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ABSTRACT

Gregory R. Keele: Experimental Design & Analysis with Multiparental Populations
(Under the direction of William Valdar)

Multiparental populations (MPP) are experimental populations descended from more than two

founder or parental inbred strains. They generally possess far greater genetic variation and phenotypic

variability than simpler bi-parental populations, and are thus powerful resources for genetic studies,.

MPP have been developed in numerous model systems, and have been successfully utilized in genetic

association or quantitative trait locus (QTL) mapping studies for identifying candidate genes and

variants that modulate complex phenotypes. Statistical methods developed for simpler populations

have been extended successfully for analyses of MPP, though problems can arise, such as dubious

QTL that occur at positions with imbalanced founder haplotype contributions. This shortcoming

reflects the potential value of statistical tools designed specifically for MPP that can better leverage

the abundant genetic and phenotypic variation for design and analyses of powerful experiments.

This dissertation has two main topics: 1) experimental design and 2) genetic association and

related analyses in MPP. Within the topic of experimental design, the use of the diallel, a specific form

of MPP, to inform selection of powerful follow-up bi-parental crosses for QTL mapping is explored.

More broadly, this approach represents a Bayesian decision theoretic approach and is found to provide

a quantitative, principled procedure for leveraging information in the pilot data towards follow-up

experiments. The second design subject is a power calculation tool for the Collaborative Cross (CC),

a panel of recombinant inbred strains of mice, providing highly tailored power estimates for the

design of mapping studies in the realized CC strains. Additionally, the tool is used to investigate how

various aspects of experimental design and features of the underlying QTL affect the power to map

QTL broadly.

The first subject for the topic of genetic association is a multiple imputation approach to QTL

mapping in MPP that is shown to reduce false QTL that result from founder haplotype uncertainty

and imbalanced founder haplotype contributions. Next, an analysis of heterogeneous stock rats, an
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outbred MPP, is presented, in which imputed SNP association and fine-mapping approaches, including

an integrative mediation procedure, are used to identify candidate variants influencing adiposity

phenotypes. Finally, QTL mapping is performed on gene expression and chromatin accessibility

outcomes in the CC, which largely detect local signals (within 5 Mb upstream or downstream of

target outcome). These analyses are followed by a genome-wide integrative mediation approach, that

detects local signatures of mediation of gene expression through chromatin accessibility, in a limited

sample of CC mice.

iv



To J. W. Keele

My dad and favorite scientist

v



ACKNOWLEDGEMENTS

There are many people and institutions to acknowledge and thank for supporting me in my

development as a scientist capable of pursuing this research.

First and foremost, I thank my mentor and advisor, Will Valdar. We are both self-effacing

introverts, and I appreciated that we could minimally acknowledge each other in the hallway without

worry that either one of us would take offense or fear that our relationship was deteriorating. In

Will I found a caring advisor who fosters an environment in which his students can feel comfortable

to learn and to develop, without a harsh, uncompromising focus on production. He emphasizes a

comprehensive training experience, including foundations in statistics, programming, and quantitative

genetics, writing, engagement within our scientific community, and how to best communicate with a

given audience. I know this is not the universal graduate student experience, and am all the more

grateful for it.

I am thankful for the members of the Valdar lab; undoubtedly we are an interesting cohort. Past

members include Alan Lenarcic, who helped me with the analysis of diallel data, Jeremy Sabourin,

whom I worked with on DiploLASSO, a cool project not included in this disseration, Zhaojun Zhang,

who handed Diploffect off to me, and Yunjung Kim, who assisted in the development of the multiple

imputation project. Finally Yuying Xie, who acted as my “tiger mom” during my rotation. I miss

him and his lovely family.

As for my concurrent Valdar lab peers, they truly feel like siblings to me, meaning I care for them

dearly, but they also drive me crazy. It is an injustice to our relationships to summarize things with a

single quip, but alas, I must. Dan Oreper, who seems to actually appreciate my extraneous knowledge

and strong feelings about animals. Robert Corty, who is the extraverted yin to my introverted yang,

and can always find a pun, even if it is not really there. Paul Maurizio, who kept me safe in Italy

and allowed me to be “Tito Greg” to his son Lucas. Wes Crouse, a trophy husband who can eat a

sickening quantity of hotdogs. Yanwei Cai, whom I bonded with through Pokemon, which his dog

vi



Goki basically is. Last but not least, Kathie Sun, who can really tackle an all-you-can-eat salad bar,

and gives great book recommendations. I hope to keep in touch with all of them.

I would also like to thank fellow students that I interacted with while at UNC, a few whom I wish

to mention further. Austin Hepperla, who survived many years of Thanksgiving turkey fry and is

always willing to talk sports, politics, video games, pop culture, etc. Bryan Quach, who also survived

the previously mentioned frying events, and is a wonderful collaborator on the gene expression and

chromatin accessibility project, never growing angry with me as I fiddled with the QTL mapping and

mediation. Natalie Stanley, who I suspect converted to Bayesian for the jokes (Seinfeld allusion).

Nur Shahir, who often shares her baking with the lab, and whose laugh can be heard across the

building. Lauren Donoghue, for conversations on science and shared interests (turtles, non-turtle

animals, etc. and probably topics only I have interest in but she is too polite to tell me are boring).

The value of friendship cannot be overstated, particularly during challenging times.

I am grateful for the education that I received at my undergraduate institution, the University

of Nebraska-Lincoln, and in particular wish to thank my honors thesis advisor, John Janovy Jr.

I have fond memories of listening to tales of his parasitological exploits. I am also grateful for

my experiences during my Master’s degree in biostatistics at the University of Michigan and in

Mike Boehnke’s statistical genetics group. Those years helped build the foundation in statistics and

computation that have been of great value during my PhD. I also thank Jennifer Beebe-Dimmer and

Ann Schwartz for the opportunity to work with them and their support at Wayne State University.

I need to thank my committee members for their interest, support, and expertise. I sincerely

thank Fernando Pardo-Manuel de Villena as chair, Samir Kelada, Mike Love, Leonard McMillan,

Daniel Pomp, and former members Brian Bennett and Wei Sun.

I thank my collaborators in the projects that make up this work. First I thank Leah Solberg

Woods at Wake Forest University, for allowing me to analyze her heterogeneous rat data, and putting

up with my mistakes and the many adventures they brought. I am grateful to Terry Furey at UNC for

the opportunity to work on the gene expression and chromatin accessibility data in the CC.

I also wish to thank the Bioinformatics and Computational Biology Curriculum and the Depart-

ment of Genetics, especially Cara Marlowe and John Cornett. Without them, my family may have

gone uninsured, I would have unintentionally committed tax fraud, and certainly failed to file the

paperwork necessary to graduate.

vii



The studies underlying my work were made possible through funding from the Biological and

Biomedical Sciences Program, the Bioinformatics and Computational Biology Training Grant, and

the National Institute of General Medical Sciences.

I have also been the beneficiary of a loving family for the entirety of my life. I express love and

gratitude for my siblings: Ben and his wife Christy, Marcia and her husband Nick and my niece

Nadia, Alex and his wife Abby, Emma, Jeff, and Joe. Being a member of seven siblings has indelibly

influenced who I have become, and though obviously I had no choice in this aspect of my identity, I

cannot imagine my life without them.

My parents have been a constant source of love and support. I am grateful for my mom, who

is the nucleus of a large dispersing family. I appreciate the effort she exherts to visit regularly, and

maintain a strong loving relationship with her granddaughter despite the physical distances I keep

placing between them.

I am grateful for my dad, to whom this work is dedicated and with whom it is inexorably

connected in my mind. Science means many things to me. Science is a career. Science incites

passion and frustration. Science has helped two quiet men, lost in their heads, talk and relate to each

other. Science makes me feel like a reflection of him, reminds me that I am his son.

I express complete and utter gratitude for the love and support of my wife Lindsey. Through

all my periodic anxieties and agitations, she is a steady and constant source of love and support. It

seems unlikely that I will get easier to deal with, so to Lindsey, please remember me at my best and

forget the exhausting moments.

Finally, I am grateful for my wonderful daughter Cori. I am proud of the work in this dissertation,

but it simply cannot compare to how proud of her I am. May she always know how I adore her.

viii



PREFACE

Here I provide additional details and brief descriptions of the chapters within the context of the

overall dissertation for the published and in-preparation manuscripts that make up the chapters of

this dissertation.

Chapter 2: This chapter began as a course project in a Bayesian statistics course, BIOS 779,

in Fall 2013 at UNC, taught by Professor Amy Herring, now at Duke University. This work is

an extension of Bayesian methods developed for the analysis of diallel data within the Valdar lab

(Lenarcic et al., 2012; Phillippi et al., 2014; Crowley et al., 2014; Maurizio et al., 2018; Turner et al.,

2018). In this work, strain-level effects are characterized from diallel data, as in (Lenarcic et al.,

2012), but here these effects are used as inputs into utility functions, such that they are meaningful

for QTL mapping, in order to prioritize and select bi-parental crosses. It is uniquely qualified to

be the first chapter of this dissertation due to the unique intermediary position the diallel occupies

between bi-parental populations and multiparental ones.

Chapter 3: This chapter began after discussions with members of the lab of Professor Samir

Kelada at UNC about calculating QTL mapping power specific to the CC. Highly efficient code

was developed for the QTL mapping in Chapter 6, which was adapted to simulated CC data for the

power calculations. Additionally, we investigated the effect of a range of genetic architectures (QTL

to background strain effect sizes and allelic series) and experimental characteristics (number of CC

strains and number of replicates) on power from a large scale perspective. Our goal was to provide a

tool that could provide a highly tailored power for a given experiment, as well as some general power

curves that can be used as reference for labs designing experiments in the CC. This work represents

a bridge between the two topics of this dissertation of experimental design and genetic association in

multiparental populations.

Chapter 4: The multiple imputation method described in detail has already been used in

(Mosedale et al., 2017) for QTL mapping in CC mice. This chapter is also the first chapter of this

dissertation wholly focused on genetic association analyses of multiparental populations, rather than
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experimental design. In this work, a conservative multiple imputation approach to QTL mapping is

used to avoid false associations that results from founder haplotype uncertainty and founder haplotype

frequency imbalance. Chapter 5 relates to this one, as an alternative approach to QTL mapping

based on the challenges that this work revealed.

Chapter 5: In this chapter we tried multiple analytical approaches, some of which is described

in Chapter 4, before arriving at the final process. The primary issue is that the population of

heterogeneous stock (HS) rats had relatively high levels of uncertainty in terms of distinguishing

founder haplotypes, as well as poor balance in terms of founder haplotype contributions. For example,

at certain positions, more than half of the individuals could have inherited an allele from a single

founder out of eight. We found that these joint issues led to particularly unstable haplotype-based

associations (Chapter 4). To reduce these issues, we used an imputed SNP approach, in which

we used the founder haplotype probabilities to impute SNP alleles, which effectively stabilized the

associations, and even increased power by reducing the number of allele effect parameters that were

being estimated. This chapter also introduces the use of mediation, which will be further used and

developed in Chapter 6, to better understand the biology underlying a QTL.

Chapter 6: This chapter began more as a consultation on QTL mapping for collaborators in the

lab of Professor Terry Furey at UNC, but became more involved as it became clear that more efficient

mapping software for the CC would be required to accommodate having thousands of phenotypes

(gene expression and chromatin accessibility). The work was further expanded to include assessment

of the evidence for mediation of the eQTL effect on gene expression through chromatin accessibility,

using a similar approach as (Chick et al., 2016) used for gene expression and protein abundance.

In terms of this chapter’s place within the arc of this dissertation, it represents progress beyond

traditional QTL mapping in multiparental populations, and additionally provides a demonstration of

the value of the systems genetics approach that is possible with the CC. As the overall work is highly

collaborative and unfinished, the introduction, preliminary results, and discussion will be briefer than

previous chapters, and focus on the portions relevant to this dissertation.
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CHAPTER 1

Introduction

Quantitative trait locus (QTL) mapping in model organisms is a form of genetic association

that has successfully identified genetic variants associated with medically-relevant phenotypes,

including but certainly not limited to these examples in rodents: muscle malformation (Hartmann

et al., 2008; Kelly et al., 2013), cocaine response (Kumar et al., 2013), asthma (Kelada, 2016;

Donoghue et al., 2017), diabetes (Solberg Woods et al., 2010, 2012; Keele et al., 2018), and drug

response in liver disease (Mosedale et al., 2017). Compared with epidemiological studies of naturally

occurring human populations, sometimes referred to with the more general term genome-wide

association studies (GWAS) (McCarthy et al., 2008; Teslovich et al., 2010; Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014), crosses of organisms allow for reduced

population structure, better control of unobserved environmental factors, and more extensive or

invasive phenotyping of samples than is possible with humans.

Traditionally experimental crosses involved two inbred strains as founders or parents, which

can be referred to as bi-parental crosses. Recently, experimental populations in which individuals

descend from more than two inbred founder strains, or multiparental populations (MPP), have been

developed in a number of model organism systems. These populations, particularly replicable

ones, act as rich reservoirs of genetic variants and phenotypic variability that provide the raw

material that investigators must sift through for interesting biology relating to their system and

model. Their additional complexity also pose unique statistical challenges, for which specialized and

bespoke analytical methods could more effectively and efficiently draw insights and inferences. This

dissertation is organized into two main topics relating to:

1. Experimental design approaches designed around MPP data and related experiments.

2. Genetic association approaches for MPP data and related analyses.
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Together these sections provide novel advancements in the use of MPP data, both towards the design

of experiments and the genetic association analyses, which will allow for these resources to be

more effectively utilized. Examples and analyses will generally focus on rodent models, primarily

laboratory mice. However, these organisms are not fundamental to the methodology, which could

have application to any organism with an MPP. Prior to describing the projects that make up this

dissertation in detail, background information will be presented on the various forms of experimental

populations, both to provide context and justification for this work.

1.1 Experimental populations

This work generally focuses on studies, that at least in part, seek to associate positions in

the genome, or more ideally, genes or variants with phenotypes, primarily within experimental

populations, particularly MPP. Genetic association studies fundamentally require the genomes

amongst the study samples to be randomized at loci across the genome, thus allowing the effect

at one position to be separated from the effect at another. When this randomization is flawed, loci

that are not physically linked can become correlated, representing non-syntenic associations, and

possibly result in false positive associations. This is the process which underlies population structure,

in which genetic drift and non-random mating create the non-syntenic associations that correlate to

some extent with unobserved population factors. Whereas population structure must be recognized

and accounted for in observational epidemiological populations of humans (Devlin and Roeder, 1999;

Hoffman, 2013), the breeding design in experimental populations of organisms can greatly minimize

the issue, as well as strongly controlling other influential factors, resulting in individuals with more

perfectly randomized genomes. Alternatively, such individuals can be referred to as exchangeable. It

is also important to acknowledge that population structure, and other unobserved confounders, can

still occur in experimental populations, and is indeed likely with certain breeding and experimental

designs. Still, the potential to have a more ideally controlled population is an appealing feature for

using experimental populations as opposed to observational ones.
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1.1.1 Genetic reference populations

One useful form of experimental population are collections, or panels, of inbred lines or strains,

which began to be developed in full force in the early 20th century in a number of organisms, including

the mouse (Casellas, 2011). An inbred animal results from multiple generations of inbreeding through

sib-sib matings, and are predominantly homozygous at positions across the genome. Whereas the

inbred state can be challenging to animals and result in line extinctions (Shorter et al., 2017), plant

models can be more amenable, particularly with self-pollinators (Allard, 1999), and even cross-

pollinators (Robsa Shuro, 2017). These panels provide researchers a renewable source of replicable

genomes, ignoring de novo mutations and genetic drift (Keane et al., 2011), and powerfully minimize

external sources of error outside of genetic effects specific to the strains. Phenotype surveys across a

panel of inbred strains represent stable references within model organism systems (Phillippi et al.,

2014; Rasmussen et al., 2014; McMullan et al., 2016; Roberts et al., 2018). For these reasons,

inbred panels represent a class of experimental population, the genetic reference population (GRP),

primarily providing stable, replicable genomes and phenotypes. For QTL mapping to be possible, the

genomes of a population must be randomized through recombination events in meiosis is necessary,

thus leading to experimental crosses of inbred strains.

1.1.2 Bi-parental populations

The simplest experimental crosses involve two strains, which will be referred to as bi-parental

crosses or populations (Broman, 2001). The simplest bi-parental crosses are F2 intercrosses and

backcrosses (BC), which will be discussed in Chapter 2, in which only a single generation of

genetic recombination occurs between the parental haplotypes, resulting in mapping populations with

little population structure but poor mapping resolution. The mapping resolution can be improved

through additional generations of intercrosses, often referred to as advanced intercross lines (AIL)

(Darvasi and Soller, 1995; Parker et al., 2011, 2012, 2014), though population structure can become

an issue. These previous bi-parental experimental populations are all outbred and non-replicable.

GRP populations that can also function as mapping populations are possible through the development

of recombinant inbred (RI) lines or strains, as well as their intercrosses (RIX) (Zou et al., 2005),

which are particularly common in plants (Lister and Dean, 1993; Mansur et al., 1996; Monforte

3



F1 x F1

F2A BC1 BC2B

F2

Outbreeding
generations

Inbreeding
generations

AIL RI strains

F1 x P2F1 x P1

C D

Figure 1.1: Simplified representations of F2 (A), BC (B), AIL (C), and RI strains (D). Each genome
is simplified to a single pair of chromosomes, colored with respect to parental haplotypes. The F2,
BC, and AIL represent outbred populations. The BC is unique in that at any given locus, only two
potential genetic states are observed, rather than three. The RI strains are inbred and replicable,
and thus as a panel, represent a GRP. Although these populations are powerful tools for genetic
experiments, they are constrained in terms of their genetic variation, as only two founder haplotypes
are present.

and Tanksley, 2000), though also in mice, such as the BXD lines (Peirce et al., 2004; Carbonetto

et al., 2014), in which inbreeding generations follow the initial outbreeding generations as in F2

crosses or BC until an inbred state is established, resulting in individuals with genomes that are

both inbred and mosaics of the two parental haplotypes. These forms of experimental populations

are powerful genetic tools, though they are generally constrained in terms of the overall genetic

variation phenotypic variability they can possess from the natural populations from which they

descend. Simplified visual representations of these bi-parental populations are in Figure 1.1.

1.1.3 Multiparental populations

MPP address this issues of reduced genetic variation in bi-parental populations by incorporating

more inbred strains, and thus likely genetic variation, into the populations. A practical challenge

involved in the development of MPP is the greater complexity in breeding design; ideally additional
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lines of inheritance are incorporated in such a way as to avoid population structure as well as maintain

balance in terms of founder contributions.

1.1.3.1 Heterogeneous Stock

Heterogeneous stock (HS) populations in mice (Valdar et al., 2006b) and rats (Hansen and

Spuhler, 1984) represent outbred MPP that, due to additional generations of recombinations through

outbreeding, have finer mapping resolution. Alternatively, due to the rotational breeding design

used, the HS can have greater levels of population structure and founder allele frequency imbalances.

These populations can be viewed as an MPP analogue to the bi-parental AIL. HS rat data will be

analyzed and discussed in Chapters 4 and 5. As outbred populations, the HS genomes are not

replicable, and as such, are not GRP. Recently multiparental genetic reference populations (MPGRP)

have been developed in a number of animal and plant models, which bring together the powerful

experimental control of panels of inbred strains and the increased genetic diversity of MPP.

1.1.3.2 Collaborative Cross and related populations

MPGRP represent an MPP generalization of bi-parental RI strains and their intercrosses. The

Collaborative Cross (CC) (Churchill et al., 2004; Collaborative Cross Consortium, 2012; Srivastava

et al., 2017), which will be a focus in Chapters 3, 4, and 6, is an multiparental panel of RI strains

in mouse, descended from five traditional inbred strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ,

NZO/H1LtJ) and three wild derived strains (CAST/EiJ, PWK/PhJ, WSB/EiJ), representing three

subspecies of the house mouse, Mus musculus, and thus collectively possessing a high level of genetic

variation (Yang et al., 2007, 2011), particularly in comparison to bi-parental populations. Alhough

subspecies incompatibilities (Shorter et al., 2017) limited the number of strains produced, the CC,

and its incipient lines, have been a valuable tool for QTL mapping (Aylor et al., 2011; Phillippi et al.,

2014; Kelada, 2016; Mosedale et al., 2017; Donoghue et al., 2017). The CC is also a source of better

murine models of human disease, likely the result of interesting allelic combinations being fixed

across the genome, for example, of colitis (Rogala et al., 2014), ebola infection (Rasmussen et al.,

2014), and West Nile Virus infection (Graham et al., 2015).

Related MPP have developed out of the CC. The CC F1 intercrosses (CC-RIX) (Rasmussen et al.,

2014; Graham et al., 2015) allow for replicable outbred genomes, which generally produce more
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Figure 1.2: Simplified representations of the CC and DO, with each genome being simplified to a
single pair of chromosomes, colored with respect to founder haplotype. The CC is a panel of MPP
RI strains. The DO are outbred and have finer-grain founder haplotype blocks than the CC. CC data
are analyzed in Chapters 5 and 6. Figure courtesy of William Valdar.

robust progeny, representing large scale heterosis (Birchler et al., 2006), and thus better approximating

natural populations. Similarly, the Diversity Outbred stock (DO) (Churchill et al., 2012; Svenson

et al., 2012; Gatti et al., 2014) represents an outbred population that shares the same founders as

the CC, sacrificing replicability but providing fine scale mapping resolution with relatively little

population structure. These related populations have the potential to be jointly analyzed, or used to

replicate or confirm findings amongst one another, as was done in (Chick et al., 2016) in which allele

effects at QTL detected in the DO were confirmed in the CC. Together these populations provide a

strong foundation for systems genetics in mouse models. MPP and MPGRP have been developed

in other organisms, though characteristics vary in terms of number of founder strains, number of

resulting RI strains, and breeding design. Simplified representations of the CC and the DO together

and the HS are presented in Figures 1.2 and 1.3 respectively.

1.1.3.3 Multiparental populations in non-rodent model systems

Some animal species reproduce rapidly in comparison to rodents, providing the potential for

more complex, extensive MPP. Examples in animals include the Drosophila Synthetic Population

Resource (DSPR) in flies (King et al., 2012b,a; Long et al., 2014; King and Long, 2017; Najarro
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Heterogeneous Stocks (HS)

Inbred founders strains

each rat distinct

Figure 1.3: Simplified representation of the HS, with each genome being simplified to a single pair
of chromosomes, colored with respect to founder haplotype. The HS are outbred and have fine-grain
founder haplotype blocks, due to many generations of outbreeding. HS populations are similar to the
DO (Figure 1.2), though likely less balanced in terms of founder haplotype contributions. HS data
are analyzed in Chapters 4 and 5. Figure courtesy of William Valdar.

et al., 2017; Stanley et al., 2017), round worm (Noble et al., 2017), and yeast (Cubillos et al., 2017).

Certain plant models can also reproduce prodigiously, as well as being more amenable to inbreeding.

Examples of MPP in plants include multiparent advanced generation intercross lines (MAGIC) in

Arabidopsis (Kover et al., 2009; Huang et al., 2011) and rice (Bandillo et al., 2013; Raghavan et al.,

2017) and nested association mapping (NAM) populations in maize (Buckler et al., 2009), sorghum

(Bouchet et al., 2017), strawberry (Mangandi et al., 2017), and oil palm (Tisné et al., 2017). Though

the work presented here will focus completely on data from mice and rats, the ideas and methodology

should generalize to these populations as well.

1.1.4 Diallel

The diallel, as a collection of inbred strains and the full set of F1 hybrids, including reciprocal

hybrids that distinguish between maternal and paternal strain identities of the parents (A mat × B pat

and B mat × A pat are reciprocal F1 hybrids with respect to each other), represents an experimental

population that is intermediary to bi-parental populations and MPP. Any given individual will descend

from at most two inbred strains, but in aggregate, multiple inbred strains are represented. One way to
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Figure 1.4: Simple representation of a diallel. The paternal strains are listed in the rows, maternal
strains in the columns, and the offspring in their intersections. Here a unique genome is presented
as a single pair of colored chromosomes. Cells along the diagonal represent the inbred individuals,
and the off-diagonal are the F1 hybrids. Cells in mirror positions of each other with respect to the
diagonal are reciprocal F1 hybrids with respect to each other, in which maternal and paternal strains
are reversed. The diallel population is not a mapping population because recombination events are
not observed between the founder haplotypes.

view the diallel with respect to MPP is as the full grid of potential crosses that produce the individuals

in the initial outbreeding crosses necessary for the development of an MPP. The diallel is not a

mapping population, due to no recombination events between the founder haplotypes; however, it

can be used to characterize aggregate strain-level effects on phenotypes (Lenarcic et al., 2012). The

diallel will be discussed in greater detail in Chapter 2. A simple depiction of the diallel is present in

Figure 1.4.

Having described the experimental populations that will be used, the focus now shifts to the

primary topics of interest for this dissertation: experimental design and genetic association and

related analyses.
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1.2 Experimental design

Experimental design is a broad topic, heavily dependent on the specific field of science and

its range of experiments. The primary focus will be on the experimental design of QTL mapping

experiments, though certain concepts can be extended to other types of experiments. This portion on

design is organized into two parts:

1. A unique and novel approach to using diallel data as pilot data for selecting bi-parental crosses

for QTL mapping (Chapter 2).

2. A focused simulation approach to power calculation for QTL mapping with the realized CC

genomes that can assist in choosing the number of strains and replicate observations (Chapter

3).

1.2.1 Diallel-informed bi-parental cross selection

The selection of a breeding strategy or design for the purpose of QTL mapping has generally

involved crossing inbred strains that strongly contrast with respect to the phenotype of interest, as

the resulting mapping population should possess segregating variants that influence the phenotype.

An Inbred strain survey (Phillippi et al., 2014; Rasmussen et al., 2014; McMullan et al., 2016;

Roberts et al., 2018) that provides the phenotype information necessary to select promising crosses

can be viewed as a partial diallel, thus suggesting that quantitative approaches could be used to

leverage information in the diallel for the design of downstream bi-parental crosses. This concept,

implemented in an R package called DIDACT (Diallel Informed Decision theoretic Approach for

Crosses Tool), is represented in Figure 1.5.

1.2.1.1 Quantitative analysis of the diallel

The diallel was originally put forth in the early 20th century, and has seen a steady advancement

in methodology, from estimation of general combining ability (Griffing, 1956) with related F2

populations, to harnessing shrinkage through use of random effects (Zhu and Weir, 1996; Tsaih

et al., 2005), and finally the use of Bayesian methods (Greenberg et al., 2010; Lenarcic et al., 2012).

(Verhoeven et al., 2006) explored jointly analyzing a partial diallel with observed downstream F2
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Figure 1.5: DIDACT seeks to evaluate potential bi-parental crosses with respect to a utility function
based on pilot data from the diallel. The process involves connecting estimated strain-level effects
from the diallel data, represented here as the gray scale grid of mean phenotype level per diallel
cell, to a specified utility functions that use these strain-level effect estimates as inputs. A red “X”
indicates that no progeny were produced for that cell of the diallel. In this example, a max utility BC
is red and a minimum utility BC is blue. One possible utility function is the power to detect some
number of QTL underlying the estimated strain-level effects. Alternatively, a simpler utility function
would be the difference in expected phenotype of the progeny based on the strain-level effects.
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populations, and found that such an approach could improve generalizing QTL effects from their

narrow F2 mapping population into the broader diallel or panel of inbred strains.

1.2.1.2 DIDACT

DIDACT (Chapter 2) is ignorant of the downstream F2 populations or any mapping populations,

and instead seeks to evaluate a specified utility function for each potential downstream cross, which

consist of F2, BC, and parent-of-origin effect reciprocal BC, based on strain-level effects as inputs.

DIDACT is flexible to different utility functions, with one example being the power to map

a QTL underlying the estimated strain-level effects. Though the QTL power utility function is

dependent on the strong and unlikely assumption that the strain-level effects are attributable to some

specified number of QTL, in practice the power tracks with crosses that match strains with contrasting

phenotypes. This is similar to what has been done previously, however, now in a principled way

that can incorporate complex strain-level effects. Alternatively, utility functions that require less

assumptions can be used, such as the expected difference in phenotype based on the strain-level

effects, though the utility may be less interpretable in comparison to a quantity like power. More

generally, DIDACT is a demonstration of a fundamental Bayesian decision theoretic approach that is

extendable to other experimental settings as well.

1.2.2 Power to detect QTL in the realized Collaborative Cross

With Chapter 3, the focus of the dissertation begins to transition towards genetic association in

MPP, though still within the context of experimental design, specifically QTL mapping experiments

with the CC. Panels of RI strains are particularly valuable tools for QTL mapping because of their

status as GRP, allowing for the potential of QTL results to be replicated across experiments, labs,

and related populations (Belknap and Atkins, 2001). Their stable nature as reference populations

also allows for highly specific QTL mapping power calculations that can assist researchers in

designing efficient but powerful experiments. Previous literature has focused on analytical power

estimation within bi-parental RI strains (Kaeppler, 1997). Within plant models, QTL mapping power

calculations has been performed through simulation, in which both RI genome and phenotype were

simulated (Falke and Frisch, 2011; Takuno et al., 2012). However, their simulation are tailored for

QTL mapping experiments in plants, with particularly large QTL effect sizes and elaborate multiple

11



QTL models, whereas in many phenotypes in animal models, the expectation will be for smaller

QTL effects and a preference for single locus models.

1.2.2.1 Realized Collaborative Cross

At the onset of the development of the CC, power calculations were performed through sim-

ulations of the RI strain genomes and phenotypes (Valdar et al., 2006a). However, such power

estimates are not necessarily representative of the resulting population, which fell short of the stated

1000 goal of RI strains (Churchill et al., 2004) due to line extinctions, likely as a result of allelic

incompatibilities (Shorter et al., 2017). With the finalized strains (around 75), power calculations

can be based on the actual, or realized, CC genomes, and can thus reflect slight deviations from the

expected balance in founder contributions (Srivastava et al., 2017).

1.2.2.2 SPARCC

The R package SPARCC (Simulated Power Analysis in the Realized Collaborative Cross) allows

for power calculations that can be highly tailored to a specific experiment with a specific set of

strains. Alternatively, it can also perform robust power calculations by varying the set of CC strains,

the position of the simulated QTL, and even the allelic series (Yalcin et al., 2005). In Chapter 3,

SPARCC is used to investigate how QTL effect size, background strain effect size, number of CC

strains, number of replicate observations, and the allelic series affect QTL mapping power in the CC.

Figure 1.6 is an example of how SPARCC can interrogate aspects of the experimental design as well

as the underlying biology as modulators of QTL mapping power in the CC.

1.3 Genetic association and related analyses

The focus now shifts fully from experimental design to the actual genetic association analysis

in MPP, fine-mapping analyses, and finally a genome-wide mediation approach that statistically

integrates multiple levels of data on the same individuals. Specifically, Chapters 4 focuses entirely on

QTL mapping in MPP populations, Chapter 5 transitions between QTL mapping and fine-mapping

approaches to identify candidate variants or genes, particularly emphasizing a mediation approach,

and finally Chapter 6 is primarily focused on genome-wide mediation in the CC.
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Figure 1.6: Power curves from SPARCC with power on the y-axis and number of CC strains on the
x-axis. Five replicate observations per CC strain were simulated for this example. Colors represent
different QTL effect sizes in terms of proportion of total variance. Solid lines represent an eight
allele model for the simulation, and dashed lines represent an allelic series with two functional alleles.
The QTL mapping procedure uses an eight allele alternative model, which is standard practice.
Power is significantly worse for allelic series with two functional alleles, mostly due to imbalanced
observations of each functional allele.

13



In general, QTL mapping approaches developed in simpler bi-parental populations have been

extended for use in MPP and been successful (Valdar et al., 2006c,b, 2009; Svenson et al., 2012;

Baud et al., 2013, 2014; Gatti et al., 2014; Phillippi et al., 2014). Chapter 4 focuses on examples

when the use of recycled methods from bi-parental populations can be problematic.

1.3.1 Multiple imputation approach to QTL mapping in multiparental populations

1.3.1.1 Developments in interval mapping

QTL mapping through interval mapping (IM) (Lander and Botstein, 1989) models the association

between founder haplotype and phenotype, as opposed to the association between a variant genotype

and phenotype, as is more common in human GWAS. Founder haplotype identities are not directly

observed, but rather probabilistically inferred, commonly with a hidden Markov model (HMM)

(Lander and Green, 1987; Mott et al., 2000; Liu et al., 2010; Fu et al., 2012; Gatti et al., 2014;

Zheng et al., 2015) using genotype data. IM, in its original form, acknowledged this uncertainty

through the use of a mixture of Gaussians model (Broman and Sen, 2009), which required an

expectation-maximization (EM) algorithm (Dempster et al., 1977) in order to fit maximum likelihood

parameters (MLE). The EM is an iterative procedure and thus computationally expensive on a

large scale, which becomes more problematic with denser genome scans that involve more tests of

association. Additionally, the MLE estimates can be unstable in the presence of little information

distinguishing the haplotype states, instead becoming stuck in local maxima. (Haley and Knott, 1992)

and (Martı́nez and Curnow, 1992) proposed a computationally efficient regression approximation

in which the phenotype is simply regressed on the probabilities, or dosages for an additive model,

of the haplotypes. This approximation to IM is sometimes called Haley-Knott (HK) regression

or regression-on-probabilities (ROP), and has generally proven accurate, efficient, and thus highly

successful. Compared to formal IM, ROP is easily extendible to modeling considerations such as

MPP, essentially estimating more allele parameters, as well as other factors such as covariates, and

mixed effect models.
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1.3.1.2 False associations and problematic uncertainty and founder allele frequency

Previous work from the Valdar lab has shown that the approximate nature of ROP could produce

unstable and uninterpretable regression coefficients, which are often used as allele effect estimates

(Zhang et al., 2014), with an extreme example in Figure 1.7B. They correct for this issue with the

Diploffect model, a Bayesian procedure that involves multiply imputing the haplotype pairs, or

diplotypes, from their probabilities. The statistical score of association can also be greatly inflated by

the ROP approximation, particularly when at a locus with founder haplotype frequencies that are

highly imbalanced, as in Figure 1.7C. It is possible that founder haplotypes will be completely lost

at random loci simply through genetic drift. If there were no uncertainty, simply no parameter for

that founder would be fit at that locus in the genome scan. However, when there is uncertainty, there

is the potential that some minute probability mass happens to correlate strongly with the phenotype,

resulting in a strong, but artificial, association score, as in Figure 1.7A.

1.3.1.3 Multiple imputation approach

There have been Bayesian QTL mapping procedures proposed that also involve multiply imputing

the diplotypes from the probabilities (Sen and Churchill, 2001; Durrant and Mott, 2010). Chapter 4

describes a conservative multiple imputation approach that foregoes a fully Bayesian approach for

the sake of computational efficiency. A related problem is also described, in which a founder allele is

rarely observed but now with strong certainty. In this situation of unbalanced certain data, shrinkage

approaches (Wei and Xu, 2016) should be used, for which two different approaches are discussed.

Variant association, similar to methods used in human GWAS, is also an alternative to IM,

or what could also be called haplotype-based association. Haplotype-based association has some

advantages to variant association, such as implicitly modeling a more complex system, such as

the local epistasis in the region. However, these strengths are contingent on the stable presence of

the various haplotypes, and that they are reasonably estimable. When this is strongly violated, the

simpler variant association model can be more stable and powerful, which is a topic of Chapter 5

and published as (Keele et al., 2018).
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Figure 1.7: A surprisingly sharp association signal is observed for a phenotype in a large population
(> 700) of HS rats using ROP (A). The allele effects are highly unstable, particularly around the
QTL peak (B). In particular, the BN allele (yellow) appears to approaching negative infinity. A
representation of the haplotype dosages at the peak reveals that at the putative QTL there are issues
with uncertainty (founders F344, WKY, and WN are largely indistinguishable for many individuals)
and imbalance in founder contributions (MR is rarely observed and BN appears to have been lost)
(C). A vertical column of the grid represents the haplotype dosage vector of a single rat, with rats
being ordered horizontally with respect to phenotype. No substantial founder effects are visually
distinguishable, with the extreme BN effect appearing to be an artifact of the problematic uncertainty
at the locus. Comparison of ROP (black line) and MI (red line and 95% confidence interval on the
median association across imputations in pink) in the region of the sharp association peak. The signal
is completely removed, likely because the BN allele is never sampled.
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1.3.2 Analysis of heterogeneous stock rats

1.3.2.1 Imputed SNP association

The HS rat population that produced the data analyzed in Figure 1.7 is highly unbalanced with

respect to founder haplotype dosage cumulatively across all loci (Figure 1.8A). Though haplotype

reconstruction poorly distinguished certain founders at some loci, the information content on the

simpler SNP genotype can be more complete, resulting in stable association scans (Figure 1.8B),

and ultimately produced three QTL regions for two different phenotypes, retroperitoneal fat pads

(RetroFat) and body weight. The causal variants that induce QTL are usually not obvious, the region

instead potentially containing from a handful of genes and variants to hundreds, thus Chapter 5

also focuses with on quantitative fine-mapping approaches used in order to identify and prioritize

candidate genes and variants under the QTL.

1.3.2.2 Fine-mapping approaches

A variety of approaches were used to assess variants within candidate genes that fell in the QTL

regions. The Diploffect model (Zhang et al., 2014) was used to characterize founder haplotype effects

at the QTL, which are useful for potentially identifying variants with alleles that are distributed

amongst the founders such that they match these effects patterns. LLARRMA-dawg (Sabourin et al.,

2015), a tool designed to simultaneously model and select important SNPs from within a GWAS

hit region, significantly reduced a wide QTL region. Protein modeling (Prokop et al., 2017) was

performed on candidate genes with variants that corresponded with the allele effects and fell within or

near the QTL regions to assess the predicted effect of the variant alleles on protein function. Finally,

gene expression as a possible mediator of the QTL effect on phenotypes was also investigated.

1.3.2.3 Gene expression as mediator of QTL effect on phenotype

Mediation approaches have recently been applied to genomic data (Battle et al., 2014; Chick

et al., 2016; Roytman et al., 2018), providing avenues for confirming signals as well as potentially

teasing apart the underlying relationships between the levels of the biological data. In the context

of the HS rats, collaborators collected gene expression data from the liver on a large subset of the

sample populations. Only expression levels of genes local to the QTL signal were considered, greatly

17



CC

HS1

0.0 0.2 0.4 0.6 0.8 1.0
Founder haplotype frequency

HS2

CC

HS rats

0 1
1/8

A

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●●
●

●

●
●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●●●
●●

●

●
●

●

●

●

●●

●

●●●

●

●●

●

●●

●●

●

●●

●

●

●●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●●
●●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●
●●

●

●●●●

●
●●
●●
●
●
●

●

●

●●●

●

●

●

●

●

●
●
●●●●

●
●
●
●

●●●

●

●

●
●●●
●

●
●

●●●
●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●●
●
●●
●●
●
●
●

●●
●●●●●

●●●●●

●
●

●●
●●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●
●

●
●●

●

●

●

●
●

●●

●
●

●

●●●

●

●●

●

●
●
●

●
●●
●

●

●
●

●

●●

●

●●

●

●●●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●
●
●●●●●
●

●

●●

●●●
●

●
●●
●●●

●

●

●●●●●●●●

●

●

●
●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●
●●
●

●●

●
●

●

●
●●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●
●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●●

●●●

●

●

●●

●

●

●

●
●●
●
●
●●●
●
●
●

●
●
●
●●
●
●●●●
●●●
●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
●

●

●●

●

●
●●

●

●
●●●●
●
●●●

●

●●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●
●
●●
●
●
●●
●●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●
●
●

●

●

●
●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●●

●

●●

●●

●
●

●●
●

●●

●●
●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●

●●

●
●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●
●
●
●
●
●
●
●
●●●●
●

●●●●

●

●●●●
●
●
●
●●●

●
●

●
●

●
●
●●

●●

●

●

●

●

●

●

●

●●

RetroFat Genome Scan

0

1

2

3

4

5

−l
og

10
P

●●●●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●
●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●●●

●

●

●

●●●

●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●●
●
●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●●
●●●●●●●●●

●

●
●●●●●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●●●●●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●●
●

●
●

●●

●●●●

●

●

●●●

●●●●

●

●
●
●●

●

●

●●●

●
●●
●
●

●●
●
●
●

●●
●●
●

●●

●●●
●●

●
●
●
●●●●●

●

●

●

●
●
●

●

●

●

●

●
●●

●●

●
●

●

●

●
●

●●●●●
●●
●

●

●

●●
●
●●●●
●●

●
●●

●●●●●●

●●
●

●

●

●

●
●
●●

●
●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●●●●●●

●

●●●●●●

●

●●

●

●
●●
●●●

●●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●●●

●
●●

●

●●

●

●

●●
●●●●

●●

●●
●
●

●
●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●●
●●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●
●
●●●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●●

●

●

●●

●●

●

●●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●●●

●

●●
●
●
●
●

●

●●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●●
●●●●●
●●

●

●

●

●●●●
●

●

●
●●●

●

●●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●

●

●

●

●

●

●
●●●
●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●●
●
●

●●
●●●
●
●●

●

●

●

●

●●

●

●

●

●

●
●●

●●●

●●●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●

●

●

●

●●

●
●

●●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●●●
●●
●
●●
●
●●

●

●

●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●
●

●
●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●
●●

●●

●
●●
●

●

●●●
●
●●●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●
●

●●●

●●●●●

●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●●●

●

●●●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●
●
●
●●
●●●●

●
●●
●
●●

●

●
●
●
●
●

●●●
●

●●●

●

●●●
●●
●

●

●

●

●

●●

●

●
●●

●●
●

●

●

●●●
●

●●●

●
●

●●
●

●

●

●

●

●●●●

●

●

●

●●

●

●
●●●

●●

●●
●●

●

●

●●

●

●

●

●●
●●●●
●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●
●
●

●

●
●

●●
●●

●
●●

●

●

●

●

●
●
●

●●

●

●●●●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●

●●●
●●

●

●

●

●

●
●

●
●●

●
●
●

●●●

●

●

●

●
●

●

●

●

●

●●

●●●●●

●
●●
●

●
●●

●

●●

●

●

●
●

●

●●

●

●●●
●

●●

●●●
●
●

●●

●
●
●●
●●●●●●●

●
●
●

●

●
●

●●●●
●

●●
●

●

●

●●

●

●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●●

●●

●
●
●
●

●●●●
●

●
●

●

●

●

●

●●●
●
●●
●
●●●
●●

●●

●

●●

●●●●●●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●
●

●

●
●
●

●

●

●●

●●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●
●
●
●●●●●●
●

●

●●●
●●
●●

●

●

●●●

●●

●

●●●●●

●

●

●

●
●●●

●

●

●●

●●

●●●●

●●
●

●

●●

●●
●●
●
●●

●●●●●

●

●●
●

●

●●

●

●●

●
●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●
●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●

●

●●●●
●●●●
●

●

●
●

●

●●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●●
●
●

●

●

●
●●

●●

●

●●●
●
●●
●
●
●
●
●
●
●
●●
●●

●

●

●

●

●
●

●●

●
●

●●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●

●
●●●

●

●

●●

●

●●●

●

●●

●

●
●
●

●●●

●

●

●

●
●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

●

●●
●

●●

●

●●●

●
●

●

●
●

●

●
●
●

●
●●
●●●
●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●●

●

●
●●

●●

●

●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●●
●
●●●●●

●●●●●

●
●

●●

●

●

●
●

●
●

●●

●
●●

●

●

●

●
●
●

●●●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●●
●

●

●●

●●●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●●

●●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●
●

●

●
●●

●

●
●

●
●
●●

●●
●

●

●●

●
●
●
●●

●
●

●●

●

●

●
●●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●●
●●

●

●

●

●●●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●
●

●●●●●●

●

●●
●●

●

●

●●

●

●●●
●

●●

●
●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●
●●●
●●●
●●
●
●

●

●

●●

●
●●●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●●

●

●
●
●

●
●
●
●

●

●

●
●

●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●●●

●
●

●

●●

●

●●

●
●●
●

●

●

●

●

●

●

●

●
●●
●
●●●●
●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●
●

●

●

●●●

●●

●
●

●●

●

●
●

●●
●●●

●●
●
●●
●

●

●●
●●●●●●●●
●●●

●

●●●●●●●

●

●●●●●●

●

●
●

●

●

●●●
●●●●

●●●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●
●
●●●●

●

●●

●

●

●

●●
●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●●
●●
●

●●

●

●
●
●
●

●●

●

●

●
●

●

●

●
●●●

●

●●●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●●●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●●

●

●●●
●●

●●●●●

●●

●●●●●

●●

●●
●

●

●
●
●●
●
●

●

●

●

●
●●

●

●●●●

●

●
●●●
●●
●

●●
●●●
●

●●●

●
●●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●●●●
●

●

●

●●

●

●●●●●●
●●
●

●
●

●

●●●
●
●●

●●
●●●●●●●●●●●
●●●

●

●●●

●

●

●●●

●

●

●

●

●
●

●

●●●
●●
●

●

●●
●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●●●

●

●●

●

●

●●●
●

●

●

●

●●
●

●
●
●●

●

●
●●●

●

●

●●●

●●●
●●

●

●

●●

●

●

●●●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●●
●

●●●

●
●●
●

●●

●

●

●
●

●

●●

●
●

●

●

●
●
●●
●●●●●●

●

●●●●

●

●

●

●●

●

●●●

●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●
●

●
●
●●●●●
●
●

●

●

●●●

●

●

●

●●

●●

●●●

●

●●
●●

●
●

●

●
●

●●

●

●●
●
●●
●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●
●
●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●●

●●

●
●

●
●

●

●

●

●

●●●
●●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●●

●

●

●●
●●●

●●
●●●
●
●

●●

●
●●●

●
●

●

●

●

●●●●
●●
●
●
●
●
●
●
●●●
●●●●

●

●

●

●
●

●●

●●

●

●

●
●
●

●

●

●

●●

●

●

●●

●●●
●
●●

●

●

●

●

●●●

●
●

●

●●●

●
●
●

●

●

●

●●

●

●
●●
●
●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●●●●●

●
●

●

●
●●

●●

●

●
●

●

●

●
●●

●

●
●

●

●
●●●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●
●

●

●
●
●●

●
●●
●

●

●

●

●
●

●●
●●●
●

●●●
●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●
●
●
●●
●●

●

●

●

●

●●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●●●●
●

●

●

●●

●
●

●

●
●

●

●

●●●●
●

●●

●
●●●

●●●●●
●●
●

●

●

●

●

●

●
●

●

●

●●
●

●●

●●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●
●

●●

●●

●

●

●●●●

●
●

●

●●●

●

●

●

●

●●

●

●●

●

●●
●

●●●

●

●

●●●

●●

●

●
●
●

●

●

●
●●●
●

●

●

●

●
●
●
●
●●●●●●
●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●●●●●●

●

●

●
●

●

●

●

●

●●

●

●●●
●
●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●●●
●●●●
●

●●●
●

●

●●●

●

●

●●●

●●

●

●

●

●

●●●●

●●

●●●

●

●●●●●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●
●

●●

●●●

●

●

●

●

●●
●●
●
●

●

●
●●

●

●

●

●

●

●
●
●●
●
●●●

●

●●

●

●

●
●
●

●●●●

●

●

●
●
●

●

●

●
●

●●
●●●
●

●●

●

●●●
●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●●

●●
●●
●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●●●
●●

●

●
●

●●●

●●

●●

●
●

●

●

●●

●●

●
●●

●
●
●
●
●●●●●
●

●●●●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●
●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●
●

●●●
●
●

●●

●
●
●

●●●●●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●●●●

●●●●

●

●●

●

●

●

●

●●

●
●
●●

●

●

●●

●

●

●

●●

●●

●
●●●●

●

●●

●●
●
●

●
●

●●●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●

●●●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●
●

●
●

●
●●

●

●

●●
●

●
●

●

●

●

●

●
●

●
●●●
●●

●●●

●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●
●

●

●●

●

●●

●●

●
●

●●
●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●
●
●
●

●●

●●●
●

●

●
●

●

●
●
●

●

●
●

●●

●

●

●

●

●
●

●●
●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●
●●

●
●
●

●●
●●●

●

●
●
●
●
●

●

●

●

●

●

●●
●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●●

●

●
●●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●●
●●

●●●●●

●

●

●●
●●

●

●●
●●

●

●
●●●

●

●

●●●●●
●
●●

●●
●●●●

●

●●

●

●

●●

●

●

●●
●
●

●●
●

●

●●●
●●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●
●
●

●

●

●

●

●
●
●

●●
●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●●

●

●

●
●●

●

●
●
●●●●

●●

●

●

●

●

●
●●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●●
●

●

●

●●

●

●●●●●
●●●●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●●
●

●

●

●
●

●●

●

●
●

●●
●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●
●

●
●●

●

●●

●

●

●●

●●●●

●

●
●

●

●

●●
●●
●
●
●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●
●

●

●●

●
●
●●

●

●●

●●●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●●●
●●●

●

●●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●●
●
●●●

●●●●●●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●
●●●
●

●●●

●
●●●

●●

●

●

●

●

●●●

●

●
●●

●

●●

●

●
●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●●

●●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●●

●
●●●

●

●●

●●●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
●
●●●●
●

●
●
●

●●
●
●

●

●●

●

●

●

●

●
●

●●

●●

●
●

●

●
●
●
●●●

●

●
●

●●●

●●
●
●

●●●●

●●

●
●

●
●

●●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●●

●
●

●●

●●●●

●

●

●

●
●●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●●●

●

●

●

●

●
●●

●

●●

●
●

●
●

●●

●

●●

●●

●

●

●●●

●
●
●

●
●●

●

●
●
●

●
●●

●

●

●●

●

●

●●●

●

●●●

●
●●
●●●

●●

●●●●
●●

●
●
●●
●
●●

●
●
●

●
●●
●●
●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●●

●
●
●●●

●●

●

●
●

●

●●●●
●

●●●●●

●●

●●
●

●

●

●

●

●

●●

●●

●

●

●

●●●●

●
●●

●

●

●

●
●

●

●

●
●●

●
●●
●

●

●

●

●●

●

●
●

●

●●
●

●
●
●●
●●
●
●

●

●●

●

●●

●

●

●

●●

●
●

●
●●●

●

●●

●
●
●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●●
●●●●

●●
●

●●●●

●

●

●

●●●●

●

●●
●
●●●●
●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●●
●

●

●

●

●●●●

●

●●●
●

●
●

●
●

●●

●
●
●

●●●

●

●●

●

●

●

●
●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●●●

●●●

●

●●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●
●

●

●

●

●

●
●●●

●●●

●

●
●

●●

●●

●●

●

●

●

●●

●
●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●●
●

●●●
●

●
●

●

●

●●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●●
●
●●
●●

●●

●●

●

●

●

●

●

●
●

●
●●

●

●
●

●●

●
●

●●●

●

●

●●●●

●

●●

●●

●

●

●

●
●
●

●●
●●

●

●●

●

●
●

●●
●

●

●

●●●

●●

●

●

●
●●

●

●

●

●
●

●●

●●
●●

●●

●
●

●●●●●●

●
●●

●

●

●

●●●
●

●

●

●

●
●

●●●●

●
●
●

●

●

●

●●
●

●
●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●
●

●

●●●

●

●
●●

Chr 2 4 6 8 10 12 14 16 18 201 3 5 7 9 11 13 15 17 19 X

90% Sig. Threshold

B

Figure 1.8: The histograms of founder haplotype allele frequencies for the CC and the HS rat
population (A). The distribution in the CC is centered around 1/8, the expectation for a balanced
population descended from eight founders. In contrast, the HS rats, also descended from eight
founders, have a large enrichment in small frequencies, particularly near-zero, consistent with the
observation that founder haplotypes have been routinely lost at loci across the genome. This pattern
of haplotype distribution is problematic to haplotype-based association, a topic discussed in Chapter
4. An alternative to the conservative multiple imputation procedure is to impute SNP genotypes from
the haplotype probabilities, potentially correcting for genotyping errors and no calls, and do variant
association. Whereas there may be poor information to distinguish haplotypes, the simpler SNP
imputation may be well-informed, resulting in stabler and more powerful association scans (B).
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reducing the computational and testing burden, and a simple model of mediation was used (Baron

and Kenny, 1986).

