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       ABSTRACT 

Yina Li:  The Role of Autophagy During Orthodontic Tooth Movement 
(Under the direction of Ching-Chang Ko) 

 

Orthodontic tooth movement (OTM) depends on efficient remodeling of surrounding 

alveolar bone. While a well-controlled inflammatory response is essential during such biological 

processes, the precise mechanism by which how inflammation is regulated hasn’t been fully 

understood. Autophagy, a conserved catabolic pathway, has been shown to protect cells from 

excessive long lasting inflammation in nervous systems and other disease conditions. We 

hypothesize that autophagy plays a role in regulating inflammation during OTM. By using a split 

mouth design in adult male mice at different time points (days 0, 1, 3, 5, 7, 10 and 14) after 30 

gram of force loading, we found that autophagy activity increased shortly after loading (as early 

as day 1) and was closely associated with inflammatory cytokine expression as well as osteoclast 

activation (by TRAP staining). Autophagy activation appeared to be at the protein, not mRNA, 

level. Daily administration of rapamycin, autophagy activator, in adult male mice led to reduced 

tooth movement amount as well as inflammatory signal after loading, suggesting a negative 

effect of autophagy on inflammatory response during OTM. To our knowledge, this is the first 

time that research showed autophagy plays a role during orthodontic tooth movement, likely via 

negative regulation of inflammatory response. More molecular and cellular analyses are needed 

to elucidate the underlying mechanism that governs the regulation of inflammation by autophagy 

pathway.  
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REVIEW OF THE LITERATURE 
 

Orthodontics is a special discipline dedicated to the investigation and practice of moving 

teeth through the bone. Moving teeth through the dentoalveolar complex is a synergistic 

sequence of physical phenomenon and biological tissue remodeling. The physical behavior of 

tooth movement due to orthodontic force relies on Newton’s Laws. The tooth biological system 

reacts to variation in force magnitude, time of application and directionality through receptor 

cells and signaling cascades that ultimately produce bone remodeling and orthodontic tooth 

movement (OTM).  

 

Periodontium: the Tooth Supporting Complex 

Periodontium is the investing and supporting attachment of the teeth to alveolar bone. It 

includes both the soft tissues of periodontal ligament (PDL) and gingiva as well as the hard 

tissues of cementum and alveolar bone (Figure 1.1).  

The ability of teeth to move through the bone relies on the PDL, which attaches the tooth 

to the adjacent bone. The PDL is a dense fibrous connective tissue structure that consists of 

collagenous fiber bundles, cells, neural and vascular components and tissue fluids. Its primary 

function is to support the teeth in their sockets while allowing teeth to withstand considerable 

chewing forces. On average, the PDL occupies a space about 0.2mm wide. Depending on its 

location along the root, PDL width can range from 0.15-0.38mm, with its thinnest part located in 
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the middle third of the root. PDL space also decreases progressively with age1. Most PDL space 

is taken up by bundles of collagen fibers (mainly Type I) that are embedded in the intercellular 

substance. The terminal portion of the fibers that insert in the cementum and alveolar bone is 

termed Sharpey’s fibers. These fibers can be divided into the principal fibers, the accessory 

fibers and the oxytalan (elastic) fibers. According to their orientation and location along the 

tooth, the principal fibers can be further categorized into the transseptal fiber (or interdental 

ligament) and alveolodental ligament (Figure 1.1). Transseptal fibers extend interproximally 

connecting the cementum of adjacent teeth to maintain tooth alignment, and the alveolodental 

ligament group of fibers helps teeth withstand compression forces during mastication. In addition 

to principal fibers, accessory fibers run from alveolar bone to cementum in different planes, more 

tangentially to prevent rotation of the tooth. Besides PDL fibers, paradental cells of different 

functions reside in the PDL space, including: 1) synthetic cells like fibroblasts which make up 

50-60% of total PDL cellularity, osteoblasts, and cementoblasts; 2) resorptive cells such as 

Figure 1.1. Components of the periodontium. Different types of principal fiber groups are 
indicated with different colors. White crown: animal. Yellow: dentin. Red: dental pulp. Pink: 
Gingiva. Black outline: alveolar bone.  
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osteoclasts, fibroblasts, cementoclasts; 3) progenitor cells including undifferentiated 

mesenchymal cells; 4) defense cells such as macrophages, mast cells and lymphocytes; and 5) 

epithelial cells, i.e. remnants of the epithelial root sheath of Hertwig1. Together, these various 

cells participate in the homeostasis of the periodontium. Finally, the PDL space is filled with 

tissue fluid known as interstitial fluid, which is ultimately derived from the vascular system. This 

fluid-filled chamber allows the PDL space to evenly distribute forces loaded onto teeth, serving 

as a shock absorber.  

The alveolar bone is a mineralized connective tissue that consists of, by weight, 

mineralized tissue (60%), organic matrix (25%) and water (15%)2. While the majority of alveolar 

bone is trabecular, a plate of compact bone called the lamina dura lies adjacent to the PDL space. 

PDL fibers anchor to the alveolar bone by piercing through the lamina dura, while the other ends 

connect to the cementum (Figure 1.1). Multiple cell types, namely osteoblasts, osteoclasts and 

osteocytes, play critical roles in the homeostasis and function of the alveolar bone. In addition, 

macrophages, endothelial cells and adipocytes can also be found within the alveolar bone. 

Osteoblasts are mononucleated and specialized “bone forming” cells. Both osteoblasts and 

fibroblasts can synthesize Type I collagen matrix. Osteoblasts differ from fibroblasts because 

they can express Runx2 (aka. Cbfa1), a master switch for osteoblast differentiation from 

mesenchymal progenitor cells3. The number of osteoblasts decreases with age, leading to an 

imbalance of bone deposition and resorption4. Osteocytes are derived from osteoblasts that are 

embedded in mineralized bone during bone apposition. During this process, minerals such as 

hydroxyapatite, calcium carbonate and calcium phosphate get deposited around the osteocyte, 

forming lacuna, the space that an osteocyte occupies during its entire lifespan (Figure 1.3). 

