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ABSTRACT

Brian G. Barkley: Causal Inference From Observational Studies in the Presence of
Partial Interference

(Under the direction of Michael G. Hudgens)

Analyzing data to estimate the e�ect of treatment on health outcomes can play a

major role in the �elds of personal and public health. Interference occurs when the

treatment of one individual a�ects the outcome of another individual. This work aims

to develop statistical methodology for inference about causal e�ects from observational

studies in the presence of interference. We assume partial interference throughout:

interference may exist within clusters of individuals, but not between distinct clusters.

In each paper we propose estimators that are consistent and asymptotically Normal;

estimators for the asymptotic variance are also proposed. Finite-sample performance

of each estimator is investigated, and each method is illustrated by analyzing a cholera

vaccine study in Matlab, Bangladesh.

In the �rst paper, we propose a method for inverse probability-weighted estimation

of target estimands in the presence of partial interference that is more robust to model

mis-speci�cation than existing methods. This technique relies on an algorithm which

combines machine learning and mixed e�ects methods to determine the relationship

between treatment and covariates assuming a certain correlation structure. We employ

the algorithm on a training sample as a data-adaptive model selection procedure. We

recover the set of rules that the algorithm uses for prediction to transform the covariates

in a testing sample. We proceed by �tting a model to the transformed covariates to

estimate propensity scores for IPW estimation of target estimands.

iii



We propose a matching technique for estimating causal e�ects in the presence of

partial interference in the second paper. These estimators extend methods that are

commonly employed when no interference is assumed. The proposed methods can be

carried out without modeling treatment, and may outperform existing IPW estimators

in certain scenarios. Extensions of these estimators are discussed.

In the third paper we propose new causal estimands for observational studies in

the presence of partial interference. The proposed estimands describe counterfactual

scenarios in which there may be within-cluster dependence in the individual treatment

selections. These estimands may be more relevant for public health o�cials. These es-

timands are identi�able from observational data with parametric assumptions. Inverse

probability-weighted estimators for these estimands are proposed.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

An important issue in the study of personal and population health is in determin-

ing causal e�ects of health outcomes, instead of simply �nding associations and coin-

cidences. Researchers carefully plan, orchestrate, and analyze the data from studies in

attempts to determine what events, therapies, behaviors or interventions make notice-

able e�ects on individuals' health outcomes. Most traditional statistical techniques are

not designed to draw causal conclusions from data that do not arise from well-crafted

and expensive randomized controlled trials, and doing so can result in greatly erroneous

decision-making (Holland 1986). In a widely-known example, analyses of several non-

randomized studies with traditional statistical methods suggested a protective e�ect

of hormone therapy against cardiovascular among women; analysis from randomized

clinical trials however proved that the therapy did not decrease the risk of heart disease

and contrarily could be considered harmful (Hulley et al. 1998).

It is necessary to develop and employ statistical methods that can address causality

from nonrandomized trials (Rubin 1974), which is the focus of this manuscript. Doing

so would allow us to address causality from a greater range of nonrandomized trials,

saving time, money and lives. In particular this manuscript focuses on observational

studies in the presence of interference (Cox 1958), which is when one individual's treat-

ment may a�ect another individual's outcome. This chapter continues with motivating

examples in Section 1.2, followed by a literature review in Sections 1.3 and 1.5, and con-

cludes with a summary and research proposal in Section 1.6. In Chapter 1.6, methods
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to reduce the risk of bias and increase robustness to statistical modeling assumptions

by employing techniques from machine learning and data mining literature are pro-

posed. A new matching estimator is proposed for the cases in which inverse probability

weighting may be undesirable due to unstable weights in Chapter 2.8. Finally, new

causal estimands and corresponding estimators are presented in Chapter 3.10 for the

analysis of observational studies that account for correlation as well as interference.

1.2 Motivating Examples

1.2.1 Recent introduction of rotavirus vaccines in US

Prior to 2006, nearly one-third of severe acute gastrointestinal episodes among chil-

dren in the United States were attributed to rotavirus infection (Tate et al. 2009),

and is the leading cause of gastroenteritis in young US children (Panozzo et al. 2014).

Rotavirus vaccines were made available in 2006 with the potential to reduce risk of ro-

tavirus infection, and subsequently coverage across the United States increased quickly

(Tate et al. 2009). One vaccine had been estimated to be up to 90% e�ective in ran-

domized trials (Tate et al. 2009). An early analysis by Tate et al. (2009) comparing

rotavirus activity in the years prior to and after the rotavirus vaccine was made avail-

able to the US public provided strong evidence that the vaccines reduced the burden

of rotavirus in US children.

However, Centers for Disease Control and Prevention estimates showed that nearly

one-third of eligible children near the age of 2 years old had not yet completed a

full vaccination as of 2011 (Centers for Disease Control and Prevention (CDC) 2012).

Similarly, Panozzo et al. (2013) used a large, nationwide database of electronic health

records to estimate that up to one-�fth of US infants had not received at least one dose

of a rotavirus vaccine as of 2010. Panozzo et al. (2014) carried out a rigorous analysis

using the same database source to estimate that vaccination was up to 90% e�ective in
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preventing rotavirus-related hospitalization for the recipient. The analysis by Panozzo

et al. (2014) also showed that there was some amount of added protections conferred

onto all children, even those who were not vaccinated, due to the increased amount of

vaccination in the entire population or �herd immunity�.

The above research highlights the plausibility of interference in the study of the

causal e�ects of rotavirus vaccination on rotavirus infections in US children. The na-

tionwide database of electronic health records used by Panozzo et al. (2013; 2014)

contains rich information on relevant outcomes, vaccination statuses, and many poten-

tial confounders, and so could be used for a causal analysis using methods appropriate

for nonexperimental studies. Since the database also contains geographical informa-

tion, relating physical distance of children, partial interference may be an appropriate

assumption. We intend to introduce new estimators that can be used for estimation of

causal e�ects in the presence of interference that control for a high number of covariates

in a robust manner.

1.2.2 Cholera vaccine study in Matlab, Bangladesh

From 1985-1988, over 120,000 women and children in Matlab, Bangladesh were

o�ered potential vaccines in a triple-blind randomized trial, and then followed to study

the e�ectiveness of the drugs in reducing the incidence of cholera (Clemens et al. 1988).

These results have been presented by Clemens et al. (1988), Ali et al. (2005; 2009),

Perez-Heydrich et al. (2014) among others.

Perez-Heydrich et al. (2014) de�ne an individual as being treated when they have

taken 2 doses of one of the versions of vaccine. Summary measures of the risk of

cholera incidence among study participants, strati�ed by level of vaccine coverage within

geographical region, or bari are given in Table (1.1) below. As coverage increases within

the bari from below 50% to more than 75%, the risk of cholera infection amongst the
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unvaccinated individuals falls from above 50% to 31%.

Within-bari Infections per
vaccine coverage Number of baris 1000 unvaccinated
[0%, 20%] 1659 7.6
(20%,40%] 1528 6.3
(40%, 60%] 2057 4.5
(60%, 100%) 1067 3.2

Table 1.1: Infection rate amongst uninfected decreases as vaccination coverage increases

Although the study did o�er the vaccines in a strict randomization setting, women

and children chose whether to present themselves for inclusion in the randomized study

component. Infection outcomes for the women and children who were eligible for the

trial but who did not choose to participate in the trial (and therefore went unvaccinated)

were still available. Statistical interference is plausible, and so any analysis of this

data should include observations for all eligible individuals (and not simply the trial

participants) and also control for this nonrandomized component that likely includes

a level of self-selection for treatment. Perez-Heydrich et al. (2014) were the �rst to

formally consider the e�ects related to interference in the potential outcomes framework

in an application of this data. We intend to introduce estimators in the presence of

interference that exhibit more stable performance than the existing inverse-probability

of treatment weighting methods. We also propose new estimands that may be more

relevant for scienti�c inquiry than existing estimands from Tchetgen Tchetgen and

VanderWeele (2012).

1.3 Causal Inference from Observational Studies

1.3.1 The Potential Outcomes Framework

This document considers causal inference from the potential outcomes framework.

This framework was pioneered by Neyman (1935) and was re�ned by Rubin (1974).
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Holland (1986) further elucidated the similarities and di�erences between the potential

outcomes framework and traditional associative statistical methods. Generally known

as the Rubin Causal Model (Holland 1986, Little and Yau 1998, Frangakis and Rubin

2002), the Neyman-Rubin Causal Model (Pearl 1996, Rubin 2005), or even the Neyman-

Rubin-Holland Theory (Brady 2002, Sekhon 2008; 2009) causal e�ects are de�ned by

di�erences in potential outcomes that follow treatment.

Consider a study of i = 1, . . . ,M individuals and a binary variable representing

treatment status A, where Ai = 1 indicates that individual i experienced the treat-

ment, and Ai = 0 indicates that she did not. Let Y denote subsequent health status,

where Yi = 1 indicates that she experienced an unfavorable outcome, and Yi = 0 in-

dicates favorable outcome. Since Y and A may take on di�erent values for di�erent

individuals, they are random variables. In the potential outcomes framework, Yi(a)

is the woman's potential outcome that would have been observed if the woman had

experienced treatment a.

In one possible scenario, the woman undergoes treatment Ai = 1 and then expe-

riences an antecedent health status Yi(1). In another possible scenario, the woman

instead does not undergo treatment Ai = 0 and then experiences an antecedent health

status Yi(0) that is quite possibly di�erent from Yi(1). The causal e�ect of treatment

versus no treatment for the woman is the di�erence in her potential outcomes in the

two scenarios Yi(1)− Yi(0).

However, it is not possible to observe the woman both take treatment and also

fail to take treatment, and so it is not possible to know the causal e�ect Yi(1)− Yi(0)

of treatment on her health outcome. These multiple possible scenarios, at most one

of which is factual and the remainder run counter-to-fact, are often referred to as

counterfactuals (Lewis 1974; 2001, Glymour 1986, Morgan and Winship 2014). The key

issue in causal inference, often called its fundamental problem (Holland 1986) is that
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only one of these counterfactuals may be observed, and so it is not possible to truly

know the causal e�ect of a treatment on any individual's health outcome. Instead,

causal e�ects are estimated from observed data.

The above example satis�es the stable unit treatment value assumption (Rubin

1980) or the individualistic treatment assumption (Manski 2013), or SUTVA. SUTVA

implies that any individual's outcome is a function of her own treatment, and no individ-

ual's treatment can a�ect another individual's outcome. A major component SUTVA

is the assumption of no interference between units (Cox 1958). VanderWeele (2009)

discusses the assumption of no interference

Yi(a, k) = Yi(a, k
′) for all i and any a = 0, 1, & k 6= k′, (1.1)

where Cole and Frangakis (2009) de�ne Yi(a, k) as the potential outcome for an in-

dividual i when the individual experiences treatment a �by means of� some condition

k. Another component of SUTVA is the assumption of causal consistency (Cole and

Frangakis 2009, VanderWeele 2009, Pearl 2010),

Yi(Ai) = Yi(a) for all i when a = Ai, (1.2)

Cole and Frangakis (2009) de�ne this in words: individual i's observed outcome �is the

potential outcome, as a function of intervention, when the intervention is set to the

observed exposure.� Two related assumptions that are often made, at least implicitly,

are that the observed variables are measured without error (Rubin 1974, Edwards

et al. 2015) and that the time between antecedent treatment and subsequent outcome

is su�cient for the treatment to have an e�ect, if any, on the outcome (Rubin 1974).

Attempting to observe both potential outcomes in the same individual is only possi-

ble under strict assumptions that are generally considered untenable. For example one
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could observe the woman's health status before and then after treatment but the role

of temporality is generally non-negligible, resulting in a comparison that is not causal

in its nature Rubin (1974). Per Rubin (1977), �one cannot simply look at the plot of

Posttest on Pretest and properly estimate treatment e�ects.� It is also generally inad-

visable, unless rigorous safeguards are enacted, to compare the outcome of a treated

individual to another untreated individual, since any two individuals are likely to be

di�erent or have di�erent pretreatment variables that are important to consider. A

good estimate of the causal e�ect of a treatment can result from comparing statistical

summary of the health outcomes of the set of individuals who were treated to that of

the set of individuals who were untreated, provided that these two groups of individuals

had similar pretreatment variables.

Given a sample of participants in a well-de�ned and well-executed clinical trial, if

each individual is randomized to receive treatment or to not receive treatment, the

di�erence in the average health outcomes in the two groups of patients leads to an

unbiased estimate of the causal e�ect of the treatment on the outcome of interest.

Randomized trials have been the gold standard for making causal conclusions (Schulz

and Grimes 2002) because when they are properly designed and executed, none of the

factors that in�uence an individual's potential outcome can a�ect that individual's

treatment status as a result of the randomization of individuals to treatment. A factor

in�uences both an individual's potential outcomes and the likelihood that the individual

obtains treatment is often called a confounding variable (Rosenbaum and Rubin 1983b),

or a confounder (Greenland and Robins 1986, Greenland et al. 1999b). Failure to control

for confounders typically results in biased estimates of causal e�ects. Randomized trials

can eliminate confounding by design, but su�er the drawbacks that they are usually

costly to implement, are carried out on a relatively small portion of the population of

interest (Grimes and Schulz 2002). Additionally, randomized trials can be infeasible or
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unethical in certain situations.

In these cases, causal inference should be addressed from nonrandomized studies.

Nonrandomized studies are relatively less expensive and can follow a larger share of

the population of interest compared to randomized studies. Also called nonexperimen-

tal (LaLonde 1986, Dehejia and Wahba 1999; 2002) or observational (Cochran and

Chambers 1965) studies, these study designs exhibit the potential for confounding.

Traditional statistical techniques often do not adequately control for confounding and

can provide biased estimates of causal e�ects, among other undesirable results (Holland

1986).

Rubin (1974; 1977; 1978; 1980) pioneered the use of counterfactuals and potential

outcomes to develop a set of methods that can eliminate confounding in observational

studies given certain assumptions. Rubin (1974) describes a process of matching treated

to untreated individuals such that one untreated individual and one treated individ-

ual are matched �prior to the initiation of treatments on all variables thought to be

important in the sense that they causally a�ect� outcome. Rubin (1974) argues that

even absent randomization, �having closely `matched' trials increases the closeness of

the calculated experimental minus control di�erence.� Rubin (1977) discusses methods

to control for these important variables by blocking.

Rubin (1978) expanded on this de�nition of these important pretreatment variables,

de�ning �ignorable� treatment assignment when each individual's potential outcomes

were statistically independent of the individual's treatment, controlling for a su�cient

set of the individual's covariates. In the notation of Dawid (1979),

Yi(a) ⊥ Ai | Li for all units i and for a = 0, 1, (1.3)

where Li is a su�cient set of covariates. Similar concepts and related phrases strong
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ignorability (Rosenbaum and Rubin 1983b) exchangeability or conditional exchange-

ability (Greenland and Robins 1986), and the assumption of no unmeasured confounders

(Robins et al. 2000).

1.3.2 Matching and Inverse Probability Weighting

Controlling for confounding variables takes many forms, but the main goal is to

improve inference by reducing bias in the estimates. Two of the many popular methods

that can be used for causal are matching and inverse probability of treatment weighting

(IPW). Each of these can be carried out nonparametrically or with parametric modeling

assumptions. Here we present a short review of matching and IPW in nonparametric

settings when the dimensionality of these important covariates is low. Later we review

how to carry out analysis when the dimension of the covariates is high in Section 1.3.4

by introducing the propensity score and discussing modeling assumptions.

Matching methods take many types of forms. When the dimensionality of covariates

is low, matches can be de�ned nonparametrically on exactly identical combinations of

covariates, or using a Mahalanobis distance metric between individuals, among others

(Rubin 1974, Imai et al. 2008, Stuart 2010, King and Nielsen 2016). Matching has

gained popularity because it is highly interpretable and easy to implement, and can

require little more than checks to ensure covariate balance. More modern matching

techniques include methods to programmatically determine matches in a way that can

relieve the necessity for the investigator to do these checks (Iacus et al. 2012).

Inverse probability weighting by the conditional probability of treatment, often

called IPTW or simply IPW, relies on (1.4) to create an balanced �psuedopopula-

tion� (Robins et al. 2000, Cole and Hernán 2004) in which di�erences between the
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two treatment groups result in unbiased estimates of causal e�ects. IPW is most of-

ten implemented using parametric assumptions and modeling the probability of treat-

ment conditional on covariates, but nonparametric IPW estimation is also possible and

asymptotically e�cient (Huber et al. 2013). Rosenbaum (1987) described the connec-

tion between IPW and literature on survey sampling weights. An advantage of IPW

is that, unlike matching, it does not necessarily require individuals in each treatment

group to have the same covariates. However, it can su�er from poor performance when

the probability weights are large.

1.3.3 Estimating Causal E�ects from Observational Studies

Many studies have shown that insu�ciently controlling for confounders and failing

to satisfy the conditional exchangeability assumption (1.3) results in biased estimates

of causal parameters (Rosenbaum and Rubin 1983a). The ability of researchers to ap-

propriately identify the correct set of potential confounders necessary to condition upon

is a major hurdle to the �eld of causal inference from observational data (Robins and

Greenland 1986, Rubin and Thomas 1996, Brookhart et al. 2006, Austin 2011, Westre-

ich et al. 2011, Schisterman et al. 2009). This assumption is said to be untestable as its

validity cannot be examined from observable data (Holland 1986). Causal diagrams are

important tools for the researcher interested in determining conditional exchangeability

(Pearl 1995, Greenland et al. 1999a, Ogburn et al. 2014). For example, Richardson and

Robins (2013) introduced Single-World Intervention Graphs as a way to draw causal

diagrams that explicitly show potential outcomes. Many methods have been proposed

as a way to mitigate the risk of violating the assumption of conditional exchangeability

(Rubin 1997, Schneeweiss et al. 2009, VanderWeele and Shpitser 2011). In the sequel,

it is assumed that Li satis�es conditional exchangeability (1.3).
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1.3.4 The Propensity Score

When dimensionality of potential confounders is high, either due to a large number

of covariates or the presence of continuous covariates, nonparametric techniques may no

longer be appropriate. In this case, models of the distribution of treatment conditional

on covariates that rely on parametric assumptions are often used in conjunction with

matching and IPW. To this end, a very popular concept is the conditional probability

that an individual obtained the treatment that it was observed to have experienced, or

the propensity score. Rosenbaum and Rubin (1983b) introduced the propensity score

e(Li) = Pr(Ai = 1|Li = li) as the coarsest (scalar) function of the potential confounders

that creates balance between the two treatment groups. They show that by balancing

the two groups, the propensity score also removes bias from confounding as in (1.3):

Yi(a) ⊥ Ai | e(Li) for all i and for a = 0, 1 (1.4)

The propensity score also provides a clear conceptual link between drawing causal

inferences from randomized experiments and doing so from nonrandomized studies. In

experiments, a study unit is randomized to treatment in a way that generalizes to a

coin �ip or the roll of a weighted die. For a study unit with covariates Li in an nonran-

domized study, and assuming strong ignorability on Li (1.4), the unit's propensity score

e(Li) is the true probability that the unit obtains treatment. That is, the study unit

obtains treatment by the hypothetical process of rolling of a weighted die or �ipping

of a weighted coin where the weight is equal to e(Li). Using the propensity score to

link observational studies that lack randomization to some form of similar or �ideal�

randomized experiment allows investigators to expand the role of causal inference in

nonexperimental studies (Rubin 1974, Rosenbaum 2002).

A great deal of research estimates causal quantities by matching individuals from
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di�erent treatment groups when they have similar values of their estimated propensity

score (Rosenbaum and Rubin 1983b, Rubin and Thomas 1996, Dehejia and Wahba

1999, Rubin and Thomas 1996, Dehejia and Wahba 2002, Smith and Todd 2005, Ho

et al. 2007, Stuart 2010, Abadie and Imbens 2016). Similarly, IPW methods have been

used in many scenarios when the weights are derived from estimated propensity scores

(Rosenbaum 1987, Robins et al. 2000, Robins and Finkelstein 2000, Hirano et al. 2003,

Cole and Hernán 2004). There has been some debate as to which of these two standard

methods outperforms the other. For example, Frölich (2004a) found that matching

performed better than IPW, yet Busso et al. (2014) found that IPW performed better

than matching, and Huber et al. (2013) shows that each method has its advantages

and its disadvantages. Both methods have been used for important contributions to

the causal literature, and yet show great potential for future adaptations.

1.3.5 Estimating the Propensity Score

In observational studies, the propensity scores are unknown; they must be estimated

from observed data. Even when (1.3) is satis�ed and the investigator has chosen an

appropriate combination of covariates to control for, there is still the risk for bias from

inappropriate modeling assumptions. Fitting parametric and some semi-parametric

models to estimate the propensity score is also subject to the assumption of correct

model form. That is, even when (1.3) is satis�ed, any model speci�ed by the researcher

must have the functional form of the true underlying distribution of treatment, e.g.

including interactions and higher order terms as appropriate (Rosenbaum and Rubin

1984, Drake 1993, Austin 2011, Vansteelandt et al. 2012). Failure to satisfy this as-

sumption results in biased estimates of causal e�ects. Like (1.3), this assumption is

untestable. Research has been carried out at length to determine sensitivity of various

model �tting and variable selection techniques to this assumption (Brookhart et al.
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2006, Setoguchi et al. 2008, Westreich et al. 2010, Lee et al. 2010, Watkins et al. 2013,

Wyss et al. 2014). Recently, various techniques for estimating propensity scores arising

from the machine learning �eld have been proposed as a robust alternative to tradi-

tional, fully parametric models (Woo et al. 2008, McCa�rey et al. 2013, Zhu et al. 2015,

Pirracchio et al. 2015, Pirracchio and Carone 2016).

1.4 Multiple Forms of Treatment

Investigators often assume SUTVA in order to simplify analyses, but this assump-

tion is not always appropriate. Notable examples of when SUTVA is an untenable

assumption include studies with three or more distinct levels of treatments (Lechner

2001, Frölich 2004b, Zanutto et al. 2005, Spreeuwenberg et al. 2010, Cadarette et al.

2010, Cattaneo 2010, Feng et al. 2012, McCa�rey et al. 2013, Rassen et al. 2013, Fong

and Imai 2014, Linden and Yarnold 2016, Yang et al. 2016) or a continuous or dose-

response relationship (Robins et al. 2000, Imbens 2000, Foster 2003, Hirano and Imbens

2004, Imai and Van Dyk 2004, Kluve et al. 2012, Egger and Von Ehrlich 2013, Fong

and Imai 2014, Kreif et al. 2015, Schuler et al. 2016).

Methods appropriate for multilevel or continuous treatments are often based on the

works by Robins et al. (2000), Imbens (2000), Imai and Van Dyk (2004), Hirano and

Imbens (2004). In particular, Yang et al. (2016) recently introduced a matching method

based on principles put forth by Imbens (2000) that shows great potential for future

adaptations due to two small adjustments from most previous methods. Firstly, Yang

et al. (2016) assumes a �weak� version of (1.3) that does not require individuals to be

good matches across all levels of treatment, instead requiring only that they are good

matches in the two levels of treatment corresponding to their observed treatment. Also,

while many matching methods directly estimate causal e�ects by using matched pairs

to estimate contrasts, Yang et al. (2014) instead uses the matched pairs to impute
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all potential outcomes for each individual, thereby estimating full information of all

counterfactual scenarios in some cases.

Allowing for multiple treatments still runs the risk of violating other assumptions.

For example, any treatment model must still have the correct form, which is perhaps

even more challenging with multiple treatments than when assuming SUTVA. Recently,

authors have presented �exible modeling techniques drawing from machine learning

to mitigate the risk of incorrectly specifying propensity scores when the treatment is

multilevel or continuous (McCa�rey et al. 2013, Kreif et al. 2015, Zhu et al. 2015).

1.5 Interference

There are major conceptual and mathematical di�erences in the estimands that

allow for interference compared to those that consider non-binary individualized treat-

ments but do not allow for interference. A challenge is that when interference is present,

each individual may be subjected to what seems like a binary and individualized inter-

vention, but that individual may have many more than two potential outcomes arising

from the interventions that other individuals are subjected to.

This document concerns itself with interference, which appears in the literature

as far back as Cox (1958) and Neyman (1935). Rubin (1990) noted the potential for

interference arising from interpersonal interactions, in his case in the study of edu-

cational interventions. Perhaps an instructive example of interference is in crossover

or changeover trials, when an individual's outcome in the second stage may be in�u-

enced not only by the treatment they receive in that period but also the treatment

they had received in a di�erent period (Grizzle 1965). For many years, interference

was primarily considered in the language of a �technical error� (Neyman 1935, Rubin

1980), a �major issue� Rubin (1990), or something in need of �washout� (Verhave et al.

