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Abstract

This thesis explores two problems in bioinformatics via mathematical tools, both

involving the choice of an integer parameter :. The first is de Bruijn graph assembly

and the choice of the read length :: short read length produces more sequencing

errors compared to long read lengths, which leads to the well known insight that

longer read sizes are desirable. The second is kmer profiles and the choice of the

substring length :: counts of number of occurrences of all size-: substrings of a given

DNA string, called kmer profiles, has empirically been used as a computationally

cheap way to compare DNA sequences; ideally, distances between kmer profiles

should be approximations to edit distances between DNA sequences but this fails

in some settings of :. With the goal of minimizing the error of assembly in the

first problem and properly approximating the edit distance in the second, these

two problems can be both phrased as choosing : s.t. calculating the kmer profile

(expressed as the function ? 5:) form some abstract isomorphism between fixed-

length DNA strings and kmer profiles. This thesis shows that under sufficiently large

:, ? 5: forms an isomoprhism and admits an inverse function as de Bruijn assembly.

Nonetheless even with : small, one direction of the isomorphism still stands in

either settings of the problems, which stems from the fact that ? 5: is :-Lipchitz,

and lends credence to technique of :-mer profiles as a good representation of DNA

strings for sequence comparison.

Contents

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Genome Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Edit Distance Approximation via Kmer Profiles . . . . . . . . . . 8

1.2 Kmer Profiles as Representations . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Mathematical Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2



2 Background 12

2.1 Sequences and Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 De Bruijn Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Algebraic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 From Profiles to Sequences 21

3.1 First Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The Number of Ambiguous Paths . . . . . . . . . . . . . . . . . . . . . . 23

4 From Sequences to Profiles 26

4.1 The Expansion and Distortion of The Profile Function . . . . . . . . . . 27

4.2 The Profile Function as Monoid Homomorphism . . . . . . . . . . . . . . 28

5 Discussion 29

5.1 How Much Error can be Generated . . . . . . . . . . . . . . . . . . . . . 29

5.2 Leaving Kmer Profiles as They are . . . . . . . . . . . . . . . . . . . . . 31

6 Applications 31

6.1 The Selection of : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Quickly filter sequences with edit distance within 3 . . . . . . . . . . . . 32

7 Conclusion 33

1 Introduction

DNA sequence data is indispensable for inferring biological relationships. One widely

employed way to infer such relationships is by comparing two DNA sequences, which can

shed light on evolutionary histories, structural similarities, etc.. It goes without saying that

for the purpose of better inferred biologcial relationships, accurate DNA sequence data
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and ways to compare DNA sequences are desirable. In recent decades DNA sequence data

has proliferated, which has motivated computationally fast methods for DNA comparison.

The question of accuracy of the assembled DNA data arises from the fact that genomes

cannot be read in one go. To obtain the original DNA sequence, modern next-generation

sequencing methods read small pieces of the genome and then assemble them back together.

One popular theoretical framework behind many modern genome assembly algorithms

is the de Bruijn graph assembly (DBG). On a high level, DBG generates a graph based

on overlapping reads and assembles the sequence from an Eulerian path on the graph.

Accuracy comes into question when the graph used in DBG might have multiple Eulerian

paths, which would imply that DBG might assemble a different sequence than that it

originally read from.

Kmer profiles are reduced representations of DNA sequences that can be cheaply

compared against each other. Sequence alignments and their resulting edit distance

serve as the gold standard for sequence comparison. However, alignments take quadratic

running time and, thus, do not scale well to large sequences. As an alternative method of

sequence comparison, kmer profiles offer two benefits: converting a sequence into a kmer

profile and then applying vector metrics on the profiles takes linear time; kmer profiles are

integer valued vectors, and, thus many more algorithms, for example clustering, can be

applied to them. The obvious concern is accuracy: as will be seen in later sections, kmer

profiles are quite a simple representation of the original sequence, and it is not obvious if

they are good representations for accurate comparisons.

This thesis aims to use mathematical tools to qualify the accuracy of DBG and kmer

profiles, as well as identify some minor mathematical properties that kmer profiles offer

for some applications. The essential questions this thesis attempts to answer are the

following: how accurate is kmer profiling as a proxy for direct sequence comparison, under

what conditions are kmer profiles accurate, and how and what parameters can be adjusted

to make kmer profiles more accurate?
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1.1 Motivation

Bioinformatics frequently deal with DNA strings, that is, strings on the alphabet {�,�,), �}.

For example AAAA, ACTGACTG, CCCCTTAG are all DNA strings, and there are a

countably infinite number of other DNA strings. A kmer is a substring of length : of

a particular DNA string. A length-= string will have = − : + 1 kmers and there exist 4:

distinct kmers.

Edit distance is a frequent metric for comparing sequences used in bioinformatics. Edit

distance (as defined by Levenshtein) between string � and � is the smallest number of edits

one needs to modify � to � (or by symmetry, equivalently number of edits from � to �),

where edit can be one of: deleting a character from the string, inserting a character to the

string, or substituting one character with another. For example inserting a C to the string

AAAA can generate AACAA, and it takes only 1 edit which is minimal in comparison to

any other series of modifications. Thus, the edit distance between AAAA and AACAA is

1. Edit distance between two length = strings takes Θ(=2) time to compute.[7]

I now present two conceptual “games” that are explored in this thesis. They are not

supposed to be actual interesting as games, but they roughly correspond to background

material on de Bruijn graph assembly and kmer profiles. I hope the question of how to

play these two games well motivates interest.

1.1.1 Genome Assembly

An adversary has a long DNA string of length = that you want to identify: and initially

you are given only the length of the string, =. You want to determine this string, but

you are only allowed to ask questions of the type: “how many times do all possible DNA

combinations of length : DNA string occur as a substring of the string?”, where : << =

is a positive integer that you choose. Clearly, if : = =, then the only size = substring of

the secret string is the string itself. From the answer to this question, you need to win

this game by recovering the original string.