1.3.3 Integrative mediation analysis of gene expression and chromatin accessibility

The latter portion of Chapter 5 demonstrates a range of ideas as well as quantitative tools

for delving further into QTL findings. Mediation, and other causality-oriented approaches such

as Mendelian Randomization (Smith and Ebrahim, 2003; Lawlor et al., 2008), represent exciting

areas of research that leverage the big data that are being collected, with multiple dimensions per

individual, sometimes referred to as multi-omics, to answer questions about and better understand

the relationships between the levels of data, with particular focus on the relationships at play in

the flow of information from gene to phenotype (Degner et al., 2012; Pai et al., 2015; Battle et al.,

2015; Alasoo et al., 2018; Wu et al., 2018). Chapter 6 further explores this topic, by investigating

genetic regulation of gene expression and chromatin accessibility, as well as the potential relationship

between them, genome-wide, in CC mice through an integrative mediation analysis.

1.3.3.1 Description of CC data and analyses

This project is highly collaborative with members of the Furey Lab, as well as collaborators at

Texas A&M (Ivan Rusyn) and NC State (Fred Wright) and the results are preliminary. As such, the

description in Chapter 6 will be brief, and focus on the methodology, which relates to the research

focus of this dissertation. The data for these analyses consist of RNA-Seq (gene expression) and

ATAC-Seq (chromatin accessibility) in three tissues (lung, liver, and kidney) for only 47 CC strains

with a single observation per strain. QTL mapping through a multi-stage conditional fitting approach

(Jansen et al., 2017) was performed for both expression (eQTL) and chromatin accessibility (cQTL)

in each tissue, allowing for the potential of multiple QTL per phenotype. A genome-wide mediation

analysis was developed and used that draws from the approach used in (Chick et al., 2016) for jointly

modeling gene expression and protein levels. Despite mediation not being equivalent to causality and

the undoubtedly complex and multifactorial nature of the underlying biology involved in the steps of

the regulation of the flow of information from genomic DNA to protein, simplistic mediation models

can detect evidence that is consistent with broad hypotheses of how the levels relate. MPP, such as

the CC or DO, can be particularly powerful tools for these genome-wide mediation approaches due
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eQTL

A

B
●
●
●
●●●●●●
●

●
●
●
●●●●●
●●●●

●●

●

●
●
●
●●●
●
●
●
●●
●●●●●
●●●●
●
●●
●

●

●
●●●
●●
●●

●●
●●
●●●●●

●
●

●
●

●

●●●
●●
●●
●

●

●●
●●●●●

●

●

●

●

●

●

●

●
●
●●●

●

●

●
●●

●

●
●
●●

●●

●
●

●

●

●

●

●

●
●●●●
●
●●●●
●●
●●●●
●●●●
●
●●●
●

●●

●●
●

●●

●

●
●●

●

●
●●
●
●●

●

●

●
●
●●
●

●

●

●●
●
●

●

●
●

●

●

●

●

●
●●

●

●
●●
●
●
●
●●
●
●
●●●●
●
●
●
●●●

●
●

●

●

●
●●

●

●●●●●●●
●
●●●
●●●●

●
●

●

●

●

●
●●●
●●
●●●
●
●
●
●
●

●
●

●

●

●
●

●
●
●
●
●
●●
●
●

●●

●
●●
●

●

●
●
●
●●
●
●●●

●●●

●●
●
●
●
●●
●●
●
●●●●●
●●●●●●

●

●●

●

●

●●●●
●
●●●
●●●
●●●●
●
●●●

●

●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●

●

●●●●●
●
●●●●●
●●●●●

●●●

●
●
●●
●●●
●

●●●●●
●●

●●●●●
●
●●●●

●

●●●●
●●
●
●
●●
●●
●
●
●
●
●●

●●

●●●●
●●
●●●●
●●
●●●●●

●

●●●
●●
●
●●
●●●●●●●●●
●●
●
●●●

●
●
●●●●●●
●

●●●●●
●
●●
●●●
●
●●●●●
●●●
●●●
●
●●
●●●●
●
●●
●●
●
●●●
●
●●●

●

●
●
●●●●●

●

●●●●●
●●●●

●

●
●●●●
●
●
●●●
●●
●●●
●

●●

●
●

●

●
●●●●●
●
●●●
●●
●●●
●

●
●

●
●
●
●

●

●●

●●

●●●
●

●

●●
●●

●●

●

●
●●●●●●

●
●
●
●
●●●●●●●●
●●
●●
●

●

●

●
●
●
●●●●

●
●●●●●●●
●
●

●●●
●●●●●

●
●

●●
●
●●
●●●●●
●
●●●●●
●
●●
●●●●
●●
●●●
●
●
●
●
●
●

●
●
●
●●●●
●

●
●
●●
●●

●
●

●

●
●●●●●●
●

●

●
●

●
●
●

●

●

●●
●

●●●
●●
●

●

●

●
●
●

●●

●

●●●
●●
●
●
●

●

●

●

●

●●
●●
●
●

●
●
●●

●

●

●●
●●

●
●

●●●●●●

●●

●●

●

●●●

●

●●●●●
●●
●
●●●●●●●●●●●
●●
●
●●●●
●●
●

●

●
●

●

●
●●●●

●
●

●

●

●
●

●

●●
●●●

●

●

●
●
●●
●●●●
●●●●●●●●

●
●●
●

●

●
●●
●

●

●
●

●
●
●

●

●

●

●
●
●●●●●
●
●
●

●

●
●

●
●●
●
●
●

●●
●●

●●

●
●

●

●
●●●●
●

●

●

●●●
●

●
●●

●
●●
●●●●
●
●●●
●●
●●●●
●●●●
●●●●●●
●●

●

●●●●●

●

●

●
●
●
●●
●

●

●
●●
●●●
●●

●

●●●●
●●
●

●

●●

●

●

●

●
●
●

●
●

●●
●

●
●
●●●●

●

●

●
●

●
●
●●

●

●
●
●

●

●

●●
●
●
●
●●
●
●
●
●

●

●

●●●●●●●●
●●●
●

●
●

●

●

●

●
●
●●●

●

●●

●

●
●●

●
●

●●●

●
●

●
●

●●
●
●●

●

●

●
●
●●●●●
●●●●

●
●●

●
●
●
●
●

●

●

●

●●●●●●●
●
●●
●●
●
●●●●●

●
●
●
●●●●

●●
●
●
●

●●
●●●●●

●
●

●

●

●

●

●
●●
●

●
●

●●●

●
●

●●●
●
●●

●●

●
●●●

●

●

●

●

●
●

●

●●●
●
●

●●
●
●

●●

●
●●●

●
●●

●

●

●
●

0
1
2
3
4
5
6
7
8
9

10
11

−l
og

10
P

●
●●
●
●
●●

●●

●
●●
●●●
●●●
●
●
●●●

●
●
●●●●
●
●

●
●
●

●

●
●

●
●
●●●
●

●
●

●●
●
●●

●
●
●
●●●

●

●●
●●●●

●●●
●

●●

●

●●●

●●●●
●
●
●
●

●

●

●
●
●
●
●

●

●
●
●
●

●
●

●●

●●
●

●

●
●●●●

●
●
●●●●●●
●●
●
●
●●

●●
●

●
●

●

●●●
●

●●
●

●
●●●
●

●

●●

●
●
●

●
●
●
●●

●

●

●
●
●
●
●

●●

●
●
●●
●
●

●
●
●

●
●
●
●

●●
●

●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●
●●●

●
●

●

●●
●
●●

●

●
●
●●●
●

●

●●
●●

●

●
●
●●

●●●

●
●

●
●
●●●●
●●
●●

●
●

●
●●
●
●●●●
●●●●
●
●●●●●

●

●●
●●
●●
●

●
●●●

●

●●●●●●●
●
●
●
●

●
●
●●●●●●
●●●
●
●●●●●●
●
●
●
●

●

●●●●●●

●

●●●●
●
●●

●

●●
●

●●

●

●
●●
●●●
●

●

●

●

●
●●
●

●
●●
●
●
●
●●
●●
●●

●
●
●●
●
●●

●●

●

●

●

●●
●

●
●

●●●●
●●●●

●

●●●●●

●

●●●●

●●●
●
●

●
●
●
●●

●

●
●

●●
●

●

●
●
●

●
●
●
●

●
●
●

●
●
●

●

●
●

●●
●
●
●
●●●●●

●
●

●

●
●
●

●●

●●

●

●
●
●●
●
●
●●

●
●

●

●

●

●●

●●●
●●●●
●
●●●●●
●●
●
●

●●

●
●●●

●

●●●

●

●●

●
●
●
●
●

●

●

●

●
●●

●●

●

●

●
●●

●
●

●
●
●

●

●●●●
●
●
●●
●
●●

●

●
●

●

●
●

●
●

●●●

●

●●

●●
●●
●
●

●●●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●●
●●
●
●●

●

●●

●
●
●

●

●

●

●
●●
●

●

●●●

●

●●●●●●

●
●●●
●

●●
●

●

●
●●●
●●●●
●●
●●●●●

●

●

●

●
●
●●
●
●●

●●
●
●
●
●●

●
●

●

●●
●●●●●●●●
●
●●

●●

●

●

●

●●●
●●

●

●

●
●●

●

●

●

●●●

●

●●

●
●
●

●

●
●
●●
●

●●
●

●

●

●

●
●

●
●

●
●●
●●●
●

●

●

●●●

●

●

●●●
●

●
●●●

●

●●●●
●
●

●
●

●
●●●

●

●

●●

●

●●

●
●

●

●

●●●●
●●

●●

●

●

●
●

●●●
●
●

●

●

●●

●
●

●●
●
●

●●

●●

●
●
●●
●●●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●●●●●●●●
●
●
●●

●●

●●

●

●

●
●●●

●●

●●
●●
●
●

●●●
●●●●●●●●
●●

●

●●●●

●●

●●
●
●●

●
●●

●

●
●
●
●

●
●
●
●●●

●

●

●

●
●●

●
●●
●
●
●

●
●
●

●

●●
●●●●●●
●

●●●

●

●
●
●●●●
●●●●●●●●●●●

●

●●
●●
●
●
●●

●

●
●

●●
●●●

●
●●

●●●●●●●
●
●●
●●●
●
●●
●
●●

●●
●

●●●

●
●●●

●

●

●

●●

●

●

●
●●●

●
●●●

●
●

●
●
●●

●

●

●●●

●
●

●

●

●●●
●
●●
●

●●●●
●
●●
●

●

●
●●●●

●

●●●●
●
●
●

●●

●●

●
●
●●
●●
●●
●
●●●
●
●
●
●●
●
●●●
●●●●●●

●

●
●
●

●

●

●
●●●●
●
●●

●

●
●●●
●
●●
●●
●●●●●●●
●

●●
●●●●●●

●
●●

●

●
●

●

●

●●
●●●●●●

●

●

●●
●●●●●

●
●●●

●
●
●●
●
●

●
●
●

●
●
●●
●

●
●
●

●
●●

●

●●
●●●

●
●

●●

●

●
●

●

●

●●

●

●●●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●●
●●

●
●

●
●
●
●
●

●

●

●

●

●●●●●

●

●
●

●

●
●●
●

●●
●●

●●

●
●●
●
●
●●
●
●
●
●●●●●●●●
●●●●
●
●●●●●

●

●

●
●

●
●

●●
●
●
●●

●

●
●

●
●
●●●
●

●
●●

●
●●
●

●
●
●
●
●
●
●●●
●

●
●●

●●

●
●●

●
●●
●●●

●

●

●●

●●●
●

●●
●

●●●
●
●

●

●●
●●●
●
●

●●
●
●●●●●

●

●●●●

●

●
●●

●
●

●●●

●

●●
●

●

●

●

●
●●●

●
●
●
●

●●

●

●

●
●●
●

●
●
●●●
●
●

●

●

●●
●●
●
●
●
●●

●
●
●

●
●●●
●●

●

●●●●●

●

●
●●●●●●
●●

●
●
●

●

●●●
●
●

●●

●●
●●
●●

●●

●

●
●●
●●●
●
●
●●

●
●●●●
●
●
●●
●
●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●
●

●
●
●

●

●
●
●
●
●

●
●●
●
●●●●●●●●●
●
●
●
●●

●
●
●●●●●●●
●
●●

●
●

●

●●●●●

●
●●●●●
●
●●●●●●●●

●
●

●●●
●

●
●

●
●
●
●●
●●
●●
●
●●●
●
●●●●
●●●
●

●●●●●●
●
●●
●●
●●●
●
●
●●●
●

●

●●●
●
●●●●●
●
●●

●

●●●●●
●
●
●

●
●●●

●
●

●

●●
●

●
●

●
●
●●●
●
●●

●
●●

●

●
●●

●●

●
●

●●
●
●
●
●●●
●●●
●●
●●●
●
●
●
●●●●●
●
●●
●

●

●

●
●●
●
●

●
●●

●

●

●

●

●●

●
●●●●
●
●

●
●
●●

●

●

●

●

●●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●●

●

●

●
●

●●●

●●●

●●

●
●
●
●
●

●●

●

●●
●

●

●
●
●

●●●

●
●
●

●

●

●●●●●

●●●●●●●●

●
●●●
●

●

●

●●
●

●

●
●●●●

●

●
●●●●
●

●

●●●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●

●
●

●●●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●●●
●●●

●

●

●●

●●

●

●
●
●
●

●●

●●●●●●

●●

●
●

●

●
●

●
●
●

●

●

●●●●

●
●

●

●●●
●

●

●●

●

●●
●

●

●

●●
●

●●

●

●

●
●

●●●

●●●●●
●
●

●

●●
●●
●●
●

●

●

●

●

●
●●●
●
●●●
●●
●
●

●

●●●
●●
●●
●●
●
●●

●●●●●

●

●●●
●●●●
●●
●●●●

●●

●●
●

●
●●
●●

●●●

●●

●
●●
●

●

●

●●
●●
●

●
●

●
●●

●

●

●

●
●
●

●

●

●
●●

●
●●

●

●●

●

●
●●
●

●

●

●●●●

●

●

●
●●

●●

●●
●●

●
●
●●

●
●●
●
●●●
●

●

●

●●
●

●●
●
●
●
●
●

●
●

●
●

●
●●●

●
●

●

●●
●

●

●●

●
●
●

●

●●
●●

●●●

●

●●

●

●
●●●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●

●

●●●
●●

●●●●
●
●
●●
●●

●

●●
●
●
●

●

●

●●

●

●
●
●

●

●

●
●
●

●

●●

●
●●

●●

●
●

●
●

●●●
●

●
●
●

●

●●
●

●

●
●

●●
●
●
●
●●

●

●

●

●

●
●
●●

●

●●
●●●

●

●

●

●●●●
●
●●

●

●
●

●
●

●●

●

●●●

●
●●
●

●●
●
●●●●●
●

●
●●●●●

●

●

●
●●●●

●

●
●●●

●

●
●
●
●

●●

●

●●
●●●●●
●

●●

●

●
●●
●●

●

●
●
●●

●●

●
●●

●
●
●
●

●

●●
●●
●
●●

●

●

●
●

●
●
●●

●

●

●●●
●
●●●

●●
●●
●●

●

●
●●

●

●

●

●
●
●●
●
●

●

●

●

●
●

●

●
●●
●
●●

●●

●

●
●
●
●●●●

●●

●●●
●
●●
●●

●

●

●

●●●●●
●

●

●
●●

●

●●

●●

●

●●

●●●

●

●

●
●

●

●●
●●
●

●

●●
●●
●●
●
●
●

●

●●●●●●●●●

●●

●●
●

●

●●●

●●

●

●

●

●●●

●●
●●●
●●●●●●●

●●
●
●
●●
●●
●●
●●
●●
●
●
●●
●●
●
●●
●●●●
●●●

●
●

●
●
●●●●
●
●
●

●

●
●●

●

●
●
●
●●●●
●

●

●●
●●●●
●
●
●●●●
●

●
●●

●●
●
●●
●
●●●●●●●●●
●
●●●●●
●●

●●●

●
●●●

●

●

●

●●
●

●●

●
●

●●●

●●●●

●
●
●
●●

●●

●●●

●

●●
●

●

●
●

●●

●

●
●

●
●●

●

●

●
●●●

●
●●●●●
●
●
●●

●

●●

●●●

●
●●●●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●

●
●
●

●

●
●●●

●
●
●
●
●●

●

●
●●
●

●
●

●●
●●
●
●●

●

●●

●●●

●●
●

●

●●●
●
●●

●
●
●●
●●

●●
●
●
●●

●

●●
●
●●
●●
●
●
●●

●
●●

●●

●●

●
●
●

●
●●●●●●●●●
●●●●
●
●●●●●●●●●●
●●
●●
●

●●

●
●
●●●●
●
●
●

●
●●●●
●
●●●
●●●●●
●

●●

●●

●
●
●●●

●

●
●●
●●●
●

●●●●
●
●
●
●
●
●●●●

●●●

●
●●●

●

●●●●●●●●●
●
●●
●●

●

●●●
●
●
●●●

●

●●
●
●●
●
●
●●

●
●
●

●

●●●●●●●●●●●●

●

●
●

●●

●

●
●●●●●

●●

●
●●●
●
●
●
●●●
●●
●●●
●

●
●

●

●●●●●●

●

●

●

●

●●
●
●
●●

●

●●

●

●

●
●
●

●
●

●

●●
●
●●

●

●

●●
●
●
●

●
●

●

●
●●●●●●
●
●●●●
●
●
●
●●
●
●

●●●●●
●
●
●●●

●

●
●

●

●

●●
●
●●●

●
●

●●●

●

●
●●●●●

●
●
●
●
●●●●●
●●●
●

●

●
●●
●
●

●

●●●

●
●

●

●

●●
●●

●
●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●
●

●●
●
●

●
●
●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●
●●●
●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●
●●
●●

●

●

●
●
●

●
●
●
●
●

●
●

●
●●●●
●●

●●
●

●●

●●

●●

●

●

●●

●

●

●

●
●
●●

●●●
●

●

●
●
●
●●

●

●

●
●
●●
●

●
●●

●●
●●

●

●●●

●●

●

●●●

●
●●

●●
●

●
●

●

●

●

●●

●
●●
●●
●

●

●
●

●

●
●

●

●

●
●●●
●
●
●●
●●●●●
●●
●●●●
●
●●●

●

●

●●●

●●●

●
●

●
●●
●
●

●

●

●

●

●
●

●●

●

●●
●
●●

●

●

●
●

●
●●

●
●
●

●
●●

●

●

●

●

●

●●●

●

●
●●●●

●
●●

●

●●

●
●

●

●●
●

●●

●

●●
●●●●●●●
●

●

●●

●●
●●
●●●●●●

●

●●●●●
●
●●
●●

●

●
●

●●

●●
●
●
●

●●●●●●
●

●

●●●
●●●●
●

●
●
●●

●
●
●
●
●

●

●●●●
●

●

●●

●●●●●●

●
●

●
●●

●

●●
●
●

●

●
●
●

●

●●

●●
●

●●
●

●●

●

●

●

●
●

●●●
●
●●

●

●

●●
●

●

●
●

●
●●
●
●●
●
●

●

●
●
●
●●
●
●●
●
●
●

●
●●

●

●●●●●●●

●
●

●
●

●
●
●
●
●

●
●

●

●●●●●

●●

●●●●
●●

●

●●

●●
●

●

●
●●
●●
●

●
●

●●
●●
●

●

●

●

●

●

●

●●
●●
●

●●●

●
●
●

●

●
●●●●
●
●
●
●

●●
●●
●

●

●

●

●●
●●

●●
●

●
●●

●

●
●
●●●●●
●
●●●

●●

●

●

●
●
●
●●●●

●●

●●
●●

●
●●

●

●
●
●●●
●●●
●
●
●
●●

●

●●

●

●

●●

●

●
●●
●●●
●●

●

●

●

●●●●

●

●●
●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●
●●●

●

●●

●●

●

●

●

●●

●

●
●
●
●
●
●
●●●

●

●
●
●●
●●

●

●●

●

●
●●●
●

●
●
●●●●●●●●
●
●●

●
●●
●●●●
●●
●●

●
●●
●●●
●●●●●●●●
●
●●

●
●
●

●
●

●

●●●●
●
●

●
●

●

●
●
●●

●

●●

●
●
●
●●

●
●●●
●

●
●
●●

●●
●

●
●

●

●
●●●

●

●

●

●

●●

●
●

●

●

●

●●
●●●

●

●

●●
●

●

●●●●
●

●
●
●

●

●●
●

●●●●
●●

●

●
●

●●
●●

●

●

●

●●
●●
●●

●

●●

●

●●

●
●
●●●●
●●●

●
●●●●●

●●

●
●
●
●

●

●

●

●

●●
●

●

●

●●●●
●

●●

●●
●

●
●●
●
●
●●
●

●●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●●●●●
●
●
●●●●

●●●●

●●●

●

●
●
●
●●

●

●
●
●

●

●

●

●●

●●
●
●

●

●●

●

●●
●●●●
●●●
●●●●●●
●
●

●
●

●●●

●●●

●

●●●●●
●
●
●●●●●

●

●●●●
●
●

●●

●

●

●

●

●●●

●
●●●●●●
●

●
●●●
●●

●
●

●

●●●
●

●
●●●
●●

●
●

●

●

●●
●
●

●

●

●

●
●

●
●
●●

●

●

●
●●
●
●

●●
●●

●

●●●●

●
●

●
●

●

●

●
●●
●
●

●

●

●●●
●
●●
●●●
●

●●●●●●●●●●●
●
●
●●●●
●●

●●
●●
●●●●
●
●
●
●
●
●
●●●●
●
●●
●●
●●●●●●●
●●●●●●
●
●

●

●●
●●●
●

●
●
●●●●
●●●

●
●

●

●

●
●
●

●●
●
●●

●●●●●●●●●●●●●●●●
●
●
●

●

●
●
●●

●●

●

●

●●●●

●

●●
●●

●

●

●

●
●

●
●●●

●
●●

●
●●●

●●

●
●
●
●
●●●●●
●

●

●●
●

●

●●
●●

●●●
●●●
●
●●
●
●
●●
●

●●

●

●●

●●
●

●

●

●
●

●

●●
●●
●●●

●
●
●●
●●●●
●

●

●●●●●●
●●●
●
●
●
●

●
●

●

●

●●

●
●

●●

●●
●●

●

●

●
●
●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●●●●●
●
●

●●

●●

●

●
●

●
●●●
●●●

●

●●
●

●

●

●

●
●
●●
●

●

●●●●
●●●
●●●●●●●

●

●
●

●

●●
●

●

●

●
●●●●

●●
●
●

●

●

●●●●
●

●●

●

●

●●●
●

●
●
●

●●

●

●●●●●●●●●
●
●
●●●

●
●
●●
●●●●●
●
●
●
●●
●

●

●●

●

●
●●●
●●
●●
●

●
●

●
●

●

●●
●

●●

●

●
●

●
●

●●●
●
●●●
●
●
●
●
●

●

●
●

●●
●
●●
●●

●

●●●
●●

●

●
●
●●
●●

●
●
●●
●
●
●●

●
●●

●

●●

●

●

●

●

●●
●●

●

●
●●●●●●
●
●●●●
●

●●●●●●●●

●
●
●
●●●●●●●
●●●

●

●●
●●
●●●●●●

●

●●
●
●
●●
●

●
●●●
●●

●

●●●
●

●●
●●

●

●●●

●

●
●

●
●

●

●
●●●●

●

●●

●

●●

●
●
●●
●●●

●

●
●●●
●
●●
●●

●
●
●
●

●

●
●

●●●
●●●●
●●
●

●●
●
●

●

●
●

●
●
●
●●●
●
●

●●

●

●●●

●

●●●●●
●
●●
●●

●
●

●

●●
●●●●●
●●
●
●
●●●●●
●●●●●●●●●●

●
●
●●●●
●●●●●
●
●●●
●
●
●
●●●●●
●

●
●

●
●●

●●

●●●●●●

●
●●
●
●

●

●●●●

●

●
●

●

●
●

●●

●

●●

●
●
●

●
●●
●

●

●

●●

●●

●●●

●
●
●●
●

●
●
●●●●

●

●●●●
●●

●●
●
●

●●●●
●
●●●

●

●●●●●●
●●
●
●●
●●●●

●

●

●●

●

●

●

●
●
●●
●●
●

●
●

●
●●
●
●●
●
●

●

●●
●

●●●
●
●
●

●

●

●
●
●●
●

●
●

●

●

●
●

●●●●●

●
●

●●
●●●●
●

●●●

●

●
●●●●
●

●

●

●
●

●
●
●
●
●

●

●●
●

●

●
●●●

●
●

●●
●

●

●●

●
●
●●

●
●●
●

●

●
●

●

●

●

●
●

●●●●●●

●

●

●●

●●

●

●
●●

●
●
●

●
●
●

●
●

●●

●●●●

●

●
●

●

●●

●

●●
●
●
●
●

●

●

●

●
●

●●●
●

●

●

●

●●●
●●
●
●

●
●●
●●●●●

●
●
●●

●

●●

●

●
●

●

●
●

●●

●

●●

●

●●●
●
●
●

●●
●
●●●

●

●
●●

●

●

●
●

●
●
●
●●●

●●

●
●

●

●
●

●

●
●

●●●●

●

●
●

●
●

●●

●●●●●●
●●
●●●
●
●●●
●

●

●●●●●
●●
●●
●
●
●●

●

●●●●●
●
●●
●●

●

●
●
●
●●
●

●●●●●

●
●

●●●

●
●

●
●
●

●
●

●
●●
●

●

●●●
●●●

●
●
●●●●
●●●●●●●●●●
●

●
●●
●
●●●
●●
●●●●
●●●●●●●
●
●●●
●
●
●●●●
●
●●
●
●●●●
●
●●●
●
●●
●
●●●●●●●●
●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●

●

●
●●●
●●
●●●●
●●●●●●●●
●●●●
●
●●
●●●
●●●●●●●●●●
●●●
●●
●●●
●●●●
●●
●
●●●●
●●●●●●
●●
●●
●●●
●●●●●●
●
●
●●●
●●●
●●●●●●●
●
●
●●●●●●
●●●●
●●●
●●●
●●●●●
●●●●●
●●●
●●●●
●
●
●●

●

●
●●
●
●●●●
●

●●●
●●
●●
●
●
●●●●
●
●●●●●
●
●
●●●●●
●●
●●
●●●●●●●
●
●●●
●
●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●
●●●
●
●
●●●●●●●●●
●
●
●●
●●●●
●●●
●

●●●●●●
●●●●●●●
●●
●
●●●●●●
●●●
●
●●●●●
●●●●●
●
●●●●●●●
●●
●●●●●
●●●
●
●
●●
●●
●
●●●

●
●

●●
●
●●

●
●
●
●
●

●

●
●●
●●●●●
●
●●

●●

●
●●●
●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●
●●
●●●
●
●●●
●
●
●●●●●
●
●
●
●●●●●
●●●●●
●●●●●
●●
●●●
●●●●●

●

●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●
●●
●
●●●●●●●●●●●
●
●●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●
●
●
●●●●

●●●●●●●●●●●●●●●
●●●
●
●●●
●●●●●●●●●●
●
●●
●

●●●
●●●●●●
●
●
●●●
●

●
●
●●●
●●●
●●●
●●
●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●
●●●●●
●
●●●●●●●●
●

●
●●●●●

●

●●
●●●●
●●

●

●

●
●

●

●

●
●●●●●●
●●
●
●

●

●
●
●●●●●
●●

●
●●

●

●
●

●

●

●●●●●●●

●

●●●●●●

●

●●
●●●
●

●

●●

●
●
●

●

●
●●
●●

●●

●
●

●●
●●●
●●●●
●●
●●●
●●

●
●

●

●

●
●●●●
●
●

●

●●●●●●●
●
●●●●●●●●●●●
●
●
●
●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●
●
●
●
●
●●●●

●

●
●
●●

●

●
●●●

●

●
●
●●

●●
●●●●●●
●

●●●●
●

●●
●

●
●●●●●●

●●●
●
●
●●●●

●

●●●
●●●●
●●●●●●
●
●●●
●
●●●●●●●●
●●
●●
●
●●●
●
●●
●
●●●●
●●●●●●●
●
●
●●●●●
●●●●●
●
●
●●
●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●

●

●●
●●
●
●●

●●
●●●

●

●
●●
●

●
●●
●●
●

●

●

●

●
●
●

●●

●

●
●

●●
●●●●●●●

●
●

●

●

●●
●
●

●

●

●

●

●●●●

●●

●
●●

●●

●
●

●

●
●

●●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●●
●

●●
●

●●

●

●

●

●
●

●

●

●●

●●●●
●●●
●
●

●

●

●
●

●●
●

●●

●●

●

●●●

●

●
●

●●

●
●●

●●
●
●

●

●●●

●
●

●
●

●●

●●
●●

●

●
●●●

●

●

●
●●

●●

●
●

●

●●

●

●

●

●

●●
●

●
●●●
●●
●●●

●

●●●

●
●

●

●●●●

●
●

●●
●

●
●

●

●
●●
●

●

●

●●
●
●
●
●●

●●
●
●●
●●
●
●●

●

●●●●●●●●
●

●
●

●
●●
●

●

●●●

●

●●

●

●
●

●

●
●●●

●●

●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●
●
●
●
●

●

●●

●●

●

●●
●

●

●●●

●

●

●

●

●
●●

●

●

●●●
●
●
●

●

●●
●
●
●

●

●
●

●
●●●

●

●●
●

●
●

●
●
●

●

●
●
●

●
●
●

●

●●
●

●●

●
●●

●

●●

●

●

●
●●
●

●
●

●

●●
●

●●
●

●
●●●
●●
●

●

●

●
●

●●

●

●●
●
●●
●
●
●●
●

●

●

●
●
●

●●

●

●●●●●●
●●●●●●●
●●
●●●●

●

●●

●

●
●●

●

●
●
●
●●
●
●
●

●

●
●●●●●●●●●●●
●
●●●

●

●

●●
●●●●●

●
●
●
●

●●●
●●

●●

●
●

●
●●●●
●●●●●●●
●●
●

●●
●●

●

●

●

●
●●●
●
●
●●
●●
●

●

●
●●
●●●●●●●●

●
●

●●
●
●

●

●
●

●

●

●
●●
●
●

●
●●●●●●●●●●
●
●●
●●
●●

●

●
●●●●●●●

●●

●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●

●
●
●

●
●●●●●
●●
●

●

●●●
●
●

●●

●

●

●

●●●●
●●

●

●

●
●
●●●●

●
●●

●

●

●
●
●
●
●

●
●

●

●●

●

●●

●●
●

●●

●●

●
●

●●●
●

●●

●

●●
●

●

●
●
●
●

●
●

●●●
●
●

●●
●

●

●●
●

●

●
●
●

●
●
●

●

●
●
●●●
●

●
●

●
●●●●

●

●

●●

●

●●
●

●
●
●●
●
●
●
●
●
●●

●
●
●

●

●

●

●
●
●
●●

●
●
●●●

●●●●

●

●●●

●

●
●

●
●
●

●

●●●●
●●
●●●

●

●

●

●
●
●
●●●

●●

●

●

●

●●●●●
●●
●●●●
●
●●
●
●
●

●●
●●
●●●

●
●●

●

●

●●
●

●●●●
●●●
●
●
●
●●●
●
●●
●
●●●
●
●
●●

●
●

●●
●●●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●●
●●
●

●●

●●●●●

●
●
●

●

●

●

●

●
●●●
●
●

●

●
●

●

●
●●
●
●
●●
●
●

●

●●
●

●
●

●

●

●●●

●●●

●

●

●●
●
●
●
●●
●
●
●

●

●

●●

●●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●●

●
●
●●

●
●●
●

●●●●

●

●●●●●
●

●●

●●

●

●●

●

●

●●
●

●

●●

●

●●
●

●

●

●
●

●
●
●
●●●
●

●

●
●

●
●
●●
●

●
●

●
●●

●

●
●●
●●

●
●
●

●

●
●●●

●

●
●
●●
●
●

●

●●●●●
●
●●●

●

●●

●
●

●●●●

●
●
●
●
●

●
●
●
●

●●
●

●●●
●
●●●
●
●

●
●●
●
●●●●
●

●

●

●●
●●
●●●

●
●
●●●●●
●

●
●●
●

●●●
●●●

●
●●●

●

●●
●●
●●
●
●●
●
●
●●●●●●
●●●

●●●
●●●
●●
●●●●
●
●●●●
●
●

●●

●●
●●●
●●
●●●●
●●●●
●
●●●
●

●
●●●
●
●●
●

●●●●●●●
●

●●

●

●
●
●
●●

●

●●●

●
●

●

●

●
●

●

●●
●

●

●

●
●●●●●

●

●●●●●●●●●
●
●●●●●
●●
●
●

●
●

●
●●
●
●

●●
●●

●

●
●
●●●
●

●
●
●

●

●●

●
●●
●●●●●
●
●●●●

●●
●

●
●●

●

●
●
●●●
●●

●

●
●
●
●
●

●

●●●
●

●●●

●

●
●●

●●
●

●
●●
●
●

●●

●

●●
●

●

●●
●●

●●
●
●
●●

●

●●

●

●
●●

●

●●
●
●●
●

●

●●

●
●
●

●

●●

●
●
●

●

●●

●
●●

●
●
●

●

●●●●
●

●

●
●
●●

●
●

●
●
●

●

●

●

●

●

●

●●
●
●●●●●
●

●
●
●●●●
●

●

●
●●

●
●●
●
●
●

●
●
●●●
●●

●
●
●●

●●●●●

●

●

●

●

●
●
●●●
●●●●●●

●

●

●

●
●

●●●●

●
●

●●
●
●
●●

●

●

●

●
●

●

●

●

●
●
●

●
●●
●

●

●●
●
●●

●

●●

●

●

●

●
●
●
●
●

●●●●

●●

●
●
●

●

●
●●
●

●

●

●●

●

●

●

●●
●●●●
●●●●
●
●●

●
●
●

●

●●

●

●

●

●●
●
●

●

●

●

●

●●

●
●

●●

●
●●●●●

●

●
●

●

●

●●●
●

●●
●
●
●●

●●
●
●

●
●

●
●●●
●

●

●●●
●
●●●●
●

●
●
●
●

●●●●●●●●●
●
●

●●●●●●●●●
●●●●●
●●●
●●
●●

●●

●
●
●●●●●
●

●
●●●●
●
●
●

●
●

●
●

●●

●
●
●
●
●
●
●

●

●

●●●

●
●●

●

●●
●

●
●
●●●●●●●

●

●

●

●
●

●
●●

●●

●

●
●●

●
●

●

●
●
●

●

●
●●
●
●

●●●●
●
●
●
●

●

●●

●●
●

●
●●

●●●

●
●

●●
●

●
●●

●
●●●

●
●

●●●
●
●●
●
●●●●●●
●●●●
●●●●

●●
●●●
●●
●●●●●●●●●
●●●●●●
●
●
●
●●●●●
●●
●
●●

●●●
●
●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●
●●●●●●
●●●●●
●●
●●●
●
●●●
●
●●●●●●●

●
●
●●●
●●
●●●
●●●
●●●
●●●●●●
●
●●●●●
●●
●●●●●●
●●●●
●
●
●●
●
●●
●●●●●
●●●
●
●●●●●●●●●●●
●●●●
●
●
●

●●
●●●
●●●
●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●
●●
●●●●●●●●●●●●●
●●●●●●●●
●●●
●
●
●●●●
●
●●●●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●●●
●
●●

●
●

●

●
●

●

●●

●●●●
●●●●

●
●

●

●

●

●
●
●●
●

●

●

●●●
●
●
●
●

●●

●
●

●●●

●
●

●
●●●●

●●
●
●●

●
●●

●

●
●●

●
●
●

●

●●

●
●●
●
●
●●

●●
●●●●
●

●
●

●●●

●

●

●
●
●●

●

●●●●
●●

●●●●●●
●●
●
●●●●●●

●

●

●
●
●
●
●
●

●

●
●●

●●
●●●

●

●
●

●
●
●

●

●

●

●

●

●●
●●●
●●
●

●
●

●●
●
●●●
●

●●
●
●

●
●●
●
●●●●
●●●●

●

●
●●●●
●

●

●●●●

●

●

●
●
●

●●
●

●●
●

●
●

●

●

●
●

●

●●

●

●
●●

●

●●

●

●

●
●
●

●

●

●
●

●●
●

●●●

●

●

●

●
●

●●

●
●

●
●●●

●

●

●

●

●●

●

●●●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●
●●●

●

●●
●

●●

●
●
●
●
●●●
●●

●

●
●
●
●
●
●
●

●

●●
●●
●
●●

●
●●
●
●●

●
●●

●
●

●●●

●
●

●

●●

●
●
●
●●

●●
●
●

●●

●
●

●
●
●

●

●
●
●●

●
●

●●●
●
●

●

●●
●

●●

●●

●

●

●

●
●●●
●
●

●

●

●
●
●
●
●
●

●

●●

●●

●

●●●

●
●

●
●

●
●
●●

●
●

●●
●

●●

●
●
●●
●
●●
●●

●

●
●●

●
●

●●
●
●●●
●●●

●
●

●●●●

●
●
●●
●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●●
●
●●
●●
●

●
●

●

●●

●

●

●●●
●
●●●

●

●
●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●●
●●

●

●●
●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●●●

●●

●●●●●●●
●●●
●●
●●

●

●

●
●
●●
●
●
●
●
●

●

●

●
●

●●
●

●●

●
●

●●●●
●
●●
●
●●●●

●

●
●
●

●
●
●

●●●

●

●

●

●
●
●●
●

●

●●

●

●●●●●

●

●●

●●●
●
●
●

●

●

●

●
●●
●
●●
●
●●●●

●

●●

●

●
●
●●

●
●

●●

●

●

●●
●
●
●
●
●

●●

●
●

●

●

●
●

●

●
●●
●●

●

●

●●
●●●

●
●●

●

●
●●
●

●
●
●

●
●●●

●●

●
●

●

●

●
●●●●
●
●
●

●●

●●●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

●

●●●

●
●

●
●
●

●
●
●●
●

●

●

●
●●

●
●

●
●
●

●

●●

●

●

●
●●
●●●

●
●
●●●●

●

●

●●

●●

●

●

●●

●●

●

●●
●

●●
●
●●
●●●
●

●

●
●●●●
●

●

●
●
●●
●

●●

●

●

●

●
●●

●
●

●●

●

●●

●

●

●●

●●
●

●

●

●●●

●

●

●

●●
●

●
●●
●

●
●
●
●
●
●●

●

●

●
●

●
●●

●

●
●

●

●

●
●
●

●
●●

●●
●

●

●●●●●

●●

●

●
●●

●●

●

●●●

●

●●

●

●
●●

●
●
●●●●

●

●●●●
●
●

●
●

●●
●
●●
●●

●
●●
●
●●●
●
●●
●

●

●●
●
●

●

●
●●

●
●

●
●●●
●●●
●
●●
●
●●
●
●●

●●

●
●●
●●
●●
●●
●●●●●

●●●

●

●

●
●
●

●

●
●
●

●●●●

●●●
●●
●
●●
●●

●
●●●●
●
●

●●

●

●
●
●
●

●

●
●
●●

●
●●
●●●
●
●●

●
●●●●
●

●
●

●

●

●●

●

●●●●
●●●●●●●●

●

●
●

●
●
●●
●
●●
●
●●●●
●●●

●
●

●
●
●●●
●●●

●
●●●

●●●

●
●●
●●

●

●●

●
●
●

●
●

●●●
●
●●

●
●●●●●

●

●●●●
●●●

●

●
●●●
●●●
●●●
●
●
●●●●
●●

●

●●●●

●
●●●●

●●

●

●

●

●●

●●●●

●

●
●●●●●
●

●

●

●
●
●
●
●
●
●●

●
●●

●

●

●●
●
●
●

●●

●
●
●
●
●●

●

●
●●
●
●

●●●●●
●
●
●

●
●●●●●
●●
●●

●

●
●●●●●
●●●●
●●
●●●

●●

●●●●
●

●

●

●
●
●
●

●●

●
●
●
●
●

●
●
●

●

●
●●
●

●

●

●

●
●●

●

●
●

●
●●●

●

●
●
●

●

●

●●
●●
●

●

●

●

●
●

●●●

●

●●●●

●

●
●

●
●

●

●

●

●
●

●
●●●●●●
●

●

●●●

●
●●

●●

●

●
●

●●
●●

●●
●

●
●
●
●●●●●●
●●
●

●
●

●

●
●
●
●

●
●
●
●
●
●●
●
●●●
●●
●
●●●●●
●●
●

●●
●
●
●●●●●
●●

●●

●●●●●●●

●
●●
●●●
●●

●
●
●

●

●
●●●●

●

●●

●●●●
●●●●
●
●●
●●
●
●●●●●●
●●●
●●●●
●

●
●●
●

●

●●●

●
●

●
●

●
●

●

●
●

●
●

●

●

●●

●●
●

●●
●●●

●

●

●●●●●
●
●
●
●

●●

●
●
●●

●
●●
●●●●
●
●●
●●●●●
●
●●●

●

●
●
●

●

●
●
●●
●●●●
●●●
●
●●●
●
●●
●●
●

●●

●●
●●●●●

●

●●●●●
●
●●●
●●

●

●
●●

●

●●●
●
●
●
●
●

●
●

●●

●●
●

●
●

●●●●
●●●●●●●●
●●●
●
●●
●
●

●●

●
●●●●

●
●●●●

●

●

●
●

●
●●●●
●●

●

●

●

●

●
●

●
●
●
●
●●
●
●
●

●
●

●●

●●
●

●

●
●
●

●

●●
●
●

●
●●

●

●●●
●
●●
●
●●●●●

●

●●
●●
●●●●
●

●

●
●
●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●●●
●●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●
●●

