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Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral ther-
apy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure
HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired
with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its in-
fancy. We review foundational studies and highlight new insights in HIV cure research. Together
with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infec-
tion may relieve society of the affliction of the HIV pandemic.
Human immunodeficiency virus type 1 (HIV-1) has led to nearly

50 million deaths and inflicted suffering across the globe. As

this pandemic emerged, a remarkable response of clinicians,

researchers, social activists, the pharmaceutical industry, and

public authorities resulted in the development and implementa-

tion of potent antiretroviral therapy (ART), able to arrest disease,

restore health, and reduce the spread of new infection. Develop-

ments in ART continue, with long-acting antivirals and engi-

neered antibodies in advanced clinical trials that offer the prom-

ise of replacing daily pills for treatment and preventionwith only a

few treatments per year (Gulick and Flexner, 2019). Sequential

prime and boost vaccinations might accelerate the evolution of

broadly neutralizing antibodies (bnAbs) that could reduce the

incidence of new infection across the globe (Eisinger and Fauci,

2018), although recent efforts to replicate the success of RV144

(Kim et al., 2015) have recently failed with the early closure of

HVTN 702 (clinicaltrials.gov NCT02968849).

Should these potential advances be effectively implemented

across the globe, the effect of the HIV pandemic would be

greatly reduced. However, millions will still be burdened by

decades of chronic medical therapy and the stigma of HIV-1

infection, with the attendant burden on health systems world-

wide. Therapy that could yield a cure or, short of viral eradica-

tion, allow durable and stringent immunological control

without the need for medication (‘‘functional cure’’) would

provide a transformative tool for the millions living with HIV.
The major barrier to HIV cure is a population of infected,

long-lived cells containing persistent and latent viral genomes

that cannot be detected or eliminated by host defenses.

Previous decades of study uncovered several molecular

mechanisms that establish and enforce post-integration la-

tency of this retrovirus (last reviewed in this journal in 2013;

Ruelas and Greene, 2013). Ten years ago, a funding initiative

was put forth by the National Institutes of Health, entitled

‘‘Martin Delaney Collaboratory: Towards an HIV-1 Cure,’’

which sought to bring together teams of researchers to focus

on the daunting multidisciplinary task of a developing an HIV

cure. Since then, numerous parallel efforts have been initiated

across the world. The past decade of research has resulted in

a deeper understanding of the molecular and cellular mecha-

nisms of HIV latency, novel assays to improve our ability to

measure the latent reservoir, and studies in animal models of

HIV latency. Efforts seek to develop cellular or gene therapies

to control or clear infection, strategies to permanently silence

viral genomes, induce apoptotic death in infected cells, or

allow viral remission in the absence of viral eradication.

However, this overview will more narrowly focus on efforts to

develop curative therapy that targets and eliminates the

persistent reservoirs of HIV infection. Pilot human trials

seeking to reverse HIV latency and deplete the reservoir of

persistent infection have begun, but there is still more to learn

and much to be done.
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Figure 1. Proviral Silencing and Latency Are Founded and Enforced via Multiple Restrictions to Expression
(A) Epigenetic modifiers, such as histone deacetylases (HDACs) and histone lysinemethyltransferases (HKMTs), are recruited to the HIV-1 LTR promoter, notably
by the PRC2 complex. This results in histone modifications within chromatin at the HIV promoter that limit the ability of RNA polymerase to initiate transcription.
(B) Sequestration of essential transcription factors like NFAT and NF-kB and the pTEF-b cyclin complex are sequestered in resting CD4+ T cells by cellular
regulatory complexes (IkB and HEXIM/7skRNA, respectively).
(C) Transcriptional interference can occur by promoter occlusion, when a host gene polymerase positioned upstream of the provirus reads through the HIV-1 LTR,
causing displacement of necessary transcription factors. Alternatively, convergent transcription abort viral expression when the proviral and the host gene RNA
polymerase II (Pol II) complexes are in opposite orientation and collide.
(D) In the absence of sufficient viral Tat, viral transcripts are paused. The switch to processive elongation requires the kinase activity of P-TEFb along with
recruitment of processivity factors that constitute the super elongation complex (SEC). Tat efficiently trans-activates HIV transcription by recruiting P-TEFb and
the SEC to the paused RNA Pol II complex at the TAR hairpin.
The Current State of HIV Cure Research
Among the countless infection events that occur within an un-
treated HIV-infected individual, a select few result in integration 
of a fully intact, functional provirus that establishes stable infec-
tion with negligible viral gene expression. Most viral genomes 
that can be measured are defective because of errors in viral 
reverse transcription that result in small deletions or mutations 
or through large deletions caused by the effects of the host APO-

BEC3 proteins. The rare surviving intact viral genomes persist
within cellular reservoirs. By definition, these latent proviruses

can revert to the productive state in vivo but, during latency,

are unaffected by ART and unable to be detected by the host im-

mune response. This state of proviral latency has been quanti-

tated in peripheral blood and lymphoid tissues of HIV-infected

subjects, and an array of molecular mechanisms that allow

establishment and maintenance of persistent, latent HIV infec-

tion have been described (Figure 1; Ruelas and Greene, 2013;

Mbonye and Karn, 2014). Evidence that cellular factors are



Table 1. Research toward a Cure Trials of January 30, 2020

Combination LRA and Immunotherapy Trials Trial Registry Identifier(s) Sponsor(s) Phase Estimated End Date

Maraviroc, dolutegravir, dendritic cell vaccine,

auranofin, nicotinamide

NCT02961829 (closed) Federal University of

São Paulo

not listed March 2020

ROADMAP: romidepsin + 3BNC117 NCT02850016 (closed to

enrollment)

Rockefeller University phase IIa December 2019

TITAN: lefitolimod + 3BNC117 + 10-1074

(TLR9 agonist + bnAbs)

NCT03837756 University of Aarhus phase IIa February 2021

eCLEAR: romidepsin + 3BNC117 NCT03041012 Aarhus University Hospital phase II April 2021

Research In Viral Eradication of HIV

Reservoirs (RIVER): ART, ChAdV63.HIVconsv

and MVA.HIVconsv vaccines, vorinostat

NCT02336074 UK

CPMS18010 (closed)

Imperial College London phase II November 2022

iHIVARNA, MVA vector HIV vaccine, 10-1074,

romidepsin, HIVACAR01 (personalized HIV

RNA vaccine)

NCT03619278

(not yet open)

David Garcia Cinca phase I/IIa July 2020

N-803 (recombinant human superagonist

interleukin-15 complex), VRC07-523LS,

PGT121, haploidentical NK (haNK) cells

NCT04144335 (not yet

open for enrollment)