As an example of this game, suppose that your adversary has a length 15 string (say

ACTGACTGACTGAAT). Suppose that you choose : = 4 (or : = 3, 5, 6, etc. could all be
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valid choices, but for the sake of example let us choose : = 4). You ask the question, and

the adversary checks all possible length-4 DNA strings and the number of occurrences of

all such strings in the secret string. In this case she will tell you that ACTG occurred 3

times; CTGA occurred 3 times; TGAC occurred 2 times; GACT occurred 2 times; TGAA

occurred 1 time; GAAT occurred 1 time, or in more succinct notation that will be used

throughout (the multiset notation):

{ACTG3,CTGA3,TGAC2,GACT2,TGAA1,GAAT1}

With this information, is it possible to recover the secret string that your adversary

keeps? Can you do it in the general case for all strings? Are their special cases of secret

strings that can be solved, and others not? And, what is the strategy for choosing :?

More succinctly stated, this problem asks if you can recover a DNA string by you

choosing a : based on the length of the DNA string and all the counts of the possible

size-: DNA strings occurring in the original string as a substring, and to make discussion

more succinct later, the counts of all possible size-: DNA string occurring as a substring

to some fixed DNA string is called the kmer profile of that DNA string. When the

choice of : is clear or unimportant, it is simply called the profile. For example, the

following are some DNA strings and their 3mer and 4mer profiles.

Sequence 3mer Profile

AAAA {AAA2}
CATGATCATGAT {CAT2,ATG2,TGA2,GAT2,ATC1,TCA1}
ACTGACTGACTGAAT {ACT3,CTG3,TGA3,GAC2,GAA1,AAT1}

Sequence 4mer Profile
AAAA {AAAA1}
CATGATCATGAT {CATG2,ATGA2,TGAT2,GATC1,ATCA1,TCAT1}
ACTGACTGACTGAAT {ACTG3,CTGA3,TGAC2,GACT2,TGAA1,GAAT1}

A common problem posed in genome assembly, is based on the counts of size-k

substrings. While it is always possible to construct a string that fits these counts, in some

cases the constructed string is guaranteed to match with the original string, but in other

cases it may well be different.
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What we arrived at is that one kmer profile might correspond to several sequences, and

some sequences in the game presented above admit several possible solutions. Intuitively,

information is inevitably lost in the process of only looking at the counts of individual

kmers (substrings of DNA strings of size k). Namely, with the help of the to-be-explained

graph named de Bruijn graph, a multigraph, it is well known that DNA strings are

bijective to paths on de Bruijn graphs. Profiles only correspond to the set of nodes visited

by the paths, losing the information of how to connect such nodes. In short, if there are

multiple ways to connect such paths, we are at a loss as to the original DNA string when

we only look at its profile.

Consider the DNA string of CATGATCATGATCATGAT, its 3mer profile is

{CAT3,ATG3,TGA3,GAT3,ATC2,TCA2}

.

The above information, the profile, could be most effectively used in the de Bruijn

graph below. The original sequence, without information loss, is mapped to a Eulerian

path inside this graph. But we do not have the path, and there are multiple possible

Eulerian paths, paths which traverse each edge only once, in this graph. There are multiple

solutions to this graph. One of them starts from CA to AT, then taking the loop in the

direction of TG three times, then do TC, CA, AT for two times, which corresponds to the

sequence CATGATGATGATCATCAT, which is different from the original sequence of

CATGATCATGATCATGAT.
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CA

AT

TG TC

GA

1.1.2 Edit Distance Approximation via Kmer Profiles

Suppose that now the adversary keeps two secret strings of the same length = and she

knows the edit distance between the two strings as 3. You only know that the two strings

are of same length =. Because the genome assembly game is unwinnable in the general

case, this game asks you to perform a weaker task. You can still only have a single query

with a positive integer : << = that you first choose. You will ask, “how many times do

every possible length : DNA string occur as a substring of the first secret string?” and

then you ask the same question regarding the second secret string. With these information

you are to think of a way to approximate the edit distance 3 within some reasonable error

bounds, say that your approximation 3′ must satisfy 1
A
3 ≤ 3 ≤ A3 for some A > 1.

The intuition is that two DNA strings, with low edit distance between them, should

share a large number of length-: substrings. For example if the adversary has two DNA

strings that have almost the exact same profile, it is probable, that the original DNA

strings are almost the same, implying they have a small edit distance. The key lies in
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the word much probable. Look at the following two pairs of DNA strings and their 3mer

profiles.

Sequence 3mer Profile

AACCACATAAAC {AAA1,AAC2,ACA1,ACC1,ATA1,CAC1,CAT1,CCA1,TAA1}
AAACATAACCAC {AAA1,AAC2,ACA1,ACC1,ATA1,CAC1,CAT1,CCA1,TAA1}

Table 1: Sequences AACCACATAAAC and AAACATAACCAC (edit distance: 4) and
their 3mer profiles

From the above example, it is evident that the DNA strings that look not entirely

alike can have the same kmer profiles, yet in reality kmer profiles that look alike can

frequently be quite close w.r.t their original sequences especially as : gets larger.

1.2 Kmer Profiles as Representations

The second game presented above was motivated by the general intuition of kmer profiles

being an efficient representation for DNA strings. The “efficiency” here might warrant

some close inspection, as it is in many ways not a space efficient representation, nor really

in any way in computer science a canonical one. By the fact that each DNA character

can be expressed in 2 bits, a length-= DNA string takes 2= bits to express. Kmer profiles

can be spatially efficient and can also be spatially wasteful (:-mer counts increase as 4:),

but the more subtle point is that :-mer profiles have nice mathematical properties as

representations for DNA strings.