1959, Brown Jr 1980, Koch et al. 1980). Halloran and Struchiner (1995) argue for the
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careful consideration of the e�ects related to interference, saying, �The interference in

agricultural experiments, for example, is a nuisance that we try to be rid of . . . however

. . . the exposure to infection provided by the other members of the population in infec-

tious diseases, either directly or via vectors, is essential to transmission as well as for

evaluating the e�ects of the intervention.�

After Rubin (1978; 1990), Halloran and Struchiner (1995) were among the �rst

to consider interference in the potential outcomes framework. They reintroduce in the

language of potential outcomes the direct, indirect, total and overall e�ects of treatment

in the presence of interference from Halloran et al. (1991). Hong and Raudenbush

(2006) investigated peer e�ects in educational classrooms, desiring to determine whether

removing or adding a child to the classroom changed the learning outcomes of the other

children who were in the classroom. In this study, most of the students did not change

classrooms (i.e. were not subject to a change in individualized intervention status) but

the composition of their classrooms was changed by the addition or subtraction of other

students, providing an interesting example of how interference can arise from social

interactions. Sobel (2006) introduced the term �partial interference� for describing the

assumption that interference was possible within distinct groups or clusters, but no

interference is assumed between clusters, calling these neighborhood e�ects or spillover

e�ects. Hudgens and Halloran (2008) proposed estimands for the e�ects of interference

that are estimable using a two-stage cluster-randomized trial.

Other areas in which causal e�ects in the presence of interference have been studied

include criminology (Verbitsky-Savitz and Raudenbush 2012), spatial analyses (Zigler

et al. 2012, Graham et al. 2013), medical imaging (Luo et al. 2012), econometrics

(Sobel 2006, Manski 2013, Arpino and Mattei 2016), education (Basse and Feller 2016,

Kang and Imbens 2016), political science (Bowers et al. 2013), public policy (Graham

2011, Baird et al. 2016), sociology (Gangl 2010, Aronow 2012), and social media and
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network analysis (Ugander et al. 2013, VanderWeele and An 2013, Toulis and Kao 2013,

Kramer et al. 2014, Ogburn et al. 2014, van der Laan 2014, Kim et al. 2015, Eckles

et al. 2016, Sofrygin and van der Laan 2017, Athey et al. 2017). Clearly, the study of

causal inference in the presence of interference is very popular at this time.

Concerns for estimating the direct e�ect of vaccines go back to at least Greenwood

and Yule (1915), Ross (1916). Halloran and Struchiner (1995) were the �rst to use

the potential outcomes framework to discuss the e�ects of partial interference in stud-

ies of infectious disease. Hudgens and Halloran (2008) proposed a set of estimands

that are estimable in a two-stage randomized trial. VanderWeele and Tchetgen Tchet-

gen (2011b) proposed estimands for a similar yet two-stage trial. Tchetgen Tchetgen

and VanderWeele (2012) introduced estimators for those estimands, both for the two-

stage trial and also for use in observational studies using inverse probability weights.

Perez-Heydrich et al. (2014) derived closed-form asymptotic variance estimators for

the estimators when modeling the propensity score. Liu et al. (2016) introduced a new

set of estimators without the need to assume partial interference, with corresponding

variance estimators when assuming partial interference. Related work has been carried

out by Liu and Hudgens (2014), Rigdon and Hudgens (2015), VanderWeele and Tchet-

gen Tchetgen (2011a), VanderWeele et al. (2014), Forastiere et al. (2016b;a), Carnegie

et al. (2016), Manski (2016), along with software for estimating causal e�ects in the

presence of interference introduced in Saul (2017), Rigdon (2015), Barkley (2018).

1.6 Summary and Proposed Research

Interference is an important concern in the design and analysis of both random-

ized and observational studies, and should be accounted for. Randomized trials can be

cleverly designed to disentangle these e�ects to at least a certain extent. Correctly ac-

counting for interference is more challenging in a nonrandomized study, and additional
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care is required for unbiased estimation and causal inferences. One major goal that is

addressed in the following two chapters is proposing new estimators for existing esti-

mands. Another main concern is de�ning new estimands that can connect observational

data to questions of scienti�c interest, which is undertaken in the �nal chapter.

In Chapter 1.6, we introduce a method for more robust estimation of propensity

scores in the presence of partial interference. We assume a particular correlation struc-

ture, and propose an IPW estimator that uses machine learning as a form of model

selection for the �xed e�ect predictors. The �nite-sample performance of the estima-

tors is investigated in a simulation study, and the proposed methods are illustrated in

a data analysis of the Matlab, Bangladesh cholera vaccine study.

A matching method for estimating causal e�ects in the presence of partial inter-

ference is introduced in Chapter 2.8. Matching methods show promise for exhibiting

less bias than the existing IPW estimators in a variety of scenarios due to the relative

instability of the IPW. Asymptotic properties are demonstrated, and an estimator of

the asymptotic variance is proposed. The �nite-sample performance of this estima-

tor is investigated in a simulation study, and compared to the performance of existing

IPW estimators. The proposed methods are illustrated in an analysis of the Matlab,

Bangladesh cholera vaccine study.

In Chapter 3.10, we propose new estimands tailored for use with observational

studies under the assumption of partial interference. These estimands describe coun-

terfactual scenarios in which treatment may be correlated, and so they may be more

relevant to public health researchers. Identi�ability of the estimands from nonexperi-

mental data is be discussed, and estimators are proposed. The estimators are shown to

be consistent and asymptotically normal, and their �nite-sample performance is evalu-

ated in a simulation study. The proposed methods are illustrated in an application to

a cholera vaccine study in Matlab, Bangladesh.
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CHAPTER 2: MACHINE LEARNING FOR ESTIMATING CLUSTER

PROPENSITY SCORES IN PARTIAL INTERFERENCE

2.1 Introduction

Inferring causal e�ects from an observational study is challenging because partici-

pants are not randomized to treatment. Using traditional associative statistical meth-

ods in an attempt to draw causal conclusions from observational studies is often subject

to confounding and bias. A tool for inference is to model the distribution of treatment

on predictors in a sample of data; this is often used when carrying out estimation via

inverse probability-weighting (IPW) by the estimated propensity score.

Performance of these methods are subject to the investigator's choice of treatment

models, a decision whose appropriateness cannot be fully determined from observable

data (Robins and Greenland 1986, Drake 1993, Brookhart et al. 2006, Vansteelandt

et al. 2012). This topic has been studied at some length in the case where there are

exactly two versions of treatment, and some authors have proposed methods for the case

where there are more than two versions of treatment (McCa�rey et al. 2013, Kreif et al.

2015, Zhu et al. 2015). However, these decisions and their corresponding consequences

have not been explored thoroughly in the case where an individual's treatment may

a�ect another individual's outcome, and �interference� (Cox 1958) is said to be present.

Interference presents analytical challenges in infectious disease epidemiology among

many other �elds of research. The focus of this paper is to introduce statistical methods

that reduce the risk of bias due to model mis-speci�cation in observational studies in

the presence of interference.
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A major challenge to drawing inference when interference is present is the prolif-

eration of the number of potential treatments for an individual. Furthermore, non-

negligible correlation is likely to exist between individual treatments, presenting addi-

tional challenges for treatment modeling in this scenario. Many existing methods for

estimating causal e�ects from observational studies in the presence of interference rely

on �tting fully parametric logistic mixed e�ects models (see e.g., Perez-Heydrich et al.

(2014), Liu et al. (2016) and Barkley et al. (2017)), which are at risk of bias due to

model mis-speci�cation. There is currently a dearth of �exible statistical techniques

that can be used to model correlated treatment for estimating propensity scores in the

presence of interference (Liu et al. 2016). We propose using the GMERT algorithm (Ha-

jjem et al. 2017) as a data-adaptive model selection method for estimating propensity

scores in this scenario, a method we call GMERT-IPW.

The remainder of this paper is as follows. In Section 2.2 we provide a brief overview

of the potential outcomes framework and treatment modeling assumptions in causal

inference. In Section 2.3 we review interference and the causal estimands of interest for

this study. Section 2.4 reviews existing IPW estimators that rely on fully parametric

logistic mixed models, and challenges for treatment modeling in this scenario. The pro-

posed GMERT-IPW method is introduced in Section 2.5. Finite-sample performance

of GMERT-IPW is investigated in simulations in Section 2.6. The proposed method

is illustrated in an analysis of a large cholera vaccine study in Matlab, Bangladesh in

Section 2.7. This paper concludes with a discussion.

2.2 Treatment Modeling Assumptions in Causal Inference

The main assumption necessary for drawing casual e�ects of a treatment interven-

tion A on a subsequent outcome Y from observed data is that each individual's potential

outcomes Y (a) are una�ected by observed treatment conditional on a su�cient set of
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observed pretreatment variables, L. This assumption of conditional exchangeability

can be written using the notation of Dawid (1979) as

Yi(a) ⊥ Ai | Li for all units i and for a = 0, 1. (2.5)

Investigators often control for the probability that an individual obtains treatment

conditional on the su�cient set of confounders L called the propensity score (Rosen-

baum and Rubin 1983b), which can be written as

Pr(Ai|Li) for all i (2.6)

Rosenbaum and Rubin (1983b) showed that when L satis�es (2.5), then conditioning on

the scalar propensity score balances a sample of of observed data such that conditional

exchangeability is satis�ed:

Yi(a) ⊥ Ai | Pr(Ai|Li) for all i and for a = 0, 1. (2.7)

IPW estimators often rely on propensity scores, as do various other methods for drawing

inference from non-experimental data including some matching estimators.

Propensity scores are unknown in observational studies and must be estimated from

observed data; in general, the propensity score for each unit i in the sample is estimated

after �tting some sort of statistical model for treatment A on covariates L. For example,

an investigator must make an untestable assumptions that a set of confounders L is

su�cient to satisfy (2.5). More relevant to this paper is the untestable assumption

that the investigator's chosen statistical model for treatment on confounders has the

appropriate form (Drake 1993, Vansteelandt et al. 2012). Estimates of causal e�ects

may be biased if either of these assumptions are inappropriate.
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Here and in the sequel, we assume that (2.5) is satis�ed to focus on modeling

assumptions. More explicitly, we say that the assumption of correct model form is vio-

lated when the following are simultaneously true: (2.5) (and thus (2.7)) is satis�ed, yet

the data sample remains unbalanced - even after adjustment with estimated propensity

scores - as a result of inappropriate modeling assumptions. We refer to these as viola-

tions of the functional form assumptions (FFA), and they can result in biased estimates

of causal quantities, among other undesirable inferential properties.

Studies have been carried out to determine sensitivity to the FFA of various model

�tting and variable selection techniques (Brookhart et al. 2006, Setoguchi et al. 2008,

Westreich et al. 2010, Lee et al. 2010, Watkins et al. 2013, Wyss et al. 2014). Recently,

new techniques for estimating propensity scores arising from the �eld of machine learn-

ing have been proposed as a robust alternative to fully parametric models for scenarios

in which treatment is binary (Woo et al. 2008, Pirracchio et al. 2015, Pirracchio and

Carone 2016), multilevel (McCa�rey et al. 2013), or continuous (Kreif et al. 2015, Zhu

et al. 2015, Linden and Yarnold 2016). However, sensitivity to the FFA has received

little attention when allowing for interference, and there is a lack of �exible models for

estimating propensity scores in this scenario (Liu et al. 2016).

This manuscript is concerned with developing a modeling strategy more robust to

violations of the FFA in the presence of partial interference. Existing IPW estimators

in this setting rely on a logistic mixed model with a random intercept for cluster or

group membership to account for some amount of presumed treatment correlation, as

discussed in Section 2.4.1. These models are at risk for model misspeci�cation and

violations of the FFA due to their fully parametric speci�cation; modeling challenges in

this scenario are discussed in Section 2.4.2. We propose to use the GMERT algorithm

introduced in Hajjem et al. (2017), which draws from the �eld of machine learning

and also allows for estimation of variance components as in traditional mixed models.
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The proposed GMERT-IPW methods are introduced in Section 2.5, and they rely on

sample-splitting and also the existing IPW estimators discussed in Section 2.4.

2.3 Estimands for Partial Interference

Interference is when one individual's outcome may be a�ected by another individ-

ual's treatment, and it considered a violation or relaxation of SUTVA (Rubin 1980,

VanderWeele 2009). It may be reasonable to assume that individuals can be par-

titioned into clusters such that interference is plausible within any cluster, but not

between individuals in two distinct clusters. This assumption has been termed as �par-

tial interference� (Sobel 2006) or �clustered interference� (Barkley et al. 2017). Partial

interference is assumed throughout.

This paper considers the estimands described in Tchetgen Tchetgen and Vander-

Weele (2012) for use in observational studies. Like those in Hudgens and Halloran

(2008), these estimands arise from a two-stage cluster-randomized trial. Consider a

super-population of clusters of individuals; for consistency in notation, index the clus-

ters by i. Let any cluster i be comprised of j = 1, . . . , Ni individuals. Let Yij denote

the observed outcome for individual j in cluster i where e.g., Yij = 1 perhaps indicates

infection and equals 0 otherwise. Let Yi = (Yi1, . . . , YiNi) be the vector of outcome

statuses for the members of the cluster. Let Aij denote the treatment status for in-

dividual j in cluster i, where Aij = 1 if the individual was treated and 0 otherwise,

and let Ai = (Ai1, . . . , AiNi) be the vector of treatment statuses for the cluster. Let

a ∈ A(Ni) be a binary vector of length Ni, where a = (a1, . . . , aNi). Let aj ∈ {0, 1}

denote the jth element of a, and let a−j = (a1, . . . , aj−1, aj+1, . . . , an) denote the (n−1)-

dimensional subvector of a excluding aj. De�ne Yij(a) to be the potential outcome for

individual j in cluster i when cluster i experiences treatment a ∈ A(Ni).

Tchetgen Tchetgen and VanderWeele (2012) describes a two-stage cluster-randomized
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trial where individuals are administered treatment according to a �type B parameterisa-

tion.� Let α and α′ be two treatment allocation strategies that change the distribution

of treatment. In such a trial, clusters are assigned to either the α or α′ arm, and when

a cluster is assigned to the α arm then the individuals in that cluster are randomized

to treatment with equal probability which we denote α ∈ [0, 1]. We represent the

distribution of treatment in clusters in the α arm by the Bernoulli-type product

π(a, α) =
N∏
j=1

αaj(1− α)(1−aj). (2.8)

The estimands of interest are described by averages of potential outcomes under

an allocation strategy. For example, when cluster i is assigned to the α arm, then it

experiences potential outcome Yi(a) with probability π(a, α). An average of its potential

outcomes under α is then

1

Ni

Ni∑
j=1

∑
a∈A(Ni)

Yij(a)π(a, α).

De�ne the population mean potential outcome to be

µ(α) = E

 1

Ni

Ni∑
j=1

∑
a∈A(Ni)

Yij(a)π(a, α)

 . (2.9)

One type of causal e�ects are the Overall E�ects, de�ned to be di�erences in the

population mean potential outcomes from two di�erent allocation strategies:

OE(α, α′) = µ(α)− µ(α′). (2.10)
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Similarly, for z ∈ {0, 1}, de�ne:

µ(z, α) = E

 1

Ni

Ni∑
j=1

∑
a′∈A(Ni−1)

Yij(z, a
′)π(a′, α)

 , (2.11)

where π(a−j, α) = π(a, α)/π(aj, α). The Direct, Indirect, and Total E�ects are param-

eterized here as:

DE(α) = µ(1, α)− µ(0, α) (2.12)

IE(α, α′) = µ(0, α)− µ(0, α′) (2.13)

TE(α, α′) = µ(1, α)− µ(0, α′) (2.14)

Similar estimands are de�ned in Liu et al. (2016); in the case of partial interference

when each cluster is the same size, the estimands are identical to those presented above.

2.4 Existing IPW Estimators

Consider a sample of i = 1, . . . ,M clusters, where each cluster has Ni individuals

and an i.i.d. copy of the random variables (Li, Ai, Yi). As above, Yi is a Ni-vector

of observed outcomes and Ai is a binary Ni−vector of observed treatments. Here,

Li = (Li1, . . . , LiNi) is a (Ni × p)-dimensional matrix of covariates for the cluster,

where p equals the number of pre-treatment covariates. The pre-treatment covariates

for individual j in the cluster are represented by the (1 × p)-dimensional row vector

Lij = (L1ij, . . . , Lijp). The following IPW estimators for the target estimands assume

that Li satis�es conditional exchangeability and positivity (i.e, Pr(Ai = a|Li) > 0 for

all i and all a ∈ A(Ni)):

µ̂(α) =
1

M

M∑
i=1

1

Ni

Ni∑
j=1

Yijπ(Ai, α)

Pr(Ai|Li)
(2.15)
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and for z = 0, 1,

µ̂(z, α) =
1

M

M∑
i=1

1

Ni

Ni∑
j=1

YijI(Aij = z)π(Ai,−j, α)

Pr(Ai|Li)
(2.16)

where Pr(Ai|Li) denotes the propensity score for group or cluster i. Discussion of this

propensity score is presented in Section 2.4.1 below. The four types of target causal

e�ects can be estimated by taking appropriate di�erences of the above estimators. See

e.g., Tchetgen Tchetgen and VanderWeele (2012, Section 5.2) or Perez-Heydrich et al.

(2014) for further discussion of these estimators.

Liu et al. (2016) proposed �stabilized� IPW estimators for similar estimands:

µ̂Hajek(α) = N̂−1

N∑
i=1

Ȳiπ(Ai, α)

Pr(Ai = a|Li = li)
(2.17)

where now N̂ is replaced with an estimated term. Liu et al. (2016) proposes two

methods for this term; for example the second method is:

N̂ =
N∑
i=1

π(Ai, α)

Pr(Ai = a|Li = li)
.

In the special case when all clusters have the same number of units, the estimands that

these estimators target are identical to the estimands from Tchetgen Tchetgen and

VanderWeele (2012). Each of these IPW estimators is consistent and asymptotically

Normal when the treatment model is correctly speci�ed. The asymptotic variance can

be estimated with a sandwich variance estimator using standard estimating equation

theory; see e.g., Stefanski and Boos (2002) or Saul and Hudgens (2017).
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2.4.1 Fully Parametric Logistic Mixed Model for Treatment

In this section we provide further details on the propensity scores for the IPW

estimators described above. As in Barkley et al. (2017), we refer to

Pr(Ai = ai|Li) = Pr(Ai1 = ai1, Ai2 = ai2, . . . , AiNi = aiNi |Li) (2.18)

as the cluster propensity score to emphasize that it is the joint probability of multiple

individual treatment statuses.

When treatment is uncorrelated then a logistic GLM or machine learning classi�ca-

tion techniques may be appropriate to model the relationship between treatment and

pre-treatment covariates and estimate (2.18). However, when interference is plausible

then a reasonable assumption is that treatment is correlated. As in Perez-Heydrich

et al. (2014) and Liu et al. (2016), we assume that the correlation structure can be de-

scribed by a random intercept for each cluster. We assume that the cluster propensity

score has the form

Pr(Ai = ai|Li) =

ˆ Ni∏
j=1

p
aij
ij (1− pij)(1−aij)dΦ(b|σ) (2.19)

where pij = Pr(Aij = 1|Lij; bi) represents the probability that individual j is exposed

to treatment conditional on Lij and also on the cluster's random intercept bi. That is,

for some function f of the pre-treatment covariates, we assume

pij = L-1 (f(Lij) + bi) , (2.20)

where the random intercept is assumed to follow a Gaussian distribution with mean

zero: bi ∼ N(0, σ).
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Existing methods assume a fully parametric logistic mixed model such that

f(Lij) = Lᵀ
ijβ. (2.21)

For simplicity, we refer to a logistic mixed e�ects model (with a random intercept for

cluster) in the sequel as an �LMM.� In this fully parametric method, the parameters β

and σ would be estimated from a model �t with maximum likelihood techniques, such

as adaptive Gaussian Quadrature with the glmer function in the lme4 package (Bates

et al. 2015). Then, these parameters would be used to estimate Pr(Ai = ai|Li; β̂, σ̂)

for each cluster i, which would then be used to estimate and draw inference about the

target casual estimands.

2.4.2 Modeling Challenges for Estimating Cluster Propensity Scores

The performance of the LMM model to estimate cluster propensity scores will de-

pend on, among other things, whether the LMM model has the correct functional form

for the covariates in the model. In this work, we assume that (2.19) and (2.20) are

correct. We focus on a method for estimating the cluster propensity score that uses an

alternatives to the linearity assumption in (2.21).

When no interference is assumed (e.g., SUTVA), machine learning methods have

been shown to be more robust to the FFA. However, when interference is present, it's

likely that treatment is also correlated. There is a growing amount of research that

has investigated methods to estimate propensity scores assuming no interference when

individuals' treatment exposures may be correlated, e.g., see Arpino and Mealli (2011),

Cannas et al. (2012), Li et al. (2013), Arpino and Cannas (2016), Schuler et al. (2016)

or Yang (2017). However, when treatment is correlated and clustered interference is

assumed, then the interest is no longer in (individual) propensity scores, but rather

cluster propensity scores. The interest is to integrate over the (presumed) distribution
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of the random e�ects as shown in (2.19) (rather than, say, predicting with empirical

BLUPs). This may present additional methodological challenges. Here we consider the

application of a recently-proposed GMERT algorithm (Hajjem et al. 2017). Applying

GMERT to a training sample allows us to make assumptions about the functional form

in a data-adaptive manner.

2.5 Proposed GMERT-IPW Method

Hajjem et al. (2017) recently introduced a method combining combining decision

trees and mixed modeling techniques, called Generalized Mixed E�ects Regression Trees

or GMERT; it is applicable with correlated binary responses. We present some of the

motivating ideas behind the GMERT algorithm in Section 2.5.1, and we refer the

interested reader to Hajjem et al. (2017) for further details. Then, in Section 2.5.2 the

GMERT-IPW method for estimating the target estimands is proposed.

2.5.1 GMERT

Hajjem et al. (2017) propose to model correlated binary response data with a logit-

link function on the probability of treatment, where the probability is assumed to

have an underlying, latent random variable with respect to the cluster identi�er (i.e., a

random intercept). In a traditional LMM, the form of the �xed e�ects is pre-speci�ed,

and the model simply estimates the �xed e�ects. GMERT uses a decision tree algorithm

(i.e., rpart (Therneau et al. 1997)) to simultaneously determine the form of the �xed

e�ects while also obtaining predicted values for them. For our purposes with a split

sample, the structure will be more important, although the predicted values can be

used for cross-validation as we do in Section 2.7. The GMERT algorithm extends the

MERT algorithm in Hajjem et al. (2011) from continuous responses to binary responses

by using penalized quasi-likelihood (PQL).
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Traditionally, PQL is used to �t a weighted linear mixed e�ects model in an iterative

fashion to obtain approximate parameter estimates for generalized mixed e�ects models

(Breslow and Clayton 1993). The PQL algorithm uses a Taylor series linearization of

the response to create what is called a �working response,� which can take on values on

the real number line. Many frequentist mixed model estimation procedures transform

the likelihood (see e.g., Fitzmaurice et al. (2012)); PQL is key here because it transforms

the data as well. In the GMERT algorithm, the working response is �de-correlated�

by subtracting empirical BLUPs to create an �adjusted working response� that can be

used to with supervised machine learning techniques, e.g., weighted decision trees. A

sketch of the GMERT algorithm is provided in Section A.2.

2.5.2 GMERT-IPW

We propose to use the structure of the predictors from the tree algorithm recovered

by GMERT as a means of model selection. That is, we ignore the estimated param-

eters on the training set, and instead �t a LMM on the testing set of data with no

intercept but one parameter for each of the regions as designated by the tree; we refer

to this modeling technique as a GMERT-LMM. The GMERT-IPW method is to use

a GMERT-LMM to estimate cluster propensity scores for IPW estimation of target

estimands in the presence of partial interference. We present the proposed method in

more detail below.

Label S the entire sample of all i = 1, . . . ,M clusters, and partition this into a

training sample Strain of Mtrain clusters, and a testing sample Stest of the remaining

Mtest = M −Mtrain clusters, where each cluster belongs entirely to either the training

or the testing sample. We apply GMERT to Strain, and recover the decision tree. The

decision tree describes a partition Θ = {r1, . . . , rT} of T -many regions of the space of all

possible covariates. These regions are distinct (rt ∩ rt′ = ∅ when t 6= t′) and they span
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the predictor space (
⋃
t≤T rt = L). These regions describe a set of rules to partition

any sample of data that shares the same predictor space, e.g., Stest.

