
IMPROVING COMPUTATIONAL METHODS FOR DESIGNING POLAR PROTEIN-
PROTEIN INTERFACES 

Jack Barton Maguire 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum 

in Bioinformatics and Computational Biology. 

Chapel Hill 
2020 

Approved by: 
 
Brian Kuhlman 
 
Timothy Elston 
 
Alain Laederach 
 
Jan Prins 
 
Jack Snoeyink 
 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2020 
Jack Barton Maguire 

ALL RIGHTS RESERVED 



 iii 

ABSTRACT 

Jack Barton Maguire: Improving Computational Methods for Designing Polar Protein-Protein 
Interfaces 

(Under the direction of Brian Kuhlman) 

 

Computational protein design has come a long way over the past few decades, but there is 

still room to improve. Even state-of-the-art computational protein modeling software has 

challenges when attempting to design protein-protein interactions. Current rotamer optimization 

protocols have problems when performing sequence design at the interface of multiple protein 

chains, specifically with respect to desolvation penalties. Additionally, modern docking protocols 

use artificial energy landscapes that are poorly suited for protein interface design. In this study, I 

inspect the current state-of-the-art protocols, identify their shortcomings, and develop and 

benchmark improvements and/or replacements. I lay out three improvements (two for rotamer 

optimization at the interface and one for docking), benchmark them, and show that they all improve 

our ability to sample the energy landscape provided. The benchmarks show that, based on 

computational metrics, our new protocols are able to minimize risk of desolvation penalties 

without any energetic tradeoffs compared to existing standards.  

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

 

LIST OF FIGURES…………………………………………………………………………….. ix  

LIST OF TABLES ……………………………………………………………………………... xi 

LIST OF ABBREVIATIONS ………………………………………………………………… xii 

CHAPTER 1: INTRODUCTION ……………………………………………………………… 1 

1.1 BACKGROUND …………………………………………………………………….. 1 

1.2 OPPORTUNITIES FOR INNOVATION ……………………………………………. 3 

1.2.1 IMPROVED ROTAMER SAMPLING ……………………………………. 3 

1.2.2 IMPROVED BACKBONE SAMPLING EFFICIENCY ………………….. 4 

1.3 CHAPTER ORGANIZATION AND READING ADVICE ………………………… 6 

1.4 CONCESSIONS ……………………………………………………………………... 7 

REFERENCES …………………………………………………………………………... 8 

CHAPTER 2: RAPID SAMPLING OF HYDROGEN BOND NETWORKS 
FOR COMPUTATIONAL PROTEIN DESIGN ……………………………. 11 

2.1 INTRODUCTION ………………………………………………………………….. 11 

2.2 METHODS …………………………………………………………………………. 13 

2.2.1 SIDE CHAIN SAMPLING AND IDENTIFICATION 
OF HYDROGEN BONDS ……………………………………………... 13 

2.2.2 HBONDGRAPH DATA STRUCTURE …………………………………. 15 

2.2.3 MONTE CARLO HBONDGRAPH TRAVERSAL ……………………… 16 



 v 

2.2.4 RANKING RESULTS AND OUTPUT ………………………………….. 19 

2.2.4.1 SATURATION …………………………………………………. 19 

2.2.4.2 HBNET SCORE ………………………………………………... 20 

2.2.4.3 OUTPUT ……………………………………………………….. 20 

2.2.4.4 BURIAL CALCULATIONS …………………………………… 21 

2.2.5 BENCHMARKS AND ANALYSIS ……………………………………… 21 

2.2.5.1 NATIVE NETWORK RECOVERY …………………………… 21 

2.2.5.2 NETWORK DESIGN BENCHMARKS ……………………….. 22 

2.3 RESULTS AND DISCUSSION ……………………………………………………. 24 

2.3.1 BENEFITS OF EXTRA CHI SAMPLING ………………………………. 24 

2.3.2 NEW DESIGN CASES ENABLED BY MC HBNET …………………… 25 

2.3.3 SYMMETRIC HOMO-OLIGOMER BENCHMARKS …………………. 29 

2.4 CONCLUSIONS …………………………………………………………………… 30 

2.5 SUPPLEMENTAL INFORMATION ……………………………………………… 31 

2.5.1 SUPPLEMENTARY METHODS ………………………………………... 31 

2.5.1.1 ORIGINAL HBNET IMPLEMENTATION …………………… 31 

2.5.1.2 MC HBNET RUNS ON BACKRUB TRAJECTORIES ………. 35 

2.5.1.3 ROSETTA SCRIPT FOR THE THREE 
INTERFACE “MOTIVATING” CASES ………………………. 37 

2.5.1.4 ROSETTA SCRIPT FOR THE TWO 
SYMMETRIC HOMODIMER CASES ………………………... 38 

2.5.1.5 ROSETTA SCRIPT FOR THE TWO 
SYMMETRIC HOMOTRIMER CASES ………………………. 39 

2.5.1.5 ROSETTA SCRIPT FOR THE SMALL 
HELICAL MONOMER “MOTIVATING” CASE …………….. 40 



 vi 

2.5.2 SUPPLEMENTARY FIGURES ………………………………………….. 41 

2.5.3 SUPPLEMENTARY TABLES …………………………………………... 42 

ENDNOTE ……………………………………………………………………………... 46 

REFERENCES …………………………………………………………………………. 47 

CHAPTER 3: OPTIMIZING ENERGY LANDSCAPE PERTURBATIONS  
FOR IMPROVED PACKING DURING PROTEIN DESIGN ……………... 50 

3.1 PREFACE …………………………………………………………………………... 50 

3.2 BACKGROUND …………………………………………………………………… 50 

3.3 DIAGNOSING THE PROBLEM …………………………………………………... 52 

3.4 BENEFITS OF INCREASING REPULSIVE WEIGHT…………………………… 54 

3.5 BENEFITS OF RAMPING REFERENCE WEIGHT……………………………… 56 

3.6 METHODS …………………………………………………………………………. 58 

3.6.1 PROTEIN STRUCTURE SETS ………………………………………….. 58 

3.6.2 FASTDESIGN BENCHMARKS ………………………………………… 59 

3.6.3 RELAXING CRYSTAL STRUCTURES ………………………………… 60 

3.6.4 REFERENCE ENERGY FITTING ………………………………………. 60 

3.7 CONCLUSION …………………………………………………………………….. 60 

3.8 SUPPLEMENTAL INFORMATION ……………………………………………… 61 

3.8.1 SCRIPT FOR SEWING DESIGNS ………………………………………. 61 

3.8.2 COMMAND LINE FLAGS FOR SEWING DESIGNS ………………….. 61 

REFERENCES …………………………………………………………………………. 62 

CHAPTER 4: BENCHMARKING NEW COMPUTATIONAL TECHNIQUES 
FOR POLAR PROTEIN-PROTEIN INTERFACE DESIGN ……………… 64 

4.1 INTRODUCTION ………………………………………………………………….. 64 



 vii 

4.2 AVERAGE TRAJECTORY TEST …………………………………………………. 65 

4.2.1 METHODS ……………………………………………………………….. 65 

4.2.1.1 STRUCTURE GENERATION ………………………………… 65 

4.2.1.2 RUNNING ROSETTA …………………………………………. 65 

4.2.1.3 EVALUATING RESULTS …………………………………….. 66 

4.2.2 RESULTS AND DISCUSSION ………………………………………….. 67 

4.3 TOP TRAJECTORY TEST ………………………………………………………… 70 

4.3.1 METHODS ……………………………………………………………….. 70 

4.3.1.1 STRUCTURE GENERATION ………………………………… 70 

4.3.1.2 RUNNING ROSETTA …………………………………………. 70 

4.3.1.3 EVALUATING RESULTS …………………………………….. 71 

4.3.2 RESULTS AND DISCUSSION ………………………………………….. 71 

4.4 CONCLUSION …………………………………………………………………….. 73 

4.5 SUPPLEMENTAL INFORMATION ……………………………………………… 74 

4.5.1 ROSETTA SCRIPTS FOR “AVERAGE TRAJECTORY TEST” ……….. 74 

4.5.2 ROSETTA SCRIPTS FOR “TOP TRAJECTORY TEST” ……………….. 83 

REFERENCES …………………………………………………………………………. 87 

CHAPTER 5: USING A DEEP NEURAL NETWORK TO IMPROVE 
LOW-RESOLUTION MODELING OF PROTEIN-PROTEIN  
INTERACTIONS PRIOR TO DESIGN …………………………………….. 89 

5.1 INTRODUCTION ………………………………………………………………….. 89 

5.1.1 BACKGROUND …………………………………………………………. 89 

5.1.2 PROJECT DESCRIPTION ……………………………………………….. 90 

5.2 METHODS …………………………………………………………………………. 91 



 viii 

5.2.1 RAY CASTING …………………………………………………………... 91 

5.2.1.1 ADDITIONAL DATA COLLECTED …………………………. 93 

5.2.2 MOUSE IMPLEMENTATION …………………………………………... 93 

5.2.3 NEURAL NETWORK TRAINING ……………………………………… 94 

5.2.3.1 TRAINING DATA ……………………………………………... 95 

5.2.4 ONE-SIDED INTERFACE DESIGN BENCHMARK …………………... 95 

5.3 RESULTS AND DISCUSSION ……………………………………………………. 97 

5.4 CONCLUSION AND FUTURE WORK …………………………………………… 98 

5.5 SUPPLEMENTAL INFORMATION ……………………………………………… 99 

5.5.1 MOUSE GENERATION 1 NETWORK ARCHITECTURE …………….. 99 

5.5.2 MOUSE GENERATION 2 NETWORK ARCHITECTURE …………… 100 

5.5.3 VISUALIZATION OF WHAT MOUSE “SEES” ………………………. 101 

REFERENCES ………………………………………………………………………... 103 

 

 

  



 ix 

LIST OF FIGURES 

 

1.1 TIMELINE OF MAJOR ROSETTA DEVELOPMENTS ………………………………….. 3 

1.2 TOY ILLUSTRATION OF OUR IDEA FOR IMPROVED 
BACKBONE SAMPLING EFFICIENCY ……………………………………………… 5 

2.1 HBONDGRAPH …………………………………………………………………………… 15 

2.2 MONTE CARLO GROWTH OF A NETWORK …………………………………………... 18 

2.3 NATIVE NETWORKS: IMPACT OF EXTRA CHI SAMPLING ………………………… 25 

2.4 AGGREGATE DATA FROM ONE-SIDED INTERFACE DESIGN BENCHMARKS ….. 26 

2.5 NEW DESIGN PROBLEMS ……………………………………………………………….. 27 

2.6 SYMMETRIC INTERFACES ……………………………………………………………... 29 

2.S1 SMALL BACKBONE CHANGES AFFECT POSSIBLE HYDROGEN 
BONDS AND NETWORK CONNECTIVITIES ……………………………………… 41 

3.1 FASTRELAX’S DEFAULT REPULSIVE RAMPING SCHEME ………………………… 51 

3.2 AMINO ACID DISTRIBUTION OF NATIVE PROTEINS AND 
PROTEINS DESIGNED BY FASTDESIGN …………………………………………... 52 

3.3 DESCRIPTION OF FASTDESIGN’S BIAS AND THE MEANS TO ADDRESS IT …….. 54 

3.4 RESULTS OF HYPERPARAMETER SAMPLING FOR 
TWO OF OUR DESIGN CASES ……………………………………………………… 55 

3.5 AMINO ACID DISTRIBUTIONS FOR VARIOUS BENCHMARKS 
FOR NATIVE PROTEINS AND FOR DESIGNS OF THREE 
DIFFERENT FASTDESIGN PROTOCOLS …………………………………………... 57 

3.6 COMPARISON OF NEW DESIGN PROTOCOLS WITH LEGACY 
FOR THREE DESIGN CASES ………………………………………………………… 58 

5.1 VISUALIZATION OF RAY CASTING GEOMETRIES THAT ARE 
FED INTO THE NEURAL NETWORK ………………………………………………. 92 

 
 



 x 

5.2 CORRELATION DISTRIBUTIONS BETWEEN SEVERAL  
LOW-RESOLUTION METRICS AND THE FINAL 
HIGH-RESOLUTION SCORE AFTER FASTDESIGN ………………………………. 97 

5.S1 REALISTIC VISUALIZATION OF HOW MOUSE SEES DISTANCE ………………. 101 

5.S2 HD VISUALIZATION OF HOW MOUSE SEES RELATIVE ORIENTATION ……… 102 

 

 

 

  



 xi 

LIST OF TABLES 

 

2.1 DEFINITIONS OF EXTRA-CHI SAMPLING LEVELS ………………………………….. 14 

2.S1 DATA FOR “SMALL INTERFACE” CASE ……………………………………………... 42 

2.S2 DATA FOR “MEDIUM INTERFACE” CASE …………………………………………… 42 

2.S3 DATA FOR “LARGE INTERFACE” CASE ……………………………………………... 43 

2.S4 DATA FOR “SMALL HELICAL MONOMER” CASE …………………………………. 43 

2.S5 DATA FOR “SYMMETRIC HOMODIMER 5J0K” CASE ……………………………… 44 

2.S6 DATA FOR “SYMMETRIC HOMODIMER 5J10” CASE ……………………………… 44 

2.S7 DATA FOR “SYMMETRIC HOMODIMER 5J0H” CASE ……………………………… 45 

2.S8 DATA FOR “SYMMETRIC HOMODIMER 5IZS” CASE ……………………………… 45 

3.1 HYPERPARAMETERS AND REPULSIVE WEIGHTS FOR OUR 
FOUR FINAL PROTOCOLS …………………………………………………………... 56 

3.2 RESULTS OF RUNNING NEW PROTOCOLS ON OUR  
DIVERSE COLLECTION OF DESIGN CASES ……………………………………… 56 

4.1 COMPUTATIONAL DESIGN QUALITY METRICS FOR 
NATIVE INTERFACE REDESIGNS USING DIFFERENT METHODS …………….. 68 

4.2 RESULTS OF THE “TOP TRAJECTORY TEST” ………………………………………… 72 

 

 

 

 

 

 



 xii 

LIST OF ABBREVIATIONS 

 

MOUSE Model Of Ultimate Surface Energy 

REU  Rosetta Energy Units 

RG  Radius of Gyration 

SEWING Structure Extension With Native fragment-Graphs 



 1 

CHAPTER 1: Introduction 

 

1.1 Background 

The ability to design a protein-protein interface gives scientists the ability to engineer 

interactions within living organisms. Scientists can design novel proteins that bind to native 

proteins in efforts to control chemical reactions, target diseases, and provide us with a better 

understanding of biological systems.1 Biochemists have historically engineered protein-protein 

interactions using a mixture of rational design, homologous sequence alignments, and high-

throughput experimental testing.2,3 These techniques are considered relatively conservative 

because they only introduce a handful of mutations to native interfaces; they are impractical for a 

large-scale redesign of a native interface or the design of a de novo interface. Over the past few 

decades, scientists have had increasing success using computers to design protein interfaces in a 

less conservative manner.4–10 

The Rosetta protein-modeling suite11 has been used to design protein-protein interfaces in 

both one-sided (where only one of the two protein chains is able to be mutated) and two-sided 

cases.12–17 The general interface design protocol in Rosetta involves rigid-body docking followed 

by alternating phases of fixed-backbone sidechain sampling and all-atom energy minimization.18,19 

Rosetta introduces mutations during the sidechain sampling phase and are subject to restrictions 

set by the user. 



 2 

One major challenge associated with protein-protein interface design is the handling of 

polar atoms that are buried by the interface.8,12,20 To offset the penalty in desolvation energy of 

binding, all polar atoms at the interface must have a hydrogen bonding partner in the bound state. 

The penalty for a single unsatisfied polar atom (“unsat” for short, meaning a polar atom with no 

hydrogen bonding partner) is estimated to be 3 kcal/mol.21 For this reason, any computational 

strategy for designing protein-protein interfaces should aim to minimize the number of buried 

unsats. It is rarely an acceptable solution to simply restrict Rosetta to design hydrophobic interfaces 

because some degree of hydrophilicity is required for solvation in the unbound state, which is 

important for transient binders.22 Additionally, the fixed-sequence protein in a one-sided design 

case may have polar sidechains at the interface; Rosetta must be able to find design solutions that 

can satisfy the hydrogen bonding potential of these polar atoms. 

In 2013, Stranges et al. released a study that collected and analyzed many successful 

(experimentally shown to behave as predicted) and unsuccessful protein-protein interfaces 

designed by Rosetta.23 One of their major takeaways was that the successfully designed interfaces 

were less polar than both the set of unsuccessful designs and the set of naturally-occurring 

interfaces used as reference. This suggests that Rosetta is unable to reliably design stable interfaces 

that have native-like densities of polar sidechains. 

A major hindrance in Rosetta’s ability to design stable polar interfaces is sampling quality 

in its high-resolution (meaning all atoms are represented) sampling methods. Rosetta generates a 

rotamer (sidechain conformation) library for each residue position and uses one of several 

protocols to determine which rotamer ends up being “placed” at each position.18 When a residue 

position is allowed to mutate, the rotamer library for that position will contain sidechain 

conformations across multiple amino acids. These rotamer libraries can be increased in size by 



 3 

sampling chi (sidechain torsion) angles more finely. Our experiments show that the typical levels 

of chi-angle sampling are insufficient to sample most hydrogen bonding conformations at native 

protein-protein interfaces.24 For this reason, rotamer libraries tend to be too large to sample 

exhaustively and must rely on stochastic search protocols.24,25 Stranges et al. suggest that these 

search protocols have room for improvement with regard to hydrogen bond sampling.23 

 

1.2 Opportunities for Innovation 

1.2.1 Improved Rotamer Sampling 

 Stranges et al. had two calls to action in the conclusion of their study: (1) Rosetta’s score 

function needs further development to more accurately model desolvation penalties and (2) 

Rosetta’s sampling techniques need to be better suited to sample hydrogen-bonding partners across 

in the interface.23 Figure 1.1 shows a timeline of relevant Rosetta developments since that study 

was released. As you can see, Rosetta developers have put a considerable amount of work into the 

first call to action but have not spent as much time working on sampling improvements.26–28 

 
Figure 1.1 Timeline of major Rosetta developments relevant to interface design since the Stranges 
et al.23 study. 
 

Only two sampling developments have been made in the same timeframe, and we will see 

in Chapters 2-4 that both of those developments do not adequately address Rosetta’s interface 

design sampling. The first sampling development, FastDesign,18 recognized that atomic 

Timeline Since That Paper

2014 2015 2016 2017 2018 2019

Improved 
Hydrogen 

Bonding Potential

Improved 
Desolvation 

Model

Energy Function 
Refitting Based 

On 
Thermodynamics

Opt-in Buried 
Unsatisfied 

Hbond Terms

HBNet

Scoring
Sampling

FastDesign



 4 

interactions such as hydrogen bonds are sensitive to small geometric perturbations in the protein’s 

backbone. With this premise, FastDesign intermixes rounds of rotamer substitution with energy 

minimization using all-atom torsion-angle gradient descent. This allows backbone atoms to make 

small movements to accommodate mutations. Since hydrogen bonds are so energetically sensitive 

to small geometric changes, this round of minimization is expected to help optimize hydrogen 

bond formation for protein design in general. I explore the benefits and pitfalls of FastDesign more 

in Chapter 3. 

The second sampling development, HBNet,12 prepopulates protein interfaces with 

hydrogen bond networks prior to rotamer sampling. A subset of residue positions are permanently 

assigned conformations that are known to hydrogen bond with one another. Then, the rotamer 

substitution will take place around the fixed (immobile for the sake of preserving conformation) 

residues in the hydrogen bond network. The goal of HBNet is to explicitly prevent unsatisfied 

polar atoms at interfaces, with the tradeoff of possible suboptimal rotamer packing. We take a 

deeper dive into HBNet in Chapter 2. 

 

1.2.2 Improved Backbone Sampling Efficiency 

 Most protein interface design projects involve backbone sampling. This generally involves 

docking the protein chains together but can also include backbone-generating protocols like loop-

sampling or SEWING (a protocol that builds a protein chain from scratch).13,19 These design 

projects consider their task in two phases: (1) backbone sampling and (2) fixed-backbone rotamer 

sampling. The first phase often generates thousands or millions of backbones (decoys). The second 

phase is too computationally expensive to be run millions of times, so the user only performs 

rotamer-sampling on the decoys that are predicted to be the most fruitful. This prediction is done 



 5 

by a “low-resolution” score function, meaning a score function that only evaluates a protein’s 

backbone (though some low-resolution score functions implicitly model sidechains25).  

We will see in Chapter 5 that Rosetta’s current low-resolution score functions given 

suboptimal results, meaning that some fruitful interface decoys may be discarded between the 

backbone sampling phase and the rotamer sampling phase by being a false negative. By improving 

these score functions, we can improve the efficiency at which good protein-protein interfaces can 

be designed. 

 
Figure 1.2 Toy illustration of our idea for improved backbone sampling efficiency. These axes are 
in made-up, nameless units in which lower numbers are better. (A) Correlation between high- and 
low-resolution score terms with a less accurate low-resolution score function. (B) Silimar 
correlation but with a more accurate low-resolution score function. Data points to the left of the 
green line are considered fruitful. Data points below the orange line must pass the low-resolution 
filter in order for all of the fruitful points to pass. Both figures show the percentage of total points 
in each quadrant. 
 

Figure 1.2 shows a toy example that attempts to illustrate this concept by contriving two 

sets of data. Subfigure 1.2A shows correlation between high-resolution scores and corresponding 

low-resolution scores with some degree of misprediction noise. Subfigure 1.2B shows an 

equivalent data set in which the low-resolution score function has a smaller degree of 

misprediction noise. Now, imagine that a user wants to extract all of the fruitful decoys and sets 

their cutoff to be 0.2 (less positive is considered better). The actual high-resolution score is not 

known until the expensive all-atom sampling is complete, so the user must then determine a cutoff 

-0.4
-0.2

0

0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1

Lo
w

-R
es

ol
ut

io
n 

Sc
or

e

High-Resolution Score

Less Accurate

-0.4
-0.2

0

0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1

Lo
w

-R
es

ol
ut

io
n 

Sc
or

e

High-Resolution Score

More Accurate

20%
25%

55%0%

20% 10%

70%0%

(A) (B)



 6 

using the low-resolution score function. Figure 1.2 shows in green the intended high-resolution 

cutoff line and in orange shows the strictest possible low-resolution cutoff that still includes all of 

the fruitful points. As you can see by the percentage labels, the more accurate low-resolution score 

function decreases the false positive count (from 25% to 10% of the total runs in this contrived 

example). The expensive high-resolution sampling would take place on all points below the orange 

lines, so the lower false positive count would save a significant amount of computer time (33% 

speedup in this case). 

 

1.3 Chapter Organization and Reading Advice 

 Chapters 2 and 3 describe implementation details for two of our novel developments in 

great depth. Chapter 4 broadly summarizes these developments and benchmarks their role in 

protein interface design as a whole, namely the problem outlined in section 1.2.1. For this reason, 

it may be beneficial to read Chapter 4 first. Then you can decide to read the other chapters or 

skim/skip them. 

Chapter 5 is somewhat unrelated to the others and describes an approach to the problem 

outlined in section 1.2.2. My contribution to the work in Chapter 5 is complete, however the project 

as a whole is still a work in progress. Specifically, my lab mates and collaborators will be 

benchmarking the tool outlined in Chapter 5 in real-world design applications. Hopefully any 

unanswered questions will be answered in future publications. 

 

 

 

 



 7 

1.4 Concessions 

 This dissertation presents new computational techniques and shows that they are 

improvements relative to various computational metrics. Because these metrics are man-made 

models that only mimic nature, the scopes of my conclusions do not exceed beyond the protein 

modeling framework. It is the responsibility of experimental biochemists to determine if the 

methods presented here actually result in better proteins when expressed in the real world.   

 

 

  



 8 

REFERENCES 

1. Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nature 
Reviews Molecular Cell Biology vol. 20 681–697 (2019). 

 
2. Wang, C. et al. Current Strategies and Applications for Precision Drug Design. Front. 

Pharmacol. 9, 787 (2018). 
 
3. Watanabe, M., Matsuzawa, T. & Yaoi, K. Rational protein design for thermostabilization 

of glycoside hydrolases based on structural analysis. Appl. Microbiol. Biotechnol. (2018) 
doi:10.1007/s00253-018-9288-7. 

 
4. Dahiyat, B. I. & Mayo, S. L. Protein design automation. Protein Sci. 5, 895–903. 
 
5. Zeng, J. Mini-Review: Computational Structure-Based Design of Inhibitors that Target 

Protein Surfaces. Comb. Chem. High Throughput Screen. 3, (2000). 
 
6. Sammond, D. W., Eletr, Z. M., Purbeck, C. & Kuhlman, B. Computational design of 

second-site suppressor mutations at protein-protein interfaces. Proteins Struct. Funct. 
Bioinforma. 78, 1055–1065 (2010). 

 
7. Kortemme, T. & Baker, D. Computational design of protein-protein interactions. Curr. 

Opin. Chem. Biol. 8, 91–97 (2004). 
 
8. Joachimiak, L. A., Kortemme, T., Stoddard, B. L. & Baker, D. Computational Design of a 

New Hydrogen Bond Network and at Least a 300-fold Specificity Switch at a 
Protein−Protein Interface. J. Mol. Biol. 361, 195–208 (2006). 

 
9. Kapp, G. T. et al. Control of protein signaling using a computationally designed 

GTPase/GEF orthogonal pair. Proc. Natl. Acad. Sci. 109, 5277–5282 (2012). 
 
10. Mandell, D. J. & Kortemme, T. Computer-aided design of functional protein interactions. 

Nat. Chem. Biol. 5, 797–807 (2009). 
 
11. Leaver-Fay, A. et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and 

Design of Macromolecules. Methods Enzymol. 487, 545–574 (2011). 
 
12. Boyken, S. et al. De novo design of protein homo-oligomers with modular hydrogen bond 

network-mediated specificty. Science 399, 69–72 (2016). 
 
13. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for Requirement-

Driven Protein Design in the Rosetta Modeling Program. J. Chem. Inf. Model. 58, 895–
901 (2018). 

 
14. Tinberg, C. E. & Khare, S. D. Computational Design of Ligand Binding Proteins. in 

Methods in molecular biology (Clifton, N.J.) vol. 1529 363–373 (2017). 