Suppose there is a general efficient ($ (=), = length of DNA string) strategy to win

the edit distance approximation game; or in more common terms, suppose that there

is an $ (=) algorithm to approximate the edit distance of two DNA strings given their

profiles. This would imply that edit distances can be approximated in linear time, which

is not surprising, given that a known linear time
√
=-approximation algorithm for edit

distance already exists, but still a nice fact because this might yield a better either in

approximation factor or other aspects approximation algorithm. Yet the sad fact is that

there is no such strategy. The reality is more subtle. Directly calculating distances

between kmer profiles is a good enough strategy for the edit distance approximation game,
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or in more common terms, distances between kmer profiles, with : a parameter to adjust,

correspond well enough, but not in any sense a proper approximation, to the original edit

distances between strings. This thesis quantifies this notion of “well enough” later.

The above discussion, about distances between kmer profiles corresponding “well

enough” to distances between their original DNA strings might seem a bit appalling

to some mathematicians or computer scientists, especially given that we already have

good approximations (
√
=) for edit distance in linear time, and to bioinformaticians we

have heuristics for alignment and edit distance. This qualified nicety regarding distances

between kmer profiles is useful in two empirical aspects: the first is that kmer profiles

can be treated as vectors; thus the common techniques such as clustering, dimensionality

reduction can be directly applied to strings via their kmer profiles, while naively using edit

distance might prove too slow for these tasks, but as : gets larger 4: � =. The second

is a general theme of some corners of computational biology, where some methods that

work well in real life do not excel in their theoretical groundings. A common theme in

computational phylogenetics is to prove some weak theoretical nicety of algorithms and

then demonstrate performance on simulated datasets, because weak theoretical nicety is

often good enough on real-world datasets [8]. Kmer profiles work well in practice, which

will be explained by some theoretical guarantees, some of which will be proven in this

thesis, it is well motivated to use kmer profiles in some contexts because in many tasks

strong theoretical guarantees are not needed.

Algebraic niceties also pop up in the structure of profiles, which lead to programmatic

niceties a la The Algebra of Programming [2]. Kmer profiles are in some precise sense a

pleasant representation for DNA strings for the purpose of edit distance approximation.

This will be elaborated in the immediate next part and later in this thesis.

1.3 Mathematical Ideas

One purpose of this thesis is to use mathematical notation to identify some common and

higher structures behind the two problems of de Bruijn graph assembly and kmer profile

distance approximation, which were introduced in the beginning of the thesis in the form
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a games. The parameter : plays a key role in the performance of both methods. As such,

one of the fundamental problems is how to choose : . This section presents a quick sketch

of some of the mathematical ideas.

The de Bruijn graph assembly problem has been introduced in this thesis by its

analogous game. By notation that will be followed throughout, ? 5: (B) denotes the kmer

profile of a DNA string B. The game is succinctly stated to be that we want to determine

a : in which an left inverse, 0BB4<1;H: , could be found. To abuse notation:

∃: << =, 0BB4<1;H: ◦ ? 5: = 83.

Or as a general theme we always want to find a good : << = to force nice properties

out of kmer profiles, so in general I will drop the ∃: << = qualifier.

DNA Sequence Kmer Profile∼

The above is the big picture of the main parts this thesis. I am trying to force

bijections, or more generally, isomorphisms, between DNA sequences and kmer profiles.

With a suitable choice of : , DNA sequences and kmer profiles are bijective, thus they also

preserve distance. This picture becomes much more subtle when we consider smaller :.

For smaller :, the bijection disappears but one side of the metric embedding still lives

on: the other direction fails to be a function as it as the inverse ceases to exist. This

foreshadows some of the themes of this thesis: large : always provides good theoretical

guarantees, but due to either the curse of dimensionality or the nature of real world data,

small : might be preferable, and small : still provide some theoretical guarantee in the

precise sense that ? 5: is :-Lipschitz.

1.4 Prior Works

The accuracy of DBG, and other graph based assembly methods, have been studied to

much depth[5]. Results due to de Bruijn are still modified and applied to this problem, and

various theoretical investigations have been pointed at the accuracy of DBG. Regrettably

this work only adds interpretations to the results that these prior works have presented.
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Kmer profiles are widely studied and used [9]. The algorithms for generating kmer

profiles, using kmer profiles as a form of alignment free method (as in not requiring the

often expensive calculation of alignments), and using kmer profiles as a baseline for other

methods have relatively frequently popped up in literature [4]. There is no doubt that

other properties and applications of kmer profiles have been investigated.

By extension, kmer based methods have also served as part of the base for ubiquitous

tools in bioinformatics such as BLAST[1], which tries to find common words (or equivalently

by default 3mers) between sequences before conducting local alignments, or BLAT[3],

which relies on fast searching on the database built from non-overlapping kmers in the

target from overlapping kmers in the input string.

2 Background

In this section I aim to give mathematical definitions to bioinformatics concepts. Many of

these concepts have been introduced in the previous sections, but we can use more precise

definition for formality.

2.1 Sequences and Profiles

DNA sequences are simply defined here mathematically. DBG often assumes that the

reads generated from the sequence is idealized, which means that the set of reads is

precisely the kmer profile. Thus the idealized set of reads used in DBG and kmer profiles

are in fact the same construction, called “profiles” here.

For simplicity, we define DNA sequences as strings over a given alphabet.

Definition 1. The sequences of length =, denoted as !=, are strings over the alphabet

{�,�,), �} of length =. Substrings of sequences of length : are called :mers and are the

same as !: .

The following are examples of sequences:
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AACACCACCCAC (1)

AAACCCA (2)

CATGACTAGACTG (3)

Sequences can be concatenated just like strings, the concatenation is simply denoted

as ◦.

The following definition finally describes what kmer profiles are.

Definition 2. A profile of size : ≤ = (called the kmer profile) of a string B of length =

is a multiset where elements are !: and the multiplicity of each element is the number of

occurrences of that element as a substring in B. Notice that such multiset can always be

represented as a vector of dimension 4: , and this encoding will be assumed from here on.

