy number at pericentric heterochromatin by 

whole genome sequencing, as well as altered chromocenter cytology (Penke et al. 2016). 

Interestingly, we did not detect decreased under-replication along chromosome arms, 

indicating that replication-dependent H3K9 is particularly important for endoreplication 

control in pericentric heterochromatin. This result is reminiscent of our previous observations 

that replication-dependent H3K9R mutation disrupts HP1a recruitment, nucleosome 

occupancy, and transposon repression at pericentric heterochromatin in diploid wing 

imaginal discs, without appreciably affecting the function of euchromatin (Penke et al. 2016; 

Armstrong et al. 2018; Penke et al. 2018). An important caveat to our observations is that we 

cannot rule out a contribution from K9 of the variant histone H3.3 to under-replication along 

salivary gland polytene chromosome arms. Animals in which both H3.3 and replication-

dependent H3 contain K9R mutations die as early first instar larvae, precluding the 

appropriate genetic experiment (Penke et al. 2018). Similarly, our H4K16R analyses cannot 

rule out a small contribution from the replication-independent His4r gene, which resides 

outside the replication-dependent histone gene cluster and encodes a protein identical to 

replication-dependent H4 (Armstrong et al. 2018; Copur et al. 2018). 

Our previous analysis of H3K9R diploid wing discs revealed only a small number of 

advanced RT changes within pericentric heterochromatin (Armstrong et al. 2018). In 
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contrast, our analyses here revealed that most under-replicated domains within pericentric 

heterochromatin increased in DNA copy number in H3K9R mutant polyploid salivary glands. 

These data suggest that replication-dependent H3K9 plays a more significant role in 

regulating under-replication during salivary gland endoreplication than in regulating late 

replication during the canonical diploid cell cycle. Alternatively, these processes might be 

controlled by distinct mechanisms. The biological function of under-replication is not known, 

and thus the consequence of losing pericentric under-replication is uncertain. Interestingly, 

Rif1 mutants, which lack under-replication altogether (Munden et al. 2018), are viable and 

fertile (Munden et al. 2018; Seller and O’Farrell 2018). 

What might be the mechanism by which H3K9R promotes under-replication of 

pericentric heterochromatin? Previous studies established SuUR as a key regulator of under-

replication in polyploid genomes of Drosophila salivary glands (Belyaeva et al. 1998; 

Makunin et al. 2002; Nordman et al. 2014; Pokholkova et al. 2015; Munden et al. 2018). 

Unlike H3K9R mutants, under-replication in SuUR mutants is reduced both along 

chromosome arms and at pericentric heterochromatin (Makunin et al. 2002). The mode of 

SuUR association with these two regions of the genome is different, being SNF2 domain-

dependent and dynamic with replication forks and SNF2 domain-independent and more 

constitutive within pericentric heterochromatin (Munden et al. 2018). SuUR forms a protein 

complex with Rif1, which recruits Protein Phosphatase 1 (PP1), and these interactions are 

required to promote under-replication (Munden et al. 2018). In addition, HP1a and SuUR 

depend on one another for chromatin association (Pindyurin et al. 2008; Pokholkova et al. 

2015). Thus, one potential explanation for reduced pericentric heterochromatin under-

replication in H3K9R mutants is the loss of pericentric HP1a (Penke et al. 2016). In the 
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absence of HP1a, SuUR’s constitutive association with pericentric heterochromatin is 

reduced (Pindyurin et al. 2008), which may prevent the downstream effectors of under-

replication, Rif1 and PP1, from properly suppressing replication at these regions of the 

genome.  

In conclusion, our data indicate that under-replication at salivary gland pericentric 

heterochromatin occurs through an H3K9-dependent mechanism, and therefore suggest that 

the hallmarks of constitutive heterochromatin, H3K9me and HP1a, are critical regulators of 

under-replication in Drosophila polyploid cells. 
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CHAPTER 4- RIF1 FUNCTIONS IN A TISSUE-SPECIFIC MANNER TO CONTROL 
REPLICATION TIMING THROUGH ITS PP1-BINDING MOTIF 

 

Introduction 

DNA replication initiates from discrete regions of the eukaryotic genome, known as 

replication domains, in a precise chronological manner during S phase. This temporal order 

of DNA replication is known as the DNA replication timing (RT) program and is 

evolutionarily conserved from yeast to humans (Rivera-Mulia and Gilbert 2016). In 

metazoan species, replication domain sizes range from hundreds of bases to megabases, and 

their RT is correlated with transcriptional activity, chromatin structure, and position within 

the nucleus (MacAlpine et al. 2004; Schwaiger et al. 2009; Eaton et al. 2011; Rivera-Mulia 

and Gilbert 2016; Almeida et al. 2018; Heinz et al. 2018). Furthermore, RT domains are 

highly correlated with topologically associated domains (TADs), where a near one-to-one 

correlation has been observed between RT domains and TADs (Pope et al. 2014). While RT 

is clearly influenced by chromatin structure and nuclear organization, the exact function of 

RT is not fully understood. Importantly, defects in RT are associated with genome instability, 

and RT is often altered in cancer cells (Stamatoyannopoulos et al. 2009; Koren et al. 2012; 

Donley and Thayer 2013). Therefore, understanding the processes and factors that contribute 

to RT is key to understanding fundamental aspects of eukaryotic DNA replication and 

genome stability.  

Both cellular differentiation and cellular identity influence genome-wide RT, 

suggesting that the underlying mechanisms regulating RT are plastic during development. 
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Comparison of genome-wide RT between three lines of cultured Drosophila cells revealed 

differences in RT across ~8% of the genome (Lubelsky et al. 2014). More extensive RT 

profiling using in vitro models of cellular differentiation from multiple mammalian cell 

lineages has revealed ~50% of the genome is subject to cell-type specific RT changes 

(Hiratani et al. 2008; Hiratani et al. 2010). Furthermore, in mammalian cells, the RT program 

goes through a global reorganization where many small RT domains consolidate into larger 

RT domains as cells differentiate from embryonic stem cells to more differentiated cell types 

(Ryba et al. 2010). It is still unclear, however, whether cell-type specific changes in RT are 

developmentally programmed directly or whether differential RT is a passive reflection of 

the changes in chromatin structure and nuclear organization that occur during cellular 

differentiation. 

Multiple trans-acting replication factors control RT from yeast to humans. Loading of 

the MCM replicative helicase during G1 phase of the cell division cycle and helicase 

activation during S phase are key steps in RT control (Bell and Stillman 1992; MacAlpine et 

al. 2010; Mantiero et al. 2011; Collart et al. 2013; Miotto et al. 2016). Several factors are 

limiting for replication initiation (Sld2, Sld3, Dpb11, Dbf4 and Cdc45) and their 

overexpression disrupts RT in budding yeast and Xenopus (Mantiero et al. 2011; Collart et al. 

2013). A critical trans-acting RT-regulating factor is Rif1 (Rap1-interacting factor 1), which 

controls RT from yeasts to humans (Cornacchia et al. 2012; Hayano et al. 2012; Yamazaki et 

al. 2012; Peace et al. 2014; Foti et al. 2016). In animals, it is not clear whether the genomic 

regions that Rif1 targets during differentiation are cell-type specific or whether Rif1 

selectively regulates specific regions of the genome regardless of cell type. Although Rif1 is 

only modestly conserved, all Rif1 orthologs contain a Protein Phosphatase 1 (PP1)-
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interaction motif, suggesting that PP1 recruitment is a critical function of Rif1. Rif1 

recruitment of PP1 to chromatin prevents the Dbf4-dependent kinase (DDK) activation of 

DNA-loaded helicases (Davé et al. 2014; Hiraga et al. 2014; Mattarocci et al. 2014; Hiraga et 

al. 2017; Sukackaite et al. 2017). However, how specific loss of the Rif1-PP1 interaction 

affects RT genome wide has not been determined. 

To better understand the extent to which Rif1 regulates RT in various unperturbed 

cell types during development, we have measured RT in the Drosophila larval wing discs 

and adult ovarian follicle cells in the presence and absence of Rif1. Here, we identify regions 

of the genome that change RT as a function of cell lineage and determine Rif1-dependent 

changes in RT in different tissue types. We found that cell lineage is a major driver of RT 

and demonstrate that tissue-specific transcription is not a major contributor to tissue-specific 

RT. Importantly, although RT in a subset of the genome depends on Rif1 similarly in 

different tissues, Rif1 largely acts in a tissue-specific manner to control RT. Additionally, the 

Rif1-PP1 interaction motif is required for Rif1-dependent control of RT, suggesting that PP1 

recruitment to replicative helicases is the predominant mechanism Rif1 utilizes for RT 

control. 

 

Materials and Methods 

FACS and genomic DNA sequencing  

Isolated nuclei from OregonR, Rif11/Rif1 (Rif1-), and Rif1PP1/Rif1 (Rif1PP1) female 

adult ovaries and yw, Rif1-, and Rif1PP1 female 3rd instar larval wing imaginal discs from were 

sorted into G1 and S populations by a FACSAria II or III based on DAPI intensity and 

subsequently pelleted, flash frozen, and stored at -80°C prior to DNA isolation and library 
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preparation. Libraries were prepared with the Rubicon ThruPLEX DNA-seq kit for wing 

imaginal disc samples and with the NEBNext Ultra II DNA Library Prep kit for follicle cell 

samples and subjected to Illumina HiSeq 2500 single-end 50bp sequencing for wing imaginal 

disc samples and Illumina HiSeq X paired-end 150bp sequencing for follicle cell samples. 

RT Characterization 

Reads from G1 and S samples were aligned to the dm6 reference genome (Release 

6.04) using Bowtie 2 (v2.3.2) default parameters (Langmead et al. 2009). Reads with a 

MAPQ score greater than 10 were retained using SAMtools (v1.9) (Li et al. 2009). 

BEDTools coverage (v2.26.0) was used to quantify the number of reads mapping to each 

100kb window, with results normalized to read depth (Quinlan and Hall 2010). Replication 

timing (RT) values were obtained by averaging the S/G1 ratio of reads per million (RPM) 

value from each S phase replicate for a particular window size. Profiles were generated by 

plotting the RT value at each window versus genomic location. Quantile normalization was 

performed for comparisons between samples through the preprocess Core R package to 

equalize the dynamic range of RT values (Bolstad 2016). The limma statistical package was 

used to identify 100kb windows with significantly altered RT values (lmFit, p value adjusted 

for multiple testing (p<0.01); absolute log2 fold change > 0.1) (Newville et al. 2014). 

BEDTools intersect (v2.26.0) was used to determine overlap of 100kb windows with -f 0.5 

and -u parameters (Quinlan and Hall 2010). RT values and limma-generated adjusted p 

values at 100kb windows were used to determine median RT values and adjusted p values at 

10kb windows (BEDTools map v2.26.0), and the significance threshold was adjusted at 10kb 

windows (p value adjusted for multiple testing (p<0.05); absolute log2 fold change > 0.1) 

(Quinlan and Hall 2010). Coordinates of chromatin states were obtained from (Kharchenko 
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et al. 2011) and converted to dm6 coordinates using the UCSC liftOver tool (Karolchik et al. 

2004). To calculate RT domain sizes, we identified the genomic coordinates halfway 

between each peak and valley of an RT profile and determined the distance from one halfway 

point to the next. 

 For false discovery rate (FDR) calculations, spike-in RT bed files with 3 x 107 reads 

were generated by combining either 3 x 105 (1% impure), 1.5 x 106 (5% impure), 3 x 106 

(10% impure), 7.5 x 106 (25% impure), or 1.5 x 107 (50% impure) randomly selected reads 

from each wing disc S phase replicate with 2.97 x 107 (1% impure), 2.85 x 107 (5% impure), 

2.7 x 107 (10% impure), 2.25 x 107 (25% impure), or 1.5 x 107 (50% impure) randomly 

selected reads from each mitotically cycling follicle cell S phase replicate. RT profiles 

generated from each test dataset (1% impure, 5% impure, 10% impure, 25% impure, and 

50% impure) were directly compared to RT profiles from wing discs, and differential 

replication timing was identified as before using the limma statistical package (lmFit, p value 

adjusted for multiple testing (p<0.01); absolute log2 fold change > 0.1) (Newville et al. 

2014). We estimate that 50% of the “mitotic” follicle cell population consists of endocycling 

follicle cells due to the following rationale: Because the total number of follicle cells in an 

egg chamber after the completion of the mitotic cell divisions is 1,024, the 2C-4C population 

used for sorting contains 210 (1,024) mitotically cycling follicle cells from all egg chambers 

prior to Stage 7 per ovariole and (at most) 1,024 endocycling follicle cells from the Stage 7 

egg chamber per ovariole. 

RNA Analyses 

Follicle cell isolation, RNA extraction and sequencing: Follicle cells were isolated by 

trypsinizing ovaries from OregonR or Rif11/Rif12 females as described in (Cayirliogu et al, 
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MCB 2003). Follicle cells were FACS sorted into TRIzol LS (Invitrogen) based on their 

ploidy and RNA was extracted according to the manufacture’s recommendation. 250,000 – 

500,000 follicle cells were used per replicate. rRNA was depleted using the RiboMinus™ 

Eukaryote Kit for RNA-Seq (Invitrogen) and libraries were prepared using the 

NEBNext® Ultra™ II RNA Library Prep.  

