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1. Introduction

The Collaborative Cross (CC) are a set of recombinant inbred lab-

oratory mouse strains derived from eight founder strains: 129S1/SvlmJ,

A/J, C57BL/6J, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and

WSB/EiJ (Mathes et al., 2011). The CC strains capture a genetic diver-

sity sufficient to produce variation in a large number of phenotypic traits.

The combination of genetic and phenotypic diversity allows analyses such

as quantitative trait locus (QTL) mapping. Moreover, unlike typical QTL

mapping populations, the CC genomes are reproducible, which makes the

strains ideal materials for studying responses in isogenic individuals under

different interventions (Churchill, 2004).

Since the genetic structures of the CC strains are readily available, the

prediction of their phenotypes is particularly useful when the latter are costly

to measure. For example, phenotype prediction can help complete a set of

CC data that contains several missing phenotype values or identify untested

strains that have a desirable range of baseline characteristics as candidate

materials for a study.

The genotype at locus m in the genome of an individual i from the CC

strains can be represented by the diplotype state, i.e. the pair of founder

haplotypes present (Zhang et al., 2014). The diplotype state for individual

i at locus m is encoded using the diplotype matrix Di(m) such that if the

maternally inherited founder haplotype is j ∈ 1, . . . , 8 and the paternally
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inherited haplotype is k ∈ 1, . . . , 8, the entry in the jth row and the kth

column of Di(m) is Di(m)jk = 1, while all other entires of Di(m) are zeros.

The diplotype states cannot be observed directly, but they can be inferred

probabilistically through a hidden Markov model (HMM) from the sequenc-

ing data. Denote the genotype of n individuals as G = {G1, . . . ,Gn} and

genotype of the eight founders as H = {H1, . . . ,H8}, then

Pi(m) = p(Di(m)|Gi,H) (1)

where each entry Pi(m)jk is the probability that diplotype jk is present for

an individual i at locus m (Zhang et al., 2014). When the inheritance at

locus m is stable, Pi(m) = Di(m); otherwise, Pi(m) is affected by genetic

marker sparsity, recombination density, and genotyping error (Zhang et al.,

2014).

In the CC data, the diplotype states are converted to haplotype dosages.

The haplotype dosages for individual i at locus m can be represented as a

group of variables xi(m)1, . . . , xi(m)8, where xi(m)j =
∑

j Pi(m)jk+
∑

j Pi(m)kj.

In genetic studies, linear models are generally used to relate the geno-

types to the phenotypes. However, the solution to a simple linear regression

with high dimensional genomic data is undefined if the number of predictors

exceeds the number of samples. In this case, we are interested in introducing

penalization to remove variables with little predictive strength. The lasso

(least absolute shrinkage and selection operator) (Tibshirani, 1996) is a pe-
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nalized regression approach that shrinks the regression coefficients towards

zero and performs variable selection by estimating some coefficients to exact

zeros. One drawback of lasso is that it disregards any grouping structure

in the data. We consider the group lasso (Yuan and Lin, 2006) as an alter-

native that makes the selection based on the strength of pre-defined groups

instead of individual variables. Originally, the group lasso was developed to

ensure that when groups of dummy variables are used to encode for cate-

gorical factors in the multi-factor ANOVA problems, the variables encoding

the same factor are selected or discarded from the model together (Yuan and

Lin, 2006). The group lasso is equivalent to lasso when the group sizes are

equal to 1.

Given a set of quantitative phenotype data of a subset of genotyped CC

strains, we want to train a model that can predict phenotype values of the

CC strains for which the data for this phenotype is missing. The objective

of this project is to compare the prediction performances and the variable

selection consistency of different penalized regression approaches.
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2. Methods

2.1 Penalized regression

In a linear model, let the phenotype value of individual i from the CC

strains be yi, then

yi = µ+ xTi β + εi (2)

where µ is an intercept, xi = (xi1, xi2, . . . , xip) is a p-vector representing p

haplotype dosages corresnponding to m = 1
8
p genetic loci, β is a p-vector of

effects to be estimated, and εi ∼ N(0, σ2) is an unobserved random error.

We center the phenotype value so that the observed mean is 0. With n

individuals of known genotypes and phenotypes, the ordinary least squares

(OLS) estimate of the effect β can be found by solving

β̂OLS = argminβ

n∑
i=1

(yi − xTi β)2 (3)

.

The lasso approach adds a regularization term to the OLS estimate of

β such that

β̂Lasso = argminβ

n∑
i=1

(yi − xTi β)2 + λ‖β‖`1, λ > 0, (4)
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where ‖β‖`1 =
∑p

i=1 |βi| (Tibshirani, 1996). λ is the tuning parameter con-

trolling the scale of the penalties. Large values of λ leads to sparse coefficients

and consequently fewer predictors. The lasso estimate is equivalent to the

OLS estimate when λ = 0.