We can use the partition as a rule to transform the covariates of all individuals in

all clusters in Stest into the T regions (note that the predicted values and eBLUPs from

the training set are not used). That is, for all j ≤ Ni in all clusters i ∈ Stest, we can

transform Xij = Θ(Lij), where Xij is a (1 × T )-dimensional row vector of indicator

variables corresponding to the region in which Lij falls.

We �t an LMM on Stest for treatment A on the transformed predictors X = Θ(L).

This model can be described with cell-means coding, and so maximum likelihood esti-

mation can be carried out with existing software (i.e., adaptive Gaussian Quadrature

using glmer (Bates et al. 2015)). Thus the use of the GMERT algorithm is perhaps

aptly described as a model (and variable) selection procedure to inform the LMM. For

the GMERT-LMM we assume (2.19) and (2.20), yet instead of (2.21) we assume:

fΘ(Lij) = Xᵀ
ijβΘ. (2.22)

The GMERT-IPWmethod is completed by using the GMERT-LMM to estimate cluster

propensity scores and to target existing estimands in Section 2.3 with the existing IPW

estimators in Section 2.4.

This procedure has the potential to reduce bias due to model misspeci�cation, which

has not yet been studied in this scenario. Additionally, since this method uses sam-

ple splitting and a traditional logistic mixed model, we can also use traditional M-

estimation procedures (Stefanski and Boos 2002, Perez-Heydrich et al. 2014, Liu et al.

2016, Saul 2017) to estimate the asymptotic variance of these estimators on the testing

sample. Inference is under-emphasized in related literature on the robustness to model

misspeci�cation assuming no interference, and this procedure provides a powerful tool

to investigate it in the presence of partial interference.
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2.6 Simulations

We investigated the �nite-sample performance of the proposed method in a simu-

lation study. We generated D = 500 datasets, where each dataset was comprised of

i = 1, . . . ,M = 800 cluster. Each cluster had j = 1, . . . , Ni = 5 individuals. The

data generating process was very similar to those presented in Hajjem et al. (2017).

For each individual, 8 pre-treatment covariates Lij1, . . . , Lij8 were simulated from a

correlated Gaussian distribution. The observed covariates were then transformed into

six distinct regions - as in a decision tree - based on the values of Lij1, . . . , Lij5 but

irrespective of Lij6, Lij7, or Lij8. That is, de�ning the partition Θ0 = {r1, . . . , rT} with

T = 6, the transformed Θ0(Lij) = Xij was a vector of T = 6 indicator variables, where

Xijt = I(Lij ∈ rt). The form of the transformed covariates was not re�ected in the

observed data.

The probability that Aij was equal to 1 depended logit-linearly on the individual's

transformed covariates as well as a random intercept for the cluster:

Pr(Aij = 1 |Lij, b) = L-1
(

Θ0(Lij)
ᵀθA + b

)
,

where L-1(θA) = (0.2, 0.4, 0.7, 0.3, 0.6, 0.8)ᵀ. The observed values of the �rst 5 covariates

thus had a non-logit-linear relationship with treatment, whereas the observed values

of the last three covariates could be considered to be noise. Outcomes were generated

under clustered interference, dependent on the individual's transformed covariates and

treatment status as well as the average treatment status within the cluster:

Pr(Yij = 1 |Lij, Ai) = L-1

(
Θ0(Lij)

ᵀθY − 0.8Aij − 0.6

Ni∑
j′=1

Aij′/Ni

)
,

where θY = (0.8, 0.3, 0.4, 0.7, 0.2, 0.3)ᵀ.
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We employed GMERT-IPW using the stabilized estimators from Liu et al. (2016)

for the inverse probability-weights. The GMERT algorithm was trained onMtrain = 150

individuals, and the GMERT-LMM was �t to the remaining Mtest = 650 clusters. We

present two methods for comparison: The LMM-8 method �t a logistic mixed model

that assumed that each of the 8 (untransformed) observed pre-treatment covariates

had a logit-linear relationship with treatment. The LMM-5 method included only

the correct 5 pre-treatment covariates, excluding the noise covariates, but still made

a similar (incorrect) assumption that treatment related logit-linearly to the observed

covariates. Since these latter two strategies relied on pre-speci�ed models, they were

�t to all i = 1, . . .M clusters in the full sample S = Strain ∪ Stest.

Table 2.2: Estimates of µ(α) for varying α from the three methods across the D
datasets. Bias104 indicates the average bias times 104, and MSE104 indicates the av-
erage squared bias times 104; ASE103 is the average estimated (asymptotic) standard
error times 103, ESE103 is the standard error of the estimates across the D datasets
times 103, and SER equals ASE divided by ESE. Cov% is the empirical coverage of the
Wald-type 95% con�dence intervals. The proposed matching method performed well
in all scenarios with low bias and nominal coverage rates. The traditional LMM-5 and
LMM-8 methods experienced greater bias and less-than-nominal coverage.

Method Target Bias104 MSE104 Cov% ASE103 ESE103 SER

µ(0.45) = 0.464 -7.72 2.50 95.0% 15.11 15.82 0.96
GMERT µ(0.50) = 0.448 -13.30 2.56 94.0% 15.09 15.95 0.95

µ(0.55) = 0.431 -15.37 2.57 93.6% 15.12 15.98 0.95
µ(0.45) = 0.464 99.60 1.77 82.4% 9.31 8.82 1.06

LMM-5 µ(0.50) = 0.448 92.32 1.64 84.2% 9.18 8.89 1.03
µ(0.55) = 0.431 86.81 1.57 85.0% 9.13 9.02 1.01
µ(0.45) = 0.464 66.80 1.37 90.0% 9.93 9.61 1.03

LMM-8 µ(0.50) = 0.448 58.76 1.28 91.4% 9.81 9.69 1.01
µ(0.55) = 0.431 52.95 1.24 90.6% 9.81 9.78 1.00

Table 2.2 presents summary statistics for estimates of µ(α) from each of the three

methods across all D datasets in the simulation study. The GMERT-IPW method

performed well, with negligible bias and MSE. The SER was near 1, indicating that

the average estimated standard errors from the sandwich variance estimator performed
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well in relation to the standard error of the point estimates across the D datasets. The

empirical coverage probability was almost exactly the nominal 95%.

Each of the LMM-5 and LMM-8 methods experienced a large amount of upward

bias. Each method had a SER near 1, but failed to reach nominal coverage rates, likely

due to the high bias. The LMM-8 method exhibited less bias and better coverage than

LMM-5. The LMM-8 method may have been better in this scenario because including

the latter 3 �noise� covariates may have allowed for more accurate estimates of cluster

propensity scores, whereas the LMM-5 method was under-parameterized. The LMM-5

and LMM-8 methods, which relied on pre-speci�ed yet incorrect modeling assumptions,

were outperformed by GMERT-IPW in this scenario.

Table 2.3 presents summary statistics for the GMERT-IPW estimates of several

Overall E�ects. The LMM-5 and LMM-8 methods are not presented here since they

were shown to perform poorly in Table 2.2. The proposed method experienced low bias

and small MSE for these estimands. The sandwich variance estimator performed well,

with SER near 1. The GMERT-IPW method again achieved nominal 95% coverage in

this scenario.

Table 2.3: Summary of GMERT-IPW estimates of OE(α, α′) for varying allocations
α′. The GMERT-IPW performed well for Overall E�ects, with low bias and nominal
coverage rates.

Target Bias104 MSE104 Cov% ASE103 ESE103 SER

OE(0.55, 0.450) = −0.033 -7.64 0.26 94.0% 5.14 5.01 1.03
OE(0.55, 0.525) = −0.008 -3.34 0.02 94.4% 1.30 1.28 1.02
OE(0.55, 0.500) = −0.016 -2.07 0.06 94.4% 2.59 2.54 1.02

2.7 Data Analysis

We illustrate the proposed methods in an analysis of a large-scale study of cholera

vaccine e�ectiveness in Matlab, Bangladesh. At the beginning of the study, over 100,000
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women and children from 6,415 baris (households of patrilineally-related individuals)

were eligible to participate in a trial, in which each individual was randomized with

equal probability to one of three treatment arms: placebo, B subunit-killed whole cell

oral cholera vaccine, or killed whole cell-only oral cholera vaccine (Ali et al. 2005; 2009).

Endpoint data was collected on all women and children, even those who did not choose

to participate in the trial. After 1 year of follow up, anindividual was considered to

have experienced the outcome if they had been infected by cholera during the year (i.e.,

coded as Y = 1), and was considered to have not experienced the outcome if they had

not experienced cholera infection during the year (Y=0). Since endpoint data exists for

all individuals, and since participation in the experimental component of the study was

not controlled by the study's design, potential for confounding exists when analyzing

the data.

As in Perez-Heydrich et al. (2014) we consider an individual to have been treated

if they had received at least two doses of either of the active cholera vaccines (A = 1),

and to have been untreated otherwise (A = 0). Partial interference was assumed at the

level of the bari as in Barkley et al. (2017), as there is evidence that transmission of

cholera often takes place within-bari (Ali et al. 2005).

It is assumed that conditioning on the pre-treatment covariates for age (centered,

in decades) and distance to nearest river (in kilometers) is su�cient to satisfy condi-

tional exchangeability, as well as positivity. To estimate cluster propensity scores, the

dependent variable was trial participation, where B = 1 indicated that an individual

presented for inclusion in the randomized component of the study, and B = 0 otherwise.

Estimates of the cluster propensity scores for the procedures can easily be obtained by

including a randomization probability of 2/3 as in Perez-Heydrich et al. (2014). We

employ the the unstabilized estimators in Section 2.4 because the stabilized estimators

from Liu et al. (2016) target di�erent estimands since cluster sizes vary.
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We brie�y describe the cross-validation procedure used to select tuning parame-

ters; further details for setup and analysis of the Matlab cholera vaccine study are

presented in Section A.1. To select the tuning parameters of the decision tree within

the GMERT algorithm, we carry out K = 5-fold cross-validation on a training sample

of the data. Small clusters with Ni < 5 were included in the testing sample, and the

largest cluster withNi = 244 individuals was included in the training sample; otherwise,

all clusters were assigned at random to the training sample with probability 1/4 or the

testing sample with probability 3/4. After partitioning into the two samples, there were

Mtrain = 1, 465 clusters representing 31, 395 individuals in Strain, and Mtest = 4, 950

clusters representing 90, 580 individuals in Stest. Summary statistics for bari size, and

treatment and participation within bari strati�ed by the two samples are provided in

Section A.1.2. The training sample seems to be representative of the testing sample.

This indicates that the GMERT algorithm learned on the training sample may be able

to help provide reasonable inferences on the testing sample of data.

To carry out cross-validation, for each of the K folds, the training sample was

partitioned into distinct sub-samples. That is, for k = 1, . . . , K, partition Strain =

Str,k ∪̇ Scv,k, where SA ∪̇ SB indicates that SA ∩ SB = ∅. This partition was carried

out so that each cluster i had at least one individual in Str,k and at least one other

individual in Scv,k. This was done so that empirical BLUPs from each cluster could be

estimated for each individual in Scv,k, as our interest is in appropriately capturing the

correlation between individuals within clusters, which is analogous to repeated measures

for a single subject in traditional longitudinal data settings (Chen et al. 2015). Further

details are provided in A.1.2. Summary statistics indicate that these cross-validation

folds should be satisfactory for selecting appropriate tuning parameters.

The following values were considered for tuning parameters: maximum tree depth
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equal to 5 or 15, minimum observations to split a node equal to 50 or 25, and mini-

mum observations in a terminal node equal to 10 or 30 (see Table A.1). For each of

the proposed 6 sets of tuning parameters, we applied the GMERT algorithm to Str,k

and then used the resulting parameter estimates (�xed e�ects from the tree, as well

as empirical BLUPs) to predict the response (participation) of the individuals in Scv,k.

This was repeated with all models and all k = 1, . . . , K. Weighted misclassi�cation

error was chosen for the loss function to determine the best model. For each model,

summary statistics of the loss over the K folds were calculated, and the tuning param-

eters corresponding to the GMERT model with lowest mean loss were chosen to be the

�nal tuning parameters (see Table A.2). Further details are provided in Section A.1.3.

The selected tuning parameters were: maximum tree depth equal to 5, minimum

observations to split a node equal to 50, and minimum observations in a terminal node

equal to 30. The �rst two tuning parameters were the same as suggested by Hajjem

et al. (2017). The third tuning parameter was larger than the suggested 10, indicating

that the GMERT algorithm had better prediction in this scenario when terminal nodes

were larger. The GMERT algorithm was then applied on the entire training set, Strain,

using these selected tuning parameters.

The resulting tree was recovered from this �nal run of the GMERT algorithm for

use in propensity score estimation on the testing set. The tree had 24 terminal nodes,

partitioning the space of Lage and Ldist into 24 regions. As described in Section 2.5, this

tree was used as a model selection procedure on the testing set. That is, the covariates

Lage and Ldist were transformed into a series of indicator variables Xi corresponding to

the 24 regions de�ned by terminal tree nodes. Then, a logistic mixed e�ects model was

�t for participation with a random intercept for bari, and �xed e�ects for each region

(i.e., 24 categorical �xed e�ects, one random intercept, and no �xed e�ect intercept).
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A comparison of the estimated �xed e�ects for this tree in the two samples is pro-

vided in Figure A.4. This comparison of the predicted probabilities from the training

sample and the estimated probabilities resulting from the logistic mixed model from

the testing sample suggests at most mild over�tting of the data, as the two sets of

probabilities are quite similar for nearly all of the 24 tree nodes. Requiring a minimum

of 30 observations in each terminal node of the tree likely resulted in having larger

terminal nodes. That is, perhaps fewer terminal nodes could be characterized as con-

taining a small group of spurious extreme values, which would mitigate over�tting of

the algorithm (Athey and Imbens 2016).

Figure 2.1: A representation of the estimated �xed e�ects from the logistic mixed
model used in the GMERT-IPW method. The covariate space is shown partitioned as
according to the tree, and colored according to the estimated value of the corresponding
�xed e�ect from the GMERT-LMM estimated on the training dataset.
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A visual representation of the �tted logistic mixed model in the GMERT-IPW

method is presented in Figure 2.1. The 24 regions of the predictor space are indicated

in this �gure, and colored according to the estimated �xed e�ect parameter from the

logistic mixed model; the variance component for the random intercept was estimated

to be σ̂2 = 2.82. These model estimates are used for propensity score estimation in
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the GMERT-IPW procedure, and will likely result in cluster propensity score estimates

that di�er from those in the comparator methods that use more traditional modeling

techniques.

For comparison to the GMERT-IPW procedure, we also �t two versions of the IPW

estimators using more traditional logistic mixed e�ects modeling assumptions. The �rst

method, labeled LMM-IPW-1, includes linear terms for individual age and distance to

river; the second method, LMM-IPW-2, includes linear terms and an interaction for

age and distance to river, as well as a quadratic term for age. Each of these models is �t

with a single random intercept for bari. These modeling assumptions were pre-speci�ed

and thus were �t to the entire data sample, S = Strain ∪ Stest.

Figure 2.2: Estimates and 95% CIs for population mean estimands µ(α) from the
cholera vaccine study.
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We now compare the estimates of the causal parameters from the GMERT-IPW esti-

mator to those from two LMM-IPW methods that used more traditional, pre-speci�ed

modeling assumptions. Figure 2.2 presents the estimates of µ(α) from the di�erent

models. Estimates from GMERT-IPW indicated a rate of cholera infection of about
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5.5 cases per 1000 person-years when α = 0.3. This rate was lower when the treatment

allocation α increased to 0.45 and 0.6. It appears there could be a non-linear decrease

in the rate of cholera infection as α increases.

The point estimates were very similar for all three methods. The 95% CIs were

wider for the GMERT-IPW method than for either of the two methods using traditional

modeling techniques. One contributing factor is that GMERT-IPW is �t on only Mtest

clusters, or about 75% of the sample size of the LMM-IPW methods that are �t to

all M clusters. It's also likely that the GMERT-IPW 95% CIs are wider because

the GMERT-LMM model requires estimation of 25 parameters, whereas the model

for LMM-IPW-1 estimates 4 parameters, and 6 for LMM-IPW-2. Estimates of the

Figure 2.3: Estimates and 95% CIs for Overall E�ects from the cholera vaccine study.
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Overall E�ects are presented in Figure 2.3. The point estimates of all three method

are positive for ÔE(0.3, 0.45) and negative for ÔE(0.6, 0.45), indicating a favorable

e�ect of higher levels of treatment allocation. The GMERT-IPW method estimates

ÔE(0.6, 0.45) = −0.0015, indicating a reduction in the number of cases of cholera by

1.5 per 1000 person-years when increasing the treatment allocation from α′ = 0.45 to

α = 0.6. The corresponding 95% CI excludes zero by a notable margin, indicating a
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Figure 2.4: Estimates and 95% CIs for Direct E�ects from the cholera vaccine study.
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signi�cant and protective e�ect of this increase in treatment allocation. In contrast, the

GMERT-IPW method estimates ÔE(0.3, 0.45) to be less than 1 and the corresponding

95% CI includes zero by a non-negligible margin, which fails to indicate a signi�cant

e�ect. This provides further evidence of a non-linear relationship between cholera

outcomes and treatment allocation strategy, and perhaps suggests some amount of

herd protectiveness.

The point estimates of each of the Overall E�ects presented here were similar across

the three methods. However, the 95% CIs were again wider for the GMERT-IPW

method than for the LMM-IPW methods. In fact, the 95% CIs for each of the LMM-

IPW methods excluded zero for OE(0.3, 0.45), albeit by a small margin, so these meth-

ods estimated a statistically signi�cant e�ect here where the GMERT-IPW method

did not. This is an example of where the proposed GMERT-IPW method results in

di�erent inference about causal e�ects than existing methods.

Point estimates for Direct E�ects are presented in Figure 2.4. Each method indi-

cates a signi�cant and protective Direct E�ect of treatment at each level of α. For

the GMERT-IPW method, the estimate of D̂E(0.6) is smaller in magnitude than the
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estimate of D̂E(0.3); again, this suggests a non-linear relationship between treatment al-

location strategy and cholera outcomes. Point estimates are similar across the GMERT-

IPW and LMM-IPW methods for each of the three Direct E�ects shown here. Further

results, including those for the Indirect and Total E�ects, are provided in Section A.1.4.

2.8 Discussion

Performance of existing estimators for the estimands in Tchetgen Tchetgen and Van-

derWeele (2012) relies on the correct speci�cation of a logistic mixed model. This paper

introduces a new method that may reduce bias due to model mis-speci�cation in this

setting, where partial interference and correlated treatment are plausible. The proposed

method involves an application of the GMERT algorithm (Hajjem et al. 2017), combin-

ing machine learning and traditional mixed modeling techniques, to reduce the amount

of pre-speci�ed modeling assumptions. The proposed method exhibits much less bias

than existing methods in simulations. Wald-type con�dence intervals constructed from

the sandwich variance estimator reach nominal 95% coverage in the simulation study,

again outperforming existing techniques.

The proposed methods are illustrated in a study of cholera vaccination in over

100,000 individuals. The estimators showed some evidence that increased vaccine allo-

cation reduces the risk of of infection by cholera. The proposed methods indicated a

non-linear relationship between vaccine allocation, α, and risk of infection, µ(α). For

example, the Direct E�ect of vaccination was estimated to be greater at α = 0.3 than

at α = 0.6. The proposed methods found relatively strong evidence of favorable Over-

all and Indirect E�ects of increasing treatment allocation from α′ = 0.45 to α = 0.6,

but did not �nd strong evidence of favorable Overall or Indirect e�ects of increasing

treatment allocation from α′ = 0.3 to α = 0.45. Taken together, this may suggest some

amount of herd protectiveness. In contrast, existing estimators found strong evidence
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of favorable Overall E�ects in both cases. These results may help to inform decisions

on vaccination strategies, especially when treatment is scarce or expensive.

The proposed method uses sample-splitting to ensure regularity conditions for valid

statistical inference, which is relatively under-emphasized in some related research on

robust modeling methods for propensity score estimation. Future research should con-

sider adjusting the node-splitting rules to account for the honest estimation proce-

dure; e.g., see Athey and Imbens (2016). Di�erent machine learning methods should

be investigated for future extensions of the GMERT-IPW method. For example, the

MARS technique (Friedman 1991, Milborrow 2014) may provide improvements over

decision trees. Alternatives to GMERT should also be investigated, e.g., the (mixed)

model-based partitioning algorithm introduced in Fokkema et al. (2017). Relatively

parsimonious methods like these can take advantage of existing software and methods

for inference on the test sample.

In the absence of interference, machine learning methods for estimating propensity

scores generally focus on covariate balance between the treated and untreated groups;

see e.g., Pirracchio and Carone (2016) or Austin and Stuart (2015). Whether this notion

generalizes to estimating cluster propensity scores assuming partial interference is an

open question. Replacing decision trees with ensemble learners would likely exhibit

better predictive accuracy for GMERT (for example, compare Hajjem et al. (2011) and

Hajjem et al. (2014) for analogous work with continuous responses), which may result

in an extension of GMERT-IPW that is even more robust to model mis-speci�cation.

Robust modeling techniques like these may provide some of the tools towards estimating

optimal treatment regimes from observational studies in the presence of interference

(Zhao et al. 2012, Zhang et al. 2012).

This paper assumes a treatment model with a single random intercept with respect

to the cluster identi�er that follows a Normal distribution. The assumed form of the
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cluster propensity score in (2.19) could be generalized to integrate over the distribution

of multiple random e�ects. Notably, the GMERT algorithm can be carried out with

more than one random e�ect. Generalizing (2.19) would extend these methods to more

complex treatment model correlation structures, and should be considered for future

research.
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CHAPTER 3: A MATCHING ESTIMATOR FOR CLUSTERED

INTERFERENCE

3.1 Introduction

Inferring causal e�ects from an observational study is challenging because partic-

ipants are not randomized to treatment. Traditional associative statistical methods

cannot adequately control for confounding, and are subject to bias. Specialized meth-

ods exist for drawing inferences about causal parameters from non-experimental data;

for example, inverse probability-weighting (IPW) and matching methods are commonly

used for this purpose.

Infectious disease research often exhibits the additional challenge of interference,

which is when one individual's outcome may be a�ected by another individual's treat-

ment. Popular causal parameters in this setting are found in Tchetgen Tchetgen and

VanderWeele (2012), and several IPW methods have been proposed for drawing infer-

ence to those causal parameters from non-randomized studies exhibiting some interfer-

ence (see e.g., Perez-Heydrich et al. (2014) and Liu et al. (2016)). A drawback of IPW

estimators is that in general they can experience instability when weights grow large,

which we show is exacerbated in this setting.

We introduce a covariate matching method to estimate causal parameters in Tch-

etgen Tchetgen and VanderWeele (2012). These methods extend related work from

Abadie and Imbens (2006) and Yang et al. (2016) to a setting where some types of

interference is possible. The remainder of the paper is as follows. A brief overview of

matching and imputation in causal inference is presented in Section 3.2. In Section 3.3
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we describe the causal parameters of interest and the assumed structure of interfer-

ence. The estimators are proposed in Section 3.4. In Section 3.5 the estimators are

shown to be consistent and asymptotically Normal, and we present an estimator for

the asymptotic variance. Extensions are considered in Section 3.6, and existing IPW

estimators are discussed in Section 3.7. Finite-sample properties of the estimators are

investigated with a simulation study in Section 3.8. The proposed estimators are then

illustrated in Section 3.9 with an analysis of a regional cholera vaccine study from

Matlab, Bangladesh. The main paper concludes with a discussion.

3.2 Matching Methods for Causal Inference

In the potential outcomes framework, causal e�ects of treatment are de�ned by

di�erences in potential outcomes that may follow treatment events. The causal e�ect

of treatment for a study unit is the di�erence in the health outcome that the unit

would have had if it had experienced treatment, and the health outcome that the

unit would have had if it had not experienced treatment. For example, consider a

data sample of i = 1, . . . , N study units where Ai = 1 indicates that the study unit

was observed to experience treatment and Ai = 0 indicates that they were not, and

where Yi = 1 indicates that unit i was observed to experience an unfavorable outcome

following treatment and Yi = 0 indicates that they were not. In one possible scenario,

the ith study unit is observed to experience treatment Ai = 1 and then experiences

an antecedent health status Yi(a = 1). In another possible scenario, the ith study

unit instead does not undergo treatment and then experiences an antecedent health

status Yi(a = 0). The quantities Yi(a) for a = 0, 1 are called potential outcomes, and

the causal e�ect of treatment for the ith unit is de�ned to be Yi(1)− Yi(0). Since only

Yi(a = Ai) is observed and Yi(a = 1−Ai) is not, the individual causal e�ect is inherently

unobservable; however it is estimable from observable data under certain assumptions.
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The fundamental assumption for estimating causal parameters from observational

studies is that observed treatment is independent of potential outcomes after condi-

tioning on a set of potential confounders (Rubin 1978). Using the notation of Dawid

(1979), this assumption states that there is a su�cient set of covariates Li such that

conditional exchangeability holds:

Yi(a) ⊥ Ai | Li for all units i and for a = 0, 1. (3.23)

Covariate matching methods obtain estimates of causal e�ects by pairing two study

units when they have (nearly) identical covariates L but di�erent observed treatments

(i.e., units i and i′ with Li ≈ Li′ but Ai 6= Ai′) and then perhaps taking the di�erence of

their observed outcomes (e.g., Yi− Yi′). Given their similarity to the causal e�ects and

fundamental assumption presented above, matching methods are widely considered

to be easily interpretable, and are very popular; an excellent review is presented in

Stuart (2010). Neither IPW nor matching methods is superior in all scenarios; see e.g.,

Frölich (2004a), Busso et al. (2014) and Huber et al. (2013). Unlike IPW, relatively few

matching methods have been introduced for scenarios where multiple treatment levels

exist; some examples include Lechner (2001), Foster (2003), Frölich (2004b), Feng et al.

