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Time series analysis and forecasting is an essential part of any holistic data analysis. 

Many prediction challenges depend on correctly assessing how the data changes over 

time. Several examples of time-series analyses that are traditionally seen are of univariate 

type, but it is hardly the case in a real-world setting. Any time series is influenced by 

multiple components, which includes its past and other constant or variable factors. This 

project is aimed at understanding multivariate time series models using the non-

traditional time series analysis like clustering and sequence to sequence model using a 

long short-term memory architecture. The dataset on which this experiment is being 

applied is the Wikipedia web page traffic.  The dataset contains around 145000 web 

pages and corresponding web page traffic from July 2015 to December 2016. Findings 

based on the hierarchical clustering model are presented in this study.  
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BACKGROUND AND MOTIVATION 

The practice of understanding how data changes over time and to make predictions based 

on that knowledge has been prevalent almost since the beginning. Before we humans did 

it using our intuition, for example, to predict the weather in a geographical region and 

grow certain crops accordingly. But now, with all the computation power and the 

availability of data, this has become even more ubiquitous in any comprehensive, in-

depth data analysis. Applications of time series range from a) econometrics to understand 

and forecast a deal outcome b) in stock markets to predict the stock market movements c) 

behavioral science to understand how various factors affect mood at a certain point in 

time (Stock, 2001) d) others include heights of ocean tides, count of sunspots (Wikipedia, 

n.d.). Even with such a wide range of applications, a fundamental univariate time series 

analysis is a complex process. It involves decomposing a time series to extract relevant 

statistics and characteristics like moving average or regression. A typical decomposition 

an additive time series looks like: 



 

 

 

 

Figure 1: Time series decomposition 

The above plot shows the CO2 Level at Mauna Loa (CO₂ and Greenhouse Gas 

Emissions, n.d.) measures across several consecutive years. As can be seen, the first box 

shows the observed Co2 values, the second box shows the trend, the third box shows 

seasonality, and the last one is just some random noise that cannot be predicted. In order 

to forecast values, one must make use of such decomposition and predict the trends and 

seasonality separately or together. Such a process leads to creating multiple statistical 

models, which makes it complicated for the general audience and a few data analysts 

alike. This is true even for other approaches to time series analysis like frequency-based 

or Fast Fourier Transformation. The complexity of such a time series compounds when 

the analysis extends to multivariate time series. The above series is univariate as the CO2 
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level is dependent on a single variable, which is time. But add to this, factors such as 

temperature, humidity, wind speed, or other external factors, which is relevant in a real-

world scenario, the analysis would need to fine-tune further. Multivariate time series 

analysis uses techniques like Vector Autoregressive processes, which is an extension of 

the univariate autoregression model (Stock, 2001) or uses machine learning techniques 

like neural networks and SVM.  

Additionally, anytime series forecasting involves a single step prediction that predicts 

value at t+1. And a multi-step prediction, which predicts the value at 't+n,' where 'n' 

depends on the model and the requirement. As a part of this project, I have implemented 

a multivariate time series model that has a multi-step prediction.  

In the case of time series that are non-volatile, the analysis and forecasting using the 

traditional techniques that help understand trend and seasonality should suffice (Kotu & 

Deshpande, 2015). But in other cases, which is more frequent, it helps to create a more 

generalizable and dynamic technique that could factor in multiple inputs and outputs. The 

downside to making a generalizable model is that It becomes very brittle and inflexible 

(Taylor & Letham, n.d.). Moreover, in today's scenario where information is produced at 

petabytes per second (DATA NEVER SLEEPS 6.0, n.d.), analysis and forecasting are 

needed at a much faster rate than before. Also, since time series forecasting is still a niche 

subject, especially in the field of data analytics and data science, any high-quality 

forecasting requires considerable experience and manual effort. Looking at the above 

concerns, features like faster analysis, more expertise, transferable, and robust models are 

need of the hour in time series forecasting. 
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There is a certain amount of work that is being done in this field, for example, fakebooks' 

open-source Prophet, a forecasting tool that is available in R and Python. Prophet was 

conceived at Facebook and is optimized for the business forecast tasks encountered at 

Facebook (Taylor & Letham, n.d.).  The primary motivation of this study is to explore 

techniques that are generalizable, transferable, and give an excellent time series related 

insight to an audience that is not well-versed with traditional time series analysis. Even 

though I have created the study, I consider myself a suitable audience as well, because, to 

begin with, I didn't have much background in time series analysis. Through this study, I 

aimed to understand the underlying intricacies of such analyses. And put in a fashion 

which is easily understood by an audience with limited understanding of time series 

analysis. 