Lacunae are connected via narrow channels known as cannaliculi, where dendrites of osteocytes 
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contact and communicate via gap junctions. Unlike the “bone forming” osteoblasts and 

osteocytes that arise from the mesenchymal cell lineage, the “bone resorbing” osteoclasts 

originate from a different progenitor population, the hematopoietic/monocyte lineage, and are 

formed by the fusion of multiple monocytes becoming “multinucleated”. Osteoclasts are 

characterized by their high expression of Tartrate Resistant Acid Phosphatase (TRAP), Cathepsin 

K, Chloride channel 7 (ClCN7), and Osteoprotegerin (OPG). Cathepsin K is a protease capable 

of catabolizing bone matrix proteins such as elastin, collagen and gelatin. ClCN7 shuffles 

chloride ions through the cell membrane, thereby maintaining osteoclast neutrality. OPG (aka 

osteoclastogenesis inhibitory factor or tumor necrosis factor receptor superfamily member 11B) 

is an osteoblast expressed decoy receptor for the receptor activator of nuclear factor kappa B 

ligand (RANKL), thus inhibiting osteoclast differentiation by blocking RANK and RANKL 

docking. RANKL is expressed on osteoblasts, and it promotes osteoclast differentiation by 

binding to RANK on osteoclast precursors 5, 6.  

 

Orthodontic Tooth Movement: the Biological Response to Sustained Force 

 Orthodontic tooth movement is a process that combines physiologic alveolar bone 

adaptation to mechanical strains with minor reversible injury to the periodontium7. Under 

normal/healthy conditions, such movement is carried out by highly coordinated and efficient 

bone remodeling, which requires coupling of bone formation following bone resorption. The 

classic pressure-tension theory proposes chemical, rather than electric, signals as the stimulus for 

cellular differentiation and ultimately tooth movement. This theory proposes that, within a few 

seconds upon force loading, the tooth shifts its position within the PDL space, resulting in PDL 
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compression in some areas and PDL stretch or tension in others (Figure 1.2). While blood flow is 

decreased on the compression side, it is maintained or increased on the tension side. If the 

loading force is sustained, the alteration in blood flow quickly (in minutes) changes the oxygen 

tension (O2:CO2 level) and the chemical environment by releasing biologically active agents such 

as prostaglandins (PGs) and cytokines (e.g. Interleukin (IL)-1β). These chemical mediators 

differentially affect cellular activities in the compression vs. tension areas within the PDL, 

promoting a net outcome of bone resorption at the compression side and bone formation at the 

tension side. Force magnitude is associated with varied cellular responses on the compression 

side. Heavy force cuts off blood blow, resulting in cell death under compression (hyalinization). 

As a result, no osteoclast differentiation occurs within the compressed PDL space; instead, a 

delayed recruitment/differentiation of osteoclasts from adjacent bone marrow space is 

responsible for the “undermining resorption” that removes the lamina dura next to the 

compressed PDL. Tooth movement follows completion of these processes on the compression 

side, but not before. Therefore, it usually takes 7-14 days for tooth movement to occur when 

heavy force is applied. By contrast, light force only reduces blood flow, allowing quick 

recruitment of osteoclasts either locally (the first wave) within the PDL or via blood flow (the 

larger second wave). These osteoclasts remove the lamina dura in the process of “frontal 

resorption.” Tooth movement begins soon thereafter, usually within 2 days after light force 

application. Clinically, it is almost impossible to avoid blood vessel occlusion completely, thus 

hyalinization always occurs to a certain degree and tooth movement is a result of combined 

undermining and frontal resorption8.  During the time of resorption and tooth movement 

happening at the compression side, the PDL space at the tension side, somewhat lagging behind, 
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become enlarged, and the osteoblasts are recruited locally in the PDL (from progenitor cells) and 

begin remodeling on the tension die by forming bone there9 (Figure 1.2).    

Figure 1.2. Signaling pathways associated with compression and tension due to orthodontic 
loading. Distinct signaling factors are upregulated and downregualted associated with 
compressive and tensile strain, as summarized in the table, with the net outcome of resorption in 
compression and bone apposition in tension. 

!
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As discussed, orthodontic loading alters blood flow in the PDL and regional hypoxia 

develops. Reduction in O2 tension stabilizes Hypoxia Inducible Factor-1 (HIF-1), a transcription 

factor that activates Vascular Endothelial Growth Factor (VEGF) and RANKL expression in 

PDL fibroblasts and osteoblasts; osteoclast differentiation is also increased, favoring resorption 

in areas of compression10-11. With mild hypoxia, HIF-1 stimulates cell proliferation and 

angiogenesis downstream of VEGF, promoting regeneration of the PDL and its blood supply12. 

Hypoxia is a critical initiator for orthodontic tissue remodeling that acts in concert with loading-

induced fluid flow, another activator of signaling. The fluid flow hypothesis focuses on osteocyte 

and fibroblast response to strain due to fluid displacement in canaliculi13. Force application 

initiates a sequence of events including: 1) matrix strain and fluid flow; 2) cell strain; 3) cell 

activation and differentiation; and 4) tissue remodeling14. Mechanoreceptor cells that detect 

strain are present in the bone, as osteocytes, and in the PDL, as fibroblasts. Loading causes 

remodeling of mineralized tissue (bone) and non-mineralized paradental tissues (the PDL, 

gingiva and neurovascular supply)15. When teeth are loaded, interstitial fluid is forced through 

the canaliculi and around osteocytes, causing strain on the cell surface and extracellular matrix 

(ECM).  The ECM is a network of fibrous structural proteins embedded in a polysaccharide gel 

surrounding cells. Fluid flow applies shear stress to the ECM and cell membrane, perturbing 

Integrins and activating signaling cascades in osteocytes13,16 (Figure 1.3). Integrins are 

transmembrane proteins that tether a cell’s external ECM to its internal cytoskeleton. Integrin 

stimulation on the cell surface causes release of intracellular molecules that alter osteocyte gene 

expression, promoting differentiation of osteoblasts and osteoclasts to form and resorb bone. 

Intracellular calcium rises, increasing phospholipase A activity which releases arachidonic acid, 

the precursor to prostaglandins; cyclooxygenase (COX) enzymes then convert arachidonic acid 
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to prostaglandins, key inflammatory mediators 7,13,16. Second messengers cAMP and cGMP are 

elevated downstream of calcium, prompting phosphorylation events and subsequent gene 

expression change with release of autocrine and paracrine signals initiating bone turnover 

Figure 1.3. Role of fluid flow in orthodontic tooth movement. Tooth loading causes flow 
of interstitial fluid around osteocytes, resulting in strain on the extracellular matrix 
(ECM) perturbing membrane- bound Integrins. Integrins activate focal adhesion kinase 
(FAK) and an intracellular signaling cascade culminating in altered gene expression and 
tissue remodeling. 
!
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(discussed below) 16,17. While osteocytes are mechanosensors that couple strain from orthodontic 

loading to tissue remodeling15, fibroblasts serve a similar mechanosensor function in the PDL 

and gingiva. When Strain perturbs the ECM in the PDL and gingiva, like osteocytes, fibroblasts 

express transmembrane Integrin receptors. Stress from mechanical loading is transmitted 

intracellularly from the ECM via Integrins, which induces a signaling cascade through focal 

adhesion kinases (FAK) to alter gene expression, cytoskeletal organization, proliferation and 

differentiation, and ultimately tissue remodeling18-19. 