 9 

 
15. Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface 

designs highlights the challenges of designing buried hydrogen bonds. 22, 74–82 (2013). 
 
16. Leaver-Fay, A. et al. Computationally Designed Bispecific Antibodies using Negative 

State Repertoires. Structure 24, 641–651 (2016). 
 
17. Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem 

region of influenza hemagglutinin. Science 332, 816–21 (2011). 
 
18. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape 

mapping. J Mol Biol 405, 607–618 (2011). 
 
19. Kaufmann, K. W., Lemmon, G. H., Deluca, S. L., Sheehan, J. H. & Meiler, J. Practically 

Useful: What the ROSETTA Protein Modeling Suite Can Do for You. 
doi:10.1021/bi902153g. 

 
20. Xu, D., Tsai, C. J. & Nussinov, R. Hydrogen bonds and salt bridges across protein-protein 

interfaces. Protein Eng. 10, 999–1012 (1997). 
 
21. Fleming, P. J. & Rose, G. D. Do all backbone polar groups in proteins form hydrogen 

bonds? Protein Sci. 14, 1911–7 (2005). 
 
22. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–

647 (2005). 
 
23. Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface 

designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 22, 74–
82 (2013). 

 
24. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid Sampling of Hydrogen 

Bond Networks for Computational Protein Design. J. Chem. Theory Comput. (2018) 
doi:10.1021/acs.jctc.8b00033. 

 
25. Kuhlman, B. et al. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. 

Science (80-. ). 302, 1364–1368 (2003). 
 
26. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function 

improvement. Methods in Enzymology vol. 523 (Elsevier Inc., 2013). 
 
27. O’Meara, M. J. et al. Combined covalent-electrostatic model of hydrogen bonding 

improves structure prediction with Rosetta. J. Chem. Theory Comput. 11, 609–22 (2015). 
 
 
 
 



 10 

28. Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling 
and Design. J. Chem. Theory Comput. 13, 3031–3048 (2017). 

 

 



 11 

CHAPTER 2: Rapid Sampling of Hydrogen Bond Networks for Computational Protein 
Design1 

 

2.1 Introduction 

Hydrogen bonds are essential for specifying biomolecular structure, and proteins often 

employ extensive networks of hydrogen bonds to preorganize catalytic active sites2–5, mediate 

interaction specificity6,7, and achieve structure and function with a high level of cooperativity.8–10 

Hydrogen bond networks at protein−protein interfaces help overcome desolvation costs associated 

with binding while providing polar groups that contribute to the solubility of the unbound 

monomers. The ability to accurately create new hydrogen bond networks is critical for many 

problems in protein design, and rational design approaches have successfully achieved networks 

that specify membrane protein interactions11 and the coordination of functional metal cofactors;12–

16 however, developing general computational methods for this problem has been challenging.17 

This is in part because hydrogen bond strength is very sensitive to small perturbations in the 

relative positions of the atoms forming the hydrogen bond.18,19 Designing buried hydrogen bonds 

at protein interfaces has been particularly difficult.20,21 

A key challenge in designing hydrogen bond networks is ensuring that each polar group in 

a protein or complex has a hydrogen bond partner or is exposed to solvent. It has been estimated 

that the energetic cost of burying a hydrogen-bond donor or acceptor that does not have a hydrogen 

bond partner (“unsatisfied”) is 5−6 kcal/mol,22 which is comparable to the total free energy of 

unfolding for some proteins. The energy functions that are typically used for computational protein 

design,23,24 including the Rosetta Energy Function,25 are expressed as the sum of pairwise energies, 



 12 

which is important for computational efficiency and algorithmic compatibility.26 However, 

networks of hydrogen bonds that span multiple residues are inherently not pairwise decomposable, 

and evaluating burial and hydrogen bond satisfaction cannot be achieved in a pairwise manner. 

Hence, conventional protein design algorithms are not well-suited for capturing and evaluating 

satisfied hydrogen bond networks.  

Recently, to enable the computational design of hydrogen bond networks, we developed a 

sampling protocol (HBNet27) in the Rosetta software package28 that explicitly searches through 

sequence space and side chain conformational space (rotamers) to find sets of amino acids that can 

form self-contained hydrogen bond networks. To maximize the number of potential networks that 

are identified for a given backbone conformation and set of residues, HBNet enumerates through 

all possible closed networks that can be created with a given rotamer library. We define a “closed 

network” to be one in which every buried polar group has a hydrogen bond partner. HBNet was 

experimentally validated by using it to design highly symmetric networks in the center of de novo 

designed coiled coils.27 Since these initial results, we have begun to apply HBNet to other design 

problems, and we have found that it scales poorly to larger systems, especially cases where 

symmetry cannot be used to reduce search space. For larger rotamer libraries or larger numbers of 

residue positions, we observe that the exhaustive search employed by HBNet often does not 

complete after several hours, which precludes its use in design pipelines that also involve backbone 

sampling and docking. Here, we introduce a new Monte Carlo-based algorithm (MC HBNet) that 

makes it possible to rapidly sample and design viable hydrogen bond networks for larger design 

problems.  

The MC HBnet protocol begins by building a graph in which each node in the graph 

represents a potential side chain conformation (rotamer) for an amino acid at a specified sequence 



 13 

position, and an edge is drawn between two nodes if a hydrogen bond is formed between the two 

rotamers. Hydrogen bond networks are then assembled by stochastically traversing the graph and 

outputting networks that do not leave any buried polar group without a hydrogen bond partner. We 

show that MC HBNet is able to recapitulate the networks of native protein−protein interfaces and 

that it can be robustly used with large rotamer libraries. Because MC HBNet can be used with a 

finer degree of side chain sampling than HBNet, we also show that it can find more favorable 

networks than HBNet in substantially shorter runtimes. These improvements allow explicit 

hydrogen bond network design to be incorporated into more complex, multistage protocols such 

as de novo interface design and enzyme design and are general strategies that can be readily 

incorporated into modeling packages other than Rosetta. 

 

2.2 Methods 

2.2.1 Side Chain Sampling and Identification of Hydrogen Bonds 

MC HBNet begins by examining residue pairs and identifying which amino acid mutations 

and side chain rotamers at the two positions will allow the formation of one of more hydrogen 

bonds between the residues. All residue pairs within a user-defined set of packable positions are 

enumerated. The set of amino acids considered at each position are also defined by the user. The 

protein backbone is held fixed throughout the protocol, and side chain conformations are sampled 

using a backbone-dependent rotamer library.29 The user can specify to consider only side chain 

conformations constructed from the most preferred side chain torsion angles (chi angles) for each 

rotamer (“base” rotamer), or the rotamer library can be expanded by introducing extra chi 

sampling. Extra chi sampling builds additional rotamers from base rotamers by varying the side 

chain’s chi angles by an amount determined by statistical measurements of that chi angle’s 



 14 

variance in high resolution crystal structures of naturally occurring proteins. The magnitude and 

frequency of extra chi sampling can be controlled by the user (Table 2.1).  

 

 

Table 2.1 Definitions of Extra-Chi Sampling Levels. A 0 in any column means that there were no 
extra samples for that chi angle. A 1 in any column means that chi angle had extra samples at ±1 
standard deviation defined by the Dunbrack backbone dependent rotamer library.29 
 

After side chain coordinates are calculated for the rotamers being considered at each 

designable position, each rotamer pair from all the residue pairs are examined to determine if a 

hydrogen bond is being formed between the rotamers. Hydrogen bonds are detected using 

Rosetta’s standard hydrogen bonding potential, which depends on the distance and relative 

orientation of the donor and acceptor groups.18,30 Hydrogen bonds typically score between −0.5 

and −1.5 Rosetta Energy Units (REU). For most of this work, we consider only interactions with 

an energy less than −0.5 as a hydrogen bond. When a hydrogen bond is detected between two 

rotamers, this information is saved in an interaction graph that is used during the sampling 

protocol. MC HBNet uses a new data structure called HbondGraph that includes nodes for each 

rotamer, as well as atom-level information for each hydrogen bond, enabling more efficient 

organization and lookup as compared to the graph used by the original implementation of HBNet, 

which has been described previously.27  

 

 

 

ing.16 This is in part because hydrogen bond strength is very
sensitive to small perturbations in the relative positions of the
atoms forming the hydrogen bond.17,18 Designing buried
hydrogen bonds at protein interfaces has been particularly
difficult.19,20

A key challenge in designing hydrogen bond networks is
ensuring that each polar group in a protein or complex has a
hydrogen bond partner or is exposed to solvent. It has been
estimated that the energetic cost of burying a hydrogen-bond
donor or acceptor that does not have a hydrogen bond partner
(“unsatisfied”) is 5−6 kcal/mol,21 which is comparable to the
total free energy of unfolding for some proteins. The energy
functions that are typically used for computational protein
design,22,23 including the Rosetta Energy Function,24 are
expressed as the sum of pairwise energies, which is important
for computational efficiency and algorithmic compatibility.25

However, networks of hydrogen bonds that span multiple
residues are inherently not pairwise decomposable, and
evaluating burial and hydrogen bond satisfaction cannot be
achieved in a pairwise manner. Hence, conventional protein
design algorithms are not well-suited for capturing and
evaluating satisfied hydrogen bond networks.
Recently, to enable the computational design of hydrogen

bond networks, we developed a sampling protocol (HBNet26)
in the Rosetta software package27 that explicitly searches
through sequence space and side chain conformational space
(rotamers) to find sets of amino acids that can form self-
contained hydrogen bond networks. To maximize the number
of potential networks that are identified for a given backbone
conformation and set of residues, HBNet enumerates through
all possible closed networks that can be created with a given
rotamer library. We define a “closed network” to be one in
which every buried polar group has a hydrogen bond partner.
HBNet was experimentally validated by using it to design
highly symmetric networks in the center of de novo designed
coiled coils.26 Since these initial results, we have begun to apply
HBNet to other design problems, and we have found that it
scales poorly to larger systems, especially cases where symmetry
cannot be used to reduce search space. For larger rotamer
libraries or larger numbers of residue positions, we observe that
the exhaustive search employed by HBNet often does not
complete after several hours, which precludes its use in design
pipelines that also involve backbone sampling and docking.
Here, we introduce a new Monte Carlo-based algorithm (MC
HBNet) that makes it possible to rapidly sample and design
viable hydrogen bond networks for larger design problems.
The MC HBnet protocol begins by building a graph in which

each node in the graph represents a potential side chain
conformation (rotamer) for an amino acid at a specified
sequence position, and an edge is drawn between two nodes if a
hydrogen bond is formed between the two rotamers. Hydrogen
bond networks are then assembled by stochastically traversing
the graph and outputting networks that do not leave any buried
polar group without a hydrogen bond partner. We show that
MC HBNet is able to recapitulate the networks of native
protein−protein interfaces and that it can be robustly used with
large rotamer libraries. Because MC HBNet can be used with a
finer degree of side chain sampling than HBNet, we also show
that it can find more favorable networks than HBNet in
substantially shorter runtimes. These improvements will allow
explicit hydrogen bond network design to be incorporated into
more complex, multistage protocols such as de novo interface
design and enzyme design and are general strategies that can be

readily incorporated into modeling packages other than
Rosetta.

■ METHODS
Side Chain Sampling and Identification of Hydrogen

Bonds. MC HBNet begins by examining residue pairs and
identifying which amino acid mutations and side chain rotamers
at the two positions will allow the formation of one of more
hydrogen bonds between the residues. All residue pairs within a
user-defined set of packable positions are enumerated. The set
of amino acids considered at each position are also defined by
the user. The protein backbone is held fixed throughout the
protocol, and side chain conformations are sampled using a
backbone-dependent rotamer library.28 The user can specify to
only consider side chain conformations constructed from the
most preferred side chain torsion angles (chi angles) for each
rotamer (“base” rotamer), or the rotamer library can be
expanded by introducing extra chi sampling. Extra chi sampling
builds additional rotamers from base rotamers by varying the
side chain’s chi angles by an amount determined by statistical
measurements of that chi angle’s variance in high resolution
crystal structures of naturally occurring proteins. The
magnitude and frequency of extra chi sampling can be
controlled by the user (Table 1).

After side chain coordinates are calculated for the rotamers
being considered at each designable position, each rotamer pair
from all the residue pairs are examined to determine if a
hydrogen bond is being formed between the rotamers.
Hydrogen bonds are detected using Rosetta’s standard
hydrogen bonding potential, which depends on the distance
and relative orientation of the donor and acceptor groups.17,29

Hydrogen bonds typically score between −0.5 and −1.5
Rosetta Energy Units (REU). For most of this work, we only
consider interactions with an energy less than −0.5 as a
hydrogen bond. When a hydrogen bond is detected between
two rotamers, this information is saved in an interaction graph
that is used during the sampling protocol. MC HBNet uses a
new data structure called HbondGraph that includes nodes for
each rotamer, as well as atom-level information for each
hydrogen bond, enabling more efficient organization and
lookup as compared to the graph used by the original
implementation of HBNet, which has been described
previously.26

HBondGraph Data Structure. HBondGraph creates a
node for every candidate rotamer at each position (Figure 1).
An edge is created between every pair of nodes whose
corresponding rotamers form a hydrogen bond. Additionally,
nodes store information about which other nodes in the
HbondGraph are incompatible due to steric clashes between

Table 1. Definitions of Extra-Chi Sampling Levelsa

label chi 1 chi 2 chi 3 chi 4

Ø 0 0 0 0
χ1 1 0 0 0
χ1χ2 1 1 0 0
χ1χ2χ3 1 1 1 0
χ1χ2χ3χ4 1 1 1 1

aA 0 in any column means that there were no extra samples for that
chi angle. A 1 in any column means that chi angle had extra samples at
±1 standard deviation defined by the Dunbrack backbone dependent
rotamer library.28

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2752



 15 

2.2.2 HBondGraph Data Structure 

HBondGraph creates a node for every candidate rotamer at each position (Figure 2.1). An 

edge is created between every pair of nodes whose corresponding rotamers form a hydrogen bond. 

Additionally, nodes store information about which other nodes in the HbondGraph are 

incompatible due to steric clashes between their respective rotamers. A hydrogen bond network 

can be defined as a set of nodes that form a connected component in the HbondGraph without 

having any two nodes that represent rotamers that clash or occupy the same residue position.  

 

Figure 2.1 HBondGraph. (A) MC HBNet identifies every residue position that is being designed 
or repacked. (B) Each position is expanded into an array of graph nodes, one node for every side 
chain conformation being considered at that position. (C) Graph edges are created between every 
pair of nodes that form a hydrogen bond. (D) An example of what a hydrogen bond network looks 
like in this data structure and (E) a possible hydrogen bond network that this example might 
represent (cyan side chains are part of a different chain than green side chains).  

Each node in the HbondGraph keeps track of every side chain polar atom index in its 

respective rotamer. MC HBNet strips this atom information for polar atoms that are already 

satisfied by the background (either implicitly by solvent exposure or explicitly by hydrogen bonds 

their respective rotamers. A hydrogen bond network can be
defined as a set of nodes that form a connected component in
the HbondGraph without having any two nodes that represent
rotamers that clash or occupy the same residue position.
Each node in the HbondGraph keeps track of every side

chain polar atom index in its respective rotamer. MC HBNet
strips this atom information for polar atoms that are already
satisfied by the background (either implicitly by solvent
exposure or explicitly by hydrogen bonds to the backbone or
nonpackable side chains, which are held fixed; hydrogen bonds
from side chain atoms to backbone atoms are scored and taken
into account when evaluating satisfaction). Combining the
individual lists of atoms from each node in the network
produces an ad hoc checklist of atoms that need to be satisfied
for a network to be accepted. For each network, MC HBNet
tracks satisfaction by storing a list of all heavy (non-hydrogen)
polar atoms that are buried and not satisfied (“heavy unsat”); if
a heavy unsat becomes satisfied during network growth, that
atom is removed from the list. Satisfaction can be rapidly
evaluated because each edge in the HbondGraph stores the
atom indices for the acceptor atom, donor atom, and hydrogen
atom for every hydrogen bond represented by the edge (there
may be multiple hydrogen bonds represented by one edge
because a single pair of rotamers can only be connected by one
edge but may form multiple hydrogen bonds).
Monte Carlo HbondGraph Traversal. The MC HBNet

sampling protocol is composed of a user-defined number of

trajectories. Each trajectory begins by randomly selecting a
“seed” edge from the HbondGraph, and networks are grown
stochastically by adding adjacent edges that lead to compatible
nodes. Seed edges can be selected based on predefined starting
criteria. An example starting criterion is HBNetStapleInter-
face,26 which searches for networks that span across a protein−
protein interface; when used with MC HBNet, the HBNet-
StapleInterface protocol requires that all seed edges must
contain at least one node position that is at the interface.
Efficiency is improved by restricting sampling to only start at
seed edges relevant to the task at hand. Starting criteria can be
specified by the user to customize the search for different
design scenarios.
After the seed is selected, MC HBNet identifies all of the

“candidate” nodes in the HbondGraph that are adjacent to
either of the seed’s nodes but do not conflict either through
steric clashing or sharing a residue position (Figure 1). For each
of these candidates, MC HBNet counts the number of
HbondGraph nodes (“children”) adjacent to the candidate
that are compatible with both of the two seed nodes. The
relative probability of selecting a candidate to be added to the
network is proportional to the number of its compatible
children plus one. One candidate is stochastically selected to be
added to the network, and the network is registered as a result
if it is determined to be absent of heavy unsats. This process is
repeated until there are no more adjacent nodes in the
HbondGraph that are compatible with every node in the
network.
The process described above defines a single MC HBNet

trajectory and will be repeated a user-defined number of times
(the default trajectory setting is 104). MC HBNet trajectories
are made faster by keeping track of the heavy unsatisfied polar
atoms as the network grows. If the network has any heavy
unsats at any point within a trajectory, the MC HBNet
sampling protocol will shift its focus to only consider candidate
nodes whose addition would result in the satisfaction of a heavy
unsat. The trajectory is brought to a premature end if the
HbondGraph contains no nodes that can achieve this task. This
implementation is represented by the λ term in eq 1 and
prevents MC HBNet from wasting time by exploring sample
space where finding a fully satisfied network is impossible.

λ β= +f c( ) ( 1)i (1)

Equation 1 describes f(ci) as the relative probability of adding
candidate ci (all candidate nodes are shown in blue in Figure 2)
to the network, and β is the number of compatible children ci
has. λ is 0 if all of the side chain polar atoms in ci’s root node
(shown in black in Figure 2) are satisfied and there are nodes
with unsatisfied side chain polar atoms in the current network;
otherwise, λ is 1.
Additionally, MC HBNet will not register a network as a

result if it contains any heavy-atom donors or acceptors that are
buried and unsatisfied. This check reduces MC HBNet’s
runtime by approximately 40% by creating fewer false positives
that need to be filtered out by a more computationally
expensive satisfaction check that occurs at the end of the
protocol, before networks are output. After all of the
trajectories have completed, networks are ranked and prepared
for output.

Ranking Results and Output. Networks are filtered and
sorted, eliminating those that are redundant in primary amino
acid sequence past a user defined threshold. Networks that
contain at least one heavy (non-hydrogen) buried polar atom

Figure 1. HBondGraph. (A) MC HBNet identifies every residue
position that is being designed or repacked. (B) Each position is
expanded into an array of graph nodes, one node for every side chain
conformation being considered at that position. (C) Graph edges are
created between every pair of nodes that form a hydrogen bond. (D)
An example of what a hydrogen bond network looks like in this data
structure and (E) a possible hydrogen bond network that this example
might represent (cyan side chains are part of a different chain than
green side chains).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2753



 16 

to the backbone or nonpackable side chains, which are held fixed; hydrogen bonds from side chain 

atoms to backbone atoms are scored and taken into account when evaluating satisfaction). 

Combining the individual lists of atoms from each node in the network produces an ad hoc 

checklist of atoms that need to be satisfied for a network to be accepted. For each network, MC 

HBNet tracks satisfaction by storing a list of all heavy (non-hydrogen) polar atoms that are buried 

and not satisfied (“heavy unsat”); if a heavy unsat becomes satisfied during network growth, that 

atom is removed from the list. Satisfaction can be rapidly evaluated because each edge in the 

HbondGraph stores the atom indices for the acceptor atom, donor atom, and hydrogen atom for 

every hydrogen bond represented by the edge (there may be multiple hydrogen bonds represented 

by one edge because a single pair of rotamers can only be connected by one edge but may form 

multiple hydrogen bonds).  

 

2.2.3 Monte Carlo HbondGraph Traversal 

The MC HBNet sampling protocol is composed of a user-defined number of trajectories. 

Each trajectory begins by randomly selecting a “seed” edge from the HbondGraph, and networks 

are grown stochastically by adding adjacent edges that lead to compatible nodes. Seed edges can 

be selected based on predefined starting criteria. An example starting criterion is 

HBNetStapleInterface,27 which searches for networks that span across a protein−protein interface; 

when used with MC HBNet, the HBNetStapleInterface protocol requires that all seed edges must 

contain at least one node position that is at the interface. Efficiency is improved by restricting 

sampling to only start at seed edges relevant to the task at hand. Starting criteria can be specified 

by the user to customize the search for different design scenarios.  



 17 

After the seed is selected, MC HBNet identifies all of the “candidate” nodes in the 

HbondGraph that are adjacent to either of the seed’s nodes but do not conflict either through steric 

clashing or sharing a residue position (Figure 2.1). For each of these candidates, MC HBNet counts 

the number of HbondGraph nodes (“children”) adjacent to the candidate that are compatible with 

both of the two seed nodes. The relative probability of selecting a candidate to be added to the 

network is proportional to the number of its compatible children plus one. One candidate is 

stochastically selected to be added to the network, and the network is registered as a result if it is 

determined to be absent of heavy unsats. This process is repeated until there are no more adjacent 

nodes in the HbondGraph that are compatible with every node in the network.  

The process described above defines a single MC HBNet trajectory and will be repeated a 

user-defined number of times (the default trajectory setting is 104). MC HBNet trajectories are 

made faster by keeping track of the heavy unsatisfied polar atoms as the network grows. If the 

network has any heavy unsats at any point within a trajectory, the MC HBNet sampling protocol 

will shift its focus to only consider candidate nodes whose addition would result in the satisfaction 

of a heavy unsat. The trajectory is brought to a premature end if the HbondGraph contains no nodes 

that can achieve this task. This implementation is represented by the λ term in eq 1 and prevents 

MC HBNet from wasting time by exploring sample space where finding a fully satisfied network 

is impossible.  

 

f(ci) = λ(β + 1)         (Eq 2.1)  

 

Equation 2.1 describes f(ci) as the relative probability of adding candidate ci (all candidate 

nodes are shown in blue in Figure 2.2) to the network, and β is the number of compatible children 



 18 

ci has. λ is 0 if all of the side chain polar atoms in ci’s root node (shown in black in Figure 2.2) are 

satisfied and there are nodes with unsatisfied side chain polar atoms in the current network; 

otherwise, λ is 1. 

 
Figure 2.2 Monte Carlo growth of a network. Residues that are already part of the network are 
shown in black. Candidate residues are shown in blue, and downstream nodes are shown in white. 
All nodes and edges exist in the HBondGraph. Blue and white nodes may occur at the same residue 
positions as other blue and white nodes, but none may occur at the same residue position as a 
black node. Edges to candidate nodes are labeled with their probability (p) of being added to the 
network in the next round of Monte Carlo growth.  
 

Additionally, MC HBNet will not register a network as a result if it contains any heavy-

atom donors or acceptors that are buried and unsatisfied. This check reduces MC HBNet’s runtime 

by approximately 40% by creating fewer false positives that need to be filtered out by a more 

computationally expensive satisfaction check that occurs at the end of the protocol, before 

networks are output. After all of the trajectories have completed, networks are ranked and prepared 

for output.  

 

 

 

that is not either donating or accepting in a hydrogen bond are
also eliminated. Buried polar hydrogen atoms that do not
participate in hydrogen bonds are allowed but incur a penalty
during sorting. Hydroxyl groups are only required to either
donate or accept, but not both, to be considered satisfied
(consistent with what is observed in experimentally determined
structures30); however, there is an option for requiring that
hydroxyl groups donate in order to be considered satisfied.
Hydrogen bonds to the backbone are considered at this stage
and are taken into account when evaluating satisfaction; native
proteins often make use of hydrogen bonds from side chains to
backbone atoms to preorganize structure, and networks that
can extend to the backbone are captured by the protocols we
present here. Users can also eliminate networks based on a
custom criterion (e.g., minimum number of residues in the
network, or number of intermolecular hydrogen bonds). The
remaining hydrogen bond networks are sorted and ranked first
by the number of buried unsatisfied polar hydrogen atoms
(Num_Unsat_Hpol), then saturation, then HBNet Score.
Saturation. An early version of this metric was referred to as

“connectivity,” and it was shown that highly connected
(saturated) networks were in close agreement with exper-
imentally determined structures, whereas less connected
networks were more easily displaced by water molecules.26

We define saturation as the fraction of total hydrogen bonding
capacity (given the polar atoms that comprise the network) that
is met by the actual hydrogen bonds of the network. Higher
values are better, with 1.0 implying that a network has reached
its full hydrogen bond capacity. For every side chain in the
network, each polar hydrogen atom on that side chain
contributes 1 point and each lone pair contributes 1 point.
Only one of the two lone pairs on a hydroxyl oxygen atom
contributes a point because it is common for a hydroxyl to be
an acceptor to only one hydrogen bond.30 Saturation is
calculated by dividing the sum of the points of all polar side
chain atoms in the network by the sum of the points of all polar
side chain atoms in the network residues (including atoms that
do not participate in network hydrogen bonds). Saturation

values can potentially be larger than 1.0 in the case of a
hydroxyl participating in three hydrogen bonds or the case of
bifurcated hydrogen bonds.

HBNet Score. HBNet Score is used to further discriminate
between networks that are identical in Num_Unsat_Hpol and
saturation by evaluating their energies using the full Rosetta
energy function24 within the same context: the network
residues are placed onto a common “background” structure,
which is the input structure with all packable residues mutated
to alanine (except for any existing Gly, Pro, or disulfides, which
are kept). HBNet Score is the difference in energy between the
background structure with and without the network residues
placed, normalized by the number of residues in the network.