 

 

 

METHOD 

1.1 Data Collection 

The dataset for this project is taken from Kaggle. The dataset was produced three years 

ago as part of a competition that forecasts the future web traffic for approximately 

145,000 Wikipedia articles. The data is originally provided by Google Inc. in a simple 

two-dimensional matrix, which has dates as headers and values of page visits against 

each Wikipedia page. In essence, there are 145,000-time series, which is represented by 

each row. The dataset doesn't have a lot of information about the page except the name of 

the page, access type, and agent through which the webpage is accessed. The categories 

of type of "access" and "agent" are below: 

Types of access: Desktop, Mobile, All-access 

Types of agent: Spider, All agents  

The spider agent above refers to a web crawler. "A Web crawler, sometimes called 

a spider or spiderbot and often shortened to crawler, is an Internet bot that 

systematically browses the World Wide Web, typically for the purpose of Web indexing" 

(web spidering) (Wikipedia, n.d.) 

1.2 Exploratory Data Analysis 

As mentioned earlier, the data set contains 145000-time series, which is more than 

required for this study. The below picture gives a snapshot of data and the shape of data 

after removing records that have no values attached to them (for any one day). 



 

 

 

 

 
Figure 2: Data Snapshot 

 

Further analysis of data revealed that the dataset contains pages from multiple languages 

like English, Japanese, French, and other languages.  A frequency count of pages again 

access type and agents look like: 

 
Figure 3: Dataset Description 

   

 

The top row depicts the numbers of webpages that have complete data (Kaggle, n.d.). The 

bottom two rows give the detail on the most frequently occurring page, access, and agent. 

These will help to analyze how and which pages are accessed by the users. The type of 

access and agent are already discussed in the earlier section. The type of project (or 

language) can be drilled down further into 
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Figure 4: Language Summary 

 

A sorted bar chart of the same is below: 

 

 

Figure 5: Language Summary Plot 

 

Even though the data shows the highest amount of "ja" (Japan) domain webpages, further 

analysis showed that the English Wikipedia page has the most visitors.  
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Figure 5: Language Summary Plot 

 

The purpose of this study is to understand how different time series are associated, 

judged by how humans interact with multiple pages, i.e., not by spiderbots but by 

humans. But eliminating any sort spiderbots, agent-type is done only on the "English" 

Wikipedia pages rather than all Wikipedia pages. The idea is that a user would navigate 

across wiki pages only in one language. Such an assumption is safe because it is highly 

unlikely that a user accesses one page in English and another page of a related topic in 

French or any other language. Thus, further filtering the dataset to take only the pages 

from 'en.wikipedia.org' project and grouping the agents and access type reveals: 

 

 
Figure 6: English Wiki Pages grouped by agent and access 
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A bar chart of the same below: 

 

Figure 7: Plot of English Wiki Pages grouped by agent and access 

 

To give an idea of what each of the bar in Figure 7 entails, refer to the below snapshot of 

the Wikipedia pages with the topic "1896 Summer Olympics" 

 

Figure 8: Snapshot of records associated with a single topic 

 

Each record indicates how the number of visitations is captured of the pages with the 

same topic but different access types and agents. For the purpose of this study, I decided 

to take pages that contain figures for all-access and all-agents. There is a possibility that 

all-agents might include data from spider agents. Still, such a theory could not be 
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eliminated since the number of page visitations by "all-access and all-agents" (2nd last 

row above) is unequal to the sum of all the other rows for a particular day. So, to be all-

inclusive and potentially not loose relevant codependent data, the pages which have all-

access and all-agents properties were taken into the study.  

 

Finally, some of the most common but irrelevant (in terms of this study) pages like 

Wikipedia home page and special pages (search, changes, and books) that could highly 

skew the data (towards the extreme right end) are deleted.  