(2012), McCa�rey et al. (2013), Rassen et al. (2013), Fong and Imai (2014) and Yang

et al. (2016). Rarer still are matching methods in the presence of interference.

Individual causal e�ects can also be estimated by imputing all unobserved potential

outcomes. Although imputation often relies on explicit modeling assumptions, this

paper uses a covariate matching procedure to impute potential outcomes, as in Abadie

and Imbens (2006). We de�ne j∗ = arg min{j :Aj=1−Ai} ||Xi−Xj|| to be the �matching�

unit with most-similar covariates to unit i, and then impute Ỹi(1 − Ai) = Yj∗ . In the

case of binary treatment, then the individual causal e�ect could be estimated by the

quantity Yi − Ỹi(1− Ai), times (−1)1−Ai .
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The proposed methods follow such a �matched-imputation� procedure. Yang et al.

(2016) extended matched-imputation to the setting where multiple treatment levels

exist. Here, matched-imputation is extended to the setting where interference may be

possible within distinct clusters of individuals. We consider each cluster to be a study

unit. We propose methods for matching clusters to one another to impute cluster-level

potential outcomes in order to estimate causal parameters in Tchetgen Tchetgen and

VanderWeele (2012). Asymptotic properties, as well as an estimator for the asymptotic

variance, draw from Abadie and Imbens (2006).

3.3 Study Setup and Existing Estimands

Consider a super-population of distinct clusters of individuals; for ease of notation,

index the clusters by i. In general, clusters can have varying numbers of individuals;

we consider the case where each cluster has the same number of individuals and Ci = c

for some c ≥ 2. Let Ai = (Ai1, . . . , Aic) be the ordered vector of treatment statuses for

all individuals in the cluster i, where Aij = 1 indicates that individual j in the cluster

obtained treatment. Similarly, let Yi = (Yi1, . . . , Yic) be the ordered vector of observed

outcomes for the cluster, where Yij might indicate whether or not individual j in the

cluster was observed to become infected. We assume that the ordering of individuals

within groups is non-informative.

Let A(c) be the set of all binary vectors of length c such that a ∈ A(c) is a potential

treatment vector for any cluster of c individuals. It is assumed that the outcome of

an individual may be a�ected by the treatment of any other individual in the same

cluster, but not by treatments of individuals from di�erent clusters. This has been

termed partial interference (Sobel 2006) or clustered interference (Barkley et al. 2017),

and it is assumed here and in the sequel. With the assumption of clustered interference,

we can de�ne potential outcomes with respect to the treatments in A(c). For a ∈ A(c),
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de�ne Yij(a) to be the potential outcome for the jth individual in cluster i when the

cluster experiences treatment a. De�ne Yi(a) = (Yi1(a), Yi2(a), . . . , Yic(a)) to be the

potential outcome for cluster i with respect to treatment a for any a ∈ A(c). By

counterfactual consistency, the cluster's observed outcome is Yi = Yi(Ai). De�ne the

average cluster-level potential outcome with respect to a to be Y i(a) = c−1
∑c

j=1 Yij(a),

such that the average observed outcome is Y i = c−1
∑c

j=1 Yij.

The estimands of interest presented here are generalizations of those in Tchet-

gen Tchetgen and VanderWeele (2012), which de�nes causal estimands in the presence

of clustered interference that arise from the setting of a two-stage cluster-randomized

trial, similar to Hudgens and Halloran (2008). In such a trial, each cluster is assigned

to a treatment arm that corresponds to a parameter, e.g., α or α′, where the parameter

governs the distribution of treatment within the cluster. Tchetgen Tchetgen and Van-

derWeele (2012) considers trials that follow a �type B parameterisation�: when a cluster

is assigned to the treatment arm corresponding to α ∈ [0, 1], then each individual in

that cluster is exposed to treatment independently with probability α. A causal e�ect

of interest is the contrast in expected potential outcomes when clusters are assigned to

the α arm or the α′ arm.

For a single cluster of c individuals, there are |A(c)| = 2c potential unique treat-

ment vectors for the cluster. Under the type B parameterization, the probability that

the cluster would experience treatment a ∈ A(c) equals the Bernoulli-type product

π(a, α) =
∏c

j=1 α
aj(1 − α)1−aj . Thus, the expected average potential outcome for a

cluster under this type B parameterization is
∑

a∈A(c) Ȳi(a)π(a, α). An estimand of

interest is the (population) mean potential outcome in the α arm:

θ(α) = E

 ∑
a∈A(c)

Ȳi(a)π(a, α)

 . (3.24)
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Here, E(·) indicates that the average is taken over all clusters in the super-population.

The Overall E�ects are di�erences in two population mean potential outcomes:

θ(α, α′) = θ(α)− θ(α′). (3.25)

3.4 Proposed Matched-Imputation Estimators

We extend the matched-imputation estimator from works including Imbens (2000),

Abadie and Imbens (2006) and Yang et al. (2016) to the setting of clustered interference

in order to estimate (3.24) and (3.25). Let there be a sample of i = 1, . . . , N clusters,

and let each cluster contain c individuals. Let each cluster have an i.i.d. copy of the

observed variables (Li, Ai, Yi). As above, Yi = (Yi1, . . . , Yic) is the ordered vector of

observed outcomes, where Yij = 1 might indicate that individual j became infected

by the end of follow-up. Observed values of treatment are indicated by the ordered

vector Ai = (Ai1, . . . , Aic), where Aij = 1 indicates that individual j in the cluster was

administered treatment, e.g., vaccinated.

Baseline (or pre-treatment) covariates for all individuals in the cluster are in-

cluded in Li. In the case where one covariate is measured for each individual, Li =

(Li1, . . . , Lic) is a c×1 column vector, where Lij indicates the (scalar) value of the single

covariate for individual j in the cluster. In the case where there are p > 1 covariates

measured for each individual, then Li = (Li1, . . . , Lic) is then a c × p matrix, where

Lij = (Lij1, . . . , Lijp) is a 1 × p row vector of the p ordered covariates for individual j

in the ith cluster. We denote by Li·p = (Li1p, . . . , Licp) the c × 1 column vector that

contains information on the pth covariate for all individuals in the cluster.

For positivity, we assume that

Pr(Ai = a | Li) > 0 for all Li and any a ∈ A(c). (3.26)
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We assume that the ordering of individuals within each cluster is not informative. We

also assume that there is at least one cluster with observed treatment Ai = a for all

a ∈ A(c). We assume a version of weak conditional exchangeability with respect to the

cluster average potential outcome:

Ȳi(a) ⊥ I(Ai = a) | Li for all clusters i and for all a ∈ A(c). (3.27)

As described in Yang et al. (2016), assuming (3.27) and (3.26) allow for estimation

of the population mean outcomes for each treatment. Matched-imputation can be

employed to estimate the following quantities for each a ∈ A(c):

E[Ȳi(a)] = E
[
E
(
Ȳi|Ai = a, Li

)]
.

Multiplying the estimate of the above quantity by π(a, α), and then summing over

all |A(c)| = 2c of these products allows for estimation of θ(α) and θ(α, α′). Next, we

introduce a simple method for transforming each unit's pre-treatment covariates Li into

a row-vector in order to easily carry out the matching procedure.

We propose re-arranging the covariate structure such that the c × p matrix Li is

transformed into a row vector Xi that preserves all information about the cluster's

covariates. In the base case when p = 1, de�ne Xi = Li. When p > 1, then de�ne

Xi = (Li·1, Li·2, . . . , Li·p). That is, Xi is a (p ∗ c) × 1 row vector, where the �rst c

terms are the vector of observed values of the 1st covariate (ordered by the order of

individuals in the cluster), and the second c terms are the vector of observed values

of the 2nd covariate, and so on. After these transformations, we assume analogues of

positivity (3.26) and weak conditional exchangeability (3.27) hold on Xi. We consider

matching based on Mahalanobis distance ||X−X ′||. Note that we can de�ne T = |A(c)|

and re-label the unique treatment vectors a ∈ A(c) from w1 to wT to arrive at a
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notation consistent with the case of matching with multiple treatments in the case of

no interference as in Yang et al. (2016).

We proceed by taking each unit i and, for each of the 2c−1 unobserved levels of treat-

ment for that unit, �nd a �matching� unit with that level of treatment whose covariates

are close. That is, let unit i have observed values (Xi, Ai, Ȳi), and let a ∈ A(c) such

that a 6= Ai, and let Sa = {j|Aj = a} be the set of all units whose observed treatment

equals a. De�ne j1(i, a) = arg minj∈Sa ||Xi−Xj|| to be the unit in whose covariates are

the most similar to those of unit i (among all units with observed treatment A = a).

Extending this notation, the 2nd closest match to unit i in Sa is indicated by j2(i, a), and

the mth closest match is indicated by jm(i, a). Denote JM(i, a) = {j1(i, a), . . . , jM(i, a)}

to be the set of the M ≥ 1 nearest matches to unit i with respect to treatment a 6= Ai.

For some value of M pre-speci�ed by the investigator, the imputed cluster average

potential outcome is the mean of the outcomes for the units in JM(i, a):

Ỹi(a) = M−1

M∑
m=1

Ȳjm(i,a). (3.28)

In a special case, de�ne Ỹi(Ai) = Ȳi. De�ne KM(i) =
∑N

l=1 I(i ∈ JM(l, Ai)) to be the

number of times that unit i is matched to other units after completing the matching

procedure on a sample; this quantity plays a role in variance estimation. The N ∗M ∗

(2c−1) imputed potential outcomes are used to estimate θ(α) and θ(α, α′), respectively,

with the following formulas:

θ̂M(α) =
1

N

N∑
i=1

 ∑
a∈A(c)

Ỹi(a)π(a, α)

 (3.29)

θ̂M(α, α′) =
1

N

N∑
i=1

 ∑
a∈A(c)

Ỹi(a)
{
π(a, α)− π(a, α′)

} . (3.30)
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3.5 Asymptotic Properties

We follow Abadie and Imbens (2006) in showing that, under certain assumptions,

the proposed estimators are consistent and asymptotically Normal. We also propose

an estimator for the asymptotic variance following Abadie and Imbens (2006) instead

of relying on the bootstrap, which may not be appropriate (Abadie and Imbens 2008).

Many details are left until later sections; note that the pre-treatment covariates are

usually expressed after being transformed from Li to the row-vector of Xi.

De�ne µ(x, a) = E(Ȳ |A = a,X = x) and µa(x) = E(Ȳ (a)|X = x). The variance of

the average outcomes, conditional on X = x, is σ2(x, a) = Var(Ȳ |A = a,X = x), and

its causal counterpart is σ2
a(x) = Var(Ȳ (a)|X = x). Residuals with respect to µA(X)

are εi = Ȳi − µAi(Xi) = Ȳi − E(Ȳi(Ai)|X = Xi).

We decompose the estimator for the population mean estimands into three compo-

nents (see Section B.1.1):

θ̂M(α) = θ(α|X) + EM(α) +BM(α). (3.31)

This decomposition is key for the asymptotic properties shown in this section; the three

terms on the right side are as follows. The sample average conditional mean outcome

θ(α|X) relates to the expected potential outcomes over the sample of N units,

θ(α|X) =
1

N

N∑
i=1

∑
a∈A(c)

µa(Xi)π(a, α). (3.32)

The second term, EM(α) is a weighted average of residuals,

EM(α) =
1

N

N∑
i=1

(
1 +

KM(i)

M

)
εi. (3.33)
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Finally, BM(α) is a conditional bias term (relative to θ(α|X)):

BM(α) =
1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

[
µa(Xjm(i,a))− µa(Xi)

]
π(a, α)I(Ai 6= a). (3.34)

Asymptotic consistency of the estimators is established in Theorem B.1.2: we show

that θ(α|X)
p−→ θ(α), and that EM(α) = op(1). Let k be the number of continuous

pre-treatment covariates (with respect to the transformed X). When k = 1 then

N1/2(θ̂M(α)− θ(α)) is op(1) and the estimator is asymptotically Normal. When k > 1

then the conditional bias may not vanish and the estimator may not be asymptotically

Normal. We present a proof of asymptotic Normality that ignores the conditional bias

term, similar to Theorem 4 in Abadie and Imbens (2006).

Theorem 3.5.1. Asymptotic normality of the matching estimator: Assume, as

in Abadie and Imbens (2006, Assumption 1), that X is a random vector having density

that is bounded and bounded away from zero on supp(X) = X ⊂ Rk. Assume a random

sample of i.i.d. clusters of individuals. Assume weak conditional exchangeability and

positivity on the (transformed) pre-treatment covariates, X. Furthermore, assume the

following smoothness conditions from Abadie and Imbens (2006, Assumption 4) for all

a ∈ A(c): µ(x, a) and σ2(x, a) are Lipschitz in X, E(Ȳ 4|A = a,X = x) exists and is

bounded uniformly in x, and σ2(x, a) us bounded away from zero. Then

(
V EM (α) + V θ(α|X)

)−1/2
N1/2

(
θ̂M(α)−BM(α)− θ(α)

)
d−→ N(0, 1).

Proof. Write the sample average conditional mean outcome as θ(α|X) = 1
N

∑N
i=1 θ(α|Xi).

Here, E[θ(α|Xi)] = θ(α). De�ning

V θ(α|X) = Var
[
θ(α|Xi)

]
= Var

 ∑
a∈A(c)

µa(Xi)π(a, α)

 , (3.35)
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then it is straightforward that

(
V θ(α|X)

)−1/2
N1/2

(
θ(α|X)− θ(α)

)
d−→ N(0, 1). (3.36)

Now, de�ne the variance component relating to EM(α) to be

V EM (α) =
1

N

N∑
i=1

(
1 +

KM(i)

M

)2

π(Ai, α)2σ2(Xi, Ai). (3.37)

In Theorem B.1.3 we use the Lindeberg-Feller Central Limit Theorem on the conditional

distribution of EM(α) to show that

(
V EM (α)

)−1/2
N1/2EM(α)

d−→ N(0, 1). (3.38)

Asymptotic independence of the terms in (3.36) and (3.38) completes the proof.

De�ne V α
M = V EM (α) + V θ(α|X) to be the variance term for θ̂M(α) − BM(α) − θ(α)

found in Theorem 3.5.1. An estimator for V EM (α) is

V̂
EM (α)
J =

1

N

N∑
i=1

(
1 +

KM(i)

M

)2

π(Ai, α)2σ̂2
J(Xi, Ai),

which relies on the within-treatment-level matching estimator σ̂2
J(Xi, Ai) introduced in

Abadie and Imbens (2006) (see Section B.2.1). We estimate V θ(α|X) with:

V̂
θ(α|X)
M,J =

1

N

N∑
i=1

( ∑
a∈A(c)

Ỹi(a)π(a, α)− θ̂M(α)

)2

+

1

N

N∑
i=1

(
1 +

KM(i)

M2

)
π(Ai, α)2σ̂2

J(Xi, Ai).

Relevant details are provided in Sections B.2.2 and B.2.3.

54



We estimate V̂ α
M,J by summing V̂

EM (α)
J and V̂

θ(α|X)
M,J to arrive at:

V̂ α
M,J =

1

N

N∑
i=1

 ∑
a∈A(c)

Ỹi(a)π(a, α)− θ̂M(α)

2

+
1

N

N∑
i=1

K∗∗M (i)π(Ai, α)2σ̂2
J(Xi, Ai).

Here, K∗∗M (i) = (KM(i)/M)2 + (2M − 1/M)(KM(i)/M) is the multiplicative factor

arising from the number KM(i) of times unit i is used as a match. Theorem 7 in Abadie

and Imbens (2006) suggests that V̂ α
M,J may be a consistent estimator for Var(θ̂M(α))

under certain scenarios. With respect to the Overall E�ects, we similarly propose to

estimate the asymptotic variance of θ̂M(α, α′) with:

V̂ α,α′

M,J =
1

N

N∑
i=1

( ∑
a∈A(c)

Ỹi(a)
{
π(a, α)− π(a, α′)

}
− θ̂M(α, α′)

)2

+

1

N

N∑
i=1

K∗∗M (i)
{
π(a, α)− π(a, α′)

}2
σ̂2
J(Xi, Ai) (3.39)

3.6 Extensions

Reducing the dimension of treatment from 2c may provide practical improvements

under certain scenarios. We discuss some potential extensions here.

De�ne fΣ(a) =
∑c

j aj to be the function summing all elements of a vector. As-

suming that the ordering of individuals within clusters is uninformative implies that

E
[
Ȳi(a)

]
= E

[
Ȳi(a

′)
]
whenever fΣ(a) = fΣ(a′). We propose a version of the matched-

imputation estimator that assumes treatment irrelevance within strata formed by the

sum of the within-cluster treatment. That is, we assume there are only c + 1 unique

treatment values (up to ordering of the treatment vector a) de�ned by fΣ(a) = 0,

. . . , fΣ(a) = c. This reduces the number of unique treatments from 2c to c, and thus

the number of matches necessary. The estimators are carried out by using πΣ(s, α) =∑
a∈A(s) π(a, α)I(fΣ(a) = s), with the corresponding changes in the variance estimators.
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We investigate these estimators in the simulation study in Section 3.8, and implement

them in the data analysis in Section 3.9.

The estimators that assume treatment irrelevance within strata may perform well

by lowering variance at low cost in terms of bias. Further gains may be possible by

considering stronger assumptions. An investigator could assume there is a sequence

of cuto� values 0 < ξ1 < · · · < ξT−1 < 1 such that E
[
Ȳi(a)

]
= E

[
Ȳi(a

′)
]
whenever

ξt < fΣ(a), fΣ(a′) ≤ ξt′ . This method may provide noticeable bene�t when c is large,

especially when compared to IPW methods that are often unstable in such a setting.

We now present two potential extensions for the case when cluster sizes may vary.

First, consider the scenario when the data are not sparse and there exists at least one

cluster with observed treatment equal to a for all a ∈
⋃
i{A(Ci)}. In this simpler case,

it would be possible to carry out any of the above estimators within strata de�ned

by cluster size Ci; that is, matching only clusters of the same size to each other. All

components necessary for estimation (and variance estimation) are obtained.

This method may also be extended to the case where clusters of di�erent sizes

are matched to each other. There may be settings in which two clusters may contain

unequal numbers of individuals, but the two clusters may also be reasonably considered

to be similar enough to match to one another. In this setting, one could consider

an assumption of treatment irrelevance within strata de�ned by cuto�s {ξt}. The

information-preserving transformation of covariates from Li to Xi described above may

not be appropriate when clusters have di�erent sizes; in this setting or simply when

clusters have a large amount of individuals, it may be appropriate to assume that

there is a set of within-cluster summary statistics of Li that is su�cient for satisfying

conditional exchangeability.
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3.7 Comparator: Existing Inverse Probability Weighted Estimators

Tchetgen Tchetgen and VanderWeele (2012) propose inverse probability of treat-

ment weighted estimators for inference which are in the form of the Horvitz-Thompson

estimators (Horvitz and Thompson 1952, Rosenbaum 1987). For (3.24), these are:

θ̂HT (α) = N−1

N∑
i=1

Ȳiπ(Ai, α)

Pr(Ai = a|Li = li)

where the conditional probability in the denominator is the cluster propensity score

(CPS). The conditional independence assumption is

Yi(a) ⊥ Ai | Li for any cluster i and any vector a ∈ A(c),

and the CPS is estimated following a logistic mixed model for treatment A on covariates

L with a random intercept for cluster identi�er. Positivity (i.e., (3.26)) is also assumed.

The estimator for the target e�ects is

θ̂HT (α, α′) = θ̂HT (α)− θ̂HT (α′) = N−1

N∑
i=1

Ȳi[π(Ai, α)− π(Ai, α
′)]

Pr(Ai = a|Li = li)

Estimates of the asymptotic variance of these estimators is traditionally obtained

via M-estimation theory and the sandwich variance estimator; see e.g. Perez-Heydrich

et al. (2014) or Saul and Hudgens (2017). We call these the �IPW-HT� estimators.

Liu et al. (2016) proposed a set stabilized IPW estimators for similar estimands,

following the Hajek form. In the special case when all clusters have the same number

of units, the estimands that these estimators target are identical to the estimands of

interest here. In contrast to the unstabilized IPW-HT estimators above, we refer to
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these stabilized estimators the �IPW-Hajek� estimators:

θ̂Hajek(α) = N̂−1

N∑
i=1

Ȳiπ(Ai, α)

Pr(Ai = a|Li = li)

θ̂Hajek(α, α
′) = θ̂Hajek(α)− θ̂Hajek(α′)

where N̂ is now replaced with an estimated term. Liu et al. (2016) proposes two

methods for this term, and we employ the second method:

N̂ =
N∑
i=1

π(Ai, α)

Pr(Ai = a|Li = li)
.

The IPW-Hajek estimators follow similar assumptions (i.e., (3.7) and (3.26)) and pa-

rameteric models, and can use M-estimation theory (Stefanski and Boos 2002, Saul

and Hudgens 2017) to obtain estimates of the asymptotic variance via the sandwich

technique for the scenarios we are interested in.

3.8 Simulation Study

Four simulation studies were carried out to determine the �nite-sample performance

of the proposed matching estimators. Each simulation study was carried out for a

�xed cluster size, i.e., c = 3, 5, 8, and 14. Otherwise, each of the four simulation

studies was carried out in the same fashion. For each simulation study, we generated

D = 300 datasets where each dataset contains i = 1, . . . , N = 500 clusters. Each

cluster was �xed to have Ci = c individuals, where c varied by simulation study. Each

cluster had an i.i.d. copy of the observed variables (Li, Ai, Yi), where Ai was a binary

vector indicating observed treatment for the c individuals and Yi was the binary vector

indicating observed outcome for the c individuals. Here Li was a (c × 3)-dimensional

matrix of pre-treatment variables, where Lij = (Lij1, Lij2, Lij3) was the row vector of
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the observed values for individual j, and Li·p = (Li1p, Li2p, Li3p)
ᵀ was the column vector

of the observed values of the pth covariate for each of the individuals in the cluster.

For any individual j in any cluster i, Lij1 and Lij2 were Bernoulli variables and

equal to 1 with probability 0.75. The third covariate Lij3 was a categorical variable

that took on the levels v1, v2 and v3 with equal probability. The probability that Aij

was equal to 1 depended logit-linearly on these observed covariates as well as a random

intercept for the cluster:

Pr(Aij = 1|Lij, b) = L-1( −2.4 + 0.2I(Lij3 = v2) + 0.2I(Lij3 = v3) +

1.25Lij1 + 0.75Lij2 + 0.95Lij1Lij2 + b )

Outcomes were generated under clustered interference, dependent on the individual's

pre-treatment covariates and treatment status as well as the average treatment status

within the cluster:

Pr(Yij = 1|Ai, Lij) = L-1( −0.1 − 0.15I(Lij3 = v2) − 0.35I(Lij3 = v3) +

0.15Lij1 + 0.2Lij2 − 1.25Aij − 1.05
c∑

j′=1

Aij′/c )

The true estimands were determined empirically using 10,000 clusters with covari-

ates generated as above. Then, for each treatment a ∈ A, the potential outcome

Yij(a) for each individual in every cluster was generated using the causal analogue

Pr(Yij(a) = 1|Lij) to Pr(Yij = 1|Ai, Lij) from above. These potential outcomes were

then combined with the corresponding values of π(a, α), and sums and means were

taken to obtain the true values of θ(α) as in (3.24) and θ(α, α′) as in (3.25).