Output. Once filtered and sorted, the networks are
iteratively placed onto the input structure and output in
order of ranking. Constraints are turned on to ensure that the
hydrogen bonds of the network are maintained during
downstream design; for design, the assumption is that there
will be downstream design steps to optimize the space around
the hydrogen bond network residues. Users can also opt to
combine compatible networks together on the same output
structure. Once the output structures are returned, any other
part of Rosetta can be called to perform further design and
analysis, or the structures can be output to disk.

Burial Calculations. Determining which polar atoms in the
networks are buried versus solvent-exposed is challenging
because the space around the hydrogen bond networks is often
not yet designed, leaving large voids. The original implementa-
tion of HBNet used solvent-accessible surface area (SASA)31,32

calculations with an increased probe radius.26 In its current
form, burial is precomputed by classifying each residue position
as buried or not based on the number of neighboring residue
positions that fall within a cone around the vector between its
Cα and Cβ atoms;33 this approach is advantageous because the
precomputation is faster than the SASA calculations, and it is
consistent for each input backbone, yielding the same
classification independent of amino acid sequence and side
chain conformation.

Benchmarks and Analysis. Native Network Recovery. A
library of native protein crystal structures was generated by
providing the Pisces web server34,35 with the following
conditions: sequence percentage identity ≤ 60; resolution ≤
2.0 Å; R-factor ≤ 0.3; sequence length 40−10 000; non-X-ray
entries excluded; CA-only entries excluded; cull PDB by entry;
cull chains within entries set to “No.” This library was pruned
to only include structures that contain at least one protein−
protein interface. HBNet was used to generate a list of unique
native hydrogen bond networks within this pruned library by
considering only native rotamers in each structure. This list
went through a filter that removes networks that were
comprised of at least one side chain that had a heavy atom
with a B factor greater than 40 Å2. A total of 2776 networks met
these criteria and made the final list.
For every network in this list, we identified every hydrogen

bond that had an energy ≤ −0.5 REU using Rosetta’s ref2015
score function. For every extra-chi sampling level (Table 1), we
checked to see if it produced a combination of side chains that
rebuilt the native network in such a way in which every native
hydrogen bond with an energy ≤ −0.5 REU was simulta-
neously present with an energy ≤ −0.4 REU. If all of the
hydrogen bonds in the network could be simultaneously
sampled, the network was deemed to be recovered. This was

Figure 2. Monte Carlo growth of a network. Residues that are already
part of the network are shown in black. Candidate residues are shown
in blue, and downstream nodes are shown in white. All nodes and
edges exist in the HBondGraph. Blue and white nodes may occur at
the same residue positions as other blue and white nodes, but none
may occur at the same residue position as a black node. Edges to
candidate nodes are labeled with their probability (p) of being added
to the network in the next round of Monte Carlo growth.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2754



 19 

2.2.4 Ranking Results and Output 

Networks are filtered and sorted, eliminating those that are redundant in primary amino 

acid sequence past a user defined threshold. Networks that contain at least one heavy (non-

hydrogen) buried polar atom that is not either donating or accepting in a hydrogen bond are also 

eliminated. Buried polar hydrogen atoms that do not participate in hydrogen bonds are allowed but 

incur a penalty during sorting. Hydroxyl groups are only required to either donate or accept, but 

not both, to be considered satisfied (consistent with what is observed in experimentally determined 

structures31). Optionally, one can require that hydroxyl groups donate in order to be considered 

satisfied. Hydrogen bonds to the backbone are taken into account when evaluating satisfaction; 

native proteins often make use of hydrogen bonds from side chains to backbone atoms to 

preorganize structure, and networks that can extend to the backbone are captured by the protocols 

we present here. Users can also eliminate networks based on a custom criterion (e.g., minimum 

number of residues in the network, or number of intermolecular hydrogen bonds). The remaining 

hydrogen bond networks are sorted and ranked first by the number of buried unsatisfied polar 

hydrogen atoms (Num_Unsat_Hpol), then saturation, then HBNet Score.  

 

2.2.4.1 Saturation 

We have previously referred to an early version of this metric as “connectivity,” and it was 

shown that highly connected (saturated) networks were in close agreement with experimentally 

determined structures, whereas less connected networks were more easily displaced by water 

molecules.27 We define saturation as the fraction of total hydrogen bonding capacity (given the 

polar atoms that comprise the network) that is met by the actual hydrogen bonds of the network. 

Higher values are better, with 1.0 implying that a network has reached its full hydrogen bond 



 20 

capacity. For every side chain in the network, each polar hydrogen atom on that side chain 

contributes 1 point and each lone pair contributes 1 point. Only one of the two lone pairs on a 

hydroxyl oxygen atom contributes a point because it is common for a hydroxyl to be an acceptor 

to only one hydrogen bond.31 Saturation is calculated by dividing the sum of the points of all polar 

side chain atoms in the network by the sum of the points of all polar side chain atoms in the network 

residues (including atoms that do not participate in network hydrogen bonds). Saturation values 

can potentially be larger than 1.0 in the case of a hydroxyl participating in three hydrogen bonds 

or the case of bifurcated hydrogen bonds.  

 

2.2.4.2 HBNet Score 

HBNet Score is used to further discriminate between networks that are identical in 

Num_Unsat_Hpol and saturation by evaluating their energies using the full Rosetta energy 

function25 within the same context: the network residues are placed onto a common “background” 

structure, which is the input structure with all packable residues mutated to alanine (except for any 

existing Gly, Pro, or disulfides, which are kept). HBNet Score is the difference in energy between 

the background structure with and without the network residues placed, normalized by the number 

of residues in the network.  

 

2.2.4.3 Output 

Once filtered and sorted, the networks are iteratively placed onto the input structure and 

reported in order of ranking. During downstream design constraints ensure that the hydrogen bonds 

of the network are maintained; the assumption is that downstream steps will optimize the space 

around the hydrogen bond network residues. Users can opt to combine compatible networks on 



 21 

the same output structure. Once the output structures are returned, any other part of Rosetta can be 

called to perform further design and analysis, or the structures can be output to disk.  

 

2.2.4.4 Burial Calculations 

Determining which polar atoms in the networks are buried versus solvent-exposed is 

challenging because the space around the hydrogen bond networks is often not yet designed, 

leaving large voids. The original implementation of HBNet used solvent-accessible surface area 

(SASA)32,33 calculations with an increased probe radius.27 In its current form, burial is precomputed 

by classifying each residue position as buried or not based on the number of neighboring residue 

positions that fall within a cone around the vector between its Cα and Cβ atoms;34 this approach 

is advantageous because the precomputation is faster than the SASA calculations, and it is 

consistent for each input backbone, yielding the same classification independent of amino acid 

sequence and side chain conformation.  

 

2.2.5 Benchmarks and Analysis 

2.2.5.1 Native Network Recovery 

A library of native protein crystal structures was generated by providing the Pisces web 

server35,36 with the following conditions: sequence percentage identity ≤ 60; resolution ≤ 2.0 Å; R-

factor ≤ 0.3; sequence length 40−10,000; non-X-ray entries excluded; CA-only entries excluded; 

cull PDB by entry; cull chains within entries set to “No.” This library was pruned to include only 

structures that contain at least one protein−protein interface. HBNet was used to generate a list of 

unique native hydrogen bond networks within this pruned library by considering only native 

rotamers in each structure. This list was filtered to remove networks with at least one side chain 



 22 

that had a heavy atom with a B factor greater than 40 Å2. A total of 2776 networks met these 

criteria.  

For every network in this list, we identified every hydrogen bond that had an energy ≤ −0.5 

REU using Rosetta’s ref2015 score function. For every extra-chi sampling level (Table 2.1), we 

checked to see if it produced a combination of side chains that rebuilt the native network in such 

a way in which every native hydrogen bond with an energy ≤ −0.5 REU was simultaneously 

present with an energy ≤ −0.4 REU. If all of the hydrogen bonds in the network could be 

simultaneously sampled, the network was deemed to be recovered. This was repeated for all 2776 

networks and with the extra-chi sampling levels displayed in Table 2.1.  

 

2.2.5.2 Network Design Benchmarks. 

Four “motivating” design scenarios were chosen to compare the performances of HBNet 

and MC HBNet. These scenarios were chosen because they are similar to previous experiments 

we have run where HBNet did not perform adequately, hence motivating the development of the 

Monte Carlo protocol: (1) Small interface, one-sided design (PDB code 1YRK): All residue 

positions of the first chain were designed and all positions on the other chain were set to repack 

only (amino acid sequence fixed but rotamer conformations sampled), for a total of 40 packable 

positions. (2) Medium interface one-sided design (PDB code 1DPJ): All residue positions of the 

first chain were designed and all positions on the other chain were set to repack only, for a total of 

121 packable positions. (3) Large interface one-sided design (PDB code 1GK9): All residue 

positions of the first chain were designed and all positions on the other chain were set to repack 

only, for a total of 342 packable positions. (4) Small helical bundle monomer (PDB code 3U3B 

chain A): The 23 buried residue positions were designed and the remaining residue positions were 



 23 

set to repack only. In all cases, all polar amino acid types were considered at designable residue 

positions, and the input files and scripts needed to run these benchmarks are provided in the 

Supporting Information Methods. It should be noted that in actual design scenarios, it can be 

advantageous to be more restrictive regarding which residue positions are designable and which 

polar amino acid types are allowed at certain positions.  

Additionally, we selected four previously published HBNet designs in order to explore how 

MC HBNet behaves on design scenarios where HBNet has had proven success: PDB code 5J0K 

(symmetric homodimer), PDB code 5J10 (symmetric homodimer), PDB code 5J0H (symmetric 

homotrimer), and PDB code 5IZS (symmetric homotrimer). Both HBNet and MC HBNet were 

run on these design scenarios with sampling levels Ø, χ1, and χ1χ2 (scripts included in the 

Supporting Information). MC HBNet was run with trajectory counts of 103, 104, 105, and 106 in 

order for us to explore the amount of sampling that is required to find high-quality networks for 

the various cases.  

We measured the CPU time, peak memory usage, and the average HBNet statistics for the 

top 10 networks reported for each run. Benchmarks were measured on the Longleaf cluster at the 

University of North Carolina at Chapel Hill, using Intel Xeon E5-2680 v4 @ 2.40 GHz CPUs. Due 

to the ability for most runs to finish within a few hours and HBNet’s tendency to take weeks to 

run if given too large of a design scenario, we declared a 24-hour runtime limit. This limit was not 

applied to the symmetric reruns because they have previously been shown to run in a reasonable 

amount of time under these conditions. Additionally, this benchmark was run using sampling level 

Ø on 591 one-sided interface design cases including the three mentioned previously. The only 

metrics we tracked were the runtimes for HBNet and MC HBNet (using 104 trajectories).  

 



 24 

2.3 Results and Discussion 

2.3.1 Benefits of Extra Chi Sampling 

The previously developed HBNet protocol becomes dramatically slower (see below for 

case examples) when a larger rotamer library (i.e., more chi torsion angle sampling) is used during 

the design process. Because of the geometric sensitivity of hydrogen bonding, small changes to 

chi angles can result in substantial differences in the number of hydrogen bonds that can be made 

between rotamers, especially for longer side chains, for which lever-arm effects can lead to large 

changes in polar atom position. Thus, increasing chi sampling is generally expected to lead to more 

hydrogen bonds from which to sample. In order to quantitatively assess the need to be able to 

handle larger amounts of extra chi sampling, we measured the effect of extra chi sampling on 

hydrogen bond network sampling. We collected structures for 2776 native hydrogen bond 

networks at protein−protein interfaces from the PDB. For each network, we rebuilt the amino acid 

side chains using Rosetta’s pool of rotamers and measured the fraction that could be sampled for 

each extra chi sampling level defined in Table 2.1. If every hydrogen bond in the native network 

could be simultaneously sampled, then the network was deemed “recoverable” for that chi 

sampling level. We evaluated every combination of rotamers for the residue positions that create 

the network, so this search was not compromised by stochasticity. As expected, Figure 2.3 shows 

the network recovery rate increase as the extra chi sampling level increases. Sampling level χ1χ2 

can sample more than three times the fraction of native networks than can be sampled with no 

extra chi sampling (Ø). 



 25 

 
Figure 2.3 Native networks: impact of extra chi sampling. (A) Fraction of native networks that 
were sampled with different extra chi sampling levels (levels defined in Table 2.1). Chi sampling 
level increases from left to right. (B) An example native hydrogen bond network that is recovered 
at the χ1χ2 extra chi sampling level but not at χ1 or Ø. (C−E) The lowest-RMSD rotamers 
(magenta) for the native network using the (C) Ø sampling level, (D) χ1 sampling level, and (E) 
χ1χ2 sampling level.  
 

Similarly, small changes to the backbone can also propagate to substantial changes in side 

chain hydrogen bonding geometry and the possible networks that can be generated, and increased 

chi angle sampling can potentially compensate for these changes. Trajectories from Rosetta’s 

Backrub protocol,37 which incorporates small degrees of flexibility to generate conformational 

ensembles, illustrate this concept (Figure 2.S1). Running MC HBNet on this ensemble of 

backbones shows that backbone perturbations of as little as ∼0.1 RMSD can affect the networks 

that can be captured (Figure 2.S1, middle), and extra chi angle sampling can recover some of the 

networks that are missed due to these backbone perturbations (Figure 2.S1, bottom). The ability to 

identify potential networks, even when the backbone is not in the most favorable conformation, 

will aid the search for low energy design models when performing design protocols that 

incorporate backbone sampling along with sequence design.  

 

2.3.2 New Design Cases Enabled by MC HBNet 

Many important design problems, for instance designing proteins to bind therapeutic 

targets, involve large asymmetric interfaces. Our initial attempts to design such cases using the 

repeated for all 2776 networks and with the extra-chi sampling
levels displayed in Table 1.
Network Design Benchmarks. Four “motivating” design

scenarios were chosen to compare the performances of HBNet
and MC HBNet. These scenarios were chosen because they are
similar to previous experiments we have run where HBNet did
not perform adequately, hence motivating the development of
the Monte Carlo protocol: (1) Small interface, one-sided
design (PDB code 1YRK): All residue positions of the first
chain were designed and all positions on the other chain were
set to repack only (amino acid sequence fixed but rotamer
conformations sampled), for a total of 40 packable positions.
(2) Medium interface one-sided design (PDB code 1DPJ):
All residue positions of the first chain were designed and all
positions on the other chain were set to repack only, for a total
of 121 packable positions. (3) Large interface one-sided
design (PDB code 1GK9): All residue positions of the first
chain were designed and all positions on the other chain were
set to repack only, for a total of 342 packable positions. (4)
Small helical bundle monomer (PDB code 3U3B chain A):
The 23 buried residue positions were designed and the
remaining residue positions were set to repack only. In all cases,
all polar amino acid types were considered at designable residue
positions, and the input files and scripts needed to run these
benchmarks are provided in the Supporting Information
Methods. It should be noted that in actual design scenarios,
it can be advantageous to be more restrictive regarding which
residue positions are designable and which polar amino acid
types are allowed at certain positions.
Additionally, we selected four previously published HBNet

designs in order to explore how MC HBNet behaves on design
scenarios where HBNet has had proven success: PDB code
5J0K (symmetric homodimer), PDB code 5J10 (symmetric
homodimer), PDB code 5J0H (symmetric homotrimer), and
PDB code 5IZS (symmetric homotrimer). Both HBNet and
MC HBNet were run on these design scenarios with sampling
levels Ø, χ1, and χ1χ2 (scripts included in the Supporting
Information). MC HBNet was run with trajectory counts of
103, 104, 105, and 106 in order for us to explore the amount of
sampling that is required to find high-quality networks for the
various cases.
We measured the CPU time, peak memory usage, and the

average HBNet statistics for the top 10 networks reported for
each run. Benchmarks were measured on the Longleaf cluster at

the University of North Carolina at Chapel Hill, using Intel
Xeon E5-2680 v4 @ 2.40 GHz CPUs. Due to the ability for
most runs to finish within a few hours and HBNet’s tendency
to take weeks to run if given too large of a design scenario, we
declared a 24-h runtime limit. This limit was not applied to the
symmetric reruns because they have previously been shown to
run in a reasonable amount of time under these conditions.
Additionally, this benchmark was run using sampling level Ø on
591 one-sided interface design cases including the three
mentioned previously. The only metrics we tracked were the
runtimes for HBNet and MC HBNet (using 104 trajectories).

■ RESULTS AND DISCUSSION
Benefits of Extra Chi Sampling. One of the limitations of

the previously developed HBNet protocol is that it becomes
dramatically slower (see below for case examples) when a larger
rotamer library (i.e., more chi torsion angle sampling) is used
during the design process. Because of the geometric sensitivity
of hydrogen bonding, small changes to chi angles can result in
substantial differences in the number of hydrogen bonds that
can be made between rotamers, especially for longer side
chains, for which lever-arm effects can lead to large changes in
polar atom position. Thus, increasing chi sampling is generally
expected to lead to more hydrogen bonds from which to
sample. In order to quantitatively assess the need to be able to
handle larger amounts of extra chi sampling, we measured the
effect of extra chi sampling on hydrogen bond network
sampling. We collected structures for 2776 native hydrogen
bond networks at protein−protein interfaces from the PDB.
For each network, we rebuilt the amino acid side chains using
Rosetta’s pool of rotamers and measured the fraction that could
be sampled for each extra chi sampling level defined in Table 1.
If every hydrogen bond in the native network could be
simultaneously sampled, then the network was deemed
“recoverable” for that chi sampling level. We evaluated every
combination of rotamers for the residue positions that create
the network, so this search was not compromised by
stochasticity. As expected, Figure 3 shows the network recovery
rate increase as the extra chi sampling level increases. Sampling
level χ1χ2 can sample more than three times the fraction of
native networks than can be sampled with no extra chi sampling
(Ø).
Similarly, small changes to the backbone can also propagate

to substantial changes in side chain hydrogen bonding

Figure 3. Native networks: impact of extra chi sampling. (A) Fraction of native networks that were sampled with different extra chi sampling levels
(levels defined in Table 1). Chi sampling level increases from left to right. (B) An example native hydrogen bond network that is recovered at the
χ1χ2 extra chi sampling level but not at χ1 or Ø. (C−E) The lowest-RMSD rotamers (magenta) for the native network using the (C) Ø sampling
level, (D) χ1 sampling level, and (E) χ1χ2 sampling level.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2755



 26 

original implementation of HBNet resulted in runtimes that were prohibitively slow. To 

demonstrate that MC HBNet can address these design cases, we assembled a collection of 

protein−protein interfaces of various sizes. We first searched for networks using a chi sampling 

level Ø on 591 protein−protein interfaces and only measured the CPU time consumed by each 

process (Figure 2.4). The space above the diagonal line represents results where HBNet takes 

longer to run than MC HBNet. Not only are most points above the line, but the distance from the 

line increases as the problem size grows, demonstrating that MC HBNet is faster than HBNet and 

better equipped to handle large design cases. 

 
Figure 2.4 Aggregate data from one-sided interface design benchmarks. The diagonal line 
represents an equal runtime between the two protocols.  
 

We next designed networks at three asymmetric protein−protein interfaces of varying sizes 

as well as the core of a helical bundle monomer (Figure 2.5, Table 2.S2). MC HBNet showed a 

dramatic speed improvement and a better ability to scale to larger levels of extra chi sampling in 

all four cases. Many HBNet runs were not able to finish within 24 hours (denoted by asterisk in 

Figure 2.5), while every MC HBNet run took less than 1 CPU hour. Tables 2.S1−2.S8 also show 

geometry and the possible networks that can be generated, and
increased chi angle sampling can potentially compensate for
these changes. Trajectories from Rosetta’s Backrub protocol,36

which incorporates small degrees of flexibility to generate
conformational ensembles, illustrates this concept (Figure S1).
Running MC HBNet on this ensemble of backbones shows that

Figure 4. Aggregate data from one-sided interface design benchmarks. The diagonal line represents an equal runtime between the two protocols.

Figure 5. New design problems. Runtime, number of networks found, and saturation for the three interface design benchmarks of various sizes and
the small helical monomer. An asterisk in the first column specifies that the protocol did not finish within 24 h. Results of traditional HBNet are
shown in gray, and results of the new Monte Carlo protocol are shown in blue. Each case includes a picture of a hand-chosen representative network
designed by MC HBNet with χ1χ2.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2756



 27 

that MC HBNet is slightly more memory efficient than HBNet for a given extra chi sampling level. 

All of the top networks reported had 0 unsatisfied polar atoms (which is the first metric used to 

sort results), meaning that saturation was the primary determinant in the ranking of the networks 

and assessing network quality. Figure 2.5 plots the average saturation for the 10 best results 

reported by Rosetta in the rightmost column. MC HBNet displays the ability to find more networks 

as a function of time than HBNet (Figure 2.5, middle column) and higher quality networks as a 

function of time. These improvements were consistent for both the asymmetric interfaces, as well 

as the monomeric design case.  

 
Figure 2.5 New design problems. Runtime, number of networks found, and saturation for the three 
interface design benchmarks of various sizes and the small helical monomer. An asterisk in the 
first column specifies that the protocol did not finish within 24 h. Results of traditional HBNet are 
shown in gray, and results of the new Monte Carlo protocol are shown in blue. Each case includes 
a picture of a hand-chosen representative network designed by MC HBNet with χ1χ2.  

geometry and the possible networks that can be generated, and
increased chi angle sampling can potentially compensate for
these changes. Trajectories from Rosetta’s Backrub protocol,36

which incorporates small degrees of flexibility to generate
conformational ensembles, illustrates this concept (Figure S1).
Running MC HBNet on this ensemble of backbones shows that

Figure 4. Aggregate data from one-sided interface design benchmarks. The diagonal line represents an equal runtime between the two protocols.

Figure 5. New design problems. Runtime, number of networks found, and saturation for the three interface design benchmarks of various sizes and
the small helical monomer. An asterisk in the first column specifies that the protocol did not finish within 24 h. Results of traditional HBNet are
shown in gray, and results of the new Monte Carlo protocol are shown in blue. Each case includes a picture of a hand-chosen representative network
designed by MC HBNet with χ1χ2.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2756



 28 

HBNet failed to finish exploring the sample space of the small helical monomer design 

case within our 24-hour time limit, even at the smallest extra chi sampling level, but MC HBNet 

was able to find thousands of hydrogen bond networks within minutes. Designing hydrogen bond 

networks into large monomeric structures is challenging, particularly if it is not clear which region 

of the structure to focus on. The sample space of all possible hydrogen bond networks grows 

dramatically when the requirement of crossing an interface is removed. Our experience in using 

HBNet for noninterface designs has often resulted in unreasonably long runtimes. This issue can 

be partially alleviated by manipulating user-defined options, but it is not always obvious to the 

user how to implement this effectively. This weakness is not present in MC HBNet’s algorithm 

because the runtime of a Monte Carlo trajectory is not dependent on the size of the sample space.  

Surprisingly, MC HBNet can find higher quality networks (defined by saturation) than 

HBNet using the same extra chi sampling level. This result is not expected to be true when 

comparing any stochastic protocol with its exhaustive counterpart. The difference is that MC 

HBNet outputs networks that HBNet cannot; HBNet stores only networks that have grown to 

completion (ignoring the special case for hydroxyls, see Supporting Information). Network quality 

can be decreased when residues that contain unsatisfiable polar atoms are added to an already 

satisfied network. The moniker “satisfied subnetworks” is given to these networks that meet all 

design requirements and still have the ability to grow. MC HBNet can register satisfied 

subnetworks as results and continue to grow from them, while HBNet does not by default. In short, 

HBNet is a complete search of an incomplete sample space while MC HBNet is an incomplete 

search of a more complete sample space, and the latter appears to be a more effective strategy.  

 



 29 

 
Figure 2.6. Symmetric interfaces. Runtime, number of networks found, and memory usage for four 
HBNet designs previously reported.27 Each case is labeled with its PDB code and includes a 
picture of a hand-chosen representative network designed by MC HBNet with χ1χ2. Results of the 
original HBNet implementation are shown in gray, and results of the new Monte Carlo protocol 
are shown in blue.  
 

2.3.3 Symmetric Homo-Oligomer Benchmarks 

We have previously reported success using HBNet to design symmetric homo-oligomers.27 

A handful of these designs were repeated using both HBNet and MC HBNet (Figure 2.6). Unlike 

with the Monte-Carlo-motivating benchmarks, we defined stricter filters to the designed networks 

in order to match the original protocol used to create these designs (details and scripts provided in 

the Supporting Information). We compared the two protocols by the number of networks that meet 

these strict design criteria. MC HBNet recapitulates the previously validated networks27 and is able 

backbone perturbations of as little as ∼0.1 RMSD can affect the
networks that can be captured (Figure S1, middle), and extra
chi angle sampling can recover some of the networks that are
missed due to these backbone perturbations (Figure S1,
bottom). The ability to identify potential networks, even
when the backbone is not in the most favorable conformation,
will aid the search for low energy design models when
performing design protocols that incorporate backbone
sampling along with sequence design.
New Design Cases Enabled by MC HBNet. Many

important design problems, for instance designing proteins to
bind therapeutic targets, involve large asymmetric interfaces.
Our initial attempts to design such cases using the original
implementation of HBNet resulted in runtimes that were
prohibitively slow. To demonstrate that MC HBNet can
address these design cases, we assembled a collection of
protein−protein interfaces of various sizes. We first searched
for networks using a chi sampling level Ø on 591 protein−
protein interfaces and only measured the CPU time consumed
by each process (Figure 4). The space above the diagonal line
represents results where HBNet takes longer to run than MC
HBNet. Not only are most points above the line, but the
distance from the line increases as the problem size grows,
demonstrating that MC HBNet is faster than HBNet and better
equipped to handle large design cases.