 

Figure 9: Snapshot of the top four visited pages 

 

The top four records in the above figure are removed. The final dataset count is 5711 

time series over 550 days spanning from 1st July 2015 to 31st December 2016. 

The final plot of time series looks like: 
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Figure 10: Plot of all the time series in the final dataset 

 

A more condensed plot resulting from taking Log (#Views) 

 

 
Figure 11: Plot after taking the Log of the number of views 

 

As can be seen, there are a varying number of spikes in specific time-periods. Not all 

series spike at the same time, some pages follow the spike caused by other pages, thus 

indicating causality between the Wikipedia pages. 
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1.3 General Correlation: 

As part of this study, I will be making use of two different correlation metrics to infer the 

similarity between temporal data. A bit of background on the similarity measures that 

will be used in this paper. Below is a figure that depicts the difference between Euclidean 

and DTW time series similarity measurement (Cassisi, 2012): 

 

Figure 12: Difference between DTW and Euclidean distance (Cassisi, 2012) 

 

Euclidean Distance – It is the sum of a point to point distance between two different 

time series, without accounting for lag or whether the series have different lengths 

(Cheong, 2019). As can be seen from the figure above, it is a point to point distance 

measurement (Cassisi, 2012).  

Dynamic Time Warping (DTW) has the feature that allows for identifying patterns even 

with a time lag by shifting the signal (moving the time series by n steps) to compute the 

minimum distance between two different time series/signals. DTW computes the 

Euclidean distance at each frame across every other frames to compute the minimum 
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path that will match the two signals (Cheong, 2019). Thus, DTW has many to one (or 

vice versa) point comparisons; making is computationally expensive. 

1.4 Agglomerative Hierarchical Clustering: 

 

In this experiment, the Euclidean metric is preferred over DTW because: 

1. A trending topic may not die immediately. Usually, a topic trends for weeks 

together (trending window), thus any semantically related Wikipedia page also 

will have more visitations in that trending window period. Therefore, restraining 

the disadvantage of a point to point comparison.   

2. DTW is beneficial in time series that have unequal lengths (Cassisi, 2012), but in 

this study, the data set has no missing values, and all series are of equal measure. 

3. Since space and time complexity of calculating the DTW distance for 5711 time-

series records with 511 data points is immense without giving any potential 

benefit. (5710*511*511 compared to 5710*511). 

DTW is an excellent technique to use to clustering the time series data, but in this 

scenario, it might not be the optimum and efficient approach. 

The existing python SciPy library is used to create the linkages of the hierarchical 

clustering. There are two steps involved in this process. The first step is to find the 

distance between the time series, which is being done through the Euclidean metric. The 

next step is to cluster them based on the similarity distance. The SciPy library suggests 

using the Ward variance minimization algorithm. The formula for which is given by:  

Note that d(s,t) represents the distance between two clusters s and t (SciPy.org, n.d.). 
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Figure 13: Snapshot of Ward variance formula used (SciPy.org, n.d.) 

 

Based on the above clustering technique, linkages are created, and a dendrogram is 

plotted. This dendrogram did not yield anything informative because the plot looked 

cluttered and confusing. After that, the data is then normalized to give a more standard 

range to the distance. The dendrogram is plotted again and shown below: 
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Figure 14: Plot of normalized Hierarchal Clustering 
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The X-Axis has the Wikipedia pages as an individual cluster, and the Y-Axis has the 

Ward distance. SciPy algorithm runs until only one cluster is formed. Such a bottom-up 

approach helps us to visualize similarity or dissimilarity between the clusters. But note 

the last 2 clusters (green region and red region), there does not seem to be any regular 

pattern. Further, since many data points appear merged, a piece of the dendrogram can be 

truncated and plotted as below.  