In other words, the profile of a string is simply a tally of all occurrences of its size-:

substrings. The above described multiset is also the set of idealized reads (read from the

string B) assumed in DBG that will be further assembled via the namesake graph. Now

the process of calculating a profile is given a name below:

Definition 3. The mapping from a string of length = to its profile of size : is denoted

as ? 5: : != → ? 5: (!=) ⊂ N4:

0 (N0 the set of non-negative integers). Observe that this

function can be easily implemented in Θ(=) time.

The image of ? 5 is denoted as %.

Some facts about the profile can be immediately inferred. The sum of the components

of a profile is simply the number of :mers in the original string, i.e. = − : + 1. The profile,

viewed as a vector, becomes exponentially sparser as : increases; this is undesirable for

large : due to the curse of dimensionality.

Recall that multisets (sometimes called “bags”) are sets that can contain multiple same

elements. For example, {�, �} is not a valid set but a valid multiset. For succinctness,

{�, �} is denoted as {�2}: the multiplicities of each element is written as a superscript.
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Example 1. The 3mer profile of the sequence B = ACTGACTGACTG is the following

multiset:

{��)3, �)�3, )��2, ���2}

One canonical way to compare two sequences is through Levenshtein distance, also

referred to edit distance from here on. This is the same distance commonly referred to

in algorithm textbooks as an example algorithm for dynamic programming. The exact

definition is given below:

Definition 4. The edit distance (denoted ;4E) between two strings B1 and B2 is the

minimum number of operations from B1 to B2. The allowed operations, for our purposes,

are:

• insert a character into a string

• delete a character from a string

• replace a character of a string by another character

Calculating the edit distance between two strings takes Θ(=2) time. As an example, the

edit distance between the act and cat sequence is 3 which is visualized below (mismatches

that are to be replaced shown in red, insertions shown in blue):

A C T G A C T A G A C T G

C A T G A C T A G A C T G

Edit distance can become prohibitively expensive in large datasets.

2.2 De Bruijn Assembly

Given some alphabet and a positive integer :, can one construct a string that contains

every possible length-: string as a substring? For example, on the binary alphabet {0, 1}
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and : = 1, the string 01 contains every possible length-1 binary string as a substring, so

does 10, but how about on any general alphabet and : > 1?

Motivated by the above problem, de Bruijn devised a special type of graph, the de

Bruijn graph, which will be more rigorously defined below.

For simplicity, all graphs from here on refer to connected directed multigraphs. In a

de Bruijn graph, all nodes belong to !: , and incidence is defined by overlap. With this

construction, finding a Eulerian path, which is of polynomial time, can be successfully

applied to assemble a sequence. This entire process is made precise in this section.

First recall the notion of Eulerian paths.

Definition 5. A Eulerian path of a graph is a path that traverses each edge of the

graph exactly once. A graph is semi-Eulerian if it has an Eulerian path. If the last edge

of the path is adjacent to the first edge of this path, this path is also called an Eulerian

cycle. A graph is Eulerian if it has an Eulerian cycle.

For the simplicity of notation below, I define an auxiliary operation of strings denoted

as �, which would be of help only in this section.

Definition 6. 0 � 1 is defined for strings if the two strings are of same length : with

the length : − 1 suffix of 0 equal to the : − 1 prefix of 1. Then 0 � 1 is equal to the first

character of 0 appended to the start of 1. For example “cat” � “ats” = “cats”.

Then the precise construction of the de Bruijn graph is given below. In the definition

below : represents what is called the read length.

Definition 7. The de Bruijn graph of order : of a sequence of length = is a graph that

has all the (: − 1)mers as the nodes. Node G has an edge (labeled G � H) to H if G � H is

defined and is a substring of the sequence.

The above definition might seem not intuitive at first, but by observation, as the edges

(labeled as :mers) correspond to the original reads, a length-2 path corresponds to a

: + 1mer; length-3 paths correspond to : + 2mers in the original sequence, etc.. Therefore

the original sequence must correspond to some path in the graph, and it can be proven

that it must be an Eulerian path.

15



Example 2. The de Bruijn graph of the sequence “AACACCACCCAC” of order 3 is as

illustrated below (edge labels omitted).

AA AC CA

CC

Example 3. The de Bruijn graph of the sequence “AACACCACCCAC” (the same

sequence as above) of order 5 is as illustrated below.

AACA

ACAC

CACC

ACCA

ACCC

CCAC

CCCA
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Observe that the de Bruijn graphs of the same sequence, as : increases, intuitively

becomes more simple in the sense that they become more linear.

Now with the graph defined, the final assembly algorithm is simply finding the Eulerian

path and then concatenating the edges via the custom operation defined above.

Definition 8. The assembly function first finds an Eulerian path of the graph (via

preexisting algorithms) and then takes all the edges (41, 42, 43, 44, . . . , 48) and “join” the

edges via � like this: 41 � 42 � 43 � . . . � 48.

Then the DBG algorithm simply takes as input the sequence, builds a de Bruijn graph

of that sequence, then runs the assembly function defined above on it.

The problem of accuracy can be intuitively described here. The original sequence

correspond to an Eulerian path on the de Bruijn graph, but this path is not given to the

final assembly step. This information is effectively lost, and if there exist other Eulerian

paths in the graph then it is not guaranteed to recover the original path.

De Bruijn sequences provide examples for sequences where every dimension of the

profile has order 1 for some :. There also exists closed form formulas for calculating the

number of de Bruijn sequences of some order.

Definition 9. A de Bruijn sequence (on the DNA alphabet) of order : contains each

kmer exactly once.

As a side note, by prior work, there exists precisely (4!)
4:−1

4:
de Bruijn sequences of order

:. By definition of de Bruijn sequences, all these sequences have the same magnitude 1

profile. This immediately shows that different sequences can have the same profile.