Wing disc isolation, RNA extraction and sequencing: Total RNA was isolated from 40 yw 

and Rif11/Rif1 female 3rd instar wing imaginal discs. Wing imaginal discs were homogenized 

in Trizol (Invitrogen) and flash frozen in liquid nitrogen. RNA was isolated using the Direct-

zol RNA miniprep kit (Zymo Research). rRNA was depleted and libraries were prepared 

using the Ovation Drosophila RNA-Seq system (NuGEN). RNA isolated from yw wing 

imaginal discs was also made into libraries and sequenced with follicle cell RNA for all 

comparisons in Figure 4.5.  

RNA seq analysis: TopHat default parameters (v2.1.1) (Trapnell et al. 2012) were used to 

align paired-end reads to the dm6 version of the Drosophila genome. Transcriptomes were 

generated using Cufflinks (v2.2.1, see supplementary materials for parameters). 

Differentially expressed transcripts were determined via edgeR statistical analysis (p value 

<0.01) (Robinson et al. 2010; McCarthy et al. 2012). For analyses comparison transcription 

to RT at 10kb windows, we either assigned the average RNA log2 fold change and average 

adjusted p-value from all transcripts overlapping each 10kb window or we assigned the log2 

fold-change of the transcript with the lowest edgeR-generated p value at each 10kb window 

for analyses directly comparing RT and transcription. Results were similar irrespective of 

how transcription was assigned to RT windows. 
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Results 

Cell lineage is a major driver of DNA replication timing 

To analyze RT in unperturbed cell types and tissues without the need to immortalize 

or transform cells, we exploited the well-characterized developmental systems of Drosophila 

melanogaster. To determine how cell lineage affects RT, we generated genome-wide RT 

profiles from cells of two distinct D. melanogaster epithelial tissues: third-instar larval wing 

imaginal disc cells and follicle cells from female adult ovaries. Cells of the wing disc are 

derived from the embryonic mesoderm while ovarian follicle cells are derived from the 

embryonic ectoderm. To generate RT profiles, we used fluorescence-activated cell sorting 

(FACS) to isolate and subsequently sequence the genomes of S phase nuclei from each tissue 

and compared these data to those obtained from G1 phase nuclei from wing discs (Figure 

4.1A; (Armstrong et al. 2018)). The premise of this method is that early-replicating DNA 

sequences are over-represented relative to late-replicating sequences within the S phase 

population. Therefore, replication timing values can be quantified by determining log2 

transformed S/G1 read counts across the genome, where larger values indicate earlier 

replication and smaller values indicate later replication (Figure 4.1A). 

To determine how lineage contributes to RT, we generated RT values at 100kb 

windows tiled at 10kb intervals across the genome for both wing discs and follicle cells and 

used a stringent significance threshold to identify differential RT between each tissue 

(Materials and Methods; (Armstrong et al. 2018)). RT profiles generated from individual 

replicates of wild type wing discs and follicle cells were strongly correlated (Pearson’s 

correlations = 0.95 and 0.95, respectively; Figure 4.2A), whereas RT values between the two 

lineages were significantly more divergent (Pearson’s correlation = 0.39; Figure 4.1B). While 
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~70% of the genome has similar RT between the two tissues, ~29% of the genome displays 

tissue-specific RT where 14.6% of windows replicate earlier in follicle cells and 14.5% of 

windows replicate earlier in wing discs (Figure 4.1C,D; Figure 4.2B; Table 4.1). Gene 

ontology analysis of genes located within tissue-specific RT domains did not reveal a 

significant enrichment of genes associated with a specific biological process. Furthermore, 

differential RT between wing discs and follicle cells did not preferentially affect any one 

chromatin state (Kharchenko et al. 2011), and replication domain sizes were highly similar 

between the two tissues (Figure 4.2C,D). These data demonstrate that cell lineage is a key 

contributor to replication timing control in Drosophila similar to what has been previously 

observed in mammalian cell culture systems (Hiratani et al. 2008; Ryba et al. 2010; Rivera-

Mulia et al. 2015). 
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Figure 4.1. Cell lineage is a major driver of DNA replication timing in Drosophila. A) 

Experimental outline: (1) Nuclei were FACS sorted into G1 (yellow) and S (blue or green) 

populations based on DNA content. (2) DNA was sequenced and mapped back to the dm6 

reference genome. More reads map to early than late replicating sequences. (3) S/G1 log2 

ratio of mapped reads generates replication timing profiles. B) Heatscatter plot of wild type 

wing disc and wild type follicle cell S/G1 (log2) ratios at all 100kb windows using a 10kb 

slide across the genome. C) Pie chart of all 100kb windows of significantly earlier RT in 

wild type wing discs (green), significantly earlier RT in wild type follicle cells (blue), and 

unchanged RT (grey) across the major chromosome scaffolds. D) LOESS regression lines 

showing average wild type wing disc (green) and wild type follicle cell (blue) S/G1 (log2) 

replication timing values across the chromosome 3R scaffold. See Figure 4.2 for all other 

chromosome arms. Experiments were performed in collaboration with Souradip Das. 
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Figure 4.2. Characterization of RT in wild type wing discs and follicle cells. A) 

Heatscatter plot comparing wild type wing disc S/G1 (log2) replicate replication timing 

values (top) and wild type follicle cell S/G1 (log2) replicate replication timing values 

(bottom). B) LOESS regression line showing average S/G1 (log2) replication timing values 

for wild type wings discs (green) and wild type follicle cells (blue) at 100kb windows using a 

10kb slide across the major chromosome scaffolds. C) All 10kb windows of differential RT 

between wild type follicle cells and wild type wing discs were assigned to the nine chromatin 

states previously defined in Drosophila (Kharchenko et al. 2011). Shown are the percentage 

of each chromatin state with differential RT. D) Histogram of replication domain sizes in 

wild type follicle cells and wild type wing discs. Experiments were performed in 

collaboration with Souradip Das. 
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Table 4.1. Quantification of differential RT at 100kb windows using a 10kb slide across 
the major chromosome scaffolds.  
 
Experiments were performed in collaboration with Souradip Das. 
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Cell type-specific transcription does not drive changes in RT 

Transcriptional activity is highly correlated with RT, with early replicating regions of 

the genome associated with active transcription and late replicating regions associated with 

transcriptional repression (MacAlpine et al. 2004; Liu et al. 2012; Lubelsky et al. 2014; 

Rivera-Mulia and Gilbert 2016). Therefore, we determined if differences in transcriptional 

activity correlated with differential RT. We generated transcriptomes from wild type wing 

disc cells and follicle cells by total RNA-seq and identified differentially expressed 

transcripts between each tissue type. Individual biological replicates were highly correlated 

(Figure 4.3; Pearson’s correlation coefficients > 0.95) and we were able to identify tissue-

specific gene expression including wingless (wg) expression in wing discs and chorion 

protein (cp) expression in follicle cells (Figure 4.4A). We observed 3,994 differentially 

expressed transcripts (p < 0.01; edgeR) between the two tissues (Figure 4.5A), with elevated 

expression of 2,651 transcripts in wing discs and 1,343 transcripts in follicle cells (Figure 

4.5A).  

To identify whether tissue-specific RT is driven by tissue-specific gene expression 

between wing discs and follicle cells, we directly compared differences in RT and gene 

expression at 10kb windows across the genome between the two tissues. First, we compared 

the average change in abundance of all transcripts within each window to the RT change of 

that window (Materials and Methods). Although transcript abundance was modestly elevated 

in wing discs versus follicle cells at windows of earlier RT in wing discs (average log2 fold 

change = 1.45CPM), we did not observe a strong correlation between elevated gene 

expression and earlier RT in follicle cells (Figure 4.5B,C; Figure 4.4B). These results were 

consistent whether we considered 1) the average change in the abundance of all transcripts 
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overlapping each 10kb window (Figure 4.5B,C; Figure 4.4B), 2) the change of the most 

confident transcript (lowest p value) assigned to each window (Figure 4.4C), or 3) the change 

of the transcript with the greatest differential expression (absolute maximum log2 fold-

change) assigned to each window (Figure 4.4D). Furthermore, 47.4% (791/1670) and 73.4% 

(813/1107) of windows with earlier RT in wing discs or follicle cells, respectively, do not 

contain a transcript with a significant increase in gene expression (Figure 4.4E), suggesting 

that tissue-specific RT and tissue-specific gene expression are mechanistically separable. 

Therefore, we conclude that differential gene expression between wing discs and follicle 

cells does not fully explain differences in RT between these two tissues. 

As an independent method to assess the relationship between tissue-specific gene 

expression and RT, we identified genes expressed in both tissues (shared), genes expressed in 

wing discs only (wing-specific), and genes expressed in follicle cells only (follicle-specific) 

(Materials and Methods). We identified 12,626 genes that were expressed in both tissues, 901 

genes that were wing-specific, and 517 that were follicle-specific (Figure 4.5D). When we 

quantified differential RT at both shared genes and tissue-specific genes, we observe earlier 

replication of wing-specific and shared genes in wing discs whereas follicle-specific genes do 

not replicate earlier in follicle cells. These data again indicate that tissue-specific 

transcription and tissue-specific RT, although correlated, are separable (Figure 4.5E,F). We 

hypothesized that earlier replication of shared genes in wing discs would correlate with 

elevated gene expression genome-wide in wing discs relative to follicle cells. Direct 

comparison of gene expression between the two tissues revealed a global increase of 

transcript abundance in wing discs relative to follicle cells (Figure 4.4F,G). Together, these 

data demonstrate that while gene expression and RT are correlated genome-wide (Figure 
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4.4H,I), changes in gene expression do not direct changes in RT between wing discs and 

follicle cells suggesting that RT and transcriptional activity are mechanistically separable. 
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Figure 4.3. Replicate correlations of RNA-seq data. A) Heatscatter plot comparing wild 

type follicle cell RNA-seq transcript per million (TPM) values (log2; top) and Rif1- follicle 

cell RNA-seq transcript per million (TPM) values (log2; bottom). B) Heatscatter plot 

comparing wild type wing disc RNA-seq transcript per million (TPM) values (log2; top) and 

Rif1- wing disc RNA-seq transcript per million (TPM) values (log2; bottom). Experiments 

were performed in collaboration with Souradip Das.  
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Figure 4.4. Transcriptional change does not drive differential RT between lineages. A) 

Genome browser shot of representative lineage-specific genes, wingless (wg) and chorion 

proteins 18, 15, and 19 (Cp18, Cp15, and Cp19). RNA-seq signal is shown for two replicates 

of wild type wing discs (green) and wild type follicle cells (blue). B) Histogram of the 

number of transcripts overlapping each 10kb window. Only windows containing at least one 

transcript are shown. C) Heatscatter plot of the wild type follicle cell/wild type wing disc RT 

values (S/G1 (log2)) versus the wild type follicle cell/wild type wing disc ratio of the 

transcriptional change of the most confident transcript (lowest p value) at each window 

across the major chromosome scaffolds. Only windows containing at least one transcript are 

shown. D) Heatscatter plot of the wild type follicle cell/wild type wing disc RT values (S/G1 

(log2)) versus the wild type follicle cell/wild type wing disc ratio of the transcriptional 

change of the transcript with the greatest differential expression (absolute maximum log2 

fold-change) at each window across the major chromosome scaffolds. Only windows 

containing at least one transcript are shown. E) Venn diagrams comparing 10kb windows of 

significantly increased gene expression in wing discs (p < 0.01, log2 fold change < 0;  edgeR) 

to significantly earlier replication in wing discs (p < 0.05, log2 fold change < -0.1; limma) 

(top; green) and comparing windows of significantly increased gene expression in follicle 

cells (p < 0.01, log2 fold change > 0;  edgeR)  to significantly earlier replication in follicle 

cells (p < 0.05, log2 fold change > 0.1; limma) (bottom; blue). F) Heatscatter plot comparing 

wild type wing disc RNA-seq signal and wild type follicle cell RNA-seq signal. G) 

Quantification of RNA-seq signal. H) Heatscatter plot of wild type wing disc (top) and wild 

type follicle cell (bottom) S/G1 (log2) replication timing values versus the number of 

transcripts within 10kb windows across the major chromosome scaffolds. I) Heatscatter plot 
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of wild type wing disc (top) and wild type follicle cell (bottom) S/G1 (log2) replication 

timing values versus the average transcriptional activity within 10kb windows across the 

major chromosome scaffolds. Experiments were performed in collaboration with Souradip 

Das. 
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Figure 4.5. Cell type-specific transcription does not drive changes in RT. A) Heatscatter 

plot of the wild type follicle cell/wild type wing disc ratio of total RNA-seq signal. 