 

Figure 15: Plot of a truncated (last 120 clusters) normalized Hierarchal Clustering 
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The above dendrogram was plotted for the last 120 merges. The numbers in bracket (in 

X-Axis) represent the leaf counts, which implies how many samples the cluster already 

consisted before the last 120 merges (Hees, n.d.). Note that the number in the first bracket 

(from left) is 1559, which implies that the cluster already merged 1559 samples, and 

more are being added. To understand the clustering further, two examples from the "red 

area" were picked to be analyzed. The samples are chosen such that they have the 

maximum distance in the "red area" (i.e., samples from the extreme right and extreme left 

in the 2nd cluster from the top): 

 

 
Figure 16: Snapshot of records from the 2nd single cluster 

 

As is evident from general sense and intuition, the two topics "Java" and "Cloverfield" 

are not related. One is a programming language, and the other is a movie. Thus, the 

dendrogram does not reveal any apparent clustering and is challenging to create a Ward 

distance cut off (that easily divides the hierarchy into discernible clusters). The first 

cluster ("green area") has a massive jump in Ward distance when being merged with the 

second cluster ("red area"), implying that they don't belong together. But such relative 

high jumps are seen even within the clusters lower in the hierarchy. 

Thus, leading to believe that it makes sense to create a large number of clusters and look 

for any emerging patterns. SciPy.cluster.hierarchy.fcluster (forms flat clusters from the 

hierarchical clustering defined by the given linkage matrix (SciPy, n.d.)) can be used to 

flatten the dendrogram and create a requested/configured amount of clusters. In order to 
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get an insight into the data, the library is used to create 500 clusters that will be discussed 

in the results sections: 

 
Figure 17: Snapshot of cluster formation 
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RESULTS 

After creating 500 clusters, clusters of five, fifteen, thirty, and the two largest clusters (of 

length 1555 and 281) are picked for analysis. The numbers five, fifteen, and thirty are 

chosen to understand the evolving pattern when moving from a low number of data 

points to a higher amount. The two largest clusters are selected to comprehend if any 

pattern appears or even an additional number of clusters should be created. The count of 

clusters against each number of elements is below: 

 
Figure 18: Snapshot of selected clusters and their frequency 

 

1.5 The cluster of five elements 

There are 21 clusters with five elements. Since it is difficult to analyze every one of them, 

four clusters were picked based on the highest and lowest Euclidean distance similarity 

score. Below is a snapshot of elements in a cluster of five and their corresponding sum of 

Euclidean distances. 
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Figure 19: Snapshot of the sum of the intra-cluster distance 

 

The below results are sorted in the descending order of the sum of the Euclidean(sum-

euc) distances. The higher the sum of Euclidean distance, the smaller the intracluster 

similarity. Thus, ideally, clusters with smaller Euclidean distances ought to fetch better 

results. 
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Figure 20: Snapshot of a cluster with five elements - one 

 

Observations: 

 

a. Cluster with the highest sum-euc distance 

b. Mad Max and Avengers are released in the year 2015 which is linked to the 

webpage in the top row (all movies released in 2015) 

c. A movie based on Chris Kyle is released in 2014 

d. Fetty Wap is an anomaly where there is no apparent connection 
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Figure 21: Snapshot of a cluster with five elements - two 

 

Observations: 

 

a. Cluster with the second-highest sum-euc distance 

b. There is an obvious common theme - the Olympics. 

c. Cannot spot any anomaly with this result 
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Figure 22: Snapshot of a cluster with five elements - three 

 

Observations: 

 

a. Cluster with the second-lowest sum-euc distance. Even though the cluster has a 

high similarity score, its apparent performance is worse than the above cluster.  

b. Alison Porter and Joe Walsh are musicians, the last record is a movie, and 

whereas others are sports players. No common theme. 

c. Even though there is no common theme, it appears that the general interests on 

these Wikipedia pages pique around the same time. 
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Figure 23: Snapshot of a cluster with five elements - four 

 

Observations: 

 

a. Cluster with the lowest sum-euc distance 

b. Similarity: April Ross, Kerri Walsh, and Misty May have a personal relationship 

in some fashion. Albert I (of Belgium) is a figure from World War 1 where are 

BA 64 is a Soviet armored car from world war II. 

c. Anomaly: Two different clusters exist in the same cluster. The top 3 rows are 

people related to each other while the bottom two rows are about World War. 
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1.6 The cluster of other than five elements 

15 Elements 

 

 

 
Figure 24: Snapshot of a cluster with fifteen elements - one 

 