Example 4. “AACATAGCCTCGTTGGA” is a de Bruijn sequence of order 2. All

di-mers appear exactly once in the sequence. To list them:

{AA1,AC1,AG1,AT1,CA1,CC1,CG1,CT1,GA1,GC1,GG1,GT1,TA1,TC1,TG1,TT1}

17



2.3 Metric Spaces

DNA sequences in bioinformatics are usually richer in structure than simply considered

as strings on the DNA alphabet. As sequences are frequently compared via some “nice”

comparison functions, we can say that DNA sequences, paired with some method of

comparison that is nice in the sense that is a metric, form a metric space. Kmer profiles

are also frequently compared against each other with standard metrics, and thus it also

helps to consider kmer profiles as metric spaces.

Definition 10. A metric space is a set ( equipped with a function 3 : ( × ( → [0,∞)

satisfying the following axioms:

• Triangle inequality: 3 (G, H) + 3 (H, I) ≥ 3 (G, I)

• Point inequality: 0 ≥ 3 (G, G) ( so 0 = 3 (G, G))

• Separation: G = H if 3 (G, H) = 0( so G = H iff 3 (G, H) = 0)

• Symmetry: 3 (G, H) = 3 (H, G)

A function that maps between metric spaces is called a metric embedding. A metric

space ( equipped with the function 3 is denoted as ((, 3).

Definition 11. Let 5 be an embedding from the metric space (-, d) into another metric

space (., `). We define

expansion( 5 ) = maxG,H∈-
`( 5 (G), 5 (H))

d(G,H)

contraction( 5 ) = maxG,H∈-
d(G,H)

`( 5 (G), 5 (H))

The distortion of an embedding 5 , distortion( 5 ), is defined as the product of expansion( 5 )

and contraction( 5 ). An embedding 5 with distortion( 5 ) = 1 is called isometric.

The above definitions, like all definitions of this section, is standard and can be found

in many mathematics textbooks. Recall the following two metrics that are frequently

used.

Example 5. The !1 metric (Manhattan distance) together with any subset of R is a

metric space.
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Example 6. The Levenshtein metric together with ! is a metric space.

For a mathematician, one obvious question to ask regarding this view of sequences

and profiles as metric spaces is the property of the profile function ? 5 . The mathematical

inquiry simply asks if ? 5 preserves the metric space structure when it takes sequences

and converts them to profiles. A standard definition in mathematics is that, intuitively,

a function between two metric spaces respect the structures if it does not expand the

distances between the objects, in the precise sense below:

The following definition goes rather on a tangent for another niche property of kmer

profiles. It captures two essential properties of string: there exists an empty string, and

string concatenation is associative.

2.4 Algebraic Structures

A set “merely” contain elements. To say some mathematical object is a set merely says

that object can contain elements. To say a set forms a metric space under some function

reveals more information. For example, the set of DNA strings contain many strings

limited to the alphabet ACTG, but more interestingly we want to calculate Levenstein

distance between such strings, hence motivating the language of metric space as defined

in the previous subsection.

Sometimes we want to consider different operations in some sets. For example two

DNA strings concatenated still produce a DNA string. This motivates the definition

of monoids. Other operations on other sets motivate other structures, the structure of

metric space has already been defined previously, and only the notiong of semiring will be

additional defined.

This subsection will define two notions of homomorphisms between structures. Besides

the intuitive explanation as structure preserving maps, homomorphisms can be viewed as

not only mapping elements between sets, but also mapping operations among elements

from one set to another set.

Definition 12. A monoid is a set " equipped with a binary operation (·) : " ×" → "

and special element 1 ∈ " satisfying the following axioms for all G, H, I ∈ ":
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• (G · H) · I = G · (H · I)

• 1 · G = G = G · 1

A monoid (", ◦) with (◦) commutative, i.e. 0 ◦ 1 = 1 ◦ 0, is called an abelian monoid.

Note that as an example, any vector space under the operation (+) forms a monoid.

The unit element is 0 and addition is associative.

Example 7. Any vector space under the operation (+) forms a monoid with 0 as the unit

element.

Example 8. Lists (for example, linked lists) under the operation list concatentation forms

a monoid with the empty list as the unit element.

The concept described below simply provides machinery for a niche property discussed

later.

Definition 13. A function q : (", ·) → (#,�) is a monoid homomorphism if the

following property holds for all G, H ∈ ":

q(G) � q(H) = q(G · H)

In other words, reusing the notation from the definition above, the function q preserves

the monoid structure when mapping between " and #. The function q can also be

viewed as not only acting as a function mapping elements from " to # but also mapping

the operator · to �.

Definition 14. A semiring is a set ' with binary operations of addition and multiplica-

tion, such that (', ·) is a monoid under multiplication; (', +) is an abelian monoid under

addition; multiplication distributes over addition, i.e. the distributivity laws hold:

G · (H + I) = (G · H) + (G · I)

(H + I) · G = (H · G) + (I · G)
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and also the absorption/annihilation laws, which are their nullary version:

0 · G = 0 = G · 0

Semirings, with the canonical example of the set of non-negative numbers, can be said

to be in some sense two monoids in one. Some archetypical abstractions in computer

science form semirings.

Example 9. The set R along with addition as <8= and multiplication as (+) forms a

semiring denoted as (R, <8=, +). This is called the tropical semiring and forms the basis

for a field of geometry called tropical geometry but also has applications in optimization.

Definition 15. If ( and ) are semirings, then a semiring homomorphism from ( to ) is

a map 5 : ( → ) which preserves addition and multiplication, 5 (G + H) = 5 (G) + 5 (H) and

5 (GH) = 5 (G) 5 (H), as well as the neutral elements, 5 (0) = 0

Sometimes we only desire two things to be approximately equal under some measure

of distance. If G, H ∈ ((, 3) where ( some metric space, G and H are approximately equal or

almost equal if for some “small” n , 3 (G, H) < n . This generalizes to the notion of “almost

a homomorphism” in this thesis, where for function 5 to be a homomorphism, usually

5 needs to satisfy conditions in the form 5 (G ◦ H) = 5 (G) � 5 (H) for binary operators (◦)

and (�). 5 in this context is almost a homomorphism between two structures additionally

endowed with metrics if for some small n , 3 ( 5 (G ◦ H), 5 (G) � 5 (H)) < n .