Statistically different transcripts between wild type follicle cells and wild type wing discs are 

indicated in red (p < 0.01; edgeR). Blue lines indicate a log2 fold change of 1 and -1. B) The 

average log2 fold change of all transcripts within each 10kb window of earlier RT in wild 

type wing discs (green), earlier RT in wild type follicle cells (blue), and unchanged RT 

(grey). Only windows containing at least one transcript are shown. (p < 0.0001; One way 

ANOVA). C) Heatscatter plot of the wild type follicle cell/wild type wing disc RT values 

(S/G1 (log2)) versus the wild type follicle cell/wild type wing disc ratio of normalized RNA-

seq signal at all 10kb windows across the major chromosome scaffolds. The average log2 

fold change of all transcripts within each 10kb window is plotted, and only windows 

containing at least one transcript are shown. Percentages represent the number of windows 

within each region (vertical lines at -0.1 and 0.1 represent log2 fold change cutoffs for RT 

statistical significance). D) Venn diagram comparing expressed transcripts (TPM > 0) 

between wild type wing discs and wild type follicle cells. Wing-specific (green), follicle-

specific (blue) and shared (grey) transcripts are indicated. E) S/G1 (log2) log2 fold change 

between wild type follicle cells and wild type wing discs at wing-specific (green), follicle-

specific (blue), and shared (black) transcripts (p < 0.0001; One way ANOVA). F) Histogram 

of replication timing log2 fold change of wing-specific (green) and follicle-specific (blue) 

transcripts. Experiments were performed in collaboration with Souradip Das. 
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The switch to endoreplication does not affect DNA replication timing in follicle cells 

The follicle cells of the adult ovary undergo a developmentally programmed cell 

cycle transition in which, after a series of mitotic divisions, they begin endocycling, a cell 

cycle consisting of S and G phases with no intervening mitoses (Figure 4.6A) (Fox and 

Duronio 2013; Edgar et al. 2014). Follicle cells undergo three endocycles, resulting in a 

ploidy of 16C. Previous work has shown that there are distinct changes in genome regulation 

during the endocycle, including a global decrease in transcription, decrease in E2F1 target 

gene expression, and acquisition of endocycle-specific ORC binding sites (Maqbool et al. 

2010; Sher et al. 2012; Hua et al. 2018; Rotelli et al. 2019). Therefore, we hypothesized that 

follicle cell replication timing may be influenced by this developmentally regulated cell cycle 

transition. 

To determine if the transition from a mitotic cycle to an endocycle causes a change in 

RT, we generated genome-wide replication timing profiles from wild type endocycling 

follicle cells and compared them to the RT profiles we measured from wild type mitotic 

follicle cells (Figure 4.7A,B). To this end, we collected the S phase populations between the 

2C and 4C peaks (mitotic) and between the 4C and 8C peaks, which corresponds to the 

second of the three endocycles (Figure 4.6B). Direct comparison of RT profiles generated 

from wild type mitotic (2C-4C) and endocycling (4C-8C) follicle cells showed no windows 

of differential RT genome-wide between the two populations of follicle cells (Figure 4.6C; 

Figure 4.7C; Table 4.1). Likewise, the gene expression profiles of these two populations of 

follicle cells were highly similar, with only six differentially expressed transcripts between 

mitotically cycling and endocycling follicle cells (p < 0.01, edgeR; Figure 4.3; Figure 4.7D). 

It is important to note that the first follicle cell endocycle likely initiates from G1 phase (Lilly 
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and Spradling 1996; Calvi et al. 1998); therefore, the mitotic S phase sample may contain 

both mitotic and endocycling follicle cells. We were concerned that the impure cell 

population in the mitotic follicle cell dataset might mask any differential RT between the 

mitotic and endocycling populations. Based on the number of follicle cells in a mature egg 

chamber (~1000), we estimate that follicle cells in the first endo S phase could account for, at 

most, one half of the ‘mitotic’ follicle cell population (2C-4C) (Materials and Methods). 

Therefore, we performed an in silico false discovery rate (FDR) analysis by spiking in 

random reads from the wing disc RT dataset into the mitotic follicle cell RT dataset. Given 

that the endocycling follicle cells contribute no more than 50% of our total mitotic follicle 

cell population, our analysis would be sensitive enough to accurately identify at least ~27% 

of the endocycle-specific RT differences (Figure 4.7E; Materials and Methods). Thus, endo S 

cells in the 2C-4C population do not mask a difference in RT between endocycling and 

mitotic follicle cells. Although we cannot exclude the possibility that minor changes in RT 

could be masked in in our data. we conclude that mitotic and endocycling follicle cells have 

remarkably similar RT profiles, arguing that cell lineage, not changes in the cell cycle is a 

major contributing factor to RT. 
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Figure 4.6. S phase strategy does not affect DNA replication timing within the follicle 
cells of the adult ovary.  
 
A) Early egg chamber development within the adult Drosophila ovary. B) Representative 

FACS profile of follicle cell nuclei isolated from whole ovaries. The 2C-4C S phase fraction 

(blue) are the mitotically cycling follicle cells, and the 4C-8C S phase fraction (orange) are 

the endocycling follicle cells. C) LOESS regression line showing average wild type 

mitotically cycling follicle cells (blue) and wild type endocycling follicle cells (orange) S/G1 

(log2) replication timing values in at across the chromosome 3L scaffold. See Figure 4.7 for 

all other chromosome arms. D) Correlation matrix of S/G1 (log2) replication timing values 

for wild type endocycling follicle cells (endo S), wild type mitotically cycling follicle cells 

(mitotic S), and wild type wing discs. Experiments were performed in collaboration with 

Souradip Das. 
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Figure 4.7. Characterization of RT between wild type mitotically cycling and 
endocycling follicle cells.  
 
A) Heatscatter plot comparing wild type endocycling follicle cell S/G1 (log2) replicate 

replication timing values. B) Heatscatter plot comparing wild type mitotically cycling follicle 

cell and endocycling follicle cells S/G1 (log2) ratios at all 100kb windows using a 10kb slide 

across all major chromosome scaffolds. C) LOESS regression line showing average S/G1 

(log2) replication timing values for wild type mitotically cycling follicle cells (blue) and wild 

type endocycling follicle cells (orange) at 100kb windows using a 10kb slide across the 

major chromosome scaffolds. D) Heatscatter plot of the wild type endocycling follicle 

cell/wild type mitotically cycling follicle cell ratio of total RNA-seq signal. Statistically 

different transcripts between wild type follicle cells and wild type wing discs are indicated in 

red (p < 0.01; edgeR). Blue lines indicate a log2 fold change of 1 and -1. E) Venn diagram 

comparisons of significant RT changes identified between in silico-generated spike-in 

datasets (Materials and methods) and wild type wing imaginal discs (dark grey) versus 

significant RT changes identified between wild type follicle cells and wild type wing 

imaginal discs (light grey; p < 0.01, absolute log2 fold change > 0.1; limma). Experiments 

were performed in collaboration with Souradip Das.  
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Rif1 fine tunes the replication timing program in different tissues 

Rif1 is a global regulator of DNA RT from yeast to humans (Cornacchia et al. 2012; 

Hayano et al. 2012; Yamazaki et al. 2012; Peace et al. 2014; Seller and O'Farrell 2018). We 

sought to determine whether Rif1 regulates RT in a tissue-specific manner or whether Rif1-

dependent RT domains are hardwired into the genome. To address these questions, we 

generated genome-wide RT profiles from mitotic follicle cells and wing discs in a Rif1 null 

(Rif1-) mutant previously generated by our lab (Figure 4.8A,B; (Munden et al. 2018)). 

Individual replicates of Rif1- RT data generated from either wing discs or follicle cells 

correlated well (Figure 4.8C; Figure 4.9A), whereas comparison of Rif1- and wild type RT 

data revealed that approximately 13% of the genome has differential RT in mitotically 

cycling follicle cells and 8% of the genome has differential RT in wing discs (Pearson’s 

correlation coefficient = 0.52 and 0.78, respectively; Figure 4.9B; Figure 4.8D). For the Rif1- 

mutant follicle cells, 8.2% of windows displayed advanced RT while 5.0% of windows had 

delayed RT (Figure 4.10A-C; Figure 4.9C; Table 4.1). In the Rif1- mutant wing disc, 4.1% of 

windows had advanced RT and 3.9% of windows had delayed RT (Figure 4.10A-C; Figure 

4.8E; Table 4.1). Furthermore, the magnitude of RT changes within windows of differential 

RT between Rif1- and wild type was significantly greater in follicle cells than that observed in 

wing discs (Figure 4.10B,D). These data show that Rif1 has a greater impact on RT in 

follicle cells than wing discs, arguing that Rif1-dependent RT domains are not hardwired into 

the genome.  
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Figure 4.8. Characterization of RT in Rif1- wing imaginal discs. A) Western blot analysis 

of protein isolated from 10, 20, and 40 wild type and Rif1- wing discs (left to right). B) Wild 

type and Rif1- wing imaginal disc cells stained with DAPI (blue) and anti-Rif1 (green) 

antibodies. Bar, 10 µm. C) Heatscatter plot comparing Rif1- wing disc S/G1 (log2) replicate 

replication timing values. D) Heatscatter plot comparing wild type and Rif1- wing disc S/G1 

(log2) ratios at 100kb windows using a 10kb slide across all major chromosome scaffolds. E) 

LOESS regression line showing average S/G1 (log2) replication timing values for wild type 

wing discs (black) and Rif1- wing discs (cyan) at 100kb windows using a 10kb slide across 

the major chromosome scaffolds. Experiments were performed in collaboration with 

Christina Hill. 
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Figure 4.9. Characterization of RT in Rif1- mitotically cycling follicle cells. A) 

Heatscatter plot comparing Rif1- mitotically cycling follicle cell S/G1 (log2) replicate 

replication timing values. B) Heatscatter plot comparing wild type and Rif1- mitotically 

cycling follicle cell S/G1 (log2) ratios at 100kb windows using a 10kb slide across all major 

chromosome scaffolds. C) LOESS regression line showing average S/G1 (log2) replication 

timing values for wild type mitotically cycling follicle cells (black) and Rif1- mitotically 

cycling follicle cells (cyan) at 100kb windows using a 10kb slide across the major 

chromosome scaffolds. D) Heatscatter plot of the Rif1-/control ratio of total RNA-seq signal 

in follicle cells (top) and wing discs (bottom). Statistically different transcripts are indicated 

in red (p < 0.01; edgeR). Blue lines indicate a log2 fold change of 1 and -1. Experiments were 

performed in collaboration with Souradip Das. 
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Figure 4.10. Rif1 regulates RT in a lineage-specific manner. A) Correlation matrix of 

S/G1 (log2) replication timing values for wild type mitotically cycling follicle cells (WT 

follicle), Rif1- mitotically cycling follicle cells (Rif1- follicle), wild type wing discs (WT 

wing), and Rif1- wing discs (Rif1- wing). B) Volcano plot of the Rif1-/control ratio of 

normalized replication timing values (S/G1 (log2)) plotted versus the -log10 p value (adjusted 

for multiple testing) in follicle cells (left) and wing discs (right). Significant replication 

timing changes are indicated (red; p < 0.01, absolute log2 fold change > 0.1; limma). C) Pie 

chart of all 100kb windows of significantly advanced RT (red), significantly delayed RT 

(blue), and unchanged RT (grey) across the major chromosome scaffolds in Rif1- mutants 

relative to wild type control in follicle cells (left) and wing discs (right) D) S/G1 (log2) 

absolute log2 fold change at 100kb windows of significant RT change between Rif1- and 

control in follicle cells and wing discs (Student’s t test, p < 2.2 x 10-16). Experiments were 

performed in collaboration with Souradip Das.  
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Rif1 promotes late replication likely by preventing replicative helicase activation 

(Hayano et al. 2012; Davé et al. 2014; Hiraga et al. 2014; Mattarocci et al. 2014; Hiraga et al. 

2017). Therefore, we hypothesized that advanced RT in a Rif1- mutant is a direct effect of 

loss of Rif1 function, whereas delayed RT in a Rif1- mutant is a secondary effect. This 

hypothesis predicts that when comparing different Rif1- mutant cell types there should be a 

greater extent of overlap between regions with advanced RT (direct) than between regions 

with delayed RT (indirect) in Rif1- mutants. We found that 43.8% (242/552) of windows with 

advanced RT in wing discs were also advanced in follicle cells. In contrast, only 16.9% 

(89/527) of windows with delayed RT in wing discs were also delayed in follicle cells 

(Figure 4.11A). These data support the hypothesis that advanced RT is a direct effect of Rif1 

loss whereas delayed RT may be a secondary effect.  

While measuring RT values for Rif1 mutant and control samples, we profiled Rif1-/+ 

heterozygous follicle cells (Figure 4.12A,B). To our surprise, this heterozygous genotype 

displayed an intermediate RT phenotype with 3.6% (478/13391) of windows with advanced 

RT and 1.6% of windows with delayed RT relative to wild type follicle cells (Figure 4.12C). 

Furthermore, 87.0% of windows with significantly advance and 57.5% with significantly 

delayed RT in Rif1 heterozygotes were also affected in Rif1- follicle cells, indicating 

dependency on Rif1 function (Figure 4.12D). These data demonstrate that Rif1 is 

haploinsufficient for RT control in follicle cells.  