University of Minnesota phase Ib December 2020

Chidamide + CAR T or TCR T cell therapy NCT03980691 Guangzhou 8th People’s

Hospital

phase I December 2021

VRC07-523LS + vorinostat NCT03803605 University of North Carolina,

Chapel Hill

phase I July 2022

Vorinostat + HXTC: HIV-1 antigen expanded

specific T cell therapy

NCT03212989 University of North Carolina,

Chapel Hill

phase I June 2021

Vorinostat ± tamoxifen in postmenopausal

women

NCT03382834 (closed) NIAID phase I June 2023

Vacc-4x + romidepsin NCT02092116 Bionor Immuno AS/Celgene phase I/II 2019

AGS-004 + vorinostat NCT02707900 University of North Carolina,

Chapel Hill

phase I 2019

MVA.HIVconsv + romidepsin NCT02616874 IrsiCaixa phase I 2017

Source: Treatment action group (https://www.treatmentactiongroup.org/cure/trials/).
required to maintain quiescence implies that proviral latency is

an unstable state of HIV infection amenable to therapeutic

attack.

The most studied strategy to eliminate the persistent reservoir

of infection seeks to pair therapies that induce expression of

latent HIV with continued ART to prevent infection of new cells

while augmenting clearance of infected cells, now identifiable

because of their production of viral antigen. HIV latency reversal

agents (LRAs) have been developed to accomplish the first step

of this process: induce expression of the virus within reservoirs.

Because viral latency is driven by host cellular programming,

LRAs must be targeted to host processes, analogous to many

agents designed for use in oncology. Although the LRAs tested

to date are capable of inducing expression of RNA or viral protein

from latent viral genomes in vitro and in vivo, none have yet

convincingly depleted the viral reservoir or extended virologic

remission after treatment interruption (Rasmussen and Søgaard,

2018). LRAs must be carefully selected to avoid unacceptable

off-target toxicities. Therefore, identification of new approaches

that potently and selectively induce HIV expression would repre-

sent a significant advance in progress toward an HIV cure.

Ideally, LRAs might also potentiate clearance mechanisms to

facilitate reduction of the reservoir, but, at a minimum, they

should not impede viral clearance (Clutton and Jones, 2018).
Emblematic of the early state of the field, few studies have

paired LRAs with a viral clearance strategy (Table 1). In one pilot

study (Fidler et al., 2020) and reports of two others employing

broadly similar approaches (B. Mothe et al., 2017, Conference

on Retroviruses and Opportunistic Infections, abstract; Gay

et al., 2020), depletion of latent, persistent infection was not

seen. Although latency reversal activity appears to bemeasurable

as an increase in HIV RNA expression within circulating lympho-

cytes, it is unclear whether this response will translate to suffi-

ciently robust and durable HIV-1 protein expression to enable im-

mune clearance of infected cells. Further, immune responses

induced by the immunotherapies tested to date may have been

insufficient to identify and clear such challenging targets. New

tools and approaches are needed, and recent insights into the

biology of HIV latency may offer a path towardmore effective viral

clearance strategies.

Multiple Mechanisms May Lead to Proviral Latency and
Persistent HIV Infection
Initially, HIV infection was only understood to have a clinically

latent phase prior to the appearance of AIDS. The development

of RNA PCR enabled the recognition that viremia persisted

throughout HIV infection, but the state of post-integration viral la-

tency was not clearly recognized until 1995 (Chun et al., 1995).

https://www.treatmentactiongroup.org/cure/trials/


Persistent and latent infection was thought to be established 
when productively infected, activated CD4+ T cells returned to 
the resting G0 state, where minimal transcription of viral genes 
was expected. Consistent with this notion, in resting CD4+ 
T cells, various host transcription factors critical to driving HIV 
transcription, including nuclear factor kB (NF-kB), NFAT, and 
P-TEFb, are sequestered, present at low levels, and/or lacking 
posttranslational modifications necessary for full activation. 
However, proviral latency has been shown to be driven by 
more than simply a deficiency of transcription factors in the envi-
ronment of a resting cell.
Epigenetic Controls
Shortly after the histone code hypothesis was put forward (Jenu-
wein and Allis, 2001), repressive epigenetic modifications at 
the chromatin of the HIV promoter (long terminal repeat [LTR]) 
was appreciated to play a key role in establishing and enforcing 
HIV latency. At the level of chromatin, histone acetylation is 
largely absent because of recruitment of histone deacetylases 
(HDACs) to the LTR (Turner and Margolis, 2017).

The proviral promoter is bound by three nucleosomes 
(Nuc-0, Nuc-1, and Nuc-2) that flank two DNase hypersensitivity 
regions. Extensive work in cell model systems has shown that 
HIV latency can be enforced by marking of the nucleosomes at 
the LTR with either of the major repressive posttranslational 
modifications: methylation at histone 3 lysine 27 (H3K27me) or 
at histone 3 lysine 9 (H3K9me) or by the recently identified 
mono-methyl mark of histone 4 lysine 20 (reviewed in Turner 
and Margolis, 2017). Whether these histone methyl marks can 
co-exist on the same nucleosomes in vivo or to what extent 
chromatin restriction is dependent on or affected by the viral 
integration site is currently unknown. However, interestingly, 
recent work suggests that both H3K27me and H3K9me and 
the epigenetic factors that write and read these marks are 
critical for the establishment and maintenance of HIV latency in 
primary cells (Nguyen et al., 2017). The removal of repressive his-
tone methylation is far less understood; however, a role of the 
H3K9 demethylase LSD1 and the H3K27 demethylase UTX has 
been suggested (Boehm and Ott, 2017).

Although the switch between activating histone acetylation 
and repressive deacetylation has been understood as a key 
epigenetic driver in HIV latency, less is known about other 
histone marks. A histone modification more recently described, 
histone crotonylation, is a chromatin mark recently linked to 
de-repression of HIV transcription (Jiang et al., 2018). Although 
work on histone crotonylation is an emerging area of research, 
this could suggest that the use of crotonyl-coenzyme A (CoA) 
represents an alternative pathway to proviral activation 
when acetyl-CoA is limiting and efficient histone acetylation 
can otherwise not be achieved.