We next designed networks at three asymmetric protein−
protein interfaces of varying sizes as well as the core of a helical
bundle monomer (Figure 5, Table S2). MC HBNet showed a
dramatic speed improvement and a better ability to scale to
larger levels of extra chi sampling in all four cases. Many HBNet
runs were not able to finish within 24 h (denoted by asterisk in
Figure 5), while every MC HBNet run took less than 1 CPU
hour. Tables S1−S8 also show that MC HBNet is slightly more
memory efficient than HBNet for a given extra chi sampling
level. All of the top networks reported had 0 unsatisfied polar
atoms (which is the first metric used to sort results), meaning
that saturation was the primary determinant in the ranking of
the networks and assessing network quality. Figure 5 plots the
average saturation for the 10 best results reported by Rosetta in
the rightmost column. MC HBNet displays the ability to find
more networks as a function of time than HBNet (Figure 5,
middle column) and higher quality networks as a function of
time. These improvements were consistent for both the
asymmetric interfaces, as well as the monomeric design case.
HBNet failed to finish exploring the sample space of the

small helical monomer design case within our 24-h time limit,
even at the smallest extra chi sampling level, but MC HBNet
was able to find thousands of hydrogen bond networks within
minutes. Designing hydrogen bond networks into large
monomeric structures is challenging, particularly if it is not

Figure 6. Symmetric interfaces. Runtime, number of networks found, and memory usage for four HBNet designs previously reported.26 Each case is
labeled with its PDB code and includes a picture of a hand-chosen representative network designed by MC HBNet with χ1χ2. Results of the original
HBNet implementation are shown in gray, and results of the new Monte Carlo protocol are shown in blue.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00033
J. Chem. Theory Comput. 2018, 14, 2751−2760

2757



 30 

to find more networks as a function of time, and often as a function of chi sampling level, than 

HBNet.  

MC HBNet still outperforms HBNet for the symmetric homo-oligomers when comparing 

CPU time for a given chi sampling level; however, the difference is milder than with the 

asymmetric interfaces. This result is likely due to the small problem size of these design cases. Not 

only are the proteins relatively small, but the presence of symmetry reduces the design space even 

further. MC HBNet consistently uses less memory than HBNet, in part due to the ability to use the 

HBondGraph instead of the traditional Rosetta data structures. The full table of results can be 

found in Tables 2.S5−2.S8; MC HBNet benefits noticeably by increasing the number of Monte 

Carlo trajectories from the default of 104 to 105 for these symmetric cases.  

 

2.4 Conclusions 

MC HBNet is able to sample hydrogen bond networks faster and more effectively than 

HBNet. Additionally, MC HBNet can better handle large amounts of candidate rotamers per 

residue position, which increases the number of hydrogen bond networks that can be identified for 

a given protein backbone or complex. We have implemented MC HBNet within the Rosetta 

modeling package, but the sampling strategy, data structures, and network selection criteria 

described here are general and could be straight forwardly implemented within other 

computational frameworks.  

One of our primary motivations for developing MC HBNet was to create a robust protocol 

that could be used as part of a larger pipeline aimed at de novo interface design. When designing 

new protein−protein interactions, it is generally not clear a priori what will be the most favorable 

way to dock the proteins against each other. For this reason, interface design protocols generally 



 31 

iterate between sampling alternative docked positions and searching for interface sequences that 

will stabilize the complex. It is important that the sequence search be rapid and reliably produce 

low energy solutions so that many alternative docked positions can be sampled. MC HBNet is well 

suited for this task because it can generally finish in the less than a minute for most interface sizes, 

and it produces multiple solutions that can be independently carried forward for design calculations 

to optimize the side chains of the neighboring residues; the computational savings afforded by MC 

HBNet can be reallocated to employ more computationally expensive protocols (e.g., flexible 

backbone methods) during downstream design to optimize the remaining interface positions that 

surround the network. In addition to interface design, this type of protocol should prove useful for 

designing ligand binding sites and catalytic sites that require hydrogen bond networks to stabilize 

the ligand or transition state.  

 

2.5 Supplemental Information 

2.5.1 Supplementary Methods 

MC HBNet and the methods described here are available as part of the Rosetta software package, 

available from https://www.rosettacommons.org/. Additional documentation for the new methods 

and software presented here can be found at:  

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Movers/mo

vers_pages/HBNetMover  

 

2.5.1.1 Original HBNet Implementation 

The original implementation of HBNet27 consisted of three steps: 1) An exhaustive search 

to identify and enumerate networks of hydrogen bonds within a given design space (the pool of 



 32 

sidechain conformations (rotamers) being considered at each designable residue position of an 

input backbone structure); 2) ranking and sorting of the networks; and 3) iteratively placing each 

network (or combinations thereof) onto the input structure as starting points for downstream design 

(a complete working design depends not only on the networks, but on numerous features, including 

hydrophobic packing around the networks27). A limitation of this protocol is that the entire design 

space must be searched before solutions are returned, resulting in prohibitively long runtimes for 

many design cases. In these cases, it would be more desirable to enumerate several good solutions 

in a feasible time frame even if the best solutions are not found.  

 

Most Rosetta protocols use a discrete set of sidechain conformations (rotamers) to model 

the amino acids at each residue position. The number of rotamers being considered per residue 

position is a key determinant of Rosetta’s ability to sample a given hydrogen bond network. When 

more rotamers are included, a larger number of favorable networks can be identified. However, 

including more rotamers means increasing the size of the sample space exponentially, and the 

runtime of the exhaustive search algorithm scales worse than exponential with respect to the size 

of the sample space. Furthermore, we show that the networks found in native protein interfaces 

are often comprised of non-ideal rotamers, suggesting that the inclusion of extra rotamers is 

beneficial for sampling native-like networks. The steep tradeoff between runtime and the number 

of rotamers in this implementation means that users must compromise, and very large design 

systems are not tractable. This behavior also makes it difficult to use HBNet as an intermediate 

step in a large multi-protocol design pipeline.  

 



 33 

The original implementation of HBNet enumerated hydrogen bond networks via recursive 

traversal of Rosetta’s Interaction Graph data structure. Each node of the Interaction Graph 

represents a packable residue position and an edge is formed between every pair of nodes that can 

potentially interact in three-dimensional space as defined by the Rosetta Energy Function. Each 

edge contains a two-dimensional matrix of interaction energies between all pairs of sidechain 

rotameric states (rotamers) at those two positions. In HBNet, these matrices are populated with the 

sum of the sidechain-sidechain hydrogen bond energies and a steric repulsion term (Van der Waals 

forces). The hydrogen bonding term cannot be greater than zero and the steric repulsion term 

cannot be less than zero, meaning that a negative value can be interpreted as a hydrogen bond and 

a positive value can be interpreted as a steric clash.  

 

HBNet performs a recursive depth-first traversal of this graph to enumerate linear hydrogen 

bond connectivities. By default, the traversal starts at all designable residue positions, but for many 

cases this is inefficient and it is clear which positions the network search should focus on. Users 

can explicitly define the starting positions if desired, or in the case of protein interface design 

(HBNetStapleInterface), the default behavior is for the traversal to start at all interface positions. 

The recursive traversal continues until one of the following conditions is reached, at which point 

the current network state is stored as a result:  

1. Return to a starting position. Because the traversal is initiated at all starting positions, 

continuing after reaching another start position results in redundancy; thus, the traversal 

stops and these initial networks are stored. Starting networks that are compatible (do not 

clash and share at least one rotamer in common) are combined at a later step.  



 34 

2. No more hydrogen bonds are found. If a linear network cannot be extended any further, 

the current state is stored and the traversal stops.  

3.  Hydroxyl is reached. Since initial publication, a third condition was added that stores 

network states every time a hydroxyl sidechain is reached. Amino acids with hydroxyl 

chemical groups (Ser, Thr, Tyr) are excellent at “capping” networks, meaning that it 

terminates the network in a satisfied state. The reason being that hydroxyl chemical groups 

can function as both hydrogen bond donors and acceptors, but are only required to do one 

or the other. Without this condition, many networks continue past hydroxyl sidechains and 

terminate by condition #2 in an unsatisfied state, hence missing many satisfied solutions.  

 

In this manuscript, we show that by ensuring the inclusion of all satisfied subsets (not only 

ones that terminate in hydroxyls), the Monte Carlo HBNet implementation finds an increased 

number of satisfied solutions. The original implementation of HBNet has an option to register all 

subnetworks (store_subnetworks=true), but this option slows runtime even further to the point that 

is not feasible in most design cases, and thus is false by default.  

 

After the initial networks are identified, a merging step is performed that identifies all networks 

that share one or more common rotamers and, after checking for clashes or conflicting residues, 

combinatorically merges them together into complete networks. This step allows HBNet to create 

branched networks from the library of linear networks, allowing them to finish growing to their 

full potential. The reason for this approach is due to limitations imposed by using the Rosetta 

Interaction Graph. Traditional graph traversal methods are complicated by having to traverse not 

only the nodes of the graph, but the matrices pointed to by each edge (multiple rotamers per each 



 35 

node, and multiple pairs of rotamers for each edge); and node compatibility cannot be inferred 

from the edges alone, but rather depends on properties of the three-dimensional coordinates of the 

sidechain atoms. Thus, the order in which rotamers are added to a network matters during the 

recursive traversal, restricting downstream possibilities, especially for amino acid types that can 

participate in more than two hydrogen bonds. Combinatorial sampling of different possibilities 

and orderings during traversal is complicated due to the way information is stored in the Interaction 

Graph. The new Monte Carlo-based sampling approach we describe overcomes these 

complications by using the new HBondGraph instead, and by growing networks stochastically to 

completion, one at a time, rather than growing networks in parallel during Interaction Graph 

traversal. 

 

2.5.1.2 MC HBNet runs on Backrub trajectories  

MC HBNet runs on Backrub trajectories to demonstrate sensitivity to small backbone 

perturbations and the ability of the extra Chi sampling afforded by MC HBNet so help mitigate 

these effects: Small backbone perturbations were generated using Rosetta’s Backrub protocol37, 

run with the following command on the input pdb 2L6HC3_13, which is the design model that 

corresponds to PDB ID 5J0H27:  

/path/to/Rosetta/main/source/bin/backrub.linuxgccrelease –movemap movemap –sm_prob 1 
– backrub:trajectory –backrub:trajectory_stride 10 –max_atoms 100000 –s 
2L6HC3_13_design.pdb  
 

 

 

 

 



 36 

Contents of movemap file: 

RESIDUE * BB JUMP 1 YES  

 

MC HBNet was run on the output structures generated from these Backrub trajectories to search 

for new designed networks using the following Rosetta XML mover definition (networks were 

restricted to criteria consistent with the experimentally validated design):  

No extra Chi sampling (Ø):  

<HBNetStapleInterface core_selector="core" design_residues="NST" hb_threshold="-0.75" 
max_unsat_Hpol="6" min_core_res="4" min_helices_contacted_by_network="6" 
min_network_size="6" minimize="false" monte_carlo_branch="true" 
monte_carlo_seed_must_be_fully_buried="true" name="hbnet_interf" scorefxn="beta" 
show_task="true" total_num_mc_runs="100000" verbose="true" 
write_network_pdbs="true"/>  
 
Extra Chi sampling level "1"2:  

<HBNetStapleInterface core_selector="core" design_residues="NST" hb_threshold="-0.75" 
max_unsat_Hpol="6" min_core_res="4" min_helices_contacted_by_network="6" 
min_network_size="6" minimize="false" monte_carlo_branch="true" 
monte_carlo_seed_must_be_fully_buried="true" name="hbnet_interf" scorefxn="beta" 
show_task="true" task_operations="ex1_ex2" total_num_mc_runs="100000" verbose="true" 
write_network_pdbs="true"/>  
 
Where “ex1_ex2” Task operation is defined as: 

<ExtraRotamersGeneric ex1="1" ex2="1" name="ex1_ex2"/>  

 

  



 37 

2.5.1.3 Rosetta Script for the three interface “Motivating” cases 

<ROSETTASCRIPTS> 
 
  <SCOREFXNS> 
    <ScoreFunction name="standardfxn" weights="ref2015"/> 
  </SCOREFXNS> 
 
  <RESIDUE_SELECTORS> 
    <Chain name="chain1" chains="1"/> 
    <Chain name="chain2" chains="2"/> 
    <InterfaceByVector name="strict_interface" grp1_selector="chain1" 
grp2_selector="chain2"/> 
    <PrimarySequenceNeighborhood name="interface" selector="strict_interface"/> 
    <Not name="not_interface" selector="interface"/> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <InitializeFromCommandline name="ifc"/> 
 
    <OperateOnResidueSubset name="do_not_design_chain2" selector="chain2"> 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="only_pack_interface" selector="not_interface"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
  </TASKOPERATIONS> 
 
  <MOVERS> 
    <HBNetStapleInterface name="hbnet" scorefxn="standardfxn" minimize="false" 
task_operations="ifc,do_not_design_chain2,only_pack_interface" max_mc_nets="0" 
secondary_search="false" max_replicates="3" max_replicates_before_unsat_check="5" 
max_replicates_before_branch="5" monte_carlo_branch="true" write_cst_files="false" 
write_network_pdbs="false" total_num_mc_runs="%%runs%%" /> 
 
    To run traditional HBNet, set monte_carlo_branch to false. total_num_mc_runs is 
set using the "–parser:script_vars" command line option. 
  </MOVERS> 
 
  <FILTERS> 
    Calculator Filter is used here to create a filter that always fails. This prevents 
Rosetta wasting time by outputting many PDB files after running HBNet. 
 
    <CalculatorFilter name="always_fails" threshold="0" equation="k" > 
      <Var name="k" value="1" /> 
    </CalculatorFilter> 
  </FILTERS> 
 
  <PROTOCOLS> 
    <Add mover="hbnet" filter="always_fails"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 



 38 

2.5.1.4 Rosetta Script for the two symmetric homodimer cases  

<ROSETTASCRIPTS> 
 
  <TASKOPERATIONS> 
    <InitializeFromCommandline name="init"/> 
    <IncludeCurrent name="current"/> 
    <LimitAromaChi2 name="arochi" /> 
    <ExtraRotamersGeneric name="ex1_ex2" ex1="1" ex2="1"/> 
 
    <LayerDesign name="init_layers" layer="other" make_pymol_script="0"> 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_core" state="bound" mode="mc" core="1" 
probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="core" /> 
 <Helix append="NQSTH"/> 
      </TaskLayer> 
 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_surface" state="bound" mode="mc" 
surface="1" probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="surface" /> 
      </TaskLayer> 
 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_boundary" state="bound" mode="mc" 
boundary="1" probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="boundary" /> 
 <Helix exclude="EKRW"/> 
      </TaskLayer> 
    </LayerDesign> 
  </TASKOPERATIONS> 
 
  <MOVERS> 
    <DetectSymmetry name="detect_symm" /> 
 
    <HBNetStapleInterface name="hbnet_interf" hb_threshold="-0.75" 
upper_score_limit="3.5" write_network_pdbs="0" minimize="0" 
min_helices_contacted_by_network="4" min_network_size="4" max_unsat_Hpol="2" 
max_networks_per_pose="4" combos="2" onebody_hb_threshold="-0.3" 
task_operations="init,current,arochi,init_layers" monte_carlo_branch="true" 
max_mc_nets="0" total_num_mc_runs="%%runs%%" write_cst_files="false" /> 
 
    To run traditional HBNet, set monte_carlo_branch to false. total_num_mc_runs is 
set using the “–parser:script_vars” command line option. 
  </MOVERS> 
 
  <PROTOCOLS> 
    <Add mover_name="detect_symm"/> 
    <Add mover_name="hbnet_interf"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
 



 39 

2.5.1.5 Rosetta Script for the two symmetric homotrimer cases  

<ROSETTASCRIPTS> 
 
  <TASKOPERATIONS> 
    <InitializeFromCommandline name="init"/> 
    <IncludeCurrent name="current"/> 
    <LimitAromaChi2 name="arochi" /> 
    <ExtraRotamersGeneric name="ex1_ex2" ex1="1" ex2="1"/> 
 
    <LayerDesign name="init_layers" layer="other" make_pymol_script="0"> 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_core" state="bound" mode="mc" core="1" 
probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="core" /> 
 <Helix append="NQSTH"/> 
      </TaskLayer> 
 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_surface" state="bound" mode="mc" 
surface="1" probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="surface" /> 
      </TaskLayer> 
 
      <TaskLayer> 
 <SelectBySASA name="symmetric_inteface_boundary" state="bound" mode="mc" 
boundary="1" probe_radius="2.0" core_asa="35" surface_asa="45" verbose="1"/> 
 <all copy_layer="boundary" /> 
 <Helix exclude="EKRW"/> 
      </TaskLayer> 
    </LayerDesign> 
  </TASKOPERATIONS> 
 
  <MOVERS> 
    <DetectSymmetry name="detect_symm" /> 
 
    <HBNetStapleInterface name="hbnet_interf" hb_threshold="-0.75" 
upper_score_limit="3.5" write_network_pdbs="0" minimize="0" 
min_helices_contacted_by_network="6" min_network_size="6" max_unsat_Hpol="2" 
max_networks_per_pose="4" combos="2" onebody_hb_threshold="-0.3" 
task_operations="init,current,arochi,init_layers" monte_carlo_branch="true" 
max_mc_nets="0" total_num_mc_runs="%%runs%%" write_cst_files="false" /> 
 
    To run traditional HBNet, set monte_carlo_branch to false. total_num_mc_runs is 
set using the “–parser:script_vars” command line option. 
  </MOVERS> 
 
  <PROTOCOLS> 
    <Add mover_name="detect_symm"/> 
    <Add mover_name="hbnet_interf"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
  



 40 

2.5.1.6 Rosetta Script for the small helical monomer “Motivating” case  

<ROSETTASCRIPTS> 
 
  <TASKOPERATIONS> 
    <InitializeFromCommandline name="ifc"/> 
    <ReadResfile name="rrf" filename="resfile"/> 
    <IncludeCurrent name="ic"/> 
  </TASKOPERATIONS> 
 
  <MOVERS> 
    <HBNet name="hbnet" task_operations="ifc,rrf,ic" secondary_search="false" 
minimize="false" max_replicates="3" max_replicates_before_unsat_check="5" 
max_replicates_before_branch="5" monte_carlo_branch="true" max_mc_nets="0" 
total_num_mc_runs="%%runs%%" write_cst_files="false" write_network_pdbs="false" /> 
 
    To run traditional HBNet, set monte_carlo_branch to false. total_num_mc_runs is 
set using the “–parser:script_vars” command line option. 
  </MOVERS> 
 
  <PROTOCOLS> 
    <Add mover="hbnet"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
 
  



 41 

2.5.2 Supplementary Figures 

 
Figure 2.S1 Small backbone changes affect possible hydrogen bonds and network connectivities: 
Trimeric design 2L6HC3_13 was perturbed using the Backrub protocol in Rosetta; (top) Outputs 
from Backrub trajectory illustrating how very small backbone changes can propagate to affect 
hydrogen bonding; colored by chain, hydrogen bonds shown by yellow dashed lines. (middle) The 
small backbone perturbations yield substantially different output in MC HBNet design runs to 
create new networks, using either no extra Chi sampling (Ø), or extra Chi sampling (level ("1"2). 
(bottom) Example showing that extra chi sampling ("1"2) can recover some networks that are 
missed due to the small backbone perturbations and no extra Chi angle sampling. The 
nomenclature is [chain ID]_[aa type]_[position], using numbering that starts at 1 for each chain; 
for example, A_S_22 indicates chain A, serine, residue position 22. Together, these results suggest 
that extra Chi angle sampling, which is now feasible using the new MC HBNet algorithm, can 
compensate somewhat for small backbone changes that may be difficult to sample explicitly as 
separate backbone inputs.  
 

 

  

 7 

II.  Supplementary Figures 

 

Figure S1.  Small backbone changes affect possible hydrogen bonds and network connectivities:  Trimeric design 2L6HC3_13 

was perturbed using the Backrub protocol in Rosetta; (top) Outputs from Backrub trajectory illustrating how very small backbone 

Ensemble from 
backrub trajectory Original design Backbone 

RMSD = 0.06
Backbone 

RMSD = 0.11

Run MC HBNet
# networks that meet criteria: 

Ø / !1!2	 Ø / !1!2	 Ø / !1!2	
2  /   206 4  /   395 35  /   473

HBNet rank residues # res score
Total

h-bonds
% 

saturation
unsat
Hpol

Interface
h-bonds

Helics
contacted

original no extra chi (Ø) network not found
original ex1ex2 (!1!2 ) network not found
0053 (RMSD 0.06) no extra chi (Ø) Network not found
0053 (RMSD 0.06) ex1ex2 (!1!2 ) network_44 A_S_22,A_N_23,A_N_52,A_N_53,B_S_22,B_N_52,B_N_53,C_S_22,C_N_52,C_N_53 10 2.62351 11 0.617647 2 6 6
0101 (RMSD 0.11) no extra chi (Ø) network_9 A_S_22,A_N_23,A_N_52,A_N_53,B_S_22,B_N_52,B_N_53,C_S_22,C_N_52,C_N_53 10 1.73627 10 0.588235 2 6 6
0101 (RMSD 0.11) ex1ex2 (!1!2 ) network_51 A_S_22,A_N_23,A_N_52,A_N_53,B_S_22,B_N_52,B_N_53,C_S_22,C_N_52,C_N_53 10 2.51947 10 0.588235 2 6 6

Example network that can be recapitulated with increased Chi angle sampling:
A_S_22,A_N_23,A_N_52,A_N_53,B_S_22,B_N_52,B_N_53,C_S_22,C_N_52,C_N_53

0101 (RMSD 0.11) 
no extra chi (Ø)

network_9

0053 (RMSD 0.06) 
ex1ex2 (!1!2 )

network_44

N46
N45

S29

N53

N52
S22

N53

N52
S22



 42 

2.5.3 Supplementary Tables 

 
Table 2.S1 Data for “Small Interface” case, used to generate Figure 2.5 (MC HBNet data from 
Figure 2.5 is shown in bold). Mean values were calculated using the top 10 results reported by 
Rosetta. 
 
 

 
Table 2.S2. Data for “Medium Interface” case, used to generate Figure 2.5 (MC HBNet data from 
Figure 2.5 is shown in bold). Mean values were calculated using the top 10 results reported by 
Rosetta  
  

 9 

 

III.  Supplementary Tables 

HBNet	
	       

Chi	Sampling	Level	 		 CPU	Hours	
Memory	Usage	

(GB)	
Number	of	Networks	

Found	
Mean	

Num_Unsat_Hpol	
Mean	

Saturation	 Mean	Score	

�	
	

0.01	 0.38	 37	 0	 0.65	 -0.60	

!1	
	

0.05	 0.42	 208	 0	 0.79	 2.52	

!1!2	
	

0.57	 0.56	 539	 0	 0.79	 2.13	

	        Monte	Carlo	HBNet	
	       

Chi	Sampling	Level	
Monte	Carlo	
Trajectories	 CPU	Hours	

Memory	Usage	
(GB)	

Number	of	Networks	
Found	

Mean	
Num_Unsat_Hpol	

Mean	
Saturation	 Mean	Score	

�	 1000	 0.01	 0.37	 41	 0	 0.67	 0.19	

�	 10,000	 0.01	 0.37	 56	 0	 0.72	 -0.37	

�	 100,000	 0.01	 0.37	 55	 0	 0.71	 -0.33	

�	 1,000,000	 0.01	 0.37	 54	 0	 0.69	 -0.09	

!1	 1000	 0.01	 0.40	 110	 0	 0.73	 -0.07	

!1	 10,000	 0.01	 0.41	 223	 0	 0.81	 1.58	

!1	 100,000	 0.01	 0.41	 285	 0	 0.81	 1.60	

!1	 1,000,000	 0.01	 0.41	 302	 0	 0.82	 1.79	

!1!2	 1000	 0.02	 0.50	 205	 0	 0.73	 0.25	

!1!2	 10,000	 0.02	 0.50	 462	 0	 0.79	 1.56	

!1!2	 100,000	 0.02	 0.51	 792	 0	 0.82	 1.85	

!1!2	 1,000,000	 0.03	 0.56	 873	 0	 0.82	 1.49	
 

Table S1. Data for “Small Interface” case, used to generate figure 5 (MC HBNet data from figure 5 is shown in bold). Mean values 

were calculated using the top 10 results reported by Rosetta. 