As an independent metric to address the specificity of commonly advanced and/or 

delayed RT changes, we asked whether common RT changes between mitotic follicle cells 

and wing discs were also detected in Rif1- endocycling follicle cells. We generated RT 

profiles from Rif1- endocycling follicle cells and found that individual replicates of RT data 
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correlated well (Figure 4.13A). In contrast, 14.8% of windows displayed differential RT in 

Rif1- endocycling follicle cells relative to control with 7.2% being advanced and 7.6% being 

delayed (Figure 4.11B; Figure 4.13B; Table 4.1). Although RT was similar between wild 

type mitotic and endocycling follicles cells, Rif1 mutation affected these cell populations 

differently. We found that 72.1% (789/960) of advanced windows in Rif1- endocycling 

follicle cells were also advanced in Rif1- mitotic follicle cells, and only 37.9% (388/1024) of 

the windows that were delayed in Rif1- endocycling follicle cells were also delayed in Rif1- 

mitotic follicle cells (Figure S8C). Accordingly, the low degree of overlap between windows 

of delayed RT is reflected by the low genome-wide RT correlation between Rif1- mitotic and 

endocycling follicle cells (Figure 4.11B; Figure 4.13D). Interestingly, many of the regions of 

advanced RT changes that were in common between Rif1- wing discs and mitotic follicle 

cells were also detected in Rif1- endocycling follicle cells while the delayed RT changes were 

mostly non-overlapping (72.7% (176/242) and 47.2% (42/89), respectively). Therefore, while 

Rif1 regulates RT in a tissue-specific manner, Rif1 appears to regulate RT in a core region of 

the genome regardless of cell type. 

  



 
146 

 

Figure 4.11. Rif1 promotes late replication of pericentric heterochromatin across 
lineages.  
 
A) Venn diagrams comparing significantly advanced (top) and delayed (bottom) 100kb 

windows identified in Rif1- follicle cells (left; blue) and wing discs (right; green) (p<0.01 and 

absolute log2 fold change > 0.1; limma). B) Correlation matrix of S/G1 (log2) replication 

timing values for wild type mitotically cycling follicle cells (WT mitotic S), Rif1- mitotically 

cycling follicle cells (Rif1- mitotic S), wild type endocycling follicle cells (WT endo S), Rif1- 

mitotically cycling follicle cells (Rif1- endo S), wild type wing discs (WT wing), and Rif1- 

wing discs (Rif1- wing). C) Pie chart of all 100kb windows of commonly advanced RT 

between Rif1- wing discs and follicle cells. Windows within pericentromeres are in grey and 

chromosome arms are in black. D) Bar plot of the percentage of 100kb windows in 

pericentric heterochromatin with significantly advanced RT. E) S/G1 (log2) absolute log2 

fold change at all 100kb windows located in pericentric heterochromatin between Rif1- and 

control (Student’s t test, p < 2.2 x 10-16). F) Heatscatter plot of the Rif1-/control ratio of 

normalized replication timing values (S/G1 (log2)) plotted versus the Rif1-/control ratio of the 

most confident transcript (lowest p value) at each window across the major chromosome 

scaffolds. Significantly advanced (red) and delayed (blue) windows are indicated (p < 0.05, 

absolute log2 fold change > 0.1 (vertical lines); limma). Experiments were performed in 

collaboration with Souradip Das. 
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Figure 4.12. Characterization of RT in Rif1-/+ mitotic follicle cells.  A) Heatscatter plot 

comparing Rif1-/+ mitotic follicle cell S/G1 (log2) replicate replication timing values. B) 

LOESS regression line showing average S/G1 (log2) replication timing values for wild type 

mitotic follicle cells (black) and Rif1-/+ mitotic follicle cells (light green) at 100kb windows 

using a 10kb slide across the major chromosome scaffolds. C) Pie chart of all 100kb 

windows of significantly advanced (red), delayed (blue), and unchanged RT (grey) in Rif1-/+ 

mitotic follicle cells across the major chromosome scaffolds. D) Venn diagrams comparing 

significantly advanced (left) and delayed (right) 100kb windows identified in Rif1- and Rif1-/+ 

follicle cells (p<0.01 and absolute log2 fold change > 0.1; limma). Experiments were 

performed in collaboration with Souradip Das. 
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Figure 4.13. Characterization of RT in Rif1- endocycling cycling follicle cells. A) 

Heatscatter plot comparing Rif1- endocycling follicle cell S/G1 (log2) replicate replication 

timing values. B) LOESS regression line showing average S/G1 (log2) replication timing 

values for wild type mitotically cycling follicle cells (black) and Rif1- mitotically cycling 

follicle cells (cyan) at 100kb windows using a 10kb slide across the major chromosome 

scaffolds. C) Venn diagrams comparing significant advanced (top) and significantly delayed 

(bottom) RT changes identified in Rif1- mitotically cycling follicle cells (left) and Rif1- 

endocycling follicle cells (right). D) Heatscatter plot comparing Rif1- mitotically cycling and 

endocycling follicle cell S/G1 (log2) ratios at 100kb windows using a 10kb slide across all 

major chromosome scaffolds. Experiments were performed in collaboration with Souradip 

Das.  
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Rif1 controls RT of pericentric heterochromatin 

Almost all commonly advanced windows in Rif1- mutant cell populations are located 

within pericentric heterochromatin, where Rif1 is known to be located (Buonomo et al. 2009; 

Munden et al. 2018; Seller and O’Farrell 2018). In contrast, all but eight of the commonly 

delayed windows are located along euchromatic chromosome arms (Figure 4.11C; Figure 

4.14A). This relationship is also true for tissue-specific RT changes in Rif1- wing discs and 

follicle cells—advancements are over-represented in pericentric heterochromatin whereas 

delays are over-represented along chromosome arms (Figure 4.14B). Collectively, these data 

suggest that Rif1 directly regulates late replication and may play a significant role in 

regulating late replication of pericentric heterochromatin. Interestingly, almost 40% of 

pericentric heterochromatin advances in Rif1- follicle cells (both mitotically cycling and 

endocycling), whereas 2.8-fold fewer pericentric windows advance RT in Rif1- wing discs 

(Figure 4.11D; Figure 4.14B). Furthermore, the overall RT of Rif1- pericentric 

heterochromatin remains very late in wing discs relative to the average RT of the 

chromosome arms, and the magnitude of RT advancement is less than that observed in Rif1- 

pericentric heterochromatin in follicle cells (Figure 4.11E; Figure 4.8E). Therefore, Rif1 

contributes more substantially to late replication of pericentric heterochromatin in follicle 

cells than in wing discs. 

Some regions of Drosophila polyploid genomes are under-replicated relative to the 

rest of the genome; i.e. they have endoreplicated less extensively. This is particularly true in 

pericentric heterochromatin in salivary glands, and this under-replication requires Rif1 

(Munden et al. 2018). Consequently, because our RT protocol measures relative copy 

number in S phase versus G1 phase, one possible explanation for the significantly earlier 
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replication of pericentric heterochromatin in polyploid Rif1- follicle cells relative to diploid 

Rif1- wing discs is a loss of under-replication of pericentric heterochromatin. Multiple 

observations, however, indicate that we are measuring true changes in RT rather than the loss 

of under-replication in Rif1- follicle cells. First, loss of under-replication predicts that 100% 

of pericentric heterochromatin would be scored as “advanced” RT. However, we found that 

only 40% of pericentric heterochromatin advances RT in Rif1- mitotic and endocycling 

follicle cells (Figure 4.11D; Figure 4.13B). Second, if pericentric heterochromatin was 

under-replicated in wild type endocycling follicle cells, we would expect to observe a 

reduced copy number in pericentric heterochromatin relative to wild type mitotically cycling 

follicle cells. However, pericentric heterochromatin copy number profiles derived from wild 

type mitotic and endocycling S phase fractions are not different from one another (Figure 

4.15). Together, these data support the conclusion that Rif1 regulates RT uniquely in 

different cell types and that the RT differences measured in Rif1- follicle cells represent 

changes in RT and do not result from changes in under-replication.  
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Figure 4.14. Characterization of Rif1-dependent RT control in follicle cells and wing 
discs.  
 
A) Pie chart of all 100kb windows of commonly delayed RT between Rif1- wing discs and 

follicle cells. Windows located within pericentromeres are in grey and windows located 

within chromosome arms are in black. B) Pie charts of all 100kb windows with advanced 

(red), delayed (blue), and unchanged (grey) RT in Rif1- mitotically cycling follicle cells, 

endocycling follicle cells, and wing discs separated by chromosome arms (top) and 

pericentromeres (bottom). Experiments were performed in collaboration with Souradip Das. 
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Figure 4.15. Under-replication does not contribute to RT differences between 
mitotically cycling and endocycling follicle cells.  
 
A-B) Boxplot of S phase copy number at pericentromeres (A) and chromosome arms (B) in 

wild type (WT) and Rif1- mitotically cycling and endocycling follicle cells across all major 

chromosome scaffolds. C) Heatscatter plots of S phase copy number at 100kb windows with 

a 10kb slide across the Chromosome 3R scaffold in wild type (WT) and Rif1- mitotically 

cycling (left) and endocycling (right) follicle cells. Experiments were performed in 

collaboration with Souradip Das. 
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Rif1 controls RT independently of gene expression 

To determine whether RT changes in Rif1- wing discs and follicle cells were due to 

transcriptional deregulation, we generated transcriptomes from Rif1- follicle cells and Rif1- 

wing discs. We identified only 121 and 60 differentially expressed transcripts between Rif1- 

and controls in wing discs and mitotic follicle cells, respectively, demonstrating that gene 

expression is largely unaffected after loss of Rif1 function in these tissues (Figure 4.9D, 

Figure 4.3). We found only 2.1% (28/1342) of differential RT windows in follicle cells and 

19.5% (99/507) of differential RT windows in wing discs contain a differentially expressed 

transcript (Figure 4.11F). Together, these data show that loss of Rif1 function affects RT to a 

greater extent in follicle cells relative to wing discs and that these RT changes likely do not 

result from transcriptional deregulation.  

Rif1’s PP1 binding motif is essential for Rif1-mediated RT control 

Rif1 impacts the RT of pericentric heterochromatin to a greater extent in follicle cells 

than in wing discs (Figure 4.11D,E) suggesting a different requirement for Rif1 in RT 

regulation of pericentric heterochromatin in different tissues. To further understand these 

mechanistic differences, we assessed what role the PP1 binding motif within Rif1 has on RT 

control of pericentric heterochromatin in wing discs and follicle cells. Rif1 orthologs from 

yeast to humans contain a PP1 binding motif, and mutation of this motif prevents Rif1 

association with PP1 in multiple systems ((Davé et al. 2014; Hiraga et al. 2014; Mattarocci et 

al. 2014; Sreesankar et al. 2015; Alver et al. 2017; Hiraga et al. 2017; Sukackaite et al. 

2017)). We previously generated an allele of Rif1 (Rif1PP1) where the conserved SILK/RSVF 

PP1 interaction motif is mutated to SAAK/RASA (Munden et al. 2018). We generated 

genome-wide RT profiles from Rif1PP1 wing discs and follicle cells. Individual replicates 
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from each tissue correlated well (Pearson’s correlation = 0.91 and 0.89; Figure 4.16A,B; 

Figure 4.17A,B). In contrast, we found that 17.9% and 11% of windows in Rif1PP1 wing discs 

and follicle cells, respectively, displayed differential RT relative to control (Figure 4.18A,B; 

Figure 4.16C,D; Figure 4.17C,D; Table 4.1). Strikingly, Rif1PP1 wing discs displayed over 3-

fold the number of advanced windows compared to Rif1- wing discs. In addition, almost all 

(94.4%) advanced windows in Rif1- wing discs were also advanced in Rif1PP1 mutants 

(Figure 4.18B). Interestingly, in follicle cells, there was almost a complete overlap of 

advanced RT windows between Rif1PP1 and Rif1- mutants. These data suggest that the Rif1PP1 

and Rif1- mutations potentially affect RT through different mechanisms in wing discs and 

through the same mechanism in follicle cells. In contrast, the overlap of delayed RT changes 

between Rif1PP1 and Rif1- wing discs or follicle cells is poor (Figure 4.18B). These data 

further support that advanced RT in Rif1 mutants is a direct consequence of Rif1 loss, 

whereas delayed RT may be a secondary effect. 

As Rif1 affects RT of pericentric heterochromatin in both tissues, we hypothesized 

that RT changes in Rif1PP1 tissues would preferentially be located at pericentromeres. We 

found that approximately 48% of pericentric heterochromatin displayed a significant 

advancement of RT in Rif1PP1 wing discs, unlike what we found for Rif1- null wing discs 

where only ~10% of pericentric heterochromatin advanced. The Rif1PP1 wing disc RT 

phenotype is more similar to what we observed at pericentric heterochromatin in Rif1- follicle 

cells (Figure 4.11A). Specifically, 80% (876/1095) of advanced windows in Rif1- mitotic 

follicle cells were also advanced in Rif1PP1 wing discs (Figure 4.17E). Additionally, all 

commonly advanced windows between Rif1- follicle cells and wing discs were advanced in 

Rif1PP1 wing discs. Interestingly, while the magnitude of RT change at pericentromeres is 
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significantly greater in Rif1PP1 wing discs relative to Rif1- wing discs (p < 2.2 x 10-16), the 

magnitude of RT change in Rif1PP1 wing discs remains significantly lower than what is 

observed in Rif1- or Rif1PP1 follicle cells (Figure 4.18C). Collectively, these data demonstrate 

that the Rif1PP1 mutation differentially affects pericentric heterochromatin RT relative to the 

Rif1- mutation in wing discs and suggest that regulatory mechanisms, potentially including 

the Rif1-PP1 interaction, function differently to regulate late RT of pericentromeres between 

tissue.  
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Figure 4.16. Characterization of RT in Rif1PP1 wing discs. A) Heatscatter plot comparing 

Rif1PP1 wing disc S/G1 (log2) replicate replication timing values. B) LOESS regression line 

showing average S/G1 (log2) replication timing values for wild type wing discs (black) and 

Rif1PP1 wing discs (gold) at 100kb windows using a 10kb slide across the major chromosome 

scaffolds. C) Pie chart of all 100kb windows of significantly advanced (red), delayed (blue), 

and unchanged RT (grey) in Rif1PP1 wing discs across the major chromosome scaffolds. D) 

Heatscatter plot comparing wild type and Rif1PP1 wing disc S/G1 (log2) ratios at 100kb 

windows using a 10kb slide across all major chromosome scaffolds.  
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Figure 4.17. Characterization of RT in Rif1PP1 mitotic follicle cells.  A) Heatscatter plot 

comparing Rif1PP1 mitotic follicle cell S/G1 (log2) replicate replication timing values. B) 

LOESS regression line showing average S/G1 (log2) replication timing values for wild type 

mitotic follicle cells (black) and Rif1PP1 mitotic follicle cells (gold) at 100kb windows using a 

10kb slide across the major chromosome scaffolds. C) Pie chart of all 100kb windows of 

significantly advanced (red), delayed (blue), and unchanged RT (grey) in Rif1PP1 mitotic 

follicle cells across the major chromosome scaffolds. D) Heatscatter plot comparing wild 

type and Rif1PP1 mitotic follicle cell S/G1 (log2) ratios at 100kb windows using a 10kb slide 

across all major chromosome scaffolds. E) Venn diagram comparing advanced 100kb 

windows between Rif1PP1 wing discs (gold) and Rif1- mitotic follicle cells (cyan). 