Other chromatin remodelers have been linked to HIV latency. 
BAF (BRG1- or BRM-associated, ATP-dependent factor) can be 
selectively recruited to the HIV LTR by the short isoform of bromo-

and extra-terminal domain protein 4 (Conrad et al., 2017). The 
presence of the BAF complex can position the critical HIV nucle-
osome Nuc-1 at a less energetically favorable DNA sequence, aid-
ing enforcement of transcriptional repression. Deepening our un-
derstanding of the epigenetic regulation of HIV expression may 
yield additional targets for HIV latency reversal therapies.
Other Limiting Factors for Viral Transcription

Although proviruses can be reactivated by epigenetic changes

without cellular activation, a limitation of this approach is that

epigenetic agents induce expression in a minority of proviruses

compared with cellular activation signals. T cell activation me-

diates a cascade of T cell receptor (TCR) signaling events that

are generally expected to relieve all restrictions to proviral

expression. Induction and binding of NF-kB and SP1 as well

as other host transcription factors to the LTR results in suffi-

cient transcriptional initiation and elongation to produce the

HIV activator protein Tat. Tat subsequently recognizes and

binds a viral RNA structure, TAR (Tat-associated region), found

at the 5ʹ end of the viral transcript. The Tat/TAR interaction ini-

tiates a positive feedback loop at the LTR via Tat-mediated

recruitment of host cell factor P-TEFb, the super elongation

complex, and SWI/SNF-activating complex PBAF. These fac-

tors collaborate to drive sustained productive elongation

from the viral promoter. Remodeling of the repressive chro-

matin environment at the LTR occurs during this process via

recruitment of the histone acetyltransferases CBP/p300 by

NF-kB independent of Tat production, followed by Tat-medi-

ated recruitment of additional acetyltransferases (Mbonye

and Karn, 2014).

Perversely, the expectation that robust T cell activation would

promptly activate expression of all latent proviral genomes was

shattered by the demonstration of non-induced proviruses in

2013 (Ho et al., 2013). In a single round of stimulation in vitro,

Ho et al. (2013) demonstrated that a minority sub-population

of fully replication-competent proviral genomes still failed to

be expressed, despite supraphysiologic cellular activation. Ho

et al. (2013) carefully showed that these non-induced provi-

ruses lacked sequence defects or other identifiable factors

(e.g., DNA methylation) to explain their lack of response to

cellular activation. However, additional rounds of stimulation

in vitro did yield expression of additional proviruses, with dimin-

ishing returns over subsequent rounds of induction. This finding

highlighted the possible challenges of re-activating 100% of

latent proviruses in vivo. The ‘‘failure to activate’’ of a portion

of the proviral population was hypothesized to be due to an

underlying stochastic behavior of this viral biologic system

(Razooky et al., 2015). However, an alternate explanation is

simply that there are numerous factors contributing to inhibi-

tion or required for expression and that multiple rounds of

signaling are required to hurdle all these barriers in 100% of a

viral population. The practical question, as yet unanswered,

is how long this will take. Bradley et al. (2018) identified

diverse transcriptomic environments that were significantly

associated with proviral latency but prominently included a

transcriptional signature of naive and central memory T cells.

In this model system, viral genomes that were stimulated to

leave latency often returned to quiescence when the stimulus

was withdrawn. A deeper understanding of these cellular

programs may lead to new and more effective approaches

to reverse latency. Finally, it must be said that nearly all of the

observations of mechanisms of HIV latency have been made

in in vitro model systems. It remains to be seen which of these

mechanisms is themost relevant in vivo andwhich can be safely

modulated for therapeutic purposes.



The Latent Reservoir Is Unexpectedly Dynamic
Although LRAs ultimately act at the level of proviral transcription,

they do so in the context of the host cell environment. Therefore,

it is also important to understand the cells that play host to

persistent HIV. Althoughmost HIV target cells exist within tissue,

nearly all studies of HIV reservoirs are based on analyses of

cells harvested from the peripheral circulation during suppres-

sive ART. These studies reproducibly documented that all

HIV-infected people on ART have an inducible viral reservoir

that decays very slowly (Crooks et al., 2015; Siliciano et al.,

2003), resides principally in resting central memory CD4+

T cells, and is largely comprised of defective DNA (Bruner

et al., 2016; Ho et al., 2013). Further, reservoir formation cannot

be prevented by even extremely early ART (Henrich et al., 2017;

Luzuriaga et al., 2015). Although these studies yielded insights

into the nature of persistent HIV-1 reservoirs during suppressive

ART, until recently, little was definitively known about the dy-

namics of reservoir formation before and after ART, reservoir

persistence, and the composition of the pool of cells encoding

replication-competent but quiescent HIV over time.

The most common assumption was the simplest one: starting

soon after transmission, the virus enters the latent reservoir—

predominantly central memory CD4+ T cells—and remains

latent until the cell dies or until some external stimulus induces

viral expression from latency. If viral expression occurs, then

there is some likelihood that the cell will be cleared because of

viral cytopathic or immune clearance effects. These events

eliminating infected cells from the reservoir are countered by

events increasing the size of the reservoir; namely, activated

infected cells returning to a resting state and re-entering the

reservoir. These events must be in a slightly negative balance,

as indicated by a slow decline in the reservoir over time on

ART, uniformly seen in the presence of ART (Crooks et al.,

2015; Siliciano et al., 2003).

However, a second major force shaping the population of

the persistent, latent proviral reservoir is now known to be

clonal proliferation, also termed clonal expansion. Proliferation

of cells harboring HIV may be driven by the natural homeostatic

proliferation of T cells, by adaptive antigen-induced T cell prolif-

eration, or, less likely, by dysfunctional CD4+ cell proliferation

triggered by an HIV integration event in a critical genomic site.

Whatever the cause(s), cell duplication has been demonstrated

to be a mechanism of sustaining the long-lived, stable reservoir

(Maldarelli et al., 2014; Wagner et al., 2014). Consistent with

this, residual viremia is often dominated by clonal sequences,

and sequencing of proviral DNA also reveals clonal expansion

of identical viral sequences (Tobin et al., 2005; Bailey et al.,

2006). Although it appears that clonal expansion favors defective

proviruses (Bruner et al., 2019), expansion of replication-compe-

tent clones (Simonetti et al., 2016; Hosmane et al., 2017; Bui

et al., 2017) appears to be sufficient to maintain the longevity

of the viral reservoir.

One aspect of this model was recently challenged by several

studies showing that HIV does not enter the durable latent

reservoir at a constant rate over time prior to initiation of ART

(Abrahams et al., 2019; Brodin et al., 2016). Both studies longitu-

dinally examined HIV-1 RNA in the plasma of people prior to

ART (n = 10, Brodin et al., 2016; n = 9, Abrahams et al., 2019)
and compared this pre-ART virion RNA with either viral DNA

persisting after at least 2 years of ART (Brodin et al., 2016) or

replication-competent virus recovered from rCD4+ T cells iso-

lated from the blood after approximately 5 years of ART (Abra-

hams et al., 2019). In both studies, the majority of the persistent

reservoir, observed as either proviruses or inducible viruses,

was most closely related to variants isolated from the plasma

near the time of ART initiation. Further, based on detailed phylo-

genetic analyses, Abrahams et al. (2019) were able to show

that approximately 80% of the replication-competent reservoir

appeared to originate from viruses circulating in the plasma in

the year prior to ART, although a minority of vial genomes were

found in the reservoir that were closely related to viruses circu-

lating much earlier in untreated infection. Most recently, a third

cohort demonstrated very similar findings (Pankau et al., 2020).