 

Role of inflammation in Orthodontic Tooth Movement  

 Fluid-induced strain and hypoxia synergistically promote bone and PDL remodeling, by 

inducing an aseptic inflammatory response devoid of bacteria. Tooth loading causes areas of 

tension and compression of the PDL, its associated nerve endings and blood vessels. PDL nerve 

endings are tightly associated with blood vessels. When nerve endings are distorted, they release 

vasoactive neurotransmitters, e.g. substance P and CGRP, which interact with vascular 

endothelial cells causing vasodilation and increased permeability with plasma leakage7,16. The 

activated endothelium binds and recruits circulating leukocytes, monocytes, and macrophages to 

the PDL, signifying the onset of acute inflammation15,20. Leukocytes elaborate cytokines, 

prostaglandins, growth factors and colony-stimulating factors (CSF) that promote tissue 

remodeling21,22. After several days, inflammation transitions from acute to a chronic and 

proliferative process involving fibroblasts, endothelial cells, osteoblasts and osteoclasts.  

Native paradental cells, leukocytes, and platelets release a milieu of inflammatory factors 

initiating functional units to remodel bone and paradental tissues; factors include cytokine IL-1β, 

IL-6, IL-10, Nitric Oxide (NO), Tissue necrosis factor-α (TNF-α), tissue growth factor β (TGF-



10!

β), macrophage colony-stimulating factor (M-CSF), Prostaglandins, OPG, and RANKL. 

Compression and tension zones are associated with specific mediators regulating resorption and 

deposition, respectively (Figure 1.2). Compression is associated with elevated Cycloxygenase-2 

(COX-2) that catalyzes production of prostaglandins, including PGE2, from arachidonic acid23. 

Prostaglandins can stimulate both osteoclastic and osteoblastic activities, serving as suitable 

mediators for tooth movement. They act on osteoclasts, increasing intracellular cAMP 

concentrations and boosting their resorptive activity16. PGE2 can also stimulate osteoblast 

differentiation and expression of RANKL and OPG23,16.  An increase in RANKL and M-CSF and 

a decrease in OPG release by osteoblasts collectively favor osteoclast differentiation and bone 

resorption. Release of cytokines IL-1β and TNFα induces osteoclast differentiation, function and 

survival while increasing inflammation and matrix metalloprotease (MMP) levels23,16,24. 

Cathepsins and MMPs including collagenase, degrade PDL ECM and the boney organic matrix, 

allowing osteoclast attachment for resorption14. Compression also activates inducible Nitric 

Oxide Synthase (iNOS) to produce nitric oxide (NO), which mediates inflammation-induced 

bone resorption25. These factors recruit and activate osteoclasts to form resorptive lacunae in the 

compressive zone25. Tooth movement begins once necrotic tissue is removed by osteoclasts, 

followed by osteoblasts creating osteoid with new periodontal fibrils embedded in the alveolar 

bone wall and root cementum (Figure 1.2). Compression-induced bone morphogenic protein 

(BMPs) and Runx2 expression potentiate osteoblast differentiation and bone mineralization, 

while proliferating and active fibroblasts upregulate ECM fiber production7,23,26. The compressed 

bone and PDL are disassembled and then rebuilt. 

Under tension, alveolar bone deposition predominates, with an increase in osteoblast 

numbers and activity. Tensile strain stimulates osteoblast progenitor proliferation in the PDL and 



11!

activates endothelial Nitric Oxide Synthase (eNOS) to increase NO to mediate bone formation25. 

Cytokine IL-10 increases in areas of tension, boosting OPG and reducing RANKL production by 

osteoblasts; there is an overall reduction in RANK signaling, favoring bone deposition through 

inhibition of osteoclast formation, activity and survival23. TGF-β is also enriched under tension, 

and induces proliferation and chemotaxis of PDL cells, upregulates Col-I (collagen gene), 

recruits osteoblast precursors, induces their differentiation, downregulates MMPs and 

upregulates tissue inhibitors of metalloproteases (TIMPs)15,27. MMPs and their inhibitors, TIMPs, 

act in concert to regulate remodeling and have localized expression patterns, suggesting careful 

coordination of turnover 7,26. The cumulative result is increased osteoblast and reduced osteoclast 

activity, with production of bone and remodeled PDL fibers on the side opposite tooth movement 

(Figure 1.2). 

Inflammatory factors are central to tissue remodeling for tooth movement, yet many 

orthodontic patients take non-steroidal anti-inflammatory drugs (NSAIDs) for pain relief that 

inhibit COX enzymes and their production of PGs, slowing rates of tooth movement. 

Acetaminophen (Tylenol), on the other hand, acts centrally rather than peripherally and is the 

preferred pain reliever for orthodontics. In rabbit studies, the rate of orthodontic tooth movement 

was unaffected by Acetaminophen, while Ibuprofen and Aspirin resolve pain but slow tooth 

movement28,29. Pharmacological inhibition of inflammation is associated with retarded tooth 

movement, underlying the importance of inflammation in orthodontic tissue remodeling.  

While the inflammatory cascade is critical for OTM, unregulated or excessive 

inflammation is problematic. For example, remodeling of tissue and orthodontic-induced 

inflammatory root resorption (OIIRR), or simply known as root resorption, should be limited to 

the bone and paradental tissues, excluding the cementum and tooth. However, in 1-5% of 
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orthodontic patients, excessive root resorption is observed, with loss of greater than 4mm or a 

third of the original root length17,30. Reducing root length diminishes the crown-to-root ratio of 

affected teeth, with potentially great clinical significance. The cellular mechanism of OIIRR is 

similar to osteoclastic bone resorption and correlates with elevated concentrations of RANKL 

and reduced OPG in the PDL16,31,32. In patients with excessive root resorption, regulation of bone 

remodeling is compromised due to excess elaboration of cytokines and pro-resorptive ligands33. 

This signifies the importance of regulation of inflammation: while inflammation is necessary for 

orthodontic tooth movement, if uncontrolled, it leads to tooth destruction, similar to uncontrolled 

periodontal disease serving as an anti-bacterial defense while causing collateral tissue damage33. 

Orthodontic treatment in patients suffering from periodontal disease is particularly dangerous, as 

the combination of aseptic inflammation and periodontal-related inflammation cause accelerated 

attachment loss and disease progression.  Orthodontists must carefully screen for periodontal 

disease to avoid worsening periodontal status via braces due to excessive inflammation, 

particularly in adult patients. 