Experiments were performed in collaboration with Souradip Das.  
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Figure 4.18. Rif1’s PP1 binding motif is essential for Rif1-mediated RT control. A) 

LOESS regression line showing average Rif1- (cyan), Rif1PP1 (gold), and wild type (black) 

S/G1 (log2) replication timing values in wing discs (left) and follicle cells (right) across the 

chromosome 3L scaffold. See Figures S5, S6, S11, and S12 for other chromosomes. B) Venn 

diagrams comparing significantly advanced (top) and delayed (bottom) 100kb windows 

identified in Rif1- (cyan) and Rif1PP1 (gold) wing discs (left) and follicle cells (right) (p<0.01 

and absolute log2 fold change > 0.1; limma). C) Box plot of absolute mutant/control log2 

ratio of normalized replication timing values (S/G1 (log2)) at all pericentromeric regions of 

the major chromosome scaffolds. Experiments were performed in collaboration with 

Souradip Das. 
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Discussion 

Our findings provide insight into the relative contributions that cell type, gene 

expression, cell cycle, and Rif1 make to RT control. By comparing genome-wide RT profiles 

from unperturbed cells from distinct tissues, we demonstrated that cell type has a larger 

effect on RT than loss of Rif1, an evolutionarily conserved regulator of RT. We also found 

that the RT program is not modified in response to the physiological and transcriptional 

changes that occur during the mitotic-to-endocycle transition.  

We found that ~30% of the genome had different RT in the two tissue types we 

examined, and that transcriptional changes do not account for these changes. Studies in other 

systems also have failed to establish a direct relationship between changes in RT and changes 

in transcriptional activity (MacAlpine et al. 2004; Lubelsky et al. 2014; Siefert et al. 2017; 

Almeida et al. 2018; Armstrong et al. 2018). While transcriptional activity has long been 

correlated with RT, there are clearly mechanisms that control RT independently of 

transcription. RT is highly correlated with genome topology (Pope et al. 2014), and recent 

work has demonstrated that changes in TAD structure can be uncoupled from changes in 

gene expression (Ghavi-Helm et al. 2019). Therefore, our results are consistent with a model 

in which lineage-specific changes in genome topology, not transcription, underlie changes to 

the RT program as cells differentiate. These RT programs can then further be enforced by 

trans-acting factors such as Rif1. 

When comparing different tissues, we found a higher degree of overlap between 

regions of the genome that transition from late-to-early in the absence of Rif1 than those that 

transition from early-to-late (Figure 4.11A). These data imply that Rif1 directly promotes late 

replication of specific regions of the genome while indirectly affecting regions of the genome 
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that normally replicate early. Rif1 dynamically associates with heterochromatin from yeast to 

humans (Buonomo et al. 2009; Seller et al. 2019). In early Drosophila embryos, Rif1 is 

recruited to heterochromatic regions independently of HP1a, and then displaced from 

heterochromatin immediately before heterochromatin is replicated late in S phase (Seller and 

O'Farrell 2018). Chromatin immunoprecipitation of Rif1 followed by sequencing have 

revealed that in yeast and mouse cells Rif1 targets many other regions of the genome with 

both late and early replicating domains (Hayano et al. 2012; Foti et al. 2016). It is currently 

unknown, however, how Rif1 is targeted to heterochromatin and other late-replicating 

regions of the genome to delay RT. Our results argue that Rif1 localization to chromatin is 

likely influenced by cell type-specific factors. 

Our results demonstrate that in metazoans the PP1 interaction motif of Rif1 can 

contribute to Rif1-mediated RT control. These data suggest that helicase inactivation, or 

inactivation of another PP1 target near origins of replication, is critical for Rif1-mediated RT 

control. Multiple models have been proposed to explain how Rif1 controls RT. First, through 

a direct interaction with PP1, Rif1 is thought to counteract DDK-mediated helicase activation 

and delay replication of Rif1-associated regions. Second, based on 4C experiments with five 

viewpoints, Rif1 was shown to affect chromatin contacts between different RT domains, 

suggesting that Rif1 controls RT through nuclear organization. It is unclear how these 

different models are related, if at all. Furthermore, while the timing decision point occurs in 

G1 phase, helicase activation occurs throughout S phase, raising additional mechanistic 

questions about how Rif1 controls RT. Recent work in budding yeast has shown that DDK 

can act in G1 phase. Additionally, DDK-dependent helicase activation, and Cdc45 

recruitment, in G1 phase is critical for the specification of certain replication origins. Thus, 
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premature helicase activation in the absence of Rif1 during G1 phase could alter the 

localization of specific replication domains. While this model could unify the observations 

describing how Rif1 controls RT, further work is needed to test this possibility. 

Our data suggest that different regulatory mechanisms control late RT between wing 

discs and follicle cells. The approximately 3-fold increase in the number of windows with 

advanced RT in Rif1PP1 wing discs relative to Rif1- null wing discs was surprising. These data 

indicate that the presence of mutant Rif1PP1 protein results in a stronger effect that the 

absence of Rif1. One possibility is that Rif1PP1 acts in a dominant negative manner in regions 

of the genome that normally replicate late during S phase, such as pericentric 

heterochromatin. Another striking observation was that loss of Rif1 in wing discs did not 

substantially advance RT in much of the pericentric heterochromatin. This result suggests 

that mechanisms in addition to Rif1/PP1-mediated MCM dephosphorylation act within the 

wing disc to promote late replication of pericentric heterochromatin.  

In summary, our study demonstrates that cell lineage is a major driver of RT control 

within the context of a developing organism. Rif1 fine tunes the RT program established in 

different cell types, and each of these modes of RT control function independently of 

transcriptional control, suggesting additional levels of regulation. 
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CHAPTER 5- EXPLORING DISTINCT ROLES FOR H3K9 AND RIF1 IN 
PERICENTRIC HETEROCHROMATIN DNA REPLICATION 

 

Introduction 

To accurately and completely duplicate eukaryotic genomes each cell division cycle, 

replication initiates from many discrete loci throughout the genome, termed replication 

domains. Genome-wide initiation of DNA replication does not occur synchronously in space 

and time, yielding a temporal pattern of early and late replicating domains known as the 

DNA replication timing (RT) program. Accessible, transcriptionally active euchromatin 

tends to replicate early during S phase, whereas inaccessible, transcriptionally repressive 

heterochromatin tends to replicate late during S phase (Lubelsky et al. 2014). Chromatin 

states are largely defined by signatures of histone post-translational modifications (PTMs) 

such that euchromatin is generally enriched in H3 and H4 acetylation (ac) and 

heterochromatin is enriched in di- and tri-methylation of lysine nine of histone H3 

(H3K9me2/3) and tri-methylation of lysine twenty-seven of histone H3 (H3K27me3) 

(Kharchenko et al. 2011). Additionally, many non-histone proteins contribute to the 

formation and function of different chromatin states. For example, recent work in 

mammalian cells identified approximately 170 proteins enriched in H3K9me3-marked 

heterochromatin (Becker et al. 2017). However, the relative contributions of histone and non-

histone heterochromatin-associated factors to RT control remains poorly understood.  

Rif1 is a conserved RT control factor across eukaryotic species that promotes late RT 

of heterochromatin (Cornacchia et al. 2012; Hayano et al. 2012; Yamazaki et al. 2012; Seller 
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and O’Farrell 2018). To promote late RT, Rif1 associates with heterochromatin and recruits 

Protein Phosphatase 1 (PP1) that de-phosphorylates the MCM replicative helicase during 

early S phase which prevents DNA replication initiation in heterochromatic domains in early 

S phase (Davé et al. 2014; Hiraga et al. 2014; Mattarocci et al. 2014; Hiraga et al. 2017; 

Sukackaite et al. 2017). In late S phase, Rif1 and PP1 dissociate from chromatin via CDK-

mediated phosphorylation of Rif1, allowing replication of heterochromatic domains at the 

end of S phase (Seller and O’Farrell 2018). Further, Rif1 has been shown to contribute to the 

establishment of a three-dimensional nuclear architecture that promotes proper RT in 

mammalian systems (Foti et al. 2016). Importantly, Rif1 is required for the onset of late 

replication in early embryogenesis in Drosophila and precedes, but is not required for, the 

establishment of H3K9me/HP1a enriched constitutive heterochromatin (Seller and O’Farrell 

2018). These data suggest that Rif1 may regulate pericentric heterochromatin RT 

independently from H3K9. 

We previously took a genetic approach to understand the relative contribution of 

heterochromatin-associated RT regulators, including chromatin structure and the eukaryotic 

RT control factor, Rif1. To perturb local chromatin structure, we utilized our genetic 

platform in which endogenous histone genes are replaced with transgenic histone genes 

encoding mutations that prevent modification of specific histone residues (McKay et al. 

2015; Armstrong et al. 2018). Despite well-established correlations between early replication 

and euchromatin, and late replication and heterochromatin, we observed that perturbation of 

heterochromatin through H3K9R mutation does not result in large-scale changes in RT, 

suggesting critical regulation beyond H3K9 (Armstrong et al. 2018). Furthermore, we 

profiled RT in the absence of Rif1 and found that while loss of Rif1 affected genome-wide 
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RT to a greater extent than perturbation of chromatin structure, pericentric heterochromatin 

remained late replicating relative to the mostly euchromatic chromosome arms. These data 

demonstrate that loss of H3K9 or Rif1 alone is insufficient to perturb late replication of 

pericentric heterochromatin. 

 Here, we investigate the relationship between H3K9 and Rif1 in regulating late 

replication of pericentric heterochromatin using cytological and genomic approaches in 

Drosophila. We find that both H3K9 and Rif1 are required for S phase progression. 

Furthermore, we identify that H3K9 and Rif1 regulate RT of distinct heterochromatic 

replication domains and appear to affect heterochromatin replication, at least partially, 

through distinct mechanisms. Future study is necessary to understand the extent of functional 

redundancy between H3K9 and Rif1 in heterochromatin replication. 

Materials and Methods 

Immunofluorescence  

Third instar wandering larvae were dissected and the carcasses inverted to expose 

attached imaginal discs. Tissues were incubated for 60’ in 0.1mg/mL EdU. Tissues were then 

fixed in 3.7% paraformaldehyde in PBS for 25 min. EdU incorporation was detected using 

the Click-It EdU Alexa Fluor 488 Imaging Kit (ThermoFisher Scientific). DNA was stained 

with DAPI, and the discs were mounted in ProLong Gold antifade reagent and imaged on a 

Leica confocal microscope. 

FAIRE 

FAIRE-seq samples from female third instar wing imaginal discs were prepared as 

described previously (McKay and Lieb 2013; Penke et al. 2018). Libraries were prepared 
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with the Rubicon ThruPLEX DNA-seq kit. Sequencing was performed on an Illumina HiSeq 

2500. 

Sequence Data Analysis 

RT data under the Gene Expression Omnibus (GEO) accession number GSE141632 

were used for comparisons in this study. FAIRE-seq samples were aligned to the dm6 

reference genome (release 6.04) using Bowtie2 default parameters and filtered by a MAPQ 

score ≥ 10 (Langmead et al. 2009). FAIRE peaks were called using MACS2 and FAIRE-seq 

signal at peaks was normalized to sequencing depth (Zhang et al. 2008). Differential signal 

analysis on peaks was performed using edgeR (Robinson et al. 2010). For genotype 

comparisons, only peaks called in both replicates were used for further analysis.  

Results 

H3K9 and Rif1 regulate S phase progression 

We first asked whether H3K9 and Rif1 regulate S phase progression in Drosophila. 