These results may be explained by a new view of latency

where ART initiation fundamentally changes the rate at which

HIV-infected cells enter latency and the rate at which proviruses

become reactivated and expressed, leaving the reservoir. Prior

to ART, infected cells enter and exit at a relatively constant

rate, with entry being governed by high rates of infection prior

to ART. Exit from the reservoir in the pre-ART state is hypothe-

sized to be driven by immune activation that favors viral expres-

sion and/or cell death. Under these conditions, prior to ART,

the frequency of latent infection (‘‘size of the reservoir’’) reaches

homeostasis, but the specific viral genomes in the reservoir

are continually replaced by viruses entering from the recently

circulating pool (Figure 2).

In this model, ART initiation alters this equation by blocking

new infections, terminating entry of new viral genomes into the

reservoir. However, a new setpoint is reached as exit from the

reservoir is slowed by an indirect effect of ART by at least one

of several mechanisms: (1) enhanced entry of integrated provi-

ruses into latency because of changes in the cell signaling

milieu and cellular gene expression programs, (2) gradual

enforcement of latency by epigenetic marks laid down over

time, and (3) the extension of CD4+ T cell half-life (including

HIV-infected CD4+ T cells; Figure 2) that accompanies viral sup-

pression. The broad effects ART-mediated suppression

of viremia on the immune system are likely to play a role in the

establishment and behavior of the latent, persistent cellular

reservoir. Ablation of viremia may extend the half-life of HIV-

infected cells by restoring the ability to form long-lived

memory cells (Abrahams et al., 2019; Goonetilleke et al., 2019).

Alternatively, or additionally, the general dampening of immune

activation and the reduction of circulating viral antigen that is

mediated by ART may create an intracellular environment

that allows epigenetic silencing of the proviral integrant and is

less favorable for proviral expression. Together, the reduction

of entry and exit may stabilize the reservoir and allow it to form

the long-lived reservoir that will persist during prolonged ART.

Further, slowing exit from the reservoir skews long-lived reser-

voir composition toward viruses that have most recently entered

latency from the circulating pool. Nevertheless, it would be ex-

pected that a small number of older, earlier proviruses could

be found to persist, as reported by Abrahams et al. (2019).

The mechanisms by which ART indirectly recalibrates exit

from the reservoir are currently unknown but, when identified,



Figure 2. A Model of the Dynamic, Latent

Reservoir
Viruses enter the latent, persistent reservoir from the
earliest days of infection, but most do not persist
because of a short half-life of the host cells, immune
activation, or both. Early viruses are serially re-
placed by viruses that circulate later in infection,
prior to ART initiation (dotted line). Upon ART initi-
ation, viruses no longer enter the reservoir as repli-
cation is blocked. The exit rate of infected cells is
much decreased, perhaps because of dampening
of generalized immune activation and/or increases
in CD4+ cell half-life. The slower loss of persistently
infected cells is thereafter nearly matched by ho-
meostatic proliferation, resulting in slow decay of
latent viruses.
may inform strategies for reducing the size of the reservoir. 
Although the specific mechanisms by which ART indirectly 
extends the half-life of latently infected cells must be 
confirmed, it may be possible to use this new observation to 
design interventions deployed near the time of ART and tip 
the balance away from latency enforcement, allowing the latent 
reservoir to shrink. For example, blockade of interleukin-7 
(IL-7)/IL-7R signaling could prevent the transition of CD4+ 
T cell effectors to the memory cell pool and their subsequent 
homeostatic maintenance. Such a blockade, for a relatively 
limited period of time (e.g., several months), might block 
enforcement of latency and, thereby, formation of the majority 
of the long-lived reservoir (Abrahams et al., 2019; Goonetilleke 
et al., 2019). Development of strategies to counter these effects 
may require interventions deployed near the time of ART to tip 
the balance away from latency enforcement, allowing the latent 
reservoir to shrink or prevent HIV-infected cells from becoming 
long lived.

The Diverse Cells of the Latent Reservoir
The first definitive studies that proved the existence of an induc-
ible, replication-competent HIV reservoir were performed in 
memory CD4+ T cells lacking activation markers (Chun et al., 
1997a; Finzi et al., 1997; Wong et al., 1997) To date, this cell 
population remains the most well-characterized reservoir of 
latent HIV. These long-lived cells have an estimated half-life 
of 3.7 years and represent a stable source of virus capable of 
reigniting infection in the absence of suppressive therapy. 
Within the CD4+ T cell compartment, central memory T (TCM) 
cells have been most carefully studied longitudinally as a latent 
reservoir (Crooks et al., 2015; Siliciano et al., 2003). Other popu-
lations of T cells, such as naive T (TN) cells, T memory stem 
(TSCM) cells, transitional memory T (TTM) cells, effector memory 
T (TEM) cells, gamma/delta T cells, and T regulatory (Treg) cells 
are all potential sources of persistent HIV infection (Buzon et al., 
2014; Chomont et al., 2009; Soriano-Sarabia et al., 2014; Tran 
et al., 2008; Zerbato et al., 2019), although the frequency of 
replication-competent provirus has been less fully quantitated. 
Although the stability of the reservoir in resting TCM cells has 
been carefully studied, the same cannot be said for individual 
T cell populations, a matter complicated by the natural differen-
tiation process of T cells into various compartments (e.g., central

memory to effector memory) and the likelihood that a latent

proviral genome may sometimes remain quiescent as an in-

fected cell transitions in to the effector pool or returns to the

memory pool.

Studies aimed at measuring the stability of the latent reser-

voir in different T cell populations face the added hurdle of

reconciling observations made in cells captured at a snapshot

in time with the natural fate of that cell. Although TEM cells

generally have a shorter half-life compared with TCM cells

(Farber et al., 2014), a higher frequency of integrated HIV

DNA and inducible provirus in this compartment in people on

ART has been reported (Hiener et al., 2017). TEM cells were

also found to produce the highest quantities of HIV p24 capsid

antigen following phorbol myristate acetate/ionomycin stimula-

tion (Pardons et al., 2019). Interestingly, differentiating TCM

cells into a TEM cell phenotypes in vitro promotes more effi-

cient reactivation of HIV by LRAs (Kulpa et al., 2019). TEM cells

also have higher levels of histone acetylation in their basal

state (Pardons et al., 2019). However, direct evidence that pro-

viral genomes found in TEM cells are either expressed in vivo

more often or to higher levels or without robust stimulation

has not been fully elucidated. One model that fits these obser-

vations but is still unproven is that individual infected TEM cells

are not long lived, but are continuously replaced by persistent

and proliferating TCM cells that are differentiating into TEM

cells (Figure 3).