3 From Profiles to Sequences

Now we begin the exploration of the properties of kmer profiles. We begin with some

preliminary deductions.

3.1 First Observations

Some insights can be obtained from first observations of the objects at play.
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Fact 1. The kmer profile metric space (%, X: ) is of topological dimension 0 under any

selection of the metric.

Proof. It suffices to show that the metric space has every subset as an open set. Consider

an open ball of size 1
:
, it is obvious that such balls only contain the point itself. By closure

of open sets under union, every subset is open. �

The above fact simply shows that the kmer profile space is a discrete space, and no

interesting topology or geometry could be easily applied.

Fact 2. The maximum magnitude of the kmer profile of a length = string is monotone

non-increasing as : → = and approaches to 1.

Proof. It cannot ever increase. Suppose it can; it means that some : + 1mer appears more

than a :mer, but this would imply that any substring of length : of the : + 1mer would

appear at least as much time as the : + 1mer. Contradiction.

Consider : = =. The maximum magnitude is 1. This would show that at some point

the max magnitude is 1. �

The above fact carries more significance, as the maximum magnitude is connected to

in-degrees and out-degrees of the generated de Bruijn graph.

3.2 Ambiguity

Perhaps not intuitively, we now begin with the question of the existence of the inverse

function of ? 5 . This is made more intuitive when we note that the process of taking

profiles and converting them back to sequences is an idealized version of the well studied

problem of genome assembly. This connection is elaborated further below.

Given a set of reads, how to assemble the genome back is the central problem underlying

contemporary next-generation genome assembly methods. The immediate problem that

hinders the mathematical beauty is that theoretically different sequences might generate

the same set of reads, in other words, the kmer profile function is not one to one. Then

the question becomes why and when does such kmer profile function become not one to

one, and how much of a problem is this.
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Example 10. “GGTGCGATTCTACCAA” and “AACATAGCCTCGTTGG” share the

same dimer profile; the profile is

{AA1,AC1,AT1,CA1,CC1,CG1,CT1,GA1,GC1,GG1,GT1,TA1,TC1,TG1,TT1}

In fact, the two sequences contain every possible dimer exactly once.

Sequences that are different but share the same profile, for simplicity, are called

“ambiguous”, because they cannot be told apart in the profile and by extension in the de

Bruijn graph yet their original sequences are different.

We now raise the question with an obvious answer as demonstrated by the previously

mentioned example: hypothetically, does there exist a way to convert back from kmer

profiles to sequences while still keep close things close? The answer is in general no,

because ambiguous sequences have kmer profiles that are as close as possible (distance 0),

yet ambiguous sequences can have quite large edit distances.

Proposition 1. There does not in general exist a metric embedding from (%, 3%) to

(!, 3!) with expansion < ∞ any selection of the metrics 3% and 3!.

Proof. It suffices to show that in general there exists semi-Eulerian de Bruijn graphs

that contain two unique Eulerian paths. The most simple case is Eulerian cycle. For =

sufficiently large, one can always find a cycle graph that is a valid de Bruijn graph. �

Then when can de Bruijn graphs only have unique sequences behind them, as in

existing no ambiguous sequences? The following section explores this topic.

3.3 The Number of Ambiguous Paths

The number of Eulerian paths in a de Bruijn graph has been characterized by a result

due to Kingsford et. al, which is written below:

Theorem 1. Let � = (0DE) be the adjacency matrix for an n-vertex de Bruijn graph

G, with both 0DE > 1 and self-loops allowed. If 3+(E) = 3−(E) for all E, then choose a

vertex C arbitrarily, otherwise pick the unique t such that 3+(C) = 3−(C) − 1. Finally, let
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AD = 3
+(D) + 1 if D = C or AD = 3

+(D) otherwise. Then the number of sequences consistent

with � that can be spelled ending with node C is given by

W(�, C) = (det !)
{∏
D∈+
(AD − 1)!

} 
∏
(D,E)∈�

0DD!


−1

where ! is the = × = matrix with AD − 0DD along the diagonal and −0DE in entry (D, E)

The above does not immediately lead to many insights, and thus I present a more

restrictive form of the above theorem that might lead to more intuition:

Theorem 2. The number of Eulerian paths in a semi-Eulerian but not Eulerian graph

that contains no parallel edges is

C�

∏
E∈+
(346(E) − 1)!

where C� is the number of unique spanning trees of the graph and 346(E) is the maximum

of the in-degree and out-degree of E.

Proof. Any semi-Eulerian graph contains two inbalanced nodes. Modify the graph by

connecting the two inbalanced nodes. Now the graph is balanced and Eulerian. In a result

due to de Bruijn, we have the BEST theorem, written below:

C�

∏
E∈+
(346(E) − 1)!

where C� is the number of unique spanning trees to the graph rooted from given node (it

can be shown that this is the same in an Eulerian graph), which by the assumptions is

bijective to the number of unique spanning trees in the unmodified version of the graph,

and 346(E) is specifically the out-degree, which is equal to the in-degree in a balanced

(Eulerian) graph, which implies that even after the deletion of the edge connecting the

two inblanaced nodes, the max of the in and out degree will recover the original degree.