We �t the proposed matching estimator to each dataset, reducing the dimension

of treatment by assuming treatment irrelevance within strata formed by the sum of
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treated individuals as described in Section 3.6. To create a dataset with one row per

i.i.d. study unit, we transformed each cluster's (c × 3)-dimensional matrix Li of pre-

treatment covariates into a (1 × 3 ∗ c)-dimensional row vector of covariates Xi as in

Section 3.4. Conditional exchangeability and positivity hold conditional on Xi for the

c+ 1 treatment levels.

We speci�ed M = 1 so that each cluster was matched to c other units (one for each

level of treatment except for the observed level of treatment). The variance estimators

were carried out by specifying J = 1 within-treatment matches to estimate σ2(Ai, Xi),

as described in Section B.2.1. That is, results are shown for the estimators θ̂M=1(α)

and θ̂M=1(α, α′), where their asymptotic variances are estimated with V̂ α
M=1,J=1 and

V̂ α,α′

M=1,J=1, respectively. Wald-type 95% con�dence intervals are presented. Matching

was performed on the covariates, without modeling.

For comparison, we also �t the IPW-Hajek estimators introduced in Liu et al. (2016).

as described in In this case, where each cluster has c individuals, these estimators target

estimate the same estimands. We �t the IPW-Hajek estimators with the correctly

speci�ed logistic mixed model for treatment with a random intercept for cluster, main

e�ects for each of the 3 pre-treatment covariates, and an interaction between the two

binary pre-treatment covariates. Wald-type 95% CIs for these estimators are calculated

from the sandwich variance estimators. These stabilized estimators performed much

better in �nite samples than the IPW-HT from Tchetgen Tchetgen and VanderWeele

(2012), which are not shown here.

In Table 3.4, we present summary statistics of the performance of the estimators

targeting θ(α) across theD = 300 datasets. The proposed matching estimator performs

very well. For the point estimates, there is negligble bias and very small MSE. The

proposed variance estimator also seems to perform well, with SER near 1 indicating

that the estimated standard errors are about appropriate for the method. The empirical
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Table 3.4: Estimates of θ(α) for varying α and the two methods across the four simu-
lation scenarios. Each of the four scenarios is run with a �xed cluster size, c. Bias104

indicates the average bias times 104, and MSE104 indicates the average squared bias
times 104; ASE103 is the average estimated (asymptotic) standard error times 103,
ESE103 is the standard error of the estimates across the D datasets times 103, and SER
equals ASE divided by ESE. Cov% is the empirical coverage of the Wald-type 95% con-
�dence intervals. The proposed matching method performs well in all scenarios with
low bias and nominal coverage rates. The IPW-Hajek method performs well for c = 3
but experiences increasing MSE and decreasing coverage as cluster sizes increase.

c Target Method Bias104 MSE104 Cov% ASE103 ESE103 SER

3 θ(0.50)=0.258 Match 4.38 1.87 95.0% 14.02 13.69 1.02
IPW 10.75 3.05 93.3% 16.88 17.46 0.97

θ(0.65)=0.202 Match -8.98 1.66 95.0% 14.00 12.86 1.09
IPW -9.87 2.56 93.7% 15.53 16.00 0.97

5 θ(0.50)=0.252 Match 18.49 1.49 94.7% 11.76 12.08 0.97
IPW 8.82 3.89 92.7% 18.24 19.74 0.92

θ(0.65)=0.197 Match 0.31 1.21 96.7% 11.75 11.04 1.06
IPW -15.20 3.09 92.7% 16.83 17.54 0.96

8 θ(0.50)=0.250 Match 13.90 1.15 94.7% 10.56 10.64 0.99
IPW 8.48 6.01 92.0% 19.95 24.53 0.81

θ(0.65)=0.193 Match 12.91 1.10 94.7% 10.70 10.41 1.03
IPW 2.64 4.81 90.0% 18.11 21.98 0.82

14 θ(0.50)=0.248 Match -3.48 0.92 94.3% 9.60 9.58 1.00
IPW -11.11 7.09 89.7% 23.84 26.65 0.89

θ(0.65)=0.192 Match -2.57 0.78 96.3% 9.71 8.84 1.10
IPW 6.09 7.27 89.0% 21.63 27.00 0.80

coverage probability of the Wald-type 95% CIs is approximately the nominal 95%.

The IPW-Hajek estimator performs well when cluster sizes are smallest. For exam-

ple, when c = 3 then the IPW-Hajek estimator experiences fairly low bias, SER close to

1, and empirical coverage percentages near the nominal 95%. However, as cluster sizes

increase, then the IPW-Hajek estimator experiences strinctly increasing MSE, strictly

increasing ASE and ESE, and strictly worsening empirical coverage.

We also present a �forest plot� in Figure 3.5 to illustrate the performance of these

methods. The vertical lines represent the 95% Wald-type con�dence intervals corre-

sponding to each point estimate. The simulations are re-ordered so that the point
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Figure 3.5: Forest plot of estimates of θ(0.65) for the two methods across two simu-
lation studies. The dotted black horizontal line indicates the true value of θ(0.65) in
each simulation study. Illustrated in each panel are D = 300 point estimates and corre-
sponding 95% CIs; one for each simulated dataset. The reddish color indicates that the
95% CI excludes the true value of the parameter, and the greenish color indicates that
the 95% CI includes the true value of the parameter. The proposed methods (left side)
perform well in both scenarios. IPW-Hajek method (right side) exhibits instability and
behaves erratically when cluster size increases.

Method: Matching Method: IPW−Hajek
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estimates are increasing from left-to-right for each panel. The horizontal, dotted black

line indicates the true value of θ(α = 0.65), and each estimate and corresponding con�-

dence interval has a greenish color when the con�dence interval includes the true value

(and reddish when it does not). In the left panels, the proposed matching estimator

is illustrated to perform quite well in both scenarios shown, for c = 3 and c = 14. In

the right panels, the IPW-Hajek estimator performs well for c = 3, but exhibits erratic

behavior when c = 14.

In Table 3.5, we present summary statistics of the performance of the proposed

estimators of the Overall E�ects, θ(α, α′). The MSE is very low. The average bias is

negligible: at worst, in the third row, the average bias is 31.4% of the average standard

error, and coverage is still good here at 93%. In all cases, the SER is near 1 indicating

62



that the asymptotic variance estimator is performing well for this estimator. The

empirical coverage percent ranges from 93% to 97.3%, quite close to the nominal 95%.

Table 3.5: Estimates of θ(α, α′) from the proposed matching methods in each of the
four simulation scenarios. Bias104 indicates the average bias times 104, and MSE104

indicates the average squared bias times 104; ASE103 is the average estimated (asymp-
totic) standard error times 103, ESE103 is the standard error of the estimates across
the D datasets times 103, and SER equals ASE divided by ESE. Cov% is the empirical
coverage of the Wald-type 95% con�dence intervals. The proposed matching method
performs well in all scenarios with low bias and nominal coverage rates.

c Target Bias104 MSE104 Cov% ASE103 ESE103 SER

3 θ(0.65, 0.5) = −0.056 -13.36 0.28 96.3% 5.58 5.16 1.08
θ(0.7, 0.45) = −0.095 -5.63 0.72 97.3% 9.18 8.47 1.08

5 θ(0.65, 0.5) = −0.055 -18.17 0.37 93.0% 5.78 5.79 1.00
θ(0.7, 0.45) = −0.095 3.51 0.87 93.7% 9.31 9.35 1.00

8 θ(0.65, 0.5) = −0.057 -1.00 0.40 93.3% 6.44 6.30 1.02
θ(0.7, 0.45) = −0.093 -13.65 0.98 93.0% 10.08 9.84 1.02

14 θ(0.65, 0.5) = −0.057 0.91 0.50 94.3% 7.30 7.10 1.03
θ(0.7, 0.45) = −0.094 2.67 1.11 94.0% 10.82 10.55 1.03

The IPW-Hajek estimators for Overall E�ects are not shown in Table 3.5 as their

behavior for this target mirrors their behavior illustrated in Table 3.4. In particular,

as cluster sizes increase, the IPW-Hajek estimators su�ers from increasing MSE and

decreasing empirical coverage rates to below nominal levels. The proposed methods

thus perform well in multiple scenarios for both θ(α) and θ(α, α′) with respect to

multiple allocations α, α′, and outperform existing IPW estimators.

3.9 Data Analysis

The proposed matching estimator is illustrated with an analysis of a cholera vaccine

study in Matlab, Bangladesh (Ali et al. 2005; 2009). Over 100,000 women and children

from 6,415 baris (i.e., households of patrilineally-related individuals) were eligible to

participate in the study. There was an experimental and a non-experimental component
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to the study, and each eligible individual could choose to participate. Participants were

randomized with equal probability to one of three treatment arms: B subunit-killed

whole cell oral cholera vaccine, killed whole cell-only oral cholera vaccine, or placebo.

Non-participants did not receive either version of active treatment. Since individuals

could choose to participate in the study, there is a non-neglible non-experimental com-

ponent to the study, and potential for confounding exists when analyzing the endpoint

data. An individual was indicated to have experienced the outcome if they had been

infected with cholera by the end of 1 year; these individuals were coded as having

outcome 1, and the uninfected individuals were coded as having outcome 0, so lesser

values of the target estimands represent more favorable health outcomes.

We consider any individual to have received treatment if they were vaccinated with

at least two doses of one of the two cholera vaccines as in Perez-Heydrich et al. (2014);

otherwise the individual was considered to be untreated. We assume partial or clustered

interference at the level of the bari as in Barkley et al. (2017), as evidence exists that

transmission of cholera often takes place within baris (Ali et al. 2005). To illustrate

this method, we subset the data to clusters of size 3. That is, the 211 baris containing

only 1 or 2 individuals were excluded from the analysis, and exactly 3 individuals were

chosen to represent baris with more than 3 individuals where the remaining individuals

from those baris were also excluded. Figure 3.6 presents the empirical distribution of

treatment for the N =6,194 baris of size 3 (for a total of 18,582 individuals) that remain

after the subsetting process.

We illustrate the matching method assuming treatment irrelevance for the sum of

individuals treated as described in Section 3.6 and as investigated in the simulation

study in Section 3.8. For these estimators, positivity and weak conditional exchange-

ability were assumed to hold conditional on individual age Lij1 (centered, in decades)

and distance to river Lij2 (in kilometers). Since all individuals within the same bari
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Figure 3.6: Empirical distribution of the number of individuals vaccinated per cluster
after subsetting the data

were equidistant to river, the data transformation produced a 1 × 4 matrix Xi where

Xij = Lij1 for j = 1, 2, 3 and Xi4 equals the distance from bari to river. The matching

procedure was carried out on this 1 × 4 vector Xi of pre-treatment covariates for all

i ≤ N clusters. The estimators were �t with M = 1 pre-speci�ed, thereby requir-

ing c = 3 matching units per cluster. Wald-type 95% CI's were constructed from the

proposed asymptotic variance estimator, which was carried out using J = 1 within-

treatment-level matches to estimate the conditional variance term. We refer to this

method Match-1.

We �t additional versions of the proposed matching estimator by specifying varying

values of M and J . When matching discrepancy is non-negligible, using a greater

number of matches in either the point estimation procedure or variance estimation

procedure may result in better estimates from either procedure. Shown below are

results from the estimator where we speci�ed M = 3 for the estimator and J = 3 for

the variance estimator, labeled Match-2.

The IPW-Hajek estimators from Liu et al. (2016) were �t for comparison. Posi-

tivity and conditional exchangeability were assumed conditional on age (centered) and
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distance to river. A logistic mixed e�ects model was �t with a random intercept for

each cluster, a linear term for distance to river, and linear and quadratic terms for age.

Wald-type 95% CI's were constructed from the empirical sandwich variance estimator.

A second set of IPW-Hajek estimators was �t, where the model this time included

linear and quadratic terms for age and distance to river, as well as an interaction be-

tween their linear terms. These estimators are labeled IPW-Hajek-1 and IPW-Hajek-2,

respectively. IPW-HT estimates are not shown, as they performed very similarly to the

IPW-Hajek estimators.

Figure 3.7: Estimates and con�dence intervals of θ(α) for the Matlab cholera vaccine
study. Each estimator is color-coded. The two versions of the proposed matching esti-
mators are shown with circles, and the IPW-Hajek estimators are shown with triangles.
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Figure 3.7 depicts point estimates and corresponding 95% CIs of the population

mean estimands, θ(α), for a range of levels of α from all four methods. The Match-

1 method estimates decreasing values of µ(α) as α increases across the three levels,

suggesting that increasing treatment allocation α could result in a reduction in the rate

of infection by cholera. Point estimates for the Match-2 method are slightly smaller

in magnitude than those for Match-1; this may indicate that bias due to matching
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Figure 3.8: Estimates and con�dence intervals of Overall E�ects for the Matlab cholera
vaccine study. Each estimator is color-coded and labeled on the x-axis. In the right
panel, these results indicate a reduction of the cholera infection rate by 1 case per 1000
individuals annually when increasing from α′=0.45 to α = 0.6.
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discrepancy is minimal. The point estimates for the two IPW-Hajek methods are very

similar to one another, and also to those from the Match-2 estimator.

Figure 3.8 depicts point estimates and corresponding 95% CIs for the Overall E�ect

estimands, θ(α, α′), for a range of levels of α and α′. Recall that lower values of θ(α)

are more favorable, and since θ(α, α′) is de�ned to be the e�ect of switching from α′ to

α, negative estimates of the Overall E�ect correspond to favorable health outcomes for

the type B policy α compared to α′. The Match-1 method estimates an unfavorable

e�ect for θ(0.3, 0.45) and a favorable e�ect for θ(0.6, 0.45). Each of these two estimates

are statistically signi�cant, as the 95% CI excludes zero in each case. For example,

increasing the type B policy from α′ = 0.45 to α = 0.6 is estimated to decrease the rate

of cholera infection by about 1 case per 1000 individuals annually. The point estimate

of the Match-2 estimator is slightly smaller in magnitude, and the width of the 95% CIs

are also slightly smaller, but it performs very similarly to Match-1. The IPW-Hajek
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estimators again performed similarly to the proposed methods, although the width of

the 95% CIs for θ(0.3, 0.45) from the two IPW-Hajek methods are perhaps slightly

greater than those from the matching methods.

3.10 Discussion

Introduced in this paper is a method for estimating causal e�ects in the presence of

partial interference that relies on covariate matching. The estimators are consistent and

asymptotically Normal in some scenarios, and estimators for the asymptotic variance

are proposed. The proposed methods perform well in a simulation study, exhibiting low

bias and reaching nominal coverage. These methods are illustrated on data collected

from a large vaccine study. These methods estimated signi�cant and favorable e�ects of

greater treatment allocation on risk of infection by cholera. The results provide further

strength of evidence that increasing vaccine allocations reduces the risk of infection by

cholera, especially since the proposed methods do not rely on modeling assumptions.

Existing IPW methods for the target estimands rely on the correct speci�cation of

the treatment model and cluster propensity scores. Although these IPW estimators are

at risk of bias due to model mis-speci�cation, development of methods more robust to

modeling assumptions remains an open problem (Liu and Hudgens 2014). The proposed

matching estimators present a model-free method for drawing inference to these target

estimands. The proposed methods outperform the existing IPW estimators in a �nite-

sample study, where the instability of the IPW estimators is shown to be exacerbated

when cluster sizes increase. Matching methods are generally considered to be highly

interpretable; the proposed estimators should be a valuable addition to the public health

researcher's toolkit.

The proposed estimators rely on the untestable assumptions of conditional ex-

changeability and clustered interference. Future work should consider extending these
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estimators to target the Indirect, Total, and Direct E�ects in Tchetgen Tchetgen and

VanderWeele (2012) or related estimands in Hudgens and Halloran (2008). Asymptotic

Normality of the proposed estimators is not guaranteed when there are multiple con-

tinuous covariates per cluster. Another drawback of this method is that the number of

covariates per study unit increases as the cluster size increases. As discussed in Sec-

tion 3.6, future research may consider covariate dimension reduction strategies, which

may also allow for matching clusters when the clusters do not contain the same num-

ber of individuals. Future research may also investigate the bene�ts of using modeling

methods for propensity score matching as in Abadie and Imbens (2016).

There are few matching estimators that can estimate causal e�ects in the presence

of interference from an observational study, yet such methods may provide valuable

information (Arpino and Mattei 2016, Arpino et al. 2017). By de�ning one cluster of

individuals to be a study unit, this paper extends the matched-imputation estimators

in Abadie and Imbens (2006) and Yang et al. (2016) to the scenario of clustered in-

terference. The estimators introduced here are the �rst that do not rely on IPW to

target the estimands in Tchetgen Tchetgen and VanderWeele (2012) from an observa-

tional study. Furthermore, the analysis of the Matlab cholera vaccine study represents

the �rst application of a matching method to estimate causal e�ects in the presence of

interference from a non-experimental public health study.
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CHAPTER 4: CAUSAL INFERENCE FROM OBSERVATIONAL

STUDIES WITH CLUSTERED INTERFERENCE

4.1 Introduction

Inferring causal e�ects from an observational study (also referred to as a non-

randomized or non-experimental study) is challenging because participants may select

their own treatment. Observational studies in many settings such as infectious disease

research present the additional challenge that one individual's treatment may have an

e�ect on another individual's outcome, i.e., there may be interference (Cox 1958). For

example, whether one individual is administered a vaccine may a�ect whether another

individual develops disease from some infectious pathogen. In certain settings it may be

reasonable to assume that individuals can be partitioned into clusters such that there

may be interference among individuals within a single cluster, yet no interference be-

tween individuals in distinct clusters. Sobel (2006) described this assumption as �partial

interference�; here this assumption is referred to as �clustered interference.� Clusters

might entail households, classrooms, geographical areas, or other hierarchical struc-

tures. Several types of treatment e�ects (i.e., causal estimands) have been proposed for

the setting where there may be clustered interference; e.g., see Halloran and Struchiner

(1995), Hudgens and Halloran (2008) and Tchetgen Tchetgen and VanderWeele (2012).

Methods have been developed for inference about these causal e�ects from observa-

tional studies (Tchetgen Tchetgen and VanderWeele 2012, Perez-Heydrich et al. 2014,

Liu et al. 2016). One drawback of the treatment e�ects targeted by these methods

is that these causal estimands describe counterfactual scenarios in which individuals
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select treatment independently and with the same probability. However, in settings

where interference within clusters is plausible, it may be unlikely that treatment se-

lection among individuals in the same cluster is independent (Liu et al. 2016). For

instance, suppose a public health policy-maker is interested in the e�ect of seasonal

in�uenza vaccination on risk of in�uenza-like illness in households. In this case, one

might expect positive correlation between the vaccination statuses of individuals in

the same household. Thus, drawing inference to a counterfactual scenario in which

individuals are administered vaccines independently may not be of public health rele-

vance. In this paper new causal estimands are proposed for observational studies where

there may be clustered interference; these estimands describe counterfactual scenarios

in which the treatment selection correlation structure is the same as that in the observed

data distribution. By considering scenarios that exhibit within-cluster dependence in

the individual treatment selections, the proposed estimands may be more relevant for

policy-makers or public health o�cials who are interested in quantifying the e�ect of

increasing the proportion of treated individuals in a population.

The outline of the remainder of this paper is as follows. In Section 4.2 the potential

outcomes framework and interference are discussed. The proposed causal estimands

are introduced in Section 4.3. A set of assumptions su�cient for identifying the target

estimands is presented in Section 4.4. In Section 4.5 inverse probability-weighted esti-

mators are introduced. The estimators are shown in Section 4.6 to be consistent and

asymptotically Normal. Simulations in Section 4.7 demonstrate that the proposed esti-

mators are empirically unbiased and that Wald-type con�dence intervals attain nominal

coverage levels in �nite samples. The proposed methods are illustrated in Section 4.8

by analyzing data from a study of cholera vaccination in over 100,000 individuals in

Matlab, Bangladesh. Section 4.9 concludes with a discussion.
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4.2 Counterfactuals and Interference

Consider a super-population of clusters of individuals. For each cluster let: N be the

number of individuals in the cluster, A = (A1, A2, . . . , AN) where Aj denotes the binary

treatment indicator for individual j in the cluster, and Y = (Y1, Y2, . . . , YN) where Yj

is the outcome of interest for individual j. For example, Yj might indicate whether

or not individual j experienced the outcome after some suitable follow-up period after

treatment exposure status was observed.

Assuming clustered interference, the potential outcome for an individual may de-

pend on the individual's own treatment exposure status as well as on the treatment

exposures of others in the same cluster. However, any individual's potential out-

comes are assumed to be una�ected by the treatment exposures of individuals in

di�erent clusters. Let A(N) be the set of all vectors with N binary entries such

that a = (a1, a2, . . . , aN) ∈ A(N) is a vector whose entries each indicates a poten-

tial treatment status for an individual in a cluster of N individuals. Let Yj(a) be the

potential outcome for unit j in the cluster if, possibly counter to fact, the cluster had

received a ∈ A(N). In the absence of interference, Yj(a) = Yj(a
′) whenever aj = a′j for

a, a′ ∈ A(N). However, assuming no interference when interference is present may re-

sult in biased estimates of causal e�ects. Throughout this paper clustered interference

is assumed.

4.3 Causal E�ects

4.3.1 Proposed Estimands

Our goal is to draw inference about the di�erence in expected outcomes arising from

population-level policies which change the distribution of treatment. In the absence of

interference, typical treatment e�ect estimands compare the policy (or strategy) where
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all individuals receive treatment (i.e., A = (1, 1, . . . , 1) with probability 1) with the

policy where all individuals are not treated (i.e., A = (0, 0, . . . , 0) with probability 1).

Here we consider more general policies where individuals receive treatment according to

some probability. Muñoz and van der Laan (2012) refer to such policies as �stochastic

interventions.� For example, we might consider the policy where individuals select

treatment with probability 0.5. In general, let α denote the policy under which the

probability an individual is treated equals α, for α ∈ [0, 1]. That is, Prα(Aj = 1) = α,

where the subscript in Prα(·) indicates that the probability is with respect to the

counterfactual scenario in which the policy α is implemented.

For a ∈ A(N), de�ne ω(a,N, α) = Prα(A = a|N) to be the marginal probability

under policy α that a cluster of N individuals experiences treatment status a, and let

Ȳ(a) = N−1
∑N

j=1 Yj(a) denote the average potential outcome in a cluster if the cluster

had been exposed to a. The expected potential outcome under α for a single cluster of

N individuals is de�ned to be Ȳ(α) =
∑

a∈A(N) Ȳ(a)ω(a,N, α). In other words, Ȳ(α)

is the expected average potential outcome for the cluster in the counterfactual scenario

in which α is implemented.

De�ne the population mean outcome under α to be µ(α) = E{Ȳ(α)}, where the

expected value is taken over all clusters in the super-population. The overall e�ect is

de�ned to be OE(α, α′) = µ(α) − µ(α′), which represents the di�erence in expected

potential outcomes under policy α versus policy α′. The overall e�ect is de�ned here

as a di�erence in mean potential outcomes, but could instead be de�ned as a ratio or

some other contrast (Liu et al. 2016).

In addition, it may also be of interest to consider potential outcomes among only the

untreated individuals within a cluster. Let Ȳt(a) = {
∑N

j=1 I(aj = t)}−1
∑N

j=1 Yj(a)I(aj =

t) for t = 0, 1. In words, Ȳ0(a) is the average potential outcome among the untreated in-

dividuals within the cluster; likewise Ȳ1(a) is the average potential outcome among the
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treated individuals within the cluster. In the special case when a = (1−t, 1−t, . . . , 1−t),

de�ne Ȳt(a) = 0 for each of t = 0, 1. Denote the population mean potential outcomes

when untreated to be µ0(α) = E{
∑

a∈A(N) Ȳ0(a)ω(a,N, α)}. The spillover e�ect when

untreated is de�ned to be the di�erence in population mean potential outcomes when

untreated under policy α versus α′, i.e., SE0(α, α′) = µ0(α) − µ0(α′). Similarly, let

µ1(α) = E{
∑

a∈A(N) Ȳ1(a)ω(a,N, α)}, and de�ne SE1(α, α′) = µ1(α)−µ1(α′) to be the

spillover e�ect when treated.

Below in Section 4.5, methods are considered for drawing inference about the target

estimands for di�erent policies α and α′.

4.3.2 Relation to Existing Estimands

Consider a policy in which all individuals in a cluster are exposed to treatment inde-

pendently with the same probability; Tchetgen Tchetgen and VanderWeele (2012) refer

to this as a �type B parameterisation.� For α ∈ [0, 1], let ωB(a,N, α) =
∏N

j=1 α
aj(1 −

α)1−aj denote the counterfactual probabilities under such a type B policy. Likewise, let

µB(α) = E{
∑

a∈A(N) Ȳ(a)ωB(a,N, α)} be the population mean potential outcome for

a type B policy, and de�ne the overall e�ect with respect to two type B policies to be

OEB(α, α′) = µB(α)− µB(α′).