Most of what is known about the different populations of

cells contributing to the HIV reservoir has been determined

using peripheral blood. Recently, however, studies have been

undertaken to better characterize the tissue reservoir (Figure 4).

Memory CD4+ T cells expressing the chemokine receptor

CCR6 have been reported to be a source of persistent HIV in

gut tissues (Anderson et al., 2020; Gosselin et al., 2017), as are

non-CD4+ T cells (Yukl et al., 2013). Located within the B cell

follicle of secondary lymphoid organs, T follicular helper (Tfh)

cells have been reported to be an HIV reservoir even in the

context of anti-retroviral therapy (Banga et al., 2016; Pallikkuth

et al., 2015). Given the limited access of immune effector cells

into the B cell zone, clearing persistently infected Tfh cells may

be a special challenge. Finally, in a recent study consistent



Figure 3. Persistence and Proliferation in

Latency
Homeostatic and antigen-driven proliferation
appear to contribute to the persistence of proviral
infection. One model that fits current observations
holds that, although more differentiated, activated
effector cells may have a shorter lifespan, they may
be continually replaced by clonal proliferation of
less differentiated memory cell populations.
with studies of animal models (Abreu et al., 2019; Honeycutt

et al., 2017), Ganor et al. (2019) used penile tissue from ART--

treated individuals undergoing elective gender reassignment

surgery to demonstrate the presence of replication-competent

HIV in urethral macrophages. This suggested that cells of

the myeloid lineage are a potential source of persistent HIV

infection despite ART. As investigators seek to reverse latency

and clear persistent infection in the well-defined latent reservoir

within TCM cells, attention must be given to the effects of such

interventions on provirus in other populations. It is possible

that efforts that yield depletion of the latently infected TCM cell

pool may lead to depletion of infection in other, more differenti-

ated cell types or that these other reservoirs require alternate in-

terventions.

Targeting Privileged Sites

There has long been concern regarding the ability to eliminate

HIV from unique body compartments, especially the CNS and

the genital tract (Wong and Yukl, 2016). The biology of the

CNS has fueled suspicion that HIV may persist in this compart-

ment during long-term ART and generate viral rebound after

treatment interruption, but, until recently, there was little evi-

dence to support this hypothesis. It has long been known that

HIV-infected macrophages can be found in the CNS prior to

ART (Joseph and Swanstrom, 2018), and given the putatively

long half-life of macrophages and the fact that there is a low den-

sity of T cells in the CNS to eliminate HIV-infected cells, it has

been hypothesized that HIV-infected macrophages persist in

the CNS long after ART is initiated.

Consistent with this hypothesis, multiple studies have

identified viral DNA and RNA in the CNS of HIV-infected

humans and simian immunodeficiency virus (SIV)-infected ma-
caques after extended ART (Estes et al.,

2017; Lamers et al., 2016). Further, HIV

continues to replicate in the CNS of a small

percentage of otherwise well-suppressed

people on ART (Joseph et al., 2019).

Recently, the persistence of replication

competent virus in the CNSwas confirmed

by viral outgrowth assays, illustrating that

SIV can be cultured from macrophages

isolated from the CNS of ART-treated

pigtailed macaques infected with a highly

pathogenic SIV (Avalos et al., 2017), but

analogous studies have not been per-

formed using human brain tissue.

Together, these findings indicate that repli-

cation-competent viral reservoirs may

persistent in the CNS during ART, but it re-
mains unknown how large this reservoir is and the diversity of

cells types (e.g., macrophages, microglia, astrocytes, or CD4+

T cells) that populate it.

Several lines of evidence demonstrate that the genital tract

may also serve as a unique compartment. In parallel to what is

known about CNS reservoirs, urethral macrophages isolated

from penile tissue after at least 3 years of ART have been shown

recently to harbor replication-competent, inducible HIV-1 provi-

ruses and RNA (Ganor et al., 2019). In addition, HIV RNA can be

readily recovered from genital fluids in men and women in spite

of successful suppression of HIV in the blood. Detection of viral

RNA in the genital tract may be due to viral replication in the

presence of non-inhibitory drug concentrations in this compart-

ment, a possibility supported by observed variation in the

ability of drugs to accumulate in this compartment and the fact

that protease residence mutations can be detected in the

semen of some men on protease inhibitor-based regimens

with undetectable plasma viral loads (Houzet et al., 2014). Alter-

natively, and more likely, cells harboring HIV may simply release

HIV into the genital tract. Regardless of whether there is viral

replication in the genital tract during ART, there is growing evi-

dence that HIV-infected cells can persist in that compartment

during ART.

The Evolving Approach to Inducing Latency Reversal
To rigorously demonstrate the existence of latent HIV infection,

initial studies in the 1990s were carried out in carefully purified

resting CD4+ T cells. In this cell population, reversible silencing

of viral expression in the cells under study—the true definition

of latency—could be clearly demonstrated. Because the inte-

grated, latent HIV provirus in T cells is responsive to activation



Figure 4. Potential and Demonstrated Sites of HIV Reservoirs
Anatomic sites with demonstrated recovery of replication-competent virus in humans following years of suppressive ART are highlighted in bold. Potential
replication-competent anatomic reservoir sites are shown in regular font. These sites represent tissues/organs where HIV nucleic acid has been detected in
humans or animal models, but recovery of rebound-competent virus in humans after years of suppressive ART has not been demonstrated.
of immune signaling pathways, latency in resting central memory 
CD4+ T cells was reversed using the TCR agonist phytohemag-

glutinin (PHA) or anti-CD3 antibodies (Chun et al., 1997b; Finzi 
et al., 1997; Wong et al., 1997). These observations led to the first 
proposals for strategic HIV eradication therapy (Hamer, 2004), 
and the first clinical trial seeking to clear HIV infection studied 
the effects of the anti-CD3 antibody OKT3 and IL-2 (Prins 
et al., 1999). However, the strategy of global T cell activation 
proved to be untenable because this first clinical trial resulted 
in profound T cell activation and depletion and a substantial in-
crease in inflammatory cytokine production accompanied by 
severe toxicities (van Praag et al., 2001). Attempts to purge the 
viral reservoir then fell by the wayside for a time, but the emer-

gence of the role of epigenetic control of proviral persistence
led to renewed effort to reverse viral latency without global

T cell activation.