Observe that the modied graph must have the same number of Eulerian cycles as the

original graph have Eulerian paths. �

24



Recall that Eulerian paths in the de Bruijn graph represents admissible sequences that

can be assembled from the reads. Thus if the de Bruijn graph (that fits the assumptions

of the above theorem) contains a vertex with a degree of 3, the original sequence must

be ambiguous. More deeply, the above theorem suggests the unfortunate consequence

of choosing a small read size, or a small : in kmer profiling. For example, when nodes

are 2mers, and say we have a node that is “AC”. It only takes three of “AAC”, “CAC”,

“GAC’, “TAC” to appear in the sequence for this sequence to have a degree 3 vertex. This

also leads to the observation that increasing : inevitably decreases degrees of vertices, as

it is even hard to ask for a fixed kmer itself to appear twice in the sequence. : + 1mers

having that kmer as a suffix or prefix can only be rarer.

The fact that increasing : decreases the degrees of the nodes in the graph also destroys

possible unique spanning trees in the process as the graph becomes increasingly linear.

An example of this process can be viewed below, first look at the de Bruijn graph of a

sequence of order 3:

AA

AC

CC

CA

AT

TA

and the same de Bruijn graph of this sequence of order 4:

25



AAC

ACC

CCA

CAC

ACA

CAT

ATA

TAA

AAA

There are multiple Eulerian cycles in the order-3 de Bruijn graph but only one Eulerian

path (by coincidence also an Eulerian cycle) in the order-4 graph. This is a general tendency

of increasing :: increasing : destroys loops and decreases the degrees of the nodes.

In conclusion of this section, ? 5 is bijective when : increases when the de Bruijn

graph of the sequence “unrolls”: the loops disappears. Thus the familiar conclusion, of

kmer profiles being an accurate representation of DNA sequences is reached.

4 From Sequences to Profiles

Now we look at the opposite direction: the forward direction of ? 5 where we generate

profiles from sequences. This has two real world applications: the first is for generating

short reads for DBG; the second is for calculating kmer profiles and apply metric on the

profiles. With all the machinary defined in previous sections, the expansion and distortion

of the kmer profile function can now be introduced.
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4.1 The Expansion and Distortion of The Profile Function

Proposition 2. expansion(? 5: ) ≤ 2:: the expansion of kmer profile as a metric embed-

ding is no more than 2:.

Proof. Given two strings B1, B2 ∈ !, each edit from B1 to B2 only induce an at-most

magnitude-2: change to the profile vector.

The window passes through the changed position exactly : times. Each time it passes

through, the dimension associated with each original window decrements by one, and the

dimension associated with the new window increments by one.

For a given edit distance 3, the maximum profile distance is 2:3. �

To repeat, the above proposition shows that kmer profiles will never expand distance,

no matter the choice of :, over the factor of 2: . In fact, the above proof shows more: each

edit will only induce up to 2: distance in the original !1 metric. More informally, edit

distance upper bounds kmer profile distance by a factor of 2: . This would by contrapositive

imply that those far in kmer profile distance cannot be close in edit distance, which can

help saving running time when filtering for sequences close in edit distance.

Proposition 3. The contraction of the kmer profile function ? 5 can be piecewise expressed

below:

contraction(? 5: )


= ∞ : << =

≤ 1 otherwise

Proof. It is clear that the first case is true by the ? 5 no longer being one-to-one. The

second case is equivalent to saying that edit distance will never contract beyond a certain

:. This is true definitely at : = =, thus as : → =, at some point it will reach this point

where the distance never contracts. As a remark, this is also a fairly common case but

regretablly this cannot be made more precise. �

By the result of the previous section, when ? 5 is not one-to-one. The contraction is

immediately revealed to be undefined (written as ∞) as two points with non-zero distance

becomes zero-distanced.
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Theorem 3. The distortion of the kmer profile function ? 5 can be piecewise expressed

below:

distortion(? 5: )


= ∞ : << =

≤ 2: otherwise

where : << = means that : is small enough s.t. ? 5: is not a bijection.

Proof. By distortion(? 5 ) = expansion(? 5 )·distortion(? 5 ) and the two above propositions,

this piecewise relationship can be quickly deduced. �

This piecewise function shows that ? 5 , in order to become nice (having low distortion)

as a metric embedding, must not have an overly small : to the extent that ? 5: is not a

bijection. Beyond that, the distortion is capped at 2:, suggesting that : should be neither

too small nor too big.

4.2 The Profile Function as Monoid Homomorphism

This is a niche property that is merely nice to have. As kmer profiles are vectors, one can

ask what operations on vectors make sense. The answer is that only addition so far makes

sense, because a bit informally, addition on kmer profiles correspond to concatenating

sequences, which is made precise below:

Proposition 4. ? 5 is almost a monoid homomorphism, in the precise sense below:

X: (? 5: (G ◦ H), ? 5: (G) + ? 5: (H)) ≤ 2:

Proof. Since kmer profile count kmers, observe that only the : kmers in the middle of the

concatenated string has not been counted, which will induce at most : magnitude change

in the Manhattan distance, thus at most 1 magnitude change in kmer profile distance. �

More intuitively, it does not matter that much whether I first concatenate two sequences,

then calculate the kmer profile, or first calculate the kmer profiles, then perform addition

on the profiles. This property lends minor confidence to kmer profiles as representations

to sequences, as they “concatenate” in a sense.
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In fact, as a generalization, it can be posed, that some algebraic completion of DNA

strings, if we squint hard enough, form a semiring. That is to say that some modification

(!, ◦, �), where (�) is a modified version of sequence alignment is a semiring. If we

consider profiles to be sets and consider the set of profiles of sequences with length no

longer than some fixed length = that is closed under intersection, we obtain a variation

of the semiring of sets. This notion can be made more precise below in the table, but

regrettably this will be left not explored further.

Sequence Space Profile Space

DNA Sequence (String) Profile (Vector)
Concatenation (◦) ∪
Alignment (�) ∩
Edit Distance (;4E) !1

Metric Space, “Near Semiring” Metric Space, Semiring

5 Discussion

With the results presented, this section focuses on several questions one might ask after

learning about the unfortunate fact of choosing a :, where : too small will lead to

ambiguities and the mathematical nice properties break down.