 

Connection between Inflammation and Autophagy 

While initiation of inflammation promotes necessary host defense upon mechanical 

strains during OTM, it is equally important to ensure a timely resolution of such inflammation to 

maintain homeostasis. In normal conditions, inflammation occurred during OTM appears to be 

well controlled, as the PDL space remains fairly constant in healthy individuals during treatment. 

In contrast to extensive studies on the mechanisms underlying inflammation initiation, little 

research had focused on mechanisms in regulation of inflammation, in particular in inflammation 

resolution during OTM. Inflammation is an energy-intensive process; consequently, metabolism 
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is closely associated with immune functions including inflammatory responses. Autophagy plays 

a role in metabolism by providing energy in conditions of cellular stress in order to maintain 

homeostasis. Increasing evidence has suggested a close relationship between autophagy and 

inflammation during both physiological and pathological conditions 34.  

 

Figure 1.4. (Macro)autophagy pathway. Autophagy is normally inhibited by mTORC1. 
Under stressful conditions, decreased mTORC1 and increased AMPK activities lead to 
activation of ULK1, which phosphorylates several downstream proteins and ultimately 
induces phagophore formation. Phagophore engulfs damaged cytosolic components to form 
autophagosome. During this process, microtubule-associated proteins 1 light chain 3 (LC3) 
undergoes phosphatidyl-ethanolamine (PE) conjugation to be located to the autophagosome, 
facilitating the closure of the phagophore. Autophagosome fuses with lysosome, allowing 
sequestered contents to be broken down by lysosomal hydrolase (Modified from Kenney DL 
et al. (2015) Neurology 85(7): 634-64535) 
!
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There are several forms of autophagy, among which the most important and relevant is 

macroautophagy (henceforth referred to as autophagy). It is a highly conserved and sensitive 

intracellular catabolic pathway that can be induced in a wide range of stressful conditions, such 

as hypoxia, starvation, toxin accumulation and damaged organelles. Under basal condition, the 

central autophagy inhibitor mTOR (mammalian/mechanistic target of rapamycin) complex 1 

(mTORC1) associates with ULK1/2-ATG13-FIP200 complex and inhibits autophagy activity via 

phosphorylation of ULK1/2 (unc-51 like autophagy activating kinase 1/2) and ATG13. Under 

stressful condition, mTORC1 is inhibited and dissociated from the ULK1/2-ATG13-FIP200 

complex and adenosine monophosphate activated kinase (AMPK) is activated, allowing ULK1/2 

to become activated and phosphorylate several downstream proteins that leads to activation of 

autophagy. Autophagy activation results in the formation of phagophore, a double-layer 

membrane that engulfs the damaged cytosolic components. During this process, microtubule-

associated proteins 1 light chain 3 (MAP1LC3 or LC3) undergoes phosphatidylethanolamine (PE) 

conjugation to facilitate the closure of phagophore. Complete sequestration of these components 

results in the formation of autophagosome, which then fuses with the lysosome, allowing the 

sequestered contents to be broken down by lysosomal hydrolases and subsequently released in 

the cytosol for reuse 35 (Figure 1.4 and 1.5).  

In addition to homeostasis and cell survival, autophagy has also been identified as a key 

player in host defense through several mechanisms, including: innate immunity and direct 

elimination of invading pathogens, induction of innate immune memory, control of adaptive 

immunity through regulation of antigen presentation, and interaction with inflammation. Several 

mediators of inflammation have shown to regulate autophagy activity. Engagement of various 

pattern recognition receptors (PRRs), such as TLRs (toll-like receptors) and NLRs (NOD-like 
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receptors have been reported to induce autophagy through pathways via mTORC1 and AMPK. 

In addition to PRRs, several Th1 type/proinflammatory cytokines, such as TNFα 
 and IL-1β, 

have been shown to induce autophagy36. By contrast, Th2 type/ anti-inflammatory cytokines, 

such as IL-4, IL-10 and IL-13 generally suppress autophagy induction via activation of mTOR 

and stimulation of PI3K/Akt signaling pathway36,37. Effects of IL-6 (a Th2 type proinflammatory 

cytokine) on autophagy seem to vary depending on tissue types. IL-6 enhanced autophagy in 

mouse pancreatic tumor cells and myeloid cells38,39. However, overexpression of IL-6 suppressed 

autophagy in human bronchial epithelial cells and enhanced!autophagy counteracted the effect of 

IL-640.  Recently, compelling evidence demonstrates another layer of autophagy regulation by 

inflammatory response through control of transcription factors. For instances, NFκB (nuclear 

factor-κB) has been shown to upregulate transcription of Beclin 1 and Sequestosome 1/p6241,42. 

Other inflammation-related transcription factors capable of regulating proteins involved in 

autophagy pathway include HIF-1, JUN, STAT 1 and STAT 3 (signal transducers and activators 

of transcription) 43.  

While inflammation affects autophagy activities in several ways, the opposite is also true, 

i.e. autophagy can also regulate inflammation. Autophagy has been shown to negatively regulate 

IL-1β- inflammasome activation and IL-1β and IL-18 production. Mice deficient in Atg16l1, 

essential molecule for autophagy, showed higher levels of IL-1β and IL-18 in response to LPS 

stimulation or during colitis44. Inhibition of autophagy in human primary cells also led to 

increased production of IL-1β45. Conversely, in macrophages treated with TLR, further 

activation of autophagy by rapamycin induced degradation of pro-IL-1β and blocked mature 

cytokine production46.  In addition to its inhibitory effect on inflammasome, autophagy also 

reduces NFkB activation by selective degradation of Bcl 10 complexes!47.  
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Taken together, compiling evidence suggests that inflammation and autophagy are 

closely related. Derangement of the crosstalk between these two processes can have deleterious 

consequences. Indeed, defective autophagy activities are associated with a wide range of disease 

conditions in which hyperinflammatory conditions prevail, such as metabolic disorders (diabetes 

and obesity), Crohn disease, Chronic Granulomatous Diseases, and neurodegenerative diseases 

(Alzheimer’s and Parkinson diseases) etc. The relationship of autophagy with inflammation can 

sometimes be quite circuitous. For instances, in metabolic disorders, suppression of autophagy in 

diseased tissues leads to increased inflammation with overexpression of cytokines, which in turn 

results in an activation of autophagy48.  One may suspect that that autophagy may contribute to 

its positive role on health by restraining the detrimental side effects of (chronic) inflammation. 

Interestingly, autophagy efficiency is decreased during aging, concomitantly to an increase in the 

basal inflammation level 49,50. This further supports the notion that autophagy potentially protects 

cells from excessive long lasting inflammation in order to maintain healthy state. 