Epigenetic LRAs

Seeking to avoid global cellular activation, the next LRAs to

emerge targeted the chromatin restrictions that maintain HIV

latency. The epigenetic LRAs fall into three groups: (1) HDAC

inhibitors (HDACis), (2) histone methyltransferase inhibitors

(HMTis), and (3) bromo- and extra-terminal domain inhibitors

(BETis). Of the three groups, only HDACis are currently in clinical

trials for specific evaluation as LRAs. Current HDACis are pan-in-

hibitors and include, among others, vorinostat, panobinostat,

belinostat, and romidepsin, some of which are approved for

treatment of T cell lymphomas (Rasmussen and Søgaard,

2018). HDACis have been shown to induce HIV activation



in vitro and induce detectable cell-associated HIV RNA in vivo;

however, HDACis as single agents have failed to measurably

decrease the size of the viral reservoir. This is likely due to the

failure to engage an effective viral clearance response, but the

possibility remains that these agents are ineffective in vivo. It is

important to note that these clinical trials have reported minimal

safety concerns regarding HDACis in vivo.

Currently, there are no US Food and Drug Administration

(FDA) approved HMTi or BETi trials directed at HIV infection;

however, pre-clinical small-molecule HMTis, including GSK-

343 and EPZ-6482 targeted to EZH2, the HMT responsible for

H3K27me, and UNC-0638, an inhibitor targeted to H3K9 HMT

G9a, have been demonstrated to reactivate HIV in laboratory

models of latent infection (Nguyen et al., 2017; Turner and Marg-

olis, 2017). Similarly, BET inhibitors have also been demon-

strated similar latency reactivation activity in vitro (reviewed

in Boehm et al., 2013), but interest in evaluating HMTis and

BETis as LRAs will likely depend on tolerability observed in

ongoing oncology trials. Should these epigenetic LRAs advance

to the clinic, there may be an opportunity for testing in combina-

tion with HDACi, other classes of LRAs, and/or immune-modu-

lating therapies to identify synergistic relationships that may

allow lower and/or less frequent dosing strategies to limit

adverse events.

Signal Agonist LRAs

Given the incomplete success of epigenetic inhibitors in medi-

ating robust and universal latency reversal, efforts have

continued to develop safer strategies to reverse latency through

the use of cellular signaling pathways. Activation of protein ki-

nase C (PKC) engages many of the signaling pathways induced

by natural activation of the TCR. Small-molecule PKC agonists

(PKCas), such as phorbol esters and diterpenes, have been

studied for HIV latency reversal and have been shown to readily

induce T cell activation and HIV expression in the laboratory

setting across a range of model systems (Jiang and Dandekar,

2015). However, progression of PKCas to preclinical and clinical

studies has been limited because of the potential for dangerous

side effects of broad and potent PKC activation.

Bryostatin-1 is a potent molecule studied in a large number of

clinical trials for several indications, including oncology and Alz-

heimer’s disease, and has been studied for HIV latency reversal.

In a humanized mouse model, bryostatin-1 and an analog

induced HIV expression but at doses that are only slightly lower

than lethal exposures (Marsden et al., 2017). A cautious clinical

trial of bryostatin-1 studied very low doses that did not lead to

activation of the immune system but also did not induce HIV

expression (Gutiérrez et al., 2016). Ingenol B and the stabilized

derivative GSK’445A have been reported to induce SIV expres-

sion in ART-suppressed, SIV-infected macaques, accompanied

by strong cellular activation, cytokine production, and unaccept-

able clinical signs such as fever (L.P.S. Gama et al., 2015, Con-

ference on Retroviruses and Opportunistic Infections, abstract;

J.T.V. Brehm et al., 2017, Conference on Retroviruses and

Opportunistic Infections, abstract; A. Okoye et al., 2018, AIDS

2018, abstract). Recently, Jiang et al. (2019) found evidence of

latency reversal in the skin of patients treated with topical ingenol

mebutate as part of an actinic keratosis regimen, demonstrating

that, in a setting where PKCas can be administered safely,
HIV expression can be induced. Others are currently pursuing

ingenols administered as part of a traditional Chinese herbal

preparation, kansui tea, in primate studies and clinical trials

(NCT02531295). Although PKCas are genuine LRAs with in vivo

activity, the relatively small window between efficacious and

toxic exposure makes clinical development unacceptable in an

otherwise healthy population of ART-treated people living with

HIV (PLWH) infection.

In another approach to signal CD4+ cells and disrupt HIV la-

tency, similar to the earlier use of IL-2, administration of IL-7

has been explored. It has been found to have some LRA activity

in vitro (Lehrman et al., 2004; Wang et al., 2005), but this effect

was overshadowed in vivo by the parallel CD4+ cell proliferation

induced by the cytokine, thwarting its use in viral eradication

strategies (Katlama et al., 2016). More recently, research in

oncology has brought into clinical testing several engineered

forms of IL-15, including a heterodimeric form of the molecule

(Thaysen-Andersen et al., 2016) and a synthetic receptor super-

agonist (ALT-803) (Rhode et al., 2016). There is significant

evidence that use of forms of IL-15 may confer immunological

benefits, perhaps augmenting the antiviral immune response

and improving clearance of persistent infection (Garrido et al.,

2018; Watson et al., 2018). However, there is less evidence

that IL-15 can, by itself, directly reverse HIV latency in vivo

(Webb et al., 2018). Nevertheless, because of its immunomodu-

latory properties, further study of this cytokine as part of a la-

tency reversal and viral clearance strategy appears warranted,

and selected studies in people with HIV are underway.

Toll-like receptor (TLR) agonists have been studied as an

orthogonal approach with the potential for HIV latency reversal

activity and as immunomodulators capable of augmenting an

antiviral response. TLRs are pathogen recognition receptors

that sense molecular motifs conserved across microbial organ-

isms and mediate signaling responses (Macedo et al., 2019).

Both in vitro and in vivo, TLR agonists increase immune activa-

tion, induce innate antiviral responses, and can augment

pre-existing adaptive ones. However, reminiscent of the experi-

ence with IL-15, while there is in vitro evidence that selected TLR

agonists can reverse viral latency, there has only limited in vivo

evidence for LRA activity so far (Vibholm et al., 2019). However,

because of the unique immunomodulatory properties of TLR ag-

onists, further study of this approach to combination latency

reversal and viral clearance strategies is warranted, and selected

studies in people with HIV are underway.