 10 

 

 

HBNet	
	       

Chi	Sampling	Level	 		 CPU	Hours	
Memory	Usage	

(GB)	
Number	of	Networks	

Found	
Mean	

Num_Unsat_Hpol	
Mean	

Saturation	 Mean	Score	

�	
	

0.30	 0.46	 137	 0	 0.79	 -0.78	

!1	 Did	Not	Finish	
	      !1!2	 Did	Not	Finish	
	      

        Monte	Carlo	HBNet	
	       

Chi	Sampling	Level	
Monte	Carlo	
Trajectories	 CPU	Hours	

Memory	Usage	
(GB)	

Number	of	Networks	
Found	

Mean	
Num_Unsat_Hpol	

Mean	
Saturation	 Mean	Score	

�	 1000	 0.01	 0.45	 60	 0	 0.76	 -0.59	

�	 10,000	 0.02	 0.45	 124	 0	 0.88	 -0.80	

�	 100,000	 0.03	 0.45	 157	 0	 0.88	 -0.87	
�	 1,000,000	 0.03	 0.45	 171	 0	 0.88	 -0.84	

!1	 1000	 0.03	 0.56	 176	 0	 0.90	 -0.70	

!1	 10,000	 0.08	 0.58	 762	 0	 0.97	 -0.59	
!1	 100,000	 0.35	 0.65	 2335	 0	 0.98	 -0.52	
!1	 1,000,000	 0.95	 1.04	 6358	 0	 0.98	 -0.74	

!1!2	 1000	 0.07	 0.87	 351	 0	 0.82	 0.17	

!1!2	 10,000	 0.25	 0.92	 1778	 0	 0.97	 0.56	
!1!2	 100,000	 0.92	 1.15	 8088	 0	 1.00	 0.91	
!1!2	 1,000,000	 2.60	 2.28	 30,210	 0	 1.00	 2.60	

 

Table S2. Data for “Medium Interface” case, used to generate figure 5 (MC HBNet data from figure 5 is shown in bold). Mean values 

were calculated using the top 10 results reported by Rosetta 



 43 

 
Table 2.S3. Data for “Large Interface” case used to generate Figure 2.5 (MC HBNet data from 
Figure 2.5 is shown in bold). Mean values were calculated using the top 10 results reported by 
Rosetta 
 
 

 
Table 2.S4. Data for “Small Helical Monomer” case used to generate Figure 2.5 (MC HBNet 
data from Figure 2.5 is shown in bold). Mean values were calculated using the top 10 results 
reported by Rosetta 
  

 11 

 

HBNet	
	       

Chi	Sampling	Level	 		 CPU	Hours	
Memory	Usage	

(GB)	
Number	of	Networks	

Found	
Mean	

Num_Unsat_Hpol	
Mean	

Saturation	 Mean	Score	

�	
	

1.17	 0.64	 433	 0	 0.75	 0.11	

!1	 Did	Not	Finish	
	      !1!2	 Did	Not	Finish	
	      

        Monte	Carlo	HBNet	
	       

Chi	Sampling	Level	
Monte	Carlo	
Trajectories	 CPU	Hours	

Memory	Usage	
(GB)	

Number	of	Networks	
Found	

Mean	
Num_Unsat_Hpol	

Mean	
Saturation	 Mean	Score	

�	 1000	 0.03	 0.60	 181	 0	 0.67	 -0.88	

�	 10,000	 0.03	 0.61	 389	 0	 0.68	 -1.00	
�	 100,000	 0.05	 0.63	 542	 0	 0.69	 -0.61	

!1	 1000	 0.08	 0.84	 357	 0	 0.86	 -0.31	

!1	 10,000	 0.14	 0.92	 1616	 0	 0.91	 0.43	
!1	 100,000	 0.52	 1.22	 5796	 0	 0.96	 -0.20	

!1!2	 1000	 0.22	 1.51	 436	 0	 0.84	 0.38	

!1!2	 10,000	 0.34	 1.63	 2454	 0	 0.91	 -0.72	
!1!2	 100,000	 1.44	 2.29	 12,835	 0	 0.94	 -0.28	

 

Table S3. Data for “Large Interface” case used to generate figure 5 (MC HBNet data from figure 5 is shown in bold). Mean values 

were calculated using the top 10 results reported by Rosetta 

 

 12 

 

HBNet	
	       

Chi	Sampling	Level	 		 CPU	Hours	
Memory	Usage	

(GB)	
Number	of	Networks	

Found	
Mean	

Num_Unsat_Hpol	
Mean	

Saturation	 Mean	Score	

�	 Did	Not	Finish	
	      !1	 Did	Not	Finish	
	      !1!2	 Did	Not	Finish	
	      

        Monte	Carlo	HBNet	
	       

Chi	Sampling	Level	
Monte	Carlo	
Trajectories	 CPU	Hours	

Memory	Usage	
(GB)	

Number	of	Networks	
Found	

Mean	
Num_Unsat_Hpol	

Mean	
Saturation	 Mean	Score	

�	 1000	 0.02	 0.38	 386	 0	 0.73	 3.78	
�	 10,000	 0.06	 0.40	 2694	 0	 0.82	 1.06	
�	 100,000	 0.28	 0.50	 14232	 0	 0.82	 1.07	

�	 1,000,000	 1.59	 1.01	 54317	 0	 0.83	 0.73	

!1	 1000	 0.03	 0.46	 645	 0	 0.77	 2.17	
!1	 10,000	 0.12	 0.50	 5594	 0	 0.83	 0.89	
!1	 100,000	 0.90	 0.80	 42,649	 0	 0.84	 0.31	

!1	 1,000,000	 13.49	 3.01	 277,032	 0	 0.88	 1.52	

!1!2	 1000	 0.06	 0.79	 683	 0	 0.75	 1.50	

!1!2	 10,000	 0.16	 0.83	 6134	 0	 0.81	 2.25	
!1!2	 100,000	 1.44	 1.21	 55,179	 0	 0.86	 4.39	

!1!2	 1,000,000	 30.34	 4.58	 439,059	 0	 0.90	 2.00	
 

Table S4. Data for “Small Helical Monomer” case used to generate figure 5 (MC HBNet data from figure 5 is shown in bold). Mean 

values were calculated using the top 10 results reported by Rosetta 



 44 

 
Table 2.S5. Data for “Symmetric Homodimer 5J0K” case, used to generate Figure 2.6 (MC 
HBNet data from Figure 2.6 is shown in bold).  
 
 

 
Table 2.S6. Data for “Symmetric Homodimer 5J10” case, used to generate Figure 2.6 (MC HBNet 
data from Figure 2.6 is shown in bold).  
  

 13 

 

HBNet	
	    Chi	Sampling	Level	 		 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	
	

0.01	 0.53	 0	

!1	
	

0.03	 0.79	 6	

!1!2	
	

44.81	 1.45	 23	

	     Monte	Carlo	HBNet	
	    Chi	Sampling	Level	 Monte	Carlo	Trajectories	 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	 1000	 0.01	 0.39	 1	

�	 10,000	 0.01	 0.39	 1	

�	 100,000	 0.01	 0.40	 1	
�	 1,000,000	 0.02	 0.40	 1	

!1	 1000	 0.02	 0.43	 5	

!1	 10,000	 0.03	 0.44	 14	

!1	 100,000	 0.04	 0.54	 22	
!1	 1,000,000	 0.08	 0.98	 27	

!1!2	 1000	 0.04	 0.50	 8	

!1!2	 10,000	 0.06	 0.53	 20	

!1!2	 100,000	 0.15	 0.74	 71	
!1!2	 1,000,000	 0.50	 2.22	 139	

 

Table S5. Data for “Symmetric Homodimer 5J0K” case, used to generate figure 6 (MC HBNet data from figure 6 is shown in bold). 

 

 14 

 

HBNet	
	    

Chi	Sampling	Level	 		 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	
	

0.01	 0.52	 0	

!1	
	

0.03	 0.79	 9	

!1!2	
	

1.53	 1.12	 21	

	     Monte	Carlo	HBNet	
	    

Chi	Sampling	Level	 Monte	Carlo	Trajectories	 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	 1000	 0.01	 0.39	 1	

�	 10,000	 0.01	 0.40	 1	

�	 100,000	 0.02	 0.41	 1	
�	 1,000,000	 0.02	 0.41	 1	

!1	 1000	 0.02	 0.43	 10	

!1	 10,000	 0.03	 0.44	 24	

!1	 100,000	 0.05	 0.55	 40	
!1	 1,000,000	 0.13	 1.04	 51	

!1!2	 1000	 0.04	 0.51	 16	

!1!2	 10,000	 0.07	 0.51	 42	

!1!2	 100,000	 0.16	 0.68	 207	
!1!2	 1,000,000	 0.51	 1.77	 438	

 

Table S6. Data for “Symmetric Homodimer 5J10” case, used to generate figure 6 (MC HBNet data from figure 6 is shown in bold). 

 



 45 

 
Table 2.S7. Data for “Symmetric Homodimer 5J0H” case, used to generate Figure 2.6 (MC 
HBNet data from Figure 2.6 is shown in bold).  
 
 

 
Table 2.S8. Data for “Symmetric Homodimer 5IZS” case, used to generate Figure 2.6 (MC HBNet 
data from Figure 2.6 is shown in bold).  
 

 

 

 15 

 

HBNet	
	    Chi	Sampling	Level	 		 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	
	

0.01	 0.49	 0	

!1	
	

0.04	 0.79	 2	

!1!2	
	

1.22	 1.13	 15	

	     Monte	Carlo	HBNet	
	    Chi	Sampling	Level	 Monte	Carlo	Trajectories	 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	 1000	 0.01	 0.39	 0	

�	 10,000	 0.01	 0.39	 0	

�	 100,000	 0.01	 0.39	 0	
�	 1,000,000	 0.01	 0.39	 0	

!1	 1000	 0.02	 0.44	 5	

!1	 10,000	 0.03	 0.45	 3	

!1	 100,000	 0.03	 0.54	 14	
!1	 1,000,000	 0.06	 1.00	 14	

!1!2	 1000	 0.04	 0.51	 5	

!1!2	 10,000	 0.06	 0.52	 14	

!1!2	 100,000	 0.14	 0.72	 53	
!1!2	 1,000,000	 0.38	 2.07	 121	

 

Table S7. Data for “Symmetric Homodimer 5J0H” case, used to generate figure 6 (MC HBNet data from figure 6 is shown in bold). 

 

 16 

 

HBNet	
	    Chi	Sampling	Level	 		 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	
	

0.01	 0.52	 2	

!1	
	

0.14	 0.88	 4	

!1!2	
	

16.28	 1.34	 28	

	     Monte	Carlo	HBNet	
	    Chi	Sampling	Level	 Monte	Carlo	Trajectories	 CPU	Hours	 Memory	Usage	(GB)	 Number	of	Networks	Found	

�	 1000	 0.01	 0.40	 0	

�	 10,000	 0.01	 0.40	 0	

�	 100,000	 0.01	 0.42	 0	
�	 1,000,000	 0.02	 0.44	 0	

!1	 1000	 0.03	 0.45	 0	

!1	 10,000	 0.05	 0.47	 1	

!1	 100,000	 0.09	 0.61	 2	
!1	 1,000,000	 0.21	 1.46	 3	

!1!2	 1000	 0.05	 0.53	 0	

!1!2	 10,000	 0.09	 0.56	 1	

!1!2	 100,000	 0.31	 0.82	 3	
!1!2	 1,000,000	 1.16	 2.59	 7	

 

Table S8. Data for “Symmetric Homodimer 5IZS” case, used to generate figure 6 (MC HBNet data from figure 6 is shown in bold). 

 



 46 

ENDNOTE 

1This work was previously published as Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. 
Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design. J. Chem. Theory 
Comput. (2018) 

 

 

 

 

  



 47 

REFERENCES 

1. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid Sampling of Hydrogen 
Bond Networks for Computational Protein Design. J. Chem. Theory Comput. (2018) 
doi:10.1021/acs.jctc.8b00033. 

2. Judd, E. T., Stein, N., Pacheco, A. A. & Elliott, S. J. Hydrogen bonding networks tune 
proton-coupled redox steps during the enzymatic six-electron conversion of nitrite to 
ammonia. Biochemistry 53, 5638–46 (2014). 

3. Polander, B. C. & Barry, B. A. A hydrogen-bonding network plays a catalytic role in 
photosynthetic oxygen evolution. doi:10.1073/pnas.1200093109. 

4. Sánchez-Azqueta, A. et al. A hydrogen bond network in the active site of Anabaena 
ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Biochim. Biophys. Acta 
1837, 251–63 (2014). 

5. Sigala, P. A. et al. Quantitative dissection of hydrogen bond-mediated proton transfer in 
the ketosteroid isomerase active site. Proc. Natl. Acad. Sci. U. S. A. 110, (2013). 

6. Joachimiak, L. A., Kortemme, T., Stoddard, B. L. & Baker, D. Computational Design of a 
New Hydrogen Bond Network and at Least a 300-fold Specificity Switch at a 
Protein−Protein Interface. J. Mol. Biol. 361, 195–208 (2006). 

7. Kuroda, D. & Gray, J. J. Shape complementarity and hydrogen bond preferences in 
protein-protein interfaces: Implications for antibody modeling and protein-protein 
docking. Bioinformatics btw197- (2016) doi:10.1093/bioinformatics/btw197. 

8. Guo, H. & Salahub, D. R. Cooperative Hydrogen Bonding and Enzyme Catalysis. Angew. 
Chem. Int. Ed. Engl. 37, 2985–2990 (1998). 

9. Redzic, J. S. & Bowler, B. E. Role of hydrogen bond networks and dynamics in positive 
and negative cooperative stabilization of a protein. Biochemistry 44, 2900–8 (2005). 

10. Livesay, D. R., Huynh, D. H., Dallakyan, S. & Jacobs, D. J. Hydrogen bond networks 
determine emergent mechanical and thermodynamic properties across a protein family. 
Chem. Cent. J. 2, 17 (2008). 

11. Tatko, C. D., Nanda, V., Lear, J. D. & Degrado, W. F. Polar networks control oligomeric 
assembly in membranes. J. Am. Chem. Soc. 128, 4170–1 (2006). 

12. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design 
of a minimal model for diiron proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 6298–305 
(2000). 

13. Faiella, M. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nat. Chem. 
Biol. 5, 882–4 (2009). 



 48 

14. Reig, A. J. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri 
proteins. Nat. Chem. 4, 900–906 (2012). 

15. Chino, M. et al. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle 
Structure. Eur. J. Inorg. Chem. 2015, 3371–3390 (2015). 

16. Zhang, S.-Q. et al. De Novo Design of Tetranuclear Transition Metal Clusters Stabilized 
by Hydrogen-Bonded Networks in Helical Bundles. J. Am. Chem. Soc. 140, 1294–1304 
(2018). 

17. Guffy, S. L., Der, B. S. & Kuhlman, B. Probing the minimal determinants of zinc binding 
with computational protein design. Protein Eng. Des. Sel. 29, 327–338 (2016). 

18. O’Meara, M. J., Leaver-Fay, A. & Kuhlman, B. A Combined Covalent-Electrostatic 
Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J Chem Theory 
Comput 6, 356–372 (2015). 

19. Baker, E. N. & Hubbard, R. E. Hydrogen bonding in globular proteins. Progress in 
Biophysics and Molecular Biology vol. 44 97–179 (1984). 

20. Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface 
designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 22, 
74–82 (2013). 

21. Der, B. S. & Kuhlman, B. Strategies to control the binding mode of de novo designed 
protein interactions. Curr. Opin. Struct. Biol. 23, 639–46 (2013). 

22. Fleming, P. J. & Rose, G. D. Do all backbone polar groups in proteins form hydrogen 
bonds? Protein Sci. 14, 1911–7 (2005). 

23. Li, Z., Yang, Y., Zhan, J., Dai, L. & Zhou, Y. Energy functions in de novo protein design: 
current challenges and future prospects. Annu. Rev. Biophys. 42, 315–35 (2013). 

24. Boas, F. E. & Harbury, P. B. Potential energy functions for protein design. Current 
Opinion in Structural Biology vol. 17 199–204 (2007). 

25. Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling 
and Design. J. Chem. Theory Comput. 13, 3031–3048 (2017). 

26. Leaver-Fay, A., Kuhlman, B. & Snoeyink, J. An adaptive dynamic programming 
algorithm for the side chain placement problem. Pac. Symp. Biocomput. 16–27 (2005). 

27. Boyken, S. et al. De novo design of protein homo-oligomers with modular hydrogen bond 
network-mediated specificty. Science 399, 69–72 (2016). 

28. Leaver-Fay, A. et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and 
Design of Macromolecules. Methods Enzymol. 487, 545–574 (2011). 



 49 

29. Shapovalov, M. V. & Dunbrack, R. L. A smoothed backbone-dependent rotamer library 
for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 
844–858 (2011). 

30. Kortemme, T., Morozov, A. V. & Baker, D. An orientation-dependent hydrogen bonding 
potential improves prediction of specificity and structure for proteins and protein-protein 
complexes. J. Mol. Biol. 326, 1239–1259 (2003). 

31. Worth, C. L. & Blundell, T. L. Satisfaction of hydrogen-bonding potential influences the 
conservation of polar sidechains. Proteins Struct. Funct. Bioinforma. 75, 413–429 (2009). 

32. Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. & Baker, D. Protein Structure Prediction 
Using Rosetta. Methods Enzymol. 383, 66–93 (2004). 

33. Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R. & Meiler, J. Solvent accessible 
surface area approximations for rapid and accurate protein structure prediction. J. Mol. 
Model. 15, 1093–108 (2009). 

34. Rocklin, G. J. et al. Global analysis of protein folding using massively parallel design, 
synthesis, and testing. Science (80-. ). 357, 168–175 (2017). 

35. Wang, G. & Dunbrack, R. L. PISCES: A protein sequence culling server. Bioinformatics 
19, 1589–1591 (2003). 

36. Wang, G. & Dunbrack, R. L. PISCES: Recent improvements to a PDB sequence culling 
server. Nucleic Acids Res. 33, (2005). 

37. Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural 
protein conformational variability and improves mutant side-chain prediction. J. Mol. 
Biol. 380, 742–56 (2008). 

 



 50 

CHAPTER 3: Optimizing Energy Landscape Perturbations for Improved Packing During 
Protein Design 

 

3.1 Preface 

This chapter is intentionally implementation-heavy and provides us with insight into 

sampling biases in Rosetta’s all-atom (high-resolution) protein design protocols and possible 

solutions. The scope of these improvements impacts protein design as a whole, not just protein 

interface design, however we include interface design benchmarks in the process. In general, the 

goal of this chapter is to show that Rosetta’s high-resolution design protocol can be improved by 

simple parameter-fitting and benchmarking these changes in a variety of protein design 

circumstances. 

 

3.2 Background 

FastRelax is Rosetta’s default protocol for perturbing protein models to sample lower-

energy conformations. FastRelax is a “mover”; a Rosetta protocol that changes the conformation 

of a protein.1 FastRelax works by utilizing two simpler movers: PackRotamersMover and 

MinMover.2–4 

PackRotamersMover generates a set of candidate sidechain conformations (“rotamers”) 

for each residue position. Rotamers are randomly assigned to different positions repeatedly and 

the change is either accepted or rejected based on the Metropolis Criterion. PackRotamersMover 

can optionally perform design (i.e., change the amino acid identity at a position) by populating a



 51 

position’s rotamer set with rotamers of multiple amino acids. FastRelax does not enable this feature 

by default because the term “relax” implies maintaining a fixed sequence. 

MinMover performs a gradient-based minimization in torsion-angle space for all atoms of 

the protein. MinMover cannot change amino acid identities and it generally does not make large-

scale structural changes. A major benefit of MinMover is that it moves the backbone to 

accommodate changes in sidechain packing and to account for steric clashes. 

FastRelax alternates between PackRotamersMover and MinMover four times, as shown in 

Figure 3.1. The first iteration decreases the score function’s Lennard-Jones repulsive weight5 to 

2% of the original weight. Each subsequent iteration increases the repulsive weight until it is back 

to 100% in the fourth and final iteration. The decreased repulsive weight allows the protein to 

gradually resolve clashes as the structure becomes more refined.  

 

 
Figure 3.1 FastRelax’s default repulsive ramping scheme. PackRotamerMover steps are shown in 
blue and labeled “a”, MinMover steps are shown in orange and labeled “b”. Each step is 
annotated with the relative repulsive weight for that round, also shown on the y-axis, where a 
value of 1.0 is equal to the weight used for the Rosetta score function.5 
 

Protein engineers have had success using FastDesign, a derivative of FastRelax, to design 

proteins.6–8 The sole difference between the two protocols is that FastDesign enables 

PackRotamersMover’s ability to introduce mutations at user-defined positions, as mentioned 



 52 

above. Despite the success of FastDesign, careful guidance is required by the user to prevent 

FastDesign from inserting small hydrophobics into protein cores and reducing the total volume 

occupied by the protein. The goal of this project is to determine what is causing this undesired 

behavior and how to fix it. 

 

3.3 Diagnosing the Problem 

In order to evaluate how widespread the overdesign of small hydrophobic residues is, we 

set out to study the result of running FastDesign on dozens of native protein monomers. We used 

52 crystal structures from the top8000 dataset9 between 80-120 residues in length and with 

resolutions better than 1.5 Å. We ran FastDesign to redesign each protein’s core 10 times and 

evaluated the results. 

 The first metric we measured was the radius of gyration ratio (“RG ratio”) which divides 

the radius of gyration of the designed protein by that of the starting structure. A value less than 1 

means that the designed protein is more compact that the native. We measured an average value 

of 0.97, which is consistent with the problematic behavior that we aim to correct. 

 

 
Figure 3.2 Amino acid distribution of native proteins and proteins designed by FastDesign. 
 
 
 

0

0.05

0.1

0.15

0.2

0.25

A C D E F G H I K L M N P Q R S T V W Y

Fr
ac

tio
n

Monomer Core Design

0

0.05

0.1

0.15

0.2

A C D E F G H I K L M N P Q R S T V W Y

Fr
ac

tio
n

Interface Design

Native FastDesign



 53 

We additionally measured the percentage of core residues that are designed to be alanine. 

Rosetta defines a residue as “core” if its C-alpha atom is within a minimum distance of 18 or more 

C-alpha atoms from other residues. On average, the native input structures have cores that are 

14.7% alanine and FastDesign produces structures that have 28.4% alanine cores. Figure 3.2 

compares the amino acid distributions of the native protein monomer cores and the protein cores 

after being designed by FastDesign, as well as the results of the same experiment performed on a 

set of native interfaces. These measurements support the hypothesis that FastDesign has a flaw 

that results in small core sidechains and the consequential shrinking in of the backbone. 

To further track down the cause, we analyzed the structure of a protein as it progressed 

through the steps of FastDesign. We illustrate in Figure 3.3A how a native-like input structure 

behaves at each step of the FastDesign process. Step 1a mutates core positions to have larger 

sidechains, an expectable outcome of having only 2% repulsive weight. Despite the large 

sidechains in the core, the repulsive weight at step 1b is low enough to cause the chains of the 

protein to shrink in, towards one another. The repulsive weight is increased to 25% for steps 2a 

and 2b, causing some previously acceptable atomic distances to be now recognized as clashes. The 

backbone is unable to move for step 2a so step 1b’s backbone shrinking cannot be undone yet. 

Instead, Rosetta resolves the newly recognized clashes by mutating the core residue positions to 

have sidechains even smaller than their original identities. This is where the abundance of alanines 

is introduced. There are generally very few steric clashes remaining after step 2a because the 

sidechains are small, so the remaining steps do not alter the protein’s conformation dramatically. 

At the end of FastDesign, the backbone is still inwardly collapsed and the consequent alanine 

abundance is still present. 



 54 

 
Figure 3.3 Description of FastDesign’s bias and the means to address it. (A) shows how 
FastDesign develops sampling error towards small sidechains. (B) and (C) illustrate the two 
hyperparameters that we plan to refit. 
 

3.4 Benefits of Increasing Repulsive Weight 

The problem outlined in the previous section naively seemed to be solvable by increasing 

the repulsive energies in the first few rounds of FastDesign. Our plan was to try different repulsive 

ramping schemes to see if this problem goes away without sacrificing the Rosetta energies of 

FastDesign’s final output. 

Six of FastDesign’s eight steps have non-standard repulsive weights for us to tune. Instead 

of sampling this six-dimensional space directly, we reduced it down to two dimensions: λ and floor 

Floor
0 0.02 0.04 0.05 0.06 0.08 0.09 0.1

0 -3.61 -3.71 -3.75 -3.75 -3.75 -3.76 -3.76 -3.75
0.05 -3.69 -3.75 -3.76 -3.76 -3.76 -3.75 -3.76 -3.75

λ 0.1 -3.71 -3.76 -3.76 -3.76 -3.76 -3.76 -3.75 -3.74
0.15 -3.70 -3.76 -3.77 -3.76 -3.75 -3.75 -3.74 -3.75
0.2 -3.69 -3.75 -3.76 -3.76 -3.76 -3.75 -3.74 -3.74

Floor
0 0.02 0.04 0.05 0.06 0.08 0.09 0.1

0 -3.57 -3.78 -3.89 -3.93 -3.95 -3.96 -3.96 -3.97
0.05 -3.76 -3.88 -3.92 -3.95 -3.96 -3.97 -3.96 -3.95

λ 0.1 -3.82 -3.91 -3.93 -3.95 -3.97 -3.96 -3.97 -3.96
0.15 -3.84 -3.91 -3.94 -3.96 -3.95 -3.95 -3.95 -3.95
0.2 -3.82 -3.92 -3.93 -3.95 -3.94 -3.94 -3.95 -3.95

S S

1a 1b 2a 2b-4b
fixed-backbone

rotamer
substitution

fixed-backbone
rotamer

substitution

all-atom
minimization

all-atom
minimization

0

0.25

0.5

0.75

1

1a 1b 2a 2b 3a 3b 4a 4b

Re
pu

lsi
ve

 W
ei

gh
t (

re
p)

FastRelax Step

λ × ( 4arep – 3arep )

λ × ( 3arep – 2arep )

λ × ( 2arep – 1arep )

0

0.25

0.5

0.75

1

1a 1b 2a 2b 3a 3b 4a 4b

Re
pu

lsi
ve

 W
ei

gh
t

FastRelax Step

Floor

A

B

C



 55 

(as shown in Figure 3.3B and 3.3C respectively). The floor dimension spans from 0 to 1 and pads 

each FastDesign step with a uniform weight increase. The remaining space above the floor is 

multiplied by (1-floor) to ensure that the ceiling is still 1. The λ dimension also spans 0 to 1 and 

only applies to the minimization steps of FastDesign. λ interpolates the repulsive weights between 

the neighboring packing steps, such that a larger value of λ results in a weight more similar to the 

subsequent packing step. 

 
Figure 3.4 Results of hyperparameter sampling for two of our design cases. Numbers shown in 
cells are in Rosetta Energy Units, where more negative is favorable. Top table is from RC 
Monomer Design, bottom is from RC Two-Sided Interface Design. As an example, the black box 
represents the parameter set to be used as MonomerDesign2019. The old default (legacy) is in the 
top left of each cell.  
 

We performed a coarse-grained grid search of these two dimensions on a variety of design 

cases, each explained in more detail in section 3.6.1. FastDesign ran on each case ten times for 

each structure (only five times each for interfaces due to their increased computational cost). Each 

case produced a heatmap of average Rosetta energies, two examples of which are shown in Figure 

3.4. We identified the best set of parameters for each case and used that information to construct 

four relax scripts that cover all cases: InterfaceDesign2019, InterfaceRelax2019, 

MonomerDesign2019, and MonomerRelax2019, as shown in Table 3.1. The observed results for 

all cases are summarized in Table 3.2. The Rosetta energies improved for all design cases and 

Floor
0 0.02 0.04 0.05 0.06 0.08 0.09 0.1

0 -3.61 -3.71 -3.75 -3.75 -3.75 -3.76 -3.76 -3.75
0.05 -3.69 -3.75 -3.76 -3.76 -3.76 -3.75 -3.76 -3.75

λ 0.1 -3.71 -3.76 -3.76 -3.76 -3.76 -3.76 -3.75 -3.74
0.15 -3.70 -3.76 -3.77 -3.76 -3.75 -3.75 -3.74 -3.75
0.2 -3.69 -3.75 -3.76 -3.76 -3.76 -3.75 -3.74 -3.74

Floor
0 0.02 0.04 0.05 0.06 0.08 0.09 0.1

0 -3.57 -3.78 -3.89 -3.93 -3.95 -3.96 -3.96 -3.97
0.05 -3.76 -3.88 -3.92 -3.95 -3.96 -3.97 -3.96 -3.95

λ 0.1 -3.82 -3.91 -3.93 -3.95 -3.97 -3.96 -3.97 -3.96
0.15 -3.84 -3.91 -3.94 -3.96 -3.95 -3.95 -3.95 -3.95
0.2 -3.82 -3.92 -3.93 -3.95 -3.94 -3.94 -3.95 -3.95

S S

1a 1b 2a 2b-4b
fixed-backbone

rotamer
substitution

fixed-backbone
rotamer

substitution

all-atom
minimization

all-atom
minimization

0

0.25

0.5

0.75

1

1a 1b 2a 2b 3a 3b 4a 4b

Re
pu

lsi
ve

 W
ei

gh
t (

re
p)

FastRelax Step

λ × ( 4arep – 3arep )

λ × ( 3arep – 2arep )

λ × ( 2arep – 1arep )

0

0.25

0.5

0.75

1

1a 1b 2a 2b 3a 3b 4a 4b

Re
pu

lsi
ve

 W
ei

gh
t

FastRelax Step

Floor

A

B

C



 56 

some fixed sequence (“relax”) cases. The radius-of-gyration ratios and alanine percentages became 

closer to native as well. 