Observations 

a. Cluster with the highest sum-euc distance, among 15 elements cluster 

b. All the records have a typical movie or a TV show theme 

c. During the holiday season (Dec-Jan), there is a huge spike followed by another 

spike during the spring break season. Indicating how the popularity of movies 

surge during that time. 
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Figure 25: Snapshot of a cluster with fifteen elements - two 

 

Observations 

a. Cluster with the lowest sum-euc distance, among 15 elements cluster 

b. All the records have a common sports theme, specifically American Football 

c. During the holiday season (Dec-Jan), there is a huge spike followed by another 

spike during the summer. Indicating how the popularity of sports surge at that 

time 
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31 elements 

 

 

 
Figure 26: Snapshot of a cluster with 31 elements 

 

Observations: 

 

a. Randomly selected eight elements out of 31 elements 

b. The topics are movies, sports, and politics. 

c. The frequency and count of page visits increase after the summer of 2016, 

indicating that the popularity of these topics surged after a certain point in time. 
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281 elements 

 

 

 
Figure 27: Snapshot of a cluster with 281 elements 

 

Observations: 

 

a. Randomly selected eight elements out of 281 elements 

b. Even though there is no common theme, it appears that the general interests on 

these Wikipedia pages pique around the same time. The rise and fall in general 

interest are consistent throughout the entire time period. 
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1555 elements 

 

 
Figure 28: Snapshot of a cluster with the highest number of elements 

 

Observations: 

a. Randomly selected eight elements out of 1555 elements 

b. Relatively there is a lesser number of associated peaks than the cluster of 281 

elements. Additionally, there is no apparent common theme.  

c. Suggesting that if more clusters were requested, these pages would not have been 

grouped in one cluster.
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DISCUSSION 

The results indicate that pages in each cluster have an intrinsic relation between them. 

They further show at what seasons or months the relationship is at its peak. Such a piece 

of information on association with another time series can help improve any univariate 

time series model expand to a multivariate time series model. Forecasting of one series 

can be improved by adding data (whether lagged or current) from the associated/linked 

series. 

As indicated in the results, there are two types of clusters formed. One in which the topics 

are entirely related to each other, and there is a common theme among the clusters and 

the other one, where some wiki pages receive seasonal (summer or during holidays) 

interest. Additionally, there will be some topics that are trending only for one year, i.e., it 

is popular in the year 2016, but the popularity fades away in consecutive years.  

Coming to the number of elements in a cluster, the cluster of fifteen performed better on 

grouping similar topics together than the cluster of five, which is slightly unexpected. 

Moreover, even in a cluster of five, the ones with higher intra-cluster distance (less 

similarity) grouped topics better than the ones with a higher similarity score. It suggests 

that there is a sweet spot in deciding the number of clusters and the number of elements 

in each cluster. 

The most prevalent themes appear to be sports, movies (and TV shows), including the 

cast, and politics. This is expected since these are widely prevalent subjects in almost  
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all geographies. But a Wikipedia page could be of relevance (or importance) in one 

geography but not in others. Thus making it more complicated where there is no 

geographical information. 

Small clusters are more discernible than large clusters. But, the large clusters could carry 

some information that is not apparent. The data about other elements in a cluster can be 

fed into one element for better forecasting. In order to understand how elements in large 

clusters influence each other, the data from all the other elements can be added as an 

additional variable. It will make it a multivariate time series model, albeit a hefty one.  

As said earlier, the primary motivation is exploring the time-series models that use the 

non-traditional methods of forecasting. In that regard, the below models are explored that 

could be enhanced with the cluster data obtained above. 

1.7 Sequence to Sequence model: 

Below is a proof of concept (POC) that is picked as-is from one of the entries in the 

Kaggle competition. (Eddy, 2018). A repeat experiment was performed but using the 

project's modified dataset. The below figure gives a brief idea of what entails a sequence 

to sequence (seq2seq) model using a recurring neural network (RNN) layer. The RNN 

layer uses Long short term memory (LSTM) to store an internal state that remembers the 

past information and uses it to predict the future. 
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Figure 29: A seq2seq model with LSTM layer (Eddy, 2018)

 

In this POC, it is proposed to do a multi-step prediction., i.e., predict the next 14 days of 

Wikipedia page visits instead of just one day. The below figure (Suilin, 2018) suggests 

how to split the training and validation set. 