●●

●

●
●

●

●

●●
●●●●
●●●●●
●
●
●
●

●

●
●
●
●

●●
●

●
●
●

●
●

●
●●●●●●

●
●

●

●●
●●
●●
●●●

●●

●
●
●

●
●●
●
●●●
●
●●
●●●●
●

●
●
●●

●

●

●

●●●
●

●

●

●●●

●●
●
●

●●
●●
●
●
●

●●●
●●
●

●

●

●
●●
●
●●
●
●
●
●●●●

●

●●●

●●●●

●
●
●
●●●●
●●●●●
●
●●●
●●●●

●
●●●
●●

●
●
●●

●

●●
●●
●●
●
●●

●
●●●●●●●
●
●●●

●●
●

●●

●●●●●
●●●●
●●●
●
●
●●●
●
●

●

●

●●
●
●●

●

●
●●

●

●●

●

●●●

●●

●

●

●
●
●

●
●
●

●
●

●

●●●
●●●
●

●●

●

●
●
●●●●
●
●
●

●
●
●●●●●
●
●●
●
●
●
●
●●
●●
●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●
●
●
●●●●●
●
●
●
●●
●
●
●●●

●
●
●●●
●
●
●●●●●●●●●●
●●
●●
●●
●
●●●●
●
●

●●

●
●●
●●
●●
●●
●●●

●

●●●
●

●●●●

●

●
●

●●●●
●●
●●

●●

●●
●●●
●

●

●
●
●

●●
●

●●●●
●●
●

●
●

●

●●
●

●
●

●●●
●

●

●

●

●

●●
●
●●
●●●●
●●●
●●
●
●
●

●
●

●

●●
●
●

●
●
●●

●

●●

●●●
●●
●●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●●●

●

●
●
●●●●
●

●

●●
●●
●

●●●

●
●

●●
●

●

●

●●
●

●●
●
●●●

●●●●●●●
●

●

●
●
●
●●

●

●●●●●
●

●●

●

●●

●●
●●●●●●●●
●●●●●●●●●
●
●
●●●
●●●
●
●
●●●
●●●
●●
●
●
●●●●

●

●
●●
●
●

●

●
●●
●
●●
●

●

●●●

●
●

●●●●●
●

●

●

●

●
●
●●●

●●

●●●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●
●
●
●

●
●

●

●●●

●
●
●
●
●
●

●●
●

●●
●●
●●

●●
●

●●
●●
●

●

●

●

●

●
●
●
●●
●
●
●

●

●
●

●●

●●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●
●

●●●

●
●●
●●●●●●

●●
●

●●●●●●
●

●
●

●
●

●
●●
●●
●●●
●●
●●
●

●
●

●

●
●●
●
●
●●
●●●●●●●
●
●

●●
●●●

●
●
●●●●
●●
●
●●●

●

●●
●●●●●
●●
●

●
●●
●
●

●●●●●

●

●●

●

●
●

●●

●

●●

●

●
●
●●
●

●
●

●
●

●
●●
●●

●
●●●
●
●
●
●
●

●●
●●

●
●●
●
●
●●
●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●●●●●●

●
●●

●●

●

●●●●●

●

●●
●

●●

●
●

●

●●●
●●
●●●●●●●
●●●●

●

●●●

●

●

●●●●
●
●
●●●

●

●●●●●
●●●●●
●
●●
●●●●●
●●

●

●●●

●

●●●●●●●●
●
●●

●

●●●

●

●
●

●
●
●●●●●●●

●

●

●

●
●●●●
●

●

●

●
●
●
●
●●●
●
●●●●●●●
●
●

●
●
●

●●

●

●

●●●●
●

●
●
●
●●●
●●
●

●●

●
●

●●
●●●●●●●●
●
●●●
●
●
●●
●
●
●●●●
●●●●●●●●●

●●●

●
●●●●●
●

●
●

●
●

●●●
●●●●●●
●●●●●●

●

●

●
●

●

●
●
●●
●
●
●

●●
●

●●●

●

●
●
●

●

●
●●●●
●
●

●

●
●

●

●●
●●
●
●●●
●

●
●

●
●

●
●
●
●●●

●●

●
●
●

●

●●●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●
●●
●●
●
●
●

●●

●

●

●

●●

●●
●●

●

●
●
●

●●

●
●
●

●●●
●
●

●

●

●●

●

●●
●

●●●●

●
●●●

●●

●

●●

●●

●

●

●●●

●
●●

●

●

●●●
●●

●

●

●
●
●

●

●
●
●
●●
●
●●●●
●

●●
●
●

●
●
●●
●
●

●●●●

●●●
●
●

●
●●●●●●
●
●●
●
●
●
●

●

●●
●
●
●
●●
●
●●●

●

●

●
●

●
●●●

●●

●

●●
●

●●

●●

●
●●
●
●
●●●●

●

●
●●●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●
●●
●

●

●

●
●●●●

●
●

●●

●
●
●●

●●●

●●●●●
●●●●●●●●
●●
●●
●
●●●

●

●
●

●●

●

●●
●

●

●●●●●

●
●

●

●
●●

●

●

●
●●

●

●
●
●

●
●●●●
●
●
●
●

●
●

●

●

●

●
●

●

●●
●

●

●
●
●
●
●
●●
●

●

●●
●●

●

●●

●

●

●
●

●●●●●●●●

●
●●
●●●

●

●●●●
●●
●●●●●
●
●●

●
●●
●

●●
●

●

●
●●●●●

●

●
●●●●●
●●●
●

●

●

●●
●
●

●

●
●
●

●

●

●
●

●●

●●●
●

●●●●●●●●
●
●

●

●
●

●

●
●
●
●
●
●●●
●

●

●

●

●●●

●

●

●●

●●●●●●●●●●

●
●
●

●
●●●●

●

●
●
●
●

●●●●
●●●●●●●
●●

●

●●●●

●●
●

●
●●●●
●
●

●
●●●●

●
●●●
●
●●●

●

●●
●
●●●●

●

●●●

●●●
●

●
●
●
●●

●

●
●●●
●

●●●●
●●●
●●
●

●●

●●●
●
●●

●
●

●●
●●●●●

●
●

●
●●●●●

●
●

●●●●
●

●
●

●●

●●●●●
●●●●●●●●●
●●●
●●
●

●
●●●●

●

●●●●●

●
●●●
●●
●
●
●●●

●

●

●
●

●
●●

●
●

●

●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●
●●
●
●●
●

●●●●
●
●
●●

●●●

●
●

●
●●●●
●●
●●●●●●
●●●●●●●●●●
●
●●●
●
●

●
●●●●

●
●●●
●

●●
●
●●●
●

●

●
●

●
●
●
●

●

●●●●
●●

●
●
●
●●●●
●

●●●●●●●
●

●

●
●
●●

●

●
●
●

●
●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●●
●
●●●●●
●
●

●●●●
●

●

●

●●●

●
●
●
●●●
●
●●●
●●

●
●

●
●●●●
●

●

●●●

●
●

●

●
●●●
●●
●
●

●●
●●●
●

●
●●●

●
●
●

●●●
●
●
●●●

●

●

●●●●●●●●●
●

●
●
●●
●

●●●●●
●
●
●●
●

●
●
●●
●
●●●
●●●●
●

●

●

●●

●
●●
●
●●●●
●●●●●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●

●●
●

●●

●●●
●
●●
●
●●
●●●●●
●

●
●●●
●
●
●

●●●
●
●●

●
●

●

●●

●●

●

●

●●

●

●

●
●
●
●
●
●
●
●
●
●
●●

●

●

●
●●

●
●
●●

●
●
●●

●
●

●
●
●
●

●

●
●
●●●●●
●●

●
●

●

●
●
●●

●●●
●
●●●

●

●
●

●
●
●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●
●●
●●
●●●
●
●
●
●●
●

●
●●
●●
●
●

●
●●●●
●
●●●●●
●

●

●
●

●
●●●

●
●
●

●

●
●

●
●
●

●

●

●
●
●

●●
●●

●
●●●●
●
●

●

●●

●

●●

●●
●
●
●

●
●
●

●

●●
●●
●

●

●
●
●●

●

●

●
●

●
●●
●●
●
●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●●●●●
●
●●
●●
●
●

●●
●●

●

●

●

●

●●●

●

●

●●●

●
●

●●●●
●●●●

●

●
●●●

●
●
●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●
●

●●
●●
●

●
●

●●●
●
●●

●

●

●
●

●
●

●

●●

●

●

●●
●
●
●●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●●
●
●●

●

●

●●

●
●●●
●
●
●●●●●●●

●
●●
●●●
●
●
●

●

●
●

●

●●
●●●●

●

●●
●

●

●

●

●

●●
●
●
●
●●●
●

●

●

●

●

●

●
●
●

●●●●●

●●
●
●

●

●

●●

●●●●●

●
●●●

●
●●●●
●
●
●●●
●●

●●
●
●●
●
●●●●
●
●
●
●●
●
●●●
●
●
●
●

●
●
●

●

●
●
●●
●
●●●
●●●●
●

●●
●

●●

●●●

●

●

●
●
●●●●●●
●●
●●●
●
●●
●●
●
●

●

●●
●
●

●

●
●

●

●●

●

●●

●
●●●●●●
●●
●

●
●●●●●
●
●

●●
●

●
●

●●

●●●
●

●

●
●●
●●

●

●●
●●

●

●
●●
●
●
●●
●

●
●●
●
●●
●

●
●●●
●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●
●●

●

●
●

●●
●
●
●
●
●
●
●●
●

●

●

●

●●●●
●
●●●●

●

●

●

●●●
●
●

●

●

●

●

●
●

●●
●●●●●

●
●
●

●

●

●
●
●●
●
●

●
●
●
●
●
●●●

●●

●●
●●

●
●●
●

●

●●●●●
●

●●●
●

●
●

●
●●
●
●
●●
●●●●●
●●
●
●●●

●●
●●
●
●
●
●●

●

●

●●

●

●●

●

●

●
●
●●●
●
●

●

●
●●●
●
●
●

●●

●
●●

●

●●●●●
●
●●●●
●
●

●●●

●
●

●●

●

●●●●

●

●

●●●●

●

●
●●
●●●●
●

●●
●
●
●

●

●
●
●
●●
●
●
●

●●
●

●

●
●●●●
●
●
●●
●
●●●●●●●●

●

●●●

●

●
●
●

●

●

●●
●
●
●●
●●●●

●

●●
●

●

●●●●●
●
●

●●
●

●●●
●●

●
●

●●●●●●●●●
●●
●●
●
●●
●

●

●

●
●
●●●●●
●

●

●

●●●●
●
●●

●

●
●●●

●

●

●

●

●
●●●●

●
●●

●

●●
●●
●●●●●
●
●●

●
●
●●
●
●
●●
●●●
●●

●

●
●

●
●

●

●
●

●
●●●●

●
●
●●
●●
●●
●●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●●
●●●●●●

●

●

●
●
●

●
●●●

●

●●
●

●
●
●
●●

●
●

●

●

●
●
●●
●●●

●●

●●●●●
●
●

●

●●●●●
●●●
●
●

●●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●●
●
●●●●●

●●●
●

●

●●
●

●●
●
●

●

●

●●

●

●

●

●●
●

●

●
●

●

●
●
●
●●
●
●●
●
●●●●●
●

●

●

●
●

●

●●●●●

●

●
●●●●●●
●

●

●
●
●
●
●

●
●

●
●●
●
●●●●●●
●
●

●

●
●●

●
●
●

●

●

●●

●●
●
●
●●●●
●
●●
●
●●●
●●
●●

●

●
●

●
●

●

●
●

●

●●●●

●
●
●●
●
●
●
●●●

●

●

●
●●

●

●●
●

●●

●

●

●
●
●●●

●

●●
●●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●●●●●
●
●
●
●

●
●

●●
●
●●
●
●

●●
●

●●

●

●●●

●

●
●●

●●

●

●

●

●

●
●
●

●●
●

●●
●●●

●●

●

●

●

●●
●●●

●
●●
●●●
●●●
●●●
●●●●

●●
●

●

●

●
●
●

●
●

●

●●

●

●
●

●
●

●
●

●●●●●●
●
●●
●●●
●
●●
●
●●●●●●●●●
●●●
●

●

●

●
●●
●
●

●

●
●●●
●

●●●●
●●●●●
●
●●
●
●●●●●●
●●●
●
●●●
●
●
●●●●●●
●
●
●

●●●●●
●●
●●●
●
●●
●●●●

●
●

●

●

●
●

●
●●
●●●●●●●
●
●●●
●●●●●
●●

●
●
●
●●●●
●●●●●●
●
●●●●●
●●
●

●●●
●
●
●
●●
●●
●

●

●
●
●●●
●●●
●

●●

●

●●●
●●
●●
●
●●
●

●●

●●●●
●●●
●

●

●
●

●●

●

●
●●
●●●
●
●●
●

●●●●

●

●
●●●●

●

●
●●●●●●
●
●

●●

●

●●

●

●

●

●●●
●

●●
●

●

●●●●●

●
●

●
●●●
●●●●●
●

●

●

●

●●●●
●●●●●
●●
●●●

●
●
●●
●●
●
●●
●●●
●

●

●

●●●

●●

●
●
●●●
●
●●●●

●

●●
●●
●

●●

●

●●●

●

●
●
●●●●
●
●●●●●

●
●

●●
●●
●

Chr 2 4 6 8 10 12 14 16 18 X1 3 5 7 9 11 13 15 17 19

● Mediation
Chromatin
Expression

Mediator 95% thresh
eQTL 95% thresh
cQTL 95% thresh

Figure 1.9: The simplistic model of chromatin accessibility as a possible mediator of the eQTL effect
on gene expression (A). This model was tested for all genes with detected eQTL in lung, liver, and
kidney tissue for 47 CC strains with only a single observation per strain. Example of genome-wide
significant mediation (B). The gene Alad has a significant eQTL, local to its transcription start site
(TSS) (yellow) on chromosome 4, in kidney tissue. The chromatin accessibility in the region also
has a significant local cQTL (blue). Significant mediation is detected in the area (red), by the drop in
p-value that reflects chromatin accessibility out-competing the eQTL when included in the null and
alternative models of the genome scan of Alad expression.
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to the ability to characterize associations with respect to the founder haplotypes (allele effects), and

potentially replicate findings or design downstream experiments in related populations.

1.4 Summary

This dissertation describes a range of methods and analyses for use with MPP. Chapters 2 and 3

describe approaches for designing experiments, first using MPP pilot data in the form of the diallel

to select promising bi-parental crosses, and second to design adequately powered mapping studies of

the finalized CC strains. Chapters 4, 5, and 6 collectively focus on genetic association analyses for

MPP: QTL mapping in MPP populations with problematic founder haplotype uncertainty, imputed

SNP association and fine-mapping approaches in an HS rats population, and an integrative genetic

mediation analysis of gene expression and chromatin accessibility in the CC, respectively. Taken

together broadly, this research presents novel methodologies for accommodating and thus harnessing

MPP resources for powerful genetic experiments.
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CHAPTER 2

Using the diallel to select optimal bi-parental crosses to map QTL 1

2.1 Introduction

Geneticists commonly conduct experiments with the goal of identifying quantitative trait loci

(QTL) using crosses of inbred strains of model organisms. These experiments can be costly in terms

of resources, due to the organisms, their care, genotyping or sequencing, as well as the time and

energy required for the experiment itself. In the face of these constraints, procedures that explore the

potential set of experimental cross designs and allow researchers to select experiments with greater

potential to be successful are beneficial to the field of complex traits.

Although the goals for a given experiment will be nuanced and unique to each study, the mapping

portion is successful if a QTL is detected with a statistically significant signal, using established

methodologies (Lander and Botstein, 1989; Haley and Knott, 1992; Dupuis and Siegmund, 1999;

Broman, 2001). This outcome is not guaranteed simply due to the presence of segregating QTL

in the mapping population: the experimental design may not be sufficiently powered to identify

them. The power of an experiment, the probability that a non-zero effect will be recognized given

that it is present, is influenced by a number of biological factors, some of which can be more

easily manipulated and optimized through experimental design choices. These factors include

genetic architecture, mode of action, and the variation in the population due to noise. If the genetic

architecture of the trait is highly polygenic with many loci of small effect, power will be reduced

compared to tests for QTL of larger effect. Similarly, mode of action (e.g. additive, dominant), for a

QTL will also influence power because certain experimental designs will have differential ability to

detect a given effect type. For example, a backcross (BC) cannot identify a QTL underlying a fully

recessive effect when the homozygote of the recessive allele is never observed. Finally, an increase

1This chapter represents a mature draft of a manuscript currently in preparation, with slight modifications made
for the format. Current author line and title are: Keele, G. R., Maurizio, P. L., Oreper, D., Valdar, W. Diallel-informed
experimental cross selection for QTL mapping.
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in variation due to noise will decrease power because the noise drowns out the true signal. Ideally,

investigators would select the experiment that can best handle these factors in the given setting.

In the context of crosses of inbred organisms, one major component of the experimental design

is the founder or parental strains. The selection of parental strains allows the investigator to control

the genetic background of the experimental population, which can greatly influence the previously

mentioned biological factors, and ultimately influence the potential for mapping success. For

example, a trait could be highly polygenic and have loci with complex modes of action within natural

populations, but much of the genetic and phenotypic variation becomes fixed within two closely

related inbred strains. The reduced genetic variability can impact all of the biological factors: the

complexity or polygenic nature of the genetic architecture by fixing many of the loci, the mode of

action by limiting the potential for epistatic effects through less segregating variants, and the variance

attributable to noise through the reduction in phenotypic variability.

The ability to strongly influence the sources of variation in the population is important to consider.

If the QTL explains a large proportion of the variance in the population, a simple cross will be well-

powered to identify the QTL, even if its effect is small. The balance between the variance attributable

to the QTL versus how generalizable the experiment is to natural populations is important to consider

when making decisions about experimental design. Ultimately a finding that is characteristic of only

a very unnatural experimental population and does not generalize well to more natural, outbred ones,

will greatly reduce the impact of such an experiment and even undermine the purpose of experiments

of model organism in general. The ideal experiment will be well-powered to identify QTL, but also

generalizable to natural populations.

The power of an experiment cannot be directly assessed because it requires knowledge of the

true effect, which is unknown. Instead power calculations are performed for a range of plausible

parameters, usually over varying effect sizes or sample sizes, given some type I error level and error

variance, which can then be represented as power curves. Power calculations have been specifically

developed and refined for simple cross designs such as F2 intercross, BC, and recombinant inbred (RI)

strain panels, using an information perspective approach, which posits that the complete information

is composed of the observed information and the missing information (Sen et al., 2005). These

power calculations are still dependent on assumed parameters, in this case QTL effect sizes and error

variances. As a result, meaningful and useful power calculations still depend on the consideration of
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Figure 1.1: Diagrams of potential bi-parental crosses that we consider with DIDACT: F2 (A),
BC (B), and RBC (C). An parental haplotype is represented as a single colored chromosome.
The P and F1 generations are replicable, whereas the mapping populations are not. Of these
three cross designs, only the F2 mapping population has potentially all three genotypes
at a locus (A/A, A/B, and B/B), which allows for additive and dominance effects to be
estimated. With traditional BC, one parental homozygote is possibly observed, depending
on which parent is back crossed. By jointly analyzing RBC, it is possible to detect effects
from heterozygous sites in which the parent-of-origin differs for the back crossed parental
allele.

an appropriate set of values for these unknown quantities, otherwise the power estimates could be

uninformative or even misleading.

Pilot data can provide information about the underlying genetic signals present in potential

experiments. One source of pilot data is the inbred founder strains themselves as well as their

hybrid crosses (F1). Comparisons of F1 individuals to the inbred strains can provide estimates of

various genetic effects for given strains, aggregated from causal variants across the entire genome.

These effects can include additive, inbred, and epistatic. An additive effect for a given strain can be

estimated from averages of F1 that do not have the strain as a parent (0 copies), to averages of F1 that

do have the strain as a parent (1 copy), and finally to the inbred strain itself (2 copies). An inbred

effect is estimated from these same sets of crosses, but represent the average departures observed

from the expectation of the hybrid according to the additive effect to its actual observed value. An

epistatic effect represents departures from expectation for a specific cross of two strains, thus it is an

interaction effect of the two strains.

Additional information is contained in the reciprocal crosses that compose the F1 hybrids, and

can be characterized as parent-of-origin effects (POE). Reciprocal F1 crosses have the same parental

strains, but the dam-sire identities are switched. The average differences between reciprocal crosses

can be used to estimate the POE. QTL underlying these POE effects can be mapped using a unique

BC design that we will refer to as RBC (Gonzalo et al., 2007). RBC subtly differs from what is
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traditionally known as reciprocal BC, in which the F1 is the same but back crossed to the alternative

parental strain. RBC have the same F1 and back crossed parent, but the dam and sire strains are

reversed between reciprocal pairs; thus the parent-of-origin for each allele is known at heterozygous

sites, and differences in the trait that correlate to genotype and parent-of-origin can be detected. The

estimation of POE through reciprocal crosses allows researchers to add RBC to their collection of

potential experiments. Though RBC are not as commonly used as F2 and BC, interest in POE has

increased (Lawson et al., 2013; Bérénos et al., 2014; Connolly and Heron, 2015; Harper et al., 2014;

Zou et al., 2014). Pilot data that distinguishes between reciprocal F1s allow for an even larger number

of experiments to be explored and considered. These potential bi-parental mapping populations, F2,

BC, and RBC, are depicted in Figure 1.1.

These experiments can best be explored with the full set of potential founder lines and their

F1 hybrids, which represent a classic genetic experiment, the diallel. Diallel crosses have been

performed in a number of traits and across a diverse set of organisms, including mating speed, female

receptivity, and temperature preference in fruit fly (Parsons, 1964; Casares et al., 1992; Yamamoto,

1994); immune function, polyandry, and genetic-environment interactions in crickets (Rantala and

Roff, 2006; Ivy, 2007; Nystrand et al., 2011); and heterosis and reciprocal effects in poultry (Fairfull

et al., 1983). Additionally, the diallel has a long history in plant breeding (Gilbert, 1958) and

numerous recent applications (Bahari et al., 2012; Ghareeb Zeinab and Helal, 2014; Dos Santos et al.,

2016).

Since being described in the early 20th century, statistical methodology for the diallel has seen

steady advancements, from estimating the general combining ability with related F2 populations

(Griffing, 1956), the use of random effects (Zhu and Weir, 1996; Tsaih et al., 2005), and the use

of a Bayesian hierarchical model for a sparse diallel (Greenberg et al., 2010). Recently, (Lenarcic

et al., 2012) used Bayesian hierarchical modeling of diallel data to allow for stable estimation of a

large number of strain-level genetic effects (such as additive, inbred, epistatic, and maternal), and

has been used to analyze a number of phenotypes and organisms, such as cranial shape (Gonzalez

et al., 2016), response to treatment and infection (Crowley et al., 2014; Maurizio et al., 2018) in mice,

and shoot growth in carrots (Turner et al., 2018). Even incomplete or sparse diallel data can be used

for the characterization of some of the underlying strain-level genetic signals, which can then be

used to evaluate the potential space of experiments, and allow for the selection of a favorable one. A
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Figure 1.2: A cartoon representation of a diallel of the CC founders. Each unique strain genome
is represented as a single colored chromosome. Genomes along the diagonal represent the inbred
founders themselves. Off-diagonal genomes are the F1 hybrids of a pair of founders. Mirrored
genomes across the diagonal represent reciprocal F1 genomes, in which the genotypes will be
identical, but parent-of-origin for each chromosome will be flipped. All the genomes in a diallel are
replicable, and can thus be measured on multiple individuals. Some cells of the diallel may not be
observed, which reduces the ability to estimate certain strain effects.

simplified representation of a diallel, in the founders of the Collaborative Cross (CC), a multiparental

recombinant inbred panel in laboratory mouse, is shown in Figure 1.2.

(Verhoeven et al., 2006) investigated jointly modeling diallel data with the related downstream

F2 populations, and found that it allowed for the simultaneous dissection of the trait across all the

populations, or characterization of strain-level effects, as well as the ability to generalize the QTL

findings from the mapping populations in terms of the multiparental diallel population. We focus on

the situation in which none of the F2 populations, or any such downstream cross populations, are

observed, and attempt to evaluate the utility of potential crosses in terms of QTL mapping. Herein

we bring together three lines of research:

1. The estimation of the power to map putative QTL of given effect sizes.

2. The characterization of genetic effects from pilot data.

3. The selection of optimal experiments through a decision theoretic approach.
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We use a Bayesian hierarchical model to characterize the genetic information contained in pilot

data as aggregate strain effects (Lenarcic et al., 2012). This Bayesian approach allows us to stably

estimate a large number of genetic effects through the sharing of information across strains, as well

as assess the uncertainty around these effects. This uncertainty is then propagated through to power

calculations of potential experimental crosses, which is generally ignored in power calculation and

experiment selection. Our approach will aid researchers in selecting better experiments with greater

potential according to pilot data over ineffective or inefficient options. These opportunities include

not only favorable experiments for mapping additive traits, which have commonly been studied, but

also for mapping the QTL responsible for less well-understood effects such as POE.

2.2 Statistical Models and Methods

Our approach builds on three separate areas of research. Firstly we consider the calculation of

power to map QTL given that the QTL effect θ is known. This will require the review of general

concepts in quantitative genetics and statistics in the context of crosses of two inbred strains. Because

in reality θ is never actually observed, we next consider the characterization of θ from pilot data.

Finally we discuss the selection of optimal experimental crosses through the maximization of a

chosen utility function.

2.2.1 Power to map QTL

2.2.1.1 Single QTL model of bi-parental cross

Here we review the general concepts in quantitative genetics and statistics that support the

method used by (Sen et al., 2005) for power calculations of traditional crosses like the F2 and BC.

Consider this model:

yi = QTLi +Gi + Ei + εi (2.1)

where yi is the phenotype of individual i, QTLi is the effect of the QTL for individual i, Gi is

the effect of other genetic elements for individual i, Ei is the effect of environmental factors for

individual i, and εi is the random noise for individual i. Gi and Ei are un-modeled, and can thus be
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collapsed with εi into a single error term εi.

yi = QTLi + εi (2.2)

where εi ∼ N(0, σ2) with σ2 representing the error variance in the data. The QTL effect is a vector,

traditionally parameterized as additive and dominant effects (Lynch and Walsh, 1998). This can be

formulated in a traditional regression framework:

y = Xβ + ε (2.3)

= X


µ

α

δ

+ ε,

where y is the phenotype vector, X is the design matrix that we will define further, β is the vector of

effects composed of µ, the overall phenotypic mean, α, the additive effect of the QTL, and δ, the

dominance effect for the QTL, and ε is the vector of errors. Consider an F2 or BC of strains A and

B, with the genotype of an individual represented in terms of strain identity, denoted in the subscript.

α is the midpoint of the difference between the homozygotes:

α =
E(yAA)− E(yBB)

2
(2.4)

δ is the deviation of the heterozygote from the average of the homozygotes:

δ = E(yAB)− E(yAA) + E(yBB)

2
(2.5)

Table 2.1 lists Eq 2.3 parameterized in terms of these QTL effects. This parameterization maintains

the identifiability of all the effects, though it may not be as intuitive to researchers accustomed to

more traditional regression models used commonly in genome-wide association studies.

Returning to the formulation of the model in Eq 2.6, the variance of the model can be charac-

terized as follows with the assumption that there is no covariance between the QTL effect and the
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Table 2.1: Model of QTL effect on the mean for F2 and BC
Probabilitya

Genotype E(y)b xc F2 BCA BCB

AA µ+ α− δ
2

[
1 1 −1

2

]
1
4

1
2 0

AB µ+ δ
2

[
1 0 1

2

]
1
2

1
2

1
2

BB µ− α− δ
2

[
1 −1 −1

2

]
1
4 0 1

2

aMendelian inheritance probabilities based on independent assortment of alleles A and B for specified
bi-parental cross.

bParameters as defined in Eq 2.3, Eq 2.4, and Eq 2.5.
cRow vector of the design matrix X in Eq 2.3.

Table 2.2: Variance attributable to QTL effect for F2 and BC
Model Parametera F2 BCA BCB

General 1
4δ

2 + 1
2α

2 1
4(α+ δ)2 1

4(α+ δ)2

Fully additive δ = 0 1
2α

2 1
4α

2 1
4α

2

A dominant δ = α 3
4α

2 0 α2

B dominant δ = −α 3
4α

2 α2 0
Fully dominant α = 0 1

4δ
2 1

4δ
2 1

4δ
2

aParameters as defined in Eq 2.3, Eq 2.4, and Eq 2.5.

error,

Var(y) = Var(QTL) + σ2 (2.6)

The background genetic and environmental variation are captured in σ2; here we focus on the

variability due to the QTL. E(y) will vary depending on the genotype, which will vary probabilistically

according to the type of cross, as described in Table 2.1. As example, for an F2 cross, the Pr(AA) =

1
4 , Pr(AB) = 1

2 , and Pr(BB) = 1
4 . The variance of a random variable X is defined as Var(X) =

E(X − E(X))2. The variable X in this setting is QTL, which is the categorical genetic state at the

QTL. The expectation of X is E(X) =
∑

x∈X xPr(X = x). Based on the genotype probability for a

given cross, the variances due to the QTL in terms of the QTL effects are presented in Table 2.2.

The mode of action of the locus impacts the variability in phenotype due to QTL within a cross

type, as seen in Table 2.2. This is particularly noticeable in the BC experiments, where certain

modes of action produce no variance. If the locus is recessive (or conversely dominant), the genotype

with differing phenotype will not be observed, and nor will variation due to QTL. Finally, cross type

also impacts the QTL variance, which is also clear in Table 2.2. Increasing the variance attributable

to the QTL will increase power to map the QTL; in contrast, increasing the overall variance that is
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attributable to noise (un-modeled background genetic factors or environmental factors) will reduce

the significance of statistical tests, and thus decrease the power.

2.2.1.2 Power calculations

Analytical power calculations are generally based upon some null distribution for a statistic

of interest as well as some range of values for the statistic that will be observed in the experiment.

Consider θ, some function of the QTL effects α and δ, as the parameter of interest. We wish to

calculate the probability of mapping the QTL that results in θ. In terms of the association modeling,

a natural null hypothesis is H0 : θ = θ0 with θ0 = 0, that there is no QTL effect. The alternative

hypothesis is HA : θ 6= θ0. By specifying a model for the data, or more precisely the distribution of

the error term of the model, the likelihood L(θ) can be evaluated. The likelihood ratio test (LRT)

statistic, T = −2 log L(θ=0)

L(θ=θ̂)
, where θ̂ is a proposed estimate of θ, can be used to perform power

calculations.

To use the LRT statistic for power calculations, a significance threshold and corresponding

statistic distribution for T are necessary. The traditional scale of significance used in the linkage

and QTL fields is the log10 likelihood ratio or LOD (logarithm of odds) score. Historically a LOD

score of 3 (2 log(10) × 3 on the likelihood ratio scale) has been used as a significance threshold,

meaning approximately that the data support the alternative model over the null model 1000 to

1. A more stringent significance threshold than 3 can be used to further reduce the risk of false

positives or possibly account for a multitude of tests (though it is worth noting these tests will not

be fully independent). Given some significance threshold C is chosen to determine genome-wide

significance; if T ≥ C for some locus, the null hypothesis is rejected. The threshold C will affect

the the true positive and false positive rates, and more important to our topic, the power.

Statistically, power is the probability that the null hypothesis is rejected given that alternative

hypothesis is true. The LRT T is the statistic upon which the power calculations are drawn, thus

the power will be Pr(T ≥ t|θ 6= θ0) where t is the observed statistic produced by the data. With

the LRT statistic, when the models are nested and the maximum likelihood estimate (MLE) is

used (HA : θ = θ̂MLE), as they are in this case, and the null model is true, T is asymptotically χ2
k

distributed, where k is the degrees of freedom, the difference in number of parameters between the

models. A power calculation from this distribution would not be useful because it would represent
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the probability that the null hypothesis is rejected when there is no genetic effect, or the false

positive probability. The power is rather based on the alternative hypothesis being true, θ 6= θ0,

and thus χ2
k distribution is inappropriate. When the alternative hypothesis is true rather than the

null, that θ = θ̂MLE, T is proportional to the noncentral χ2 distribution with noncentrality parameter

(θ − θ0)TI(θ)(θ − θ0) where I(θ) is the expected Fisher information matrix. We model the data

with a Gaussian mixture distribution with a shared residual variance, which naturally extends from

the bi-parental cross statistical model. A key feature of this model is that the LRT reduces to the

variance attributable to the QTL as a function of effects that we presented in table 1. This variance

parameter is scaled by σ2, which sets the variance of each Gaussian component to 1. Thus the power

calculations are intuitively a function of the effect size, the proportion of the variance explained by

the QTL (effect size combined with residual error variance), and the sample size.

It is important to note that the actual θ̂MLE cannot be calculated because no actual cross data for

QTL mapping is observed, but the underlying theory of the method assumes that the alternative θ is

the MLE estimator. σ2 is also never actually known, but we estimate it from the information present

in the pilot data. The final interpretation of this power calculation is the probability that a significant

result is found (T ≥ t) given that there is some QTL effect specified in the proposed MLE estimator

θ̂MLE with an error variance of σ2.

(Sen et al., 2005) develop the theory further to account for the fact that the information is generally

never complete in QTL studies. The true QTL variant is most likely not observed (genotyped), but

rather loci in linkage disequilibrium are, and thus contain some of the information from the QTL.

They develop the theory to take into account this missing information from sparse markers (as

previously described), as well as selective genotyping (genotyping study individuals on the tails

of the phenotype distribution). As a result of this, power can be reduced by not only greater error

variance, but also missing information. The advancement in genotyping technology is generally

leading to denser markers in QTL studies, leading us to make the assumption of complete information.

We directly incorporate the R package qtlDesign (Sen et al., 2007) into our method, so missing

information can be specified in the power calculations. See (Sen et al., 2005) for a description of the

missing information theory used.
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2.2.2 Characterization of strain-level genetic effects from pilot data

The power calculations described above are dependent on known QTL effects θ, but in reality, θ

is not observed. However, information about θ is contained in pilot data, which can be exploited to

characterize plausible distributions for θ.

2.2.2.1 Bayesian modeling of diallel data

One potential convenient source of pilot data are the parental strains and some subset of their F1

hybrids. Direct estimation of θ is not possible because no recombinations occur between the parental

haplotypes within F1 individuals, but rather strain effects that represent the accumulated effect of the

segregating variants within each inbred strain can be estimated. Denote these strain effects, the vector

of effects that will be defined in Eq 2.7, as φ to distinguish them from θ, the effect of a single QTL.

The strain-level vector φ can encompass effects of different modes of actions based on the strain

identities of the dam and sire of an individual. These strain-level effects include additive, inbred,

epistatic, and maternal. The additive effects characterize the average effect of a strain constrained to a

dosage-like model. Such a simple model is not always sufficient to accurately model data, such as the

situation that an F1 hybrid is not approximately the midpoint between the parental strain phenotypes.

We account for this potential deviation from additivity with an inbred effect, which is in contrast

to the more traditional view of non-additivity as dominance. This parameterization of the model is

appropriate for our pilot data because, considering J parental strains, there will be J(J − 1) possible

F1 hybrids, and only J inbreds. When J is greater than 2, which is likely, the number of possible

hybrid F1 will outnumber the J strains. Thus modeling the state of being outbred as the default state

more intuitively matches the structure of our data.

Epistatic and maternal effects represent other potential sources of deviation from strict additivity.

Epistatic effects are essentially an interaction between strains, thus allowing a specific F1 hybrid to

deviate from its additive expectations. Maternal effects can capture strain-specific POEs where there

is an average difference between reciprocal F1. As demonstrated in (Lenarcic et al., 2012), consider

pilot data that are some subset of the J inbred strains and their F1. The strain identities of dam, sire,

and dam-sire pair for individual i are indexed as j[i], k[i], and (j, k)[i], respectively. We model the
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pilot data as

yi = µ+ aj[i] + ak[i]︸ ︷︷ ︸
additive

+ I{j=k}(bj + βinbred)︸ ︷︷ ︸
inbred

+ I{j 6=k}v(j,k)[i]︸ ︷︷ ︸
epistatic

+mj[i] −mk[i]︸ ︷︷ ︸
maternal

+εi, (2.7)

where y is the continuous phenotype value, µ is the intercept, a is a strain-specific additive or dose

effect, βinbred and b are respectively a general inbred effect and a strain-specific inbred effect that are

included only if individual i is inbred, v is a strain-by-strain interaction effect that we will call an

epistatic effect and is only included if individual i is outbred, m is a strain-specific maternal effect,

and εi is the individual-specific noise (deviation from the model expectation) and is distributed:

εi ∼ N(0, σ2). The model can also include important covariates, such as sex, that need to be adjusted

for as fixed effects. The complete set of founder strains and all their reciprocal F1 hybrids represent

what is called a diallel, which would allow for the estimation of the full set of strain effects described.

Although an incomplete diallel cannot estimate all the strain effects, it still provides information that

can be used to estimate φ.

2.2.2.2 Prior specification

Following the lead of (Lenarcic et al., 2012), we use conjugate priors for the parameters in the

model. For example, the strain-level additive effects are distributed following a ∼ N(0, τ2a ). For

fixed effect terms, such as βinbred, τ2 is set to 103. For the variance parameters, consider σ2 which

is distributed following σ2 ∼ IG(ν/2, ψ/2). We set the hyper parameters ν and ψ to 0.02 and 2

respectively. These represent diffuse priors, with the intention of allowing the information in the data

to inform the estimates. The hyper parameter values can be adjusted within DIDACT.

2.2.2.3 Strain-level effect to QTL effect

Transitioning from strain-level genetic effects φ to the effect of a single QTL θ requires some

strong assumptions. Pilot data consisting solely of F1 individuals cannot provide information about

specific loci or the number of loci contributing to a strain effect; there are an infinite number of

genetic architectures that can explain a given strain effect. It is possible that conducting a small set of

F2 crosses and investigating the variability in phenotype for the resulting population could provide

information about the trait genetic architecture, such as distinguishing between highly polygenic
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and oligogenic traits, but here we focus on using only F1. We make the assumption that the strain

effects represent the effect of a single QTL, which is somewhat biologically unlikely but provides

a straightforward approach to connect information in the pilot data to the power calculations. We

use Eq 2.7 to produce expected phenotype values for a given cross of two strains, assuming the

trait is controlled by a single QTL. Consider comparing strains A and B, Eq 2.7 produces E(yAA),

E(yAB), and E(yBB). From these expected values, we can estimate traditional single QTL additive

and dominant effects, α and δ respectively, using Eq 2.4 and Eq 2.5. These estimates along with

estimates of σ2 can then be used with the power calculation machinery described before. Different

QTL effects will be estimated from the model in Eq 2.7 for different potential crosses of inbred

strains.

2.2.3 Decision theoretic approach

Different inbred strains will possess differing segregating variants to potentially identify. We

use our model of pilot data to make predictions for some set of possible experiments, which can be

viewed from a decision theoretic (Raiffa and Schlaifer, 2000) perspective as a decision space. Let us

define A as the set potential experimental crosses. Considering n inbred strains, A could contain all

of or some subset of the
(
n
2

)
potential F2 crosses and 3n(n− 1) potential BC.

2.2.3.1 Power as utility function

Let an element of A represent a specific action a, in this setting, a cross experiment that has

corresponding single QTL effect composed of α and δ. If we define Q to be a binary variable that

the QTL that causes θ (α and δ) is successfully mapped:

Q :


q = 1 QTL is mapped

q = 0 QTL is not mapped

Pr(Q = 1|a) represents the power that the QTL is successfully mapped, and can be calculated using

the noncentral χ2 distribution described previously. We next define C to be the consequence or

experiment outcome space for a QTL mapping experiment, where c = {q1, . . . qp} is the specific

joint mapping outcome of the p QTL that the cause the strain effects. This step generalizes the
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Figure 1.3: Illustration of the Bayesian hierarchical model that is fit within DIDACT, and then
propagated through to a utility function. The diagram represents a single sample from a
Gibbs sampler, though our decision theoretic approach would be compatible generally with
other MCMC procedures. Strain-level effects are sampled based on the pilot diallel data,
collectively referred to as φ. A sample of φ is then mapped using functions that draw from
Eq 2.4 and Eq 2.5 and Tables 2.1 and 2.2 to θ|a, with θ representing the effect of a single
putative QTL in a bi-parental cross and a a specific type of cross of two specific founder
strains. We collectively refer to all θ from the possible F2 crosses as Θ|F2, as well as for
BC and RBC. Effectively Θ are functions of φ, which are then used as inputs into the utility
function u(.), in our case, a putative QTL power estimate. This process is repeated for s
samples from the MCMC procedure, which allows for posterior estimates on utility.

35



problem to multiple QTL rather than a single one, thus allowing us to reduce the assumption of a

single QTL causing the strain effect.

A utility function is an important concept in decision theory. It provides a common scale

to compare potential experimental outcomes, and select optimal experiments. Alternative utility

functions can be devised and easily swapped to place value on differing aspects that investigator

want to prioritize. We define a utility function, u(.), to map from C to the reduced utility space, U ,

which we pose as a function of power, a natural quantity to prioritize. Consider the probability of a

specific consequence, which will be a product of a function of the individual power for each QTL:

Pr(c = {q1, . . . , qp}|a) =
∏p
i=1 Pr(Qi = qi|a). We define u(.) to be the count of p QTL that were

successfully mapped: u(c) =
∑p

i=1 qi. The probability of a utility υ can be calculated from subsets

of C:

Pr(υ|a) =
∑

c∈C:υ=u(c)

Pr(c|a) (2.8)

=
∑
c∈C

I{υ=u(c)}Pr(c|a)

Strictly speaking, the probability of a utility is also dependent on QTL effect θ: Pr(υ|a, θ) =∑
c∈C I{υ=u(c)}Pr(c|a, θ). θ can be marginalized out through integration: Pr(υ|a) =∫

θ Pr(υ|a, θ)Pr(θ|D)dθ, where D represents the pilot data.The probability of this utility function

provides an evaluation of the uncertainty of mapping QTL of a given effect size, but does not take

into account the uncertainty of α, δ, and σ2, which are produced from the Bayesian model. Through

Gibbs sampling or some other Markov Chain Monte Carlo (MCMC) method, a Bayesian model can

produce S draws from the posterior distribution of these parameters. Monte Carlo (MC) averaging

allows us to take into account this extra source of variability, resulting in the posterior expected utility

for cross a:

PEU(a) =

∫
θ

∫
υ
υPr(υ|a, θ)dυdθ (2.9)

=

∫
θ

∑
υ∈U

υ
∑
c∈C

I{υ=u(c)}Pr(c|a, θ)dθ
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where θ is the vector function of α, δ, and σ2. The quantity
∑

υ∈U υPr(υ|a, θ) within the PEU(a) is

the expected utility for a single draw s from the Bayesian model. This quantity is then be averaged

over the QTL effect space of the posterior distribution, traversed through the MC samples. This can

be summarized as a point estimate such as the posterior mean or median, or the posterior distribution

of expected utilities can be plotted for a given cross a. Interpretations of the PEU(a) will vary

amongst utility functions, but we will focus our discussions on power as the utility being maximized.

If we assume all p QTL have the same effect size, our utility function u(c), the number of p QTL

that were successfully mapped, follows a binomial distribution. Consider simple case of a single

QTL (p = 1), in which the binomial reduces to the Bernoulli distribution. In this setting, the PEU(a)

reduces to the posterior probability of mapping the QTL. When p is greater than one, as with a

binomial variable, PEU(a) now represents the expected number of QTL to be mapped. Our approach

should be flexible to any reasonable utility function investigators can define, but we emphasize power

because its PEU(a) are easy to interpret.