 

Title Floor Lambda 1a 1b 2a 2b 3a 3b 4a 4b 
InterfaceDesign2019 0.06 0.10 0.079 0.100 0.295 0.323 0.577 0.619 1 1 
InterfaceRelax2019 0.05 0.05 0.069 0.080 0.288 0.302 0.573 0.594 1 1 
MonomerDesign2019 0.04 0.15 0.059 0.092 0.280 0.323 0.568 0.633 1 1 
MonomerRelax2019 0.02 0.05 0.040 0.051 0.265 0.280 0.559 0.581 1 1 

 
Table 3.1 Hyperparameters and repulsive weights for our four final protocols. PolarDesign2019 
has the same weights as MonomerDesign2019. Repulsive weights for each FastDesign step are 
labeled using the convention set in Figure 3.1. 
 
 
 

 
 
Table 3.2 Results of running new protocols on our diverse collection of design cases. For each 
case, we show the scores with the legacy (“Old”) protocol and the 
MonomerDesign2019/InterfaceDesign2019 (“New”) protocols. For design cases we include the 
percent of residues at designable positions that end up being alanine. Note, the native alanine 
percentage is omitted for computationally-generated backbones because they have no native 
sequence identity. 
 

3.5 Benefits of Ramping Reference Weight 

Despite finding a lower Rosetta energy, the increased repulsive weights caused FastDesign 

to deviate even further from the native amino acid distribution, as shown in Figure 3.5. Alanine 

levels came closer to the native-like level, but large hydrophobic amino acids became over-

sampled and polar/charged amino acids were under-sampled. Figure 3.5 shows how amino acids 

such as isoleucine (I), leucine (L), and tryptophan (W) became more abundant when sampling with 

Energy Per Residue ( REU ) Radius-Of-Gyration Ratio Percent Alanine (Designable Positions)
Set Case Old New Old New Native Old New

RC Monomer Design (Core Positions) -2.81 -2.96 0.97 1.00 14.7% 28.4% 13.9%
RC Monomer Design -3.61 -3.77 0.96 0.99 6.6% 16.2% 5.6%
RC Monomer Relax -2.78 -2.85 0.99 0.99

Decoy Monomer #1 Relax -2.70 -2.73 0.98 0.98
Decoy Monomer #2 Relax -2.39 -2.43 0.99 1.00
Decoy Monomer #3 Design -3.55 -3.63 1.00 1.04 13.1% 6.1%

RC Interface Two-Sided Design -3.57 -3.97 0.98 0.99 5.5% 17.6% 7.3%
RC Interface One-Sided Design -3.25 -3.57 0.99 1.00 5.8% 20.4% 7.3%
RC Interface Relax (Interface Positions) -3.06 -3.15 0.99 1.00

Decoy Interface One-Sided Design -3.35 -3.68 0.99 0.99 18.8% 6.6%



 57 

the new repulsive weights. Conversely, polar amino acids such as glutamic acid (E), arginine (R), 

and serine (S) became less abundant. 

 
Figure 3.5 Amino acid distributions for various benchmarks for native proteins and for designs of 
three different FastDesign protocols. InterfaceDesign2019 was used for the interface benchmarks 
and MonomerDesign2019 was used for the RC Monomer Design benchmark. The three columns 
on the right are a breakdown of the RC Monomer Design results by position in the protein. 
“Surface” residues are solvent exposed, “Core” residues are buried, and “Boundary” are 
partially exposed and partially buried. 
 

 In order to counter this effect, we re-fit Rosetta’s reference energies for each amino acid 

for the repulsive weight of each rotamer replacement step of FastDesign. Reference energies are 

fixed background energies for each amino acid intended to correct for unintended biases in the rest 

of the score function.5 The PolarDesign2019 columns in Figure 3.5 show that the reference-energy-

ramping technique generally improves the native-likeness of FastDesign’s designs for both 

monomers and interfaces. 

  

0

0.05

0.1

0.15

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Monomer Design

0

0.05

0.1

0.15

0.2

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Interface Two-Sided Design

0

0.05

0.1

0.15

0.2

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Interface One-Sided Design

0

0.05

0.1

0.15

0.2

0.25

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Monomer Design: Core Residues

0

0.05

0.1

0.15

0.2

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Monomer Design: Boundary Residues

0

0.05

0.1

0.15

A C D E F G H I K L M N P Q R S T V W Y

F
ra

ct
io

n

RC Monomer Design: Surface Residues

Native Legacy InterfaceDesign2019/MonomerDesign2019 PolarDesign2019



 58 

 
Figure 3.6 Comparison of new design protocols with legacy for three design cases. Each point 
shows the average Rosetta score (normalized by residue count) that results from running 
FastDesign on a different protein. Both new protocol Rosetta scores are shown as a function of 
the score from the legacy protocols. The black diagonal line represents an equal score for the new 
protocol and legacy protocol. Points below the line represent protein structures that score better 
with the new protocol than the legacy protocol. 
 

In addition to the four relax scripts outlined in Table 3.1, we are also authoring 

PolarDesign2019. This script adds the aforementioned reference energy adjustments to 

MonomerDesign2019, which is the script that best serves as a one-size-fits-all solution for protein 

design. Figure 3.6 compares the Rosetta energies of designs created by PolarDesign2019 and 

MonomerDesign2019 against designs created with legacy FastDesign. PolarDesign2019 averages 

-0.41 REU/residue better than the legacy FastDesign in the case of two-sided interface design, 

while InterfaceDesign2019 averages -0.42 REU/residue of improvement. Both methods achieve 

comparable Rosetta energies, so it is reasonable to preliminarily conclude that PolarDesign2019 

does not sacrifice quality in exchange for native-likeness. 

 

3.6 Methods 

3.6.1 Protein Structure Sets 

We assembled a variety of sets of protein models, each either “RC” for relaxed crystal (see 

below) or “Decoy” for computer-generated models. RC Monomer is a set of relaxed crystal 

structures of monomers from the top8000 dataset9 between 80-120 residues in length and with 

resolutions better than 1.5 Å. RC Interface is a set of relaxed crystal structures of interfaces dimeric 

-4

-3 .5

-3

-2 .5

-2

-1 .5

-4 -3 .5 -3 -2 .5 -2 -1 .5

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

Monomer Core Design

MonomerDesign2 019 KillA2019

-5

-4 .5

-4

-3 .5

-3

-2 .5

-5 -4 .5 -4 -3 .5 -3 -2 .5

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

Two Sided Interface Design

InterfaceDesign2019 KillA2019

-4 .5

-4

-3 .5

-3

-2 .5

-2

-4 .5 -4 -3 .5 -3 -2 .5 -2

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

One Sided Interface Design

InterfaceDesign2019 KillA2019

-4

-3 .5

-3

-2 .5

-2

-1 .5

-4 -3 .5 -3 -2 .5 -2 -1 .5

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

Monomer Core Design

MonomerDesign2 019 KillA2019

-5

-4 .5

-4

-3 .5

-3

-2 .5

-5 -4 .5 -4 -3 .5 -3 -2 .5

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

Two Sided Interface Design

InterfaceDesign2019 KillA2019

-4 .5

-4

-3 .5

-3

-2 .5

-2

-4 .5 -4 -3 .5 -3 -2 .5 -2

Ca
nd

id
at

e 
Sc

or
e 

Pe
r 

Re
si

du
e 

(R
EU

)

Legacy Score Per Residue (REU)

One Sided Interface Design

InterfaceDesign2019 KillA2019PolarDesign2019 PolarDesign2019PolarDesign2019



 59 

crystal structures downloaded from the PDBbind database10 with these filters: resolution must be 

better than 2.3 Å, the structures could not have more than two proteins chains and no ligand at the 

interface apart from HOH, SO4, CL, NA, MSE, and/or GOL. Decoy Interface structures were 

generated by using SEWING’s AppendAssemblyMover11 to design de novo 4-helical bundles that 

are designed to bind to the active form of the G protein, Gq alpha (see sections 3.8.1 and 3.8.2). 

Decoy Monomer #1 was generated by running Rosetta’s Abinitio demo without the final relax 

step. Decoy Monomer #2 structures come from a previous experiment1 in which Abinitio 

backbones were filtered based on downstream success with full-atom design. The goal of this set 

is to show that designs that previously performed well under legacy FastDesign do not get worse 

with our new variants. The Decoy Monomer #3 set was created by stripping the Gq alpha chain 

from the Decoy Interface set, leaving only the protein chain designed by SEWING. Each set 

contains between 40 and 60 structures. 

 

3.6.2 FastDesign Benchmarks 

We had three different cases for the monomer sets: relax (fixed sequence), design (Rosetta 

was allowed to change the sequence of the protein), and core design (Rosetta was only allowed to 

change amino acid identities at core positions). The interface sets also had three cases: relax (fixed 

sequence), one-sided design (fixed sequence for one binding partner, the other binding partner 

could change sequence) and two-sided design (both chains can change sequences). We only ran 

protein sets that were logical for each case. For example, we did not run relax protocols on 

SEWING designs because there is no native amino acid identity for a SEWING-made structure. 

 

 



 60 

3.6.3 Relaxing Crystal Structures 

Each crystal structure was relaxed by running FastRelax 10 times and choosing the output 

structure with the lowest Rosetta energy. For this purpose, FastRelax is run with coordinate 

constraints (artificial energy bias that penalizes the CA atoms in the protein’s backbone for 

deviating from their starting positions). 

 

3.6.4 Reference Energy Fitting 

For each repulsive weight of MonomerDesign2019, we ran optE_parallel (a Rosetta 

application). This application performs fixed-backbone rotamer substitution, allowing all residue 

positions to change amino acids.  This process is repeated many times, each time modifying the 

amino acids’ reference energies in an attempt to optimize for sequence recovery. optE_parallel 

was run three times for each repulsive weight and the outcome with the best score was used for 

PolarDesign2019. 

 

3.7 Conclusion 

We showed in this chapter that Rosetta’s high-resolution design protocol had a sampling 

bias towards introducing small hydrophobic amino acids. We were able to correct this bias by 

defining and fitting two hyperparameters regarding FastDesign’s repulsive weight ramping 

scheme. These corrections improved both sampling quality (resulting in lower Rosetta energies) 

and native-likeness of FastDesign’s output. The native-likeness was further improved by re-

parameterizing Rosetta’s reference energies for each repulsive weight used by FastDesign, without 

apparent loss of design quality. 

  



 61 

3.8 Supplemental Information 

3.8.1 Script for SEWING Designs 

<ROSETTASCRIPTS> 
  <MOVERS> 
    <AppendAssemblyMover name="aam" 
model_file_name="inputs/smotifs_H_5_40_L_1_6_H_5_40.segments" partner_pdb="gaq.pdb" 
hashed="false" required_resnums="43,44,45,46,47,48" minimum_cycles="10000" 
maximum_cycles="11000" start_temperature="2" end_temperature="0.6" 
pose_segment_starts="1,3,18,21,46,47" pose_segment_ends="2,17,20,45,46,60" 
modifiable_terminus="C" output_partner="false" recover_lowest_assembly="true"> 
      <AssemblyScorers> 
 <MotifScorer weight="1" /> 
 <InterModelMotifScorer weight="10" /> 
 <StartingNodeMotifScorer weight="1"/> 
 <PartnerMotifScorer weight="1" /> 
      </AssemblyScorers> 
      <AssemblyRequirements> 
 <ClashRequirement clash_radius = "3.5" /> 
 <DsspSpecificLengthRequirement dssp_code="H" maximum_length="30" 
minimum_length="10" /> 
 <DsspSpecificLengthRequirement dssp_code="L" maximum_length="4" 
minimum_length="1" /> 
 <SizeInSegmentsRequirement maximum_size="7" minimum_size="1" /> 
      </AssemblyRequirements> 
    </AppendAssemblyMover>  
  </MOVERS> 
  <PROTOCOLS> 
    <Add mover="aam"/> 
  </PROTOCOLS> 
</ROSETTASCRIPTS> 
 

3.8.2 Command Line Flags for SEWING Designs 

-use_input_sc 
-ignore_unrecognized_res 
-linmem_ig 10 
-nstruct 1000 
-mh:match:aa1 false 
-mh:match:aa2 false 
-mh:score:use_ss1 true 
-mh:score:use_ss2 true 
-mh:path:motifs xsmax_bb_ss_AILV_resl0.8_msc0.3.rpm.bin.gz 
-mh:path:scores_BB_BB xsmax_bb_ss_AILV_resl0.8_msc0.3 
-mh:gen_reverse_motifs_on_load false 
-mh::dump::max_rms 0.4 
-pdb_comments true 
-output_pose_energies_table false 
-output_pose_cache_data false 
-preserve_crystinfo true 
  



 62 

REFERENCES 

1. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape 
mapping. J Mol Biol 405, 607–618 (2011). 

 
2. PackRotamersMover. 

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Mov
ers/movers_pages/PackRotamersMover. 

 
3. MinMover. 

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Mov
ers/movers_pages/MinMover. 

 
4. Kuhlman, B. et al. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. 

Science (80-. ). 302, 1364–1368 (2003). 
 
5. Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling 

and Design. J. Chem. Theory Comput. 13, 3031–3048 (2017). 
 
6. Rocklin, G. J. et al. Global analysis of protein folding using massively parallel design, 

synthesis, and testing. Science 357, 168–175 (2017). 
 
7. Tyka, M. D., Jung, K. & Baker, D. Efficient sampling of protein conformational space 

using fast loop building and batch minimization on highly parallel computers. J. Comput. 
Chem. 33, 2483–91 (2012). 

 
8. Kaufmann, K. W., Lemmon, G. H., Deluca, S. L., Sheehan, J. H. & Meiler, J. Practically 

Useful: What the ROSETTA Protein Modeling Suite Can Do for You. 
doi:10.1021/bi902153g. 

 
9. Keedy, D. A. et al. 8000 Filtered Structures. 

http://kinemage.biochem.duke.edu/databases/top8000.php (2012). 
 
10. Liu, Z. et al. PDB-wide collection of binding data: Current status of the PDBbind 

database. Bioinformatics 31, 405–412 (2015). 
 
11. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for Requirement-

Driven Protein Design in the Rosetta Modeling Program. J. Chem. Inf. Model. 58, 895–
901 (2018). 

 

 

 

 



 64 

CHAPTER 4: Benchmarking New Computational Techniques for Polar Protein-Protein 
Interface Design 

 

4.1 Introduction 

We established in Chapter 1 the premise that the Rosetta1 protein modeling software is often 

unsuccessful at designing polar protein-protein interfaces. Stranges et al.2 postulated that this 

failure is partially because Rosetta is unable to adequately sample hydrogen bonding partners for 

the polar atoms at the interface. We then spent Chapters 2 and 3 describing new computational 

techniques that might address this issue, namely Monte Carlo (MC) HBNet3 and our new variants 

of FastDesign4 including PolarDesign2019. 

The goal of this chapter is to determine if these new methods actually improve Rosetta’s 

ability to sample hydrogen bonds for polar interfaces. We will only perform computational 

benchmarks for the scope of this project. If the computational benchmarks pass, then we can pass 

this project on to experimental biochemists to see if these new methods perform well on real 

protein design projects. 

The first of our two benchmarks is the “Average Trajectory Test”. The goal of this test is to 

sample many variants of protein interface design protocols on a large number of structures to give 

us a better understanding of our landscape. Each protocol is run a small number of times on a large 

number of structures and the average result of each protocol is analyzed and compared to native 

interfaces. 

Our other benchmark is the “Top Trajectory Test”. The goal of this second test is to narrow 

in on a small number of protocols and test them extensively. This test aims to perform realistic, 



 65 

production-level interface design runs using a smaller suite of protocols than the first test. Because 

these tests are so computationally expensive, we will perform them on a smaller number of 

structures. 

To generalize, the “Average Trajectory Test” tests broadly over many protocols (by varying 

the score function and sampling method), and many protein-protein interface structures. 

Conversely, the “Top Trajectory Test” tests narrowly but deeply on a small number of protein-

protein interface structures. These tests measure Rosetta’s ability to design polar interfaces, ability 

to design well-packed interfaces, and ability to find hydrogen bonding partners for the polar atoms 

at the interface. Broadly speaking, these tests will be considered successful if MC HBNet and/or 

PolarDesign2019 are able to improve these abilities. 

 

4.2 Average Trajectory Test 

4.2.1 Methods 

4.2.1.1 Structure Generation 

The structures used for this benchmark are the same that comprised the RC Interface set in 

section 3.6.1. 

 

4.2.1.2 Running Rosetta 

 Rosetta was run using RosettaScripts5, an XML scripting interface to Rosetta protocols. 

The particular scripts used for this test are included in section 4.5.1. FastDesign.xml was used for 

all of the benchmarks except for the protocols that used HBNet, which used 

FastDesign.HBNet.xml. Rosetta was run 3 times for each structure for each protocol (‘-nstruct 3’ 

was passed via command line) and all 3 outputs were added to the pool of results. 



 66 

 RosettaScripts’ xml files have runtime text replacement options denoted by double ‘%%’ 

strings. These scripts had the following options: %%script%% was replaced with ‘legacy’4 or 

‘PolarDesign2019’ and %%sfxn%% was substituted as ‘score12’,6,7 ‘talaris2013’,8 ‘talaris2014’,9 

‘ref2015’ (Rosetta’s current default),10 or ‘beta_nov16’. Note that most of these score functions 

may need additional command line flags to function correctly; it is best to consult documentation 

before attempting to use non-default score functions. 

 

4.2.1.3 Evaluating Results 

We have four metrics to analyze the results. First, we measure the fraction of interface 

residues on the variable-sequence (designable) side of the interface that are polar. These residues 

were classified as polar: DEHKNQRSTY. Interface residues were determined using Rosetta’s 

InterGroupInterfaceByVector11 protocol. 

Second, we measure the packing quality of the interface. This was done by averaging the 

packstat and shape complementarity12,13 values (both on a scale of 0 to 1 where 1 is higher quality) 

from Rosetta’s Interface Analyzer.2 We would normally use the score function energy itself to 

compare interface quality but it is meaningless to compare the energy from one score function with 

the energy from another. 

Third, we measure the normalized number of unsatisfied polar atoms at the interface. For 

this metric, lower numbers are considered to be better. Note, this counts the number of polar atoms 

that have hydrogen bonding partners in the unbound state but not the bound state. If an atom has 

no hydrogen bonding partner in either state, it is not counted here. It is impossible in this system 

for atoms to only have hydrogen-bonding partners in the bound state because of implicit water 

interactions. We used Rosetta’s BuriedUnsatHbonds14 protocol for these calculations. 



 67 

Fourth and finally, we also track the “per residue energy” of interface residues. This is 

another metric reported by Rosetta’s Interface Analyzer and it essentially reports the mean Rosetta 

energy of the residues at the interface. More negative is considered better here, but that the scale 

and interpretation of this value is defined by the score function being used. It is meaningless to 

compare Rosetta scores from different score functions. 

 In addition to the four design-quality metrics, we also track the wall clock time of each 

protocol. 

 

4.2.2 Results and Discussion 

Our goal was to redesign native interfaces with various Rosetta protocols and score 

functions to determine the optimal way to design for hydrophilicity, hydrogen bond sampling, and 

overall packing quality. Specifically, we are performing one-sided design, a design condition in 

which one chain of the interface is fixed sequence while the other chain is allowed to make 

mutations. This is more challenging than two-sided design (where both chains can make 

mutations) because there will be polar residues on the fixed-sequence side that cannot be mutated 

away and Rosetta will need to find hydrogen-bonding partners for them. 

We are testing all of the default score functions from ref201510 (the current default) back 

to score126,7 (the score function used to design the interfaces analyzed by Stranges et al.2), as well 

as beta_nov16, the heir apparent. We are also testing three different sampling protocols: legacy 

FastDesign, PolarDesign2019 FastDesign, and PolarDesign2019 FastDesign preceded by MC 

HBNet,3 all of which were described in detail in Chapters 2 and 3. The metrics for the average 

design for each energy function/sampling method pair is shown in Table 4.1. 

 



 68 

  
Fraction 

Polar 
Packing 
Quality 

Unsatisfied 
Heavy Polar 
Atoms Per 
Interface 
Residue 

Per 
Residue 
Energy 
(REU) 

Runtime 
(Minutes) 

 Native Interfaces 0.52 0.67 0.04   
       

Score Function FastDesign protocol      
score12 legacy 0.51 0.67 0.10 -2.35 42 

 PolarDesign2019 0.59 0.69 0.07 -2.46 41 

talaris2013 legacy 0.45 0.68 0.07 -1.92 84 

 PolarDesign2019 0.51 0.69 0.05 -2.01 79 

 PolarDesign2019 (HBNet) 0.53 0.69 0.05 -1.96 66 

talaris2014 legacy 0.43 0.68 0.08 -2.17 85 

 PolarDesign2019 0.48 0.69 0.06 -2.31 77 

ref2015 legacy 0.30 0.66 0.08 -3.24 149 

 PolarDesign2019 0.43 0.69 0.05 -3.51 136 

 PolarDesign2019 (HBNet) 0.47 0.69 0.05 -3.38 107 
beta_nov16 legacy 0.33 0.65 0.06 -2.88 181 

 PolarDesign2019 0.40 0.68 0.06 -3.22 174 
 
Table 4.1 Computational design quality metrics for native interface redesigns using different 
methods. Note that it is meaningless to compare the Per Residue Energy numbers across different 
score functions; we can only compare Per Residue Energy values between different FastDesign 
protocols within the same score function. The handpicked favorites are in bold and the current 
standard protocol is italicized. The first candidate (score12/legacy) is the protocol used to design 
the interfaces analyzed by Stranges et al.2 All numbers are medians across all 373 interfaces. Score 
functions are listed in chronological order of development. 
 

 The first entry of Table 4.1 confirms the pattern that Stranges et al. reported.2 Legacy 

FastDesign using score12 creates interfaces with native-like packing quality and native-like polar 

residue concentration, but it is poorly equipped to find hydrogen bonding partners for the polar 

atoms. Over twice as many polar atoms are unsatisfied in these designs than what we observe in 

native protein-protein interfaces. 

The results in Table 4.1 show a trend towards hydrophobic design with the newer score 

functions. score12 designs interfaces with 51% polar residues whereas ref2015 drops that 

percentage to 30%. This can be remedied by using the PolarDesign2019 FastDesign protocol, 



 69 

which makes the interfaces more polar while also lowering the energy, increasing the packing 

quality, and decreasing the number of buried unsatisfied heavy atoms (unsats). Additionally, 

running MC HBNet prior to FastDesign further increases the number of polar residues without 

increasing the amount of buried unsats. MC HBNet does come with a mild decrease in projected 

stability, however. This is likely due to the fact that MC HBNet only optimizes for a small fraction 

of the final score terms when choosing mutations. 

 We handpicked two protocols that stood out as top performers and printed their results in 

bold in Table 4.1. Compared to the current standard (shown italicized), both of these protocols 

result in designs with improved polar residue densities, improved packing qualities, and improved 

levels of hydrogen bond satisfaction at the interface. In fact, all three of these metrics are near or 

better than the level observed at native interfaces. 

Both of these protocols are also noticeably faster than the current standard. For stochastic 

protocols with large sample spaces such as interface design, one of the best ways to improve your 

results is to run the protocol more times.3 We did not explicitly seek out this speed-up, but it does 

give potential users the sampling benefit of running more design trajectories without costing them 

more CPU-time. 

When we compare the bold lines in Table 4.1 with the first entry (score12/legacy), we see 

that the new protocols are able to roughly match the properties of the score12/legacy entry but 

decrease the number of unsatisfied polar atoms at the interface by a factor of 2. This is a success 

within the scope of this benchmark because these new protocols directly address the concerns that 

Stranges et al.2 raised about buried unsatisfied polar atoms without sacrificing other properties of 

the interface. 

 



 70 

4.3 Top Trajectory Test 

4.3.1 Methods 

4.3.1.1 Structure Generation 

The six structures used for this benchmark are a random subset of the Decoy Interface set 

in section 3.6.1. Each structure has one natively occurring protein chain and one de novo chain 

generated by SEWING.15 For this benchmark, the native chain is restricted to its native sequence 

and the de novo chain is allowed to make unlimited mutations. 

 

4.3.1.2 Running Rosetta 

 The Rosetta work in this section is nearly identical to the process described in section 

4.2.1.2. One primary difference is that the Rosetta XML script is broken up into phases for this 

test (see section 4.5.2). All starting structures are preprocessed by running add_labels.xml, which 

decides which residues are allowed to be designed, and which residues are at the interface.  

 When benchmarking protocols with MC HBNet, the structures are then run with hbnet.xml. 

This script is run once per protocol (using command line flag ‘-nstruct 1’) and will output up to 

100 structures, each with a different hydrogen bond network. 

 All structures are then run with run.xml. When benchmarking protocols without MC 

HBNet, run.xml is executed 1000 times for each structure (‘-nstruct 1000’) resulting in 1000 

designed structures for each of the six starting structures. Protocols with HBNet already have 100 

states per benchmarking structure, so each of those states are executed with run.xml only 10 times 

(‘-nstruct 10’) to result in a total of 1000 structures. 

 We also introduced a third FastDesign variant: InterfaceDesign2019, an intermediate state 

between legacy and PolarDesign2019. InterfaceDesign2019 has the same repulsive weight 



 71 

ramping as PolarDesign2019 but does not have any reference weight ramping. Please see Chapter 

3 for more details. 