 

Autophagy and bone remodeling 

 There is emerging evidence that autophagy is involved in bone remodeling. Studies in 

murine rheumatoid arthritis have shown that TNFα induced autophagy in osteoclasts, and 

activation of autophagy by overexpression of Beclin-1 promoted osteoclastogenesis and 

enhanced resorptive capacity of cultured osteoclasts51. Nollet et al. investigated the role of 

autophagy in osteoblasts and found that autophagy was induced in osteoblasts during 

mineralization under oxidative stress. Osteoblast-specific autophagy-deficient mice had 50% 

reduction in trabecular bone mass; osteoblasts with defective autophagic activity showed 

increased oxidative stress and secretion of RANKL, favoring generation of osteoclasts and bone 
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resorption52. Moreover, Sambandam et al. studied autophagy under microgravity conditions and 

found microgravity induced autophagic activity in preosteoclast cells, and increased autophagy 

in turn enhanced osteoclast differentiation53.  

   

Conclusions 

 A better understanding of biological mechanisms underlying tooth movement helps guide 

our efforts towards new approaches to solve current challenges of orthodontic treatment. 

Specifically, although the role of inflammation during OTM has been widely studied, its 

regulation, especially how inflammation is kept under control, has remained poorly understood. 

Autophagy has been shown to have a close relationship with inflammation in other biological 

systems and disease conditions, and it also appears to be involved in bone remodeling via its 

activation in osteoclasts and/or osteoblasts. In our present study, we hypothesize that autophagy 

may play an important role in modulating inflammatory responses, likely in a negative feedback 

fashion, which is critical during the course of OTM. We are hopeful that our study will provide 

insights for future translational and clinical research that will ultimately lead to improvement of 

the quality, rate and stability of tooth movement in orthodontic practice.  
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THE ROLE OF AUTOPHAGY DURING ORTHODONTIC TOOTH MOVEMENT 
 

Introduction 

Orthodontic tooth movement (OTM) is a pathophysiologic process that combines 

the alveolar bone adaptation with minor reversible injury to the periodontium in 

response to mechanical strains. Under healthy conditions, such a movement is achieved 

by highly efficient and coordinated bone remodeling, involving a net bone resorption by 

osteoclasts at the compression side and bone formation by osteoblasts at the tension 

side. This process is regulated by a dynamic aseptic inflammatory response that is characterized 

by the release of inflammatory mediators, such as prostaglandins and cytokines. Shortly after the 

application of external force, inflammatory mediator prostaglandins (mainly prostaglandin E 

[PGE]) are released from cells under mechanic deformation 1. PGE can stimulate not only the 

number and activity of osteoclasts 2,3,4, it can also induce osteoblast differentiation and new bone 

formation 5, suggesting its ability to coupling the two aspects of bone remodeling. In addition to 

mechanical force-induced release of inflammatory mediators, abundant evidence has 

demonstrated neurovascular mechanisms also play important roles in initiating inflammation 

during OTM. Following mechanic loading, there is an initial reduction in the diameter and 

number of PDL blood vessels at the compression side within the PDL!6,7. PDL neurotransmitters 

(substance P, CGRP, VIP etc.) act on endothelial cells to cause vasodilation and increased 

vasopermeability, promoting the circulating leukocytes to migrate into the paradental 

extracellular matrix. The migratory leukocytes, together with the residential paradental cells 
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(fibroblasts and osteoblasts), activate an aseptic inflammatory reaction by producing ample 

amounts of chemokines and cytokines, notably IL-1β, IL-6, TNFα, IL-8, and IL-11!8-12.!  These 

inflammatory cytokines act on PDL cells, promoting osteoclastogenesis through upregulation of 

Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL) 13,14,15. Increased RANKL 

together with a decreased release of Osteoprotegerin (OPG) by osteoblasts favors osteoclast 

differentiation and bone resorption. Release of cytokines IL-1β and TNFα also induces 

osteoclast differentiation, function and survival! 16,17,18.  At the tension side, IL-10 level is 

increased, boosting OPG and reducing RANKL production by osteoblasts, which favors bone 

deposition through inhibition of osteoclast formation16. TGFβ level is also elevated under 

tension, which induces proliferation and chemotaxis of PDL cells as well as recruitment of 

osteoblast precursors and osteoblast differentiation 19,20.  

While initiation of inflammation promotes necessary host defense upon mechanical 

strains during OTM, it is equally important to ensure a timely resolution of such inflammation to 

maintain homeostasis. In normal conditions, inflammation occurred during OTM appears to be 

well controlled, as the PDL space remains fairly constant in healthy individuals during treatment. 

In contrast to extensive studies on the mechanisms underlying inflammation initiation, little 

research had focused on mechanisms in regulation of inflammation, in particular in inflammation 

resolution during OTM. To identify such potential regulatory mechanisms, we found that 

autophagy, an evolutionarily conserved self-protecting process, has important effects on the 

modulation of inflammatory response. Defective autophagy has been shown to contribute to 

many disease conditions in which hyperinflammatory conditions prevail 21.  

There are several forms of autophagy, among which the most important and relevant is 

macroautophagy (referred to as autophagy in our study). It is a highly conserved and sensitive 
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intracellular catabolic pathway that can be induced in response to a wide range of stressful 

conditions (e.g. starvation, hypoxia, toxin accumulation, damaged organelles). Autophagy 

activation results in the formation of autophagosome, a double-layer membrane structure that 

sequesters the damaged cytosolic components. The autophagosome then fuses with the 

lysosome, allowing the sequestered contents to be broken down by lysosomal hydrolases and 

subsequently released in the cytosol for reuse 22. In addition to homeostasis and cell survival, 

increasing evidence has identified autophagy as a key player in host defense, in particular 

through its crosstalk with inflammation. Several Th1 type/proinflammatory cytokines, including 

IL-1β and TNFα, have shown to induce autophagy 23, whereas Th2 type/ anti-inflammatory 

cytokines such as IL-4, IL-10 and IL-13 generally suppress autophagy induction via activation of 

mTOR (mammalian/mechanistic Target Of Rapamycin), a central inhibitor of autophagy 23,24.  

Effects of IL-6 (a Th2 type proinflammatory cytokine) on autophagy seem to vary depending on 

tissue types. IL6 enhances autophagy in mouse pancreatic tumor cells and myeloid cells 25,26. 