2.2.4 Availability of data and software

All analyses were conducted in the statistical programming language R (R Core Team, 2018).

Our R package DIDACT (Diallel Informed Decision theoretic Approach for Crosses Tool), which

is available on GitHub at https://github.com/gkeele/DIDACT, can estimate strain-level

effects from diallel data using a Bayesian hierarchical model, and then perform the posterior utility

analysis. The R package BayesDiallel can alternatively be used to estimate the strain-level effects,

and used as inputs to DIDACT.

DIDACT includes three diallel data sets from the CC founders (Churchill et al., 2004; Collabora-

tive Cross Consortium, 2012; Srivastava et al., 2017), each with a number of phenotypes, described

in detail in (Lenarcic et al., 2012). The CC founders represent the following inbred strains of mouse

(abbreviated names in parentheses): A/J (AJ), C57BL/6J (B6), 129S1/SvImJ (129), NOD/LtJ (NOD),

NZO/H1LtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB).

We also make use of an additional diallel data set in the CC founders of response to Influenza A

virus (IAV) infection phenotypes, and is available at https://github.com/mauriziopaul/

flu-diallel.
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2.3 Results

We provide example analyses from diallel data of the CC founders to demonstrate our decision

theoretic procedure used in the DIDACT package. Our approach depends on assumptions about the

effect of a single putative QTL in a bi-parental cross (described in Table 2.1) given strain-level effects

estimated from diallel data based on the parameterization described in Eq 2.7. This assumption is

most straightforward in the case of a largely Mendelian phenotype, in which a single locus modulates

the variation observed in a relatively deterministic manner, and as such, the QTL effect θ can draw

from the strain-level effect φ wholly.

2.3.1 Mendelian phenotype

To demonstrate a straightforward application of DIDACT to a phenotype largely driven by a

single locus, we use resistance to IAV infection and the Mx1 gene. In previous work (Maurizio et al.,

2018), we investigated strain-level effects in day four post-infection (D4 p.i. ) body weight loss

percentage in a diallel of the CC founders. The phenotype of interest is a response to infection, in

which three infected animals were compared to a single mock-infected animals. Occasionally three

infected animals were not observed at later time points, which we accounted for through a multiple

imputation procedure that imputed unobserved animals from the posterior predictive distributions of

the BayesDiallel model (Lenarcic et al., 2012). Here we use only a single imputed data set of 131

outcomes, as this example is only a proof of principle for DIDACT, and not a rigorous investigation

of strain-level effects.

2.3.1.1 Mx1 as a critical host-resistance factor in mice:

It has previously been shown that Mx1 largely drives IAV-resistance in the CC founders, and has

three major functional classes corresponding to the three subspecies of Mus musculus: domesticus

(hereafter dom; CC founders with dom allele are AJ, B6, 129, NOD, and WSB), castaneus (cast;

CAST), and musculus (mus; PWK and NZO) (Ferris et al., 2013). The dom allele of Mx1 (Mx1dom)

was found to be null and those individuals susceptible to IAV infection, whereas Mx1mus and Mx1cast

confer degrees of resistance.
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Figure 1.4: Mx1 as a driver of IAV-resistance can be seen in the raw data, as mean day
four post-infection (D4 p.i. ) body weight loss percentage in a diallel of the CC founders
and their hybrids (n=381 mice) (A). Squares with a red “X” represent crosses that produced
no offspring. Resistance to IAV infection through the functional alleles of Mx1 is visible
and highlighted with blue (Mx1dom) and teal (Mx1cast ) bars. Reduced to no body weight
loss is observed in mice with Mx1dom (NZO and PWK) and Mx1cast (CAST), reflected in
the comparatively dark horizontal and vertical bars corresponding to these founders in
the diallel grid. The strain-level additive effects estimated from the Bayesian hierarchical
model with DIDACT reflect the possession of a functional Mx1 allele, with Mx1dom (NZO
and PWK) conferring more resistance than Mx1cast (CAST) (B). The DIDACT-estimated
strain-level additive effects are presented as highest posterior density (HPD) intervals with
95% HPD as thin lines and 50% HPD as thick lines, and posterior means and medians
represented as colored ticks and white ticks respectively. The effects closely match those
estimated in (Maurizio et al., 2018), which used the more complex BayesDiallel model, and
also summarized over many imputed data sets.
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Though IAV-resistance is largely Mendelian in that it is driven by Mx1, the genetic architecture

of the trait in the diallel of CC founders is more complicated than a bi-allelic locus, but rather has

multiple functional alleles, Mx1mus and Mx1cast in comparison to the null allele Mx1dom. Mx1mus

has a dominant mode of action, conferring the same resistance in Mx1dom/Mx1mus individuals as

in Mx1mus/Mx1mus, whereas Mx1cast is additive with Mx1cast/Mx1mus being intermediate in IAV-

resistance to Mx1mus/Mx1mus and Mx1cast/Mx1cast. The increased IAV-resistance of Mx1mus and

Mx1cast is noticeable and in the raw data and estimated strain-level effects estimated through DIDACT,

highlighted in Figure 1.4.

2.3.1.2 Expectations of DIDACT with a Mendelian trait

Our primary expectation for the performance of DIDACT with a Mendelian phenotype is that it

should favor crosses that will have segregating variants at the locus, in this case Mx1, in particular

crosses that match Mx1dom with Mx1mus or Mx1cast. Crosses that fix a homozygous genotypes at Mx1

should fix much of the trait variation, and ultimately cannot detect the Mendelian locus. As expected,

DIDACT largely favors crosses that result in multiple segregating Mx1 alleles, Mx1dom with Mx1mus

or Mx1cast, shown for potential F2 experiments in Figure 1.5 and BC experiments in Figure 1.6.

Crosses that DIDACT predicts to be more successful than our knowledge of Mx1 would support,

such as the WSB × B6 F2 cross, likely reflect effects from the genetic background of various strains

that are independent of Mx1 (Maurizio et al., 2018). It is also important to note that this analysis of

Mx1 represents a single imputation of the multiply imputed data.

2.3.2 Complex trait

We next consider a trait that is not known to be Mendelian, but instead likely complex.

2.3.2.1 Calculated hemoglobin (cHGB):

As reported in (Lenarcic et al., 2012), blood phenotypes were measured on 626 mice, which

included cHGB, an estimate of the quantity of hemoglobin in the blood (Figure 1.7A). The means

of the raw data do not suggest clear strain-level effects like D4 p.i. weight loss % did; however,

DIDACT estimates stable strain-level effects, as well as various non-zero effects across all the effect

types (Figure 1.7B). On closer inspection, the posterior utility estimates for potential experimental
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Figure 1.5: Posterior mean utility, here set to be the power to map a single QTL in 50
individuals, for the 28 possible F2 crosses of the CC founder strains. DIDACT generally
estimates higher posterior mean power for F2 crosses that match a founder strain with
Mx1dom with either Mx1mus or Mx1cast , which maintains the genetic variability at Mx1 that
correlates with D4 p.i. weight loss %, and thus represent potentially powerful mapping
crosses. F2 crosses of WSB with B6 and 129 have higher posterior mean power than other
Mx1dom/Mx1dom pairings, likely representing the influence of other factors specific to the
WSB genetic background. Posterior mean utility for BC experiments can be seen in Figure
1.4A.
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Figure 1.6: Posterior mean utility, here set to be the power to map a single QTL in 50
individuals, for the 56 possible BC experiments of the CC founder strains. The A strain,
corresponding to row, is the strain that is backcrossed with the F1 in the BC, therefore the
homozygous genotypes of the A strain are observed along with heterozygotes. Though less
obvious than in F2 crosses (Figure 1.5) DIDACT generally estimates higher posterior mean
power for BC experiments that match a founder strain with Mx1dom with either Mx1mus or
Mx1cast , which maintains the genetic variability at Mx1 that correlates with D4 p.i. weight
loss %, and thus represent potentially powerful mapping crosses. BC with CAST are less
powerful than NZO or PWK because Mx1cast is additive in comparison to the dominance of
Mx1mus. BC of a strain that carries Mx1dom with NZO or PWK in which the Mx1dom strain is
the backcrossed strain are more powerful than when either NZO or PWK are backcrossed,
particularly with AJ and NOD. This is consistent with the dominant effect of Mx1mus, or that
Mx1dom/Mx1mus will be more similar to Mx1mus/Mx1mus in comparison to Mx1dom/Mx1mus to
Mx1dom/Mx1dom.
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crosses, F2 and BC (Figures 1.7C and 1.7D respectively), correspond to the strain-level effects. For

example, the strongly negative CAST inbred effect is likely responsible for DIDACT estimating

higher posterior power for BC in which the CAST parent is backcrossed with the F1. DIDACT

is also estimating several non-zero strain-level maternal effects, which include AJ, B6, and PWK,

suggesting that RBC may have differential posterior power.

2.3.3 Additional summaries of information

DIDACT can provide more detailed descriptions of predicted bi-parental crosses than shown in

Figures 1.5, 1.6, and 1.7. At its core, DIDACT is a Bayesian hierarchical model of strain-level effects

that propagates uncertainty to predetermined QTL-level utility functions, and as such, posterior

intervals can be produced in addition to the point estimates. Three potential F2 crosses were selected

from the full panel for cHGB (Figure 1.7C), and are presented in Figure 1.8. Posterior summaries

of the distribution of utility, in this case power, median utility, predicted phenotypes per QTL

genotype, and variance attributable to QTL are overlayed onto the posterior mean. Unsurprisingly,

DIDACT attributes higher posterior power with crosses in which the QTL explains more of the

overall variability, and in which the phenotype separate more by QTL genotype.

2.3.4 Parent-of-origin effects and RBC

There is not currently a satisfactory approach and solution for parameterizing QTL effects that

contain a POE mode of action, such as exists for additivity and dominance as described in Eq 2.4

and 2.5 as well as in Tables 2.1 and 2.2, which ultimately limits the ability of DIDACT to make

power calculations for RBC as described in Figure 1.1C. However, it is possible for DIDACT to

characterize the utility in terms of predicted BC, but with the maternal and paternal identities fixed as

in the RBC. Though the power calculation will not correspond to the design specified in Figure 1.1C,

in which three genetic states are observed in comparison to two for BC, differences in QTL mapping

power for BC that are equivalent except for the maternal and paternal statuses of the backcrossed

parental strain and F1 are potentially interesting, shown in Figure 1.9 for cHGB. Corresponding

BC that have markedly different posterior utility match pairings of strains with non-zero strain-level

maternal effects in Figure 1.7B, such as B6 × PWK, with B6 backcrossed. For this approach to

RBC, DIDACT is still dependent on assumptions connecting strain-level effects in the diallel to
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Figure 1.7: Calculated hemoglobin (cHGB) (g/dl) in a diallel of the CC founder strains
composed of 626 mice. The cHGB diallel cell means of the raw data do not show the clear,
consistent additive strain-level effects seen in the body weight response to IAV infection
data (Figure 1.4A) (A). The red “X” represents crosses that did not produce viable offspring.
Because the effects do not appear to correlate with subspecies, we use separate colors
to label dam and sire strains. Despite the reduced level of visual clarity in the raw data,
DIDACT is able to stably estimate strain-level effects, many of which are non-zero, and
present across the various effect types (B). Effects are represented as HPD intervals, with
95% as thin lines and 50% as thick, and colored ticks and white ticks representing posterior
means and medians respectively. This pattern of strain-level effects suggests potential
complex genetic architectures underly cHGB in these strains. When DIDACT includes all of
the strain-level effects into a single putative QTL effect, it results in some F2 (C) and BC (D)
experiments with high posterior power. For example, the strongly negative CAST inbred
effect is reflected in BC in which CAST is backcrossed having high posterior power, and
low power when CAST is not backcrossed. The cHGB strain-level effects are certainly not
the result of a single QTL and that assumption false, but the DIDACT results still support
crosses that are likely to pair founders with highly divergent phenotypes.
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Figure 1.8: Summary plots of potential F2 crosses from DIDACT for cHGB. The full panel of
potential F2 crosses are presented in Figure 1.7C. DIDACT allows for additional information
to be overlayed on the posterior mean of the utility, which is represented by the background
color. These plots include the histogram of the posterior distribution of the utility function, in
this case power to detect a single QTL, the posterior median utility as a red dashed line, the
posterior median variance explained by the QTL as a pie chart as well as point estimates,
and posterior five point summaries of the phenotype per QTL genotype.

putative QTL segregating in a bi-parental cross; the default behavior attributes the entirety of the

strain-level effects, in this case including maternal effects, to a QTL.

2.4 Discussion

We propose an experimental design approach that uses diallel data as input pilot data to charac-

terize strain-level genetic effects with a Bayesian hierarchical model, which are then mapped with

some user-defined utility function that can be used to identify promising bi-parental crosses for

mapping QTL. Herein, we define utility to be QTL mapping power, though other functions could be

used, so long as the strain-level effects are their inputs.

2.4.1 Assumptions connecting strain-level effect to QTL effect are wrong

DIDACT requires a strong assumption in connecting the strain-level diallel effects to putative

QTL effects. We show that DIDACT performs well in a mostly Mendelian phenotype in which we

can directly connect the strain-level effects to a single putative QTL. However, phenotypes that are

highly heritable are often modulated through many loci, often with few or none with large effects,

such as with height in humans being a clear example (Wood et al., 2014). In the vast majority of

complex traits, the assumption of a single QTL absorbing all or most of the strain-level effects is
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Figure 1.9: A panel of DIDACT posterior power for all possible BC in which the maternal
and paternal strain identities of the F1 and backcrossed generation are fixed. Posterior
histograms are included as well as posterior medians as red dashed lines. Though not a
direct calculation of power for the RBC design in Figure 1.1C, our approach highlights the
potential that strain-level maternal effects can contribute to differences in predicted RBC.
The B6 × PWK BC, with B6 as the backcrossed parent, are marked with red squares, for
which DIDACT predicts the BC with the backcrossed B6 as the sire (lower) as being far
more likely to be successful than that with a dam (upper). These predictions reflect the
non-zero maternal effects estimated for B6 and PWK in Figure 1.7B.

46



wildly optimistic. However, we posit that though the assumption is unlikely, its use as a utility

function can still produce a useful analysis of potential bi-parental crosses.

We make this claim because the power calculation underlying DIDACT favors QTL that explain

a large proportion of the variability in the phenotype. In fact, the power function should track

closely with variability explained by QTL, which will relate to the variability explained by strain

identity in the diallel in this context, and could even be used as the utility function itself. Though the

interpretation of the posterior utility as an accurate power may be highly unrealistic, it will select

pairings that are phenotypically distinct, which is a common criterion for selecting crosses. And, it

will do so in a highly principled approach that intuitively accounts for uncertainty.

2.4.2 Genetic similarity between strains

DIDACT, in its current form, does not make use of any information regarding the similarity of

the inbred strains in the diallel, which could also inform how appealing an experimental cross is

in terms of fine-mapping the identified QTL. The reduced complexity cross (RCC) is a developing

approach in systems genetics (Williams and Williams, 2017) in which strains that are phenotypically

divergent but genetically similar are crossed, such as C57BL/6J and C57BL/6N substrains (Khisti

et al., 2006; Mulligan et al., 2008; Kumar et al., 2013; Simon et al., 2013; Kirkpatrick and Bryant,

2014). RCC provide a powerful tool for fine-mapping causal variants because the genetic variability

between strains are greatly reduced, restricting the set of possible causal variants to be considered.

There are a number of ways that DIDACT could be modified to incorporate genetic similarity

information, probably most simply through the utility function. The utility function could be

expanded to flexibly weight potential experimental crosses by the genetic similarity, resulting in

posterior utilities that are informed by both phenotype and genetic similarity. We believe this

highlights the potential of DIDACT, and its underlying concept in general, to be flexible to the

context of the experimental system, at the hierarchical model, but particularly at the utility function.

2.4.3 Extension to multiparental populations

We present DIDACT analyses from diallels of the CC founders, which poses the question

of designing experiments involving the CC themselves based on their diallel data. The CC are a

multiparental (MPP), meaning that individuals descent from multiple well-characterized founders.
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Extending the philosophy of DIDACT to experiments of an MPP RI panel is challenging, as the

recombination events that randomize segments of the genome to allow for QTL mapping have already

occurred during the generation of the recombinant inbred strains, and all strains have contributions

from each founder at locations across the genome. Another approach to extending DIDACT to an

MPP RI panel like the CC would be to consider the CC panel as a large sparse diallel, potentially with

some off-diagonal cells representing F1 hybrids of the CC (CC-RIX) (Bogue et al., 2015) observed.

DIDACT could then be adapted to select potentially interesting but unobserved CC-RIX based on

the CC-specific strain-level effects. Effectively adapting DIDACT for design of MPP experiments is

an area of interest for future research.

2.4.4 Summary

We describe a novel approach to using prior collected diallel data from a panel of inbred strains

to inform the selection of potential downstream experiments according to a user-specified utility

function, in our case, power to map QTL in bi-parental cross experiments, consisting of F2, BC, and

RBC. The core of this approach, DIDACT, is to propagate the uncertainty characterized through the

Bayesian hierarchical model through to the utility functions, which can be customized to the needs

and constraints of the system at hand.

As proof of principle, we evaluated DIDACT in a phenotype known to be Mendelian: resistance

to IAV-infection, which is largely modulated by the Mx1 gene with a null (susceptible) and two

non-null (resistant) alleles. DIDACT largely evaluated bi-parental crosses of null with non-null

Mx1 strains as having higher posterior power to map the QTL. For the non-Mendelian calculated

hemoglobin, DIDACT favors crosses that pair strains with contrasting phenotypes. Though the

posterior power as utility, in the sense of its nominal interpretation as power, is highly optimistic, still

provides a reasonable metric for comparing potential experiments, given the available pilot data. We

believe our approach can be extended in many ways, in terms of both the utility function that is being

optimized and the model system, many which have sparse diallel data available in the form of strain

surveys. We believe DIDACT represents a philosophical advancement in terms of good experimental

design and efficient use of available resources.
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CHAPTER 3

SPARCC: An R package for estimating power to detect QTL through simulated ex-
periments in the realized Collaborative Cross 1

3.1 Introduction

The Collaborative Cross (CC) is a panel of multiparental (MPP) recombinant inbred (RI) strains

of laboratory mouse, descended from eight inbred founder strains (Threadgill et al., 2002; Churchill

et al., 2004). These founders represent three subspecies of the domesticated house mouse Mus

musculus (Yang et al., 2011), imbuing the CC panel with far greater genetic variation than traditional

inbred strains, in particular, the presence of alleles inherited from wild-derived strains. The CC panel

is a powerful tool that provides a genetically diverse set of reproducible genomes (Collaborative

Cross Consortium, 2012; Srivastava et al., 2017).

The genetic diversity present within the CC makes it ideal for modern genetic studies of

genetically diverse populations, such as for modeling complex disease in humans. Drawing from

the presence of unique allelic combinations across the genomes, the CC can often provide better

models of human disease, usually not possible in traditional inbred mouse strains (Rogala et al.,

2014; Gralinski et al., 2015). The CC are also valuable for joint analyses with its outbred sister

population, the Diversity Outbred (DO) stock (Churchill et al., 2012; Chick et al., 2016). Finally,

the genetic diversity can be interrogated through quantitative trait loci (QTL) mapping (Aylor et al.,

2011; Kelada, 2016; Donoghue et al., 2017; Maurizio et al., 2018), including the ability to map

phenotypes that can only be measured from counter-factual observations, such as drug response, due

to its genetic reproducibility (Mosedale et al., 2017).

At the time of this writing, 72 CC strains were available, falling well below the initial stated

goal of 1000 RI strains. The reduced number of strains is due to extinctions during the inbreeding

1This chapter represents a mature draft of a manuscript currently in preparation, with slight modifications made for
the format. Current author line and title are: Keele GR*, Crouse WL*, Kelada SNP, Valdar W. SPARCC: An R package for
calculating power through simulation of QTL mapping experiments in the realized Collaborative Cross. Co-first authors*.
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phase, likely because of allelic incompatibilities across subspecies (Shorter et al., 2017). Although

these extinctions have provided an unexpected source of insight into the genetics of fertility-related

traits, it is unclear to what extent the reduction in CC strains reduces the power to map QTL. Initial

power estimates were based on many simulated CC genomes (Valdar et al., 2006b); however, these

calculations do not reflect the number of available strains or the actual founder mosaics realized in

the genomes of the currently available strains.

Power dynamics have been investigated in genome-wide association studies (GWAS) in humans

(Purcell et al., 2003; Klein, 2007), though they do not assess important experimental design consider-

ations for reproducible experimental populations like the CC, for which the same genomes are used

across many studies, and possibly include replicate observations. (Kaeppler, 1997) performed power

calculations in RI strains analytically, though these estimates will not reflect the specific genomes of

the CC, nor the specific statistical procedures used to map in the CC. (Falke and Frisch, 2011) and

(Takuno et al., 2012) do use simulations to estimate QTL mapping in RI panels and near-isogenic

lines (NIL), but their focus is more within the context of plant RI panels, resulting in simulations that

reflect those model systems more than those of animal models. This supports the need to explore

QTL mapping power in the realized CC.

Our R package, Simulated Power Analysis of the Realized Collaborative Cross (SPARCC), is a

tool that evaluates power to map QTL by performing efficient regression-based association analysis

of simulated QTL using the currently-available CC genomes. SPARCC is highly flexible, allowing

researchers to tailor their calculations based on the CC strains available to them and the genetic

architecture of their phenotypes.

3.2 Methods

3.2.1 Data simulation

SPARCC allows the user to simulate CC phenotypes that reflect a range of underlying genetic

architectures. These are controlled by various input parameters to the sim.CC.data() function

which we will describe in detail. The data-generating model is:

y = 1µ+ ZXβ︸ ︷︷ ︸
QTL effect

+ Zδ︸︷︷︸
Strain effect

+ ε︸︷︷︸
Noise effect

, (3.1)
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where y is the phenotype, µ is the intercept, Z is the strain design matrix, X is the QTL allele dosage

matrix, β is the QTL effect vector, δ is the background strain effect, and ε is an unstructured, random

error term. We will describe each component of Eq 3.1 in greater detail, with additional options for

sim.CC.data() described in Simulation Documentation.

3.2.1.1 QTL effect

The QTL effect represents the component of the phenotype that is determined by the founder

haplotype states at a locus. By default, this locus is sampled from the genome, but it can also be

user-specified. The QTL effect in Eq 3.1 is simplified relative to the actual simulation procedure,

which specifies a number of functional alleles and the assignment of founders haplotypes to these

alleles (Yalcin et al., 2005) through

X = DAM, (3.2)

where D is the matrix of haplotype pairs, also referred to as diplotypes, at the QTL, A is an additive

model matrix that maps diplotypes to haplotype dosages, and M is a founder-to-allele mapping

matrix. Though the haplotype is described in terms of eight ”alleles” corresponding to the founder

haplotypes, it may be expected that the QTL effect results from fewer functionally distinct alleles than

the number of founders, for example, via an underlying bi-allelic single nucleotide polymorphism

(SNP). Thus, the matrix M encodes a mapping between the founder haplotypes and a specified

number of functional alleles, termed the allelic series. The allelic series can be randomly sampled

within SPARCC or specified by the user. Assumptions about the allelic series may have a substantial

influence on power, as some allelic configurations may be highly imbalanced or poorly-represented

by the founder haplotypes at the QTL locus.

The allelic series, the functional allele effect vector β, and the particular population will together

determine the proportion of the phenotypic variance that the QTL controls, which we refer to as

the QTL effect size. It follows that CC data can be simulated with respect to the QTL effect size

in differing populations, for example the mapping population itself, with resulting powers highly

specific to a given sample of CC strains. Alternatively, the CC data could be simulated with respect

to a theoretical, more natural population that possesses the genetic variants present in the founder
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strains, which would represent the power to map variants segregating in the initial founders. We will

present results from both approaches to simulating data based on QTL effect size.

The function for simulating CC data is sim.CC.data(), which has a number of arguments

that control the various components of this effect, which are described in detail in Simulation

Documentation. The primary components of interest that can be controlled have been described,

such as the QTL effect size, the allelic series (M), the set of CC strains, and the locus from which to

simulate. The current version of SPARCC assumes a single QTL, though the procedure could be

generalized to multiple QTL with few modifications.

3.2.1.2 Strain effect

The background strain effect represents the aggregate genetic effect present in each strain, not

including the simulated QTL. Many complex traits, such as height in humans (Wood et al., 2014),

have highly polygenic and complex genetic architectures (Phillippi et al., 2014). It is possible, even

expected, that any given QTL will have an individually small effect, despite the phenotype being

highly heritable.

The phenotypic variability that results from strain background presents as additional noise

with respect to identifying QTL. This is particularly clear in the the situation in which only a

single observation of each strain is observed, at which point, Z → I in Eq 3.1, and δ and ε are

indistinguishable from each other. Replicate observations, an important feature of the CC, allow

for the unstructured, individual error (ε) to be reduced, potentially improving the power to detect

QTL. However, replicate observations will not reduce variability due to the background strain

effect, and thus will not improve QTL mapping power in phenotypes with a large background strain

effect. The options for sim.CC.data() that control the strain.effect are described in Simulation

Documentation.

3.2.1.3 Noise effect

The noise effect, or variation due to random error, will automatically be calculated as

1− QTL effect− Strain effect,
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which is used as the value of σ2 for sampling ε ∼ N(0, Iσ2). The error variance must be greater

than zero.

3.2.1.4 Robust power estimation

Our intention is that SPARCC will serve as a flexible tool for calculating power in many different

experimental and genetic contexts. The output of the CC data simulation is a matrix of outcomes,

with each column y(s), the sth simulation from equation 3.1. By default, we vary the set of CC

strains, loci, and allelic series, producing power estimates that take into account many sources of

uncertainty, and are thus broadly interpretable. Alternatively, an investigator may be interested in a

more focused power calculation, for instance, on a set of CC strains that have already been chosen.

Similarly, it could be used to estimate power for specific loci and allelic series configurations.

3.2.2 Mapping procedure

QTL mapping or genome-wide association involves testing the association of a phenotype with

the genetic information at positions across the genome, often through a linear model. In mapping

populations with well-characterized haplotypes, which can be probabilistically inferred (Lander

and Green, 1987; Mott et al., 2000; Liu et al., 2010; Fu et al., 2012; Gatti et al., 2014; Zheng

et al., 2015), rather than association on typed variants, such as SNPs, the association between

phenotype and haplotype is possible, a procedure called interval mapping (Lander and Botstein,

1989), which formally takes into account the uncertainty in haplotype, requiring a computationally

costly expectation-maximization (EM) procedure (Dempster et al., 1977). An approximation to

interval mapping was proposed by (Haley and Knott, 1992; Martı́nez and Curnow, 1992) that uses

standard linear regression (HK regression), which is computationally efficient, generally stable, and

accurate when the information content on diplotype probabilities is high.

3.2.2.1 Regression model

The DEFAULT for SPARCC is to use HK regression on strain means across replicates (Zou

et al., 2006). Thus, we fit each simulated phenotype y(s) using the following model:

ȳ(s) = 1µ+ PAβ + ε (3.3)

53



where ȳ(s) is the vector of strain means, and ε is the residual on the means, which is expected to be

distributed following ε ∼ N(0, I(τ2 + σ2

r )). The allelic series, encoded in M, is fixed to the eight

allele model (Gatti et al., 2014). We note that this could lead to lower power when there are fewer

functional alleles, particularly at loci in which the functional alleles are not well represented.

We compare the model fit of Eq 3.3 to the fit of a null model with just the intercept and obtain a

p-value based on an F-test from the residual sums of squares (RSS) for the two models. Alternatively,

the likelihood ratio test could be used, although the F-test is preferable given the relatively low

number of CC strains. This procedure is performed for all loci, resulting in a genome scan for y(s).

Power to map the simulated QTL is the proportion of y(s) for which the QTL was detected at a

genome-wide significance threshold.

3.2.2.2 Significance thresholds and power

The CC panel is a balanced population with respect to founder genomic contributions, with

limited levels of population structure, which supports the assumption of exchangeability. As such, we

use permutations of y(s) to assess genome-wide significance based on controlling the family-wide

error rate (FWER) (Doerge and Churchill, 1996). Briefly, we sample p permutations, which can be

represented as Upy
(s), where U is a permutation matrix that re-orders y(s) accordingly. We select

the maximum − log10 p-value (logP(s)
p ) from each p genome scan of simulation s, which are used

to fit an extreme value distribution (EVD) (Dudbridge and Koeleman, 2004; Valdar et al., 2006a),

which represents a FWER-controlled null distribution from which to draw a significance threshold

T
(s)
α for genome-wide FWER false positive probability α. The QTL is mapped if the logP(s) ≥ T (s)

α .

Power, the probability that the simulated QTL is mapped follows:

Power =

∑S
s=1 1

logP(s)≥T (s)
α

S
(3.4)

where 1A is the indicator function on whether A : logP(s) ≥ T (s)
α is satisfied. The power estimate in

Eq 3.4 is a point estimate specific to the simulation procedure. Investigators should consider ranges

of simulation settings, in particular varying the QTL effect size, number of strains, and number of

replicates. Running SPARCC for multiple settings can then be used to produce useful power curves

or tables.
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3.2.2.3 QR decomposition for fast regression

Because the genome-wide scans SPARCC performs on simulated data from the realized CC

genomes require permutations for determination of statistical significance, the underlying regression

functionality must be highly optimized. We accomplish this through the QR matrix decomposition,

which we will describe briefly (Venables and Ripley, 2002).

Let X = PA be the n ×m design matrix included in Eq 3.3, with m = 8 for SPARCC. The

solution for β from the least squares normal equations is β̂ = (XTX)−1XTy. Through the QR

decomposition, X = QR, for which Q is an n × p orthonormal matrix (QTQ = I) and R is

a m × m upper triangular matrix. With matrix algebra, it is fairly straightforward to show that

β̂ = R−1QTy, which is also more numerically stable than calculating β̂ through (XTX)−1. After

solving for β̂, the RSS, and ultimately logP, can be rapidly calculated. Because the SPARCC uses a

simulation approach that involves regressing many permuted outcomes (Upy
(s)) on the same design

matrices, computational efficiency can be vastly increased by pre-computing and saving the QR

decompositions for all X.

Once the QR decomposition has been stored for a design matrix Xj , j indexing locus, it is highly

computationally efficient to conduct additional tests for any y, thus encompassing all permuted

outcomes Upy. If Xj is the same across S simulations, the boost in computation can extend beyond

permutations to samples of y(s), as is the case when the set of CC strains is fixed. In effect, two cases

result for SPARCC: when the set of CC strains is fixed, and when the set varies.

• Fixed set of CC strains

1. Store QR decompositions of Xj for j = 1, 2, . . . , J

2. Run genome scans for y(s) and Upy
(s) for s = 1, 2, . . . , S × p = 1, 2, . . . , P

• Varied set of CC strains

1. Store QR decompositions of Xjs for j = 1, 2, . . . , J

2. Run genome scans for y(s) and Upy
(s) for p = 1, 2, . . . , P

3. Repeat steps 1 and 2 for s = 1, 2, . . . , S
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Varying the sets of CC strains increases computation time linearly with respect to S. If the inves-

tigators do not have a predefined set of strains, it is appropriate that this source of variability be

incorporated into the power calculation.

3.2.2.4 Performing genome scans

The SPARCC function for running genome scans from the simulated data is

run.sim.scans(), The primary argument is sim.data, which expects simulated data output

from sim.CC.data(). There are additional arguments to restrict the scans to a subset of the

chromosomes, to a subset of the simulated phenotypes, or to a subset of loci. Finally, the user can

provide the precomputed QR decompositions and specify whether the output should return those

decompositions, which can be expensive in terms of memory.

3.2.3 Availability of data and software

3.2.3.1 R package

All analyses were conducted in the statistical programming language R (R Core Team, 2018).

SPARCC is available as an R package on GitHub at https://github.com/gkeele/sparcc.

SPARCC also depends upon QTL mapping functionality present in the R package miqtl, which is

also available on GitHub at https://github.com/gkeele/miqtl.

3.2.3.2 CC haplotype pair probabilities

Founder haplotype probabilities for each CC strain are available on the CC resource website

(http://csbio.unc.edu/CCstatus/index.py?run=FounderProbs). The diplotype

probabilities were constructed using a hidden Markov model (HMM) for haplotype inference as

previously described (Liu et al., 2010). The probabilities are based on genotype calls from the

MegaMUGA SNP array that contains 77,800 genotype markers. We use probabilities corresponding

to build 37 of the mouse genome, though build 38 is also available at the previously mentioned

website.
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3.2.3.3 Haplotype data reduction

We reduce the size of the CC haplotype probability data by averaging adjacent intervals that are

similar in probabilities, in order to reduce the computational expense of scans. Adjacent sites were

averaged if the maximum L2 norm between the probability vectors of all individual is less than 10%

of the maximum possible L2 norm (
√

2), ultimately reducing the cumulative storage from 610 MB to

288 MB. We store these data in a directory with a structure with which SPARCC is designed to interact.

These data are available on GitHub at https://github.com/gkeele/sparcc_cache.

3.3 Results and Discussion

3.3.1 Simple SPARCC example

We provide a simple demonstration of simulating a data set, performing genome scans, determin-

ing thresholds of significance, and ultimately QTL mapping power. This example is computationally

efficient because CC strains are not varied across simulations, though the locus is. We also provide

run-time estimates for the main steps.

###############################################

### Useful functions for parsing haplotype data

> library(miqtl)

> h <- DiploprobReader$new("./sparcc_cache/")

> set.seed(10)

### Grabbing random sample of 65 CC strains

> these.cc.lines <- sample(h$getSubjects(), size=65)

> library(sparcc)

### Simulate 5 data sets:

#### Specified 65 CC strains

#### 5 replicate observations of each

#### 2 functional alleles, allelic series not specified
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#### QTL effect size of 30%

#### Background Strain effect of 10%

> simple.data <- sim.CC.data(genomecache="./sparcc_cache/",

CC.lines=these.cc.lines,

num.replicates=5,

num.sim=5,

num.alleles=2,

qtl.effect.size=0.3,

strain.effect.size=0.1)

### Genome scans

> simple.scans <- run.sim.scans(sim.data=simple.data,

return.all.sim.qr=TRUE)

### Generating permutation index

> perm.index <- generate.perm.matrix(num.lines=65,

num.perm=100)

### Permutation scans

> thresh.scans <- run.perm.scans(perm.matrix=perm.index,

sim.CC.object=simple.data,

sim.CC.scans=simple.scans)

### Calculating significance thresholds

> all.thresh <- get.thresholds(thresh.scans=thresh.scans)

### Power estimate

> pull.power(sim.scans=simple.scans,

thresh=all.thresh)

[1] 0.8
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### Plot a genome scan of a single simulated phenotype

> single.sim.plot(simple.scans,

thresh=all.thresh,

phenotype.index=1)

###############################################

Plots of the simulated CC genome scans produced by the above code are in Figure 1.1.

3.3.1.1 Run-time performance

The simple example was run locally on an Early 2015 MacBook Pro with a 2.9 GHz Intel Core

i5 processor and 8 GB of RAM. The data simulation and genome-wide scans for five phenotypes

took 32.3781 seconds. Computational time increases linearly with number of phenotypes simulated.

Computational times will also decrease for lower numbers of CC strains. 100 permutations for 5

simulated phenotypes took 9.315485 minutes. Although the time expense for SPARCC is not trivial,

the overall process is highly optimized; this simple example involves fitting 5 phenotypes × 17900

loci × 100 permutation alternative models. The process can be sped up using a parallel computing

environment, as we do with the following large scale analysis. Highly specific power calculations for

an experiment are feasible on a local computer using a single core.

3.3.2 Large scale power dynamics

We have run SPARCC with different combinations of various parameters in order to provide a

resource for QTL mapping power in the CC that can be broadly referenced. The specific parameter

settings follow:

• Number of strains: [{10-70 by 5}, 72]

• Number of replicates: [1-10, 20, 50]

• QTL effect size (%): [0.5, 1, 5, {10-50 by 10}]

• Number of functional alleles: [2, 3, 8]
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• Background strain effect size: [0]

CC lines and the position of the QTL were sampled for each simulation, providing estimates of

power that are effectively averaged over the CC population.

3.3.2.1 Computing environment

We performed 1000 simulations (in batches of 100) for each combination of the parameters,

resulting in 40,320 individual jobs. These jobs were submitted in parallel to a distributed computing

cluster (http://its.unc.edu/rc-services/killdevil-cluster/). Runtime varied

depending on parameter settings and the hardware used, with the longest jobs taking approximately 7

hours to complete.

3.3.2.2 Experiment size and power

We used the results of these simulations to produce power curves that illustrate the relationship

between power and the number of strains (Figure 1.2) or number of replicate observations (Figure

1.3), for a variety of QTL effect sizes, holding other variables fixed. These power curves provide

several insights regarding the power to detect QTL in the CC. In general, we find that studies with

small-to-moderate sample sizes are well-powered to detect large effect QTL, but that detecting smaller

effect QTL could require many replicates. Detecting QTL with effect sizes ≤ 5% is challenging

in the CC, reaching 80% power to detect an effect size of 5% when all 72 CC strains are used

with greater than 15 replicate observations (Figure 1.3 [bottomright]). Detecting 1% or 0.5% QTL

would require even higher numbers of strains and replicates. For certain patterns of functional alleles,

these curves suggest that mapping QTL with effect sizes ≥ 5% are attainable through the use of

more CC strains or more replicate observations.

We also investigated the relationship between power and the total number of mice, particularly

focusing on whether additional CC strains or additional replicate observations are more valuable in

terms of QTL mapping power. To do this, we calculated the number of mice used in each simulated

experiment and interpolated the power at regular grid of values for number of replicates and number

of mice. SPARCC generally finds that additional CC strains improve mapping power more than
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replicate observations, indicated by higher power values for lower numbers of replicate observations

while holding number of mice constant in Figure 1.4.

3.3.2.3 Allelic series and power

We emphasize that the overall power depends on the assumed number of functional alleles

underlying the QTL. The reasonableness of an assumed number of alleles for a simulation depends

on the phenotype. For instance, if the expected causal variant is a single SNP, biallelic QTL are most

appropriate, and multiallelic QTL simulations could be overly optimistic. However, a multiallelic

QTL can result from local epistatic interactions in the region, which may be more likely with

phenotypes closer to the genome, such as gene expression, than physiological phenotypes.

3.3.2.4 Statistical procedure assumes eight alleles

Several factors contribute to dependency of power on the number of functional alleles. One

component to the reduction in power for QTL with fewer than eight alleles is that the fit alternative

model assumes that each founder strain is an allele. For QTL with fewer than eight alleles, some

degrees of freedom are being wasted on estimating redundant allele parameters. Power would likely

improve for bi-allelic QTL were simpler models used, such as bi-allelic genotypes (Yalcin et al.,

2005). The development of alternative mapping approaches that specifically account for the allelic

series remains to be adequately addressed, though such approaches will not be trivial and amenable

to power calculations. Still, it stands to reason that if the QTL has less than eight functional alleles,

a corresponding allelic genome scan would be more powerful than the eight allele model used in

SPARCC.

3.3.2.5 Observed functional allele frequency imbalance

Also contributing to reduction in power for QTL with fewer functional alleles than the statistical

procedure is the observed allele frequency balance in the data set. While the CC is generally balanced

with respect to inheritance from all eight founders across the genome, certain allelic series will

result in data that are potentially highly imbalanced in terms of the observed functional alleles. For

example, a functional bi-allelic SNP with one allele present in only one of the founder haplotypes

will have a minor allele frequency of 12.5% at a locus that is perfectly balanced in CC. This reduces
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the variance explained by the QTL effect in the population, and correspondingly, the power to detect

that effect.

Taking the allele frequency balance issue to the extreme, though the CC has good average

balance with respect to the founder haplotypes, at any given specific loci, one or more alleles may be

lost, and thus their functional alleles unobservable. By posing the problem of power estimation in

the context of the CC founders and the realized CC strains, the power estimates from SPARCC can

reflect the reduction in power to map QTL at loci where potential functional alleles have been lost,

which we view as a strength of our approach. SPARCC can produce more optimistic bi-allelic power

calculations by fixing the allelic series to be balanced (example: M.ID="0,0,0,0,1,1,1,1"),

but in reality, such power calculations are themselves overly-optimistic in assuming that bi-allelic

QTL will be balanced across the founder haplotypes. Figure 1.5 illustrates the effect that imbalance

of the allelic series can have on the power to map QTL in the CC.

3.3.3 CC as a mapping population

SPARCC demonstrates that the CC can be used to effectively map QTL. Though the power

calculations in the realized CC are not as optimistic as the simulated expectations of 1000 lines

(Valdar et al., 2006a), successful mapping experiments can still be designed, particularly harnessing

the ability to have replicate observations. It also bears emphasizing that, aside from mapping, the CC

is a powerful tool for new disease models (Rogala et al., 2014; Gralinski et al., 2015) and as a means

of validating results from the DO (Chick et al., 2016).

3.3.4 Limitations

Any analysis of power is subject to the assumptions underlying that analysis. One of the

advantages of SPARCC is that its flexibility allows the impact of many of these assumption to be

explored. For example, assumptions about how well the strain effect is modeled or the number of

independent QTL signals may provide valuable insight into how genetic architecture determines

power in the CC. In addition, SPARCC could be used to investigate many related questions, including

the power for specific combinations of CC strains or experimental designs, exploring genome-wide

false positive rates, or assessing how the power to detect QTL varies depending on genomic position.

62



In terms of future work, the simulation procedure within SPARCC could be expanded to investigate

how problems like variance heterogeneity or model mis-specification influence power.

3.3.5 Conclusion

SPARCC is a useful software tool for exploring the power to detect QTL in the CC. This software

leverages an efficient model fitting approach in order to explore power in a level of detail that has

previously been impractical. This simulation-based approach improves on previous attempts to

characterize power in the CC by using the realized CC genomes currently available. We intend that

SPARCC will be a useful and flexible tool for researchers designing CC experiments.

3.4 Simulation Documentation: Detailed description of sim.CC.data() options

3.4.1 QTL effect

• qtl.effect.size

– 0 ≤ qtl.effect.size < 1− strain.effect.size

– This argument represents φ2, such that β ∼ N(0, Iφ2).

– A specific β can specified with the beta argument, though it will be scaled to match

qtl.effect.size. If beta=NULL, then β is sampled accordingly.

• num.alleles (DEFAULT = 8)

– 2 ≤ num.alleles ≤ 8

• M.ID

– Rather than specifying num.alleles and then sampling M, these can be fixed with

the M.ID argument.

– Expects strings of the form "A,B,C,D,E,F,G,H", with each letter corresponding to

a founder strain, taking an integer value 0-7, representing functional alleles.

– Example: M.ID="0,0,0,0,1,1,1,1" represents a biallelic causal variant, in which

the first four strains have one allele, and the last four having the other.
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• CC.lines (DEFAULT = NULL)

– This argument allows the user to provide a vector of CC line IDs on which to base the

power calculation. The CC genomes, along with locus, will determine D in Eq 3.2.

– If CC.lines = NULL, then SPARCC will sample num.lines from all available

lines.

* vary.lines (DEFAULT = TRUE)

· If vary.lines = TRUE, the set of lines for each simulation will be sampled

and vary.

· If vary.lines = FALSE, the set of lines will be sampled once, and used

for each simulated outcome.

• locus (DEFAULT = NULL)

– This argument allows the user to specify a specific locus for the simulated QTL, in effect

determining the haplotype dosage matrix D.

– If the argument is left empty, SPARCC will sample loci uniformly from the CC genomes,

thus providing power estimates averaged over genomic positions.

• impute (DEFAULT = TRUE)

– If impute=TRUE, then D in Eq 3.2 is sampled from the probabilistically reconstructed

diplotypes at the QTL

Di ∼ Cat(Pi) (3.5)

where Cat(.) is a categorical distribution and P is a matrix of diplotype probabilities for

the CC genomes at the QTL.

– If impute=FALSE, then D = P in the simulation procedure.

• scale.qtl.mode (DEFAULT = ”B”)

– If scale.qtl.mode="B", var(2β) is scaled to qtl.effect.size, setting the

QTL effect size with respect to a theoretical population that is balanced with respect to

functional alleles, from which the CC mapping population developed.

64



– If scale.qtl.mode="MB", var(2Mβ) is scaled to qtl.effect.size, setting

the QTL effect size to a theoretical natural-like population with a specific allelic series.

– If scale.qtl.mode="DAMB", var(DAMβ) is scaled to qtl.effect.size, set-

ting the QTL effect size to a specific set of CC strains and allele series.

– If scale.qtl.mode="ZDAMB", var(ZDAMβ) is scaled to qtl.effect.size,

setting the QTL effect size with respect to the specific set of CC strain, allelic series, and

number of replicate observations.

– If scale.qtl.mode="none", β is not scaled, allowing the user to specify an effect

vector without it being scaled.

3.4.2 Strain effect

• strain.effect.size

– 0 ≤ strain.effect.size ≤ 1− qtl.effect.size

– This argument specifies τ2, such that δ ∼ N(0, Iτ2).

The actual sampled strain effect are scaled in the same manner as the QTL effect, which is specified

with scale.by.var.

3.4.3 Additional options

• num.sim

– This argument specifies SPARCC to simulate s samples of y from Eq 3.1.

• num.replicates

– This argument allows the user to set the number r of replicate observations of each CC

line. The reproducibility of CC genomes is an important feature, allowing noise variation

to be reduced.