 
Figure 30: Train-Test split of a multi-step time series prediction (Suilin, 2018) 

 

It suggests training the encoder part of the seq2seq model with the train-test split, as 

shown in the below figure.  
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Figure 31: Snapshot of the data's train-test split windows 

 

Once the encoder model is configured, it is trained using my dataset.  

 

 
Figure 32: Plot of the epoch runs of the encoder model 

 

After this comes the decoder step. The output from the encoder step (the state of the 

encoder) is fed into the decoder model. Such feed accounts and captures historical 

information about a time series, and it uses that historical information to make future 

predictions. As suggested in Figure 29, the decoder is used to make predictions one step 

at a time. It means that the output of step one in the decoder is sent as input to predict 

step two in the decoder sequence.  

The above POC can be expanded to incorporate additional time-series data. Instead of 

only sending the decoder or encoder output to the decoder sequence, additional inputs 
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based on the hierarchical flat clustering similarity could be fed. The inputs could be live 

time-series data from a few other selected time series.  

 

1.8 Adding a regressor to the univariate time series model: 

 

Use automated open source libraries like facebook's (FB) Prophet. The FB Prophet is an 

easy to use python library, that does not require knowledge of time series analysis. Just 

feed the series into the library, and it automatically decomposes it into its basic elements. 

It is just a one-line command call that makes it very simple.  

To such a model, it is again effortlessly possible to add additional regressor variables 

(which could be data values from other time series) so that it becomes a multivariate 

model. These regressor variables can be chosen based on output from hierarchical 

clustering. Once a model for time series data is created, a function could be created to call 

the model recursively to make multi-step forecasting. 

Finally, the same function could be called recursively for all the time series in the dataset.  

FB prophet is only suggested as one of the libraries since its currently popular, any other 

licensed libraries could also be used in the manner suggested as above. 
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LIMITATIONS AND FUTURE WORK 

During the data preparation, it is seen that the dataset contains pages accessed by both the 

spiderbot and human interaction, and differentiating between them is difficult. It raises a 

possibility that a "drill-down" sort of crawl could have been performed. Thus, indicating 

an apparent connection between webpages which in reality are not of interest to human 

readers.  

The dataset was abundant with themes such as movies, TV shows, sports, and politics. 

This could have influenced the model performance and will be interesting to see how 

adding a new unrelated theme with equal frequency could impact the model.  

There are seasonal components, sudden trending wiki pages (and their subsequent 

demise), and similar topics or themes that one must understand in order to forecast 

accurately. Future work could involve incorporating the above Seq2Seq-LSTM model 

(with hierarchical clustering) but with a much larger dataset. The dataset should span 

across multiple years and be a continuous feed to improve the model continually. The 

model should be capable of identifying each of the three qualities, as mentioned above 

(sudden interest, seasonality, and topics). 

The dataset used in this project is clean without any missing values or inconsistency, 

which is hardly the case. But, the model needs to be robust to handle missing data. 

Missing data can be filled with interpolation or other standard techniques. The real 

challenge will lie in creating an efficient pre-processing tool that can pick and choose the 

technique automatically, if not by manual selection.  
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A complete automated solution (or library in python) that pre-processes the data, 

performs clustering (thus multivariate), and finally forecasts data using seq2seq modeling 

(thus multi-step) can be beneficial. But the time and space complexity of such an 

automated solution increases exponentially with the increase in the number of time series, 

thus making it unfeasible (currently) for large and multiple time-series data. 
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CONCLUSION 

This study is aimed at inferring the relationship between Wikipedia pages based on the 

number of visitations. It further explores the machine learning technique of hierarchical 

clustering to comprehend how pages could be grouped based on a similarity score. The 

results suggested that there is an optimal number of clusters (not by the lowest number of 

elements) that groups Wikipedia under a common theme. Currently, the results are 

analyzed manually. If a metric could be developed that analyzes the results automatically, 

it can help create a pipeline containing two models where the first model is based on 

clustering. The output could be fed into a second model (an example being a seq2seq 

with LSTM layer) to make a single or multi-step forecasting prediction.  
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