5.1 How Much Error can be Generated

Some sequences map to the same kmer profile. One immediate question is how much

can these sequences themselves differ. Pessimistically they can have distances among

themselves resembling distances among random sequences, as essentially choosing a

different Eulerian path destroys the original order, thus informally forcing the edit distance

to find creative ways to connect the two strings.

As an example, consider the following structure of the de Bruijn graph:
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AAAAT

AAATA

AATAC AATAA

ATACT

TACTC

ACTCA

CTCAA

TCAAA

CAAAA

ATAAA

TAAAT

AAATG

AATGC

ATGCA

TGCAA

GCAAA

The above graph admits two possible ways to reaach the CAAAA node, from the

left path or the middle path. As the left path and the middle path can have significant

differences, as demonstrated by this example, their edit distances can differ greatly.
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5.2 Leaving Kmer Profiles as They are

Since kmer profiles keep close sequences close, it is tempting to simply not recover the

original sequence from kmer profiles, but to simply use them as an approximate form of

the original seqeunce that can be quickly compared against. Addition of kmer profiles, as

shown in this thesis, even approximate a crude form of string concatenation.

When performing kmer profile based sequence comparisons, it makes some vague sense

to use the read size for the selection of :, as if the assembly error purely originates from

the fact that multiple Eulerian paths exist on the graph, the kmer profiles of the ground

truth genome would still agree with the wrongly assembled sequence.

It should also be of note that the ambiguity of kmer profiles, in the asymptotic sense,

does not matter. One can use constant time to filter out the ambiguous sequences.

Consider the following proposition:

Proposition 5. For fixed :, the number of ambiguous sequences for a given sequence is

expected to a constant.

Proof. There are 4: vertices, the number of paths is upper bounded by 44
:

. The number

of sequences is 4: and thus the ratio is bounded by a constant 44
:−: , still a large number

but a constant. �

6 Applications

6.1 The Selection of :

The selection of : can be said to be a problem of tradeoff when actually applying kmer

profile based methods to real world data. As first noted, the vector becomes exponentially

more sparse as : approaches infinity. Due to the curse of dimensionality, this can lead to

problems in further analysis (clustering, visualizing, etc.) of the data.

On the other hand, increasing : will necessarily lead to the decrease of degrees of the

vertices of the graph. By the modified BEST theorem, this will necessarily lead to only 1

Eulerian path in the de Bruijn graph. More intuitively, there will be only one way to piece
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together these long sequences of length :. In short, or in obvious hindsight, : should be

neither too small or too large.

As a folklore result, roughly : should be proportional to ;>64 of the length of the

string.

6.2 Quickly filter sequences with edit distance within 3

Although kmer profiling is much more suited to filtering out sequences that are far away (in

edit distance) from some fixed reference sequence, the need to select a subset of sequences

that are within 3 in edit distance to some reference genome might arise occasionally.

Since kmer profiles will never have false negatives, the algorithm can simply proceed

by first taking all sequences within 3 distance in their kmer profile representation, then

calculating edit distance based on the original sequences. I hereby give a more formal

description of the problem and this method:

Assume that = (for simplicity) length-= strings are given, and a length-= sequence,

called the reference sequence is also given. The task is to find all sequences in the list

that are of 3 edit distance within the reference sequence. Assume that Θ( 1
<
) sequences

of the list actually fit this description, which is reasonable for small 3. The algorithm

proceeds as follows:

• First calculate the =-mer profile for each of the sequence (including the reference).

(Linear time)

• Using the modified metric X3, take all the sequence (candidates) that has within 1

distance w.r.t the reference sequence’s profile. (Linear time)

• As the number of candidates is of the order Θ( 1
=
), linearly filter all the candidates

within edit distance 3. This step would take Θ( 1
=
)=2 = Θ(=) (linear) time.

Thus this is a expected linear time algorithm (with the reasonable assumption of the

distribution of the sequence), as opposed to a expected quadratic time algorithm.
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7 Conclusion

The theme, of the choice of :, appears ubiquitously in the problems of genome assembly

and using kmer profiles as reduced representations of DNA sequences for fast comparisons.

To recall the discussion on :, a large enough : leads to bijections, and more generally,

isomorphisms, between sequences and their profiles. This is due to results from genome

assembly: large enough reads, as reminded by in this thesis, lead to unambiguous de

Bruijn graphs. With the profiles understood as reads, this is the obvious result of saying

that choosing a large enough read size : lead to better assembled sequences. This settles

the discussion for the choice of : in genome assembly, but not the entire picture.

The second discussion made is that of kmer profiles being vector representations of

DNA sequences that carry significance in the sense that distances between such kmer

profiles correspond well enough to distances between their original sequences. This is

a much more subtle point than genome assembly, although as an implication of 1-1

correspondences between the profiles and their sequences for large enough :, large :

inevitably leads to strictly bounded correspondences between kmer profiles. It is the curse

of dimensionality that deals the most damage here. It is not true for kmer profiles to have

an as large a : as possible. Although theoretically it is theoretically nice its properties

will get destroyed in any reasonable sense as the dimension increases exponentially with : .

The finer point associated with the above discussion is that kmer profiles always

correspond greatly with the original edit distances in the precise way that kmer profiles

are bounded, by a constant factor from their original edit distances. This is regardless of

:, and provides a consistent theoretical guarantee to the usage of kmer profiles as ways

to compare sequences without performing alignments, implying that kmer profiles can

sometimes be used as representations purely for their contracting property w.r.t DNA

strings.

Some finer points are also demonstrated with regards to kmer profiles that are mostly

unrelated to the choice of :. Intuitively, the operation of summing up (direct sum

in multisets, simply addition on vectors) kmer profiles is equivalent to DNA string

concatenation. The operation of intersection on the kmer profiles is roughly equivalent to
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aligning sequences in the original DNA strings. This can be made precise, in forcing a

variant of kmer profiles that have ? 5: as a monoid homomorphism.
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