– SPARCC currently requires all CC lines to have the same number of replicates.
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Figure 1.1: Five simulated genome scans generated by the code provided in the simple
SPARCC example. Red dashed lines represent 95% significance thresholds based on 100
permutation scans. The red tick represents the simulated QTL position. These simulations
were based on a specified set of 65 CC strains, five replicate observations of each strain,
two functional alleles, 30% QTL effect, and 10% strain effect. The QTL is not mapped in the
fourth simulation, ranked top to bottom. Actual power calculations should be based upon a
greater number of simulations.
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Figure 1.2: Power curves based on a thousand simulations per setting with respect to
number of CC strains, stratified by number of replicates and the number of functional alleles.
The red dashed line emphasizes 80% power. CC strains and loci were varied in simulations,
resulting in powers that average over loci and strain combinations. Confidence intervals
were calculated based on Jeffreys interval for a binomial proportion. The columns, left
to right, correspond to two functional alleles, three functional alleles, and eight functional
alleles. The alternative model fit at each locus is an eight allele model, parameterized with
respect to the eight inbred founders. The rows, top to bottom, correspond to a one, three,
five, and ten observations of each CC strain. Better power tracks with increased numbers
of strains, numbers of replicate observations, and functional alleles. Figure 1.3 has power
curves with respect to number of replicate observations rather than number of CC strains.
The allelic series for the two and three allele simulations were sampled uniformly, meaning
any distribution of functional alleles to founders was given equal probability weight.
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Figure 1.3: Power curves based on 1000 simulations per setting with respect to number of
replicates per CC strain, stratified by number of CC strains and the number of functional
alleles. The red dashed line emphasizes 80% power. CC strains and loci were varied in
simulations, resulting in powers that average over loci and strain combinations. Confidence
intervals were calculated based on Jeffreys interval for a binomial proportion. The columns,
left to right, correspond to two functional alleles, three functional alleles, and eight functional
alleles. The alternative model fit at each locus is an eight allele model, parameterized with
respect to the eight inbred founders. The rows, top to bottom, are 30, 50, and 72 CC strains.
As seen in Figure 1.2, better power tracks with increased numbers of strains, numbers of
replicate observations, and functional alleles.
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Figure 1.4: A heatmap of QTL mapping power for number of replicate observations by
total number of mice in the experiment. This figure assumes a QTL effect size of 20%,
no background strain effect, and two functional alleles, though varying these parameters
should not change the inference. Power was interpolated at regular intervals across a grid
of values for number of replicates and number of mice to facilitate plotting, approximating
power for numbers of mice that were not directly assessed. Note that some combinations of
number of replicate observations and total number of mice are not defined because the CC
is limited to 72 strains and we only considered equal numbers of replicates for all strains.
The gray diagonal lines represent fixed values of the number of CC strains, ranging from
10 to 70 in intervals of five. Holding the total number of mice fixed, the power reduces as
the percentage of the sample that are replicates increases, suggesting that observations
of new genomes are more important to QTL mapping power than replicate observations.
This is illustrated with a cutout band centered on 350 mice. Power is lower at the top of the
band where replicate mice are a relatively higher proportion of the total number of mice.
Thus, prioritizing experiments with higher numbers of CC strains rather than higher numbers
of replicates is ideal. Increasing the number of replicate observations does benefit QTL
mapping power, but not as effectively as additional strains.
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Figure 1.5: Power curves comparing two QTL effect sizes and four different settings for an
allelic series with two functional alleles. These simulations are based on three replicate
observations per genome. A balanced representation of the functional alleles, with each
allele corresponding to four of the founders (4v4), produces the best power. This is
followed closely by uniform sampling of allelic series, in which any bi-allelic allelic series
is equally likely (Uniform; the default for SPARCC). Finally, fixing the allelic series at a
highly imbalanced setting, one functional allele corresponding to only a single founder (7v1),
results in greatly reduced power.
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CHAPTER 4

Accounting for haplotype uncertainty in QTL mapping of multiparental populations
using multiple imputation 1

4.1 Introduction

Genetic association studies have been extraordinarily successful at identifying genes and regions

of the genome that are important to the underlying biological mechanisms modulating complex

phenotypes that are highly relevant to medicine and agriculture. Within the context of human studies,

genome-wide association studies (GWAS) have been prolific in their ability to identify common

variants as candidates for further study (Lee et al., 2016). However, such studies are constrained by

their observational nature, complex population structure, and potentially unobserved confounding

factors. These challenges, along with constraints in the phenotypes that can be reasonably measured

in humans, provide support for controlled experiments in model organism systems, both as models

of complex human phenotypes and diseases, as well as agriculturally relevant traits.

Many traditional experimental designs for model organisms result in individuals descended

from two founders, or bi-parental populations. These populations have been highly fruitful for

QTL mapping, and thus many statistical methodologies have been developed (Broman, 2001). A

limitation of these simpler populations is that they do not possess as much genetic variation as is in

naturally occurring ones, thus limiting their ability to model humans adequately for certain biological

systems. Addressing this limitation of bi-parental populations, multiparental populations (MPP)

possess greater phenotypic and genetic diversity through the incorporation of additional founders,

while often maintaining reproducibility. MPP populations have been developed in a number of

species, such as the Collaborative Cross (CC) (Collaborative Cross Consortium, 2012; Srivastava

et al., 2017) and Diversity Outbred (DO) stock (Churchill et al., 2012) in laboratory mouse; the

1This chapter represents a mature draft of a manuscript currently in preparation, with slight modifications made for the
format. Current author line and title are: Keele, G.R., Valdar, W. Accounting for haplotype uncertainty in QTL mapping of
multiparental populations using multiple imputation.
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Drosophila synthetic population resource (DSPR) in flies (King et al., 2012a; Long et al., 2014; King

and Long, 2017; Najarro et al., 2017; Stanley et al., 2017); round worm (Noble et al., 2017); yeast

(Cubillos et al., 2017); multi-parent advanced generation inter-cross lines (MAGIC) in Arabidopsis

(Kover et al., 2009; Huang et al., 2011) and rice (Bandillo et al., 2013; Raghavan et al., 2017); nested

association mapping population (NAM) in maize (Buckler et al., 2009) and sorghum (Bouchet et al.,

2017); strawberry (Mangandi et al., 2017); and oil palm (Tisné et al., 2017). The well-characterized

founder haplotypes allows for QTL mapping approaches that, rather than modeling phenotype in

terms of genotyped variants, models phenotype with haplotype descent. This haplotype approach

allows un-genotyped loci to be tested as putative QTL positions. Although haplotype association

will not necessarily outperform genotype association, particularly if a genotyped variant, such as a

single nucleotide polymorphism (SNP), is causal or strongly tags the causal variant, it will implicitly

model all local variants, possibly including local epistatic interactions specific to a haplotype block

that would be challenging to model in a principled way through genotypes. Haplotype association

does, however, complicate the statistical methodology due to the fact that haplotypes are not directly

observed, but rather probabilistically inferred.

This uncertainty surrounding haplotype, or more generally, genetic state, is formally addressed

with interval mapping (IM) (Lander and Botstein, 1989). IM models the data as a mixture of normal

distributions, a result of the genetic state uncertainty at an interval or position in the genome, and fits

maximum likelihood estimates (MLE) of parameters through an Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) for Frequentist inference. Genetic state probabilities are estimated

for intervals that span the entire genome, either as pseudomarkers (often regularly spaced) or at the

genotyped marker positions (Lander and Green, 1987). There are a number of Hidden Markov models

(HMM) that can be used to construct the probabilistic reconstructions of genetic state, allowing for

the incorporation of multiple sources of information and uncertainty, such as genotyping error (Mott

et al., 2000; Liu et al., 2010; Fu et al., 2012; Zheng et al., 2015) or even incorporate information from

genotype probe intensities (Gatti et al., 2014). Although IM was initially proposed in bi-parental

populations, first in backcrosses (BC) (Lander and Botstein, 1989) and extended for F2 intercrosses

and other designs (Dupuis and Siegmund, 1999), it has also been generalized to multi-allelic settings

(Liu and Zeng, 2000), such as in MPP. Though IM models the uncertainty in haplotype, in cases of

low information distinguishing genetic states, it can become unstable. This issue can be compounded
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in MPP where there are more genetic states to distinguish at a locus. It is also possible that the EM

procedure will become stuck in local maxima, which is also more challenging in MPP where the

likelihood is more complex and multi-dimensional. Finally, the EM is an iterative method, and thus

potentially computationally intensive, particularly for dense scans in populations with fine mapping

resolution.

The problems of stability and computational efficiency of IM were addressed with an approximate

regression approach, sometimes referred to as Haley-Knott regression, though which we will refer

to as regression on probabilities (ROP) (Haley and Knott, 1992; Martı́nez and Curnow, 1992), that

involves regressing the phenotype directly on the genetic state probabilities, or some function of

the probabilities, such as the additive dosages of an allele. By dosage, we mean a probabilistic

generalization of a count of alleles. ROP, also referred to has Haley-Knott regression, was initially

proposed for bi-parental populations in which there are only two founder haplotypes, similar to

bi-allelic SNPs, and has been extended to multi-allelic populations (Rebai and Goffinet, 1993), and

is commonly used (Mott et al., 2000; Valdar et al., 2006b, 2009; Kover et al., 2009; Svenson et al.,

2012; Gatti et al., 2014). Although ROP does not directly model the uncertainty present in the genetic

state, the expectations of the modeled data are equivalent in certain settings from the mixture of

normals model (IM) and the standard ROP regression. Although it has been known that ROP can

produce unstable allele effect estimates (Zhang et al., 2014), it has thus far been considered reliable

for hypothesis testing.

ROP-like approximations have commonly been used in human GWAS, in which it is common

practice to use SNP probabilities or dosages for unobserved variants based on probabilistic recon-

structions from densely genotyped reference samples (like HapMap (Gibbs et al., 2003)). A very

simplistic approach is to take the most likely genotype and completely ignore the uncertainty present

in the genotype, although ROP procedures have been found to outperform such an approach (Li

et al., 2009; Aulchenko et al., 2010; Marchini and Howie, 2010; Zheng et al., 2011). Though an

improvement over completely ignoring uncertainty in the genotypes, ROP does not directly model

it and (Kutalik et al., 2011) notes that this can lead to an increased false positive rate (FPR) in

SNP-based GWAS. This increased FPR is the result of small probabilities correlating strongly with

the phenotype, which the ROP procedure will not treat as highly unlikely SNP alleles, but rather as

a small SNP dosage that strongly predicts phenotype, resulting in an entirely artificial association.
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In response to these problems that can occur with the ROP approach, there have been proposed

statistical methods, primarily for SNP-based analysis, to directly model the uncertainty (Kutalik

et al., 2011; Acar and Sun, 2013), which are similar to IM in model organisms, through the use of an

EM procedure.

This problem of observed false positives resulting from low probability alleles is more avoidable

in SNP association than haplotype association, in which it is common practice to filter out SNPs

with very low minor allele frequencies (MAF), which are considered likely genotyping errors. This

filtering step will also most likely remove the markers that are prone to ROP significance inflation.

However, in the multi-allelic setting of MPP, depending on the allelic balance of the population,

almost all loci may possess alleles with low allele frequencies, and are thus prone to producing

an artificial ROP signal. One approach to countering this issue is to fit the haplotype effects as

random effects with a single variance component, thus harnessing shrinkage (Verbyla et al., 2014;

Wei and Xu, 2016). Though it is computationally more intensive to fit the QTL effect as a random

effect, possibly prohibitively slow in certain data sets and particularly in the presence of population

substructure, this approach is preferable to fixed effects. However, fitting the QTL effect as a random

term through ROP does not directly address the underlying issue of potential correlations between

outcome and probabilities or dosages, but does happen to greatly restrict the problem by dynamically

shrinking the potential effects. As such, statistical approaches that more directly model the uncertain

nature of inferred genetic state are needed.

Bayesian approaches offer alternatives to Frequentist QTL mapping methods, and with advances

in computing, are becoming increasingly appealing due to their ability to fit complex, highly paramet-

ric models, including stably fitting multi-locus models with shrinkage, handling multiple outcome

models, and naturally incorporating additional sources of uncertainty through the hierarchical model.

Genomic prediction is a natural application of Bayesian models to genetic data due to its focus on

optimally fitting and predicting data, thus harnessing the potential of Bayesian statistics for stable

yet highly parametric models, such as potentially including all loci (Meuwissen et al., 2001; Xu,

2003; Yi and Xu, 2008). These ideas can also extend to Bayesian QTL mapping, particularly a fully

multilocus approach (Crawford et al., 2017). Here we instead focus on the Bayesian modeling of the

genetic state uncertainty jointly with other model parameters in the context of populations descended
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from inbred founders, allowing this uncertainty to be directly modeled rather than approximated as

in ROP.

A fully Bayesian approach would include genetic state as an unobserved variable in the hierar-

chical model, allowing the genetic state probabilities to be updated through sampling in response

to the other parameters in the model, particularly phenotype and QTL effects. For normal data,

often the hierarchical model is specified such that the QTL effect is dependent on the noise variance

parameter, resulting in conjugate priors (Servin and Stephens, 2007) and a factorizable posterior,

allowing Markov Chain Monte Carlo (MCMC) sampling to be avoided, which can be prohibitively

slow and fail to mix with complicated models.

(Sen and Churchill, 2001) propose a comprehensive and generalizable Bayesian hierarchical

model for QTL mapping that simultaneously models multiple loci based on a pre-specified grid

of pseudomarker locations. A binary vector of QTL status is sampled, and its posterior used for

hypothesis testing. To avoid MCMC and still acknowledge that the phenotype can inform the estimate

of genetic state, they use an importance sampling scheme with weights calculated based on how well

the genetic states at the QTL explain the phenotype, in essence updating the genetic state probabilities,

and allowing weighted Monte Carlo (MC) sampling from initial joint multipoint imputations of the

genetic states across the pseudomarker grid. Though the model is broadly proposed, it is applied in

simpler bi-parental populations assumed to have no population structure. Generalizing the method to

MPP is possible, likely requiring the inclusion of a polygenic effect with corresponding variance

component as well as imposing shrinkage on QTL effects with variance components. This additional

model complexity would likely require MCMC sampling that include computationally expensive

matrix operations, and would thus likely be infeasible without further assumptions or approximations.

A Bayesian mapping approach could be simplified to a single locus perspective, and potentially

allow for computationally feasible mapping in MPP. (Durrant and Mott, 2010) proposed a single

locus Bayesian QTL mapping approach for MPP that has some similarities to (Sen and Churchill,

2001), such using the conjugate prior for QTL effects as dependent on the noise variance. They

also make the assumption that genetic state is independent of phenotype and QTL effect, thus not

require updating of the genetic state probabilities and allowing MC sampling. This assumption

should be conservative, and greatly reduces the computational burden through the avoidance of

MCMC. Notably an important contribution is made through the inclusion of a variance component
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on the effect of a single locus, imposing shrinkage, and potentially crucial for the more complicated

genetic models that result from MPP haplotype alleles. Their method still does not generalize

in a computationally feasible way to an MPP with population structure. An additional variance

component corresponding to overall relatedness would require either MCMC sampling, which would

likely mix poorly and require matrix operations, or a more challenging and extensive MC sampling

from the joint non-standard distribution of the variance components.

Features from the previous methods are shared with other Bayesian models of MPP data. (Zhang

et al., 2014) proposed the Diploffect model for estimating MPP haplotype allele effects at a locus

while taking into account the haplotype uncertainty. Similar to (Durrant and Mott, 2010) its focus is

a single locus model for an MPP population; however, it allows for the genetic state parameters to be

updated from information in the phenotype and QTL effect through importance sampling, as in (Sen

and Churchill, 2001). Briefly, Diploffect is more flexible to modeling of population structure when

implemented through integrated nested Laplace approximation, but is not feasible nor intended for a

QTL scan across the genome.

The previously described Bayesian methods demonstrate how Bayesian statistics can naturally

model and account for many levels of uncertainty. However, they also reflect the computational

burden of increasingly complicated genetic models, particularly within a genome-wide context.

Though jointly modeling uncertainty on genetic state and parameters would be ideal, incorporating

the sampling process on the genetic states with traditional Frequentist likelihood-based inference

could account for the genetic state uncertainty and be computationally feasible. In terms of the

described Bayesian methods, if the locus effect is fit as a random effect, this would represent a

multiple imputation Frequentist version of (Durrant and Mott, 2010), in which the genetic state

probabilities are not updated; essentially the prior is being treated like a posterior and averaged over

in the multiple imputation process. And though sacrificing the ability to propagate and characterize

the parameter uncertainty that is an important feature of Bayesian statistics, we gain computational

efficiency to feasibly model population structure.

Although multiple imputation can intuitively be viewed through Bayesian lens as part of the

overall sampling process, with each imputation representing a sample from the prior distributions of

the missing data, here modeled as parameters in the hierarchical model, inferences can still be drawn

using Frequentist methods. This process involves repeating the statistical procedure on each imputed
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data set, aggregating results, and drawing inference from the summary, therefore incorporating

the uncertainty due to missing information, in this case genetic state uncertainty. There have been

numerous proposed methods for aggregating statistics over imputations (Li et al., 1991). Commonly

regression coefficients are averaged, and incorporated into a multiple imputation version of a Wald

statistic. This approach would not naturally generalize to fitting the QTL effect as random effect.

(Meng and Rubin, 1992) propose an aggregate likelihood ratio test, though it would also require a

fixed effect QTL model. (Li et al., 1991) also propose aggregating over p-values as an approximate

approach for drawing inference across imputations, which would generalize whether the QTL was fit

as either a random or fixed effect.

It is important to note that in the context of GWAS, the term imputation is commonly used in

reference to estimating variant allele probabilities at unobserved loci. These are related concepts,

though we are using its original meaning from the missing data statistics field, whereby an imputation

is a sample or realization drawn from a data probability distribution. ”Imputed” SNP variants in

GWAS usually represent a ROP-like analysis, as is common in SNP-based GWAS, though multiple

imputation analyses has been used with SNP data (Ramstein et al., 2015). Here, we propose a multiple

imputation approach to haplotype association, in which genetic state, in this context, diplotype state,

is imputed from estimated diplotype probabilities.

A multiple imputation with Frequentist inference approach would control false positives that

can occur with ROP while also being computationally convenient. Furthermore, regression-based

procedures are easily extended to important modeling considerations such as additional covariates

and confounders, population substructure, batch effects, as well as alternative parameterizations of the

genetic model (e.g. additive model). As such, a Frequentist multiple imputation procedure provides

a flexible approach that extends many of the appealing features of ROP, while also accounting for

genetic state uncertainty. In addition, such an approach remains computationally feasible for a

genome-wide procedure in comparison to fully Bayesian approaches.
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4.2 Statistical Models and Methods

We will describe various methods for mapping QTL based on testing how well an individual’s

genetic state at a locus predicts the phenotype with a linear model. First we will briefly describe our

framework.

4.2.1 General Framework

Define yi to be the observed phenotype value of an individual. The genetic state for an individual

at a locus is encoded in gi, a K-element vector. The number of genetic states K is determined by the

number of allele J such that K = J + (J2). For bi-allelic variants, such as is common with SNPs,

J = 2 and K = 3. For an eight founder MPP, such as the DO, J = 8 and K = 36, assuming the

population includes individuals that are heterozygous at loci. If a population were completely inbred,

K = J . The statistical procedures we describe and propose use a single locus approach, with a

general model of the form

yi = QTLi + εi,

in which QTLi = xT
i βQTL represents the additive linear component of the phenotype yi attributable

to the modeled locus, xT
i = gT

i M is the ith row of the QTL design matrix X representing gi rotated

according to the model matrix M, and εi as the remainder or residual of yi as an un-modeled error

term.

This simple linear model is appealing in its flexibility, such as allowing alternative parameteriza-

tions of the QTL term through M, which maps between theK genetic states and some linear function

of them, often with the intent to simplify the genetic model. One commonly used M, MAdd rotates

the genetic state probabilities, which include heterozygous pairings of alleles, to the additive allele

dosages. With no uncertainty, MAdd maps genetic states to counts of the alleles; in the case of MPP,

diplotypes to counts of founder haplotypes. In addition, the model can be expanded to incorporate

covariates as fixed effects, as well as split εi into multiple components with corresponding variance

components, both structured and unstructured. Mapping consists of, for each locus over the genome,

testing whether a model with the genetic state at the given locus predicts the modeled phenotype
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better than a model with no genetic information, or equivalently:

H0 : βQTL = 0

When gi are directly observed with complete certainty for all n individuals (represented as an n×K

matrix of genetic states G), this process becomes straightforward. Though these methods could be

extended to generalized linear models for non-normal outcomes, we assume that y is a normally

distributed trait:

y|G ∼ N(XβQTL,V(θ))

where y is the n-element vector of outcomes, X = GM, and V(θ) is the variance-covariance matrix

that includes a parameter vector specifying the variance parameter(s) of the normal distribution.

Fitting complex V(θ) can become computationally prohibitive. There are established approaches

to fitting V(θ) = Kθ1 + W−1θ2, such that K is a symmetric relationship matrix and W is a

diagonal matrix, often the I when individuals are weighted equally. Consider the simple situation in

which y are independent, then θ1 = 0, θ2 = σ2, and yi|gi ∼ N(xT
i βQTL, σ

2). This is equivalent to

standard linear regression in which the phenotype is regressed on a linear function of the genetic state.

Maximum likelihood estimators (MLE) of the regression parameters (βQTL, σ2) can be calculated,

and used to conduct hypothesis tests. θ1 6= 0 is often included to model correlations between y, such

as when population structure is present, at which point a linear mixed effect model is being fit.

Modeling the outcome in terms of genetic state becomes more challenging when the genetic state

is not directly observed and thus not known with complete certainty. This uncertainty can arise in the

context of assayed genotypes, due to genotyping errors or no-calls. Genetic state can also represent

haplotype descent or un-assayed variants, which are not directly observed, but rather probabilistically

reconstructed based on LD in nearby genotyped variants.

4.2.2 Incorporating uncertainty in genetic state

The resulting uncertainty in G can be described through a probability distribution function Pr(G).

Formally acknowledging this uncertainty in the association analysis would involve integrating or
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averaging the likelihood over Pr(G):

∑
G

Pr(y|G)Pr(G)

Accounting for this additional uncertainty lends itself to Bayesian approaches, which allows for

hierarchical models to easily be specified. Although additional sources of uncertainty can be

intuitively incorporated in Bayesian procedures, the computational cost can be great, and unfeasible

particularly when the model becomes complex and includes multiple variance components. An

approximate approach that sidesteps the full sampling process of Bayesian statistics is to marginalize

out G, producing a marginal distribution/likelihood, which will be of the form of a normal mixture

distribution, and then use hypothesis testing procedures.

Hypothesis testing is more challenging due to analytic solutions not existing for the MLE of

the mixture distribution likelihoods. Instead they must be estimated using an iterative expectation-

maximization algorithm (EM) method, which alternates between updating the parameter MLE

conditioned on an estimate of the expected value of G ([β̂QTL, θ̂](t)|G̃(t−1)) then re-estimating the

expected value of G conditioned on the parameter MLE (G̃(t)|[β̂QTL, θ̂](t)), with t signifying the

tth iteration. This process is repeated until convergence in the MLE is reached ([β̂QTL, θ̂](t) =

[β̂QTL, θ̂](t−1)). This mixture model, marginalized over the genetic state probability space, is the

statistical procedure used in standard interval mapping (IM) (Lander and Botstein, 1989).

Though IM accounts for uncertainty in G, it does not directly jointly model it along with the

phenotype, which can result in issues. IM can be unstable (failing to converge or falling into local

maxima) particularly if there is little information (high uncertainty) on G, which can be more likely

in MPP (as J , the number of founder alleles, increases). One possible alternative to IM draws

from the previously mentioned Bayesian perspective which is to explicitly explore Pr(G) through

sampling. Sampling will require a more complete definition of Pr(G).

4.2.3 Modeling and sampling genetic state

We assume that genetic states of individuals, the rows of G, are independent of each other,

thus g1,g2, . . . ,gn can be sampled independently. Violation of this assumption would occur in

populations with some level of population structure, but it should not result in a bias even in
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populations containing close relatives. An intuitive model for Pr(gi) is

gi ∼ Multinomial(size = 1, probs = φi)

with φi representing the K-element vector of genotype state probabilities, for which
∑K

k=1 φik = 1.

Φ, an n×K probability matrix with individual φ as rows, can be estimated with an HMM, using

the information contained in the LD in a window of markers that surround a locus, as well as

incorporating additional sources of noise (Mott et al., 2000; Fu et al., 2012). We sample genetic

state for loci independently, though a multilocus approach could also possible (Sen and Churchill,

2001), based on sampling directly from the HMM (essentially sampling G, an n×K × P tensor, P

representing the number of loci). A full Bayesian approach would involve conducting the association

procedure on each imputation s to produce an association score statistic, u(s). Inference would then

be drawn from the posterior distribution of u over many imputations (many samples G̃(s) from Φ) or

alternatively through an importance sampling weighting scheme to reduce the sampling burden, as

done in (Sen and Churchill, 2001) for simpler bi-parental populations. Extensively sampling from

Pr(G) could require prohibitively large numbers of imputations, due to the complex probability

space of Pr(G) that is a result of both the information content (quantified in φi) and the number of

genetic states K. If the data include a large number of individuals and/or the model includes random

effects, the complete Bayesian sampling approach can become unfeasible computationally.

4.2.4 Conservative multiple imputation procedure

To avoid a heavy sampling burden, our method is intentionally conservative and not formally

Bayesian, primarily targeted at reducing the risk of false positive QTL signals stemming from

uncertainty in genetic state. We do not seek to completely or approximately draw inference from

posterior distributions, but rather assess the fragility of the association measured through hypothesis

tests that results from the uncertainty around G. We continue to use the single locus model previously

described, now sampling imputations for the QTL term. The procedure uses the following steps:

1. Sample G̃
(s)
p ∼ Cat(Φp)
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• For i = 1, 2, . . . , n:

g̃
(s)
ip ∼ Multinomial(size = 1, probs = φip)

2. Regress y onto X̃
(s)
p = G̃

(s)
p M for which QTLi = x̃

T(s)
p βQTL

3. Conduct statistical association test for the presence of a QTL effect, resulting in statistic u(s)p

• Compare H0: βQTL = 0 versus HA: βQTL 6= 0

• The multiple imputations procedure is flexible to different statistical tests of association.

An F test can be used when there is just one variance component present. With additional

variance components, approximate F tests (Halekoh and Højsgaard, 2014) and likelihood

ratio tests (LRT) are options.

4. Repeat steps 1-3 for s = 1, 2, . . . , S imputations

5. Summarize over S u(s)p with an aggregate function: summary(up) = ūp to produce score of

association across the imputations

• As summary, we use the median (ūp = median(up)).

6. Repeat steps 1-5 for p = 1, 2, . . . , P loci

4.2.5 Median as aggregate statistic

There has been substantial work on how to aggregate across imputations in terms of Frequentist

inference (Li et al., 1991). Tradition, with respect to Wald statistics and likelihood ratio tests (Meng

and Rubin, 1992), aggregate test statistics are estimated from averages of the regression coefficients.

This is inconvenient for multiple imputation of genetic state because technically it all the data are

observed with some level of uncertainty. If a genetic state is likely unobserved, it becomes like that

an imputation of the data will not estimate certain genetic state effects, making it awkward to handle

averages based on varying numbers of observations. It also does not easily generalize to fitting the

locus effect as a random effect.

(Li et al., 1991) does mention an approximate approach of aggregating over p-values. Though

such a multiple imputation statistic does not perform as optimally in terms of statistical properties,

our goal is a conservative, computationally efficient method that will reduce false positives that
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result from problematic uncertainty in genetic state. Towards this goal, summarizing over p-values is

appealing due to its flexibility over differing underlying statistical models.

In terms of summaries of p-values, we find that the median has a number of appealing char-

acteristics in comparison to an arithmetic mean. With an odd number of imputations, the median

is scale independent, even over non-linear, monotonic transformations. This property removes all

questions of which scale of a statistic to summarize over. In addition, the mean is sensitive to extreme

values, which would emphasize the need for a more complete Bayesian approach with increased

sampling Pr(G) or weighting through an importance sampling scheme. Therefore, the median is

an intuitive and simple approach that reduces the influence of extreme statistics that result from a

particular imputations from Pr(G), and thus gives a more stable point summary of the association

across multiple imputation. Interval summaries can be estimated as confidence intervals on the

median as well, based on the binomial distribution with probability parameter π = 0.5 (Ott and

Longnecker, 2006), providing a clear way to characterize as well as visualize the stability of the

association over imputations.

4.2.6 Assessing genome-wide significance

Genome-wide statistical significance can be assessed through repeating the procedure on permu-

tations of the data when exchangeability can be reasonably assumed (Doerge and Churchill, 1996).

Alternatively, if exchangeability cannot be assumed, there are alternatives that do not require it, such

as parametric bootstrap samples from the null model. Maximum statistics from the permutation or

bootstrap scans are used to fit an extreme value distribution, which is used to specify significance

thresholds (Dudbridge and Koeleman, 2004; Valdar et al., 2006a).

4.2.7 Availability of data and software

All analyses were conducted using the R statistical programming language (R Core Team, 2018).

The various modeling approaches described for QTL mapping, in particular ROP and MI, and plotting

functions can be performed with the R package miqtl, which we make available through a GitHub

repository at https://github.com/gkeele/miqtl.

83



4.3 Simulations

4.3.1 Simulated populations

Simulations were performed to evaluate how various MPP mapping procedures performed

when the causal QTL was known. We simulated 100 samples or realizations of a panel of 200

recombinant inbred (RI) strains, based on the breeding scheme (20 generations of inbreeding) of

the CC, using software as used in (Valdar et al., 2006a). We simulated only two chromosomes per

individual: chromosome 1 consists of 101 markers, each equally spaced by 1 centi-Morgan (cM),

with a single QTL that explains 10% of the phenotypic variation in the founders at the 55.5 cM

position; chromosome 2 contains 201 markers, each spaced by a single cM, and carries no QTL.

Both chromosomes allow us to observe the performance of the methods with and without a signal.

4.3.2 Tested mapping procedures

We used ROP and MI to analyze the simulated CC data, testing the locus effect as either a

fixed effect or a random effect (Wei and Xu, 2016). There mapping approaches are flexible to other

modeling considerations such as population structure and nuisance covariates. This flexibility is

an valuable feature for many mapping populations, however, our use of simulated CC, which are

approximately exchangeable, allow us to consider and compare the following less flexible methods.

We implemented traditional interval mapping through the EM algorithm, in which the proba-

bilistic nature of the data are formally acknowledged by iteratively marginalizing over the genetic

state’s probability space. IM requires starting parameter values, and we use two approaches for

initializing them. We used ROD coefficients and noise variance estimates, which would never be

known in real analyses, as the starting values in what we refer to as the oracleIM. For standard IM,

we used the sample variance of y as the starting value of σ2 and set the starting founder haplotype

effect parameters at 0.

Finally, we evaluated a maximally expanded data weighted least squares method that we call

complete WLS. (Durrant and Mott, 2010) briefly mention expanded data approaches as an approxi-

mate Bayesian approach. Maximally expanded means that the data are expanded from n observations

to n ×K: {yaug}i = yi × 1K×1. The design matrix is similarly expanded: {Xaug}i = IK×KM.
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Finally the weights, {waug}i = φi, match the corresponding K genetic states encoded in {Φ}i and

{Xaug}i. When there is no uncertainty around G, complete WLS will converge to ROD just as ROP,

MI, and IM do, as the K − 1 false genetic states will be given a weight of zero. Complete WLS

has the unappealing characteristic of making the data very large, and thus potentially challenging

computationally for large data sets. It also does not generalize in a reasonable way to allow for

an additional variance component to account for population structure. We wished to see how it

performed in comparison to the other methods in the setting in which these shortcomings are not

present. Table 4.1 summarizes the evaluated methods.

4.3.3 Simulation of uncertainty

We simulated the underlying haplotype states rather than marker genotypes, as these methods

in MPP are primarily focused on haplotype-based association. Simulating haplotypes allows us

to compare the performance of the methods when there is complete certainty to when there is

uncertainty. We use two approaches to sample simulated probabilities from the true genetic states:

probability dilution and Dirichlet sampling.

4.3.3.1 Probability dilution:

The probability dilution process converts a genetic state vector to a probability vector (g→ φ̃)

in a deterministic manner. Let gi,p be the K-element genetic state vector for individual i and locus

p. The true genetic state, corresponding to a k = t element of gi,p: gitp = 1, and all other elements

(k 6= t) are 0. We perform probability dilution by setting the probability of the true genetic state,

α, to some value in [0, 1] and all other elements to 1−α
K−1 . Of note, for any specification of α, any

individuals with the same genetic state vector g will also have the same realized probability vector φ̃.

From a technical perspective, probability dilution does output probabilities, as they are non-

negative and sum to 1. However, as simulations of uncertainty around genetic state, they are

unrealistically clean, as a predetermined pattern of uncertainty will perfectly correlate with true

genetic state. To break this hard correlation between uncertainty and genetic state, we use Dirichlet

draws from the genetic state vector of an individual, which is the reverse process of our multiple

imputation procedure.
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4.3.3.2 Dirichlet sampling:

As with the probability dilution process, we have simulated individual i with a K-element

genetic state vector gip for locus p. We sample a probability vector according to

φ̃
(s)
ip ∼ Dirichlet

(
ñαgip + ñ

(1− α)

K − 1
(1− gip)

)
,

such that 1 is a K-element vector of 1’s, and ñ is a total number of pseudocounts. Similar to

our probability dilution specification, α is used to control the probability mass placed on the true

and false genetic states; however, now the process is stochastic and thus described in terms of

probabilistic expectations. The expected probability for the true genetic state and the false states

follows from the Dirichlet: E(φ̃true
i ) = α and E(φ̃false

i ) = 1−α
K−1 . The variance of the true probability

states follows: Var(φ̃true
i ) = ñα(ñ−ñα)

ñ2(ñ+1)
. We can set the expected uncertainty around the true genetic

state to be equivalent to the pattern of uncertainty produced by probability dilution, but allowing for

more realistic levels of noise. How far samples deviate from expectation due to the noise can be

manipulated with the pseudocount parameter (ñ), with lower values having higher noise and higher

values approaching probability dilution. A similar Dirichlet sampling scheme was used for SNP

genotypes (Acar and Sun, 2013), however the the probability is spread more thinly in inbred MPP

setting with K = 8 compared to K = 3 with bi-allelic SNPs.

It is challenging to simulated probabilistic genetic data as would likely be observed in real

data, such as sets of genetic states being less distinguishable at certain loci, which is already

known to hamper allele effect estimation (Zhang et al., 2014). Another potential realistic issue is

differential levels of uncertainty for individuals in the same dataset, which will not be captured in

these simulations. The space of potential patterns of uncertainty that could occur in MPP genetic

states makes it effectively impossible to explore all of them in a systematic way. While these

probability simulation schemes generally place the most probability mass on the true genetic state,

which will generally favor ROP, we can still observe how the various mapping procedures perform

with varying specifications of the simulation parameters.
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4.4 Data Sets

We include examples from three different data sets that come from different types of MPP

populations to demonstrate the differences between MI and ROP associations that can occur in actual

data, which can differ strikingly from idealized simulated data.

The first example population is composed of 989 individuals from an outbred rat heterogeneous

stock (HS) (Solberg Woods et al., 2012; Keele et al., 2018), referred to as HS1. The rats were

measured on various diabetes and obesity phenotypes. The second population consists of 1407

individuals from a rat HS, independent from HS1 but derived from the same founder strains, that

were measured for a large number of phenotypes, and are described in greater detail in (Baud et al.,

2013, 2014). This population will be referred to as HS2.

The third population is from the CC. A more thorough description can be found in (Mosedale

et al., 2017). Briefly, the experimental design involved treating four male mice from each of 45 CC

lines with tolvaptan, a candidate treatment for kidney disease, while another four male mice from

each line received vehicle (control) instead. In terms of modeling, CC lines from separate breeding

funnels are approximately independent from each other, and thus do not require a random effect and

associated genetic relationship matrix to model population structure. However, replicate observations

from the same CC line due require special modeling considerations, such as a random effect with

independent levels, or regression on strain means (Zou et al., 2006), as was used in (Mosedale et al.,

2017).

We highlight differences between these populations to emphasize the need for statistical mapping

procedures that can flexibly accommodate multiple sources of variation. For instance, experiments

designed for the CC can have genetic replicates, whereas each HS individual has a unique genome.

Although the HS will not contain the strongly structured correlations between individuals as expected

from genetic replicates in the CC, the rotational breeding scheme produces more subtle population

structure as a result of individuals being differentially related to each other rather than approximately

equally related (as in CC lines from independent breeding funnels, like our simulations). ROP and

MI are much more accommodating to these features than traditional IM, and for this reason, we used

only them for analyses of real populations.
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4.5 Results

4.5.1 Illustration of false association with ROP

Before presenting simulation results, we provide an example that demonstrates a need for our

MI procedure in real data, in this case the HS1 rat population. In populations with high degrees of

genetic state uncertainty and allele frequency imbalance, the genome scans from ROP and MI can

strikingly differ, as in Figure 1.1 which depicts analyses of serum cholesterol levels in HS1.

A striking characteristic of spurious QTL that occur with ROP is an extremely narrow association

peak, depicted in Figure 1.1A, particularly the peak on chromosome 11. Many of these associations

completely disappear with MI (Figure 1.1E), suggesting that the associations are completely the

result of the ROP approximation. This conclusion is further strengthened by closer inspection of

the uncertainty present at the sharp peak on chromosome 11, presented in Figure 1.1F. Notably, the

B founder allele is highly unlikely to have been observed in the population at this locus, though

is still present in the model due to uncertainty. Ultimately a highly inflated association score is

produced due to very small dosages that strongly correlate with the phenotype. MI corrects for

these occurrences because these rare alleles are rarely or never observed in the imputations. This

inflation in significance can be seen in association studies with SNP dosages; however bi-allelic

SNPs can be easily screened for low MAF, whereas many loci, even most in a population with high

founder haplotype frequency imbalance, such as an HS, have founder haplotype alleles with very low

frequencies.

4.5.2 Simulated results

Considering the strikingly different genome scans seen in the HS1 data, we assessed the per-

formance of various mapping procedures in simulated MPP data. We simulated 100 realizations of

breeding funnels corresponding to the strategy used for the CC, producing a panel of 200 RI strains.

We then evaluated the performance of ROP fixef, ROP ranef, MI fixef, MI ranef, IM, oracleIM, and

complete WLS (Table 4.1) on these simulated populations. We were primarily interested in how

the methods responded to increasing level of uncertainty in the genetic state at the simulated QTL

as well as at unassociated loci. The genome scan of a single realization of a simulated population,
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Figure 1.1: Analysis of blood cholesterol levels in the HS1 rat population. Genome scans
with ROP (A) and MI (B) show drastically different patterns of association. Additive founder
haplotype effects, labeled A through H, estimated from regression coefficients for ROP (C)
and MI (D), across chromosome 11. The ROP effects are highly unstable, as a result of
the highly unbalanced founder haplotype frequencies. For MI effects, transparent color
bands represent the 95% confidence interval for the mean additive haplotype effect over 11
imputations, highlighting regions in which effects are unstable over imputations and in which
an allele is unobserved. A comparison of the associations on chromosome 11 reveals that
the sharp QTL associations that occur with ROP are almost completely reduced with MI (E).
The uncertainty in haplotype dosages observed at the chromosome 11 locus is problematic
for ROP and results in inflated associations that are not observed with MI (F). The rows
of the probability grid plot represent the haplotypes of the founders. A column of the grid
represents the genetic state of a single individual at the a single locus, with the shading
of each cell representing the magnitude of haplotype dose. The individuals (columns) are
ordered left to right by phenotype rank, allowing for potential haplotype effects to be seen
from the raw data, which will appear as cluster in the founder haplotype rows. No clusters
are immediately obvious, and more so, the uncertainty present in the dosages is extensive
with founders D, G, and H being poorly distinguishable. Additionally there is broad founder
allele frequency imbalance, with essentially no haplotype B alleles observed, and very little
of the F allele. The strong association is a result of a strong correlation between near-zero
probabilities in allele B and the phenotype.
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Figure 1.2: The first and second chromosomes of a simulated panel of 200 CC-like RI strains with
a single QTL that explains 10% of phenotypic variance were simulated. The QTL is located on
chromosome 1, and no QTL are present on chromosome 2. Association scans of a single simulated
population (A). The fixed effect procedure (fixef) and random effect procedure (ranef) generally
track similarly, though ranef produces a lower significance score of association due to shrinkage. The
simulated haplotype counts represented as an 8×200 grid, ordered along the x-axis by phenotype (B).
A single column of the grid represents the genetic state of an individual at the QTL, with the shading
of i, j-th cell corresponding to count of haplotype j for individual i. As there is no uncertainty
of genetic state, all shaded cells represent counts of 0, 1, and 2, which are white, gray, and black
respectively. A Non-zero effect is clear in E, and potentially other alleles. The grid gives a clear
visual representation of the level of uncertainty at a locus for a given population.

as well as a depiction of the underlying genetic state at the QTL position, when no uncertainty is

obscuring genetic state can be seen in Figure 1.2.

Given a simulated population with known genetic states for all individuals, we then simulated

uncertainty in genetic state through either probability dilution or Dirichlet sampling from the vector

of true genetic state.

4.5.2.1 Dirichlet sampling:

For a single simulated population, as expected, as the level of uncertainty increases, the associa-

tion at the QTL is reduced (Figure 1.10). Complete WLS seems the most penalized by increasing

uncertainty, then MI, and finally ROP and IM do the best. We include only the fixed effect models

of ROP and MI to both minimize visual clutter and because the fixed effects models are more
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Figure 1.3: Comparison of mapping approaches with varying levels of Uncertainty in genetic
state simulated through Dirichlet sampling with α = 0.9 (A), α = 0.7 (B), and α = 0.5 (C),
all with pseudocount ñ = 1 in 200 simulated CC-like RI strains with a QTL that explains
10% of phenotypic variation on chromosome 1. With Dirichlet sampling, α is the expected
probability mass on true genetic state and ñ determines the variability over Dirichlet samples.
For a given α, the expected probability vector is equivalent to the probability vector from the
probability dilution process, as in Figure 1.10 (E(φDirichlet

i,α ) = φDilution
i,α ). The middle plot of

each subfigure depicts the simulated uncertainty at the QTL for the three scenarios. The
bottom plot of each subfigure is the the SIC across chromosome 1. Described in greater
detail in (Rönnegård and Valdar, 2011), briefly, SIC is a standardized Kullback-Leibler
divergence, which we use as a measure of the information content on the genetic state
probabilities of an individual (φi) at a locus. SIC ∈ [0, 1], with the boundaries corresponding
to genetic states being completely indistinguishable (φi = 1

K ×1K×1) and complete certainty
(φi → gi), respectively. It is important to note that SIC does not reflect whether the
information in the genetic state probabilities are correct.
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comparable to IM and complete WLS. In the single simulation, we do not see inflated spurious

associations with ROP as seen in real data, though it is important to look across all the simulated

data sets.

Across all simulated data, we see similar trends to the single data set (Figure 1.4). To assess the

mapping procedures across many simulated populations, we evaluated the change in p-value at the

QTL and unassociated locus. The associations from ROP and IM degrade the least as uncertainty

increases, and MI performs better than complete WLS. At an unassociated locus, all the procedures

performed similarly and did not produce false associations. The conservative nature of MI and

complete WLS compared to ROP and IM was consistent at the QTL and an unassociated locus.

4.5.2.2 Probability dilution:

The results for simulations of genetic state uncertainty through probability dilution, a determinis-

tic process, were consistent with Dirichlet sampling, though with a few notable exceptions. For the

single simulated population, ROP performs as well as ROD, which can be seen in Figure 1.10. The

performance of IM at the QTL is reduced, but to a lesser extant than seen with Dirichlet sampling,

despite the SIC content being lower with dilution, suggesting that the noisier Dirichlet sampling

obscures the signal more. MI and complete WLS are both penalized similarly with either Dirichlet

sampling or dilution.

Across all 100 simulated populations, we see these same trends. ROP loses none of the statistical

signal, except at the point in which each genetic state has the exact same probability (Figure 1.11).

IM performs better than with Dirichlet sampling, though at the unassociated locus, some false

positives occur when uncertainty is very high (Figure 1.12). MI and complete WLS are consistent

across Dirichlet sampling and probability dilution, at the QTL and unassociated locus.

The probability grid plots in Figures 1.11, 1.12 [bottom row] reveal that probability dilution is

a very artificial form of uncertainty simulation, as no noise is incorporated to distort the true signal.

Thus ROP is able to handle the probabilities as artificial doses that perfectly track with the simulated

truth. Similarly, IM handles the uncertainty from probability dilution very well, with only minor

reduction in the association at the QTL, though the association does become more unstable across

simulations and potentially inflated at the null locus where there is no signal. Likely, this strong

performance results from the fact that though IM is probability aware, it is not sampling over the
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Table 4.1: Mapping procedures for simulated data (Figures 1.3, 1.4, 1.5, 1.10, 1.10, 1.11,
1.12)

Mapping
procedure

Color Uncertainty
status

Description

ROD fixef No uncertainty Regression with complete certainty on genetic
state and locus effect fit as a fixed effect

ROP fixef Unaware ROP with locus effect fit as a fixed effect
ROP ranef Unaware ROP with locus effect fit as a random effect

MI fixef Aware MI with locus effect fit as a fixed effect
MI ranef Aware MI with locus effect fit as a random effect

IM Aware IM with initial parameter values set to sample
founder means and sample variance

oracle IM Aware IM with initial parameters set to ROD fixef
parameter estimates

complete WLS Aware Weighted regression with full data expansion
of genetic states

space, but rather iteratively marginalizing over the genetic state space. When no noise is incorporated

into the system, as with probability dilution, this marginalization is very effective at capturing the

signal. MI involves a full sampling process, and is thus heavily penalized by the greater uncertainty,

which it explores despite the signal not being reduced through dilution. Complete WLS is similarly

harshly penalized.

We find that Dirichlet sampling of genetic state uncertainty more equally affects all mapping

procedures, and more realistically represents realistic patterns of uncertainty. From the probability

grids and SIC plots, it is clear that the level of uncertainty is actually lower in the Dirichlet simulations,

but that it importantly does not track perfectly with the true genetic state. This leads to ROP and

IM being penalized as well, though they still perform better than MI and complete WLS. We also

re-emphasize that given an α, as ñ → ∞, then Dirichlet sampling will converge to probability

dilution.