Most recently, efforts to directly trigger cell signaling pathways

for activation of HIV expression without the pleiotropic effects of

PKCas have been renewed. Among the transcription factors

activated by TCR ligation or PKCas, NF-kB has been described

to play a critical role in inducing HIV expression (Williams et al.,

2004). Selective activation of NF-kB would thus induce HIV

expression but spare activation of additional pathways,

perhapsminimizing the side effects of a latency reversal regimen

in vivo. Pache et al. (2015) reported a class of small molecules

known as SMAC mimetics or IAP agonists that selectively acti-

vate the non-canonical NF-kB signaling pathway and induce

HIV expression in cell line model systems. Sampey et al. (2018)

studied a range of IAPis originally discovered to promote tumor

cell apoptosis and found that AZD5582 potently induces HIV



expression in cell line models and in CD4+ T cells isolated from 
ART-suppressed HIV-infected study participants. An optimized 
dosing strategy for application in humanized mice and rhesus 
macaques was developed and demonstrated that AZD5582 ac-
tivates the non-canonical NF-kB pathway in vivo at tolerated 
doses. In ART-suppressed HIV-infected humanized mice and 
SIV-infected rhesus macaques, AZD5582 robustly induced HIV 
or SIV expression, as evidenced by periods of detectable plasma 
viremia and increased viral RNA in resting CD4+ T cells isolated 
from tissues (Nixon et al., 2020). Importantly, induction of both 
HIV or SIV in each model system occurred in the absence of sub-
stantial inflammatory cytokine induction and in the absence of 
robust cellular activation and was generally well tolerated. These 
findings demonstrate that IAPis can repeatedly induce HIV 
expression in regimens that are tolerated in the two leading an-
imal models of HIV persistence. Further animal model studies 
are underway in combination with clearance agents as well as 
progression toward clinical studies.

Augmenting Immune Responses to Clear Persistent 
Infection
The clearance of residual HIV infection that remains despite 
effective and prolonged suppression of viral replication by ART 
is a unique challenge for the immune system and for immuno-

therapeutic agents. In the current paradigms of therapies to 
disrupt latency and clear persistent infection, the targets for 
clearance are rare populations of cells induced by LRAs to ex-
press HIV proteins in quantities that are likely to be limited. 
Immunologic ‘‘danger signals’’ to recruit effectors to the site of 
the pathogen may be absent or limiting. Further, these cell pop-
ulations may be widely distributed across anatomical compart-

ments, and the HIV-specific immune response may have waned 
in the absence of recent antigen exposure and/or may be 
dysfunctional or depleted.
CD8+ T Cells
CD8+ T cells play a major role in control of HIV viremia, and early 
T cell responses exert significant immune pressure on HIV-1, re-
flected by emergence of viral escape variants within weeks 
(Goonetilleke et al., 2009). The rate of virus escape has been 
used to infer the level of CD4+ T cell killing in mathematical 
models, suggesting that primary HIV-1-specific CD8+ T cells 
can kill up to 30% of virus-infected cells per day (Goonetilleke 
et al., 2009). However, in the vast majority of individuals, CD8+ 
T cell immunity is insufficient to durably control viremia. In turn, 
ongoing viremia contributes to the emergence of generalized 
CD8+ T cell dysfunction, including of loss of proliferative and 
cytolytic capacity.

Although ART largely restores CD8+ T cell function, CD8+ 
T cells of PLWH exhibit an immune-aging phenotype (reviewed 
in Warren et al., 2019). The frequency of HIV-1-specific CD8+ 
T cells remains stable over time in durably suppressed individ-
uals, albeit at �10-fold lower levels than untreated infection 
(Xu et al., 2019). Although little to no selective evolution of HIV 
is observed in durably suppressed individuals, T cell escape var-
iants generated in untreated infection remain archived in the HIV-
1 replication-competent reservoir (Deng et al., 2015; Meier et al., 
1995), very likely compromising effective CD8+ T cell immunity 
following treatment interruption. An additional hurdle, detailed
above, is that latently infected cells are rare and widely anatom-

ically distributed. CD8+ T cells typically migrate in response to

chemotactic signals produced by foci of replication. In an ART-

treated individual (i.e., no virus replication), the inflammatory

signal produced by rare HIV-infected cells may be insufficient

to attract circulating T cells.

CD8+ T cell immunotherapies are being designed to address

the challenges of viral eradication. Current therapies can be

broadly divided into traditional therapeutic vaccine ap-

proaches that seek to boost and/or redirect HIV-1-specific

CD8+ T cells or chimeric/biological approaches that harness

non-HIV-1-specific CD8+ T cells to kill infected cells. Thera-

peutic vaccines seek to induce or boost T cells that target re-

gions of HIV-1 that are highly conserved. The rationale here,

which is based on extensive studies in natural infection,

including studies of elite controllers, is that virus escape in

conserved HIV-1 regions is slower because escape imparts a

fitness cost to the virus. Therapeutic HIV vaccines include

live-attenuated viral vectors, DNA vaccines, and dendritic cell

and adoptive T cell therapy.

Multiple chimeric/biological approaches are being tested,

including chimeric antigen receptors in which HIV TCRs are

expressed in memory CD8+ T cells subverting their antigen

and wherein CD3 T cells are re-directed to kill infected cells ex-

pressing HIV-1 proteins and/or presenting HIV-derived peptides.

Harnessing the killing capacity of the nearest CD3+ cell is a very

attractive approach to overcome the challenge of the broad dis-

tribution of persistently infected cells. Cytokines such as IL-15,

which have also been proposed for study as LRAs, may also pro-

mote access of CD8+ T cells to infected cells in B cell follicles in

lymph node (Bronnimann et al., 2018).

Antibodies for Viral Clearance

Humoral responses are broadly divided into two classes of

antibodies: those that (1) block infection by binding to the

envelope of free viruses, called neutralizing antibodies

(NAbs), and those that (2) recognize the envelope during virus

entry or on the surface of infected cells (non-NAbs). The

importance of these antibodies against HIV-1 has been demon-

strated by passive protection studies in non-human primates

(NHPs) and their ability to exert immune pressure and

rapidly select virus escape variants. Protection studies have

suggested that neutralization and Fc-mediated NAb effector

functions cooperate in providing protection from SHIV infection

(Moog et al., 2014). Non-NAbs could also limit the number of

transmitted/founder isolates compared with the control (Santra

et al., 2015). However, use of the broad NAbs 3BNC117 and

VRC01 for treatment of HIV-1 infection revealed the presence

of pre-existing escape mutants (Caskey et al., 2015; Lynch

et al., 2015), and such pre-existing resistance might complicate

the use of NAbs to eradicate persistent infection.

To overcome these limitations, engineered mAb-based mole-

cules that could recognize multiple HIV-1 antigens or simulta-

neously redirect the cytotoxic cells to kill HIV-1-infected cells

have been pursued (Ferrari et al., 2016). Bispecific T cell engag-

ers (BiTEs) or dual affinity re-targeting (DART) molecules are

novel small molecules designed to recognize infected cells and

recruit effector cells (Ferrari et al., 2016). These molecules

can eliminate cells that have been infected in vitro as well as



reactivated latently infected CD4+ cells obtained from ART-

treated donors (Pegu et al., 2015; Sung et al., 2015b). DARTmol-

ecules are currently being tested for safety (ClinicalTrials.gov

NCT03570918) in a first-in-human clinical trial.