The p predictors belong to m non-overlapping groups such that the

predictor index (1, 2, . . . , p) = ∪j=mj=1 Ij. We suppose the cardinality of Ij is cj

(in our case, cj = 8 for all j). Applying the group lasso,

β̂GroupLasso = argminβ

n∑
i=1

(yi − xTi β)2 + λ
m∑
j=1

√
cj‖β(j)‖2, λ > 0, (5)

where ‖β(j)‖2 =
√∑

i∈Ij β
2
(i) (Yang and Zou, 2014).

2.2 Design of the comparative study

We compared the prediction performances of ridge regression (which

introduces shrinkage on the regression coefficients with the penalty term

λ‖β‖`2 =
∑p

i=1

√
β2
i ), lasso, and the group lasso on a dataset available

from the control group of a pre-clinical research studying the potential for

tolvaptan, a candidate treatment of Autosomal Dominant Polycystic Kidney

Disease (ADPKD), to induce liver injuries (Mosedale et al., 2017). The data

contain 180 individuals from 45 CC strains; each individual has 61228 predic-

tors at 7641 loci across 20 chromosomes. Three phenotypes were included for

analyses: body weights, alanine aminotransferase (ALT) level, and aspartate
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aminotransferase (AST) levels. The latter two were log-transformed prior

to analyses to meet the assumption of normality of the error distribution in

linear models. All three phenotype values were averaged for individuals from

the same strains, producing 45 samples for testing the models. The lasso

and ridge regression were implemented using the glmnet R package (Fried-

man et al., 2010) and the group lasso was implemented with the gglasso

package (Yang and Zou, 2014).

The tests were carried out via the following leave-one-out cross-validation

scheme as recommended (Hastie et al., 2008):

1. A sequence of 20 tuning parameter λ ∈ [0.01, 10] was generated.

2. In each cross-validation cycle, one of the n samples was used as the

test sample while the rest were put together as the training samples. A

model f ∈ {Ridge, Lasso, Group Lasso} was trained using all 20 λs from the

sequence consecutively.

3. The mean sum of squared error averaged from the n cross-validation

cycles was generated for each (f, λ) combination, denoted as CV (f, λ),

CV (f, λ) =
1

n

n∑
i=1

(yi − ŷ(f,λ)i )2 (6)

where ŷ
(f,λ)
i refers to the estimated phenotype in the i-th cross-validation

cycle using model f and tuning parameter λ. For each model f , an optimal

λ with the lowest CV (f, λ) was identified.
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We created a scaled version of CV (f, λ) to facilitate the evaluation of a

model with any predictors with respect to the intercept-only model, which

always predicts ȳ:

CV (f, λ)scaled = −log10
CV (f, λ)

CV (f, λ)intercept−only
(7)

where a CV (f, λ)scaled > 0 indicates that the inclusion of the predictors in

the model helps improve the prediction accuracy. Both scaled and unscaled

CV (f, λ) were used to compare the model performances.

Another metric that we used to determine the model performances was

the coefficient of determination (R2). R2 is the proportion of the variance in

the responses that is explained by the predictors.

R̂2(f, λ) = max(0, 1− CV (f, λ)

V ar(y)
) (8)

Note that the sum of squared error
∑n

i=1(yi − ŷi)2 was approximated by the

mean cross-validated sum of squared error CV (f, λ). When the predictions of

the model exactly match the responses, R̂2 = 1. An intercept-only model will

yield R̂2 = 0. Models that have worse performances than the intercept-only

model will have negative R̂2 values and were recorded as R̂2 = 0.
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3. Results

For each tested phenotype, we report the prediction performances of

ridge regression, lasso, and the group lasso using the optimal regularization

parameters λs with CV (f, λ), scaled CV (f, λ), and R̂2. The results are listed

in Table 1 to 3.

We often expect applying regularization will help increase the model

performances. However, if the regularization is too strong, important predic-

tors may be left out of the model, which makes choosing the λs an essential

part of using the penalized regressions. The selection process of the optimal

λs are demonstrated in Figure 1 to 6, which show the change in CV (f, λ)

as λ increases and the number of selected predictor decreases when we used

lasso and the group lasso to predict the tested phenotypes in the CC strains.