4.5.3 More examples of results in real populations

The analyses of simulated data found ROP be an effective approximate approach that performs

as well as IM when genetic state uncertainty is realistically simulated through probability dilution.

Despite the strong performance of ROP in simulated data, we return to real data to focus on

populations with lower levels of genetic state uncertainty and more balanced founder haplotype
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Figure 1.4: The change in association at 10% QTL with varying levels of uncertainty,
simulated through Dirichlet sampling. α is the expected probability mass of the true genetic
state, with the pseudocount parameter (ñ) determining sampling variance. We have set
ñ = 1. Colored lines and transparent bands represent the mean p-value and 95% confidence
interval on the mean p-value for the various mapping procedures (Table 4.1) over the 100
populations. Gray lines represent the − log10 P for a single population. Because the Dirichlet
sampling process is random, the gray lines represent mean − log10 P from 100 Dirichlet
sampling steps of the simulated population.
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Figure 1.5: The change in association at a null locus with varying levels of uncertainty,
simulated through Dirichlet sampling. α is the expected probability mass of the true genetic
state, with the pseudocount parameter (ñ) determining sampling variance. We have set
ñ = 1. Colored lines and transparent bands represent the mean p-value and 95% confidence
interval on the mean p-value for the various mapping procedures (Table 4.1) over the 100
populations. Gray lines represent the − log10 P for a single population. Because the Dirichlet
sampling process is random, the gray lines represent mean − log10 P from 100 Dirichlet
sampling steps of the simulated population.
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frequencies compared to HS1 to assess whether ROP could still produce inflated associations in

real data that are more similar to the simulated data. In actual CC data, from which the simulated

populations were modeled, we still see less extreme examples of the inflated associations (as in HS1)

that are reduced though multiple imputation (Figure 1.6). In particular, the chromosome 14 peak is

stable over multiple imputation, whereas chromosomes 12 and 16 have narrow peaks that are reduced

(Figure 1.6C).

In real CC data, false associations can be inflated beyond what was observed with the clean

simulated data. Though more conservative than ROP, MI can reduce these associations while

detecting stable associations. The ability of MI to detect QTL is further demonstrated in the larger

HS rat population HS2 (Figure 1.7). The similarity of the genomes scans of HS2 through ROP and

MI suggest there is less genetic state uncertainty and founder haplotype imbalance in HS2. With MI

the strong associations at chromosomes 4 and 8 are maintained in MI, and are even strengthened

compared to the other associations due to the less inflated MI associations. Lesser ROP significant

associations on chromosomes 4 and 11 drop below significance with MI. MI also appears to support

a peak on chromosome 14 as being near significance compared to its association in ROP. These

results show that MI can reliably capture similar associations as ROP, while generally reducing or

removing questionable ones.

4.5.4 Founder haplotype frequency and haplotype uncertainty

The previous results highlight the potentially drastic disparities in performance of MI compared

to ROP, particularly in the HS1 population. As previously stated, this is in large part due to founder

haplotype frequency imbalances compounded with haplotype uncertainty. The rotational breeding

scheme used for the HS populations is expected to result in more founder allele imbalances than in

the CC, as is seen in Figure 1.8, which depicts histograms of the founder haplotype allele frequencies

across the genome for each population. The founder haplotype imbalance in HS1 appears to be more

extreme than in HS2, as seen in the even greater enrichment for very low founder haplotype allele

frequencies, thus explaining the comparatively less stable ROP genome scans.
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Figure 1.6: Example analysis of response to kidney drug in a sample population of 45 CC
strains with a total of 159 individuals. Genome scans through ROP (A)and MI (B) show
similar associations, though MI lowers some narrow signals. Notable QTL associations for
chromosomes 12, 14, and 16 for ROP and MI (C). A notable signal that is consistent across
ROP and MI is on chromosome 14. The chromosome 12 and 16 signals are only present
with ROP.
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Figure 1.8: Histograms of founder haplotype allele frequencies of loci across the genome
for the CC, HS1 and HS2 populations. The vertical dashed red line represents an allele
frequency of 1/8, which would be the mean allele frequency of a perfectly balanced MPP
with eight founders. The CC have nicely balanced allele frequencies across the genome,
whereas, as expected from rotational breeding, the HS populations have more imbalances,
particularly in HS1. These frequencies are based on allele dosages, thus incorporating
uncertainty into their estimates.
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Figure 1.9: Alternative approaches to ROP fixef haplotype association in HS1. Chromosome
6 scans in HS1 of retroperitoneal fatpad mass (A). ROP, MI, and SNP association are
included. Although the there is an increased association signal in the haplotype-based
methods, the estimation of extra haplotype parameters results in a statistical burden and the
associations do not rise above statistical significance. At this locus, one founder possesses
a unique SNP allele, and along with the collapsing of the other founders into the other SNP
allele, a strong signal is detected. Note the band around the MI association line, which is the
95% confidence interval on the median p-value across imputations. If the founder haplotype
alleles can be captured in a model with less parameters, an increase in power is expected.
Comparisons of ROP with the QTL effect fit as a fixed effect with ROP procedures that use
shrinkage approaches, either by fitting the QTL as a random effect with a corresponding
variance component or through null pseudo-observations, cumulatively weighted to be a
single data point (B). Both shrinkage approaches remove the sharp association seen in
standard ROP by harshly down-weighting the signal from the near-zero probabilities of the
founder B allele (Figure 1.1F).

4.6 Discussion

In the context of standard and generalizable regression-based QTL mapping in MPP, our multiple

imputation approach provides an intuitive approach to incorporate genetic state uncertainty. Theses

patterns of uncertainty could present in different ways, and is a more likely issue in MPP where

K, the number of genetic states, becomes large, particularly in comparison to SNP association

(K = 3). With higher K and certain breeding designs, it becomes more likely that founder haplotype

alleles will not be observed at a locus; however, some probability mass is likely still attributed to

the founder allele that has been lost because the genetic states are being inferred. This results in the

situation highlighted in Figure 1.1F in which near-zero probabilities induce an artificial association.

In addition to MI, we considered other approaches to counter spurious associations, but also more

powerfully map in these populations than may be possible with standard haplotype-based association.
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4.6.1 SNP association as an alternative to ROP

One potential alternative to haplotype-based association is SNP association, which is similar to

what is commonly used in human GWAS. The founder allele imbalance seen across the genome in

HS1 (Figure 1.8), as well as the pattern of uncertainty exhibited in Figure 1.1F, in which allele B

is not observed, F is very rarely observed, and D, G, and H are poorly distinguishable, exemplify

a population that is extremely problematic for ROP, or any form of haplotype association. These

problems can be greatly reduced through a simpler genetic model with less genetic states, as in SNP

association. In effect, a SNP genetic model implicitly reduces the number of genetic states K at a

locus, reducing the number of alleles from the J founders to two in a bi-allelic SNP, making it unlikely

that an allele is unobserved or very rare. ROP-like SNP-based procedures, as described earlier, could

be used, and thus not requiring the additional computational burden of multiple imputation. In

MPP with poor founder haplotype reconstructions, SNP association may have greater statistical

efficiency compared to MI, whereas ROP would be prone to spurious associations. Figure 1.9A

presents a case in HS1 in which SNP association was found to be more powerful for detecting a

QTL (Keele et al., 2018). We do not suggest that SNP association is superior for QTL mapping in

MPP, but that in situations where founder haplotypes are imbalanced and reconstruction problematic,

SNP association can provide a simplified genetic model and avoid spurious associations from ROP.

Conversely, SNP association will be less powerful for detecting associations that track with a specific

founder haplotype, potentially do to local epistatic interaction, and thus does strongly correlate with

a genotyped variant.

4.6.2 Shrinkage as an alternative to ROP fixef

Shrinkage presents a particularly attractive statistically-oriented approach for dealing with issues

that result in MPP due to unbalanced founder haplotype frequencies. Rather than fitting an allele

parameter wholly-based on very few observations (or even near-zero probabilities), information is

shared across genetic states, resulting in predictors of the allele effects that are shrunk toward the

overall mean, with more shrinkage present in poorly represented allele, and ultimately resulting

in a more conservative modeling approach. This borrowing of information is accomplished by

specifying a variance component on the QTL effect; consider the QTL term in the regression model:
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QTLi = xT
i βQTL, then βQTL ∼ N(0, Iτ2). Rather than the more conventional fixed effect test of

HA : βQTL 6= 0, the variance component can be tested, HA : τ2 6= 0 (Wei and Xu, 2016). This

approach was also included in the analyses of simulated data (as seen in Figures 1.2, 1.3, 1.10, 1.4,

1.5, 1.11, 1.12).

A random effect fitting of the QTL term presents computational challenges compared to fixed

effects model, due to need to optimize the likelihood with respect to multiple variance components.

This approach could become unfeasible in large samples, particularly in terms of determining

significance thresholds through permutations or null bootstraps.

An approximate approach to shrinkage is to include pseudo-observations in the data set. These

observations ỹ represent expectations from H0, the model of no QTL effect. Generally ỹ will

contain between K and j elements, depending on the model being fit. Furthermore, these pseudo-

observations can be given fractional weights, allowing for the cumulative amount of null pseudo-data

to be less than the number of elements of ỹ.

The pseudo-data approach to shrinkage can be made as computationally efficient as standard

ROP, making large data sets and computationally expensive procedures like permutations feasible.

An unappealing feature of the approach is that selecting the portion of null data to add is arbitrary. In

addition, drawing null observations from H0 can be done with varying degrees of sophistication, and

becomes more complicated with increasingly complex models, such as when covariates are included

and a random effect is used to model a polygenic term. Both approaches to shrinkage completely

remove the sharp association observed on chromosome 11 for the HS1 rats (Figure 1.9B).

4.6.3 Disparity between ROP in simulated and real data

Based on the simulated data with Dirichlet sampling, ROP performs as well as IM, and is also

computationally more efficient and generalizable to other populations. In part we chose simulations

of a balanced population like the CC to allow for a greater number of methods to be easily compared

with ROP and MI, in particular IM and complete WLS. Our findings suggest that ROP performs well

when the data are well-balanced and the genetic state is well-behaved, as with probability dilution;

however, deviations from such a setting can result in the inflated associations, which will be pervasive

in certain populations (HS1) and still present to a lesser degree in realized balanced populations (CC).
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As such, MI provides a mapping approach that can restrict these inflated association scores in real

data.

4.6.4 Summary

We propose a multiple imputation linear regression procedure for QTL mapping in MPP that

accounts for uncertainty in genetic state, which in practice protects against detection of spurious

signals caused by unexpected correlations between the phenotype and near-zero allele probabilities

or dosages. Our method is flexible to many modeling features, such as population structure modeled

as polygenic effect with a corresponding variance component, which is an important consideration in

many MPP. The procedure as currently specified uses a single locus model and can easily be used for

data being analyzed through ROP, commonly done within software such as the R packages DOQTL

(Gatti et al., 2014) and qtl2 (Broman, 2017). Its computation scales with ROP linearly in terms of the

number of imputations performed.

We found the standard ROP approach performed exceptionally well in simulated data, both

simulated through probability dilution and Dirichlet sampling, and generally failed to capture or

reflect the pattern of associations seen in many of the real data sets we analyzed. This led us to

realize that the probability space of the genetic state in MPP is particularly large and complex.

Although ROP performs well as a computationally efficient and stable approximation of uncertainty-

aware statistical procedures like interval mapping, it clearly struggles with faced with particularly

problematic patterns of uncertainty that are also challenging to reliably simulate in practice. Our

simulations reveal that the MI procedure is conservative compared to ROP, particularly as uncertainty

in genetic state increases. However, we find an alternative conservative procedure preferable when in

real data the standard is producing clearly artificial associations.

We have proposed multiple approaches to limiting false positives that result from founder

allele frequency imbalances and haplotype uncertainty in MPP, describing a multiple imputations

procedure in great detail. MI is easily understood as well as implement, and also flexible to many

modeling considerations (alternative models of genetic state, covariates, polygenic term, etc.). Our

multiple imputation approach can also incorporate shrinkage methods through a formal random

effect fitting of the QTL, which is computationally intensive, and through specification of pseudo-

observations. These described approaches provide options for addressing the problems that result
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from founder haplotype allele frequency imbalances, which can be further compounded though

haplotype uncertainty. Though the burden of haplotype uncertainty should lessen as sequencing

technologies improve, become less expensive, and are even more extensively used, founder alleles

imbalances can still occur in MPP due to genetic drift, certain breeding schemes, and small sample

sizes. Methods such as we describe here will be important for reducing the number of false positive

associations that are reported, and ultimately feed negative narratives about genetic association

studies producing findings that do not replicate.
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4.7 Additional Figures
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Figure 1.10: Comparison of mapping approaches with varying levels of Uncertainty in
genetic state simulated through probability dilution with α = 0.9 (A), α = 0.7 (B), and α = 0.5
(C) in 200 simulated CC-like RI strains with a QTL that explains 10% of phenotypic variation
on chromosome 1. Probability dilution is deterministic, with α representing the probability
placed on the true genetic state and the remaining mass being evenly allocated to the
remaining genetic state categories. The top panel for each subfigure is the genome scan
comparing four mapping procedures as well ROD. The middle plot of each subfigure depicts
the simulated uncertainty at the QTL for the three scenarios. The bottom plot of each
subfigure is the the SIC across chromosome 1, which is summary of information content.
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Figure 1.11: The change in association at 10% QTL with varying levels of uncertainty,
simulated through probability dilution. α is the probability mass of the true genetic state, with
the remaining probability mass being split evenly across the other genetic states. Colored
lines and transparent bands represent the mean p-value and 95% confidence interval on
the mean p-value for the various mapping procedures (Table 4.1) over the 100 populations.
Gray lines represent the − log10 P for a single population.
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Figure 1.12: The change in association at a null locus with varying levels of uncertainty, simulated
through probability dilution. α is the probability mass of the true genetic state, with the remaining
probability mass being split evenly across the other genetic states. Colored lines and transparent
bands represent the mean p-value and 95% confidence interval on the mean p-value for the various
mapping procedures (Table 4.1) over the 100 populations. Gray lines represent the − log10 P for a
single population.
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CHAPTER 5

QTL mapping in outbred rat population with imbalanced
founder allele frequencies 1

5.1 Introduction

Obesity and overweight are major risk factors for multiple cardiovascular and metabolic diseases

(Wang et al., 2009). Of particular importance is visceral, or abdominal, adipose tissue, which is

strongly predictive of metabolic health (Emdin et al., 2017). Multiple environmental (e.g., lifestyle)

and genetic factors contribute to obesity with genetics accounting for up to 70% of the population

variance for human body mass index (BMI) and obesity (Stunkard et al., 1986) and visceral adiposity

(Katzmarzyk et al., 2000). To date, human genome-wide association studies have identified many

genes for anthropomorphic traits (Locke et al., 2015; Lu et al., 2016; Ng et al., 2017; Speliotes et al.,

2010), but these genes explain only a small proportion of the heritable variation (Locke et al., 2015),

indicating many genes are yet unidentified. Identification of additional genes is particularly important

because there has been a steady increase in prevalence of overweight and obesity since the 1970’s

(Wang et al., 2009), with over one third of adults and almost one fifth of all children in the United

States being classified as obese (Flegal et al., 2016).

One strategy for identifying the heritable modifiers of obesity is to control for exogenous envi-

ronmental factors using experimental genetic mapping strategies such as the outbred heterogeneous

stock (HS) rats. HS rats descend from eight inbred founder strains and have been out-bred for over

70 generations, such that the fine recombination block structure allows genetic mapping to identify

regions that are only a few Mb (Solberg Woods, 2014). In previous work, we used HS rats to fine-map

a single region on rat chromosome 1 previously identified for glucose and insulin traits (Solberg

1This chapter has been adapted from a paper published in Obesity. The citation will be as follows: Keele, G. R.,
Prokop, J. W., He, H., Holl, K., Littrell, J., Deal, A., Francic, S., Cui, L., Gatti, D. M., Broman, K. W., Tschannen, M.,
Tsaih, S.-W., Zagloul, M., Kim, Y., Baur, B., Fox, J., Robinson, M., Levy, S., Flister, M. J., Mott, R., Valdar, W., and
Solberg Woods, L. C. (2018). Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity
Traits in Outbred Rats. Obesity, 26(1):213-222.
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Woods et al., 2010, 2012), and identified Tpcn2 as a likely causal gene at this locus (Tsaih et al.,

2014). Here, we demonstrate that HS rats vary for adiposity traits including body weight and visceral

fat pad weight, and that these measures correlate with metabolic health. We then detect and fine-map

QTL for these traits genome-wide and identify five likely causal genes within these loci.

5.2 Methods and Procedures

5.2.1 Animals

5.2.1.1 Heterogeneous stock colony

The NMcwi:HS colony, hereafter referred to as HS, was initiated by the NIH in 1984 using the

following eight inbred founder strains: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N

and WN/N (Hansen and Spuhler, 1984). This colony has been maintained at the Medical College of

Wisconsin since 2006 and has been through over 70 generations of breeding. Rats were given ad

libitum access to Teklad 5010 diet (Harlan Laboratories). Additional housing conditions are detailed

in Detailed Methods.

5.2.1.2 Founding inbred sub-strains

Other than M520/N (now maintained at MCW), phenotyping of the founders was conducted in the

following sub-strains (abbreviated names to be used throughout manuscript in parentheses): ACI/Eur

or ACI/Seg (ACI), BN/SsnHsd (BN), BUF/NHsd (BUF), F344/NHsd (F344), and WKY/NHsd

(WKY). We tested 8-19 male rats per inbred strain.

5.2.2 Phenotyping protocol

We measured body weight at 16 weeks of age in 989 male HS rats. Rats underwent an intra-

peritoneal glucose tolerance test (IPGTT) as described previously (Solberg Woods et al., 2010, 2012).

We used the Ascensia Elite system for reading blood glucose values (Bayer, Elkhart, IN). Plasma

insulin levels were determined using an ultrasensitive ELISA kit (Alpco Diagnostics, Salem, NH).

The following metabolic measures were calculated: area under the curve for glucose (glucose AUC)

and insulin (insulin AUC) during the IPGTT, the quantitative insulin sensitivity check (QUICKI) as
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a measure of insulin sensitivity, and the insulinogenic index (IGI) as a measure of beta cell sensitivity

to glucose (Solberg Woods et al., 2012).

Inbreds and 743 HS rats were euthanized after an overnight fast at 17 weeks of age. Body

weight and two measures of body length (from nose to base of the tail and from nose to end of

tail) were collected, allowing us to calculate two measures of body mass index: BMI Tail Base and

BMI Tail End. BMI was calculated as: (body weight/body length2)×10. Rats were euthanized by

decapitation and trunk blood was collected. Fasting cholesterol and triglycerides were determined

from fasting serum on an ACE Alera autoanalyzer using an enzymatic method for detection. Several

tissues were dissected and weighed including retroperitoneal and epididymal visceral fat pads,

hereafter referred to as RetroFat and EpiFat, respectively. Liver and adipose tissues were snap-frozen

in liquid nitrogen for subsequent expression analysis. All protocols were approved by the IACUC

committee at MCW. Phenotyping data have been deposited in RGD (www.rgd.mcw.edu).

5.2.3 Genotyping

We extracted DNA from tail tissue from HS and the original eight inbred founder strains (tissue

obtained from the NIH) using either the Qiagen DNeasy kit (Valencia, CA) or a phenol-chloroform

extraction. Founder and HS rats were genotyped using the Affymetrix GeneChip Targeted Genotyping

technology on a custom 10K SNP array panel as previously described (STAR Consortium et al.,

2008), with marker locations based on rat genome assembly 6.0. 147 samples were genotyped by

the Vanderbilt Microarray Shared Resource center at Vanderbilt University in Tennessee (currently

VANTAGE: http://www.vmsr.edu) and the remaining 842 by HudsonAlpha Institute (http:

//hudsonalpha.org). From the 10,846 SNPs on the array, 8,218 were informative and produced

reliable genotypes in the HS rats. From these final informative markers, the average SNP spacing

was 284 Kb, with an average heterozygosity of 25.68%. Principle Component Analysis was used to

confirm there were no systematic genotyping differences between the two centers (Figure 1.8).

5.2.4 RNA-Seq

RNA was extracted from liver of 398 HS rats using Trizol. Illumina kits were used to create

library preps and RNA-Seq was run on the Illumina HiSeq 2500. RSEM and Bowtie were used to

align reads and compute transcript level expression abundance (Detailed Methods).
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5.3 Statistical Analysis

5.3.1 Estimating heritability of adiposity traits

Narrow-sense heritability was estimated for each transformed phenotype using a Bayesian linear

mixed model (LMM) implemented in INLA (Holand et al., 2013; Rue et al., 2009). The LMM

included fixed effects representing time food deprived, order of tissue harvest, and dissector (notably,

dissector significantly affected EpiFat and BMI Tail Base), and a random “polygenic” effect, which

represented the effect of overall relatedness (calculated as in (Gatti et al., 2014)). Heritability, h2,

was defined as the proportion of variance attributed to polygenic effects vs residual noise (Detailed

Methods).

5.3.2 Genome-wide association

QTL were identified by genome-wide association of imputed allele dosages of genotyped SNPs.

A hidden Markov model (Broman, 2016) was used to infer each HS rat’s haplotype mosaic and thereby

obtain robust estimates of the genotype of each SNP. Association tests were then performed, SNP-by-

SNP, on each trait using a frequentist version of the LMM described for estimating heritability but

with an added SNP effect term. Tests of the SNP effect yielded p-values that are here reported as

negative log to the base 10, or “logP”. Genome-wide significance thresholds for logP scores were

estimated by parametric bootstrap samples from the fitted null (Solberg Woods et al., 2010; Valdar

et al., 2009). Linkage Disequilibrium (LD) intervals for the detected QTL were defined by including

neighboring markers that met a set level of LD, measured with the squared correlation coefficient r2;

we used r2 = 0.5 to define intervals based on the plots of the SNP associations overlaid with LD

information (Detailed Methods).

5.3.3 Fine-mapping and haplotype effect estimation at detected QTL

SNP variants within the LD interval were prioritized used the multi-SNP method LLARRMA-

dawg (Sabourin et al., 2015), which calculates for each SNP a resample model inclusion probability

(RMIP): SNPs with high RMIPs represent strong, independent signals, and the existence of multiple

SNPs with a high RMIP is consistent with the presence of multiple independent signals. To char-
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acterize each QTL signal, we used the Diploffect model (Zhang et al., 2014), which estimates the

relative contributions of alternate founder haplotypes (Detailed Methods).

5.3.4 Candidate gene identification

Two parallel approaches were used: 1) bioinformatic analysis and protein modeling of known

sequence variants; and, 2) mediation analysis of expression levels. For (1), we used HS founder

sequence (www.rgd.mcw.edu; genome build Rn6) to identify highly conserved, non-synonymous

coding variants within each QTL that were predicted to be damaging by Polyphen (http://

genetics.bwh.harvard.edu/pph/) and/or SIFT, focusing on variants in founder strains

that showed haplotype effects at the locus. Variants were confirmed using Sanger sequencing and

then analyzed in the Sequence-to-Structure-to-Function analysis as previously described (Prokop

et al., 2017). Briefly, proteins were assessed with codon selection analysis of multiple species

open reading frames, inspected for linear motif impact near variants of interest, and modeled with

I-TASSER (Roy et al., 2010) and YASARA (Krieger et al., 2009). Models were then assessed for

likely impact on protein folding and/or function based on model confidence, phylogenetic sequence

alignment, conservation, and whether or not the variant altered structural packing, molecular dynamic

simulations, binding partners, linear motifs or post-translational modifications. For (2), transcript

abundance levels of genes within HS liver were evaluated as potential causal mediators of the

physiological QTL through mediation analysis (Baron and Kenny, 1986) (Detailed Methods).

5.4 Results

5.4.1 HS founder strains exhibit large variation in adiposity traits

All phenotypes were rank-inverse normal transformed except EpiFat, which instead was log

transformed based on the Box-Cox procedure. All traits differed significantly between the inbred

founder strains: body weight (F5,76 = 15.492, p = 1.74e−10), BMI Tail End (F5,73 = 25.024, p =

1.34e−14), BMI Tail Base (F5,73 = 9.683, p = 4.02e−7), EpiFat (F5,78 = 69.541, p < 2.2e−16)

and RetroFat (F5,78 = 38.157, p < 2.2e−16; Figure 1.1). The BUF inbred strain had significantly

more EpiFat mass (Tukey-Kramer p < 0.05) and BMI Tail End (Tukey-Kramer p < 0.05) relative

to all other strains. BUF also had significantly more RetroFat mass compared to all strains (Tukey-
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Figure 1 
Figure 1.1: Adiposity traits in inbred founders and HS rats. Mean + SD are shown. BMI is body mass
index from nose to end of tail (BMI Tail End) and from nose to base of the tail (BMI Tail Base).
EpiFat and RetroFat are epididymal and retroperitoneal fat pad weight, respectively. Gray circles
represent individual animals from 8-19 individuals from 6 of the founder strains, and the HS rats
(989 in body weight; 741 in RetroFat, EpiFat, and BMI Tail End; and 740 in BMI Tail Base). See
text for statistical differences between founder strains.

Kramer p < 0.001) except F344 (Tukey-Kramer p = 0.06175), higher body weight relative to

ACI, BN, and M520 (Tukey-Kramer p < 0.01), and higher BMI Tail Base than ACI and M520

(Tukey-Kramer p < 0.05). ACI, BN and M520 were the lightest strains, with BN and M520 showing

significantly lighter EpiFat (Tukey-Kramer p < 1e−5) and RetroFat (Tukey-Kramer p < 0.001)

relative to other strains.

5.4.2 Adiposity traits are highly correlated with measures of metabolic health in HS

rats

Variation between the founder strains is represented within the HS colony (Figure 1.1). Adipos-

ity measures were highly correlated with several measures of metabolic health (Table 5.1, Figure

1.2). EpiFat significantly correlated with every measure of metabolic health and RetroFat correlated

with all but fasting glucose. Body weight significantly correlated with all measures except fasting

triglycerides. BMI Tail End significantly correlated with fasting total cholesterol, fasting tricglyc-
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Figure 2 

Figure 1.2: Significant correlations between RetroFat (retroperitoneal fat pad weight) and A) fasting
insulin (p = 4.75e−27), B) fasting total cholesterol (p = 1.02e−20) and C) fasting triglycerides
(p = 2.55e−20) in HS rats. Plots show the residuals of rank-inverse normal transformed phenotypes
with nuisance factors regressed out to restrict correlation estimates to that between RetroFat and
these metabolic traits. Significant correlations were also found between RetroFat and several other
measures of metabolic health (see Table 5.1).

erides, glucose AUC, insulin AUC, and IGI, whereas BMI Tail Base did not significantly correlate

with any of the measures of metabolic health.

5.4.3 Adiposity traits are highly heritable

Adiposity traits were highly heritable in HS rats: body weight (posterior mode of h2 = 75.3%;

95% highest posterior density interval= 67.0− 81.7%), EpiFat (54.1%; 40.1− 66.0%), RetroFat

(53.9%; 39.7 − 66.7%), BMI Tail End (45.0%; 32.3 − 57%) and BMI Tail Base (25.4%; 13.6 −

41.8%).

5.4.4 RetroFat QTL on chromsomes 1 and 6

Two 90% significant QTL were identified for RetroFat, a QTL on rat chromosome 6: 22.79-

28.93 Mb (6.14 Mb, logP = 4.73) and a QTL on chromosome 1: 280.63 - 281.82 Mb (1.19 Mb,

logP = 4.69; Figures 1.3ABC, 1.6ABC). The LLARRMA-dawg multi-SNP fine-mapping analysis

narrowed the most likely region of the broader chromosome 6 QTL to 1.46 Mb region (27.17 -

28.63 Mb; Figure 1.9) narrowing the number of the genes from 130 to 30 (Tables 5.2-5.5, Figure

1.10). Estimating founder haplotype effects at the chromosome 6 QTL gave an effect size (posterior

median) of 11.05% and showed that at this locus, decreased fat pad weight is associated with the
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Table 1.  Correlations between adiposity traits and measures of metabolic health in HS rats 

 

 

Body Weight BMI_Tail_End BMI_Tail_Base EpiFat RetroFat 

Fasting Glucose 0.1453 

(0.0012) 

0.0952 

(0.76) 

0.0886 

(1) 

0.1931 

 (3.24e-05) 

0.1132 

 (0.1009) 

 

Fasting Insulin 

 

0.1936 

(3.48-07) 

0.1153 

(0.091) 

-0.0248 

 (1) 

0.4314  

(1.35e-31) 

0.3516  

(4.75e-27) 

 

Fasting Total 

Cholesterol 

 

0.2644 

(7.10e-11) 

0.2428 

 (5.75e-09) 

0.1172 

 (0. 39) 

0.2535 

(6.85e-10) 

0.3529  

(1.02e-20) 

 

Fasting 

Triglycerides 

 

0.1291 

(0.12) 

0.2426 

(6.07e-09) 

0.0950 

(1) 

0.3096 

(1.75e-15) 

0.3499 

 (2.55e-20) 

 

Glucose_AUC 

 

0.1378 

(0.0040) 

0.1259 

 (0.0214) 

0.0652 

(1) 

0.1663 

(0.0016) 

0.1718 

(1.71e-05) 

 

Insulin_AUC 

 

0.2937 

(5.67e-18) 

0.2238 

(7.99e-10) 

0.0312 

 (1) 

0.4670 

(2.71e-37) 

0.4397  

(8.79e-44) 

 

QUICKI 

 

-0.2042 

(3.91e-08) 

-0.1198 

(0.0523) 

0.0211 

 (1) 

-0.4338 

(5.24e-32) 

-0.3544 

(1.57e-27) 

 

IGI 

 

0.1629 

(0.0001) 

0.1220 

 (0.0430) 

0.0001 

 (1) 

0.2475 

 (5.46e-09) 

0.2038 

 (5.46e-08) 

Spearman’s rank correlation with Bonferonni-adjusted p-values in parentheses (bold if <0.05). To mitigate 

potentially confounding effects of experimental covariates, correlations are performed on phenotypic residuals (ie, 

on the residuals after regressing out covariate effects from the rank-inverse normal transformed phenotype). 

Table 5.1: Correlations between adiposity and measures of metabolic health in HS rats
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WKY haplotype (Figure 1.3D). For the chromosome 1 QTL the effect size was 13.33%, with

increased fat pad weight associated with BUF, MR and WKY haplotypes (Figure 1.6D).

5.4.5 Identification of Adcy3, Krtcap3, Slc30a3 within the chromosome 6 RetroFat

QTL

Within the chromosome 6 RetroFat QTL, bioinformatic analysis revealed only one gene, Adcy3,

that had a highly conserved, potentially damaging, non-synonymous variant in the WKY rat, the

founder haplotype associated with decreased Retrofat at this locus. Adcy3 also falls within the

fine-mapped support interval of the QTL (Figure 1.3C). The WKY founder strain harbors a C at

position 28,572,363 bp within Adcy3 while all other strains harbor a T, resulting in a leucine-to-

proline substitution at amino acid 121. Based on DNA information from 86 nucleotide sequences

for ADCY3, this variant is highly conserved with evidence for selective pressure. Protein modeling

indicated that amino acid 121 is located within the first transmembrane region, with a proline likely

causing a bend in the helix and thus altered transmembrane packing (Figure 1.3E).

Because fine-mapping supported multiple independent signals at the QTL, we investigated poten-

tial mediators among the cis-expressed genes. Mediation analysis identified six potential mediators,

all driven by the WKY haplotype (Figure 1.4; Tables 5.9 and 5.10), suggesting that multiple genes

may influence RetroFat at this locus. Two in particular were strongly supported: Krtcap3 as a

full mediator and Slc30a3 as a partial mediator, remaining significant after controlling for Krtcap3.

Under the proposed model (Figure 1.5), the WKY haplotype increases expression of Krtcap3, which

is itself negatively correlated with RetroFat (Figure 1.11), and thus the causal path is consistent

with the negative WKY effect on RetroFat at the locus; meanwhile, WKY decreases expression of

Slc30a3, which is also negatively correlated RetroFat, suggesting Slc30a3 is a suppressor of the

QTL/Krtcap3 effect.

5.4.6 Identification of Prlhr within the chromosome 1 RetroFat QTL

Within the chromosome 1 RetroFat QTL, there are 15 genes, ten of which are uncharacterized

(Figure 1.6BC, Table 5.6 - 5.7). One gene, Prlhr, contains a non-synonymous variant in the BUF and

WKY founder strains, two founder haplotypes associated with an increase fat pad weight at this locus.

The variant falls within the start codon, changing methionine to isoleucine. The next methionine falls
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Figure 3 

ADCY3 Protein Modeling L121P 

C 

B 

A 

E 

D RetroFat Genome Scan    

RetroFat Chr. 6 QTL Gene Annotations    

RetroFat Chr. 6 QTL 

RetroFat Chr. 6 QTL Haplotype Effects 

Figure 1.3: Genome scan of RetroFat (A). X-axis is position on chromosome and y-axis is the
logP level of association. Genome-wide significance thresholds were calculated using parametric
bootstraps from the null model (α = 0.1, logP = 4.70). The grey region highlights the 6.14 LD
support interval of the chromosome 6 QTL showing neighboring markers that are correlated with
the peak marker, representing genomic regions likely to contain the causal variant underlying the
statistical signal (B). Annotation of genes that fall within the support interval (C). The entire 6.14
region is shaded in grey, with the fine-mapped 1.46 Mb region shaded in dark grey. Only genes
that have a cis eQTL are shown. All 130 genes within the region are listed in Tables 5.2-5.5.
Additive haplotype effects were estimated using the Diploffect model, which takes into account
uncertainty in haplotype state (D). SNP allele information is overlaid on the haplotype effects, and
are distinguished by black or gray. The WKY haplotype, the only haplotype with the C allele at the
chromosome 6 locus, has a significantly negative effect on phenotype. Protein modeling for ADCY3
(E). Variant L121P of ADCY3 is found with the conserved hydrophobic core of the transmembrane
helices. A zoomed in view is shown to the right. The middle panel shows sequence alignments of
amino acids. ADCY3 amino acid 121 is also 100% conserved (red) as a leucine in 86 analyzed
vertebrate species. A human SNP is known at amino acid 107 (yellow). Using the DNA information
from the 86 nucleotide sequences for ADCY3, there is also evidence of selective pressure in the
DNA sequence to conserve the amino acid. Bottom panel shows molecular dynamic simulations
for ADCY3. Simulations performed on the protein dimer for wild type (WT blue) or the mutant
(ADCY3 L121P, red) suggests that the models’ average movement over time is altered. Altered
movement is seen in the simulations for ADCY3 with fluctuation of amino acids found near amino
acid 121 when mutated.
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Figure 4 

Figure 1.4: Mediation analysis identified the expression levels of six genes (Wdr43, Ppp1cb, Gpn1,
Krtcap3, Slc30a3, and Atraid; Table 5.10) in the RetroFat chromosome 6 QTL interval as potential
mediators of the QTL effect on the phenotype. [Middle column] Comparisons of the RetroFat
chromosome 6 association scan with association scans for the potential mediators reveals them to
likely have co-localizing cis eQTL with the RetroFat QTL. [Left column] The haplotype effects on
RetroFat at the QTL and on the mediators at the eQTL reveals that in this region, the WKY haplotype
is largely driving the differences in RetroFat and mediator gene expression, suggesting a possible
connection between RetroFat and local gene expression. [Right column] RetroFat chromosome 6
association scans, conditioned on candidate gene expression, is consistent with the mediation analysis
finding that Krtcap3 is a strong candidate as full mediator of the effect of QTL on RetroFat. When
Krtcap3 expression is included in the model, the QTL is largely removed. Slc30a3, as a potential
suppressor of the QTL effect on RetroFat, actually increases the significance seen at the QTL.
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Figure 1.5: Model demonstrating role of Adcy3, Krtcap3 and Slc30a3 on RetroFat. WKY haplotype
increases expression of Krtcap3, which is itself negatively correlated with RetroFat (Figure 1.11),
and thus the causal path is consistent with the negative WKY effect on RetroFat at the locus. In
contrast, WKY decreases expression of Slc30a3, which is also negatively correlated RetroFat,
suggesting Slc30a3 is a suppressor of the QTL/Krtcap3 effect. Finally, the non-synonymous variant
with Adcy3 causes amino acid change L121P leading to lower RetroFat.
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at amino acid 65, such that the conserved N-terminal region and half of transmembrane helix 1 would

be deleted with the variant (Figure 1.6E, https://youtu.be/vRTIkITXRbw). A molecular

dynamic simulation of the PRLHR protein with and without the first 64 amino acids showed strong

changes to the entire GPCR transmembrane region. Prlhr is expressed mainly in adrenal and brain

such that expression levels could not be determined in liver tissue. None of the liver-expressed genes

local to the QTL map as cis-eQTL, thus Prlhr remains the strongest candidate within this region.

5.5 Body weight QTL on chromosome 4 and identification of Grid2

A 95% significant QTL for body weight was also detected on rat chromosome 4: 91.35Mb to

94.7Mb (3.35 Mb, logP = 5.32) (Figure 1.7ABC). At this locus, whose effect size was 12.33%,

decreases in body weight were associated with ACI, BUF, F344 and MR haplotypes, and increases

with BN (Figure 1.7D).

Within the body weight QTL, there are only 11 genes, nine of which are pseudogenes or

uncharacterized LOC proteins, leaving only Ccser1 and Grid2 (Figure 1.7C, Table 5.8). None of the

genes at this locus contained highly conserved potentially damaging non-synonymous variants. Both

Ccser1 and LOC108350839 are expressed in liver, but the expression of neither was significantly

associated with the body weight QTL, ruling these out as candidate mediators. The brain-specific

Grid2 is the only gene that has previously been linked to body weight (Nikpay et al., 2012) and Grid1

was recently associated with BMI in human GWAS (Locke et al., 2015), implicating Grid2 as the

most likely candidate at this locus.

5.6 Discussion

This is the first study to map adiposity traits genome-wide using HS rats and demonstrates

their utility for uncovering genes and variants likely to impact human adiposity. We identified QTL

for RetroFat on rat chromosomes 1 and 6 and a QTL for body weight on chromosome 4. Using

various fine-mapping procedures, we identified three likely candidate genes within the chromosome

6 RetroFat locus: a protein-coding variant within Adcy3, and transcriptional regulation of Krtcap3

and Slc30a3 that mediate between the QTL and RetroFat. Within the chromosome 1 RetroFat QTL,

we identified a variant within Prlhr that increases fat pad weight. Lastly, Grid2 was identified as
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Figure 1.6: Genome scan of RetroFat as described in Figure 1.3A (A). The grey region highlights
the 1.19 Mb LD support interval for the chromosome 1 locus representing neighboring markers that
are correlated with the peak marker, representing genomic regions likely to contain the causal variant
underlying the statistical signal (B). Annotation of the five characterized genes that fall within the
support interval (C). Additive founder haplotype effects for the chromosome 1 RetroFat locus (D).
Additive haplotype effects were estimated using the Diploffect model, which takes into account
uncertainty in haplotype state. SNP allele information is also overlaid on the haplotype effects. The C
allele is shared by ACI, F344, and M520, that possesses a variant with a negative effect on RetroFat,
whereas BUF, MR and WKY haplotypes result in increased RetroFat at this locus. Protein modeling
for PRLHR (E). Variant M1I of PRLHR is found within the methionine start site. The next start site
is at position 65 leading to removal of the conserved N-terminal region and half of transmembrane
helix 1. 16 amino acids removed are under selective pressure (middle panel) and the deletion of the
first 64 amino acids causes a destabilization of the entire proteins dynamics as seen by the molecular
dynamic simulations (bottom panel).
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Figure 7 
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Body Weight Genome Scan     
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Body Weight Chr. 4 QTL Gene Annotations 

Body Weight Chr. 4 QTL Haplotype Effects 

Figure 1.7: Genome scan of body weight (A). X-axis is position on chromosome and y-axis is the
logP level of association. Genome-wide significance thresholds were calculated using parametric
bootstraps from the null model (significant: α = 0.05, logP = 4.86) and conservative α = 0.05
Bonferroni thresholds (logP = 5.16). Linkage disequilibrium support interval in grey is 3.35 Mb (B).
Annotation of the two characterized genes that fall within the support interval (C). Additive haplotype
effects for chromosome 4 body weight QTL (D). The C allele at the marker could represent shared
haplotype descent between BN and M520, both which have an increasing effect on body weight at
this locus. ACI, BUF, F344 and MR haplotypes have a decreasing effect of body weight at this locus,
all of which share the A allele. The WKY and WN also have an A allele and the WKY haplotype
has an increasing effect on body weight, while the WN haplotype appears not to effect body weight,
although the credible interval of both is fairly large and not well represented in the data at this locus.
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the most likely candidate gene within the body weight locus. It is of interest that several of these

candidate genes play a role in neural regulation of energy metabolism and/or feeding behavior.

As expected, both the HS founders and the HS population varied for adiposity traits, with BUF

showing the highest adiposity and ACI, BN and M520 showing the lowest. As seen in humans

(Stunkard et al., 1986; Katzmarzyk et al., 2000), these traits were highly heritable. Also similar to

humans (Emdin et al., 2017), increased body weight, particularly visceral fat pad weight (RetroFat

and EpiFat), was significantly associated with several measures of metabolic health in the HS rats,

indicating that genes underlying QTL for adiposity traits are likely to contribute to overall metabolic

health in HS rats.

Despite high heritability for adiposity traits in this model, we found only three QTL for the five

traits that were studied. The remaining heritability could be attributable to loci of small effect and/or

complex genetic architecture that lie below the limit of detection in this study, and this accords with

the fact that the QTL we identified were each of relatively large effect (12.33%, 13.33% and 11.05%

respectively). The identified QTL also had relatively small LD support intervals (3.35 Mb, 1.19

Mb and 6.14 Mb, respectively), significantly decreasing the number of potential candidate genes

within each QTL relative to traditional QTL studies using F2 intercross or backcross animals; the

map density, however, was too low for high resolution mapping of the genes within the interval. We

expect that increasing both the number of animals used as well as the density of genotyping would

serve to uncover additional loci.

The chromosome 6 RetroFat locus encompassed 6.14 Mb, contained 130 genes and was driven

by the WKY haplotype. Using a fine-mapping procedure that allowed for the presence of multiple

signals, we identified a 1.46 Mb plausible region for the QTL. Adcy3 was the only gene in this region

to contain a highly conserved, non-synonymous variant in the WKY founder strain that is predicted

to be damaging: the leucine-to-proline switch at amino acid 121 would likely induce a bend in the

helix leading to altered membrane interactions and binding. In addition, we found that multiple

genes within the locus map as eQTL. Subsequent mediation analysis supported roles for Krtcap3 and

Slc30a3, with Krtcap3 expression presenting as a full mediator of the QTL and Slc30a3 expression as

a partial/suppressor mediator. Although little is known about Krtcap3, Slc30a3 is a zinc transporter

that plays a role in glucose transport and metabolism (Smidt et al., 2009), and Adcy3 is an enzyme

that catalyzes the cAMP second messenger system and is likely involved in energy homeostasis (Wu
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et al., 2016). The POMC/RBJ/ADCY3 region has previously been identified in multiple human

GWAS for BMI and obesity (Speliotes et al., 2010; Nordman et al., 2008; Stergiakouli et al., 2014;

Wen et al., 2012). Interestingly, a non-synonymous amino acid change (Ser107Pro) in the human

Adcy3 gene (Speliotes et al., 2010), which falls within the same transmembrane helix as the rat

variant, has been identified as the causal variant in height-adjusted childhood BMI (Stergiakouli

et al., 2014), indicating the same likely causal variant between rat and human. Adcy3 knock-out

and haplo-insufficient mice become obese with age, exhibiting increased food intake and decreased

locomotion (Tong et al., 2016; Wang et al., 2011). In addition, gain of function in Adcy3 protects

against diet-induced obesity (Pitman et al., 2014), further supporting a causal role for this gene.

The chromosome 1 RetroFat locus encompassed 1.19 Mb, contained 15 genes, with BUF, MR,

and WKY haplotypes increasing RetroFat. Prlhr, containing a non-synonymous variant in both

the BUF and WKY strains, stood out as the most likely candidate gene: the variant fell within

the methionine start site and leads to removal of the conserved N-terminal region and half of

transmembrane helix 1, likely having a large impact on protein function. This variant is found in

several other rat strains including FHH, GK, LEW and SD. Prlhr is known to play a role in feeding

behavior, with ICV administration in the hypothalamus leading to decreased food intake (Lawrence

et al., 2000), and Prlhr knock-out mice exhibiting increased food intake, body weight and fat pad

weight (Gu et al., 2004). Interestingly, this specific variant did not alter feeding behavior in outbred

Sprague-Dawley rats (Ellacott et al., 2005), indicating that the effect of the variant on fat pad weight

may be independent of food intake, although additional studies are needed to confirm this.

The body weight locus encompassed 3.35 Mb and contained 11 genes, none of which contained

highly conserved non-synonymous variants predicted to be damaging between the two haplotype

effect groups: ACI, BUR, F344, MR versus BN. Only one gene in the region, Grid2, has previously

been linked to obesity, jointly with tobacco use, in a family-based study (Nikpay et al., 2012), making

it the most likely candidate gene. Interestingly, Grid1 was associated with BMI in a recent human

GWAS (Locke et al., 2015), further supporting a potentially causal role for Grid2 within the rat body

weight locus. Grid2 encodes the glutamate ionotropic receptor delta type subunit 2 and is known to

play a role in synapse formation, particularly within the cerebellum (Hirai et al., 2003). Synaptic

formation and plasticity are increasingly being recognized as playing a role in metabolism and energy
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balance (Dietrich and Horvath, 2013). Additional work, including assessing Grid2 expression levels

in brain, is needed to confirm or eliminate Grid2 as the causal gene at this locus.