However, overexpression of IL6 suppresses autophagy in human bronchial epithelial cells and 

enhanced! autophagy counteracted the effect of IL-6 27. Autophagy can also modulate 

inflammatory reaction, primarily through its inhibitory effects on inflammasome activation, and 

IL-1β and IL-18 production 28,29. In addition to its inhibitory effect on inflammasome, autophagy 

has also been shown to reduce the activation of NFκB (nuclear factor of kappa light polypeptide 

gene enhancer in B-cells) by selective degradation of Bcl 10 complexes30, thereby indirectly 

affecting genes involved in inflammation that are controlled by NFκB.  

In our present study, we aimed to investigate the potential role of autophagy pathway in 

regulating inflammatory response after force loading using a well-established mouse model of 
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orthodontic tooth movement (OTM). We hypothesized that autophagy may negatively regulate 

inflammation, which is critical for normal OTM. 

 

Materials and Methods 

Mouse model for studying OTM 

 Orthodontic force application in mice is a well-accepted model in OTM studies. Optimal 

conditions have been previously characterized31. Briefly, mice were anesthetized by 

intraperiotoneal injection of solution containing xylazine (10mg/kg) and ketamine (100mg/kg). 

Thirty grams (=0.3N) of force was delivered to the maxillary right first molar in the mesial 

direction, by bonding a nickel-titanium (NiTi) closed coil spring (American Orthodontics, Cat# 

855-181, length shortened to adapt to each mouse’s mouth) between the maxillary right first 

molar and incisors with light-cured resin (Transbond Supreme LV, 3M Unitek, Morovia, Calif) 

(Figure 2.1 A and B). No reactivation of spring was performed during the experimental period. 

All procedures and animal care followed the ethical regulations for animal experiments, defined 

by Institutional Animal Care and Use Committee (IACUC) of the University of North Carolina 

at Chapel Hill.  All mice were monitored daily and given softened food after spring loading, and 

there was no significant weight loss during the entire experiment period.  

 For histomorphometric analyses, i.e. OTM distance measurement, detection of autophagy 

activity and TRAP staining, we utilized a GFP-LC3 reporter mouse line. This mouse line carries 

a GFP-LC3 fusion protein that is normally associated with isolated membrane without autophagy 

activity. When autophagy is activated, GFP-LC3 fusion protein is relocated to the 

autophagosome and begins to give off GFP signal32. Thirty GFP-LC3 adult male mice (8-9 

weeks old, in C57BL/6 background) were subdivided into 6 groups (n=5 for each group), and 
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were sacrificed at different time points (days 1, 3, 5, 7, 10 and 14) after spring loading.  For 

molecular analyses, i.e. mRNA/qRT-PCR and Western Blot, 60 wild-type adult male mice 

(C57BL/6, 8-9 weeks old, obtained from Jackson Laboratory, Bar Harbor, ME) were subdivided 

into 6 groups, half (n=5) for mRNA/RT-PCR and half (n=5) for Western Blot experiments. 

Except for group 1-control mice (without spring loading) that were sacrificed at day 0, the other 

groups were sacrificed at different time points (days 1, 3, 5, 7 and 10) post spring loading.  

For rapamycin injection experiments, intraperiotoneal injection of rapamycin 

(6mg/Kg/day) or rapamycin vehicle (control) solution were given to mice daily beginning on the 

day of spring placement and until the mice were sacrificed. Rapamycin solution was made as 

previously described33. Briefly, a 20mg/ml stock solution of rapamycin (LC Laboratories, 

Woburn, MA) was prepared in ethanol. The stock solution was diluted to 1.2 mg/ml in vehicle 

solution (saline containing 5% polyethylene glycol 400 and 5% Tween-80). The vehicle solution 

was prepared under the same conditions without inclusion of rapamycin. Sixty GFP-LC3 adult 

male mice (8-9 weeks old, in 57BL/6 background) were subdivided into 6 groups (n=10 for each 

group, half injected with rapamycin and half injected with rapamycin vehicle solution), and were 

sacrificed at different time points (days 1, 3, 5, 7, 10 and 14) after spring loading.  For molecular 

analysis, 10 wild-type adult male mice (C57BL/6, 8-9 weeks old, from Jackson Laboratory, Bar 

Harbor, ME), half injected with rapamycin and half injected with rapamycin vehicle solution, 

were sacrificed 1 day post spring loading for mRNA/RT-PCR experiment.  

OTM distance measurement 

 Occlusal view of the maxilla was imaged using a stereomicroscope (SMZ18, Nikon 

Instruments, Melville, NY, USA) and an adapted digital camera (Nikon Instruments, Melville, 

NY, USA) (Figure 2.1C). NIS-Elements Basic Research imaging software was used for distance 
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measurements, by measuring the distance between two parallel lines tangent of the most convex 

regions distal of the first molar and mesial of the second molars. Both the right/experiment (E) 

and left/control (C) sides were measured. The OTM distance measurement of the upper right first 

molar was determined by subtracting the measurement of the C side measurement from the E 

side measurement, i.e. OTM distance = E side value −� C side value. For each time point 

measuring OTM distance, 5 mice were used.  

Tissue preparation, GFP imaging and histological staining 

 Adult male mice were sacrificed with CO2 asphyxiation. Tissue preparation procedures 

were similar to what was previously described with slight modification34. The maxillae including 

part of scalps were dissected free of most adherent tissue and placed in a processing/embedding 

cassette (Fisher Scientific, Cat #15-182-706). Samples were fixed in freshly prepared 4% 

paraformaldehyde at 4 °C for 3 days, followed by decalcification in 14% EDTA solution at 4 °C 

for 4 days (both solutions were replenished daily).  After several washes in 1XPBS for 1-2 hours 

at room temperature, samples were equilibrated in 30% sucrose (dissolved in 1XPBS) overnight 

at 4°C. Each maxilla was cut in halves, and each half (E vs. C sides) was embedded in OCT 

compound (Fisher Healthcare, Cat # 23-730-571) containing base mold (Fisherbrand, Cat # 22-

363-553). The embedding media was flash frozen by placing the molds on a metal platform that 

was prechilled in a dry ice-ethanol bath.  Once the media were frozen, the molds were wrapped 

in aluminum foil and stored at -80°C until they were sectioned.  

 Cryosectioning was performed on Leica CM 1520 at 6µm thickness, and sections were 

collected consecutively on Superfrost Plus slides (Fisherbrand, Cat # 22-037-246). Slides were 

kept in dark at -20 °C until being further processed.  
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 For GFP imaging, frozen sections were briefly washed with 1XPBS and nuclei were 

counterstained with DAPI solution (Sigma Aldrich, Cat # D9542-10MG). Slides were mounted 

using VectaShield Mounting Medium (Vector Laboratories, Cat # H-1000) with coverslips.  