The policies of interest in this paper include as a special case type B policies where

treatment exposure is uncorrelated. The estimands proposed in this paper can thus be

seen as a generalization of the type B estimands, as the type B policies describe only

the limiting counterfactual scenarios in which there is no within-cluster dependence

of individual treatment selections. In general, ω(a, n, α) 6= ωB(a, n, α) and the corre-

sponding policies, estimands, and interpretations di�er. In the data analysis of the

cholera vaccine study in Section 4.8, estimates of the type B estimands are presented

for comparison to the estimates of the proposed estimands.
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4.4 Identi�ability

The counterfactual probabilities ω(a, n, α) are not identi�able without additional

assumptions. Below we assume no unmeasured confounders and parametric models of

the conditional distribution of treatment given covariates.

Let there be a random sample of i = 1, . . . ,M clusters, and denote by Oi =

{Ni, Li, Ai, Yi} the observed values of the random variables for cluster i, where Li

is a Ni-vector of baseline (i.e., pre-treatment) variables. The ordering of individuals in

each cluster is assumed to be uninformative, and the subscript i is dropped for nota-

tional simplicity when not needed. Assume exchangeability conditional on the baseline

variables at the cluster level:

Y (a) ⊥ A | L,N for any a ∈ A(N).

In addition assume positivity at the cluster level:

Pr(A = a | L = l, N = n) > 0 for all l, n, such that

Pr(L = l, N = n) > 0 and any a ∈ A(n).

Following Tchetgen Tchetgen and VanderWeele (2012), Perez-Heydrich et al. (2014),

and Liu et al. (2016), assume the following mixed e�ects logistic regression model for

treatment:

Pr(A = a | L,N) =

ˆ N∏
j=1

L-1(β0 + β1Lj + b)aj
{

1− L-1(β0 + β1Lj + b)
}(1−aj)dΦ(b;σ),

(4.40)

where L-1(x) = {1 + exp(−x)}−1 is the inverse-logit function, and b denotes a random

intercept for cluster which is assumed to follow a Normal distribution with mean zero,

standard deviation σ, and distribution function Φ(·). We refer to Pr(A = a|L,N) as a
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cluster propensity score (Rosenbaum and Rubin 1983b). These conditional probabilities

describe the relationship between observed treatment and covariates; unlike in the case

where no interference is assumed, each cluster propensity score is the joint probability

of the N individual treatment exposures given covariates.

In addition, assume under counterfactual policy α that

Prα(A = a | L,N) =

ˆ N∏
j=1

L-1(γ0α + γ1αLj + b)aj
{

1− L-1(γ0α + γ1αLj + b)
}(1−aj)dΦ(b;φα),

where the random intercept follows a Normal distribution with mean zero and standard

deviation φα. The model parameters in the counterfactual scenario in general may di�er

from the parameters in the factual scenario. We similarly refer to Prα(A = a|L,N) as a

counterfactual cluster propensity score, as these conditional probabilities describe the

relationship between treatment and covariates in the counterfactual scenario in which

α is implemented.

The parameters (β0, β1, σ) in (4.40) are identi�able from the observable random

variables. However, the parameters (γ0α, γ1α, φα), counterfactual cluster propensity

scores Prα(A = a|L,N), and counterfactual probabilities ω(a, n, α) are not identi�able

without additional assumptions. It is assumed here that Pr(L) = Prα(L), i.e., the

di�erent policies do not a�ect the covariate distribution. Also assume that σ = φα, i.e.,

the parameter governing correlation is not a�ected by di�erent policies. Additionally

assume β1 = γ1α, which supposes that the conditional odds ratio of treatment for any

two individuals within the same cluster is the same across the factual and counterfactual

scenarios. Under the above assumptions,

α =

ˆ {
N−1

N∑
j=1

ˆ
L-1(γ0α + β1Lj + b)dΦ(b;σ)

}
dFL, (4.41)
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so the counterfactual model's intercept parameter γ0α and thus the counterfactual clus-

ter propensity scores are identi�able. It follows that the counterfactual probabilities

ω(a, n, α) = E{Prα(A = a|L,N = n)} are also identi�able from the observable data.

4.5 Inference

Following Tchetgen Tchetgen and VanderWeele (2012) and Perez-Heydrich et al.

(2014), consider the following inverse probability-weighted (IPW) estimator of µ(α):

µ̂(α) = M−1

M∑
i=1

Ȳi ω(Ai, Ni, α)

Pr(Ai|Li, Ni)
, (4.42)

where Ȳi = N−1
i

∑Ni
j=1 Yij. The inverse probability-weight for cluster i is the reciprocal

of the cluster propensity score; these and the counterfactual probabilities are unknown

in an observational study and must be estimated from data.

Under the assumptions in Section 4.4, a logistic mixed e�ects model is �t to the

data, and the model parameters (β0, β1, σ) can be estimated by maximum likelihood.

Then, the �tted parameters (β̂0, β̂1, σ̂) are substituted into (4.40) to obtain an estimate

of each cluster's propensity score. For each policy α, γ̂0α solves equation (4.41), with

FL replaced by its empirical distribution; that is, α = M−1
∑M

i=1N
−1
i

∑Ni
j=1

´
L-1(γ0α +

β̂1Lij+bi)dΦ(bi; σ̂) is solved to obtain γ̂0α. The counterfactual cluster propensity scores

for cluster i and treatments a ∈ A(Ni) are estimated by substitution, e.g.,

P̂rα(Ai = a | Li, Ni) =

ˆ Ni∏
j=1

L-1(γ̂0α + β̂1Lij + bi)
aj
{

1− L-1(γ̂0α + β̂1Lij + bi)
}(1−aj)dΦ(bi; σ̂).

Since the ordering of individuals in clusters is assumed to be uninformative, ω(a, n, α) =

ω(a′, n, α) whenever f(a) = f(a′) for any two a, a′ ∈ A(n) where f(a) =
∑n

j=1 aj.
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Let A(n, s) = {a ∈ A(n) | f(a) = s} where |A(n, s)| =
(
n
s

)
, and de�ne ω(s, n, α) =∑

a∈A(n,s) ω(a, n, α) for s = 0, 1, . . . , n. Estimate the counterfactual probabilities for

any cluster i by ω̂(Ai, Ni, α) =
(
Ni

f(Ai)

)−1
ω̂(f(Ai), Ni, α), where for any triplet (s, n, α),

ω̂(s, n, α) ={
M∑
i=1

I(Ni = n)

}−1 ∑
a∈A(n,s)

M∑
i=1

P̂rα(Ai = a|Li, Ni)I(Ni = n).

These estimates, along with the estimated cluster propensity scores, are substituted

into (4.42) to calculate µ̂(α). The estimators ÔE(α, α′) = µ̂(α)− µ̂(α′) can be obtained

in a similar manner. For t = 0, 1, the estimators µ̂t(α) and ŜEt(α, α
′) are de�ned

similarly using the outcomes Ȳt,i = {
∑Ni

j=1 I(Aij = t)}−1
∑Ni

j=1 YijI(Aij = t), where

Ȳt,i = 0 in the case when Aij = 1− t for all j = 1, . . . , Ni.

In Section 4.6, these estimators are shown to be consistent and asymptotically

Normal using standard large-sample estimating equation theory (Stefanski and Boos

2002). Wald-type con�dence intervals (CIs) can be constructed using the empirical

sandwich estimators of the asymptotic variances.

The estimators described above may be computationally challenging in practice

as the estimator ω̂(a, n, α) requires a numerical integration technique for each of the(
n
f(a)

)
-many vectors in A(n, f(a)). Therefore, the following approximation is proposed

to decrease computation time. For each s = 0, 1, . . . , n, de�ne A(n, s, k) to be a subset

of exactly ks,n = min{k,
(
n
s

)
} vectors selected in a simple random sample from A(n, s),

where k > 1 is chosen by the investigator. Now estimate the counterfactual probabilities
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by ω̂(a, n, α, k) =
(
n
f(a)

)−1
ω̂(f(a), n, α, k), where for any triplet (s, n, α),

ω̂(s, n, α, k) ={
M∑
i=1

I(Ni = n)

}−1

k−1
s,n

(
n

s

) ∑
a∈A(n,s,k)

M∑
i=1

P̂rα(Ai = a|Li, Ni)I(Ni = n).

Replacing ω̂(a, n, α) in µ̂(α) with ω̂(a, n, α, k) results in an estimator which we de-

note µ̂(α, k). With analogous replacements de�ne ÔE(α, α′, k), as well as µ̂t(α, k) and

ŜEt(α, α
′, k) for t = 0, 1. These estimators are evaluated in a simulation study in Sec-

tion 4.7 and are employed in the data analysis of the cholera vaccine study in Section 4.8.

All of the above estimators are implemented in the R package clusteredinterference

(Barkley 2018), available on CRAN. In practice, speci�cation of the value of k may be a

compromise between less approximation (larger k) and faster computation (smaller k).

This method may be extended by specifying di�erent values of k to estimate distinct

counterfactual probabilities, which is outlined in Section 4.6. A short discussion on es-

timating counterfactual probabilities under the assumption of uninformative ordering

of individuals within clusters is additionally provided in Section C.1.

4.6 Estimating Equations

The IPW estimators introduced in Section 4.5 are shown to be consistent and

asymptotically Normal using standard large-sample estimating equation theory or �M-

estimation� (Stefanski and Boos 2002). Presented for illustration below is a sim-

ple example where each cluster has exactly n individuals, and at least one cluster

i ≤ M is observed to experience treatment f(Ai) = s for each s = 0, 1, . . . , n. Let

ωα = (ω(0, n, α), . . . , ω(n− 1, n, α)) be the ordered vector of the possibly unique coun-

terfactual probabilities excepting ω(n, n, α); the law of total probability implies that
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ω(n, n, α) = 1−
∑n−1

s=0 ω(s, n, α). Let θα = (β0, β1, σ, γ0α, ωα, µ(α)) be the ordered vec-

tor of all parameters to estimate. Next, estimating functions corresponding to each

element of θα are introduced.

Estimating functions for the parameters ν = (β0, β1, σ) in the logistic mixed model

are the score functions of the log likelihood. Let ψν = (ψβ0 , ψβ1 , ψσ)ᵀ be a column

vector denoting these estimating functions. For β1, the estimating function is

ψβ1(Oi; θα) =
∂

∂β1

log
{

Pr(Ai|Li, Ni)
}
,

where Pr(Ai|Li, Ni) is given in (4.40).For γ0α, de�ne the estimating function

ψγ0α(Oi; θα) =

{
N−1
i

Ni∑
j=1

ˆ
L-1(γ0α + β1Lij + bi)dΦ(bi;σ)

}
− α.

For each ω(s, n, α) ∈ ωα, de�ne the estimating function

ψω(s,n,α)(Oi; θα) =

{ ∑
a∈A(n,s)

Prα(Ai = a|Li, Ni)− ω(s, n, α)

}
I(Ni = n),

and let ψωα = (ψω(0,n,α), ψω(1,n,α), . . . , ψω(n−1,n,α))
ᵀ. For the target estimand, de�ne

ψµ(α)(Oi; θα) =
Ȳi ω(Ai, Ni, α)

Pr(Ai|Li, Ni)
− µ(α),

where ω(Ai, Ni, α) =
(
Ni

f(Ai)

)−1
ω(f(Ai), Ni, α) and where Pr(Ai|Li, Ni) is the propensity

score for the cluster as in (4.40).

Let ψθα = (ψν , ψγ0α , ψωα , ψµ(α))
ᵀ, and let q = |θα| be the number of parameters to

estimate. The estimator θ̂α can be expressed as a solution to the following system of
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estimating equations:

M∑
i=1

ψθα(Oi; θα) =
M∑
i=1



ψν(Oi; θα)

ψγ0α(Oi; θα)

ψωα(Oi; θα)

ψµ(α)(Oi; θα)


= 0q×1.

To show that µ(α) is the solution to
´
ψµ(α)(O|θα)dFO(O) = 0, note

ˆ
ψµ(α)(O|θα)dFO(O) = E

{ ∑
a∈A(N)

Ȳ(a)ω(a,N, α)

Pr(A = a|L,N)
I(A = a)

}

= EL,N

[ ∑
a∈A(N)

{
EA,{Y (a)}|L,N

(
Ȳ(a)ω(a,N, α)

)
×

EA,{Y (a)}|L,N

(
I(A = a)

Pr(A = a|L,N)

)}]

= E

{ ∑
a∈A(N)

Ȳ(a)ω(a,N, α)

}
,

which equals µ(α) by de�nition, and so µ(α) solves
´
ψµ(α)(O; θα)dFO(O)=0. Since ψν

are simply the score functions,
´
ψν(O; θα)dFO(O) = 0|ν|×1. Note that the right side of

(4.41) equals α +
´
ψγ0α(O; θα)dFO(O), so γ0α solves

´
ψγ0α(O; θα)dFO(O) = 0. Finally,

´
ψω(s,n,α)(O; θα)dFO(O) = 0 follows from ω(a, n, α) = EL{Prα(A = a|L,N = n)}.

Combining these results shows that
´
ψθα(O; θα)dFO(O) = 0q×1.

From Stefanski and Boos (2002), θ̂α
p−→ θα and

√
M(θ̂α − θα)

d−→ N(0,Σα), where

Σα = U−1
α Wα(U−1

α )ᵀ for Uα = E{−ψ̇θα(O; θα)} and Wα = E{ψθα(O; θα)⊗2}. Con-

sistent estimators for Uα and Wα are Ûα = M−1
∑M

i=1{−ψ̇θα(Oi; θα)|θα=θ̂α
} and Ŵα =

M−1
∑M

i=1{ψθα(Oi; θ̂α)⊗2}. The empirical sandwich variance estimator Σ̂α = Û−1
α Ŵα(Û−1

α )ᵀ

is consistent for Σα, and so V̂ar(µ̂(α)) = M−1[Σ̂α][q,q] approximates the variance of µ̂(α)

for large M , where [Σ̂α][q,q] is the bottom-right element of Σ̂α.

81



An analogous approach is described for ÔE(α, α′, k), where it is now necessary to

estimate γ0α′ and ωα′ as well. Let θα,α′ = (ν, γ0α, γ0α′ , ωα, ωα′ ,OE(α, α′)) be the ordered

vector of all parameters to estimate. For each ω(s, n, α) ∈ ωα, de�ne the estimating

function

ψk,ω(s,n,α)(Oi; θα,α′) =k−1
s,n

(
n

s

) ∑
a∈A(n,s,k)

Prα(Ai = a|Li, Ni)− ω(s, n, α)

 I(Ni = n),

and let ψk,ωα = (ψk,ω(0,n,α), ψk,ω(1,n,α), . . . , ψk,ω(n−1,n,α))
ᵀ. For the target estimand, de�ne

ψOE(α,α′)(Oi; θα,α′) =
Ȳi

{
ω(Ai, Ni, α)− ω(Ai, Ni, α

′)
}

Pr(Ai|Li, Ni)
−OE(α, α′).

It is easily shown that
´
ψOE(α,α′)(O; θα,α′)dFO(O) = 0 using a proof analogous to the

one for ψµ(α) presented above. In a similar manner, that
´
ψk,ω(s,n,α)(O; θα,α′)dFO(O) =

0 follows directly from
´
ψω(s,n,α)(O; θα)dFO(O) = 0. Finally, let ψk,θα,α′ = (ψν , ψγ0α ,

ψγ0α′ , ψk,ωα , ψk,ωα′ , ψOE(α,α′))
ᵀ. Then θα,α′ solves

´
ψk,θα,α′ (O; θα,α′)dFO(O) = 0q′×1 and

θ̂α,α′ solves
∑M

i=1 ψk,θα,α′ (Oi; θα,α′) = 0q′×1 for q
′ = |θα,α′|, and the above results follow.

The di�erence in ÔE(α, α′) and ÔE(α, α′, k) arises solely from the estimating func-

tions used for the counterfactual probabilities, i.e., ψωα and ψk,ωα , respectively. When(
n
bn/2c

)
≤ k, then A(n, s) = A(n, s, k) for all s, and ψωα is equivalent to ψk,ωα . As men-

tioned above, one could use di�erent values of k for distinct estimating equations. For

example, one could estimate ω(s, n, α) with ψk,ω(s,n,α) and ω(s′, n′, α) with ψk′,ω(s′,n′,α),

where ω(s, n, α) 6= ω(s′, n′, α) and k 6= k′, and the above results would still apply.
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4.7 Simulations

A simulation study was carried out on 1000 datasets to demonstrate the �nite-

sample performance of the proposed estimators. To generate each dataset, the following

steps were carried out for each of i = 1, . . . ,M = 125 clusters:

I The number of individuals in the cluster Ni was simulated such that Pr(Ni = 8) =

0.4, Pr(Ni = 22) = 0.35, and Pr(Ni = 40) = 0.25.

II Covariates for each individual j = 1, . . . , Ni in cluster i were simulated to be

Lij1 ∼ N(40, 5) and Lij2 ∼ N(Xi, 0.2), where Xi ∼ N(6, 1) was a cluster-level

random variable.

III Treatment status Aij for each individual j in cluster i was simulated from a

Bernoulli distribution with mean Pr(Aij = 1|Lij, bi) = L-1(β0 +β1Lij1 +β2Lij2 +bi)

where bi ∼ N(0, σ) was a cluster-level random intercept and (β0, β1, β2, σ) = (0.75,

−0.015,−0.025, 0.75).

IV The outcome Yij for each individual j in cluster i was simulated from a Bernoulli

distribution with mean Pr(Yij = 1|Ai, Lij) = L-1(0.1−0.05Lij1 +0.5Lij2−0.5Aij +

0.2g(Ai,−j)−0.25Aijg(Ai,−j)), where the function g(Ai,−j) = (Ni−1)−1
∑

j′ 6=j Aij′ .

A logistic mixed e�ects model was �t with a random intercept for cluster and main

e�ects for L1 and L2, i.e., the propensity score models were correctly speci�ed. To de-

termine the performance of the estimators that use the greatest degree of sub-sampling

approximation, k = 1 was chosen. The asymptotic variance of the estimators was esti-

mated with the empirical sandwich variance estimator as described in Section 4.6, from

which Wald-type 95% CIs were constructed.

True values of the estimands for policies α ∈ {0.4, 0.5, 0.55} were determined empiri-

cally using the same data generating process outlined above in steps I-II and analogues
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to steps III-IV. The process is described here brie�y, with more details provided in

Section C.2. For each α, γ0α was determined by solving (4.41) with FL approximated

by its empirical distribution over 107 clusters. Then, the counterfactual probabilities

ω(a, n, α) were determined by generating treatment vectors under policy α for 108

clusters, replacing β0 in step III with γ0α. An empirical comparison of true values of

ω(a, n, α) arising from this simulation study and the true values of ωB(a, n, α) for the

type B policies is provided in Figure C.1 in Section C.2.5. Next, potential outcomes

were generated for 108 clusters via the causal model analogous to the regression model

speci�ed in step IV. These potential outcomes were combined with the counterfactual

probabilities to determine the true values of µ(α), OE(α, α′), and µt(α) and SEt(α, α
′)

for t = 0, 1.

The IPW estimates from each dataset were compared to the true estimand values

determined above; a summary of these results is presented in Table 4.6. The average

bias of the estimators was negligible. The average of the estimated asymptotic standard

errors was approximately equal to the empirical Monte Carlo standard error. The

Wald-type 95% CIs contained the true parameter values for approximately 95% of the

simulated datasets. Thus, the estimators performed well in this simulation study.

4.8 Data Analysis

The proposed methods are illustrated in the following analysis of a cholera vac-

cine study in Matlab, Bangladesh, which featured both an experimental and a non-

experimental component (Ali et al. 2005; 2009). Included in the study were 121,975

women (aged 15 years and older) and children (aged 2-15 years) from 6,415 baris (i.e.,

households of patrilineally-related individuals). These individuals were eligible to par-

ticipate in the experimental component of the study, in which each individual was

randomized with equal probability to one of three treatment arms: B subunit-killed
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Table 4.6: Summary of results from simulation study described in Section 4.7. Truth
denotes the true value of the estimand targeted by the estimator; Bias denotes the
average bias of the IPW estimates over the 1000 datasets; Cov% denotes the empirical
coverage of Wald-type 95% CIs; ASE denotes the average of the estimated sandwich
standard errors times 100; ESE denotes the empirical standard error times 100; SER
denotes the ratio of ASE divided by ESE; α1 = 0.4, α2 = 0.5, and α3 = 0.55.

Estimator Truth Bias Cov% ASE ESE SER

µ̂(α1, k=1) 0.662 -0.003 94.3% 1.88 1.84 1.02
µ̂(α2, k=1) 0.651 0.000 95.5% 1.63 1.53 1.06
µ̂(α3, k=1) 0.645 0.001 96.4% 1.65 1.55 1.07

ÔE(α2, α1, k=1) -0.011 0.003 97.2% 1.08 0.96 1.13

ÔE(α3, α1, k=1) -0.017 0.004 97.4% 1.44 1.34 1.08

ÔE(α3, α2, k=1) -0.006 0.001 97.4% 0.53 0.44 1.21
µ̂0(α1, k=1) 0.712 -0.002 95.2% 2.10 2.02 1.04
µ̂0(α2, k=1) 0.711 -0.001 95.7% 2.15 2.02 1.07
µ̂0(α3, k=1) 0.709 -0.001 95.3% 2.46 2.35 1.05

ŜE0(α2, α1, k=1) -0.001 0.001 95.8% 1.33 1.20 1.11

ŜE0(α3, α1, k=1) -0.003 0.001 94.7% 1.93 1.86 1.04

ŜE0(α3, α2, k=1) -0.002 0.000 94.8% 0.79 0.72 1.10
µ̂1(α1, k=1) 0.573 0.007 94.2% 3.04 3.09 0.99
µ̂1(α2, k=1) 0.581 0.004 95.0% 2.25 2.24 1.01
µ̂1(α3, k=1) 0.582 0.001 95.3% 2.10 2.07 1.01

ŜE1(α2, α1, k=1) 0.008 0.003 94.9% 1.51 1.46 1.04

ŜE1(α3, α1, k=1) 0.009 0.005 95.2% 2.02 1.98 1.02

ŜE1(α3, α2, k=1) 0.002 0.002 96.4% 0.65 0.57 1.13

whole cell oral cholera vaccine, killed whole cell-only oral cholera vaccine, or placebo.

Individuals who did not participate did not receive either version of active treatment.

The study collected endpoint data of cholera infection on all individuals, even those

who did not participate in the experimental component. Since participation was not

controlled by study design and nearly two-�fths of all individuals declined to partici-

pate, there was a notable non-experimental component to the study, and potential for

confounding exists when analyzing the endpoint data.

As in Perez-Heydrich et al. (2014), any individual who received at least two doses

of either of the two cholera vaccines was considered to be treated, and otherwise was
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Figure 4.9: Univariate data summaries from the Matlab cholera vaccine study. Left:
number of individuals per cluster (bari). Right: proportion of individuals vaccinated
per cluster.
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considered to be untreated. Clustered interference was assumed at the level of the bari

as there is evidence that transmission of cholera often takes place within baris (Ali et al.

2005). Figure 4.9 illustrates the empirical distributions of the number of individuals

and of the treatment coverage within the baris.

Cluster-level conditional exchangeability and positivity were assumed to hold con-

ditional on age and distance from the bari to the nearest river. A logistic mixed e�ects

model was �t, regressing the indicator that an individual obtained treatment on the

individual's age and river distance with a random intercept for the bari in which the

individual lived. Included in the mixed model were a linear term for distance (in kilo-

meters) and linear and quadratic terms for age (centered, in decades). The variance

component of the random intercept was estimated to be σ̂ = 0.91 with 95% CI (0.89,

0.94) calculated via pro�le likelihood using confint.merMod() from the R package

lme4 (Bates et al. 2015), indicating signi�cant correlation between individual treat-

ment statuses within clusters.
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The proposed methods were carried out with the logistic mixed e�ects model de-

scribed above. All the assumptions for identi�ability as discussed in Section 4.4 were

assumed. The IPW estimators were computed with k = 3, and Wald-type CIs were

constructed from the empirical sandwich variance estimator.

Figure 4.10: Estimates of the population mean estimands from the analysis of the
Matlab cholera vaccine study. The light green diamonds indicate µ̂(α, k = 3). The
dark blue circles indicate µ̂0(α, k = 3), and the light pink squares indicate µ̂1(α, k =
3). The dark brown ×'s indicate µ̂B(α), which target the type B estimands from
Tchetgen Tchetgen and VanderWeele (2012). All estimates are multiplied by 1000.
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Figure 4.10 depicts point estimates of the population mean estimands over policies

ranging from α = 0.2 to α = 0.6. Estimates are presented in units of one case of cholera

infection per 1000 individuals per year. Estimates of µ1(α) were relatively invariant to

α, suggesting minimal spillover e�ects when an individual is vaccinated. In contrast,

estimates of µ0(α) decreased noticeably as α increased, suggesting a protective spillover

e�ect when an individual is not vaccinated. The estimates of µ(α) similarly suggest
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lower risk of cholera infection at the population level for policies with greater levels of

vaccine coverage.