Previous studies have shown that mutation of the H3K9me2/3 writer (Su(var)3-9) or of a 

H3K9me2/3 reader (Heterochromatin Protein 1a (HP1a)) results in cell cycle defects, 

including a decreased S-phase index and an increased G2/M index (De Lucia et al. 2005; 

Pindyurin et al. 2008; Quivy et al. 2008; Peng and Karpen 2009; Schwaiger et al. 2010; 

Sidler et al. 2014). In agreement with these data, we have previously shown that Drosophila 

H3K9R mutants display a modest cell cycle defect, with a decrease in the proportion of S 

phase cells and a concomitant increase in the proportion of G2/M phase cells. These data 

show that H3K9 directly promotes cell cycle progression (Armstrong et al. 2018). We were 

curious as to whether Rif1, a heterochromatin-associated RT control factor, also regulates S 
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phase progression. To address this question, we took advantage of a unique cell cycle 

strategy in the eye imaginal disc.  

During larval development, a wave of differentiation migrates posterior to anterior 

across the eye disc, termed the morphogenetic furrow. In the morphogenetic furrow, cells 

arrest in G1 and a subset begin differentiating; upon exit from the morphogenetic furrow, the 

remaining undifferentiated cells enter a synchronous cell division cycle termed the second 

mitotic wave (SMW) (Figure 5.1A) (Ready et al. 1976; Sukhanova and Du 2008). As 

migration of the morphogenetic furrow occurs at a defined rate, the relative duration of S 

phase within the SMW can be determined by measuring the width of the SMW following a 

60-minute pulse of EdU. We performed eye disc SMW analysis and, similar to our previous 

flow cytometry analysis in H3K9R mutants, found that H3K9R mutants have a decreased 

SMW width relative to controls (Figure 5.1B). From these data we conclude that H3K9R 

mutants have a decreased S phase duration. We next performed EdU pulsing and subsequent 

SMW measurement in Rif1- (a null allele of Rif1) and Rif1PP1 (an allele of Rif1 that prevents 

the interaction between Rif1 and PP1) mutants previously generated by the Nordman lab 

(Munden et al. 2018). We found that both Rif1- and Rif1PP1 mutants have a shorter SMW 

width relative to controls (Figure 5.1B). These data suggest that factors that regulate 

heterochromatin RT may also promote proper S phase progression. We hypothesized that the 

shortened S phase duration observed in Rif1 and H3K9R mutants may be due to defects in 

heterochromatin RT. However, whereas Rif1- and H3K9R wing discs display far fewer RT 

changes within pericentric heterochromatin relative to Rif1PP1 wing discs (Armstrong et al. 

2018) (Chapter 4), all three mutants similarly affect S phase progression suggesting that RT 

is not the major contributor to the observed shortening of S phase duration.   
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Figure 5.1. Rif1 and H3K9 promote S phase progression. A) Representative eye imaginal 

disc stained for EdU (magenta) and counterstained with DAPI (blue) with the anterior (A) 

and posterior (P) axes indicated. White bracket indicates the location of the second mitotic 

wave (SMW). The scale bar is set to 50µM. B) Quantification of the average width of the 

SMW for yw (wild type; black), Rif1- (green), Rif1PP1 (yellow), HWT (blue), and H3K9R 

(red). For each biological replicate, ten measurements taken along the length of the SMW of 

one eye disc were averaged. C) Histogram of RT values for wild type (grey), Rif1- (green), 

and Rif1PP1 (yellow). 
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H3K9 and Rif1 regulate RT of independent heterochromatic domains 

We were curious as to whether Rif1 and H3K9 regulate replication through redundant 

mechanisms. To address this, we first directly compared the genome-wide RT distribution in 

Rif1- and H3K9R mutants. While the distribution of RT values for H3K9R mutants is similar 

to controls, we were surprised to find that the RT program in both Rif1- and Rif1PP1 mutants 

is condensed relative to controls (Figure 5.1C). These data suggest that Rif1 may regulate RT 

distinctly from H3K9. We next asked if Rif1 and H3K9 regulate RT of the same genomic 

regions. Assigning RT changes identified in H3K9R and Rif1 mutants to one of nine 

previously described chromatin states revealed that, while almost all advanced RT changes in 

H3K9R mutants occur in H3K9me2/3-enriched heterochromatin (Armstrong et al. 2018), 

advanced RT changes in Rif1- mutants primarily occur either in H3K9me2/3-enriched 

heterochromatin or H1/SuUR-enriched “black” heterochromatin, suggesting that Rif1 and 

H3K9 affect RT of different heterochromatic regions (Figure 5.2A) (Kharchenko et al. 2011).  

To test this hypothesis, we directly compared advanced RT changes identified in 

H3K9R and Rif1 mutants. While Rif1- and H3K9R mutants disrupt RT at a relatively similar 

number of windows across the genome, the advanced RT changes in Rif1- and H3K9R 

mutants are largely non-overlapping (Figure 5.2B). In contrast, approximately 62% of 

advanced RT changes observed in H3K9R mutants are also advanced in Rif1PP1 mutants, 

most likely because 48% of all pericentric heterochromatin advances its RT in Rif1PP1 wing 

discs (Figure 5.2B). Together, these data demonstrate that Rif1 and H3K9 regulate 

replication of distinct heterochromatin domains. However, the extent of redundancy in 

regulating pericentric RT between Rif1 and H3K9 remains untested. 
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Figure 5.2. Rif1 and H3K9 regulate RT of unique heterochromatic domains. A) All 

advanced (red) 10kb windows in Rif1- and Rif1PP1 mutants were assigned to the nine 

chromatin states defined in flies (Kharchenko et al. 2011). Shown are the number of windows 

that overlap each chromatin state. B) Venn diagram comparisons of significantly advanced 

10kb windows identified in H3K9R (red), Rif1- (cyan), and Rif1PP1 (yellow) mutant wing 

imaginal discs (p < 0.01, absolute log2 fold change > 0.1; limma) (Armstrong et al. 2018) 

(Chapter 4).  

  



 
178 

 

H3K9 and Rif1 differentially affect chromatin accessibility 

Chromatin accessibility and transcriptional activity are thought to be key regulators of 

replication initiation. To test this model, we previously explored the extent to which 

transcription and chromatin accessibility contribute to RT using H3K9R mutants. We found 

that while almost all advanced RT changes in H3K9R mutants occurred at domains of 

increased chromatin accessibility and transcriptional activity, only a very small percentage of 

the chromatin accessibility and transcriptional changes experienced a coincident RT change 

(Armstrong et al. 2018). These data demonstrate that chromatin accessibility and 

transcriptional activity are insufficient for RT change, and, rather, are permissive regulators 

of replication initiation. Because chromatin accessibility and transcriptional activity 

contribute to RT change in H3K9R mutants, we were curious as to whether these same 

biological processes contribute to RT change in Rif1- mutants. 

We previously identified that RT change in Rif1- mutants occurred independently 

from transcriptional change as Rif1- mutants experience minimal transcriptional deregulation 

(Chapter 4). Therefore, we next profiled chromatin accessibility by performing 

Formaldehyde-Assisted Isolation of Regulatory Elements followed by sequencing (FAIRE-

seq) from Rif1- and wild type control wing imaginal discs in duplicate. We confirmed the 

genotypes within the wild type and Rif1- FAIRE-seq datasets and observed high correlation 

between individual replicates for both wild type (Pearson’s correlation = 0.90) and Rif1- 

(Pearson’s correlation = 0.97) mutants (Figure 5.3A,B). We identified 32,648 total FAIRE 

peaks in wild type and 29,354 total FAIRE peaks in Rif1- that were shared between 

replicates. Direct comparison of wild type and Rif1- FAIRE peaks revealed that 91.9% of 

peaks identified in Rif1- wing discs were also identified in wild type suggesting that open 
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chromatin profiles are highly similar between Rif1- and control (Figure 5.3C). We next 

directly compared individual FAIRE peaks between genotypes to identify differential peak 

intensities between Rif1- and control. Our edgeR analysis revealed 80 significantly different 

peaks between Rif1- and wild type control (Figure 5.3D). Of those 80 FAIRE peaks, 30 were 

more “open” and 50 were more “closed” in Rif1- mutants. Interestingly, 99.9% of FAIRE 

peaks unique to either wild type or Rif1- wing discs and 90% of differential FAIRE peaks 

were located along the chromosome arms demonstrating that the small amount of differential 

chromatin accessibility is localized to the mostly euchromatic portion of the genome. 

To ascertain whether RT changes in Rif1- mutants were occurring at either sites of de 

novo chromatin accessibility or sites of chromatin accessibility loss, we compared FAIRE 

peaks unique to Rif1- mutants or WT, respectively, to 10kb windows of RT change. We 

observed a slight enrichment of de novo FAIRE peaks at windows of RT change in Rif1- 

mutants as 27.9% of 10kb windows with an RT change contain a de novo FAIRE peak, 

relative to 15.8% of a shuffle set of 10kb windows (Figure 5.4). Additionally, we observed 

an enrichment of chromatin accessibility loss at windows of RT change, with 29.6% of 

significant RT changes containing a FAIRE peak identified in wild type that is lost in Rif1- 

mutants, relative to a 9.1% of a shuffle set of windows (Figure 5.4). These data suggest that a 

de novo gain or a loss of chromatin accessibility influences RT in Rif1- mutants.  
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Figure 5.3. Chromatin accessibility profiling in Rif1- mutants. A) Genome browser of 

FAIRE-seq signal at the Rif1 locus. The red box indicates the coordinates of the Rif1 

deletion allele used. B) Heatscatter plot comparing wild type FAIRE-seq replicates (left) and 

Rif1- FAITRE-seq replicates (right). C) Venn diagram comparing FAIRE-seq peaks between 

wild type and Rif1-. Peaks included for each genotype were shared between replicates. D) 

Heatscatter plot of the Rif1-/control ratio of total FAIRE-seq signal at all peaks. Statistically 

different FAIRE peaks are indicated in red (p < 0.01; edgeR). Blue lines indicate a log2 fold 

change of 1 and -1. 
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Figure 5.4. A modest relationship exists between chromatin accessibility and RT in Rif1- 
mutants.  
 
Bar plot of the percentage of 10kb windows with significantly altered RT in Rif1- mutants 

containing a FAIRE peak unique to Rif1- mutants (left; “opened” in Rif1- mutants) or unique 

to WT (right; “closed” in Rif1- mutants) (p < 0.01, absolute log2 fold change > 0.1; limma).  
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Discussion 

While constitutive heterochromatin is required for maintenance of genome integrity, 

it is quite dynamic in nature, disassembling each mitosis and reassembling during interphase 

each cell division cycle. Genome function must be fully restored by the onset of interphase to 

ensure that genome integrity is maintained. One such process that occurs at the onset of G1 is 

the establishment of the genome-wide RT program, termed the timing decision point 

(Dimitrova and Gilbert 1999). It is therefore imperative that distinct mechanisms orchestrate 

the reassembly of heterochromatin in a timely manner following mitosis. Because many 

proteins function within constitutive heterochromatin, the relative contributions of each 

factor to establishment of both heterochromatin and the genome-wide RT program remain 

poorly understood. We therefore sought out to uncover the relative contributions of two 

heterochromatin-associated factors, H3K9 and Rif1, to chromatin accessibility, transcription, 

and RT in Drosophila. 

Here, we provide evidence that H3K9 and Rif1 regulate heterochromatin structure, 

and RT control, through distinct mechanisms. We previously identified that mutation of 

H3K9 results in deregulation of transposon expression and chromatin accessibility 

specifically at pericentric heterochromatin (Penke et al. 2016). Furthermore, almost all 

advanced RT changes observed in H3K9R mutants occur in pericentric heterochromatin 

specifically at domains of increased nucleosome accessibility and elevated transposon 

expression (Armstrong et al. 2018). In contrast, mutation of Rif1 results in deregulation of 

RT at approximately 8% of the genome without largely affecting transcription or chromatin 

accessibility genome-wide (Chapter 4; Figure 5.3). Importantly, RT of domains within 

pericentric heterochromatin regulated by H3K9 and Rif1 are largely non-overlapping, 
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supporting a model in which H3K9 and Rif1 regulate RT of pericentric heterochromatin 

through distinct mechanisms. 

We are not the first to suggest that H3K9 and Rif1 function independently of one 

another in regard to heterochromatin structure. Previous work has demonstrated that, in the 

absence of Rif1, HP1a properly localizes to pericentric heterochromatin in Drosophila 

suggesting that the “hallmark” structural units of heterochromatin remain intact (Sreesankar 

et al. 2015; Munden et al. 2018; Seller and O’Farrell 2018). Our data here further support 

that heterochromatin structure remains intact in the absence of Rif1, as a marginal proportion 

of the chromatin accessibility changes in Rif1- mutants occurred within pericentric 

heterochromatin. However, Rif1 has been shown to promote proper three-dimensional 

nuclear architecture at the timing decision point in G1, which has been proposed to directly 

regulate the RT program in S phase (Foti et al. 2016). It therefore is possible that Rif1 is 

orchestrating its RT control at the level of the 3D genome as opposed to at the level of local 

chromatin structure as observed in H3K9R mutants. It remains unknown how either Rif1 or 

H3K9 regulate the three-dimensional genome structure in Drosophila. 

HP1a, a “hallmark” of constitutive heterochromatin, has been show to undergo liquid-

like phase separation in both Drosophila and humans (Larson et al. 2017; Strom et al. 2017). 