Images were obtained with a Nikon Eclipse Ti-U inverted microscope, using NIS-Element Basic 

Research Imaging software (Nikon Instruments Inc., Melville, NY, USA). FITC and DAPI filters 

were applied for GFP and nuclear visualization, respectively, at 20X magnification with an 

average exposure time of 100ms.  

Tartrate-resistant acid phosphatase (TRAP) staining was performed as described35. 

Sections were counterstained with Mayers/Harris Hematoxylin for 1-2 minutes, dehydrated, and 

mounted with coverslip using VectaShield Hard Set mounting medium. Images were obtained 

with a Nikon Eclipse Ti-U inverted microscope, using NIS-Elements Basic Research imaging 

software (Nikon Instruments Inc., Melville, NY, USA). Brightfield (BF) was used for cellular 

visualization at 20x magnification with an average exposure time of 100ms. 

RNA isolation and quantitative Real-Time PCR (qRT-PCR) 

 RNA extraction and qRT-PCR were performed for each animal separately (for each time 

point, n=5). After sacrifice of the adult male mice, maxillary first molars and their surrounding 

PDL/alveolar bone were extracted and collected individually. Tissue total RNA was isolated 

with TRIzol (Invitrogen) according to manufacturer's instructions. The resultant DNA-free RNA 

was diluted in RNase-free water and quantified by Nanodrop (Thermo) at 260 nm. RNA samples 

were stored at −80°C until use. Total RNA was reverse transcribed using iScriptTM cDNA 

Synthesis kit (Bio-Rad, Cat # 170-8891). The iTaqTM Universal SYBR Green Supermix Kit 

(Bio-Rad, Cat # 172-5120) was used for quantitative real-time RT-PCR analysis. The primers 

were designed using Primer Express (Applied Biosystems) and synthesized by Invitrogen. The 
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primer sequences are listed in Table 1. Relative differences in gene expression between groups 

were determined from cycle time (Ct) values. The values were normalized to B2M in the same 

sample (ΔCt) and expressed as fold-change over day 0 control (2−ΔΔCt) 36. Real-time fluorescence 

detection was carried out using an ABI StepOnePlus Real-time PCR system (Applied 

Biosystems).  

Table 1. Primer sequences for RT-qPCR 

 

Tissue preparation and Western Blot 

 At the time of sacrifice, for the same time point, maxillary first molars (n=5) and their 

immediately surrounding PDL tissue were extracted and polled together from the experimental 

(E)/loading side or the control (C)/nonloading side. Maxillary first molars without loading were 

collected as Day 0 control. Samples were stored in liquid nitrogen until use. Specimen were 

incubated on ice for 20minutes with RIPA buffer containing protease inhibitors (Sigma-Aldrich, 

cOmplete mini protease inhibitor cocktail, Cat #11836153001), PMSF (1mM) and E64 (2µg/ml). 

During incubation, pre-chilled pestles (Fisherbrand, Cat 12-141-364) were used to physically 

grind the tissues. After centrifugation to remove cell debris, supernatants were transferred to a 

new pre-cooled tube and heated with 1X SDS buffer at 95°C for 5 minutes. Samples were either 

directly loaded to SDS-PAGE gels or saved at -20°C until ready for Western blot. 

Gene  Forward (5' to 3') Reverse (5' to 3') 

BECN1 ATGGAGGGGTCTAAGGCGTC TCCTCTCCTGAGTTAGCCTCT 

ATG5 TGTGCTTCGAGATGTGTGGTT GTCAAATAGCTGACTCTTGGCAA 

LC3 GACCGCTGTAAGGAGGTGC CTTGACCAACTCGCTCATGTTA 

IL-1β TTCAGGCAGGCAGTATCACTC GAAGGTCCACGGGAAAGACAC 

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC 

TNFα CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG 

B2M TTCTGGTGCTTGTCTCACTGA CAGTATGTTCGGCTTCCCATTC 
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 Western blot analysis was performed essentially as previously described! 37.  For each 

time point, 45µL lysates per lane were loaded to 4-20% Criterion TGX Stain-Free Proteingels 

(BioRad, Cat #5678093). Primary antibodies for the analysis include: phopho-ULK1 (Ser 555) 

(Cell Signaling Cat #5869), p62 (Cell Signaling Cat #5114), LC3b (Cell Signaling Cat #2775), 

IL-1β (ThermoFisher Cat #MM425B) and Actin (Santa Cruz, Cat # sc-1616). All primary 

antibodies were used at 1:1000 dilutions.  

Statistical analysis 

The results in each group were expressed as the mean ± SEM. The data sets were 

normally distributed; therefore, comparison among different groups from different time points 

were analyzed by two-way Analysis of Variance (ANOVA), followed by effect and contrast test. 

The significance level was set to p=0.05.   

 

Results 

 We first evaluated if the device placement system for our mouse model recapitulated as 

previously described 31. By measuring the tooth movement amount at different time points (days 

1-14) post force loading, we found that OTM amount gradually and steadily increased over time 

from day 1 to day 14 (Figure 2.1D). There is a linear correlation between the OTM amount and 

the time during the examination period (R2=0.98).  

  To examine whether autophagy is activated during OTM, we took advantage of a GFP-

LC3 reporter mouse line. This mouse line contains a genetically engineered GFP-LC3 fusion 

protein that is normally associated with isolated membrane without autophagy activity. When 

autophagy is activated, GFP-LC3 fusion protein is relocated to the autophagosome and begins to 

give off GFP signal 32. Therefore, this reporter line is routinely used to detect endogenous 
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autophagy activity. Upon force loading, we found that LC3-GFP signal was activated as early as 

day 1 in the compression side, located more apically close to the root tip. The activity increased 

gradually in the compression side from day 3 to day 7 and appeared to extend more coronally. 

Such GFP signal appeared to be peaked at day 7, then gradually reduced later on and returned to 

base line at day 14 after loading (Figure 2.2, top panel). By contrast, no autophagy activity was 

present in the non-loading control (C) side during the time frame examined (Figure 2.2, bottom 

panel).  During the same time frame, by staining the consecutive sections with TRAP staining to 

detect osteoclasts, we found that TRAP positive osteoclasts appeared as early as day 3 on the 

compression side, and highest level of TRAP staining on the compression side were detected at 

days 7-10, and TRAP staining returned to baseline level at day 14 post force loading (Figure 2.3, 

top panel). No appreciable differences in TRAP staining were found on the compression in the 

non-loading control (C) side  (Figure 2.3, bottom panel).  