Figure 4.11: Estimated overall e�ects from the analysis of the Matlab cholera vaccine
study for selected contrasts. The diamonds and light green lines indicate the point
estimates and 95% CIs from ÔE(α, α′, k= 3). The ×'s and dark brown lines indicate
the point estimates and 95% CIs from ÔEB(α, α′), which target the type B estimands
from Tchetgen Tchetgen and VanderWeele (2012). All estimates are multiplied by 1000.
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Overall e�ect estimates and corresponding 95% CIs are depicted in Figure 4.11.

Negative e�ects are favorable, corresponding to a reduction in cholera infections. For

example, ÔE(0.45, 0.3, k = 3) = −1.2 (95% CI −1.6,−0.8), indicating a signi�cant

protective e�ect of policy α = 0.45 compared to α = 0.3. In particular, we expect 1.2

fewer cases of cholera per 1000 person-years if there is 45% vaccine coverage compared

to 30% vaccine coverage.

Estimated spillover e�ects are depicted in Figure 4.12. The estimates of ŜE1(α, α′, k=

3) were approximately zero and the CIs included zero for almost all contrasts shown,

indicating mostly negligible spillover e�ects among treated individuals within clusters.

However, ŜE0(α, α′, k = 3) was negative for α > α′ and positive for α < α′, and all
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Figure 4.12: Estimated spillover e�ects from the analysis of the Matlab cholera vaccine
study for selected contrasts. The circles and dark blue lines indicate the point estimates
and 95% CIs from ŜE0(α, α′, k=3). The squares and light pink lines indicate the point
estimates and 95% CIs from ŜE1(α, α′, k=3). All estimates are multiplied by 1000.
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of the CIs excluded zero. Thus there is evidence of a protective e�ect of policies with

higher probability of treatment exposure conferred to individuals who did not them-

selves obtain treatment.

Figures 4.10 and 4.11 also depict point estimates of the type B estimands and

corresponding 95% CIs, computed using the R package inferference (Saul and Hud-

gens 2017) based on the same logistic mixed e�ects propensity score model employed

with the proposed estimators. Relative to the estimates of the proposed estimands,

the estimates of the type B estimands were smaller with corresponding 95% CIs that

often included zero. For example, ÔEB(0.2, 0.5) = 0.7 (95% CI −0.3, 1.7), while

ÔE(0.2, 0.5, k = 3) = 3.0 (95% CI 2.0, 4.0). Thus, inferences based on the type B

estimands tended to underestimate the population-level utility of cholera vaccination

compared to results based on the proposed estimands.
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4.9 Discussion

Drawing causal inference from observational data when interference may be present

poses several challenges, including de�ning the causal e�ects of interest. Proposed in

this paper are causal estimands for use in observational studies when clustered interfer-

ence is plausible. The proposed causal e�ects are contrasts in mean potential outcomes

arising from di�erent policies that change the distribution of treatment. IPW esti-

mators were proposed and shown to be consistent and asymptotically Normal under

certain identifying assumptions, and empirical sandwich estimators were derived for the

asymptotic variance of the estimators. The IPW estimators performed well in �nite

samples with minimal bias, and the Wald-type con�dence intervals attained nominal

coverage levels. These methods were illustrated in an analysis of a large cholera vac-

cine study, providing evidence that increasing the proportion of individuals vaccinated

reduces cholera infections.

The policy e�ects considered here may be more relevant in public health settings

such as infectious disease research because within-cluster characteristics are incorpo-

rated into the proposed estimands. To reduce the burden of infectious diseases through

vaccination programs, it is important to consider the �ecological circumstances� of the

disease (Ali et al. 2009). Previously proposed type B estimands de�ne treatment ef-

fects in the counterfactual scenario individuals are independently exposed to treatment.

However, scenarios in which treatment exposures are correlated may represent more rel-

evant ecological circumstances. Aside from controlled trials, in general one might expect

treatment correlation in settings where interference is present. Indeed, the cholera vac-

cine study analysis in Section 4.8 indicates strong evidence of treatment correlation

within clusters. Unlike the type B estimands, the proposed estimands describe e�ects

of population-level policies where the treatment correlation is the same as in the ob-

served data distribution. Likewise, the proposed estimands preserve the conditional
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odds ratio of treatment for any two individuals within the same cluster. By incorpo-

rating these within-cluster features, inferences targeting the proposed estimands may

be of greater relevance to public health investigators and policy-makers concerned with

controlling the spread of infectious disease in a particular population.

Consistency of IPW estimators is in general dependent on the correct speci�ca-

tion of the treatment model. The estimators presented here also require that the

model for the counterfactual distribution of treatment is correctly speci�ed. Although

non-parametric methods might be employed instead to improve robustness to mis-

speci�cation of the treatment model, such methods may impede identi�ability of the

target causal estimands without further untestable identifying assumptions. The pro-

posed methods may su�er computational challenges due to a large number of nuisance

parameters, depending on the joint distribution of (A,N). Future work may consider

reducing the number of nuisance parameters, perhaps through approximating the coun-

terfactual treatment distribution. Future research may also consider assuming di�erent

structures of interference to better align with the epidemiology of cholera; e.g., see Ali

et al. (2018).

Although this work is motivated by infectious disease research, it is applicable in

many other areas in which interference may be present. For example, Papadogeorgou

et al. (2017) are currently and independently developing similar estimands and methods

with motivation from and applications in air pollution epidemiology. By de�ning causal

e�ects of population-level interventions (Westreich 2017) in the presence of interference,

the proposed estimands may have greater practical utility and be more relevant to

investigators and policy-makers.
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CHAPTER 5: CONCLUSION

Data analysis is instrumental for innovation in personal and public health. Esti-

mating the causal e�ect of treatment on health outcomes plays an invaluable role in

this endeavor, but can be di�cult to carry out when presented with data from obser-

vational studies. Additional analytic challenges arise when one individual's outcome

may be a�ected by another individual's treatment. This phenomenon is often called

interference, and it is plausible in certain areas such as infectious disease research. In

this document we developed statistical methodology for drawing causal inference from

observational studies in the presence of partial interference, i.e., when interference may

exist within clusters of individuals, but not between distinct clusters. We introduced

two new methods for estimating existing causal parameters from an observational study

assuming partial interference, each of which was shown to perform better than exist-

ing estimators. We also introduced a new set of causal parameters that may be more

relevant in this scenario, for which a set of estimators were also proposed.

We introduced a modeling technique for IPW estimation of the estimands in Tch-

etgen Tchetgen and VanderWeele (2012) from observational studies in the presence of

partial interference. This �exible method for estimating cluster propensity scores used

data-adaptive modeling assumptions in order to reduce the risk of bias due to model

mis-speci�cation. We applied the GMERT algorithm (Hajjem et al. 2017), which com-

bines machine learning and mixed modeling techniques, to a training sample of data

in order to determine the relationship between predictors and treatment under a pre-

sumed correlation structure. We then used the decision rules that were recovered from
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this algorithm to model the relationship between treatment and covariates in the test

sample. In a �nite-sample simulation study, the proposed methods exhibited less bias

than existing methods, and also achieved nominal 95% coverage from the sandwich

variance estimator of the asymptotic variance.

A set of estimators based on covariate matching techniques was also introduced for

this scenario. Considering each cluster of individuals to be a study unit, we matched

these clusters to each other to estimate causal e�ects in the presence of partial interfer-

ence. This method extends related research from Abadie and Imbens (2006) and Yang

et al. (2016), and does not require explicit modeling assumptions. These estimators

were shown to be consistent and asymptotically Normal under certain assumptions.

In a �nite-sample simulation study the matching estimators exhibited low bias and

achieved nominal 95% coverage; they also outperformed existing IPW estimators.

Lastly we proposed a new set of causal estimands for observational studies in the

presence of partial interference. In contrast to the estimands in Tchetgen Tchetgen and

VanderWeele (2012), the proposed estimands allow for within-cluster dependence in the

individual treatment selections. The proposed estimands may have greater relevance

or practical utility to public health o�cials or policy-makers in some scenarios, e.g.,

determining whether increasing the proportion of treated individuals in a population

in a non-experimental manner would result in improved health outcomes. Presented

were a su�cient set of assumptions for identifying these estimands from an observa-

tional study. IPW estimators were introduced, and were shown to be consistent and

asymptotically Normal for the proposed estimands. The IPW estimators were shown

to perform well in a �nite-sample simulation study, exhibiting low bias and achieving

nominal 95% coverage.

Each of the three methods introduced here was illustrated in an analysis of a cholera

vaccine study in Matlab, Bangladesh. Although each method relied on a di�erent set of
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assumptions, the results from each analysis showed that increased amounts of vaccine

treatments reduced the risk of infection by cholera. These results were relatively similar

across each of the methods illustrated here, and also similar to related results from

existing analyses, which provides further evidence that increased vaccine allocation

confers health bene�ts in a population of individuals.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

A.1 Setup and Additional Results of Data Analysis

We �rst present additional details relating to the cross-validation step used in the

analysis of the cholera vaccine study. In Section A.1.4 we present additional estimates

of target estimands from the GMERT-IPW and LMM-IPW procedures that were not

included in the main paper due to space concerns.

A.1.1 Training and Testing Samples

All clusters i with Ni < 5 individuals were excluded from the training sample (and

instead included in the testing sample). The cluster with Ni = 244 individuals was

included in the training sample: large clusters perhaps result in very small estimated

cluster propensity scores (and large weights), and there may be e�ciency to be gained in

including larger clusters in the training sample rather than the testing sample (because

the learning algorithm can learn on the Ni = 244 correlated data observations, whereas

the cluster only counts for 1 i.i.d. study unit in standard asymptotic theory). Finally,

each remaining cluster was assigned to the training sample with probability 1/4, and

to the testing sample with probability 3/4.

Figure A.1 illustrates the number of individuals in per bari, where the baris in the

training sample are shown in the bottom panel, and the baris in the testing sample are

in the top panel. Noticeably, there are no baris in the lowest category of bari size in

the training sample, as we've chosen to assign all baris with fewer than 5 individuals

to the testing sample instead. Otherwise, the empirical distribution of bari sizes seems

similar across the two samples, providing some evidence that the learning algorithm

may generalize well from the training sample to the testing sample.
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Figure A.1: Number of individuals per bari, by data sample partition.
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Figure A.2: Summary of propensity to select treatment by data sample partition.
The left panels re�ect individual participation, and the right panels re�ect treatment
received.
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Figure A.2 illustrates a summary of the propensity of individuals to self-select for

treatment. The panels on the left side present a summary of the fraction of individuals

within each bari who self-selected to participate in the randomized trial. The panels on

the right side present the fraction of individuals who received at least two doses of the

active treatment. Again, the baris in Stest are represented in the top panels, and the

baris in Strain are represented in the bottom panel. In both cases - participation and

treatment - the empirical distribution seems very similar across the two data samples.

This provides more evidence that our training sample is satisfactorily similar to the

testing sample.

A.1.2 Cross-Validation Folds

In more detail, we chose without replacement K individuals from each cluster i ∈

Strain, and then without replacement we chose exactly one individual from each of those

K individuals to be in Scv,k and assigned the remaining K − 1 individuals to Str,k for

each k = 1, . . . , K. This guaranteed that every cluster had at least one individual

in Str,k and at least one individual Scv,k for each k = 1, . . . , K. Then each of the

j = 1, . . . , (Ni − K) individuals in each cluster i was randomly assigned a number

kij ∈ {1, . . . , K} such that the individual was assigned to Scv,k′ when k′ = kij or to

Str,k′ when k′ 6= kij. This ensured that every individual in Strain was used in a training

sub-sample at least once, and in a cross-validation sub-sample at least once.
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Figure A.3: Distribution of treatment-seeking individuals over the 5 cross validation
folds in the training sample

Figure A.3 illustrates a summary of how the cross-validation folds partitioned the

individuals seeking treatment. Each bari i ∈ Strain is represented by one horizontal bar,

where the total width of the bar indicates the fraction of individuals who self-selected

to participate in the randomized component (i.e., sought treatment). The 5 colors

partitioning the bars correspond to the 5 folds of data for cross validation. Each color

represents the individuals in that fraction of participants who belong to the kth cross

validation fold (i.e., Scv,k). The colors seem to be evenly distributed, indicating that

the cross-validation folds we have chosen may be satisfactory for selecting appropriate

tuning parameters.

A.1.3 Selecting Tuning Parameters

An individual's predicted response was determined to be B̂ = 1 if P̂r(B = 1|L) >=

0.5, and B̂ = 0 otherwise. Misclassi�cation error for the individual was coded as 1

for an individual if B̂ij 6= Bij, and 0 otherwise. Misclassi�cation was weighted by

clusters: misclassi�cation errors were averaged for each cluster, and then over clusters.
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Table A.1: Sets of tuning parameters considered in the data analysis. Each row indi-
cates one set of tuning parameters, and each column is named for the corresponding
argument in rpart (Therneau et al. 1997). The minsplit column indicates the values
of the tuning parameters for minimum observations in a node necessary to split the
node. The maxdepth column indicates the maximum depth of a terminal node of a
tree. The minbucket column indicates minimum observations in any terminal node of
the tree.

Tuning set minsplit maxdepth minbucket

1 50 5 10
2 25 5 10
3 50 15 10
4 25 15 10
5 50 5 30
6 50 15 30

Another option would be to take the unweighted average misclassi�cation error over

all individuals - regardless of cluster - this which may represent preference towards

algorithms that perform well on larger baris.

Table A.2: Weighted misclassi�cation error (wMCe) for all proposed sets of tuning
parameters across all K = 5 CV folds. Each row corresponds to one set of tuning
parameters, enumerated as in Table A.1. The column for Mean wMCe indicates that
tuning parameter sets 5 has the lowest mean error in the CV sets, which is then selected
for the GMERT-IPW procedure.

Tuning set wMCe1 wMCe2 wMCe3 wMCe4 wMCe5 Mean wMCe
1 20.88% 20.72% 20.62% 20.63% 20.74% 20.715%
2 20.88% 20.72% 20.62% 20.74% 20.74% 20.737%
3 20.77% 20.72% 20.65% 20.64% 20.75% 20.706%
4 20.77% 20.72% 20.65% 20.64% 20.75% 20.704%
5 20.90% 20.67% 20.63% 20.57% 20.70% 20.695%
6 20.74% 20.72% 20.63% 20.64% 20.79% 20.703%

A.1.4 Results

Additional results from the GMERT-IPW and LMM-IPW techniques are presented

here. For the logistic mixed model used in the GMERT-IPW method, Figure A.4

presents a summary of how the estimated �xed e�ects (from the testing sample) di�erent
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from their predicted values (on the training sample). There is perhaps mild evidence of

the algorithm over�tting the training sample, as indicated by the more extreme values

of some of the nodes at the tails.

Figure A.4: Estimated �xed e�ects for terminal nodes from GMERT algorithm, in
training and testing samples from the cholera vaccine study. The nodes are ordered by
increasing probability in the training sample. There is a suggestion of mild over�tting
in the training sample, indicated by the more extreme probabilities for the training
sample at the tails.
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Figure A.5 presents the estimated values of µ(1, α) and µ(0, α) for various levels of

α. Figure A.6 presents estimates of the Total and Indirect e�ects.
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Figure A.5: Estimates and 95% con�dence intervals for population mean estimands
µ(z, α) where z = 0, 1 and α ∈ {0.3, 0.45, 0.6}.
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Figure A.6: Estimates and 95% con�dence intervals for Indirect and Total E�ects.
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A.2 Sketch of the GMERT algorithm

A brief sketch of the GMERT algorithm is provided here. The algorithm relies on

the PQL method to create a continuously-valued working response, which is then �de-

correlated� by subtracting empirical BLUPs. Let S be a sample of data of i = 1, . . . ,M

i.i.d. clusters, where cluster i has j = 1, . . . , Ni individuals. Let g(x) = L(x) be the

logit-link function for binary response such that µi = E(Ai|Li) = g−1(ηi).
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Step (0). Initialization.

� Set Θ(0)(L) = L to be the identity function. Thus there are �xed e�ects βΘ(0)
and

random component σ such that b ∼ N(0, σΘ(0)
).

� Estimate eBLUPs b̂
(0)
i

Step (s). Until convergence, do:

� Estimate the linear predictor, η̂
(s)
i = Θ(s−1)(Li)

ᵀβ̂Θ(s−1)
+ b̂

(s−1)
i

� Calculate the conditional mean response, µ̂
(s)
i = g−1(η̂

(s)
i )

� �Linearize� the response by computing the �working response� with a Taylor Series

approximation, Ã
(s)
i := g(µ̂

(s)
i ) + (Ai − µ̂(s)

i )g′(µ̂
(s)
i )

� Compute the working weights, w
(s)
ij =

[
vij

{
g′(µ̂

(s)
ij )
}2
]−1

, where vij = v(µij) and

v(·) is the known variance function for the exponential family.

� Calculate the �adjusted working response� by subtracting the previous eBLUPs

to �de-correlate� the response, A
(s)
i = Ã

(s−1)
i − b̂(s−1)

i

� Fit a CART regression tree algorithm (weighted by w
(s)
ij ) to predict the adjusted

working response A
(s)
ij for predictors Lij for every individual j in every group i.

Let Θ(s) be the partition that is recovered from the tree algorithm, and de�ne

β̂Θ(s)
to be the predicted probabilities for the terminal nodes.

� Calculate eBLUPs b̂
(s)
i from partition Θ(s) based on above, as well as σ̂(s) and the

variance component for the �xed e�ects.

� If convergence criteria is met, then de�ne Θ = Θ(s) to be the partition, and exit

the loop.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

B.1 Asymptotic Properties

Provided here are details for the consistency and asymptotic normality of the pro-

posed estimators. In subsection B.1.1 we derive the estimator's decomposed form,

θ̂M(α) = θ(α|X) + EM(α) + BM(α), as in (3.31). These components are key to estab-

lishing consistency in subsection B.1.2 and asymptotic normality in subsection B.1.3

under the assumptions from Theorem 3.5.1.

B.1.1 Decomposition

First, we reformulate the estimator from the form provided in (3.29). Write

θ̂M(α) = N−1

N∑
i=1

π(Ai, α)Ȳi +N−1

N∑
i=1

∑
a∈A(c)

M−1

 ∑
j∈JM (i,a)

ȲjI(Ai 6= a)

 π(a, α)

The second term on the right side of above can be written as

N−1
∑
a∈A(c)

π(a, α)M−1

N∑
i=1

 ∑
j∈JM (i,a)

ȲjI(Ai 6= a)


Considering just the last two summands of this term,

N∑
i=1

 ∑
j∈JM (i,a)

ȲjI(Ai 6= a)

 =
N∑
i=1

N∑
j=1

I(j ∈ JM(i, a))ȲjI(Aj = a)

=
N∑
j=1

ȲjI(Aj = a)
N∑
i=1

I(j ∈ JM(i, a))
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which by de�nition equals
∑N

j=1 ȲjI(Aj = a)KM(j). Now,

θ̂M(α) = N−1

N∑
i=1

∑
a∈A(c)

π(a, α)

[
ȲiI(Ai = a) + ȲiI(Ai = a)

KM(i)

M

]
,

and so:

θ̂M(α) =
1

N

N∑
i=1

(
1 +

KM(i)

M

)
Ȳiπ(Ai, α). (B.1)

For the Overall E�ect estimator, since θ̂M(α, α′) = θ̂M(α)− θ̂M(α′), then

θ̂M(α, α′) = N−1

N∑
i=1

∑
a∈A(c)

(
1 +

KM(i)

M

)
Ȳi {π(Ai, α)− π(Ai, α

′)} .

The three components on the right side of (3.31) can be written in terms that

come from each unit in the study sample. For example, each unit's contribution to the

weighted residual term EM can be written as EM(α) = 1
N

∑N
i=1 EM,i(α) where

EM,i(α) =
(

1 +
KM(i)

M

)
εiπ(Ai, α). (B.2)

Similarly, the sample average conditional mean outcome can be written as the mean

θ(α|X) = 1
N

∑N
i=1 θ(α|Xi) where

θ(α|Xi) =
∑
a∈A(c)

µa(Xi)π(a, α). (B.3)

De�ne the matching discrepancy for themth match for unit i to be Ui,m,a = Xjm(i,a)−Xi,

and de�ne the bias arising from the matching discrepancy to be Bi,m,a = µa(Xjm(i,a))−

µa(Xi). Then we can rewrite the conditional bias term in (3.34) as:

BM(α) =
1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

Bi,m,aπ(a, α) (B.4)
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We show θ̂M(α)−EM(α)− θ(α|X) = BM(α). By adding and subtracting copies of

µAi(Xi)π(Ai, α) and
∑

a6=Ai µa(Xi)π(a, α) from Ȳiπ(Ai, α) in (B.1), then θ̂M(α) equals

1

N

N∑
i=1

(
1 +

KM(i)

M

)[
εiπ(Ai, α) +

∑
a∈A(c)

µa(Xi)π(a, α)−
∑
a6=Ai

µa(Xi)π(a, α)

]
,

and so θ̂M(α)− EM(α)− θ(α|X) equals

1

N

N∑
i=1

(KM(i)

M

)[ ∑
a∈A(c)

µa(Xi)π(a, α)

]
− 1

N

N∑
i=1

(
1 +

KM(i)

M

)[ ∑
a6=Ai

µa(Xi)π(a, α)

]
.

Consider just the second term:

1

N

N∑
i=1

(
1 +

KM(i)

M

)[ ∑
a6=Ai

µa(Xi)π(a, α)

]

=
1

N

N∑
i=1

[ ∑
a6=Ai

µa(Xi)π(a, α)

]
+

1

N

N∑
i=1

(KM(i)

M

)[ ∑
a6=Ai

µa(Xi)π(a, α)

]

=
1

N

N∑
i=1

(KM(i)

M

)[ ∑
a6=Ai

µa(Xi)π(a, α)

]
+

1

N

N∑
i=1

[ ∑
a6=Ai

µa(Xi)π(a, α)

]
.

Then θ̂M(α)− EM(α)− θ(α|X) becomes

1

N

N∑
i=1

(KM(i)

M

)[ ∑
a∈A(c)

µa(Xi)π(a, α)−
∑
a6=Ai

µa(Xi)π(a, α)

]
−

1

N

N∑
i=1

[ ∑
a6=Ai

µa(Xi)π(a, α)

]

=
1

N

N∑
i=1

(KM(i)

M

)
µAi(Xi)π(Ai, α)− 1

N

N∑
i=1

∑
a6=Ai

µa(Xi)π(a, α).
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Expand the �rst term:

1

N

N∑
i=1

(KM(i)

M

)
µAi(Xi)π(Ai, α)

=
1

N

N∑
i=1

1

M

N∑
l=1

M∑
m=1

∑
a∈A(c)

I(i = jm(l, a))µa(Xjm(l,a))π(a, α)I(Ai = a)

=
1

N

1

M

N∑
l=1

M∑
m=1

∑
a∈A(c)

µa(Xjm(l,a))π(a, α)I(Al 6= a)
N∑
i=1

I(i = jm(l, a))I(Ai = a).

Now consider the term
N∑
i=1

I(i = jm(l, a))I(Ai = a). For a �xed l ≤ N, a ∈ A(c), and

m ≤M , then this sum equals exactly 1. Then

1

N

N∑
i=1

(KM(i)

M

)
µAi(Xi)π(Ai, α) =

1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

µa(Xjm(i,a))π(a, α)I(Ai 6= a).

Finally we reach (3.31) as θ̂M(α)− EM(α)− θ(α|X) equals

1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

µa(Xjm(i,a))π(a, α)I(Ai 6= a)− 1

N

N∑
i=1

∑
a6=Ai

µa(Xi)π(a, α)

=
1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

[
µa(Xjm(i,a))− µa(Xi)

]
π(a, α)I(Ai 6= a) = BM(α).

B.1.2 Consistency

We �rst present a proof regarding the consistency of the conditional bias term.