We previously demonstrated that, in H3K9R mutants, HP1a fails to concentrate at pericentric 

heterochromatin (Penke et al. 2016). Interestingly, in H3K9R mutants, we still observed 

DAPI-bright heterochromatic foci suggesting that phase separation of HP1a is not required 

for condensation of DNA in Drosophila (Penke et al. 2016; Penke et al. 2018). However, 

because transcription and chromatin accessibility are disrupted in H3K9R mutants, we 

propose that certain heterochromatic features regulate different aspects of heterochromatin 
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biology. This model predicts that perturbation of multiple heterochromatin factors 

concurrently may disrupt heterochromatin biology to a greater extent than any one factor 

alone. It would be interesting to determine the effect on heterochromatin structure and 

function within the context of concurrent H3K9/HP1a and Rif1 loss. 

The complex nature of heterochromatin renders it difficult to understand the 

mechanisms regulating RT within this region of the genome. To completely understand 

replication of constitutive heterochromatin and how RT control mechanisms may differ 

between euchromatic and heterochromatic regions of the genome, future studies must 

identify and map the molecular events dictating replication origin licensing and activation 

within heterochromatic domains. Furthermore, constitutive heterochromatin displays an 

enrichment of hundreds of proteins relative to euchromatic regions of the genome, but the 

extent to which these factors serve heterochromatin-specific roles is largely unknown. Our 

work here, identifying contributions of Rif1 and H3K9 to heterochromatin replication, begins 

to reveal answers regarding how independent pathways within heterochromatin contribute to 

its RT.     
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CHAPTER 6- DISCUSSION AND FUTURE DIRECTIONS 

 

In April 2003, the human genome sequence was finalized, a mere fifty-five years 

after Matthew Meselson and Franklin Stahl demonstrated the semi-conservative nature of 

DNA replication (Watson and Crick 1953; Meselson and Stahl 1958; Lander et al. 2001; 

Venter et al. 2001). In just the last seventeen years, the era of whole-genome sequencing and 

the evolution of sequencing-based technologies have provided unprecedented advances for 

the fields of epigenetics and DNA replication. Hopefully this project and the future directions 

that this work inspires will contribute to the technological and mechanistic advances to come. 

The following chapter will summarize the work included in this dissertation and a selection 

of future directions that I propose as a follow-up to my PhD thesis work. 

 This work sought to discern correlative versus causative relationships between 

chromatin structure, transcriptional activity, and RT using genetic and genomic approaches. 

We identified that chromatin accessibility and transcriptional activity are mechanistically 

separable from replication initiation using two independent genetic strategies: 1) mutation of 

histone residues and 2) mutation of the RT control factor, Rif1. In the context of H3K9R 

mutation, we observe a global increase in chromatin accessibility and transposon expression 

within pericentric heterochromatin without observing a major effect on pericentric RT 

(Armstrong et al. 2018). Importantly, almost all RT changes in H3K9R mutants within 

pericentric heterochromatin occur at sites of increased chromatin accessibility and transposon 

expression suggesting that while a “open”, transcriptionally active environment is 
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insufficient for replication initiation, it may be necessary (Armstrong et al. 2018). In contrast 

to H3K9R mutation, Rif1- mutation results in very few genome-wide changes in chromatin 

accessibility or transcriptional activity but affects RT at approximately 8% of the genome 

(Chapter 4,5). Very few of the RT changes observed in Rif1- mutants occur within domains 

of increased chromatin accessibility or transcriptional activity, demonstrating that replication 

initiation may not require an “open”, transcriptionally active environment. To resolve the 

different conclusions drawn from these data, we propose a model in which multiple 

independent mechanisms regulate the RT program in metazoans—chromatin accessibility 

and transcriptional activity regulate RT control independently of chromatin-associated trans-

acting factors that function at replication origins.   

 In this model, chromatin accessibility and transcriptional activity contribute to RT 

control but are insufficient to alter RT programs in the absence of additional molecular 

changes occurring. For example, in domains of increased chromatin accessibility where RT 

advances in H3K9R mutants, the origin landscape may be altered such that the probability of 

replication initiation increases; in domains of increased chromatin accessibility where RT is 

unchanged, the origin landscape may remain unchanged. Importantly, the chromatin 

landscape is bound by many trans-acting factors that modulate RT programs, such as Rif1. 

An additional, but not mutually exclusive possibility, is that Rif1 localizes normally to 

pericentric heterochromatin in an H3K9R mutant background such that replication initiation 

remains inhibited by Rif1/PP1 until late S phase despite the increase in chromatin 

accessibility. Similarly, in Rif1- mutants, where domains of altered RT do not display a 

coincident change in chromatin accessibility or transcriptional activity, redundant molecular 

mechanisms may promote late RT at the majority of pericentric heterochromatin whereas 
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domains of altered RT may lack redundancy. To test this model, the next step is to generate 

genome-wide binding profiles for key contributors to RT control in H3K9R and Rif1- 

backgrounds to identify the molecular mechanisms regulating RT control.        

Map origins of replication in mutant backgrounds 

 Current models in the field suggest that replication initiates with a higher probability 

from euchromatic regions of the genome compared to heterochromatic regions due to a 

higher density of replication origins in “open” euchromatin relative to “closed” 

heterochromatin. If an increased density of replication origins is sufficient to advance RT 

within a particular genomic region, we would expect there to be more licensed origins at 

regions of the genome that advance RT in H3K9R mutants relative to controls. To test this 

hypothesis, we propose mapping origins of replication in H3K9R mutants and controls. 

Previously, replication origin mapping has been performed on a genome-wide scale using 

ORC ChIP-seq, short nascent strand sequencing (SNS-seq), replication bubble sequencing 

(bubble-seq), initiation site sequencing (ini-seq), and Okazaki fragment sequencing (OK-seq) 

(Besnard et al. 2012; Mesner et al. 2013; Langley et al. 2016; Miotto et al. 2016; Petryk et al. 

2016). While these methods provide a genome-wide view of the origin landscape, they were 

primarily used in cell culture rather than from tissues of a developing organism.   

 ChIP-seq experiments in Drosophila require large tissue input, making them difficult 

to perform. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) was 

established by the Henikoff lab as an alternative to ChIP-seq (Skene and Henikoff 2017). In 

CUT&RUN, ChIP grade antibodies are added directly to your permeabilized sample of 

interest. Places in the genome where the antibody binds its target protein in situ are detected 

using a MNase-Protein A fusion protein (Skene and Henikoff 2017). Chromatin bound 



 
189 

 

antibody is cleaved locally by MNase, releasing a DNA fragment into solution for isolation 

and sequencing (Skene and Henikoff 2017). In a fraction of the time, CUT&RUN provides 

higher resolution data from lower sequencing depth and lower tissue input than ChIP-seq, 

making it ideal for studying Drosophila tissues (Skene and Henikoff 2017). To initially map 

origins of replication in H3K9R mutants and controls, we propose performing ORC2 

CUT&RUN from wing imaginal discs using a ChIP grade ORC2 antibody used previously in 

ChIP-seq experiments from Drosophila tissue (Sher et al. 2012). Comparison of RT profiles 

generated in H3K9R mutants and controls to ORC2 binding profiles will determine whether 

altered ORC2 binding correlates with altered RT (Armstrong et al. 2018). It is important to 

note that sites bound by ORC in G1 phase of the cell division cycle are not necessarily the 

sites from which DNA replication initiates during S phase. This phenomenon is primarily due 

to the fact that MCM complexes loaded onto chromatin, in and ORC-dependent manner, can 

slide, often kilobases away from where they were initially loaded (Hyrien 2016). Therefore, 

to accurately map sites of replication initiation, we propose performing MCM CUT&RUN in 

H3K9R mutants and controls. 

 If CUT&RUN does not produce high quality data, alternative sequencing approaches 

can be employed. One such approach, chromatin endogenous cleavage followed by 

sequencing (ChEC-seq), involves generating an in vivo MNase-fusion of your protein of 

interest to map genome-wide association of that protein (Schmid et al. 2004). The premise of 

this method is similar to CUT&RUN in that MNase cleaved fragments will be released into 

solution for isolation and sequencing. However, rather than relying on an antibody to bind 

your protein of interest, MNase is directly fused to your protein of interest. One major caveat 

to this method remains that generating fusion proteins can often disrupt the function of your 
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protein of interest, even though MNase has a low molecular weight (17.6 kDa). This method 

has been successfully adapted to transcription factors and Rif1, among other factors, 

suggesting that it is a feasible strategy for profiling genome-wide association of ORC and 

MCM (Zentner et al. 2015; Hafner et al. 2018).   

Identify how Rif1 and H3K9 regulate RT in pericentric heterochromatin 

 We previously demonstrated that transposon expression and chromatin accessibility 

at pericentric heterochromatin are perturbed in H3K9R mutants (Penke et al. 2016). 

However, RT of pericentric heterochromatin was only modestly affected in H3K9R mutants 

suggesting that additional mechanisms beyond transcription and chromatin accessibility 

regulate RT of pericentric heterochromatin (Armstrong et al. 2018). We therefore assessed 

roles for Rif1 in regulating RT of pericentric heterochromatin and identified that the 

interaction between Rif1 and PP1 is critical for pericentric heterochromatin late RT (Chapter 

4). To further understand this relationship, we propose testing 1) whether Rif1 and H3K9 are 

dependent on one another for their localization to heterochromatin, 2) whether a genetic 

interaction exists between Rif1 and H3K9, and 3) whether Rif1 and H3K9 regulate RT of 

pericentric heterochromatin through distinct mechanisms. 

 To assess the interdependence of Rif1 and H3K9, we will perform cytological and 

genomic assays. To determine whether the “hallmarks” of heterochromatin, H3K9me and 

HP1a, localize properly in Rif1 mutants, immunofluorescence experiments will be conducted 

in Rif1-, Rif1PP1, and wild type control wing imaginal discs for H3K9me2/3 and HP1a. 

Additionally, we will perform immunofluorescence experiments probing Rif1 in H3K9R 

mutant and HWT control wing imaginal discs to identify if H3K9 is required for proper 

localization of Rif1. To mark pericentric heterochromatin, FISH probes to 359-bp repeat or 
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to dodeca should be included in both experiments. To identify whether loss of Rif1 or H3K9 

affects steady state levels of H3K9me/HP1a or Rif1, respectively, western blot analysis will 

be performed in each respective mutant background for H3K9me2/3, HP1a, and Rif1. 

Finally, to identify whether Rif1 or H3K9 mutation influences the genome-wide distribution 

of H3K9me or Rif1, respectively, Rif1 and H3K9me3 CUT&RUN will be performed in each 

respective mutant background. Together, these experiments will thoroughly identify whether 

H3K9 and Rif1 are dependent on one another for genome-wide localization to specific 

chromatin domains.  

 Previous work from the O’Farrell lab demonstrated that Rif1 promotes the onset of 

late replication in the early Drosophila embryo prior to the onset of mature H3K9me/HP1a-

enriched heterochromatic foci (Seller and O’Farrell 2018). However, in the absence of Rif1, 

H3K9me/HP1a-enrichment still occurs post-mid blastula transition and late replication can 

still be established, albeit at a later developmental time relative to wild type (Seller and 

O’Farrell 2018). These data raise the possibility that H3K9 and Rif1 function redundantly to 

promote late replication of pericentric heterochromatin in Drosophila. To identify whether a 

genetic interaction exists between H3K9 and Rif1, we propose generating Rif1-; H3K9R and 

Rif1-; HWT double mutants for use in cytological and genomic assays. Viability assays will 

be performed to identify whether there is synthetic lethality between Rif1 and H3K9 

mutations. One possibility is that, in the absence of Rif1 and modifiable H3K9, embryonic 

lethality will result due to defects in heterochromatin establishment. Therefore, 

immunofluorescence experiments should be performed to assess compaction of DNA and 

HP1a enrichment during early embryonic development. Furthermore, FAIRE-seq and RNA-

seq should be performed in Rif1- ; H3K9R and Rif1- ; HWT mutants to assess chromatin 
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accessibility and genome-wide transcription dynamics as a proxy for heterochromatin 

structure and function. If Rif1- ; H3K9R and Rif1- ; HWT mutants survive to the third-instar 

larval stage, RT profiles should be generated to determine if pericentric heterochromatin 

remains late replicating in the absence of Rif1 and modifiable H3K9. Together these data 

will identify whether H3K9 and Rif1 function redundantly in regulating heterochromatin 

structure, function, and RT. 

 We hypothesize that H3K9 regulates RT primarily through promoting an 

inaccessible, transcriptionally inert chromatin environment whereas Rif1 regulates RT 

primarily through its interaction with PP1 and by regulating three-dimensional genome 

architecture. With the one exception of three-dimensional genome architecture data, we have 

direct evidence to support all aspects of this hypothesis (Chapter 4) (Penke et al. 2016; 

Armstrong et al. 2018). To identify whether three-dimensional genome architecture 

contributes to RT control in H3K9R and Rif1 mutants, we propose assaying the structure of 

the three-dimensional genome in H3K9R and Rif1 mutants using Hi-C (Lieberman-Aiden et 

al. 2009).   