 To determine if there is correlation between autophagy and inflammatory response after 

orthodontic force loading, we next examined mRNA expression of inflammatory cytokines (IL-

1b, IL-6 and TNFa) and key genes involved in autophagy pathway (Becn1, Atg5 and LC3) by 

qRT-PCR. We found a sharp spike of IL-1b mRNA expression at day 1, and a slight 

upregulation of IL-6 mRNA expression that seems stable from day 1 to day 10. We didn’t detect 

appreciable upregulation of TNFa in our experiment setting. We also didn’t find much change in 

mRNA expression of Becn1, Atg5 or LC3 from day1 to day 14 after force loading (Figure 2.4). 

To evaluate if changes of autophagy activity occurred at translational/post-translational 

level, we performed Western blotting and found that levels of phospho-Ulk1 and p62 were 

reduced as early as day 1 after loading (Figure 2.5). These two proteins are components of 

autophagy pathway upstream of autophagosome formation, and their levels are inversely 
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correlated with autophagy activity38. Therefore, these western results indicate activation of 

autophagy pathway as early as day 1 after force loading, consistent with what’s shown by GFP-

LC3 activity (Figure 2.2). 

Based on the above data, it appears autophagy activity correlates well with inflammation 

during OTM. In order to gain more insight into the mechanism, we want to manipulate 

autophagy activity by giving male mice daily injection of rapamycin, a well-known autophagy 

inducer. We reasoned that if autophagy plays a role in modulating inflammatory response during 

OTM, by giving rapamycin injection to induce autophagy activity, we should expect alteration in 

inflammation which in turn impact overall tooth movement. While we are still in the process of 

colleting data, we found that at 7 and 10 days after force loading, there was a statistically 

significant reduction in tooth movement amount in rapamycin injection group compared to either 

no injection or vehicle injection groups (Figure 2.6, red asterisks, p<0.05). There is no 

statistically significant difference between vehicle and no injection groups for tooth movement 

amount (Figure 2.6).   

 

Discussion 

Like in many biological processes, controlled inflammation plays a critical role during 

normal orthodontic tooth movement. While there is abundant evidence demonstrating how 

inflammatory response is initiated during tooth movement, little is known on how such an 

important process is regulated. In our present study, we have presented data, for the first time, 

demonstrating that autophagy activity is closely correlated with inflammatory signal during tooth 

movement after force loading. Our data also suggest that the changes of autophagy may occur at 

the translational/post-translational level, but not at the transcriptional level, similar to what has 



33!

been found previously in other systems 39,40.  To further understand the underlying mechanism, 

ie. to determine if autophagy plays a role in modulating inflammation during OTM, we 

administered rapamycin, an autophagy inducer, to force loaded mice.   The rationale is that if 

autophagy does affect inflammation, given inflammation is critical for normal orthodontic tooth 

movement, by slowing down inflammation via increased autophagy activity, one should 

expected reduced tooth movement. Indeed, we observed reduced OTM amount at day 7 and day 

10 after force loading, indicating that autophagy may negatively regulate inflammation during 

OTM. More molecular and cellular analyses are needed to elucidate the underlying mechanism 

that governs the regulation of inflammation by autophagy pathway.  

Studying autophagy pathway not only fulfills an important fundamental question related 

to inflammation control during OTM, it also has significant clinical implications. According to 

the 2015 AAO Economics of Orthodontics Survey, the estimated total number of patients in 

active treatment is 5.419 million, 27% of which are adults (age 18 or older). On average, one 

orthodontist is treating 125 adult patients in 2014, vs. 41 adult patients in 1989, a dramatic 

increase especially in recent years 41. As tooth movement is considerably slower in adults 

compared to that in adolescents, treating more adults may increase the average length of 

treatment, potentially adding extra overhead to one’s practice. Besides adult patients, there is 

also a general demand for accelerated orthodontic treatment. Both parents and orthodontists are 

willing to pay 20% more for faster treatment. Various ways have been explored to expedite the 

treatment time; however, none have been completely satisfactory! 1. Studying the role of 

autophagy, in particular by testing pharmacologic modulation of autophagy during OTM, may 

provide a novel and feasible approach that’s directly translational toward accelerated treatment. 
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Conversely, our study involving autophagy inhibition may allow us to discover new measures to 

facilitate retention, when tooth movement is undesirable. 

 

Conclusions 

1. Autophagy activity is closely correlated with inflammatory signal during orthodontic 

tooth movement.  

2. Rapamycin, an autophagy inducer, reduces tooth movement amount, indicating 

autophagy may negatively impact inflammation during orthodontic tooth movement.  

 

! !
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Figure 2.1. Demonstration of spring placement in mice and OTM distance measurement.     A. Spring 
placement device, with anesthetized mouse positioned in the dorsal decubitus on the surgical table and 
a digital tension gauge attached to the surgical table showing 30 grams (=0.3N) of force loading.  B. A 
NiTi closed coil spring is bonded between the maxillary right first molar and incisors to deliver the 30 
grams of force in mesial direction (red arrow). C. An example of occlusal view of the maxilla showing 
the experiment/loading (yellow colored E) side and the control (yellow colored C) side. D. OTM 
measurement at different time points after force loading. For each time point, n=5. Time and OTM 
amount show linear correlation of coefficient, R2=0.98.  

!
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Figure 2.2. Representative images of GFP-LC3 activities around the mesial roots of the maxillary first 
molars at different time points (days 1-14) after force loading. TS: tension side, CS: compression side, 
r: root, E: Experiment side, C: control side. Red arrow points to loading direction. Green= GFP signal. 
Blue=DAPI (nuclei) staining. Bar=50µm.  

Figure 2.3 Representative images of TRAP staining around the mesial roots of the maxillary first 
molars at different time points (days 1-14) after force loading. TS: tension side, CS: compression side, 
r: root, E: Experiment side, C: control side. Red arrow points to loading direction. Bar=50µm.  

!
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Figure 2.4 mRNA expression of inflammatory cytokines and genes involved in autophagy pathway at 
different time points after force loading (days 0-14). A. IL-1β; B. IL-6; C. TNFα; D. Becn 1; E. Atg5; 
F. LC3. For each time point, n=5, and normalized to day 0.   

!

Figure 2.5 Alteration of protein levels at different time points (days 0 to 10) after force loading. p-
Ulk1 and p62, whose levels are inversely correlated with autophagy activity, are reduced as early as 
day 1 after force loading, indicating increased autophagy activity.  β-Action as internal loading 
control.  
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Figure 2.6 Effect of rapamycin injection on orthodontic tooth movement (OTM) amount. At days 7 
and 10 after force loading, there is statistically significant reduction of OTM amount in rapamycin-
injected group (green) when compared to either no drug injection (blue) or rapamycin vehicle injection 
(yellow), *=p<0.05. There is no statistically significant difference between vehicle and no drug 
injection groups. The significance level is set to p=0.05 

!
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