In summary, we have used HS rats to identify QTL for adiposity traits, leading to identification

of five candidate genes and two likely causal variants. Some genes have previously been identified in

human GWAS or linkage studies (Adcy3, Grid2) or implicated in rodent models of obesity (Adcy3,

Prlhr), while two genes are novel (Krtcap3, Slc30a3). The Adcy3 variant falls within the same

transmembrane helix as that found in humans indicating direct human relevance of this work. It is

also of interest that Adcy3, Prlhr and Grid2 have previously been found to impact feeding behavior

and/or neural regulation of metabolism. This work demonstrates the power of HS rats for genetic

fine-mapping and identification of underlying candidate genes and variants that will likely be relevant

to human adiposity.

5.7 Detailed Methods

5.7.1 Animals

5.7.1.1 Housing

Rats were housed two per cage in micro-isolation cages in a conventional facility using autoclaved

bedding (sani-chips from PJ Murphy). They had ad libitum access to autoclaved Teklad 5010 diet

(Harlan Laboratories) and were provided reverse osmosis water chlorinated to 2-3 ppm.

5.7.2 Statistical genetic analysis

5.7.2.1 Modeling genetic effects on adiposity

All statistical genetic analyses described used the same general model (or approximations to it)

for linking the genetics of a given rat to its measured phenotypic outcome. This was the linear mixed

effect model (LMM)

f(yi) = covariatesi + QTLi(m) + ui + residuali, (5.1)

where, in brief: f(yi) is the phenotype subject to a normalizing transformation, specifically, as

a conservative measure to rein in high influence data points, we used the rank inverse normal
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transformation; covariatesi is a fixed effects term that includes variables representing time food

deprived, order of tissue harvest, and dissector (notably, dissector significantly affected EpiFat and

BMI Tail Base); QTLi(m) represents the effect of the quantitative trait locus (QTL) at genomic

locus m, and is defined in more detail below; and residuali models the remaining individual-to-

individual variation as a normal deviate with variance σ2. The ui term is a random polygenic effect

representing the effect of overall genetic relatedness, modeled as vector u = (ui, . . . , un) drawn

from a multivariate normal with covariance matrix Gτ2, where τ2 is unknown and G is the realized

genetic relationship matrix, estimated as the pairwise distance in allelic dosages defined by the

identity by descent (IBD) probabilities from founder haplotypes, standardized by allele frequency

and averaged over loci across the genome, calculated using the kinship.probs function in the

DOQTL R package (Gatti et al., 2014). The LMM in Eq 5.1 with QTLi(m) omitted is hereafter

referred to as “the null model”.

5.7.2.2 Heritability estimation

Narrow-sense heritability,

h2 =
τ2

τ2 + σ2
× 100% ,

was estimated for each phenotype by fitting the null model as a Bayesian LMM using INLA (Rue

et al., 2009; Holand et al., 2013), which gives a complete posterior distribution of h2, along with

point and interval estimates. Phenotypes were scaled to have a mean of 0 and standard deviation of

1, and a uniform prior on h2 was obtained by setting priors on τ−2 and σ−2 to Ga(1, 1), with other

settings being default.

5.7.2.3 QTL mapping

QTL were identified by genome-wide association of imputed SNPs. This was performed in

three steps. First, as in previous work (Solberg Woods et al., 2012), we obtained a probabilistic

reconstruction of each rat’s haplotype mosaic, that is, the configuration of inherited founder haplo-

types that compose its genome, using a hidden Markov model (HMM), implemented in R/qtl2geno

(Broman, 2016), applied to the genotype data on HS rats and their founders. This HMM was used

to calculate for each individual i = 1, . . . , n, at each marker position m = 1, . . . , 8218, a vector
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of 36 descent probabilities, pim, containing the posterior probability of descent from each of the

possible 8(8+1)
2 = 36 haplotype pairs (diplotypes). n, the sample size, varies between phenotypes,

with n = 989 for those irrespective of tissue harvest age, such as body weight, and n = 743 for

those that include only individuals with tissue harvested at 17 weeks of age, such as RetroFat (two

rats did not have RetroFat measurements, resulting in n = 741). Second, these descent probabilities

were used to re-estimate the original SNP genotypes, that is, each pij was used to infer a 3-vector of

imputed genotype probabilities gij ; these imputed genotypes, which, unlike their raw counterparts,

were both complete and relatively robust to genotyping error, were carried forward into subsequent

analyses. Third, at each SNP, we fitted the LMM in Eq 5.1, setting QTLi(m) = βxmi where xmi

is the expectation of the minor allele count (ie, the allele dosage) implied by gim, and β is a fixed

effect; comparing the maximum likelihood (ML) fit of this model to that of the null model gave a

likelihood ratio test and nominal p-value, reported as its negative base 10 logarithm, or logP. (Note

that initially we used models testing the association between phenotype and haplotype descent, ie,

pim, directly, as in the region-wide mapping of (Solberg Woods et al., 2012), but instead used the

less complicated SNP modeling due to a combination of uncertainty in haplotype descent and strong

imbalances in the estimated haplotype frequencies.)

Genome-wide significance thresholds for logP scores were estimated by parametric bootstrap

samples from the fitted null (Valdar et al., 2009; Solberg Woods et al., 2010), with Bonferroni

thresholds, which would be highly conservative due to the serial LD structure, calculated for

comparison.

LD intervals for the detected QTL were defined by including neighboring markers that met a

set level of LD, measured with the squared correlation coefficient r2; we used r2 = 0.5 to define

intervals based on the plots of the SNP associations overlaid with LD information.

5.7.2.4 Fine-mapping through Group-LASSO with fractional resample model aver-

aging

To prioritize SNP variants within the RetroFat chromosome 6 QTL interval, we used the

multi-SNP modeling method LLARRMA-dawg (Sabourin et al., 2015), which we applied to the

imputed SNP genotypes and a population structure-corrected version of the phenotype, namely the

phenotypic residuals of the null model. LLARRMA-dawg uses a combination of variable selection
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and resampling to identify SNPs that have stable, independent associations with the phenotype. Each

SNP receives a resample model inclusion probability (RMIP), an estimate of the probability it would

be included in a parsimonious multi-SNP model applied to a resampling of the individuals. SNPs

with high RMIPs thus represent stronger candidates, and the existence of multiple SNPs with a high

RMIP is consistent with the presence of multiple independent signals.

5.7.2.5 Estimating haplotype substitution effects at detected QTL

For detected QTL, the effect of substituting alternate haplotypes and diplotypes was estimated

using the Diploffect model (Zhang et al., 2014), which can help identify interesting alleles of

the candidate variants near the mapping signal. Although stability and power, along with the

computational demands of a genome-wide analysis, led us to use SNP association for genetic

mapping, these were no longer constraints for haplotype effect estimation at an identified QTL.

Diploffect is a Bayesian hierarchical approach designed to work with probabilistically inferred

haplotype descent, providing shrinkage that mitigates instability from low haplotype frequencies.

In addition to the population structure effect in Eq 5.1, it models two genetic components at the

QTL: additive (haplotype) effects, ie the effect of each dose of haplotype (eg WKY); and dominance

deviations, those from the additive model for specific combinations of haplotype, (eg, WKY-ACI).

Dominance deviations are typically less informed, but their inclusion stabilizes additive effect

estimation. Both have their own variance parameters, τ2add and τ2dom, with QTL effect size recorded

as the intraclass correlation coefficient

ρQTL =
τ2QTL

τ2QTL + τ2 + σ2
,

where τ2QTL = τ2add + τ2dom. The model was fitted using 200 importance samples from INLA (Rue

et al., 2009; Holand et al., 2013), with phenotype transformations and variance component priors set

as for heritability estimation above.

5.7.2.6 Analysis of RNA-Seq data

Total RNA was extracted from the livers of 398 of the HS rats using Trizol, followed by

library preparation using Illumina TruSeq Stranded mRNA library kit and sequencing on an Illu-
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mina HiSeq2500 (Illumina, Inc., San Diego, CA). BN reference genome sequence (genome build

Rn6) and GTF files were obtained from Ensembl. RSEM (v1.3.0) rsem-prepare-reference

function was used to extract the transcript sequences from the genome (Li and Dewey, 2011)

and to build Bowtie2 indices (Bowtie2 v2.2.8) (Langmead and Salzberg, 2012). RSEM

rsem-calculate-expression function was then used to execute Bowtie2 to align reads

of each sample to the transcriptome prepared above and to compute transcript level and gene level

expression abundance. Trim Galore (http://www.bioinformatics.babraham.ac.uk/

projects/trim\_galore/) was used to perform quality-based trimming with a cutoff at Q=20.

Seven animals were removed due to low number of input reads.

5.7.3 Mediation analysis of phenotype, expression, and QTL

Mediation analysis was used to identify genes with expression levels that mediate the relationship

between QTL and physiological phenotype. Expression levels of genes contained within the LD-

based QTL intervals were assessed as potential candidates as full mediators (intermediates that

completely explain the association between SNP and phenotype) and partial mediators (intermediates

that explain some of the association between SNP and phenotype). Similar to (Baron and Kenny,

1986) and adapted for genetic data as in (Battle et al., 2014), evidence of mediation was assessed

by a series of association tests, presented as a series of steps below, evaluating the relationships

between previously mapped phenotype QTL (X), some transformation of the expression of level of a

candidate mediator gene j = 1, . . . , J (M ), and some transformation of the phenotype (Y ).

1. Potential mediators: The relationship, represented as an arrow, with directionality encoding

causality, X → M is evaluated for all J candidate genes in the physiological QTL interval

with non-zero expression in greater than 0.25 of the n rats by testing for the association

between QTL and expression of gene j via the regression model

f(gene.expressionij) = mapped.QTLi + ui + residuali, (5.2)

where briefly f(gene.expressionij) is the expression level for gene j of rat i subject to some

normalizing transformation, often a rank inverse normal transformation, mapped.QTLi is the

effect of the mapped QTL for rat i, and ui and residuali are respectively the polygenic and
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individual error terms as described in Eq 5.1. The maximum likelihood fit of the model in Eq

5.2 is compared with the null model (same as Eq 5.2 with mapped.QTLi omitted) to produce a

likelihood ratio statistic and corresponding p-value. The p-values are converted to q-values

using the Benjamini-Hocheberg false discovery rate (FDR) method (Benjamini et al., 1995).

X → M for gene j is considered satisfied if q-valuej < 0.1. A lenient FDR controlling

approach to multiple testing is used because the candidate set of genes is constrained to those

local to the QTL interval, as well as the mediation analysis including further tests to satisfy

mediator status. The set K (K ≤ J) genes represent candidate mediators, and are also likely

co-localizing eQTL to the QTL.

2. Full mediators: The relationship X |= Y |M is representative of M being a full mediator of X

on Y , suggesting that X →M → Y , specifically that X does not affect Y outside of through

M . The support for this relationship in the data is evaluated by comparing the following

regression models:

f(yi) = mapped.QTLi + f(gene.expressionij) + ui + residuali, (5.3)

and

f(yi) = f(gene.expressionij) + ui + residuali, (5.4)

where Eq 5.3 is the alternative model and Eq 5.4 is the null model for a likelihood ratio test.

The expression level of gene k is called a full mediator if p-valuek > 0.05, representing the

situation in which the effect of QTL on the phenotype is fully explained by expression of gene

k. After testing for all K candidate mediators, S (0 ≤ S ≤ K) full mediators are called.

3. Partial mediators: The relationship M → Y |X is representative of M being a partial

mediator of X onto Y . To test the support for this relationship, Eq 5.3 for each candidate

partial mediator t (T = K − S) is compared to

f(yi) = mapped.QTLi + ui + residuali, (5.5)
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producing a likelihood ratio statistic and p-value. The FDR controlling approach is used again

to obtain corresponding q-values. If q-valuet < 0.1, expression of gene t is called a partial

mediator of the relationship between the QTL and the phenotype. Gene t could also represent

an independent effect on the phenotype from the QTL.

4. Consistency of effects: The consistency of the signs of the effect of the relationships of X

through the mediator M onto Y (X → M → Y ) with X on Y (X → Y ) was checked for

all called mediators. X +→ Y means that X causally increases Y , whereas X −→ Y means

that X causally decreases Y . Consistent signs for X +→ Y would be X +→ M
+→ Y or

X
−→ M

−→ Y . Similarly, for the X −→ Y relationship, consistent mediation relationships

would be X +→M
−→ Y or X −→M

+→ Y . Inconsistent signs, also referred to as paradoxical

effects, occur when signs of the relationships to and from the mediator are not consistent with

the sign of the relationship from X to Y , suggesting that M potentially acts as a suppressive

mediator of the relationship X → Y .

The validity of the causal inference from the mediation analysis depends on the underlying

relationships following a directed acyclic graph (DAG). If cycles are present in the graph, the causal

inference will likely not be valid. Cycles cannot exist with X → Y and X →M because the QTL

genotype is essentially fixed and cannot be modulated by other quantities. Notably the assumption

is made that M → Y , and that M ← Y does not occur, though it is plausible that a QTL could

modulate a phenotype (X → Y ), which leads the phenotype to modulate expression of certain

genes (Y →M ). These types of relationships would produce significant associations whose causal

directionality would be misinterpreted by the mediation analysis, thus their inference is dependent

on the assumption.

5.7.4 Mediation analysis results

Gene expression data from the liver was measured on 398 of the 989 HS rats (all in the cohort

with tissue harvested at 17 weeks of life). The three QTL intervals (RetroFat chromosome 1 and

chromosome 6 loci and body weight chromosome 4 locus) were evaluated with mediation analysis

in an attempt to identify and prioritize possible candidates that could affect the phenotypes through

their expression level variation.
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5.7.4.1 Body weight chromosome 4 locus

The QTL interval for this locus contained 11 genes (Table 5.8). Three of these had liver

expression measured. The main candidate Grid2 was not sufficiently expressed (non-zero expression

proportion < 0.25) in liver tissue. The expression levels of the other two genes (Ccser1 and

LOC108350839) were not significantly associated with the QTL (X →M was not satisfied).

5.7.4.2 RetroFat chromosome 1 locus

The QTL interval contained 15 genes (Table 5.6 and 5.7), of which 5 were contained in the

expression data (Emx2, Rab11fip2, Fam204a, Prlhr, and Cacul1). Emx2 and the primary candidate

Prlhr were not sufficiently expressed in the liver. Similar to as in body weight, the expression levels

of the remaining three genes were not significantly associated with the QTL.

5.7.4.3 RetroFat chromosome 6 locus

The interval for this QTL is much wider than the previous intervals, and contains 130 genes

(Table 5.2-5.5), of which 114 were measured in the liver expression data. Of the 114, 36 genes had

non-zero expression below 0.25, leaving 78 genes for which to evaluate X →M . 14 genes (Table

5.9) had a significant association (q-value < 0.1) between expression levels and the QTL. These 14

candidate mediators were then tested for evidence of being full mediators. Krtcap3 was called a full

mediator (p-value = 0.15). The remaining 13 were evaluated as partial mediators, resulting in 5 genes

being selected (q-value < 0.1) (Table 5.10). As Krtcap3 was a strong candidate as a full mediator,

we replaced the QTL in the model of RetroFat with it. Each partial mediator was then individually

included in a regression model of RetroFat with Krtcap3 and compared to the null model with only

Krtcap3 (Table 5.10). Only Slc30a3 remained significant, suggesting that it is the best candidate as

an additional regulator of RetroFat, potentially separately from the QTL/Krtcap3 signal.

5.8 Additional Figures
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Figure 1.8: Principal component analysis for the first ten principal components of genotypes between
two genotyping centers. Those genotyped at Hudson Alpha are plotted in red and those genotyped at
Vanderbilt are plotted in blue. For all plots, red and blue points fall within the same general region
indicating that there are no systematic differences in genotype between the two centers.
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Figure 1.9: Fine-mapping of the chromosome 6 locus using LLARRMA-dawg reduced the LD
support interval from 6.14 Mb to 1.46 Mb. LLARRMA-dawg jointly models and selects SNPs
in a region, and returns probabilities corresponding to how often a SNP was included over many
re-samples of the data (RMIP). Multiple SNPs with high RMIP suggests the potential for multiple
independent signals beneath the QTL peak.
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is in bold, and possesses a non-synonymous WKY variant that is predicted to alter protein function
(Figure 1.3E).
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Figure 1.11: Scatterplot of RetroFat and Krtcap3 expression levels, with data points colored by
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normal transformed. Krtcap3 expression is negatively correlated with RetroFatg (negative trend
line). Genotype dosage of the QTL peak SNP is positively associated with RetroFat, and negatively
associated with Krtcap3 expression, which matches Figure 1.5.
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Figure 1.12: Scatterplot of RetroFat and Slc30a3 expression levels, with data points colored by the
peak SNP minor allele dosages at the QTL. RetroFat and expression levels are rank-inverse normal
transformed.In contrast to Krtcap3, the peak SNP minor allele dosage is positive associated with
Slc30a3, although its expression is negatively correlated with RetroFatg (negative trend line). The
mediation path through Slc30a3 is inconsistent with the QTL relationship with RetroFat, suggesting
that Slc30a3 may actually act in a suppressive manner with respect to the QTL effect.
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Gene Symbol Gene Name Start 
Location

Non-
synonymous 
variants in 
WKY founder†

Polyphen 
prediction

Alk ALK receptor tyrosine kinase 22696415
LOC108351180 uncharacterized 22988727
LOC108351181 uncharacterized 23205628
Clip4 CAP-GLY domain containing linker protein 

family, member 4
23222020

LOC103692578 basic proline-rich protein-like 23298261
RGD1304963 similar to hypothetical protein MGC38716 23337507
Togaram2 TOG array regulator of axonemal microtubules 2 23358762
Wdr43* WD repeat domain 43 23433532
Trnac-gca30 transfer RNA cysteine (anticodon GCA) 30 23487063
LOC102551341 tRNA (adenine(58)-N(1))-methyltransferase, 

mitochondrial-like
23487545

Spdya speedy/RINGO cell cycle regulator family 
member A

23493686 23495595 unknown

LOC102548558 protein tyrosine phosphatase type IVA 1-like 23493704
Ppp1cb* protein phosphatase 1 catalytic subunit beta 23548507
LOC108351182 ALK tyrosine kinase receptor-like 23725713
LOC298795 similar to 14-3-3 protein sigma 23757225
LOC108351183 uncharacterized 23771355
LOC103692567 uncharacterized 23885316
LOC108351327 glyceraldehyde-3-phosphate dehydrogenase 

pseudogene
23936327

LOC103692568 uncharacterized 23986197
LOC102553396 uncharacterized 24064737
Ypel5 yippee-like 5 24069351
Lbh limb bud and heart development 24154207
LOC108351184 uncharacterized 24192828
LOC108351185 uncharacterized 24256909
LOC102547591 uncharacterized 24336223
LOC100912066 uncharacterized 24342924
Lclat1 lysocardiolipin acyltransferase 1 24377398
LOC102547438 uncharacterized 24527464
LOC685881 hypothetical protein 24562761
Capn13 calpain 13 24579590
LOC102554046 uncharacterized 24623564
LOC102553955 uncharacterized 24657682
Galnt14 polypeptide N-acetylgalactosaminyltransferase 14 24770308
Ehd3 EH-domain containing 3 25076012
LOC102554201 uncharacterized 25101552
Xdh xanthine dehydrogenase 25149570
LOC100363233 splicing factor 3b, subunit 4-like 25226245
Srd5a2 steroid 5 alpha-reductase 2 25279635

Table S1: Genes in RetroFat chromosome 6 QTL interval.

Table 5.2: Genes in RetroFat chromosome 6 QTL interval
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Gene Symbol Gene Name Start 
Location

Non-
synonymous 
variants in 
WKY founder†

Polyphen 
prediction

Plb1 phospholipase B1 25375699
LOC683819 hypothetical protein 25565221
Fosl2 FOS like 2, AP-1 transcription factor subunit 25598936
Babam2 BRISC and BRCA1 A complex member 2 25666654
LOC103692569 uncharacterized 25885973
Rbks ribokinase 26051568 26072561             

T to A
benign

Mrpl33 mitochondrial ribosomal protein L33 26130278
LOC102548914 uncharacterized 26201017
Slc4a1ap solute carrier family 4 member 1 adaptor protein 26214083
Supt7l SPT7-like STAGA complex gamma subunit 26241672
Gpn1* GPN-loop GTPase 1 26255081
RGD1560110 similar to RIKEN cDNA 4930548H24 26278440
Zfp512 zinc finger protein 512 26284749
LOC102556504 titin-like 26322470
Gckr glucokinase regulator 26355296
LOC100910821 uncharacterized 26387284
Ift172 intraflagellar transport 172 26390686
LOC108351187 uncharacterized 26407404
LOC108351186 60S ribosomal protein L37 pseudogene 26415619
LOC103692570 dihydropyrimidinase-related protein 5-like 26423841
Krtcap3* keratinocyte associated protein 3 26485126
Nrbp1 nuclear receptor binding protein 1 26486823
Ppm1g protein phosphatase, Mg2+/Mn2+ dependent, 1G 26517840
Zfp513 zinc finger protein 513 26537707
Snx17 sorting nexin 17 26541137
Eif2b4 eukaryotic translation initiation factor 2B subunit 

delta
26546917

Gtf3c2 general transcription factor IIIC subunit 2 26560601 26581578             
T to C

unknown

Mpv17 MpV17 mitochondrial inner membrane protein 26585713
Ucn urocortin 26602144
Trim54 tripartite motif-containing 54 26603364
Dnajc5g DnaJ heat shock protein family (Hsp40) member 

C5 gamma
26625526

Slc30a3* solute carrier family 30 member 3 26629752
Cad carbamoyl-phosphate synthetase 2, aspartate 

transcarbamylase, and dihydroorotase
26657507

Atraid* all-trans retinoic acid-induced differentiation 
factor

26680628

Slc5a6 solute carrier family 5 member 6 26685823
Tcf23 transcription factor 23 26763159

Table S1: Genes in RetroFat chromosome 6 QTL interval (continued).

Table 5.3: Genes in RetroFat chromosome 6 QTL interval (continued)
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Gene Symbol Gene Name Start 
Location

Non-
synonymous 
variants in 
WKY founder†

Polyphen 
prediction

Table S1: Genes in RetroFat chromosome 6 QTL interval (continued).

Prr30 proline rich 30 26780352
Preb prolactin regulatory element binding 26784088 26786379             

A to G
benign

Abhd1 abhydrolase domain containing 1 26787807
Cgref1 cell growth regulator with EF hand domain 1 26797126
Khk ketohexokinase 26810577
Emilin1 elastin microfibril interfacer 1 26821249
LOC103692571 uncharacterized 26833107
Ost4 oligosaccharyltransferase complex subunit 4, non-

catalytic
26836216

Agbl5 ATP/GTP binding protein-like 5 26837299
Trnaa-agc6 transfer RNA alanine (anticodon AGC) 6 26856068
Trnay-gua transfer RNA tyrosine (anticodon GUA) 26856459
Trnay-gua3 transfer RNA tyrosine (anticodon GUA) 3 26856459
Tmem214 transmembrane protein 214 26867638
Mapre3 microtubule-associated protein, RP/EB family, 

member 3
26878738

LOC108351190 uncharacterized 26890051
LOC108351189 uncharacterized 26918219
LOC108351188 60S ribosomal protein L37 pseudogene 26931127
Dpysl5 dihydropyrimidinase-like 5 26939696
LOC103692572 uncharacterized 27069013
Cenpa centromere protein A 27072259
Slc35f6 solute carrier family 35, member F6 27095144
LOC103692573 uncharacterized 27139210
Kcnk3 potassium two pore domain channel subfamily K 

member 3
27154274

Cib4 calcium and integrin binding family member 4 27241804
RGD1559683 similar to RIKEN cDNA 1700001C02 27305402
Otof otoferlin 27328343
Drc1 dynein regulatory complex subunit 1 27425237 27428501             

G to A
benign

Selenoi selenoprotein I 27473748
Adgrf3 adhesion G protein-coupled receptor F3 27534525
Hadhb hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 

thiolase/enoyl-CoA hydratase (trifunctional 
protein), beta subunit

27555408

Hadha hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 
thiolase/enoyl-CoA hydratase (trifunctional 
protein), alpha subunit

27589840

Garem2 GRB2 associated regulator of MAPK1 subtype 2 27631364
LOC503104 similar to retinoblastoma binding protein 4 27651115
Rab10 RAB10, member RAS oncogene family 27668387

Table 5.4: Genes in RetroFat chromosome 6 QTL interval (continued)
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Gene Symbol Gene Name Start 
Location

Non-
synonymous 
variants in 
WKY founder†

Polyphen 
prediction

Table S1: Genes in RetroFat chromosome 6 QTL interval (continued).

Kif3c kinesin family member 3C 27768943
Asxl2 additional sex combs like 2, transcriptional 

regulator
27835346

LOC108351319 28S ribosomal protein S21, mitochondrial 
pseudogene

27856408

LOC103692577 RNA pseudouridylate synthase domain-containing 
protein 4 pseudogene

27875868

Dtnb dystrobrevin, beta 27975302 28004664              
A to G

benign

LOC102556400 transcription factor BTF3-like 28022498
LOC103692574 uncharacterized 28034953
Dnmt3a DNA methyltransferase 3 alpha 28205375
LOC108351191 60S ribosomal protein L37 pseudogene 28284681
LOC100911610 dihydropyrimidinase-related protein 5-like 28293250
RGD1565766 hypothetical gene supported by BC088468; 

NM_001009712
28367389

Pomc proopiomelanocortin 28382937
Efr3b EFR3 homolog B 28390541
Dnajc27 DnaJ heat shock protein family (Hsp40) member 

C27
28515054

LOC108351192 cytochrome c oxidase subunit 7B, mitochondrial 
pseudogene

28539158

LOC103692575 cytochrome c oxidase subunit 7B, mitochondrial 
pseudogene

28539172

LOC689056 similar to general transcription factor IIH, 
polypeptide 5

28556618

Adcy3 adenylate cyclase 3 28570941 28572363          
A to C

damaging

Cenpo centromere protein O 28648804
Ptrhd1 peptidyl-tRNA hydrolase domain containing 1 28663602
Ncoa1 nuclear receptor coactivator 1 28677563
LOC103692576 uncharacterized 28812571

Genes in bold are found within the most likely region of the QTL based on multi-SNP fine-mapping analysis.
*Full or partial mediators of RetroFat called by mediation analysis.
†RetroFat chromosome 6 haplotype effects: WKY has decreased fat pad weight (Figure 3D).

Table 5.5: Genes in RetroFat chromosome 6 QTL interval (continued)
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Gene Symbol Gene Name Start 
location

Gene Function (UniProt) Non-synonymous 
variants in founders 
with the haplotype 
effect†

LOC103691392 uncharacterized 280573647 Unknown
Emx2 empty spiracles 

homeobox 2
280633938 Transcription factor which 

acts to generate the boundary 
between the roof and 
archipallium in the developing 
brain.

LOC108349711 uncharacterized 280653842 Unknown
LOC502394 hypothetical 280753676 Unknown
LOC102555781 uncharacterized 280796426 Unknown

LOC108349712 uncharacterized 280934585 Unknown
Rab11fip2 RAB11 family 

interacting 
protein 2

281065346 A Rab11 effector binding 
preferentially 
phosphatidylinositol 3,4,5-
trisphosphate (PtdInsP3) and 
phosphatidic acid (PA) and 
acting in the regulation of the 
transport of vesicles from the 
endosomal recycling 
compartment (ERC) to the 
plasma membrane. Involved 
in insulin granule exocytosis. 
Also involved in receptor-
mediated endocytosis and 
membrane trafficking of 
recycling endosomes, 
probably originating from 
clathrin-coated vesicles.

LOC102556164 uncharacterized 281227923 Unknown
LOC102556108 uncharacterized 281289720 Unknown
LOC102556023 acyl carrier 

protein, 
mitochondrial-
like

281304776 Unknown

Fam204a family with 
sequence 
similarity 204, 
member A

281343692 Unknown

Table S2: Genes in RetroFat chromosome 1 QTL interval.

Table 5.6: Genes in RetroFat chromosome 1 QTL interval
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Gene Symbol Gene Name Start 
location

Gene Function (UniProt) Non-synonymous 
variants in founders 
with the haplotype 
effect†

LOC103691393 uncharacterized 281395030 Unknown
LOC108349713 uncharacterized 281397476 Unknown

Prlhr prolactin 
releasing 
hormone 
receptor

281754472 Receptor for prolactin-
releasing peptide (PrRP). 
Implicated in lactation, 
regulation of food intake 
and pain-signal processing.

281755911 
C to T 
translation start site 
in BUF and WKY

Cacul1 CDK2-
associated, 
cullin domain 1

281814226 Cell cycle associated protein 
capable of promoting cell 
proliferation through the 
activation of CDK2 at the 
G1/S phase transition.

Table S2: Genes in RetroFat chromosome 1 QTL interval (continued).

†RetroFat chromosome 1 haplotype effects: BUF, MR, WKY haplotypes lead to increased fat pad weight 
(Figure 6D).

The gene in bold (Prlhr) is the most likely candidate in the region.

Table 5.7: Genes in RetroFat chromosome 1 QTL interval (continued)
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Gene Symbol Gene Name Start 
location

Gene Function 
(UniProt)

Non-
synonymous 
variants in 
founders with 
the haplotype 
effect†

Ccser1 coiled-coil serine-rich protein 1 91235885 Unknown, has 
been associated 
with cocaine 
abuse

None

LOC103692146 uncharacterized 91601766 Unknown None

LOC108350840 uncharacterized 91959690 Unknown None

LOC103692148 developmental pluripotency-associated protein 2 
pseudogene

92443293 Unknown None

LOC103692149 axoneme-associated protein mst101(2)-like 92501663 Unknown None

LOC103692147 glutamate receptor ionotropic, delta-2-like 93012791 Unknown None

Hint1-ps1 histidine triad nucleotide binding protein 1, 
pseudogene 1

93405665 Pseudogene, 
likely not 
functional

None

LOC103692150 thyrotropin receptor pseudogene 93447412 Unknown None

LOC108350813 Ig kappa chain V-II region 26-10-like 93857773 Unknown None

Grid2 glutamate ionotropic receptor delta type subunit 2 94068112 Receptor for 
glutamate. L-
glutamate acts 
as an excitatory 
neurotransmitter 
at many 
synapses in the 
central nervous 
system.

None

The gene in bold (Grid2) is the most likely candidate in the region.
†Body Weight chromosome 4 haplotype effects: ACI, BUF, F344 and MR haplotypes lead to decreased body 
weight while BN haplotype leads to increased body weight (Figure 7D).

NoneUnknown92431517LOC108350839 high mobility group protein B1-like

Table S3: Genes in body weight chromosome 4 QTL interval.

Table 5.8: Genes in body weight chromosome 4 QTL interval
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Gene Symbol Gene Name Start location q-value

RGD1304963 similar to hypothetical protein 
MGC38716

23337507 4.79E-05

Wdr43 WD repeat domain 43 23433532 7.82E-02

Ppp1cb protein phosphatase 1 catalytic subunit 
beta

23548507 7.46E-03

Galnt14 polypeptide N-
acetylgalactosaminyltransferase 14

24770308 3.09E-02

Rbks ribokinase 26051568 3.13E-11

Gpn1 GPN-loop GTPase 1 26255081 3.38E-04
Krtcap3 keratinocyte associated protein 3 26485126 3.30E-41

Slc30a3 solute carrier family 30 member 3 26629752 1.19E-07
Atraid all-trans retinoic acid-induced 

differentiation factor
26680628 7.46E-03

Dpysl5 dihydropyrimidinase-like 5 26939696 9.66E-14

Table S4: Genes in RetroFat chromosome 6 QTL interval that support X → M relationship.

3.96E-0327589840Hadha hydroxyacyl-CoA dehydrogenase/3-
ketoacyl-CoA thiolase/enoyl-CoA 
hydratase (trifunctional protein), alpha 
subunit

Table 5.9: Potential mediators in RetroFat chromosome 6 QTL interval
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Gene Symbol Gene Name Start location Full mediation 
p-value

Joint with 
Krtcap3  p-value

Consistency with 
QTL effect

Wdr43 WD repeat domain 43 23433532 1.05E-04 0.47 Inconsistent

Ppp1cb protein phosphatase 1 catalytic 
subunit beta

23548507 7.36E-05 0.28 Inconsistent

Gpn1 GPN-loop GTPase 1 26255081 1.10E-03 0.48 Consistent
Krtcap3 keratinocyte associated protein 3 26485126 0.15 . Consistent

Slc30a3 solute carrier family 30 member 3 26629752 8.40E-07 2.36E-03 Inconsistent
Atraid all-trans retinoic acid-induced 

differentiation factor
26680628 6.09E-05 0.89 Inconsistent

Table S5: Genes in RetroFat chromosome 6 QTL interval that mediation analysis supports as candidate mediators of the 
effect of QTL on RetroFat.

Genes in bold are called as mediators.

Table 5.10: Candidate mediators of the RetroFat chromosome 6 QTL
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CHAPTER 6

Detecting chromatin accessibility as a mediator of gene expression in Collaborative
Cross mice 1

6.1 Introduction

Advancements in sequencing technologies over the last decade have made multi-omic experi-

ments feasible, and further advancements in technology and interest are only increasing. Initially

these data sets were observational, certainly due to the very real constraints of the populations

(humans), the developing technology, and the challenge of coordinating very large experiments with

multiple levels of data. With progress in these areas, powerful large-scale experiments with multiple

dimensions of data per individual can be paired with modern statistical mediation analysis to draw

inferences on the relationships that lie hidden between the levels of these data. These results will be

more likely to identify causal rather than correlational elements, and thus provide more meaningful

and actionable targets in terms of downstream applications in areas such as medicine and agriculture.

One area of strong interest has been the use of integrative analyses to better understand the

regulation of fundamental biological processes that make up the processing of information from

genomic DNA to phenotype, which has resulted in a variety of statistical approaches. (Degner et al.,

2012) noticed the co-localization of chromatin accessibility QTL (cQTL), assessed through DNAS I

sequencing, and expression QTL (eQTL) in human lymphoblastoid cell lines, detecting correlations

in their positions. (Battle et al., 2014) investigated the regulation of gene expression in 922 humans,

use eQTL and allele specific expression QTL. They did not measure chromatin accessibility, but

assessed the evidence whether proximal genes to distal-eQTL behaved as mediators to the gene.

(Pai et al., 2015) did not use mediation, rather characterizing the location of eQTL in genomic

regulatory elements in human lymphoblastoid cell line data. (Alasoo et al., 2018) similarly did not

1This chapter was adapted from a portion of an early draft of a collaborative manuscript that is in preparation. Current
author line and title are: Keele, G. R*., Quach, B*., Israel, J. W., Zhou, Y., Chappell, G. A., Lewis, L., Safi, A., Oreper D,
Simon, J. M., Crawford, G. E., Valdar, W., Wright, F. A., Rusyn, I., Furey, T. S. Tissue-specific QTL analyses of gene
expression and chromatin accessibility in the Collaborative Cross mouse population. Co-first authors*.
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use mediation with human cell lines, but rather further elucidated the roles of eQTL within regulatory

elements through the use of bacterial infections to modify the enhancer primers. (Roytman et al.,

2018) used causal mediation models of histone modifications (hQTL) and expression (eQTL) to

better detect signals in data from 112 humans. (Wu et al., 2018) used mediation to tease apart the

relationship of DNA methylation sites, gene expression, and complex traits. (Battle et al., 2015)

did not use mediation, but characterized the co-localization of QTL underlying gene expression

(eQTL), ribosome occupancy (rQTL), and protein abundance (pQTL), detecting significant overlap

as well as a buffering of QTL effect from ribosome occupancy up to protein abundance, again in

human lymphoblastoid cell lines. (Chick et al., 2016) used a genome-wide mediation approach to

characterize the transcriptional and post-translational regulation of proteins in 192 Diversity Outbred

(DO) mice (Churchill et al., 2012). These studies demonstrate the span and flexibility of integrative

approaches.

One appealing feature of the DO is the potential to replicate results in its related inbred sister

population, the Collaborative Cross (CC) (Churchill et al., 2004; Collaborative Cross Consortium,

2012; Srivastava et al., 2017), a panel of recombinant inbred strains descended from the same founder

inbred strains as the DO. (Chick et al., 2016) take advantage of this and use CC mice to confirm results

in the DO by showing that estimates of founder allele effects from each of the related populations

corresponded. Similar to the DO, the CC represent a powerful untapped tool for these integrative

analyses of multi-omic data. Though the CC possesses certain limitations in comparison to the DO,

such as a restricted number of strains and thus unique genomes, and comparatively reduced mapping

resolution, it also has strengths, mainly the potential for replicate observations, which are useful

to reduce noise as well as valuable for potential downstream experiments. If the assumed additive

model is true for the QTL, mapping is also more powerful in inbred animals in comparison to outbred

ones.

In this work, we use a small sample of 47 male CC mice with single observation per strain to

investigate the dynamics between chromatin accessibility and gene expression, as done in (Degner

et al., 2012) though here chromatin accessibility is measured through Assay for Transposase Acces-

sible Chromatin sequencing (ATAC-Seq). To our knowledge, this is the first study of this kind in

the CC. We aim to detect QTL underlying gene expression and chromatin accessibility separately

in three tissues: lung, liver, and kidney. We will then assess the support for mediation of the effect
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of eQTL on gene expression through chromatin accessibility, using methods inspired by (Chick

et al., 2016). We identify and characterize examples of strong mediation, as well as co-localizing

but independent eQTL and cQTL. This study is an example of the experimental power of the CC

for integrative analysis of multi-omic data, particularly given the limited sample size, and provides

support for its continued use in larger, more complex experiments going forward.

6.2 Materials and Methods

6.2.1 Animals

Adult male mice (8-12 weeks old) from 47 CC strains were acquired from the University of

North Carolina Systems Genetics Core (Chapel Hill, NC). Animals were maintained on an NTP

2000 wafer diet (Zeigler Brothers, Inc., Gardners, PA) and water ad libitum. The housing room was

maintained on a 12-h light-dark cycle. The experimental design sought to maximize the number of

strains relative to within-strain replications based on the power analysis for QTL mapping in mouse

populations (Kaeppler, 1997); therefore, one mouse was used per strain. Mice were euthanized

between 8 and 10 a.m. and lungs, liver, and kidney tissues were collected, flash frozen in liquid

nitrogen, and stored at -80°C until analysis. These studies were approved by the Institutional Animal

Care and Use Committees at Texas A&M University and the University of North Carolina.

6.2.2 Collaborative Cross reference genomes and transcriptomes

Sequencing read mapping required CC strain-specific reference genomes and transcriptomes

denoted as “pseudo-genomes” and “pseudo-transcriptomes” respectively. Pseudo-genomes in FASTA

file format and corresponding MOD files were downloaded from the CC resource website (http://

csbio.unc.edu/CCstatus/index.py?run=Pseudo) for Build 37. The Build 37 MOD

files map corresponding genomic positions between the pseudo-genomes and the mm9 (C57BL/6J)

genomic coordinate space. To construct pseudo-transcriptomes, the RSEM v1.2.31 command

rsem-prepare-reference was used with default parameter specifications in conjunction with

CC strain-specific gene annotations, derived from MOD files and the mm9 RefSeq gene annotations,

and the pseudo-genome FASTA files.
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6.2.3 mRNA sequencing and processing

Total RNA was isolated from flash-frozen tissue samples using a Qiagen miRNeasy Kit (Valencia,

CA) according to the protocol of the manufacturer. RNA purity and integrity were evaluated using a

Thermo Scientific Nanodrop 2000 (Waltham, MA) and an Agilent 2100 Bioanalyzer (Santa Clara,

CA), respectively. A minimum RNA integrity value of 7.0 was required for RNA samples to be used

for library preparation and sequencing. Libraries for samples with a sufficient RNA integrity value

were prepared using the Illumina TruSeq Total RNA Sample Prep Kit (Illumina, Inc., San Diego,

USA) with ribosomal depletion. Single-end (50bp) sequencing was performed using an Illumina

HiSeq 2500.

Following sequencing, reads were filtered to retain only those with a quality score of 20 or

greater for at least 90 percent of read positions. Reads with adapter contamination were removed

using TagDust. For each sequenced RNA sample, reads were mapped to the appropriate pseudo-

transcriptome using the RSEM command rsem-calculate-expression with STAR (v2.5.3a)

as the specified aligner (parameter set: –star). RSEM utilizes STAR with alignment options that

follow ENCODE3 RNA-Seq read mapping guidelines (https://www.encodeproject.org/

pipelines/ENCPL002LSE/). Gene expression was quantified using RSEM to produce esti-

mated read counts and transcripts per million (TPM) values.

6.2.4 ATAC-Seq data processing

Flash frozen tissue samples were pulverized in liquid nitrogen using the BioPulverizer (Biospec)

to break open cells and allow even exposure of intact chromatin to Tn5 transposase. Pulverized

material was thawed in glycerol containing nuclear isolation buffer to stabilize nuclear structure and

then filtered through Miracloth (Calbiochem) to remove large tissue debris. Nuclei were washed and

directly used for treatment with Tn5 transposase. Single-end (50bp) sequencing was performed using

an Illumina HiSeq 2500.

Following sequencing, reads were filtered to retain only those with a quality score of

20 or greater for at least 90 percent of read positions, and reads with adapter contamina-

tion were removed using TagDust. A maximum of 5 read duplicates were allowed. Prior

to read mapping, a GSNAP database for each pseudo-genome was built using GMAP and
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the pseudo-genome FASTA file (parameter set: -k 15, -q 1). For each sample, reads

that passed filtering were aligned to the appropriate pseudo-genome using GSNAP (pa-

rameter set: -k 15, -m 1, -i 5, --sampling=1, --trim-mismatch-score=0,

--genome-unk-mismatch=1, --query-unk-mismatch=1). Multi-mapped reads with

more than four genomic locations were removed. Satellite repetitive elements, regions with high

sequence homology to mitochondrial DNA, rRNA, and regions on chromosome X with high sequence

homology to chromosome Y are prone to producing artifactual signals caused by experimental or

technical biases. An mm9 blacklist was constructed containing these problematic regions. Addi-

tionally, pseudo-genome specific blacklists were created by combining RepeatMasker annotations,

BLAT derived chromosome X/Y homologous segments, and genomic regions in strong sequence

homology to mitochondrial DNA. Regions in these blacklists were removed from consideration in

subsequent analyses.

Using the CC strain MOD files, mapped reads for each ATAC-Seq sample were converted to

mm9 genomic coordinates to enable direct comparison of data between samples. To account for

any differences between the pseudo-genome blacklists and the mm9 blacklist, converted reads that

mapped to mm9 blacklist regions were removed. Following conversion, all reads aligning to the

positive strand were offset +5 bp, and all reads aligning to the negative strand were offset by -5 bp.

These read shifts account for a previously characterized behavior in the integration of adapters by

Tn5 transposase upon DNA binding.

6.2.5 Chromatin accessibility quantification and windowing

For each sample, genomic regions representing high chromatin accessibility, i.e. peaks, were

determined using the peak-calling software F-seq with default parameters. To define an initial

common set of chromatin regions, across all tissues the union set of the top 50,000 peaks (ranked

by F-seq score) from each sample was derived and overlapping peaks were merged. These peaks

were subsequently divided into overlapping 300 bp windows as previously described. Briefly, peaks

smaller than 300 bp were expanded to 300 bp, and for any peak larger than 300 bp, the number of

300 bp windows to segment the peak and not exceed its boundaries was determined using an initial

overlap constraint of 100 bp. If the windows spanned less than 90% of bases within the peak, an

additional window was added and the overlap was adjusted to produce uniformly spaced windows
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that exactly spanned the peak region. Per sample read coverage of each window was calculated using

BEDTools coverageBed.

6.2.6 Outcome filtering for eQTL and cQTL mapping

To reduce the computational complexity and multiple testing burden of eQTL and cQTL mapping,

the sets of genes and chromatin windows treated as outcome variables were reduced prior to

performing association tests. For a given tissue, relative log expression (RLE) normalization,

as implemented in the R package DESeq2, was applied to TPM values and read counts of genes and

chromatin windows respectively. Genes with RLE-normalized TPM values less than 1 and chromatin

windows with normalized counts less than 10 for greater than 50% of samples were excluded from

further analysis. For each gene and chromatin window, we applied K-means clustering with K = 2

to identify outcomes containing outlier observations that could cause spurious, outlier-driven QTL

calls. Any gene or chromatin window where the smaller K-means cluster had a cardinality of 1 was

removed. For cQTL mapping, the top 15,000 chromatin windows ranked by standard deviation were

selected for analysis.

6.2.7 Founder haplotype data reduction

We reduced the founder haplotype probability data by merging adjacent regions of the genome

that are similar in regards to their haplotype pair, also known as diplotype, probability profile. This

reduces the computational expense in QTL analysis by reducing the number of genomic loci being

tested. The reduction procedure compares adjacent markers and merges their diplotype probabilities

(by computing the mean) if the L2 distance between the probability vectors for the adjacent markers

is less than 10% of the theoretical maximum L2 distance (
√

2).

Diplotype probabilities for each CC strain are available on the CC resource website (http:

//csbio.unc.edu/CCstatus/index.py?run=FounderProbs). The diplotype proba-

bilities were constructed using an hidden Markov model (HMM) for haplotype inference as previously

described (Fu et al., 2012). The genotype calls for which these probabilities are based were obtained

using the MegaMUGA SNP array which contains 77,800 genotype markers.
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6.2.8 Differential expression and chromatin accessibility analysis

To make the values more comparable across samples, read counts for each sample across all

three tissues were converted to counts per million (CPM) and normalized using TMM normalization

as implemented in the R package edgeR. To exclude windows with sparse read counts across samples,

windows were removed if less than 30% of samples had a CPM value of at least 1. As a final

filtering step, regions on chromosome Y and the mitochondria were excluded. For all pairwise tissue

comparisons, differentially expressed genes and chromatin windows were determined using the R

package limma and the following linear model:

CPMi = intercept + straini + batchi + tissuei + εi, (6.1)

where CPMi represents the TMM-normalized CPM value of either expression of a gene or chromatin

accessibility within a chromatin window for lung, liver, or kidney tissue, denoted as tissuei, from

individual i. The effect of sequencing center for individual i is modeled with batchi, and the CC strain

of individual i is represented by straini. εi is the error term for individual i, with ε ∼ N(0, Iσ2).