 

4.3.1.3 Evaluating Results 

 Each of the six starting interfaces will have 1000 candidate designs for each protocol. For 

each of the six interfaces, we picked the one design out of the 1000 that scored the best by Rosetta’s 

score function ref201510, specifically the score per interface residue metric reported by the 

Interface Analyzer.2 These best scoring structures were measured using three of the metrics from 

the “Average Trajectory Test”: score per residue, interface polarity (fraction of interface residues 

that are classified as polar), and the number of unsatisfied heavy polar atoms at the interface. Please 

refer to section 4.2.1.3 for greater detail on these metrics. 

 

4.3.2 Results and Discussion 

The measurements in Table 4.1 represent the quality of an average trajectory, but we are 

also concerned with comparing the highest-quality trajectories for a given protocol. Computational 

protein designers are generally willing to run hundreds or thousands of trajectories to get only a 

handful of designs, so the average design trajectory does not need to be successful so long as the 

best designs are worthwhile. 

We performed the “Top Trajectory Test” which ran FastDesign on a set of non-native 

interfaces (de novo binder to native target, labeled a-f in Table 4.2) 1000 times for each protocol 

to match the size of a realistic production run. The lowest scoring design from each set of 

trajectories is analyzed in Table 4.2. For this test, we performed all runs using the ref2015 score 



 72 

function. Reversion to talaris2013 had promising results in the previous test but we decided to 

stick with ref2015 for this more in-depth look as it is the current default score function. 

As mentioned in Chapter 3, there are two differences between the legacy and 

PolarDesign2019 protocols: repulsive weight ramping and reference weight ramping. For this test, 

we are including an intermediary named InterfaceDesign2019. The only difference between legacy 

and InterfaceDesign2019 is the repulsive weight ramping and the only difference between 

InterfaceDesign2019 and PolarDesign2019 is the reference weight ramping. 

 

  
Score Per Interface 

Residue (REU) 
Interface 
Polarity 

Unsatisfied Heavy Polar 
Atoms Per Interface Residue 

A legacy -3.21 0.16 0.11 
 InterfaceDesign2019 -3.48 0.28 0.12 
 PolarDesign2019 -3.44 0.28 0.07 
 PolarDesign2019 (HBNet) -3.35 0.59 0.06      

b legacy -3.29 0.41 0.08 
 InterfaceDesign2019 -3.57 0.30 0.11 
 PolarDesign2019 -3.62 0.54 0.11 
 PolarDesign2019 (HBNet) -3.59 0.57 0.05      
c legacy -3.13 0.27 0.07 
 InterfaceDesign2019 -3.73 0.30 0.06 
 PolarDesign2019 -3.48 0.49 0.07 
 PolarDesign2019 (HBNet) -3.37 0.43 0.10 
     

d legacy -3.40 0.27 0.11 
 InterfaceDesign2019 -3.68 0.30 0.06 
 PolarDesign2019 -3.67 0.57 0.06 
 PolarDesign2019 (HBNet) -3.58 0.41 0.07 
     

e legacy -3.34 0.15 0.06 
 InterfaceDesign2019 -3.61 0.23 0.07 
 PolarDesign2019 -3.62 0.46 0.05 
 PolarDesign2019 (HBNet) -3.56 0.54 0.05      
f legacy -3.51 0.22 0.08 
 InterfaceDesign2019 -4.05 0.35 0.05 
 PolarDesign2019 -4.00 0.43 0.06 
 MCHBNet PolarDesign2019 -4.03 0.57 0.08 

 
Table 4.2 Results of “Top Trajectory Test”. Current standard protocol is named “legacy”, 
handpicked favorites for each case are shown in bold.  
 



 73 

Using non-native interfaces gives us the benefit of distinguishing between poor sampling 

and under-sampling. A protocol that did absolutely nothing to the protein would look good in 

Table 4.1 because the output of the native protein would be very native-like. The native interfaces 

already have native-like qualities so a null-operation would output native-like designs. That same 

protocol would be exposed as weak in this next test because these non-native interfaces do not 

have a stable starting point. Rosetta needs to be able to sample well in order to be impressive here. 

Recall that native interfaces have 52% polar residues on average. Our goal was to sample 

designs that had close to that concentration without sacrificing stability. Based on the combination 

of score and interface polarity, the legacy and InterfaceDesign2019 protocols did not perform as 

well as PolarDesign2019. PolarDesign2019 without MC HBNet was able to design the hand-

picked favorite interfaces in cases ‘c’ and ‘d’ but benefited from being preceded by MC HBNet in 

cases ‘a’ and ‘b’. 

In case ‘a’, MC HBNet was able to boost interface polarity from 28% to 59% at a cost less 

than 0.1 REU/residue. PolarDesign2019 designs were polar enough alone in case ‘b’, but MC 

HBNet was able to decrease the number of polar unsatisfied atoms at the interface by a factor of 

two. We deemed ‘e’ and ‘f’ to be toss-ups with regards to MC HBNet. 

 

4.4 Conclusion 

For the scope of this project, these benchmarks show success. Stranges et al. originally 

reported that Rosetta introduces too many unsatisfied polar atoms when making polar interfaces, 

such that only Rosetta’s hydrophobic interface designs were consistently stable.2 Our new 

FastDesign variants with the optional help of MC HBNet and the utilization of a modern score 

function were able to design polar interfaces with half of the number of unsatisfied polar atoms 



 74 

compared to the technique Stranges et al. audited, all without sacrificing interface packing quality 

or polarity (Table 4.1, compare the score12/legacy line to the lines in bold). 

When we took a deeper look at production runs using the modern default score function, 

our new protocols were able to design interfaces with native-like interface polarity while resulting 

in fewer unsatisfied polar atoms than even Rosetta’s more hydrophobic interface designs (and a 

more favorable Rosetta score to boot). This shows us that we have improved Rosetta’s ability to 

sample hydrogen bonding partners and thus more promising polar interface designs. 

Albeit, there is a limit to amount that we can learn from these computational benchmarks. 

Success within the Rosetta score function does not always result in success in the test tube. 

Stronger conclusions will be made when PolarDesign2019 and MC HBNet are used for the design 

of interfaces that undergo experimental testing.  

 

 
4.5 Supplemental Information 

4.5.1 Rosetta Scripts for “Average Trajectory Test” 

FastDesign.xml 

<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <ResiduePDBInfoHasLabel name="interface" property="INTERFACE" /> 
    <ResiduePDBInfoHasLabel name="design"    property="DESIGN" /> 
    <ResiduePDBInfoHasLabel name="repack"    property="REPACK" /> 
    <ResiduePDBInfoHasLabel name="fixed"     property="FIXED" /> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <ExtraRotamersGeneric name="extra_chi" ex1="1" ex2="1" /> 
    <IncludeCurrent name="incl_curr" /> 
    <SetIGType name="lin<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <Layer name="core_res" select_core="1" select_boundary="0" select_surface="0" /> 
    <Not name="not_core_res" selector="core_res"/> 
 



 75 

    <StoredResidueSubset name="original_core" subset_name="core" /> 
 
    <Chain name="chain1" chains="1"/> 
    <Chain name="chain2" chains="2"/> 
    <InterfaceByVector name="interface" grp1_selector="chain1" 
grp2_selector="chain2"/> 
    <StoredResidueSubset name="original_interface" subset_name="intfc" /> 
    <Not name="not_interface" selector="original_interface"/> 
    <Not name="two_sided_design" selector="original_interface"/> 
 
    <Or name="one_sided_design" selectors="not_interface,chain2"/> 
 
    <Or name="relax_only" selectors="chain1,chain2"/> 
 
    <Not name="designable" selector="%%case%%"/> 
 
    <ResiduePDBInfoHasLabel name="hbnet" property="HBNet"/> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <DisallowIfNonnative name="no_big_polars" disallow_aas="RKHNQDE"/> 
 
    <DisallowIfNonnative name="no_polars" disallow_aas="RKHNQDESTY"/> 
 
    <IncludeCurrent name="keep_curr"/> 
 
    <ExtraRotamersGeneric name="extrachi" 
     ex1="1" ex2="1" ex3="0" ex4="0" 
     ex1_sample_level="1" ex2_sample_level="1" ex3_sample_level="0" 
ex4_sample_level="0" 
     extrachi_cutoff="18"/> 
 
    <OperateOnResidueSubset name="repack_non_interface" selector="one_sided_design"> 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="fix_non_interface" selector="not_interface"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <SetIGType name="linmem_ig" lin_mem_ig="true"/> 
 
    <OperateOnResidueSubset name="fix_hbnet" selector="hbnet"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
  </TASKOPERATIONS> 
 
  <SCOREFXNS> 
    <ScoreFunction name="sfxn" weights="%%sfxn%%"/> 
  </SCOREFXNS> 
 
  <SIMPLE_METRICS> 
    <TimingProfileMetric name="timing" /> 
    <SelectedResidueCountMetric name="interface_size" residue_selector="interface" /> 



 76 

    <SequenceMetric name="seq" residue_selector="original_interface" /> 
    <SequenceMetric name="des_seq" residue_selector="designable" /> 
  </SIMPLE_METRICS> 
 
  <FILTERS> 
    <BuriedUnsatHbonds name="buh_sc_heavy" report_sc_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface"/> 
    <BuriedUnsatHbonds name="buh_bb_heavy" report_bb_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface"/> 
    <BuriedUnsatHbonds name="buh_H" report_nonheavy_unsats="true" cutoff="99999" 
residue_selector="interface"/> 
 
    <ResidueCount name="run_num_polars_des" include_property="POLAR,CHARGED" 
residue_selector="designable" /> 
    <ResidueCount name="num_designable" residue_selector="designable" /> 
 
    <ReadPoseExtraScoreFilter name="read_preNumPolar" term_name="preNumPolar" 
threshold="99999"/> 
    <ReadPoseExtraScoreFilter name="read_postNumPolar" term_name="postNumPolar" 
threshold="99999"/> 
 
    <CalculatorFilter name="change_in_polar_count" equation="A - B" threshold="99999" 
> 
      <Var name="A" filter="read_postNumPolar"/> 
      <Var name="B" filter="read_preNumPolar"/> 
    </CalculatorFilter> 
 
    <CalculatorFilter name="percent_change_in_polar_count" equation="( A - B ) / C" 
threshold="99999" > 
      <Var name="A" filter="read_postNumPolar"/> 
      <Var name="B" filter="read_preNumPolar"/> 
      <Var name="C" filter="num_designable"/> 
    </CalculatorFilter> 
 
  </FILTERS> 
 
  <MOVERS> 
    <StoreResidueSubset name="store_core" subset_name="core" 
residue_selector="core_res" overwrite="1" /> 
    <StoreResidueSubset name="store_interface" subset_name="intfc" 
residue_selector="interface" overwrite="1" /> 
 
    <VirtualRoot name="vr" /> 
    <AddConstraintsToCurrentConformationMover name="cc" bound_width="0" CA_only="1" /> 
 
    <FastDesign name="RelaxDesign" repeats="5" disable_design="false" scorefxn="sfxn" 
task_operations="keep_curr,repack_non_interface,extrachi,linmem_ig,fix_non_interface" 
relaxscript="%%script%%"/> 
    <InterfaceAnalyzerMover name="IfaceAnalyzer" scorefxn="sfxn" packstat="1" 
interface_sc="1" pack_input="0" pack_separated="1" jump="1" tracer="false" /> 
 
    <FilterReportAsPoseExtraScoresMover name="preBUNS1" 
report_as="BUNS_sc_heavy_before" filter_name="buh_sc_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="preBUNS2" 
report_as="BUNS_bb_heavy_before" filter_name="buh_bb_heavy"/> 



 77 

    <FilterReportAsPoseExtraScoresMover name="preBUNS3" report_as="BUNS_H_before" 
filter_name="buh_H"/> 
 
    <FilterReportAsPoseExtraScoresMover name="BUNS1" report_as="BUNS_sc_heavy_after" 
filter_name="buh_sc_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS2" report_as="BUNS_bb_heavy_after" 
filter_name="buh_bb_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS3" report_as="BUNS_H_after" 
filter_name="buh_H"/> 
 
    <FilterReportAsPoseExtraScoresMover name="preNumPolar" report_as="preNumPolar" 
filter_name="run_num_polars_des"/> 
    <FilterReportAsPoseExtraScoresMover name="postNumPolar" report_as="postNumPolar" 
filter_name="run_num_polars_des"/> 
 
    <FilterReportAsPoseExtraScoresMover name="CalcChangeInPolarCount" 
report_as="dNumPolar" filter_name="change_in_polar_count"/> 
    <FilterReportAsPoseExtraScoresMover name="CalcChangeInPolarFrac" 
report_as="dFracPolar" filter_name="percent_change_in_polar_count"/> 
 
    <RunSimpleMetrics name="t1" metrics="timing" prefix="t1_" /> 
    <RunSimpleMetrics name="t2" metrics="timing" prefix="t2_" /> 
    <RunSimpleMetrics name="rsm" metrics="interface_size" prefix="int_size_" /> 
 
    <RunSimpleMetrics name="seq1" metrics="seq" prefix="int_seq_before" /> 
    <RunSimpleMetrics name="seq1a" metrics="des_seq" prefix="des_seq_before" /> 
    RunSimpleMetrics name="npol1" metrics="num_polars_des" 
prefix="num_polars_des_before" 
 
    <RunSimpleMetrics name="seq2" metrics="seq" prefix="int_seq_after" /> 
    <RunSimpleMetrics name="seq2a" metrics="des_seq" prefix="des_seq_after" /> 
    RunSimpleMetrics name="npol2" metrics="num_polars_des" 
prefix="num_polars_des_after" 
  </MOVERS> 
 
  <PROTOCOLS> 
    Add mover="vr" 
    Add mover="cc" 
 
    <Add mover="store_core"/> 
    <Add mover="store_interface"/> 
    <Add mover="rsm"/> 
    <Add mover="seq1"/> 
    <Add mover="seq1a"/> 
    <Add mover="preNumPolar"/> 
 
    <Add mover="preBUNS1"/> 
    <Add mover="preBUNS2"/> 
    <Add mover="preBUNS3"/> 
 
    <Add mover="t1"/> 
    <Add mover="RelaxDesign"/> 
    <Add mover="t2"/> 
    <Add mover="IfaceAnalyzer"/> 
 



 78 

    <Add mover="seq2"/> 
    <Add mover="seq2a"/> 
    <Add mover="postNumPolar"/> 
 
    <Add mover="BUNS1"/> 
    <Add mover="BUNS2"/> 
    <Add mover="BUNS3"/> 
 
    <Add mover="CalcChangeInPolarFrac"/> 
    <Add mover="CalcChangeInPolarCount"/> 
  </PROTOCOLS> 
 
  <OUTPUT scorefxn="sfxn"/> 
</ROSETTASCRIPTS> 
 
  
  



 79 

FastDesign.HBNet.xml 

<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <Layer name="core_res" select_core="1" select_boundary="0" select_surface="0" /> 
    <Not name="not_core_res" selector="core_res"/> 
 
    <StoredResidueSubset name="original_core" subset_name="core" /> 
 
    <Chain name="chain1" chains="1"/> 
    <Chain name="chain2" chains="2"/> 
    <InterfaceByVector name="interface" grp1_selector="chain1" 
grp2_selector="chain2"/> 
    <StoredResidueSubset name="original_interface" subset_name="intfc" /> 
    <Not name="not_interface" selector="original_interface"/> 
    <Not name="two_sided_design" selector="original_interface"/> 
 
    <Or name="one_sided_design" selectors="not_interface,chain2"/> 
 
    <Or name="relax_only" selectors="chain1,chain2"/> 
 
    <Not name="designable" selector="%%case%%"/> 
 
    <ResiduePDBInfoHasLabel name="hbnet" property="HBNet"/> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <DisallowIfNonnative name="no_big_polars" disallow_aas="RKHNQDE"/> 
 
    <DisallowIfNonnative name="no_polars" disallow_aas="RKHNQDESTY"/> 
 
    <IncludeCurrent name="keep_curr"/> 
 
    <ExtraRotamersGeneric name="extrachi" ex1="1" ex2="1" ex3="0" ex4="0" 
     ex1_sample_level="1" ex2_sample_level="1" ex3_sample_level="0" 
ex4_sample_level="0" extrachi_cutoff="18"/> 
 
    <OperateOnResidueSubset name="repack_non_interface" selector="one_sided_design"> 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="fix_non_interface" selector="not_interface"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <SetIGType name="linmem_ig" lin_mem_ig="true"/> 
 
    <OperateOnResidueSubset name="fix_hbnet" selector="hbnet"> 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
  </TASKOPERATIONS> 
 



 80 

  <SCOREFXNS> 
    <ScoreFunction name="sfxn" weights="%%sfxn%%"/> 
  </SCOREFXNS> 
 
  <SIMPLE_METRICS> 
    <TimingProfileMetric name="timing" /> 
    <SelectedResidueCountMetric name="interface_size" residue_selector="interface" /> 
    <SequenceMetric name="seq" residue_selector="original_interface" /> 
    <SequenceMetric name="des_seq" residue_selector="designable" /> 
  </SIMPLE_METRICS> 
 
  <FILTERS> 
    <BuriedUnsatHbonds name="buh_sc_heavy" report_sc_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface"/> 
    <BuriedUnsatHbonds name="buh_bb_heavy" report_bb_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface"/> 
    <BuriedUnsatHbonds name="buh_H" report_nonheavy_unsats="true" cutoff="99999" 
residue_selector="interface"/> 
 
    <ResidueCount name="run_num_polars_des" include_property="POLAR,CHARGED" 
residue_selector="designable" /> 
    <ResidueCount name="num_designable" residue_selector="designable" /> 
 
    <ReadPoseExtraScoreFilter name="read_preNumPolar" term_name="preNumPolar" 
threshold="99999"/> 
    <ReadPoseExtraScoreFilter name="read_postNumPolar" term_name="postNumPolar" 
threshold="99999"/> 
 
    <CalculatorFilter name="change_in_polar_count" equation="A - B" threshold="99999" 
> 
      <Var name="A" filter="read_postNumPolar"/> 
      <Var name="B" filter="read_preNumPolar"/> 
    </CalculatorFilter> 
 
    <CalculatorFilter name="percent_change_in_polar_count" equation="( A - B ) / C" 
threshold="99999" > 
      <Var name="A" filter="read_postNumPolar"/> 
      <Var name="B" filter="read_preNumPolar"/> 
      <Var name="C" filter="num_designable"/> 
    </CalculatorFilter> 
 
  </FILTERS> 
 
  <MOVERS> 
    <StoreResidueSubset name="store_core" subset_name="core" 
residue_selector="core_res" overwrite="1" /> 
    <StoreResidueSubset name="store_interface" subset_name="intfc" 
residue_selector="interface" overwrite="1" /> 
 
    <VirtualRoot name="vr" /> 
    <AddConstraintsToCurrentConformationMover name="cc" bound_width="0" CA_only="1" /> 
 
    <FastDesign name="RelaxDesign" repeats="5" disable_design="false" scorefxn="sfxn" 
task_operations="keep_curr,repack_non_interface,extrachi,linmem_ig,fix_non_interface,
fix_hbnet" relaxscript="%%script%% "/> 



 81 

    <HBNetStapleInterface hb_threshold="-0.65" store_network_scores_in_pose="true" 
secondary_threshold="-0.5" write_cst_files="false" max_network_size="100" 
max_unsat_Hpol="3" design_residues="STKHYWNQDE"  monte_carlo="true" 
total_num_mc_runs="100000" 
task_operations="keep_curr,repack_non_interface,extrachi,fix_non_interface" 
scorefxn="sfxn" name="HBNet" max_networks_per_pose="10" min_networks_per_pose="1" 
allow_no_hbnets="true"/> 
 
 
    <InterfaceAnalyzerMover name="IfaceAnalyzer" scorefxn="sfxn" packstat="1" 
interface_sc="1" pack_input="0" pack_separated="1" jump="1" tracer="false" /> 
 
    <FilterReportAsPoseExtraScoresMover name="preBUNS1" 
report_as="BUNS_sc_heavy_before" filter_name="buh_sc_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="preBUNS2" 
report_as="BUNS_bb_heavy_before" filter_name="buh_bb_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="preBUNS3" report_as="BUNS_H_before" 
filter_name="buh_H"/> 
 
    <FilterReportAsPoseExtraScoresMover name="BUNS1" report_as="BUNS_sc_heavy_after" 
filter_name="buh_sc_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS2" report_as="BUNS_bb_heavy_after" 
filter_name="buh_bb_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS3" report_as="BUNS_H_after" 
filter_name="buh_H"/> 
 
    <FilterReportAsPoseExtraScoresMover name="preNumPolar" report_as="preNumPolar" 
filter_name="run_num_polars_des"/> 
    <FilterReportAsPoseExtraScoresMover name="postNumPolar" report_as="postNumPolar" 
filter_name="run_num_polars_des"/> 
 
    <FilterReportAsPoseExtraScoresMover name="CalcChangeInPolarCount" 
report_as="dNumPolar" filter_name="change_in_polar_count"/> 
    <FilterReportAsPoseExtraScoresMover name="CalcChangeInPolarFrac" 
report_as="dFracPolar" filter_name="percent_change_in_polar_count"/> 
 
    <RunSimpleMetrics name="t1" metrics="timing" prefix="t1_" /> 
    <RunSimpleMetrics name="t2" metrics="timing" prefix="t2_" /> 
    <RunSimpleMetrics name="rsm" metrics="interface_size" prefix="int_size_" /> 
 
    <RunSimpleMetrics name="seq1" metrics="seq" prefix="int_seq_before" /> 
    <RunSimpleMetrics name="seq1a" metrics="des_seq" prefix="des_seq_before" /> 
    RunSimpleMetrics name="npol1" metrics="num_polars_des" 
prefix="num_polars_des_before" 
 
    <RunSimpleMetrics name="seq2" metrics="seq" prefix="int_seq_after" /> 
    <RunSimpleMetrics name="seq2a" metrics="des_seq" prefix="des_seq_after" /> 
    RunSimpleMetrics name="npol2" metrics="num_polars_des" 
prefix="num_polars_des_after" 
  </MOVERS> 
 
  <PROTOCOLS> 
    Add mover="vr" 
    Add mover="cc" 
 



 82 

    <Add mover="store_core"/> 
    <Add mover="store_interface"/> 
    <Add mover="rsm"/> 
    <Add mover="seq1"/> 
    <Add mover="seq1a"/> 
    <Add mover="preNumPolar"/> 
 
    <Add mover="preBUNS1"/> 
    <Add mover="preBUNS2"/> 
    <Add mover="preBUNS3"/> 
 
    <Add mover="t1"/> 
    <Add mover="HBNet"/> 
    <Add mover="RelaxDesign"/> 
    <Add mover="t2"/> 
    <Add mover="IfaceAnalyzer"/> 
 
    <Add mover="seq2"/> 
    <Add mover="seq2a"/> 
    <Add mover="postNumPolar"/> 
 
    <Add mover="BUNS1"/> 
    <Add mover="BUNS2"/> 
    <Add mover="BUNS3"/> 
 
    <Add mover="CalcChangeInPolarFrac"/> 
    <Add mover="CalcChangeInPolarCount"/> 
  </PROTOCOLS> 
 
  <OUTPUT scorefxn="sfxn"/> 
</ROSETTASCRIPTS> 
  



 83 

4.5.2 Rosetta Scripts for “Top Trajectory Test” 

add_labels.xml: 

<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <Chain             name="chain1" chains="1"/> 
    <Chain             name="chain2" chains="2"/> 
    <InterfaceByVector name="interface" grp1_selector="chain1" 
grp2_selector="chain2"/> 
    <And               name="design" selectors="interface,chain1"/> 
    <And               name="repack" selectors="interface,chain2"/> 
    <Not               name="fixed"  selector="interface"/> 
  </RESIDUE_SELECTORS> 
 
  <MOVERS> 
    <AddResidueLabel name="interface_label" residue_selector="interface" 
label="INTERFACE"/> 
    <AddResidueLabel name="design_label"    residue_selector="design"    
label="DESIGN"/> 
    <AddResidueLabel name="repack_label"    residue_selector="repack"    
label="REPACK"/> 
    <AddResidueLabel name="fixed_label"     residue_selector="fixed"     
label="FIXED"/> 
  </MOVERS> 
 
  <PROTOCOLS>  
    <Add mover="interface_label"/> 
    <Add mover="design_label"/> 
    <Add mover="repack_label"/> 
    <Add mover="fixed_label"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
 

  



 84 

hbnet.xml: 

<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <ResiduePDBInfoHasLabel name="interface" property="INTERFACE" /> 
    <ResiduePDBInfoHasLabel name="design"    property="DESIGN" /> 
    <ResiduePDBInfoHasLabel name="repack"    property="REPACK" /> 
    <ResiduePDBInfoHasLabel name="fixed"     property="FIXED" /> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <ExtraRotamersGeneric name="extra_chi" ex1="1" ex2="1" /> 
    <IncludeCurrent name="incl_curr" /> 
    <SetIGType name="linmem_ig" lin_mem_ig="true" /> <!-- -linmem_ig 10 --> 
 
    <OperateOnResidueSubset name="fix" selector="fixed" > 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="repack_only" selector="repack" > 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
  </TASKOPERATIONS> 
 
  <MOVERS> 
    <HBNetStapleInterface name="hbnet" monte_carlo="true" scorefxn="commandline" 
hb_threshold="-0.6" min_networks_per_pose="1" store_network_scores_in_pose="true" 
minimize="false" task_operations="extra_chi,incl_curr,fix,repack_only" 
total_num_mc_runs="100000"/> 
    <MultiplePoseMover name="limit_to_100" max_input_poses="100"/> 
  </MOVERS> 
 
  <PROTOCOLS> 
    <Add mover="hbnet"/> 
    <Add mover="limit_to_100"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
 

  



 85 

run.xml: 

<ROSETTASCRIPTS> 
 
  <RESIDUE_SELECTORS> 
    <ResiduePDBInfoHasLabel name="interface" property="INTERFACE" /> 
    <ResiduePDBInfoHasLabel name="design"    property="DESIGN" /> 
    <ResiduePDBInfoHasLabel name="repack"    property="REPACK" /> 
    <ResiduePDBInfoHasLabel name="fixed"     property="FIXED" /> 
    <ResiduePDBInfoHasLabel name="hbnet"     property="HBNet" /> 
 
    <ResiduePropertySelector name="polar" properties="POLAR,CHARGED" logic="or_logic" 
/> 
    <And name="polar_at_designable_interface" selectors="polar,design"/> 
  </RESIDUE_SELECTORS> 
 
  <TASKOPERATIONS> 
    <ExtraRotamersGeneric name="extra_chi" ex1="1" ex2="1" /> 
    <IncludeCurrent name="incl_curr" /> 
    <SetIGType name="linmem_ig" lin_mem_ig="true" /> 
 
    <OperateOnResidueSubset name="fix" selector="fixed" > 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="fix_hbnet" selector="hbnet" > 
      <PreventRepackingRLT/> 
    </OperateOnResidueSubset> 
 
    <OperateOnResidueSubset name="repack_only" selector="repack" > 
      <RestrictToRepackingRLT/> 
    </OperateOnResidueSubset> 
  </TASKOPERATIONS> 
 
  <FILTERS> 
    <BuriedUnsatHbonds name="buh_sc_heavy" report_sc_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface" use_ddG_style="true"/> 
    <BuriedUnsatHbonds name="buh_bb_heavy" report_bb_heavy_atom_unsats="true" 
cutoff="99999" residue_selector="interface" use_ddG_style="true"/> 
    <BuriedUnsatHbonds name="buh_H" report_nonheavy_unsats="true" cutoff="99999" 
residue_selector="interface" use_ddG_style="true"/> 
  </FILTERS> 
 
  <SIMPLE_METRICS> 
    <SequenceMetric name="des_seq" residue_selector="design" /> 
    <SelectedResidueCountMetric name="n_polar" 
residue_selector="polar_at_designable_interface" /> 
    <SelectedResidueCountMetric name="n_designable" residue_selector="design" /> 
  </SIMPLE_METRICS> 
 
  <MOVERS> 
    <FastDesign name="design" relaxscript="%%script%%" scorefxn="commandline" 
task_operations="extra_chi,incl_curr,linmem_ig,fix,fix_hbnet,repack_only"/> 
 



 86 

    <InterfaceAnalyzerMover name="IfaceAnalyzer" scorefxn="commandline" packstat="1" 
interface_sc="1" pack_input="0" pack_separated="1" jump="1" tracer="false" /> 
    <FilterReportAsPoseExtraScoresMover name="BUNS1" report_as="BUNS_sc_heavy" 
filter_name="buh_sc_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS2" report_as="BUNS_bb_heavy" 
filter_name="buh_bb_heavy"/> 
    <FilterReportAsPoseExtraScoresMover name="BUNS3" report_as="BUNS_H" 
filter_name="buh_H"/> 
 
    <RunSimpleMetrics name="rsm1" metrics="des_seq" prefix="seq_" /> 
    <RunSimpleMetrics name="rsm2" metrics="n_polar" prefix="pol_" /> 
    <RunSimpleMetrics name="rsm3" metrics="n_designable" prefix="des_" /> 
  </MOVERS> 
 
  <PROTOCOLS> 
    <Add mover="design"/> 
 
    <Add mover="IfaceAnalyzer"/> 
    <Add mover="BUNS1"/> 
    <Add mover="BUNS2"/> 
    <Add mover="BUNS3"/> 
 
    <Add mover="rsm1"/> 
    <Add mover="rsm2"/> 
    <Add mover="rsm3"/> 
  </PROTOCOLS> 
 
</ROSETTASCRIPTS> 
 

 

 

  



 87 

REFERENCES 

1. Leaver-Fay, A. et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and 
Design of Macromolecules. Methods Enzymol. 487, 545–574 (2011). 