Identify whether transposon expression is sufficient to induce replication initiation 

 We previously identified that elevated transposon expression in H3K9R mutants is 

permissive to replication initiation (Armstrong et al. 2018). Despite our experimental 

attempts to establish causation rather than correlation between replication and gene 

expression, these data remain correlative. We propose directly testing whether transposon 

expression is sufficient to advance RT by activating expression of specific transposons and 

subsequently profiling RT in an otherwise wild type background. Due to the diversity of 

transposable elements within the Drosophila genome, it would be advantageous to 



 
193 

 

selectively activate different transposons that are part of distinct transposon families. 

However, the experimental setup here will be described regarding only one transposon 

family.  

 Previous work from our lab identified that gypsy transposons, located in the 

pericentric heterochromatin of Chromosome X, are upregulated and mobilize within the 

genome of H3K9R mutants (Penke et al. 2016). To directly test whether gypsy expression is 

sufficient to advance RT in an otherwise wild type background, we will employ a genetic 

strategy to both activate and suppress gypsy expression within the follicle cells of the adult 

ovary. The flamenco locus within the pericentric heterochromatin of Chromosome X has 

previously been shown to regulate maternal expression of gypsy in follicle cells (Prud'homme 

et al. 1995). A permissive genotype (homozygous for the flamP allele of flamenco) allows for 

robust gypsy expression within the follicle cells whereas a dominant restrictive genotype (at 

least one flamR allele of flamenco) inhibits gypsy expression within the follicle cells of the 

female ovary (Touret et al. 2014). We propose profiling RT in flamP/flamP, flamR/flamR, 

flamP/+, flamR/+, and wild type ovarian follicle cells to identify if altered gypsy expression 

is sufficient to advance RT of Chromosome X pericentric heterochromatin. Furthermore, to 

identify how each flamenco genotype influences genome-wide transcription dynamics, we 

will also perform RNA-seq in these genetic backgrounds. 

 While the genetic strategy for altering gypsy expression is specific to the gypsy 

transposon family, additional strategies can be employed that are more broadly applicable, 

such as site-specific targeting of transcriptional activators. To easily screen many different 

transposons concurrently, we propose a UAS/Gal4 based approach, where UAS-driven 

transgenes containing a transposon of interest are incorporated at a specific genomic location. 
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We recommend conducting this experiment at multiple genomic sites within distinct 

chromatin environments (i.e. euchromatic or heterochromatic). Upon activation of the 

transgenic transposon, pools of S phase cells will be isolated from wing imaginal discs using 

FACS, and a series of experimental and control qPCR reactions will be performed to identify 

the relative RT of the transgenic locus. One caveat to this method, however, is that the 

transcriptional environment used for expression of transgenic transposons is not identical to 

that of the endogenous machinery. However, if gypsy expression using the genetic tools of 

the flamenco locus is sufficient to alter RT, transgenic gypsy expression can be induced and 

directly compared to the genetic gypsy expression system as a control experiment to assess 

the quality and potential utility of a transgenic transposon experimental system.     

Investigate the relationship between RT and genome instability in mutant backgrounds 

 There is an established relationship between RT and genomic instability—late 

replicating regions of the genome tend to experience an increased mutation rate relative to 

early replicating regions of the genome (Watanabe and Maekawa 2010). However, how 

individual histone residues that structurally contribute to euchromatic and heterochromatic 

domains function to maintain genome integrity during DNA replication is largely unknown. 

Previous work from the MacAlpine lab demonstrated that while the H4K20 mono-

methyltransferase PR-Set7 was dispensable for proper RT control, it was required to 

maintain genomic integrity specifically at late replicating regions of the genome 

demonstrating that RT and DNA damage are mechanistically separable (Li et al. 2016). We 

propose profiling DNA damage on a genome-wide scale in histone mutants to interrogate 

roles for histone residues in maintaining genome stability. Furthermore, direct comparison of 
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RT data with genome instability data may provide a greater understanding for how altered 

RT programs contribute to genomic instability in the context of a developing organism. 

To profile DNA damage on a genome-wide scale, we propose performing 

CUT&RUN using a monoclonal antibody developed in the Sekelsky lab that recognizes a 

phosphorylated form of the histone variant H2Av (γH2Av) (Lake et al. 2013). In Drosophila, 

a DNA double-stranded break is initially marked by a phosphorylated form of the histone 

variant H2Av, and recognition of γH2Av as a proxy for DNA double-stranded breaks has 

become the gold standard for DNA damage detection. Preliminary cytological studies from 

our lab show elevated genomic instability in H3K9R, H4K16R, and H3K56R mutant imaginal 

disc tissue (Appendix 1). We therefore propose initially performing γH2Av CUT&RUN from 

wing imaginal discs in H3K9R, H4K16R, and H3K56R mutants and their respective controls. 

Additionally, because the H4K20 mono-methyltransferase PR-Set7 has been implicated in 

maintaining genomic integrity of late replicating sequences, we also propose performing 

γH2Av CUT&RUN from wing imaginal discs of H4K20R mutants. As genome-wide RT 

datasets have only been generated for H3K9R and H4K16R mutants, genome-wide RT 

datasets for H3K56R and H4K20R mutants should be generated to allow for direct 

comparison of RT and genome instability.  
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APPENDIX 1 

DNA repair occurs in a dynamic chromatin environment that provides a barrier to 

both the detection and downstream repair of DNA lesions. Evidence supports a model where 

chromatin surrounding a DNA lesion must detect DNA damage, allow remodeling for repair, 

and restore its original chromatin structure (Chiolo et al. 2011; Polo and Jackson 2011; Price 

and D'Andrea 2013; Ayrapetov et al. 2014; Burgess et al. 2014). Constitutive 

heterochromatin, characterized by H3K9me2/3, provides a challenging environment for 

DNA repair (Jenuwein and Allis 2001). Studies in Drosophila and mammalian cell culture 

demonstrate that the activity of the H3K9 methyltransferase Suv39h1 (Su(var)3-9 in 

Drosophila) promotes activation of the checkpoint kinase ATM following DNA damage and 

activates relocation of breaks outside of heterochromatin for repair (Chiolo et al. 2011; 

Ayrapetov et al. 2014). Suv39h1 mutants show defects in heterochromatin stability with 

elevated DNA damage, mitotic checkpoint activation, and repeat instability (Peng and 

Karpen 2006; Peng and Karpen 2009; Ayrapetov et al. 2014). Additional histone residues are 

implicated in non-homologous end-joining repair of DNA DSBs including a proposed 

requirement for dynamic H4K20me2 and H4K16ac for recruitment of 53BP1 (Li et al. 2010; 

Hsiao and Mizzen 2013; Dulev et al. 2014; Tuzon et al. 2014). H4K16ac has been 

hypothesized to function upstream of 53BP1 recruitment through direct interaction with the 

histone 2A variant, H2A.X (Li et al. 2010). A H4K20me1 to H4K20me2 transition is 

hypothesized to function in regulating 53BP1 nucleation, although the requirement for these 

methylation states, rather than the writers, in this process remains unclear (Tuzon et al. 

2014). Additionally, H3K36 is implicated in homologous recombination repair of a DSB. 

Reduction of H3K36me3 levels results in reduced homologous recombination DSB repair 
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efficiency and an increased frequency of deletion repair products (Pfister et al. 2014). 

Cancers deficient for the H3K36 methyltransferase SETD2 exhibit a wide range of 

mutations, further suggesting a role for H3K36 in maintenance of genome stability (Sato et 

al. 2013; Zhu et al. 2014). Finally, H3K56 acetylation is implicated in the repair of DNA 

legions generated during DNA replication as yeast cells devoid of H3K56ac, either through 

H3K56R mutation or mutation of the yeast acetyltransferase rtt109, are sensitive to genotoxic 

agents associated with replication stress (Masumoto et al. 2005; Driscoll et al. 2007; Wurtele 

et al. 2012).  

A feature of genome instability is the generation of DNA double-stranded breaks 

(DSBs). In Drosophila, DSBs recruit a phosphorylated form of H2Av (histone 2A variant). 

To identify potential roles for histone residues in genome stability, we performed γH2Av 

staining in wing discs of a panel of histone mutants. Damage was scored as γH2Av foci 

normalized to area. While H3K9, H4K16, and H3K56R mutants showed a dramatic increase 

in γH2Av signal compared to HWT, H4K20 mutants only showed a moderate increase and 

H3K36 mutants showed no increase in γH2Av signal, respectively, indicating genomic 

instability in H3K9, H4K16, and H3K56R mutants (Figure A1.A,B).  
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Figure A1. H3K9, H4K16, and H3K56 promote genome stability. A) Representative 

HWT (top) and H3K56R (bottom) wing imaginal discs stained for γH2Av (red) and DAPI 

(blue). B) The average number of γH2Av foci per mm2 of wing imaginal disc tissue for all 

tissues analyzed for HWT (blue), H3K9R (red), H4K16R (green), H4K20R (purple), H3K36R 

(orange), and H3K56R (black). Images were thresholded using the “intermodes” automatic 

threshold setting in the ImageJ software. One-way ANOVA was performed. Significance is 

indicated for comparisons to HWT control; **** = p < 0.0001.  

 

 



 
199 

 

APPENDIX 2 

Histone PTMs are associated with origins across species and have been strongly 

correlated with the time at which a particular DNA sequence replicates during S phase. 

Euchromatin tends to replicate early during S phase whereas heterochromatin tends to 

replicate late during S phase (Schwaiger et al. 2009; Unnikrishnan et al. 2010; Eaton et al. 

2011; Petruk et al. 2013; Lubelsky et al. 2014). Current models suggest that replication 

initiation factors are recruited to euchromatin with a higher probability than heterochromatin, 

most likely contributing to their differential RT (Mantiero et al. 2011; Collart et al. 2013; Das 

et al. 2015). Previous efforts have sought to identify functions for histone residues in the 

regulation of RT through modulation of writer, reader, or eraser proteins, with select studies 

summarized here.  

Although H3K9me is enriched at late replicating sequences, mutation of H3K9 

writers and readers provides contradictory conclusions regarding the role of H3K9 in 

modulating RT. In S. pombe, mutation of Swi6, the HP1 homologue and H3K9me reader 

results in a severe delay in RT; however, mutation of Clr4, the H3K9 methyltransferase, 

results in advanced RT (Li et al. 2013). Furthermore, knockdown of HP1 in Drosophila cells 

shows a biphasic effect on RT where pericentromeric heterochromatin RT advances and 

HP1-bound sites on chromosome arms have delayed RT (Schwaiger et al. 2010). Roles for 

H4K20 in RT are also unclear. Mammalian studies suggest that localization of the 

H4K20me1 writer, PR-Set7, to replication foci and its subsequent degradation is required to 

prevent aberrant S phase phenotypes (Houston et al. 2008; Tardat et al. 2010). However, 

studies in Drosophila cells demonstrate that PR-Set7 is not required for origin activation or 

proper RT programs throughout the genome suggesting that H4K20me states do not function 
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in RT (Li et al. 2016). Moreover, H4K20A studies in our lab showed no requirement for 

H4K20 modification in DNA replication in the ovary, supporting a lack of functional 

requirement for H4K20 in DNA replication (McKay et al. 2015).Together, these contrasting 

results preclude interpretation of H3K9 and H4K20’s roles in RT. 

Although informative, histone PTM correlation studies cannot determine direct roles 

for histone residues in RT control. Studies in Drosophila show enrichment of H4ac marks, 

including H4K16ac, at sites of replication initiation in ovarian follicle cells (Aggarwal and 

Calvi 2004). Forced de-acetylation at these sites is sufficient to impair origin activation 

efficiency supporting a role for H4ac in origin activation (Aggarwal and Calvi 2004; Liu et 

al. 2012). Furthermore, dosage compensation in Drosophila males is mediated through 

hyper-H4K16ac of the male X chromosome (a chromatin state which promotes early 

replication and high transcriptional activity); mutation of H4K16ac writers MSL2 and MOF 

is sufficient to reduce origin activation on the male X chromosome, resulting in a loss of 

early RT (Lubelsky et al. 2014). However, in each of these contexts, whether H4K16ac is 

directly required for early origin activation remains unknown.  

In Drosophila, pericentromeric heterochromatin clusters into a nuclear structure 

termed the chromocenter. The chromocenter can be visualized as a DAPI-bright focus while 

euchromatin stains dimly with DAPI. EdU pulse labelling patterns define cells in early and 

late S phase, with early S phase cells identified by euchromatic EdU labeling and late S 

phase visualized by heterochromatic EdU labeling (Figure A2A). Quantifying the relative 

proportions of EdU-positive cells with either early or late replication patterns can serve as a 

proxy for RT changes. To identify histone mutations that disrupt RT, we quantified early and 

late S phase patterns in cells that were pulse labeled for 60-minutes with EdU. We found that 
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H3K9R and H4K16R mutants display an increased frequency of late replicating cells while 

H4K20R and H3K36R mutants are not different than the control (Figure A2B). From these 

data, I conclude that H4K16 and H3K9, but not H4K20 or H3K36R, are required for proper 

regulation of the RT program. 
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Figure A2. Replication pattern analysis in Drosophila histone mutants. A) Eye imaginal 

discs pulse labeled for 1hr with EdU (magenta) and stained for DNA (blue; DAPI). 

Representative early and late patterns are indicated. D) Percentage of EdU+ cells with early 

or late EdU incorporation patterns for HWT (blue), H3K9R (red), H4K16R (green), H4K20R 

(purple), and H3K36R (orange) genotypes. Chi squared test was performed (* = p < 0.01).   
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