To account for mean-variance relationships in gene expression and chromatin accessibility

data, precision weights were calculated using the limma function voom and incorporated into the

linear modeling procedure. Significantly differentially expressed genes and differentially accessible

chromatin windows were called based on a Benjamini-Hochberg (BH) FDR of 0.01 and required a

minimum log2 fold-change of at least 1.

In some instances, adjacent chromatin windows may exhibit significant differential chromatin

accessibility. We treat these windows as a single region by merging adjacent chromatin windows that

have significant differential signal in the same direction. A representative p-value is computed for

the merged region using Simes’ method (Sarkar and Chang, 1997). The resulting chromatin regions

are then re-evaluated for significance using an FDR of 0.01 on the Simes p-values.

6.2.9 Gene set association analysis

We use the software GSAASeqSP with Reactome Pathway Database annotations (July 24, 2015

release) to identify biological pathways associated with differentially expressed genes. For a given
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differential expression analysis between two tissues, the resulting gene list was provided as input to

GSAASeqSP along with a corresponding weight for each gene, calculated as:

weightg = sgn(fcg) ∗ (1− pg), (6.2)

where weightg represents the weight for gene g, sgn(fcg) is the sign of the gene expression fold

change for gene g between the two tissues, and pg is the BH adjusted p-value for gene g derived

from the differential expression analysis. Pathways with gene sets of cardinality less than 15 and

greater than 500 were excluded from analysis.

Gene set association analysis was applied to differentially accessible chromatin regions using

a similar approach. Chromatin regions were annotated using GREAT v3.0.0 in basal plus

extension mode with the parameters 5 kb upstream, 1 kb downstream, and no distal

extension. GREAT associates genes to chromatin regions that can then be used for pathway enrich-

ment analysis. For each gene output by GREAT, the associated chromatin region with the most

significant BH adjusted p-value was selected to represent the gene. Gene weights were calculated as

described in Eq 6.2; but sgn(fcg) corresponds to the sign of chromatin accessibility fold-changes for

gene g, and pg is the BH adjusted p-value of the chromatin region representing gene g, derived from

the differential chromatin accessibility analysis.

6.2.10 QTL mapping

We use a single locus approach to QTL mapping, both when the outcome variable is gene

expression and chromatin accessibility. The CC mice have well-characterized founder haplotypes,

which allows the use of interval mapping (Lander and Botstein, 1989), in which the association

between phenotype and haplotype descent at an interval is assessed instead of at a genotyped marker,

implicitly modeling local epistasis. Because haplotype state is not directly observed but rather

probabilistically inferred (Lander and Green, 1987; Mott et al., 2000; Liu et al., 2010; Fu et al.,

2012; Gatti et al., 2014; Zheng et al., 2015), formal interval mapping requires an computationally

inefficient expectation-maximization (EM) algorithm (Dempster et al., 1977). Instead we use a

regression approximation (Haley and Knott, 1992; Martı́nez and Curnow, 1992) that has been

commonly used in MPP (Valdar et al., 2006b, 2009; Svenson et al., 2012; Baud et al., 2013, 2014),
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including the CC (Aylor et al., 2011; Kelada, 2016; Mosedale et al., 2017; Donoghue et al., 2017),

and is computationally efficient. This efficiency is particularly important in the context of a study of

genome-wide outcomes, such as gene expression or chromatin accessibility.

A single locus QTL genome scan involves comparing an alternative model with a locus effect

to the null model with no locus effect. The alternative model is fit at loci across the genome. The

general alternative model for gene expression and chromatin accessibility is the same:

f(yi) = intercept + QTLi + batchi + εi, (6.3)

where yi represents the outcome, either levels of the expression of a gene or chromatin accessibility

at a genomic site, for individual i. QTLi is the locus effect. We fit it as seven fixed effects, each

representing one of the founder haplotypes, with one founder falling into the intercept term. The effect

of sequencing center for individual i is modeled with batchi. Finally, εi is the error term for individual

i, with ε ∼ N(0, Iσ2). f(.) is a normalizing function that better satisfies the regression assumption

that the residuals are normally distributed. We use the rank-based inverse normal transformation, in

order to be conservative towards potential extreme observations, particularly because the data are

comprised of only 47 individuals. The null model is the same for all tested loci and is equivalent

to Eq 6.3 with QTLi = 0 for all i. The two models are compared statistically at each locus, for

which we estimate an F-test p-value. eQTL or cQTL are called based on the locus effect significantly

improving the fit of the alternative model compared to the null.

6.2.11 QTL mapping family-wide error rate (FWER) control

For a given outcome, expression or chromatin accessibility, we seek to control the FWER,

such that the probability of a false positive result across all genome-wide tests is controlled at

some nominal level (α = 0.05), rather than at that level of a single test. A stringent approach to

multiple testing is used because there are not expected to be an excess number of QTL per outcome.

The CC panel, as expected through simulation (Valdar et al., 2006a) and realized to large extent

(Srivastava et al., 2017), are balanced in terms of founder haplotype frequency, and as such, are

relatively exchangeable, allowing for a permutation procedure to characterize a null distribution

for which to compare our results (Doerge and Churchill, 1996). Specifically, we sampled 1000
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permutations of the sample identities, and then performed genome scans on each permutation with

each outcome. For each outcome, we collected the minimum p-value from each permutation genome

scan, transform to the -log10 scale (logP), and then fit a null extreme value distribution (EVD)

(Dudbridge and Koeleman, 2004; Valdar et al., 2006a). Genome-wide permutation p-values (permP)

are then obtained by calculating the probability of a more extreme logP than the one observed from

the cumulative distribution function of the EVD.

6.2.12 eQTL and cQTL false discovery rate (FDR) control

The multiple testing burden is more extreme in studies with genome-wide outcomes, such as

with eQTL and cQTL. Not only is an association between a phenotype being tested with loci across

the genome, but the whole process is repeated for many outcomes across the genome. Additionally,

our expectations in terms of results change. Whereas we do not expect a predominance of QTL

per outcome, we do expect many QTL across all the outcomes. Thus we seek to acknowledge

the additional testing due to genome-wide outcomes while being more lenient by controlling FDR

rather than FWER across outcomes. As in (Chick et al., 2016) we accomplish this by applying an

FDR procedure (Benjamini et al., 1995; Storey and Tibshirani, 2003) to the permP, which produces

q-values. We then call eQTL and cQTL based on αFDR, such that q-value ≤ αFDR. We used

αFDR = 0.1.

6.2.13 Detection of multiple QTL per outcome

The per outcome FWER control and across outcome FDR control results in a inability to detect

multiple QTL per outcome. The EVD is fit from the maximum statistical score of each outcome, and

to include additional strong statistical scores in a biased fashion, such as when there are multiple

signals above some FWER genome-wide threshold, would bias the FDR procedure towards more

significant results. To avoid this problem, we use a multi-stage conditional fitting approach (Jansen

et al., 2017). The procedure is described in the following steps:

1. For a given outcome, conduct genome scan according to the model described in Eq 6.3.
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2. Conduct permutation genome scans for the outcome to characterize EVD. Calculate FWER

permP from the observed max logP of the genome scan of the outcome. permP is stored to be

used as input to FDR method.

3. Specify a genome-wide αstep for determining a whether subsequent conditional scans should

be conducted for the outcome. We set αstep = 0.1. If the permP > αstep, no further conditional

scans are conducted.

4. If permP ≤ αstep, the steps 1-3 are repeated for additional conditional scans of the outcome.

For j > 1, jth conditional scan use the same form of alternative and null model as described

in Eq 6.3, except for the inclusion of locus effects for the the peak loci from previous stages.

Generally, the alternative model for conditional stage scan J will follow as:

f(yi) = QTLi +
J−1∑
j=1

QTLlocus[j]
i + batchi + εi, (6.4)

with QTLlocus[j]
i representing the locus effect of the peak locus for the jth stage scan of the

outcome for individual i, and is also included in the null model of conditional scans. Now

repeat steps 2-4.

Initially we were concerned that a multi-stage conditional scan approach could be problematic

due to over-fitting because there are only 47 data points per outcome, and each QTL effect actually

represents the estimation of seven fixed effects. However, we found that this is appropriately

compensated for in the recalculation of the EVD based on permutations of the conditional scans in

step 2.

6.2.14 Genome-wide and local chromosome-wide significance

Given that the data represent 47 individual mice, were were concerned that there may be

poor power to detect genome-wide eQTL and cQTL. Because there is a strong prior belief in the

presence of local eQTL and cQTL, we also evaluated associations for gene expression and chromatin

accessibility at the level of local chromosome-wide significance, meaning the chromosome on which

the outcome is located. We accomplished this by fitting a local chromosome-wide EVD, producing a

local permP for each outcome. We did not use a multi-stage conditional fitting approach for local

154



chromosome-wide significance, allowing only a single local permP per outcome. We then use the

same FDR procedure on these local permP, resulting in local q-values.

6.2.15 Formal mediation analysis

Mediation, particularly causal mediation, is dependent on a number of strong assumptions, such

as the underlying variables, their relationships, and the directionality of the relationships, many of

which cannot be satisfied in systems far less complex than the relationship between chromatin state

and gene expression in mice. However, we believe that consistent evidence of chromatin state acting

as a mediator of gene expression could be supportive of the hypothesis that chromatin state has a role

in the regulation of gene transcription.

(Baron and Kenny, 1986) establishes the relationships that need to be tested to declare mediation.

For our study, the simplified model consists of three variables or nodes: QTL, chromatin accessibility

at site k, and expression of gene j. When we call an eQTL for gene j, we detect the relationship:

QTL → gene.expressionj (6.5)

If such a relationship exists, the next step is to test whether the chromatin accessibility at site k is

also associated with the QTL:

QTL → chromatink (6.6)

This would be consistent with the expression of gene j and chromatin accessibility at site k possessing

co-localizing eQTL and cQTL. If these relationships are detected, full mediation can be tested:

gene.expressionj |= QTL | chromatink (6.7)

where |= denotes that two variables are independent. Alternatively, there may be evidence for partial

mediations, also referred to as suppressors with the following relationship:

chromatink → gene.expressionj | QTL (6.8)
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Figure 1.1: The simple relationships being assessed between QTL, chromatin accessibility,
and gene expression. The directionality of the relationships between QTL and gene
expression and chromatin accessibility is strongly supported in biology, as the haplotype is
fixed prior to gene expression and chromatin accessibility dynamics. The assumption of the
directionality of the relationship between chromatin accessibility and gene expression is less
likely be true in all cases. In reality the relationship may reflect complex equilibriums or be
multifactorial and complex. Mediation may also be present and the data are under-powered
to detect it. Alternatively, mediation may be present and undetected, because of important
additional un-modeled factors, such as the effects of transcription factors and enhancers.

The genome-wide breadth of the data poses a challenge to this framework, in terms of calling

co-localizing entities amongst eQTL, cQTL, and chromatin outcomes. Instead we use a simplified,

but genome-wide approach. Our simple model of these relationships are depicted in Figure 1.1.

6.2.16 Genome-wide mediation analysis

Mediation analysis has previously been used with genomic data (Battle et al., 2014; Roytman

et al., 2018; Wu et al., 2018). Our approach to assessing the statistical support of chromatin state

mediating gene expression is similar to the method used by (Chick et al., 2016) for detecting mediation

of protein abundance through gene expression. We assess evidence for chromatin mediation only in

detected genome-wide eQTL because the presence of mediation depends on relationship 6.5 existing.
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We simplify the formal mediation analysis to a genome-wide mediation scan which allows us to

detect multiple testing corrected significant mediators following relationships 6.7 and 6.8. Similar

to the QTL mapping genome scan described in Eq 6.3 and Eq 6.4, the mediation scan involves a

comparison of an alternative and a null model at loci across the genome. The alternative model is

f(gene.expressionij) = intercept (6.9)

+ eQTLgenej
i + chromatinik

+ batchi + εi,

and the null model is

f(gene.expressionij) = intercept (6.10)

+ chromatinik

+ batchi + εi,

where gene.expressionij is the transcript levels of gene j that has a genome-wide significant eQTL

for individual i, eQTLgenej
i is the locus effect for the eQTL of gene j, chromatinik is the effect of

chromatin accessibility at site k for individual i, batchi is the effect of the sequencing center used to

sequence the gene expression of individual i, and εi is the random noise for individual i. Whereas

with the QTL genome scan the locus effect was changed at each position, for the mediation scan, it is

fixed at the eQTL locus, and the chromatin site effect is changed.

Because the eQTL is always included in the alternative model but not the null model, the average

mediation logP of the mediation scan should fluctuate around the observed eQTL logP. At chromatin

sites where the chromatin accessibility variable contains some or all of the information present in

the eQTL founder haplotype states, the mediation logP will drop due to the competition between

the eQTL and chromatin terms. Significant drops represent potential sites of full mediation, as in

relationship 6.7. Alternatively, jointly fitting the eQTL and chromatin could increase the mediation

logP significantly beyond the original eQTL signal. This signal does not correspond exactly to the

partial mediation relationship in 6.8, but similarly represents a site where accounting for chromatin

accessibility significantly improves the eQTL signal, which we will refer to as an indirect mediator.
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6.2.17 Mediation scan significance thresholds

Our mediation scan approach allows us to define significance through permutations, similarly to

as is done with the QTL scans. EVD can be fit for potential full mediators based on minimum logP

from permutation scans, and indirect mediators based on maximum logP. We then use these EVD to

produce mediation permP, which can be calculated in terms genome-wide and local chromosome-

wide significance, with local in reference to the eQTL, not the gene. Finally we use an FDR procedure

to obtain mediation q-values.

6.3 Preliminary Results and Discussion

6.3.1 Summaries of the number of associations

This project is ongoing, and thus the results are preliminary. In fact, results are being re-run as a

result of an issue detected from the QTL mapping, which will be discussed further. A breakdown

of the numbers of detected eQTL in terms of tissue, local/distal status, and genome-wide/local

chromosome-wide significance are in Table 6.1. Similar summaries for cQTL and mediation are

present in Tables 6.2 and 6.3, respectively.

6.3.1.1 eQTL

We detect more associations in kidney compared to lung and liver, which have similar numbers of

associations. These patterns hold true for chromatin accessibility and mediation. For eQTL, we detect

genome-wide eQTL for 5-8% of tested genes across the tissues. In terms of local chromosome-wide

significance, the range increases to 17-28%. The eQTL signal is predominantly local signal, ranging

from 74-80% local, whether genome-wide or local chromosome-wide.

6.3.1.2 cQTL

We detect more genome-wide associations in chromatin accessibility compared to gene expres-

sion, from 13-17% across the tissues, and similar for local chromosome-wide, 16-28%. The relative

magnitudes for local to distal cQTL are similar to to those in gene expression.
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Table 6.1: Number of genes with eQTL detected (q-value < 0.1) in lung, liver, and kidney
tissues

Tissue (%)
Lung Liver Kidney

eQTL genome-wide 772 (5.3a) 772 (7.2a) 1092 (8.4a)
local chromosome-wide 2573 (17.8a) 2461 (22.9a) 3680 (28.4a)

local-eQTLb genome-wide 578 (74.9c) 597 (77.3c) 881 (80.7c)
local chromosome-wide 1935 (75.2d) 1880 (76.4d) 2769 (75.2d)

distal-eQTLe genome-wide 203 (26.3c) 183 (23.7c) 223 (20.4c)
local chromosome-wide 638 (24.8d) 581 (23.6d) 911 (24.8d)

aPercentage of all tested genes.
beQTL defined as local if within 10 Mb upstream or downstream of gene TSS.
cPercentage of genes with genome-wide eQTL.
dPercentage of genes with local chromosome-wide eQTL.
eeQTL defined as distal if not within 10 Mb upstream or downstream of gene TSS or on non-local chromo-

some.

6.3.1.3 Mediation

We test for mediation in only detected eQTL, and find significant genome-wide evidence ranging

from 16-18% across all tissues for these eQTL. In terms of local chromosome-wide evidence, we see

evidence of mediation in 30-43% of eQTL across all tissues. As with eQTL and cQTL, mediation

is appears to be primarily local ranging from 72-82% and 73-74% for genome-wide and local

chromosome-wide, respectively.

We expect the distal signals to be reduced upon re-processing of the sequence alignments,

particularly for cQTL and mediation. Initially reads were included that could align with up to four

positions, which resulted in some distal signals, particularly noticeable in the cQTL results. We are

currently re-processing to restrict to the reads that align uniquely.

These results show that it is possible to detect eQTL, cQTL, as well as mediation at a genome-

wide level in a relatively small sample (47 mice). Considering curves produced by the SPARCC R

package from Chapter 3 show that this sample size is not sufficiently powered to detect QTL with

effects that explain 50% of the outcome variation, which suggests that many of these detected QTL

have large effects (> 50%). With more CC strains and replicate observations, more eQTL, cQTL,

and mediators would be detected.
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Table 6.2: Number of chromatin accessibility sites with cQTL detected (q-value < 0.1) in
lung, liver, and kidney tissues

Tissue (%)
Lung Liver Kidney

cQTL genome-wide 2150 (14.3a) 2034 (13.6a) 2589 (17.3a)
local chromosome-wide 2524 (16.8a) 4323 (28.8a) 3351 (22.3a)

local-cQTLb genome-wide 1802 (83.8c) 1681 (82.6c) 1982 (76.6c)
local chromosome-wide 2173 (86.1d) 3376 (78.1d) 2672 (79.7d)

distal-cQTLe genome-wide 409 (19.0c) 388 (19.1c) 688 (26.6c)
local chromosome-wide 351 (13.9d) 947 (21.9d) 679 (20.3d)

aPercentage of all tested chromatin site.
bcQTL defined as local if within 10 Mb upstream or downstream of chromatin accessibility site.
cPercentage of chromatin accessibility sites with genome-wide cQTL.
dPercentage of chromatin accessibility sites with local chromosome-wide cQTL.
ecQTL defined as distal if not within 10 Mb upstream or downstream of chromatin accessibility site or on

non-local chromosome.

6.3.2 eQTL and cQTL mapping results

As shown in Tables 6.1 and 6.2 most QTL for expression and chromatin accessibility are local,

as can be seen in Figure 1.2 as the band along the diagonal of the grids. There are QTL on the

off-diagonal, representing distal-QTL. There is some evidence of vertical bands in the cQTL, which

would represent a region of the genome that regulates the chromatin accessibility at many sites. It is

likely that many of these bands will disappear once reads are restricted to those that uniquely align.

6.3.3 Mediation results

As shown in Tables 6.3, we do see instances of strong evidence of chromatin accessibility at

genomic positions mediating the effect of an eQTL on gene expression. Although it is not possible

to prove causality with these data, it is consistent with biological expectation were the eQTL to be

functionally active through chromatin accessibility. A strong example of mediation of the expression

of the gene Dynltb1 in lung tissue through local chromatin accessibility is provided in Figure

1.3. This example also highlights an observation that cQTL tend to have larger effects than eQTL,

suggesting that there is some buffering of the effect on expression. This is consistent or parallel

with a similar dynamic seen in comparison of eQTL effects being larger than pQTL in (Battle et al.,
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Table 6.3: Number of chromatin mediators of gene expression detected (q-value < 0.1) in
lung, liver, and kidney tissues

Tissue
(%)

Lung Liver Kidney
mediators genome-wide 101

(16.5a)
117
(18.7a)

170
(18.4a)

local chromosome-wide 188
(30.1a)

273
(43.5a)

380
(41.1a)

local-mediatorsb genome-wide 73
(72.3c)

96
(82.1c)

140
(82.4c)

local chromosome-wide 139
(73.9d)

204
(74.7d)

282
(74.2d)

distal-mediatorse genome-wide 28
(27.7c)

21
(17.9c)

30
(17.6c)

local chromosome-wide 49
(26.1d)

69
(25.3d)

98
(25.8d)

local-mediatorsb of local-eQTLf genome-wide 70
(69.3c)

92
(78.6c)

138
(81.2c)

local chromosome-wide 129
(68.6d)

185
(67.8d)

270
(71.1d)

local-mediatorsb of distal-eQTLg genome-wide 3
(3.0c)

4
(3.4c)

2
(1.2c)

local chromosome-wide 10
(5.3d)

19
(7.0d)

12
(3.2d)

aPercentage of genome-wide eQTL.
bMediators defined as local if within 10 Mb upstream or downstream of eQTL.
cPercentage of genome-wide mediators.
dPercentage of local chromosome-wide mediators.
eMediator defined as distal if not within 10 Mb upstream or downstream of eQTL or on non-local chromo-

some.
feQTL defined as local if within 10 Mb upstream or downstream of gene TSS.

geQTL defined as distal if not within 10 Mb upstream or downstream of gene TSS or on non-local chromo-
some.
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Figure 1.2: Grid plots of eQTL (yellow) and cQTL (blue) in lung (A,D), liver (B,E) , and kidney
(C,F), significant at q-value ≤ 0.1. There is a predominance of local-eQTL and local-cQTL
relative to distal signals, matching the biological expectation.

162



2015). We will discuss a systematic approach to checking this QTL effect buffering later on in the

Discussion.

6.3.3.1 Identifying co-localizing eQTL and cQTL with mediation and without

Statistical detection of mediation does not simply reflect that eQTL and cQTL are located

physically nearby; in fact, eQTL and cQTL can have the same position and not provide any evidence

of mediation. The formal mediation involves a statistical test in which the mediator, chromatin

accessibility, must absorb much of the effect of the detected eQTL for mediation to be detected.

eQTL and cQTL could co-localize, but have highly different founder haplotypes driving the effects.

We find that using the regressions coefficients as founder allele effects can visually distinguish

co-localizing eQTL and cQTL with mediation and co-localizing eQTL and cQTL without mediation,

and even quantified with Spearman’s correlation, as in Figure 1.4. In the case of mediation, the

allele effects of eQTL for Gm14403 are highly correlated with the allele effects of the co-localizing

cQTL. In the case of no mediation, as in Ear2, the correlation is much lower between effect vectors.

6.3.3.2 eQTL, cQTL, and mediation are highly local

As presented in Tables 6.1, 6.2, and 6.3, the QTL and mediators are largely local. We present

all three levels of signals simultaneously through radial plots for each tissue in Figure 1.5. The plots

contain a lot of information, but we emphasize that the inner circles have colored lines connecting

eQTL to gene TSS (yellow), cQTL to chromosome accessibility region (blue), and mediator to

eQTL (red). Local signals present as a line segment or stick, whereas distal signals are curved lines

that connect positions on the circle. Overwhelmingly, the inner circle is covered in line segments

representing local signals. In particular, the presence of red local mediators predominantly occur

where both local eQTL and cQTL are present. We do not formally require this in our genome-wide

mediation test, though the co-occurrence supports that we are detecting true signals.

6.3.3.3 Detection of alignment issue in chromatin accessibility data

In Figure 1.5, a strong set of distal cQTL are present in Figures 1.5A and 1.5C, representing

cQTL on chromosome 8 for chromatin accessibility regions on chromosome 18. Further investigation

revealed that the chromosome 18 chromatin outcomes had a strong WSB signal, matching the
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Figure 1.3: Genome scans for expression levels (yellow), chromatin accessibility (blue) and chromatin
mediation (red) of Dynltb1, a gene located on chromosome 17, in 47 CC lines in lung tissue. There is
both a strong local-eQTL and a strong local-cQTL present near the transcription start site of Dynltb1
(red tick). The steep logP drop in the mediation scan at or near the co-localizing QTL is supportive
of mediation of Dynltb1 expression through local chromatin accessibility. Genome-wide scan with
corresponding significance thresholds (A). Scan of chromosome 17, the local chromosome, with
corresponding local chromosome-wide significance thresholds (B).
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Figure 1.4: Co-localizing eQTL and cQTL are not sufficient for mediation. Co-localizing QTL
are observed for which there is evidence of mediation for the gene Gm14403 in lung tissue
(A). The haplotype effects at the eQTL and cQTL position (red tick) are highly correlated (B).
The resulting mediation scan shows strong evidence of mediation (C). For the gene Ear2 in
lung, co-localizing eQTL and cQTL are also observed (D). The eQTL and cQTL haplotype
effects do not correlate closely, with a particularly strong CAST effect in expression but not
in chromatin (E). A mediation signal is not detected for Ear2.

haplotype pattern present in the region on chromosome 8. This pattern of effects would correspond

to true distal-cQTL, though it also raised the possibility that the sequence similarity in the regions

are resulting in reads from chromosome 8 aligning to chromosome 18. To reduce the risk of false

distal QTL and mediators, we are re-processing the data to only use reads that uniquely align within

the genome.

6.3.4 Distance from QTL or mediator to outcome

We investigated the relationship between statistical association and physical distance from gene

TSS for putative eQTL, chromatin accessibility region for putative cQTL, and eQTL for putative

mediator, for signals on the local chromosome. We see that putative QTL or putative mediators

nearby their outcome tend to have more statistically significant associations, which corresponds to

the predominance of local signal. We present genome-wide significant results in Figure 1.6 and local

chromosome-wide significant in Figure 1.7. We also observe an odd pile up in cQTL with small

p-values around 50 Mb away from the chromatin outcome in lung and kidney, likely representing

165
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Figure 1.5: Radial plots of eQTL (yellow), cQTL (blue), and mediation (red) in (A) lung,
(B) liver, and (C) kidney. The outer-most yellow ring depicts the local-eQTL permP and
the middle blue ring is the local-cQTL permP. The inner circle has lines connecting gene
TSS to eQTL (yellow), chromatin accessibility sites to cQTL (blue), and eQTL to mediating
chromatin accessibility sites (red), each representing a significant signal of q-value ≤ 0.01.
There is a predominance of local-eQTL, local-cQTL, and local-mediators compared to distal
signals. Mediation signals primarily occur where both eQTL and cQTL are detected.

distal bands occurring due to the alignment issue. We expect these to disappear after the data are

re-processed.

6.3.5 Buffering of eQTL effect from cQTL effect

Visually we see evidence that the cQTL effects are more extreme than the eQTL effects based on

the magnitudes of the associations at the QTL in Figures 1.3 and 1.4. This dynamic is consistent with

biology in that gene expression is further down the regulatory pathway of transcription, and thus more

steps for noise to be introduced into the system. It is also similar to findings in (Battle et al., 2015)

on the effect of eQTL on gene expression in comparison to the effect of pQTL on protein abundance.

Prior to publication, we plan to systematically assess this dynamic. (Battle et al., 2015) uses human

data and thus models QTL based on SNP genotypes, thus the QTL effect likely represents a scalar

estimate of the effect of a dose of the minor allele of the SNP. With haplotype-based association in

the CC, we instead estimate an eight element vector as an effect, making it non-trivial to estimate

a similar quantity. We plan to use a regression approach in which the regression coefficients, call

them β from the QTLi term in Eq 6.3 is constrained through the imposition of a variance component:

β ∼ N(0, Iτ2) (Wei and Xu, 2016). τ2, the variance component, is a scalar summary of the QTL
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Figure 1.6: The genome-wide permP for eQTL (A-C), cQTL (D-F), and mediators (G-I) by
distance (Mb) from gene TSS, chromatin site, and eQTL, respectively. Associations that
do not present on the local-chromosome are not shown. The red dashed lines represent
10 Mb upstream and downstream of gene TSS, chromatin site, or eQTL for classifying an
association as local or distal. Significant signals (colored symbols), based on q-value ≤ 0.1,
are largely local. cQTL exhibit an interesting pattern of non-syntenic association on the local
chromosome, clustering around 50 Mb from the chromatin site. This pattern is observed
in all tissues, but is more pronounced in lung and kidney (Figures 1.6D and 1.6E). The
figures for the chromosome-wide results are present in Figure 1.7.
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Figure 1.7: The local chromosome-wide permP for eQTL (A-C), cQTL (D-F), and mediators
(G-I) by distance (Mb) from gene TSS, chromatin site, and eQTL, respectively. Associations
that do not present on the local-chromosome are not shown. The red dashed lines represent
10 Mb upstream and downstream of gene TSS, chromatin site, or eQTL for classifying an
association as local or distal. Significant signals (colored symbols), based on q-value ≤ 0.1,
are largely local. cQTL exhibit the same interesting pattern of non-syntenic association on
the local chromosome as seen in the genome-wide results, clustering around 50 Mb from the
chromatin site. We see more local signals are identified through a local chromosome test,
though the number of non-local associations (based on 10 Mb) on the local chromosome
also increase. The figures for the genome-wide results are present in Figure 1.6.
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effect, with larger variance components corresponding to larger effects. At all eQTL and cQTL,

we can estimate τ̂2cQTL and τ̂2eQTL and summarize the overall distributions in comparison to each

other. We can also look specifically at cQTL and eQTL that likely represent mediation pairs. Finally,

we can look at effects sizes based on local and distal status. Random effect fits of the locus effect

are computationally expensive, therefore not appealing for mapping scans with cQTL and eQTL.

However, with the set of tests constrained to only the detected cQTL and eQTL, it is feasible.

6.3.6 Frequency of distal-QTL signal in comparison to local-QTL

(Battle et al., 2014) identified local-eQTL in 78.8% and distal-eQTL in 2.9% of all the genes

tested. In kidney, for which we detected the most QTL, we detect local eQTL in 6.8% and distal

eQTL in 1.7% of tested genes. The disparity is almost certainly the result of the data comprising 47

individuals in comparison to 922. More CC strains and replicate observations would increase power

to detect the QTL, and likely mediation as well. The relative proportions between local and distal

QTL are also closer in the CC mice than human data. Some of the distal-QTL will likely disappear

once the data are re-processed, particularly in the cQTL. There is also the potential that a small

sample of 47 CC mice are slightly prone to false positive distal QTL in comparison to 922 humans.

Haplotype-based association fits a comparatively complex model in comparison to SNP genotypes,

and though the CC have fairly good balance in founder haplotype contributions, there are deviations

from it at certain loci. This can result in situations in which a single or a few individuals has a rare

founder allele at a locus and an extreme phenotype, resulting in a sudden association (discussed in

Chapter 4). Shrinkage approaches could account for this, and would certainly reduce distal-QTL

in comparison to local-QTL, but would prove computationally challenging. More CC strains and

replicate observations would respectively result in more balanced founder contributions within the

sample and reduction in outliers that power false associations.

There is value in the amount of local-QTL signal that we are able to detect given the sample

size, and particularly that there is evidence of mediation at some of the eQTL. Our use of local

chromosome-wide significance also supports our ability to detect local-QTL, as the proportion of

local-eQTL out of all genes increases to 21.4% from 6.8% compared to 7% from 1.7% for distal-

eQTL in kidney tissue, suggesting that predominantly more local-eQTL, and thus likely real signal is

being detected.
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6.3.7 Complexity of the underlying mediation

We use a simplistic model for the mediation of the eQTL effect (Figure 1.1). It is likely

that the true relationship between gene expression and chromatin accessibility is complex and

multifactorial for many genes. A simplistic mediation model as well as potential heterogeneity in the

data with respect to un-modeled factors would greatly reduce power to detect mediation. We present

these results not as definitive catalogue of genes with expression that is modulated by chromatin

accessibility, but rather as proof of principle that simplistic mediation models can be used to detect

strong signals, even in small samples. Another approach to consider would be to extract the variants

contained within the genomic intervals from the ISVdb resource (Oreper et al., 2017), and more

complex mediation models could be explored.

6.3.8 Summary

In this study, we map eQTL and cQTL in lung, liver, and kidney tissues in 47 male CC mice,

using a multi-stage conditional fitting approach, which allows for the detection of multiple QTL per

outcome. We detect mediation of the eQTL effect on gene expression through chromatin accessibility.

We find that signals for QTL and mediation are predominantly local. We note that this is a small

sample of CC mice with only a single observation per strain, and is thus only powered to detect

QTL with very large effects. cQTL effects appear to be larger than eQTL effects, and we describe a

novel approach for quantifying this for a multiparental population like the CC. The ISVdb resource

could also be used to further investigate the relationships underlying eQTL and potentially mediating

cQTL. This study demonstrates that the CC can be a powerful resource for integrative experiments,

which largely remains untapped.
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6.4 Additional Figures
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Figure 1.8: Principal components (PC) analysis of gene expression (A) and chromatin
accessibility (B) for lung (blue), liver (gray), and kidney (orange) tissue samples derived from
RNA-Seq and ATAC-Seq data, respectively. PC 1 and 2 capture a majority of the variance
and show a greater amount of between tissue variability than within tissue variability.
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CHAPTER 7

Concluding remarks

In this dissertation, statistical methods are developed and utilized that support the complete arc

of an experiment involving genetic association within a multiparental population (MPP):

1. Experimental design

2. Association analysis and related fine-mapping and follow-up analyses

MPP are experimental populations composed of individuals descended from more than two

inbred founders. They have been developed in a number of animal systems, including but certainly

not limited to mice (Churchill et al., 2004, 2012), rats (Hansen and Spuhler, 1984), fly (King et al.,

2012a; Long et al., 2014; King and Long, 2017; Najarro et al., 2017; Stanley et al., 2017), and

roundworm (Noble et al., 2017), as well as numerous plant systems (Kover et al., 2009; Bandillo

et al., 2013; Buckler et al., 2009; Bouchet et al., 2017; Mangandi et al., 2017; Tisné et al., 2017).

These populations are valuable resources for genetic experiments due to the greater extent of genetic

and likely phenotypic variation they possess in comparison to traditional inbred strains and bi-parental

crosses. Though analytical procedures developed in bi-parental populations have been successfully

extended to MPP, such as Haley-Knott (HK) regression (Haley and Knott, 1992; Martı́nez and

Curnow, 1992), there is potential for modeling approaches that better accommodate these resources

and can thus more efficiently and powerfully extract the underly biological inferences. The procedures

and analyses presented were performed with data from MPP rodent populations (mice and rats),

however, the fundamental concepts and ideas generalize to other organisms and their MPP. Herein is

a summary of the findings and conclusions from the chapters of this dissertation.
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7.1 Experimental design

7.1.1 Using the diallel to select optimal bi-parental crosses to map QTL

Chapter 2 dealt with, in general terms, a Bayesian decision theoretic approach for the evaluation

of a utility function based on pilot data across potential downstream experiments, with the intent

to improve selection of experimental designs. In application, a Bayesian hierarchical model used

the diallel, a unique MPP, as pilot data to characterize strain-level effects (Lenarcic et al., 2012),

which were then the inputs into the utility functions for possible bi-parental crosses (F2 intercrosses,

backcrosses (BC), and parent-of-origin effect reciprocal BC), implemented as the R package DIDACT

(Diallel Informed Decision theoretic Approach for Crosses Tool). The utility function used in

DIDACT was the power to detect a putative QTL underlying the strain-level effects, though simpler

functions could be implemented.

In practice, DIDACT was found to perform well in both Mendelian and complex phenotypes. For

a largely Mendelian trait, body weight loss percentage after Influenza A infection, which is known

to be largely driven by the gene Mx1 (Maurizio et al., 2018), DIDACT correctly favors bi-parental

crosses that match a strain with null Mx1 allele with a strain with a functional allele, thus resulting

in mapping populations with segregating alleles at the gene. For complex phenotypes, in which

the strain-level effects are likely highly polygenic in nature, though the assumptions underlying

the utility function are false and the nominal power biased upward, DIDACT favors crosses that

match strains that are disparate in phenotype. Thus DIDACT provides a quantitative and principled

approach to selecting bi-parental crosses that in practice will not deviate from good and standard

practice of matching phenotypically distinct strains, while also allowing interesting strain-level effect

combinations to inform the utility function.

7.1.2 Simulated power to map QTL in the realized Collaborative Cross

(Valdar et al., 2006a) estimated power to map QTL in the Collaborative Cross (CC) through

simulation, in which the recombinant inbred (RI) strain genomes and phenotype were simulated,

based on the stated expectation of 1000 RI strains. Due to allelic incompatibilities many CC lines

went extinct (Shorter et al., 2017), resulting in approximately 75 final strains. Chapter 3 describes
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the R package SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), which is

designed to provide power calculations that are highly tailored to specific experiments in the actual

finalized CC genomes, and thus assist researchers in designing their CC experiments. Additionally

SPARCC can be used to explore the effect on power of various aspects of the experimental design:

the number of CC strains and the number of replicate observations, and the underlying biology:

QTL effect size, background strain effect size, QTL position, and allelic series (Yalcin et al., 2005),

representing the number of function alleles and their distribution amongst the founder strains.

Based on large-scale simulations, SPARCC finds that increasing the number of CC strains is

more important than increasing replicate observations, though both will improve mapping power.

With respect to the allelic series, as the number of functional alleles increases, the power increases.

An increase in background strain variance reduces mapping power, which replicate observations

cannot improve. For QTL with fewer functional alleles than the number of founders (less than

eight), the balance in how the alleles are distributed amongst the founders strongly affects power,

with greater balance resulting in increased power. Summary power curves from SPARCC are also

presented for general reference for researchers designing CC mapping experiments.

7.2 Genetic association and related analyses

7.2.1 Accounting for haplotype uncertainty in QTL mapping of multiparental pop-

ulations using multiple imputation

In Chapter 4 a haplotype-based QTL mapping approach is proposed that takes a multiple

imputation (MI) approach to conservatively and stably test for QTL associations in comparison

to the unstable associations observed using the standard approach for MPP, HK regression, also

referred to as regression-on-probabilities (ROP) (Haley and Knott, 1992; Martı́nez and Curnow,

1992). Simulations show that MI is conservative in comparison to ROP when the founder haplotype

contributions are roughly balanced at loci across the genome. Problems arise for ROP when

imbalanced founder haplotype contributions and haplotype uncertainty combine to produce strong

correlations between the phenotype and near-zero probabilities for a founder haplotype that has been

lost through genetic drift, as is observed frequently in a heterogenous stock (HS) rat data set as well
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as at some loci in the CC. Though more computationally intensive than ROP, MI is still feasible, as

well as providing the ability to observe the fragility of association over imputations.

Also discussed is the problematic situation when founder haplotype contributions are imbalanced,

but now with great certainty, resulting in haplotype parameters that are fit based on only a few

individuals, representing highly leveraged data points. MI will not reduce strong associations that

result from leveraged data points that have extreme outcomes. This situation actually represents the

biased associations that result from fitting a fixed effect parameter to too few data points, and as such,

shrinkage procedures should be used, either through variance components (Wei and Xu, 2016) or

through pseudo-observations. Though computationally less efficient than ROP, MI and shrinkage

methods provide QTL mapping approaches in MPP when ROP fails.

7.2.2 QTL mapping in outbred rat population with imbalanced founder allele fre-

quencies

Chapter 5 describes a QTL mapping analysis in the the HS population first described in Chapter

4 that detected QTL for adiposity traits, specifically two QTL for retroperitoneal fat pads (RetroFat)

and one QTL for body weight, and the subsequent fine-mapping analyses to identify candidate genes

and variants. As this dissertation is largely focused on statistical methods for MPP, the summary of

results will focus on the development and use of methods, rather than the specific genes and variants

that were indentified.

An imputed SNP association approach to QTL mapping was used rather than haplotype-based

association because the HS had highly imbalanced founder haplotype contributions at most loci, as

well as high levels of uncertainty in terms of distinguishing certain founder haplotypes. In such a

context, imputed SNP association was found to be stable, and potentially more powerful for this

population than the MI approach previously described.

Various models were used to fine-map the QTL regions. The LLARRMA-dawg method

(Sabourin et al., 2015) reduced the RetroFat chromosome 6 QTL interval from 6.14 Mb to 1.46 Mb.

Founder haplotype effects were estimated with the Diploffect model (Zhang et al., 2014), which were

used to prioritize variants in the region that matched the effect pattern. In particular, a strong effect

from the WKY founder was detected for the RetroFat chromosome 6 QTL, which identified a cluster

of genes with unique WKY alleles in the region. Protein modeling (Prokop et al., 2017) was used to
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predict the effect of candidate variant alleles with respect to protein function, which supported the

gene Adcy3 for the RetroFat chromosome 6 QTL, and is also supported in the literature (Speliotes

et al., 2010; Nordman et al., 2008; Stergiakouli et al., 2014; Wen et al., 2012), and Prlhr for the

RetroFat chromosome 1 QTL. Grid2 was the primary candidate for the body weight chromosome 4

QTL based on previous literature (Dietrich and Horvath, 2013; Locke et al., 2015) and there only

being two genes present in the region.

Finally, an integrative mediation analysis was used to fine-map the QTL regions as well, testing

for the potential that the phenotypes are modulated partly through gene expression. The RetroFat

chromosome 6 locus contained many co-localizing expression QTL (eQTL), many also driven by

variants present in the WKY founder. Expression of the gene Krtcap3 was found to be a full mediator

of the QTL effect on RetroFat. There was also evidence for the expression of the gene Slc30a as

partial mediator or suppressor. Essentially nothing is known about Krtcap3 based on the literature

and bioinformatic resources. It is possible that the WKY effect in the region is multifactorial, the

result of changes to the expression levels of multiple genes as well as protein function of Adcy3.

7.2.3 Detecting chromatin accessibility as a mediator of gene expression in Collabo-

rative Cross mice

Chapter 6 further develops genetic association methods in MPP, as well as the integrative

mediation methodology used in Chapter 5, though now used to test mediation at a genome-wide

level. The data consist of gene expression and chromatin accessibility sequence in 47 male CC mice

from lung, liver, and kidney tissues. eQTL and chromatin accessibility QTL (cQTL) were mapped

using a multi-stage conditional fitting approach (Jansen et al., 2017), which allows for potentially

multiple QTL to be detected per outcome given sufficient support. After QTL mapping, support

for mediation of the eQTL effect on gene expression through chromatin accessibility was assessed

through a genome-wide scan, similar to the approach used in (Chick et al., 2016). Given the small

sample size and strong prior expectation that QTL and mediation signals will be local (arbitrarily set

to within 5 Mb of outcome position), local chromosome-wide significance (based on chromosome

the outcome is located on) was assessed in addition to genome-wide significance.

Though the genetic association and integrative mediation methods are largely finalized, the

results are preliminary, as the investigation is ongoing and sequence data are currently being re-
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processed as a result of multiply-aligning sequences resulting in distal-cQTL. Large numbers of

eQTL and cQTL are detected, though in reduced levels compared to humans (Battle et al., 2014),

likely due to the small sample size (47 compared to 922). Within detected QTL, signals are largely

local, with approximately ratios (local:distal) of 3:1 in eQTL and 4:1 in cQTL across the three tissues.

This actually represents an excess in comparison to distal signal in humans (very roughly 30:1). It

is likely that many distal QTL will be removed with the re-processed sequence data. Additionally,

false distal signals may occur in a small sample of CC at sites with imbalanced founder haplotype

contributions (described in Chapter 4). Classification as local is relatively strict, which strongly

supports those signals as legitimate.

Strong signatures of full mediation of eQTL through chromatin accessibility are detected, which

are largely local as expected. Mediation status is not equivalent to co-localization of eQTL and

cQTL, which can be visualized through founder haplotype effects, further supporting the statistical

mediation procedure. A similar dynamic is observed as in (Battle et al., 2015) in which protein

abundance QTL (pQTL) effects are less extreme than the corresponding eQTL effect, but here

cQTL have larger effects than eQTL, suggesting there is some buffering of the effect of chromatin

accessibility on gene expression.

7.3 Final conclusion

This dissertation represents a collection of related projects, connected by their use of MPP and

focus on tailoring the statistical methodology to the unique features of such data. The underlying

concepts and ideas can be re-used and extended to further expand the efficiency and efficacy of these

powerful genetic resources, particularly with respect to the design of experiments, as well as genetic

association and related integrative analyses.
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Böttcher, Y., Boyd, H. A., Bruinenberg, M., Caspersen, I. H., Chen, Y.-D. I., Clarke, R., Daw,
E. W., de Craen, A. J. M., Delgado, G., Dimitriou, M., Doney, A. S. F., Eklund, N., Estrada, K.,
Eury, E., Folkersen, L., Fraser, R. M., Garcia, M. E., Geller, F., Giedraitis, V., Gigante, B., Go,
A. S., Golay, A., Goodall, A. H., Gordon, S. D., Gorski, M., Grabe, H.-J., Grallert, H., Grammer,
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Greenawalt, D. M., Groves, C. J., Gudnason, V., Guiducci, C., Hartikainen, A.-L., Hassanali,
N., Hall, A. S., Havulinna, A. S., Hayward, C., Heath, A. C., Hengstenberg, C., Hicks, A. A.,
Hinney, A., Hofman, A., Homuth, G., Hui, J., Igl, W., Iribarren, C., Isomaa, B., Jacobs, K. B.,
Jarick, I., Jewell, E., John, U., Jørgensen, T., Jousilahti, P., Jula, A., Kaakinen, M., Kajantie, E.,
Kaplan, L. M., Kathiresan, S., Kettunen, J., Kinnunen, L., Knowles, J. W., Kolcic, I., König, I. R.,
Koskinen, S., Kovacs, P., Kuusisto, J., Kraft, P., Kvaløy, K., Laitinen, J., Lantieri, O., Lanzani, C.,
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Junttila, J., Kho, A. N., Kinnunen, L., Klopp, N., Kocher, T., Kratzer, W., Lichtner, P., Lind, L.,
Lindström, J., Lobbens, S., Lorentzon, M., Lu, Y., Lyssenko, V., Magnusson, P. K. E., Mahajan,
A., Maillard, M., McArdle, W. L., McKenzie, C. A., McLachlan, S., McLaren, P. J., Menni, C.,
Merger, S., Milani, L., Moayyeri, A., Monda, K. L., Morken, M. A., Müller, G., Müller-Nurasyid,
M., Musk, A. W., Narisu, N., Nauck, M., Nolte, I. M., Nöthen, M. M., Oozageer, L., Pilz, S.,
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