Theorem B.1.1. Asymptotic Bounds of Conditional Bias: Assume the �rst

three assumptions as in Theorem 3.5.1, and the smoothness assumption that µ(x, a)

and σ2(x, a) are Lipschitz in X. Then BM(α) = Op(N
−1/k).
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Proof. We show the second moment of N1/kBM(α) is bounded in probability. First,

E[(N1/kBM(α))2]

= N2/k E

[(
1

N

1

M

N∑
i=1

M∑
m=1

∑
a∈A(c)

Bi,m,aπ(a, α)I(Ai 6= a)

)2
]

= N2/k E

[
1

N2

1

M2

( N∑
i=1

M∑
m=1

∑
a∈A(c)

Bi,m,aπ(a, α)I(Ai 6= a)

)2
]

≤ N2/k E

[
|A(c)|2 arg max

i,m,a
|Bi,m,a|2

]

So then E[(N1/kBM(α))2] ≤ N2/k|A(c)|2L∗1 E[arg max ||Ui,m,a||2] where L∗1 is some con-

stant for the Lipschitz inequality. Lemma 1 from Abadie and Imbens (2006) states that(
N1/k||Um,i,a||

)
has bounded moments, so E[N2/kBM(α)2] = Op(1). Applying Markov's

inequality �nishes the proof.

Theorem B.1.2. Consistency of the Proposed Estimator: Assume the �rst three

assumptions as in Theorem 3.5.1, and the smoothness assumption that µ(x, a) and

σ2(x, a) are Lipschitz in X. Then θ̂M(α)− θ(α)
p−→ 0

Proof. First consider θ(α|X) = 1
N

∑N
i=1 θ(α|Xi). The random variable (θ(α|X)− θ(α))

has mean zero and �nite variance. By assumption, µa(x) is bounded over x ∈ X and

a ∈ A(c), so then θ(α|X)− θ p−→ 0 by the LLN.
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For the residual term, since E(εiεj|X,A) = 0 for i 6= j, then:

E
[{
N1/2EM(α)

}2
]

=
1

N
E

[
N∑
i=1

N∑
j=1

π(Ai, α)π(Aj, α)

(
1 +

KM(i)

M

)(
1 +

KM(i)

M

)
εiεj

]

=
1

N
E

[
N∑
i=1

N∑
j=1

π(Ai, α)π(Aj, α)

(
1 +

KM(i)

M

)(
1 +

KM(j)

M

)
E (εiεj|X,A)

]

=
1

N

N∑
i=1

E

[
π(Aj, α)2

(
1 +

KM(i)

M

)2

σ2(Xi, Ai)

]

= E

[
π(Aj, α)2

(
1 +

KM(i)

M

)2

σ2(Xi, Ai)

]
.

Lemma 3 of Abadie and Imbens (2006) states that the moments of KM(i) are bounded

uniformly in N , and so E[{N1/2EM(α)}2] = Op(1). Applying Markov's inequality shows

that EM(α) = op(1). Applying Theorem B.1.1 completes the proof.

B.1.3 Asymptotic Normality

Ignoring the conditional bias, we derive the asymptotic variance by working with

each of the two terms in

Var(θ̂M(α)) = E
[
Var

(
θ̂M(α)|X,A

)]
+ Var

[
E
(
θ̂M(α)|X,A

)]
.

We apply (B.3) to show that Var
[
E
(
θ̂M(α)|X,A

)]
equals

Var
[
θ(α|X)

]
=

1

N2

N∑
i=1

Var [θ(α|Xi)] +
1

N2

∑
i 6=j

Cov(θ(α|Xi), θ(α|Xj))

=
1

N
Var [θ(α|Xi)] + 0.

109



So now N Var
[
E
(
θ̂M(α)|X,A

)]
= V θ(α|X) from (3.35). For E

[
Var

(
θ̂M(α)|X,A

)]
consider the conditional variance inside the expectation. Using the reformulated esti-

mator provided in (B.1), Var
(
θ̂M(α)|X,A

)
equals

Var

(
1

N

N∑
i=1

(
1 +

KM(i)

M

)
Ȳiπ(Ai, α)|X,A

)

=
1

N2

N∑
i=1

(
1 +

KM(i)

M

)2

π(Ai, α)2 Var
(
Ȳi|X,A

)
+

1

N2

∑
i 6=j

(
1 +

KM(i)

M

)(
1 +

KM(j)

M

)
π(Ai, α)π(Aj, α)Cov

(
Ȳi, Ȳj|X,A

)
=

1

N2

N∑
i=1

(
1 +

KM(i)

M

)2

π(Ai, α)2σ2(Xi, Ai) + 0

Now we have that N Var
(
θ̂M(α)|X,A

)
= V EM (α) from (3.37). Combining the previous

results, we arrive at

Var(θ̂M(α)) =
1

N

[
EV EM (α) + V θ(α|X)

]
.

Abadie and Imbens (2006) sometimes refer to this term as the �marginal� variance.

We consider the distribution of the EM,i(α) terms from (B.2) conditional on treat-

ment A and pre-treatment covariates X. Clearly E(EM,i(α)|X,A) = 0 because all are

constants except for E(εi|X,A) = 0. We also note that EM,i(α) ⊥ EM,j(α)|{X,A}

because the residuals are conditionally independent. The variances of these terms are

nonidentical because

Var(EM,i(α)|X,A) =
(

1 +
KM(i)

M

)2

π(Ai, α)2σ2(Xi, Ai)

depends on σ2(Xi, Ai). We use the Lindeberg-Feller theorem to show that these
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independent-non-identically-distributed terms converge to a standard normal distri-

bution (conditional on X and A).

Theorem B.1.3. Lindeberg-Feller CLT for Weighted Residual Term: Under

the assumptions of Theorem 3.5.1, the following term vanishes:

1

NV EM (α)

N∑
i=1

E
[
(EM,i(α))2I(|EM,i(α)| > η

√
NV EM (α))

∣∣X,A] . (B.5)

Then, the Lindeberg condition is satis�ed, and (N/V E,α)1/2EM(α)
d−→ N(0, 1).

Proof. Considering only the summand,

E
[
(EM,i(α))2I(|EM,i(α)| > η

√
NV EM (α))

∣∣X,A]
≤
(
E
[
(EM,i(α))4

∣∣X,A])1/2
(
E
[
I(|EM,i(α)| > η

√
NV EM (α))1

∣∣X,A])1/2

=
(
E
[
(EM,i(α))4

∣∣X,A])1/2
(

Pr
[
|EM,i(α)| > η

√
NV EM (α))

∣∣X,A])1/2

≤
(
E
[
(EM,i(α))4

∣∣X,A])1/2

(
E [(EM,i(α))2|X,A]

(η
√
NV EM (α))2

)1/2

=
1

η
√
NV EM (α)

(
E
[
(EM,i(α))4

∣∣X,A])1/2 (E [(EM,i(α))2|X,A
])1/2

Let σ2(α) = infX,A σ
2(X,A)π(A,α); then V EM (α) ≥ σ2(α). Also de�ne σ2 =

supX,A σ
2(X,A). Finally de�ne C

2
= supX,A E(ε4i |X,A) <∞. We now have that

1

NV EM (α)

N∑
i=1

E
[
(EM,i(α))2I(|EM,i(α)| > η

√
NV EM (α))

∣∣X,A]
≤ 1√

N

1

η (V EM (α))
3/2

1

N

N∑
i=1

(
E
[
(EM,i(α))4

∣∣X,A])1/2 (E [(EM,i(α))2|X,A
])1/2

≤ 1√
N

1

ησ3(α)

1

N

N∑
i=1

(
1 +

KM(i)

M

)3

π(Ai, α)3
(
E
[
ε4i
∣∣X,A])1/2 (E [ε2i |X,A])1/2

.
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Now, (B.5) is bounded above by

1√
N

σC

ησ3(α)

1

N

N∑
i=1

(
1 +

KM(i)

M

)3

.

Since the moments of KM(i) are bounded uniformly in N by Lemma 3 of Abadie and

Imbens (2006), then E[(1 +KM(i)/M)3] = Op(1). From the LLN,

1

N

N∑
i=1

(
1 +

KM(i)

M

)3

→ E
[(

1 +
KM(i)

M

)3
]

= Op(1).

Since σC/{ησ3(α)} is a constant, then (B.5) vanishes:

1

NV EM (α)

N∑
i=1

E
[
(EM,i(α))2I(|EM,i(α)| > η

√
NV EM (α))

∣∣X,A] ≤ 1√
N
Op(1) = op(1),

the Lindeberg condition is satis�ed, and

1√
NV EM (α)

N∑
i=1

EM,i(α) =

√
N√
V E,α

EM(α)
d−→ N(0, 1).

B.2 Estimating Asymptotic Variance

In this supplement we derive an estimator for the variance of the conditional mean,

V θ(α|X). This estimator, like the estimator of V EM (α), relies on the estimator σ̂2
J(x, a)

of σ2(x, a) from Abadie and Imbens (2006), which we brie�y describe in Section B.2.1.

In Section B.2.2 we derive an approximation for V θ(α|X); this approximation is used in

Section B.2.3 to introduce the estimator V̂
θ(α|X)
M,J as shown in the main paper.
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B.2.1 Estimating the Conditional Outcome Variance

We use the within-treatment-level matching estimator proposed in Abadie and Im-

bens (2006) to estimate σ2(X,A), which they term the �conditional outcome variance.�

De�ne lm(i) to be the mth closest unit to unit i among the units with the same treat-

ment, Ai. For some �xed (investigator-supplied) J ≥ 1, de�ne

σ̂2
J(Xi, Ai) =

J

J + 1

(
Ȳi −

1

J

J∑
m=1

Ȳlm(i)

)2

. (B.6)

Abadie and Imbens (2006) remark that in practice this is not necessarily consistent

for σ2(Xi, Ai). Theorems 6 and 7 from Abadie and Imbens (2006) state that this within-

treatment-level matching estimator results in consistent estimates of the variance of the

estimator of the Average Treatment E�ect under certain scenarios.

B.2.2 Approximation of the Variance of the Conditional Mean

E

 ∑
a∈A(c)

Ỹi(a)π(a, α)− θ(α)

2 ≈
E

[
ε2iπ(Ai, α)2 +

1

M2

M∑
m=1

∑
a6=Ai

ε2jm(i,a)π(a, α)2

]
+ V θ(α|Xi), (B.7)

where V θ(α|Xi) is given in (3.35).

113



The term on the left side of (B.7) equals:

E

 ∑
a∈A(c)

µa(Xi)π(a, α)− θ(α) +
∑
a∈A(c)

(Ỹi(a)− µa(Xi))π(a, α)

2
= E

 ∑
a∈A(c)

µa(Xi)π(a, α)− θ(α)

2+ E

 ∑
a∈A(c)

(Ỹi(a)− µa(Xi))π(a, α)

2 +

E

 ∑
a∈A(c)

µa(Xi)π(a, α)− θ(α)

 ∑
a∈A(c)

(Ỹi(a)− µa(Xi))π(a, α)

 . (B.8)

By (3.35), the �rst term in (B.8) is simply E[{
∑
µa(Xi)π(a, α)− θ(α)}2] = V θ(α|X).

The second term in (B.8), E[{
∑

(Ỹi(a)− µa(Xi))π(a, α)}2], equals

E

((Ȳi − µAi(Xi))π(Ai, α) +
∑
a6=Ai

(Ỹi(a)− µa(Xi))π(a, α)

)2


= E

[(
εiπ(Ai, α) +

∑
a6=Ai

1

M

M∑
m=1

εjm(i,a)π(a, α) +

∑
a6=Ai

1

M

M∑
m=1

{
µa(Xjm(i,a))− µa(Xi)

}
π(a, α)

)2
]
. (B.9)

Group the �rst two terms from the right side of (B.9) together, then expand the

square inside the expectation. Consider the third term resulting from the expanded

(B.9),

E

(∑
a6=Ai

1

M

M∑
m=1

(µa(Xjm(i,a))− µa(Xi))π(a, α)

)2
 .

When N is large and matching discrepancy is small such that ||Xi −Xjm(i,a)|| ≈ 0, the

Lipschitz property of the regression functions µa implies that |µa(Xjm(i,a))−µa(Xi)| ≈ 0,

and so the above term is then approximately zero.
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For the �rst term resulting from the expanded (B.9), note that

E

[(
εiπ(Ai, α) +

∑
a6=Ai

1

M

M∑
m=1

εjm(i,a)π(a, α)
)2
]

= E
[
ε2iπ(Ai, α)2

]
+ E

(∑
a6=Ai

1

M

M∑
m=1

εjm(i,a)π(a, α)

)2
 −

2E

[∑
a6=Ai

1

M

M∑
m=1

εiεjm(i,a)π(Ai, α)π(a, α)

]
(B.10)

Now, for the second term on the right side of (B.10), expand the square and iterate

expectations on X,W . Since E (εiεj|X,W ) = 0 when i 6= j, then:

E

(∑
a6=Ai

1

M

M∑
m=1

εjm(i,a)π(a, α)

)2
 = E

[
1

M2

∑
a6=Ai

M∑
m=1

ε2jm(i,a)π(a, α)2

]
.

The third term of the right side in (B.10) equals zero as E
(
εiεjM (i,a)|X,W

)
= 0. Lastly,

the cross product of the two grouped terms from the expanded (B.9) can be shown to be

zero by iterated expectations with respect to X,W . Now all of (B.9) is approximately

equal to the �rst term of the right side of (B.7).

Finally, we make use of a similar approximation to show that the third and �nal

term from the right side of (B.8) is approximately zero. Iterated expectations of

E

 ∑
a∈A(c)

µa(Xi)π(a, α)− θ(α)

 ∑
a∈A(c)

(
Ỹi(a)− µa(Xi)

)
π(a, α)

 ,
shows that the second term in the product equals

E

((
Ȳi − µAi(Xi)

)
π(a, α) +

∑
a6=Ai

(
Ỹi(a)− µa(Xi)

)
π(a, α)

∣∣∣∣X,A
)
.

115



Note that E(Ȳi − µAi(Xi)) = 0 and

E(Ỹi(a)|X,A) = E

(
1

M

M∑
m=1

Ȳjm(i,a)

∣∣∣X,A) =
1

M

M∑
m=1

µa(Xjm(i,a)),

and so the third term on the right side of (B.8) is:

E

 ∑
a∈A(c)

µa(Xi)π(a, α)− θ(α)

(∑
a6=Ai

(
1

M

M∑
m=1

µa(Xjm(i,a))− µa(Xi)

)
π(a, α)

) .
Again, since |µa(Xjm(i,a)) − µa(Xi)| ≈ 0, then this is approximately zero. Combining

all the above results in the desired approximation of V θ(α|X) in (B.7).

B.2.3 Estimator of the Variance of the Conditional Mean

For the second term in (B.7), note that

E

[
ε2iπ(Ai, α)2 +

1

M2

M∑
m=1

∑
a6=Ai

ε2jm(i,a)π(a, α)2

]

= E

[
E

(
ε2iπ(Ai, α)2 +

1

M2

M∑
m=1

∑
a6=Ai

ε2jm(i,a)π(a, α)2
∣∣∣X,W)]

= E

[
E
(
ε2i

∣∣∣X,W) π(Ai, α)2 +
1

M2

M∑
m=1

∑
a6=Ai

E
(
ε2jm(i,a)

∣∣∣X,W) π(a, α)2

]

= E

[
σ2(Xi, Ai)π(Ai, α)2 +

1

M2

M∑
m=1

∑
a6=Ai

σ2(Xjm(i,a), Ajm(i,a))π(a, α)2

]
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We can estimate the σ2(x,w) components by σ̂2
J(x,w), as described in Section B.2.1.

So, we estimate the above with

1

N

N∑
i=1

[
σ̂2
J(Xi, Ai)π(Ai, α)2 +

1

M2

M∑
m=1

∑
a6=Ai

σ̂2
J(Xjm(i,a), Ajm(i,a))π(a, α)2

]

=
1

N

N∑
i=1

σ̂2
J(Xi, Ai)π(Ai, α)2 +

1

N

N∑
i=1

1

M2

M∑
m=1

∑
a6=Ai

σ̂2
J(Xjm(i,a), Ajm(i,a))π(a, α)2

=
1

N

N∑
i=1

σ̂2
J(Xi, Ai)π(Ai, α)2 +

1

N

1

M2
KM(i)σ̂2

J(Xi, Ai)π(Ai, α)2

=
1

N

N∑
i=1

σ̂2
J(Xi, Ai)π(Ai, α)2

(
1 +

KM(i)

M2

)

Combining the above we arrive at the estimator as in the main paper,

V̂
θ(α|X)
M,J =

1

N

N∑
i=1

 ∑
a∈A(c)

Ỹi(a)π(a, α)− θ̂M(α)

2

+
1

N

N∑
i=1

(
1+

KM(i)

M2

)
π(Ai, α)2σ̂2

J(Xi, Ai)
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 4

C.1 Counterfactual probabilities

Some considerations for estimating the counterfactual probabilities ω(a, n, α) are

described below. All assumptions for identi�cation discussed in the Section 4.4 of the

main text are also made here; in particular that the ordering of individuals within

clusters to be uninformative.

Let there be a random sample of i = 1, . . . ,M clusters, and as in the main text

denote by Oi = {Ni, Li, Ai, Yi} the observed values of the random variables for cluster

i. As described in Section 4.5 of the main text, P̂rα(Ai = a|Li, Ni) is calculated by

substituting the estimates (γ̂0α, β̂1, σ̂) into the counterfactual cluster propensity score,

Prα(Ai = a|Li, Ni). An estimator for the counterfactual probabilities is

ω̃(a, n, α) =

{
M∑
i=1

I(Ni = n)

}−1 M∑
i=1

P̂rα(Ai = a|Li, Ni),

which is not employed in the main text for the reasons described below.

De�ne f(a) =
∑n

j=1 aj to be the sum of the binary entries of a ∈ A(n). Letting

a, a′ ∈ A(n) be two vectors such that f(a) = f(a′), the assumed irrelevance of within-

cluster ordering of individuals supposes that ω(a, n, α) = ω(a′, n, α). However, in any

�nite sample it is likely that ω̃(a, n, α) 6= ω̃(a′, n, α), which is an undesirable property

of the above estimator. Thus, the estimator ω̃(a, n, α) is not pursued further here nor

in the main text.

The method presented in Section 4.5 of the main text is discussed in further de-

tail here. Under this assumption that the ordering of individuals within clusters to be

uninformative, the counterfactual probabilities for clusters of size n and for a policy α
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take on a maximum of n + 1 unique values, rather than 2n = |A(n)|. These counter-

factual probabilities then arise from the strata of A(n, s) = {a ∈ A(n)|f(a) = s} for

s = 0, 1, . . . , n, such that:

ω(s, n, α) =
∑

a∈A(n,s)

ω(a, n, α).

Thus for each a ∈ A(n) the counterfactual probabilities can be written as ω(a, n, α) =(
n
f(a)

)−1
ω(f(a), n, α), and estimated by

ω̂(a, n, α) =

(
n

f(a)

)−1

ω̂(f(a), n, α),

where ω̂(f(a), n, α) is obtained from

ω̂(f(a), n, α) =

{
M∑
i=1

I(Ni = n)

}−1 ∑
a∈A(n,f(a))

M∑
i=1

P̂rα(Ai = a|Li, Ni).

C.2 Simulating Data

For the simulation study in Section 4.7 of the main text, the true values of target

estimands and nuisance causal parameters were determined empirically. The process

is explained below. Recall the steps for generating a sample of data described in the

main text: for each cluster i, step I was to generate the number Ni of individuals in

the cluster, step II was to simulate covariates Li, step III was to generate an observed

treatment vector Ai, and step IV was to generate the observed outcome Yi.

C.2.1 Determining the Counterfactual Model's Intercept

To determine γ0α for α ∈ {0.40, 0.50, 0.55, 0.75}, a grid of W -many potential values

γ∗1 < γ∗2 < · · · < γ∗w < · · · < γ∗W was proposed. For each w = 1, . . . ,W , the following
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steps were carried out:

1. Steps I and II were repeated for i = 1, . . . ,m1 = 107 clusters.

2. Treatment vectors were generated under policy α for m1 clusters by replacing β0

in step III with γ∗w. That is, Aij,w for each individual j in cluster i was simulated

from a Bernoulli distribution with probability L-1(γ∗w − 0.015Lij1 − 0.025Lij2 + bi)

where bi ∼ N(0, 0.75).

3. The probability of obtaining treatment was assumed to equal the proportion of in-

dividuals in the dataset obtaining treatment, pw =
∑m1

i=1

∑Ni
j=1 I(Aij,w = 1)/(

∑m1

i=1 Ni).

For each α, γ0α was determined to be the average of the γ∗w that produced probabilities

pw closest to α, i.e., γ0α = mean(γ∗wl , γ
∗
wu) where wl = arg max

{w|pw<α}
(α − pw) and wu =

arg max
{w|pw>α}

(pw − α).

C.2.2 Determining Counterfactual Probabilities

For each α, ω(a, n, α) was determined empirically from values of γ0α determined as

above. For each n = 8, 22, 40 and each α the following steps were carried out:

1. Step II was repeated for i = 1, . . . ,m2 = 108 clusters of �xed size n.

2. For each cluster i a treatment vector was generated under each policy α by replacing

β0 in step III with the value γ0α determined in Section C.2.1. That is, Aij,α for

each individual j in cluster i was simulated from a Bernoulli distribution with

probability L-1(γ0α − 0.015Lij1 − 0.025Lij2 + bi) where bi ∼ N(0, 0.75).

3. The counterfactual probabilities were de�ned as ω(a, n, α) =
(
n
s

)−1
ω(s, n, α) for

each s = 0, 1, . . . , n where ω(s, n, α) = m−1
2

∑m2

i=1 I
(∑n

j=1Aij,α = s
)
.
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C.2.3 Simulating Potential Outcomes

For each n = 8, 22, 40 and each s = 0, 1, . . . , n, let an,s be the vector with s 1's

followed by (n− s) 0's. For each n = 8, 22, 40, the following steps were carried out:

1. Step II was repeated for i = 1, . . . ,m3 = 108 clusters of �xed size n.

2. For each s = 0, 1, . . . , n,

(a) Individual potential outcomes Yij(an,s) were generated via the causal model

analogous to the regression model speci�ed in step IV for all individuals j in

each cluster i. That is, Yij(an,s) was simulated from a Bernoulli distribution

with mean Pr(Yij(a) = 1|Lij) = L-1(0.1−0.05Lij1+0.5Lij2−0.5aj+0.2g(a−j)−

0.25ajg(a−j)), where g(a−j) = (Ni − 1)−1
∑

j′ 6=j aj′ .

(b) Then, Y i(an,s), Y 0,i(an,s) and Y 1,i(an,s) were computed for each cluster i

according to their de�nitions presented in Section 4.3.1 of the main text.

(c) Finally, de�ne Y (an,s) = m−1
3

∑m3

i=1 Y i(an,s) to be the average potential out-

comes for all clusters when exposed to treatment an,s. For t = 0, 1 de�ne

Y t(an,s) = m−1
3

∑m3

i=1 Y t,i(an,s).

C.2.4 Determining Target Estimands

The values produced in Sections C.2.2 and C.2.3 were combined to determine the

values of the target estimands. That is,

µ(α) =
∑

n∈{8,22,40}

{
n∑
s=0

(
Y (an,s)ω(s, n, α)

)
Pr(Ni = n)

}
,

and OE(α, α′) = µ(α)− µ(α′). For t = 0, 1, SEt(α, α
′) = µt(α)− µt(α′), where µt(α) =∑

n∈{8,22,40}{
∑n

s=0(Y t(an,s)ω(s, n, α)) Pr(Ni = n)}.
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C.2.5 Empirical Comparison of Counterfactual Probabilities

Numerical di�erences in ω(a, n, α) and ωB(a, n, α) for the type B policies from Tchet-

gen Tchetgen and VanderWeele (2012) are dependent on the context and data generat-

ing process. Figure C.1 depicts the values of ω(s, n = 8, α) determined in Section C.2.2

and the values of ωB(s, n = 8, α) =
∑

a∈A(n,s) ωB(a, n = 8, α). This �gure illustrates

the inequality ω(s, 8, α) 6= ωB(s, 8, α) for all pairs of s and α for the data generating

process described above.

Figure C.1: An empirical comparison of the counterfactual probabilities for the pro-
posed estimands and the type B estimands for the data generating process in the
simulation study described above and in the main text. The light green bars indi-
cate ω(s, n, α) and the dark brown bars indicate ωB(s, n, α) for the type B policies
from Tchetgen Tchetgen and VanderWeele (2012) for s ∈ {0, 1, . . . , 8}, n = 8, and
α ∈ {0.4, 0.5, 0.75}.
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The values of ω(s, n, α) and ωB(s, n, α) are particularly di�erent when s is close to
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0 or to n. For example, ω(0, 8, 0.40) = 0.059 and ωB(0, 8, 0.40) = 0.017, and so for

the data generating process in this simulation study the proposed estimands confer

0.059/0.017 = 3.5 times more weight to this category than the type B estimands.
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