In all figures, the leftmost dotted line indicates the optimal λ we identified

for the model, i.e. the λ that yields the lowest CV (f, λ). To choose the

simplest model whose accuracy is comparable with the best model, we also

highlight the largest value of λ such that its CV (f, λ) is within one standard

error of the minimum for each model as the rightmost dotted line. In some

cases, these two λs are equal.
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3.1 Phenotype: body weight

Table 1. Comparison of penalized regression methods for body weight pre-

diction in the CC strains (n=45, p=61128)

Phenotype: Body weight

Model Best

lambda

CV (f, λ)(SD) Scaled

CV (f, λ)

R̂2 Number

of selected

predictors

Ridge
10 9.31E+15

(4.95E+15)

0 0 61077

0.01 9.12E+15

(4.46E+15)

0.01 0 61077

Lasso
10 13.83 (2.07) 0 0 0

1.13 13.78 (2.40) 0.002 0 15

Group Lasso 10 13.83 (2.07) 0 0 0
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Figure 1: Cross-validated error when using lasso to predict body weight in
the CC strains

Figure 2: Cross-validated error when using group lasso to predict body weight
in the CC strains
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3.2 Phenotype: alanine aminotransferase (ALT)

Table 2. Comparison of penalized regression methods for log-transformed

ALT level prediction in the CC strains (n=45, p=61128)

Phenotype: log.ALT

Model Best

lambda

CV (f, λ)(SD) Scaled

CV (f, λ)

R̂2 Number

of selected

predictors

Ridge
2.34 1.69E+13

(6.58E+12)

0.24 0 61077

0.01 2.22E+13

(8.33E+12)

0.36 0 61077

Lasso
10 0.15 (0.03) 0 0 0

0.18 0.14 (0.03) 0.04 0.08 2

Group Lasso
10 0.15 (0.03) 0 0 0

0.02 0.14 (0.03) 0.03 0.04 128
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Figure 3: Cross-validated error when using lasso to predict ALT level in the
CC strains

Figure 4: Cross-validated error when using the group lasso to predict ALT
level in the CC strains
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3.3 Phenotype: aspartate aminotransferase (AST)

Table 3. Comparison of penalized regression methods for log-transformed

AST level prediction in the CC strains (n=45, p=61128)

Phenotype: log.AST

Model Best

lambda

CV (f, λ)(SD) Scaled

CV (f, λ)

R̂2 Number

of selected

predictors

Ridge
10 2.51E+13

(1.08E+13)

0 0 61077

1.13 2.29E+13

(1.11E+13)

0.04 0 61077

Lasso
0.18 0.13 (0.03) 0.09 0.09 5

0.13 0.12 (0.02) 0.05 0.17 17

Group Lasso
0.02 0.11 (0.03) 0.13 0.25 88

0.01 0.10 (0.02) 0.15 0.28 176
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Figure 5: Cross-validated error when using lasso to predict AST level in the
CC strains

Figure 6: Cross-validated error when using group lasso to predict AST level
in the CC strains
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Figure 7: A genome-wide association study for AST level in the CC strains
over the predictors selected by the group lasso (λ = 0.02)

Overall, lasso and the group lasso lead to lower mean cross-validated

sum of squared errors when used with the optimal λs. However, most models

explain none or little of the variability in the response, except for group lasso

achieving R̂2 = 0.25 and 0.28 when used with λ = 0.01 and 0.02 in the

prediction of AST level. We were thus interested in investigating whether

the genetic loci selected by this approach would match the loci identified

in a genome-wide association study. The strength of association between a

genetic locus and a phenotypic outcome was evaluated by the magnitude of

the p-value for a linear model that relates the haplotype dosages at the locus

to the quantitative phenotype (i.e. the AST level). Figure 7 shows that

most genetic loci selected by the group lasso (indicated as dotted lines) align

with the loci that are highly associated with the AST level (indicated as the

peaks).
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4. Discussion

The study compared the prediction performances of three penalized re-

gression methods on the Collaborative Cross data. The relative success of

the lasso and the group lasso indicates that the variable selection process

significantly increases the prediction performances, which aligns with our

knowledge that there exist numerous noise predictors that can be discarded

in the CC data. However, despite the success of the group lasso in the pre-

diction of AST level, the two methods failed to find a set of predictors that

significantly outperforms the intercept-only model for body weight and ALT

level.

Additionally, we investigated the variables selected by different approaches

and found that the selected genetic loci do not fully align between the best

models of lasso and the group lasso, though there are a lot of overlaps.

To a large extent, the performance of a predictive method depends on

the nature of the relationship between the predictors and the response. That

most of the compared models did not achieve good performances may be due

to the possibility that the linearity assumption is not met for the relationship

between the genotype and one or more of the tested phenotypes. In these

situations, more complex methods, such as neural networks, can be applied.

However, due to our small sample size, such methods tend to overfit the data

while linear models are usually more generalizable and suitable for an initial

analysis.
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In conclusion, we suggest that further investigation is needed to identify

the most biologically relevant group of predictors for the tested phenotypes

to achieve better predictions.
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