 
2. Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface 

designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 22, 74–
82 (2013). 

 
3. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid Sampling of Hydrogen 

Bond Networks for Computational Protein Design. J. Chem. Theory Comput. (2018) 
doi:10.1021/acs.jctc.8b00033. 

 
4. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape 

mapping. J Mol Biol 405, 607–618 (2011). 
 
5. Fleishman, S. J. et al. RosettaScripts: A Scripting Language Interface to the Rosetta 

Macromolecular Modeling Suite. (2011) doi:10.1371/journal.pone.0020161. 
 
6. Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. & Baker, D. Protein Structure Prediction 

Using Rosetta. Methods Enzymol. 383, 66–93 (2004). 
 
7. Kuhlman, B. et al. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. 

Science (80-. ). 302, 1364–1368 (2003). 
 
8. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function 

improvement. Methods in Enzymology vol. 523 (Elsevier Inc., 2013). 
 
9. O’Meara, M. J., Leaver-Fay, A. & Kuhlman, B. A Combined Covalent-Electrostatic 

Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J Chem Theory 
Comput 6, 356–372 (2015). 

 
10. Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling 

and Design. J. Chem. Theory Comput. 13, 3031–3048 (2017). 
 
11. InterGroupInterfaceByVector Documentation. 

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Resi
dueSelectors/ResidueSelectors#residueselectors_conformation-dependent-residue-
selectors_intergroupinterfacebyvector. 

 
12. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. 

Journal of Molecular Biology vol. 234 946–950 (1993). 
 
13. Kuroda, D. & Gray, J. J. Shape complementarity and hydrogen bond preferences in 

protein-protein interfaces: implications for antibody modeling and protein-protein 
docking. Bioinformatics 32, 2451–6 (2016). 



 88 

14. BuriedUnsatHbonds Documentation. 
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Filte
rs/filter_pages/BuriedUnsatHbondsFilter. 

 
15. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for Requirement-

Driven Protein Design in the Rosetta Modeling Program. J. Chem. Inf. Model. 58, 895–
901 (2018). 

 



 89 

CHAPTER 5: Using a Deep Neural Network to Improve Low-Resolution Modeling of 
Protein-Protein Interactions Prior to Design 

 

5.1 Introduction 

5.1.1 Background 

Artificial neural networks have stormed the field of protein modeling in recent years, 

perhaps most notably with AlphaFold’s success in CASP13.1 While many of these developments 

are in the field of protein structure prediction,1–11 de novo protein design is seeing great advances 

as well.12–15 Scientists use machine learning to study underlying protein backbone patterns in 

protein crystal structures, then generate novel native-like backbones that can be stabilized through 

sequence design programs like Rosetta.16,17 This backbone-centric modeling is very powerful in 

terms of sampling large areas of de novo design space in a short amount of time. However, there 

are some design cases that still have room for improvement. 

 To date, all neural networks used for protein modeling either require each residue position 

to declare an amino acid identity or require each residue position to completely abandon its 

identity. An example of the former is AlphaFold, which assigns each residue an amino acid identity 

and then predicts how that protein folds based on its amino acids.1 An example of the latter is 

SCUBA, which only considers the quality of a protein conformation by its backbone.18 There is 

no explicit tool for hybrid cases such as docking prior to one-sided interface design, in which one 

protein’s residues are strictly fixed-sequence and the other protein is allowed to make mutations 

to improve binding strength. The best a user can do is use one of the two types of existing methods 

and hope that their docking tool works despite operating with incorrect or incomplete information. 



 90 

This is an imperfect solution to a big problem, namely protein interface design. In this paper we 

present a deep neural network that utilizes the complete information about each residue’s 

downstream amino acid identity options.  

 

5.1.2 Project Description 

 To accomplish this, we chose to build a system in the context of the Rosetta protein 

modeling software suite.16 Rosetta has recently been used in successful one-sided interface design 

projects,19,20 so we expected it to be a good medium for us to accomplish this task. Traditionally, 

users employ score3,21 Rosetta’s low-resolution energy function, to model their proteins while they 

are in a low-resolution representation (meaning not every atom in the sidechain is modeled) in 

backbone-conformation-sampling cases like docking and loop modeling. score3 requires each 

residue to have an amino acid identity, so designable residues are generally represented as a mid-

sized, nonpolar amino acid like valine. This is a drawback because it deprives Rosetta of important 

information. Rosetta expects each residue to end up having a mid-sized, nonpolar sidechain and 

makes structural decisions around that assumption. We plan to replace score3 with a system that 

tells Rosetta which residues are designable and, for the designable residues, which amino acids are 

available at each position. 

 Unlike score3, our new tool MOUSE (Model Of Ultimate Surface Energy) will not be 

pairwise-decomposable;21 it will assign a score to each surface residue by collectively considering 

every other residue in the immediate environment. We chose to implement this by performing ray 

casting. Each residue is represented by a single sphere and casts rays in all directions from the 

center of its sphere (roughly the center of mass for that residue). Each ray travels in space until it 

hits a neighboring residue’s sphere, at which point it returns information regarding the residue it 



 91 

hit. This ray information is combined with information about the “source” residue and together 

they are fed into a neural network which predicts the final energy of the source residue after design 

(in Rosetta Energy Units, REU). 

 Our expectation is that this additional information about downstream amino acid identities 

will allow Rosetta to better establish favorable conformations in early pre-design stages such as 

docking and backbone sampling.  

 

5.2 Methods 

5.2.1 Ray Casting 

 A coordinate frame is defined for each residue such that the residue has a well-defined 

latitude and longitude framework. A ray is cast every 10 degrees longitude for all 360 degrees 

(resulting in 36 longitudinal values) and every 10 degrees latitude for 180 degrees (resulting in 19 

latitudinal values from -90 to +90 degrees). To prevent redundancy and increase resolution at the 

poles, no rays are cast at directly +90 or -90 degrees latitude, the north and south poles respectively. 

The latitudinal values of +90 and -90 degrees are replaced with +85 and -85 degrees (technically 

only spanning 170 degrees instead of 180). 

 During ray casting, each residue is represented by a sphere 3 Å in radius centered at the 

residue’s CB atom (all residues are temporarily converted to valine to ensure uniform CB atom 

placement). Each ray travels from the center of the residue being scored until it hits another residue 

or travels the maximum distance of 10 Å. Each ray returns 27 values when it hits another residue, 

some of which are illustrated in Figure 5.1. 

Values 1-20 are each mapped to an amino acid identity (1:ALA, 2:CYS, …, 20:TYR) and 

either adopt the value of 1 or 0. A value of 1 means that the residue position hit by the ray is 



 92 

allowed to adopt the amino acid being represented, either by mutating to that amino acid or being 

that amino acid natively. In this system, residues that are fully designable will return twenty 1’s 

when hit. Conversely, residues that are fixed sequence will return one 1 (at the position that 

represents the native amino acid for that residue) and nineteen 0’s. 

 
Figure 5.1 Visualization of ray casting geometries that are fed into the neural network. In this 
case, the residue being evaluated by the neural network is shown in yellow, a neighboring residue 
that is hit by the ray is shown in white, the ray being cast is shown in black, and the geometric 
feature being illustrated is shown in blue. The black circles are centers of the spheres. (A) angle 
between ray intersection point of the sphere and some arbitrary atom X. (B) Distance that the ray 
travels. (C) Distance between the centers of the two spheres. (D) Distance between the ray 
intersection point and the closest point on the ray to the neighboring sphere’s center. 
 

Values 21, 22, and 23 represent different variations of the angle shown in Figure 5.1.A. 

The angle is measured where the atom labeled X is the CA atom, C atom, and N atom. The other 

two vertices of the angle are the center of the sphere and the intersection point of the ray with the 

sphere’s surface. 

Value 24 is simply the distance traveled between the center of the sphere for the residue 

begin evaluated and the intersection point of the ray with the sphere that is hit (Figure 5.1.B). 

A B

DC

X



 93 

Similarly, Value 25 is the distance between the center of the sphere for the residue begin evaluated 

and the center of the sphere that is hit by the ray (Figure 5.1.C). Value 26 is the distance between 

the ray’s intersection point and the point on the ray that is closest to the hit sphere’s center (Figure 

5.1.D). The 27th and final value is a 1 if the residue being hit is an immediate sequence neighbor 

to the residue being evaluated (residue that is casting the ray) and a 0 otherwise. 

 

5.2.1.1 Additional Data Collected 

 MOUSE also considered 26 values regarding the residue being scored. Since these values 

are constant for each ray, they are not included in the ray information and are inserted into the 

neural network separately. Values 1-20 are identical to the first 20 values that each ray returns, 

except the logic is applied to the residue casting the rays instead of the residue being hit. Value 21 

is 1 if the residue is a C-terminus and 0 otherwise. Likewise, value 22 is 1 if the residue is a N-

terminus and 0 otherwise. Values 23-26 are the sine and cosine of the residue’s phi and psi angles. 

 

5.2.2 MOUSE Implementation 

We implemented two MOUSE neural networks: generation 1 and generation 2. The first 

generation is roughly 5 times slower than the second generation due to its neural network being 

several times larger. The specific architectures of each network are shown in sections 5.5.1 and 

5.5.2. Generation 1 had 741,046 trainable parameters and generation 2 had 66,202 trainable 

parameters. 

The networks each have two input tensors and one output tensor. One input tensor holds the 

result of the ray casting calculations and has a dimension 36 x 19 x 27 (the data is provided as 

18468 x 1 and reshaped immediately inside the network). The other input tensor holds various 



 94 

metrics about the residue being scored (as described in section 5.2.1.1) and has a dimension of 26 

x 1. The output tensor holds just a single element and that lone value represents the normalized 

predicted score for the residue being evaluated. Generation 1 uses Equation 5.1 to normalize its 

Rosetta energy prediction (marked as x) and Generation 2 uses Equation 5.2. The goal of these 

nonlinear normalizations methods is to make mispredictions in the -10 to -3 REU range more 

sensitive than mispredictions in the 100 to 500 REU range because the former range is where the 

majority of residues fall after FastDesign. The normalization method was changed after Generation 

1 in an effort to be more elegant. 

 

!"#$%(') = max(	ln(	ln(	max(10 + ', 1.00001)	)	) − 1,−1.4	)      Equation 5.1 

 

!"#$%(') = 78/:;<.= − 1           Equation 5.2 

 

5.2.3 Neural Network Training 

 Both generations were trained using the Adam22 optimizer with a mean squared error loss 

function and a learning rate of 0.001. Various learning rate schedules were tested but none resulted 

in improvement. Our batch sizes alternated between 32 and 64 depending on GPU memory 

restrictions. Network creation and training were executed using Keras23 with a TensorFlow24 

backend. The test set loss metric was measured by Keras during training. Training was manually 

terminated when we empirically determined the testing loss had either plateaued or started 

regressing. Due to our abundance of training data, both generation 1 and generation 2 plateaued 

before the end of the first epoch. 

 



 95 

5.2.3.1 Training Data 

We divided the top8000 protein structure library25 into two segments of size 5000 (training 

set) and 3000 (testing set). To generate data for either set, we randomly drew two single chains 

from the set and randomly docked them together. We then assigned each residue position on the 

surface of both proteins a random set of amino acids it could mutate to by drawing 20 random 

Booleans for each position, each Boolean determining if its respective amino acid was allowed at 

that position. To generate the expected output for the neural network, the protein underwent 

Rosetta’s fixed-backbone rotamer substitution protocol21 using a modified score function with a 

decreased repulsive weight and modified reference energies. This score function modification was 

intended to mimic the conditions of the first round of the PolarDesign2019 variant of FastDesign 

(see Chapter 3). The fixed-backbone rotamer substitution protocol was performed three times and 

the average energy for each residue over the three runs was taken. This entire process was repeated 

roughly 1,000,000 times in an effort to prevent the lack of training data from limiting our success. 

 

5.2.4 One-Sided Interface Design Benchmark 

For this test, we performed 5 production runs of SEWING26, each run giving us between 

100 and 2500 structures. The structures are composed of one de novo SEWING chain bound to a 

native G-alpha(q) binder as described in section 3.6.1. For the purposes of this test, the SEWING 

chain was allowed to make unlimited mutations and the native binder was restricted to its native 

sequence. 

We evaluated each structure with several low-resolution metrics: (1) score3,21 (2) a 

geometric hash-based term called “motif score”27 that is traditionally used by SEWING and other 

backbone-generating protocols,26 and (3) several variants of MOUSE as described below. For 



 96 

score3, residue positions that could be designed (in which mutations are legal) were represented 

as valine, as is commonly done by Rosetta users. We then fed these structures into FastDesign 

using an identical technique as is described in Chapter 4 (using ref201528 with PolarDesign2019, 

no MC HBNet29) to generate the high-resolution scores for each structure. Note that the MOUSE 

scores, the score3 scores, and the high-resolution scores were normalized by dividing by the 

number of residues in the entire protein complex. Motif scores are inherently normalized so they 

were left untouched. For each of the 5 production runs, we measured the Pearson correlation 

between the high-resolution score after design and each of the low-resolution metrics. 

We performed this benchmark with four variants of MOUSE. Generation 1 and Generation 

2 were both run twice. The first run was performed normally, recognizing that the SEWING chain 

was allowed to make mutations and the binder had a fixed sequence. The second run (labeled with 

an asterisk in Figure 5.2) had incomplete information; MOUSE was incorrectly told that both 

chains could make unlimited mutations. The difference in performance between the two runs for 

a given generation will represent the amount of performance gained by using the sequence 

information of the native binder; information that all other existing protein-design machine-

learning models ignore. 

For each of the five production runs of SEWING, we measured the Pearson correlations 

between the various low-resolution terms (score3, motif score, and various MOUSE terms) and 

the high-resolution post-design energy determined by FastDesign. These correlations are 

represented as box-and-whisker plots in Figure 5.2.  



 97 

5.3 Results and Discussion 

 
Figure 5.2 Correlation distributions between several low-resolution metrics and the final high-
resolution score after FastDesign. MOUSE runs with incomplete amino acid information are 
denoted with asterisks (*). 
 

We accumulated the results of 5 productions runs of SEWING, each with between 100 and 

2500 generated decoys. We evaluated each set with a handful of low-resolution metrics, then 

performed high-resolution design on them. The correlation between the low-resolution metrics and 

the final high-resolution score after design was measure for each production run, and the 

correlations across the 5 productions runs are represented in Figure 5.2. 

Rosetta’s default low-resolution scoring function, score3, has a poor correlation. To 

counter this, SEWING developers started using a geometric hash-based Motif Score, which we 

see greatly outperforms score3. Encouragingly, we see that both generations of MOUSE 

outperform SEWING’s own Motif Score for ranking SEWING designs.  

MOUSE’s advantage may be in part due to the Motif Score treating all residues as 

designable, thus being unable to use all of the information that MOUSE has available to it. We ran 

gen1* and gen2* of MOUSE to test this theory, both which operated under the false assumption 

Pe
ar

so
n 

Co
rr

el
at

io
n

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

score3

motif score

MOUSE gen1

MOUSE gen1*

MOUSE gen2

MOUSE gen2*



 98 

that all residues in the protein were able to mutate without restriction. This is the same assumption 

that the motif score operates under. Figure 5.2 shows that gen1* and gen2* dip in quality compared 

to gen1 and gen2 and are instead more comparable to the quality of the motif score. This suggests 

that the information about the fixed-sequence residues’ amino acid identities can measurably 

improve the accuracy of low-resolution score functions. It also suggests that this information is 

perhaps the only property of MOUSE that makes it outperform the motif score. gen1* and, to a 

lesser extent, gen2* are still slight improvements over the motif score but not by much. 

 

5.4 Conclusion and Future Work 

 In this chapter we showed that MOUSE is better at discriminating low-resolution interface 

decoys than the current gold standard of the motif score. This can be useful for saving significant 

amounts of computer time by eliminating candidate docking conformations without running 

expensive high-resolution packing protocols on them. 

 The benchmark shown in this chapter is a promising preliminary result, but we have plans 

to test MOUSE further. These plans include using MOUSE as a filter between docking and design 

phases of interface design for a project that will test these interfaces experimentally. We also plan 

to test MOUSE’s ability to guide docking trajectories by providing a more accurate energy 

landscape. Rosetta’s docking protocols all still use score3 as their default score function and we 

saw in Figure 5.2 just how poor score3 correlates with final design quality, so we will see if 

MOUSE can play a role there. 

  



 99 

5.5 Supplemental Information 

5.5.1 MOUSE Generation 1 Network Architecture 

 

Note: activation layers are not shown, but ReLU is present after every layer except “in1”, “in2”, 

“up_sampling3d”, “merge”, “flat”, and “output”. 



 100 

5.5.2 MOUSE Generation 2 Network Architecture 

  



 101 

5.5.3 Visualization of What MOUSE “Sees” 

 

Figure 5.S1 Realistic visualization of how MOUSE sees distance 

 

 Shown above is a partial representation of the ray-tracing data fed into MOUSE. This is a 

Mercator projection, with the x-axis corresponding to longitude and y-axis with latitude. Only ray-

travel distance is illustrated, with short distances darker than longer distances. Despite the 

distortion at the top and bottom caused by the Mercator projection, you can make out several 

circles. Each circle is a sphere that represents a neighboring residue. The residue being evaluated 

is at the source point for the ray tracing so it is not seen (in other words, it is the camera). The zig-

zag patterns around the edges of the circles (partially blurred by the compression of this image) is 

simply due to the low resolution of the data collection; casting rays more densely would produce 

rounder circles. 

 
 
 
 
 
 
  



 102 

 

Figure 5.S2 HD visualization of how MOUSE sees relative orientation 

 

 Shown here is a higher-resolution set of ray-tracing results with a similar camera format to 

Figure 5.S1. Instead of showing distance, this image shows the relative orientations of neighboring 

residues. Values 21, 22, and 23 (as described in section 5.2.1) are represented by the red, green, 

and blue channels of this image respectively. As a result, the black poles of each sphere illustrated 

where the backbone is centered and the white poles show where the sidechains are. 

 

 

  



 103 

REFERENCES 

1. Senior, A. W. et al. Protein structure prediction using multiple deep neural networks in the 
13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct. 
Funct. Bioinforma. 87, 1141–1148 (2019). 

 
2. Zhou, J. & Troyanskaya, O. G. Deep Supervised and Convolutional Generative Stochastic 

Network for Protein Secondary Structure Prediction. (2014). 
 
3. Yang, J. et al. Improved protein structure prediction using predicted inter-residue 

orientations. bioRxiv 846279 (2019) doi:10.1101/846279. 
 
4. Sønderby, S. K. & Winther, O. Protein Secondary Structure Prediction with Long Short 

Term Memory Networks. (2014). 
 
5. Ma, Y., Liu, Y. & Cheng, J. Protein secondary structure prediction based on data partition 

and semi-random subspace method. Sci. Rep. 8, (2018). 
 
6. Torrisi, M., Kaleel, M. & Pollastri, G. Porter 5: state-of-the-art ab initio prediction of 

protein secondary structure in 3 and 8 classes. bioRxiv 289033 (2018) 
doi:10.1101/289033. 

 
7. Xu, J. Distance-based Protein Folding Powered by Deep Learning. (2018). 
 
8. Gao, M., Zhou, H. & Skolnick, J. DESTINI: A deep-learning approach to contact-driven 

protein structure prediction. Sci. Rep. 9, (2019). 
 
9. AlQuraishi, M. End-to-End Differentiable Learning of Protein Structure. Cell Syst. 8, 292-

301.e3 (2019). 
 
10. Asgari, E., Poerner, N., McHardy, A. C. & Mofrad, M. R. K. DeepPrime2Sec: Deep 

Learning for Protein Secondary Structure Prediction from the Primary Sequences. bioRxiv 
705426 (2019) doi:10.1101/705426. 

 
11. Greener, J. G., Kandathil, S. M. & Jones, D. T. Deep learning extends de novo protein 

modelling coverage of genomes using iteratively predicted structural constraints. Nat. 
Commun. 10, (2019). 

 
12. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for 

protein engineering. Nature Methods vol. 16 687–694 (2019). 
 
13. Sabban, S. & Markovsky, M. RamaNet: Computational De Novo Protein Design using a 

Long Short-Term Memory Generative Adversarial Neural Network. bioRxiv 671552 
(2019) doi:10.1101/671552. 

 
 



 104 

14. Ingraham, J., Garg, V. K., Barzilay, R. & Csail, T. J. GENERATIVE MODELS FOR 
GRAPH-BASED PROTEIN DESIGN. 

 
15. O’Connell, J. et al. SPIN2: Predicting sequence profiles from protein structures using deep 

neural networks. Proteins Struct. Funct. Bioinforma. 86, 629–633 (2018). 
 
16. Leaver-Fay, A. et al. Rosetta3: An Object-Oriented Software Suite for the Simulation and 

Design of Macromolecules. Methods Enzymol. 487, 545–574 (2011). 
 
17. Kaufmann, K. W., Lemmon, G. H., Deluca, S. L., Sheehan, J. H. & Meiler, J. Practically 

Useful: What the ROSETTA Protein Modeling Suite Can Do for You. 
doi:10.1021/bi902153g. 

 
18. Huang, B., Xu, Y. & Liu, H. Combining statistical and neural network approaches to 

derive energy functions for completely flexible protein backbone design. bioRxiv 673897 
(2019) doi:10.1101/673897. 

 
19. Tinberg, C. E. & Khare, S. D. Computational Design of Ligand Binding Proteins. in 

Methods in molecular biology (Clifton, N.J.) vol. 1529 363–373 (2017). 
 
20. Leaver-Fay, A. et al. Computationally Designed Bispecific Antibodies using Negative 

State Repertoires. Structure 24, 641–651 (2016). 
 
21. Kuhlman, B. et al. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. 

Science (80-. ). 302, 1364–1368 (2003). 
 
22. Kingma, D. P. & Ba, J. L. Adam: A method for stochastic optimization. in 3rd 

International Conference on Learning Representations, ICLR 2015 - Conference Track 
Proceedings (International Conference on Learning Representations, ICLR, 2015). 

 
23. Keras. keras.io. 
 
24. Tensorflow. https://www.tensorflow.org. 
 
25. Keedy, D. A. et al. 8000 Filtered Structures. 

http://kinemage.biochem.duke.edu/databases/top8000.php (2012). 
 
26. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for Requirement-

Driven Protein Design in the Rosetta Modeling Program. J. Chem. Inf. Model. 58, 895–
901 (2018). 

 
27. Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible backbone 

protein–protein docking for challenging targets. Bioinformatics 34, 3461–3469 (2018). 
 
28. Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling 

and Design. J. Chem. Theory Comput. 13, 3031–3048 (2017). 



 105 

29. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid Sampling of Hydrogen 
Bond Networks for Computational Protein Design. J. Chem. Theory Comput. (2018) 
doi:10.1021/acs.jctc.8b00033. 

 

 