Innate Immune Responses

The first to be mobilized during acute HIV-1 infection, innate

responses contribute to initial control of virus replication (Sta-

cey et al., 2009). Among the first cytokines to reach peak

plasma levels are the interferons and IL-15, which help activate

natural killer (NK) cells (Garrido et al., 2018) and favor antibody

engagement to mediate antibody-dependent cellular cytotox-

icity (ADCC) (Fisher et al., 2019). NK cell immunity can be tar-

geted for HIV clearance strategies in several ways. The cyto-

toxic effects of NK cells can be harnessed using chimeric

antigen receptor (CAR) technology similar to that being used

for T cells (Zhen et al., 2015). Administration of HIV-specific an-

tibodies targeting membrane-associated proteins will likely

harness NK cells to mediate ADCC to kill HIV-1-infected cells

(Pollara et al., 2013). Again, IL-15, which activates NK cells

to augment killing of HIV-1-infected cells (Garrido et al.,

2018), could be administered with the above strategies to pro-

mote NK cell activity and increase effector cell access to

lymph node follicles.

Special Translational Considerations
The Window of Vulnerability

Although the understanding of viral latency and proviral

persistence is still imperfect, clinical studies seeking to combine

immunotherapies with LRAs have begun. However, the leap to

translational studies is challenged by the lack of validated

metrics and assays that can guide the pathway for clinical devel-

opment. Detailed virologic, immunologic, and pharmacody-

namic assessment of interventions must be made in vivo, and

such assessments are complicated by the fact that the ultimate

efficacy of latency reversal is difficult to quantify without a

parallel clearance intervention. Conversely, immunotherapies

that might target the latent reservoir cannot be fully tested in

the absence of effective latency reversal.

The first challenge is to define the metrics for effective HIV

latency reversal. Typically, ‘‘more is better,’’ but the most potent

current LRAs tested in vitro induce cytokine storm and other

clinically untenable toxicities. Because immunotherapies are

likely to be needed to clear persistent infection, it is rational

to define effective LRA activity as activity that induces presenta-

tion of a viral protein or antigen in a latently infected cell at a suf-

ficient quantity and for a sufficient length of time to allow im-

mune-mediated clearance. Measurement of rare or low-level

HIV-1 protein or peptide production following LRA exposure is

currently challenging, although assays detecting antigen at

the single-cell level are emerging (Cabrera et al., 2015). A latency

clearance assay has been presented (Sung et al., 2015a),

seeking to define, in an ex vivo assay, the ‘‘window of vulnera-

bility’’ that can be achieved by a selected intervention. How-

ever, in its current form, this assay is demanding, has low

throughput, and is only semiquantitative. Better assays for

this purpose are needed to guide selection of LRA regimens

that are sufficient to allow clearance but avoid unacceptable

toxicities.
Of Mice and Monkeys
In Vivo Models

Historically, in vivo models have proven to be exceptionally

informative in virtually all aspects of HIV research. This has

also been the case for HIV cure research. In vivomodels provide

a complex substrate that may more closely resemble the

human condition than in vitro studies and may provide critical in-

formation regarding the safety of implementation in humans.

Currently, the two models most commonly used to study HIV

cure approaches in vivo are NHPs and humanized bone

marrow/liver/thymus (BLT) mice.

NHPs have been used extensively for HIV cure research.

NHPs can be infected with several different types of SIV. Infec-

tion results in relatively high initial viral loads and rapid establish-

ment of a long-lasting viral reservoir (Whitney et al., 2018). In

addition, the types of experiments that can be conducted in

NHPs was expanded by use of HIV/SIV chimeras that permit

evaluation of Ab interventions targeted to HIV (Haynes et al.,

2019). Several different modalities of ART have been used to

suppress viremia in NHPs. Currently, the most commonly used

combination includes dolutegravir, tenofovir, and emtricitabine

(Nixon et al., 2020). ART is administered daily as a subcutaneous

injection that results in a rapid drop of peripheral blood viral RNA

to below the level of detection of most commonly used viral load

assays (30–60 copies per milliliter of blood). Viral suppression re-

sults in establishment of latency, and therapy interruption results

in relatively rapid viral rebound. Virtually all current modalities of

HIV cure approaches have been evaluated in vivo using NHP

models. These include stem cell transplantation (SCT), immune

modulation/vaccines, gene and cell therapy, as well as induction

of latent SIV and destruction of infected cells (Borducchi et al.,

2018; Del Prete et al., 2019; Hansen et al., 2011; Lim et al.,

2018; Peterson et al., 2018). For the most part, when similar

experiments were conducted in humans, the outcomes corre-

lated well between species. Examples of this include the effect

of bone marrow transplantation and pre-conditioning, the

persistence of transduced cells after transplantation, and

induction of plasma viremia and cellular activation after LRA

administration.

Rodents are refractory to HIV infection, and therefore they

have very limited utility for HIV cure research. However, introduc-

tion of human cells and/or tissues renders these ‘‘humanized’’

mice susceptible to HIV infection. Mice can be humanized in

several different ways, including hematopoietic SCT (Garcia,

2016). SCT results in robust levels of human cells in peripheral

blood and tissues, including human T cells. Importantly, human

T cells produced in these models are presumably educated in

the mouse thymus and not in the context of human major histo-

compatibility complex (MHC) molecules (i.e., human leukocyte

antigen [HLA]). This limitation was elegantly overcome by the

development of humanized BLTmice, where mice are implanted

with small pieces of human thymic and liver tissue that give rise

to a bona fide human thymic organ where T cell precursors can

develop into fully functional T cells educated in the context of

HLA (Melkus et al., 2006). Because, like NHP, humanized BLT

mice can be infected by all physiological routes, infection can

be efficiently suppressed by ART, resulting in establishment of

HIV latency, and analytical treatment interruption results in viral
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rebound (Denton et al., 2008, 2010, 2012; Sun et al., 2007; Wahl 
et al., 2012, 2015). This and other humanized mouse models 
have been used extensively to investigate gene/cell therapy, im-

mune modulation, HIV-infected cell killing approaches, HIV 
silencing approaches, and HIV induction by LRAs (Badamchi-

Zadeh et al., 2018; Cheng et al., 2017; Dash et al., 2019; 
Denton et al., 2014; Zhen et al., 2017). It is in this last area of 
investigation where the synergy and complementarity between 
the NHP and humanized mouse models have become most 
evident. Specifically, in two recent manuscripts, two different 
HIV induction approaches were independently evaluated in 
both models (McBrien et al., 2020; Nixon et al., 2020). The results 
obtained were essentially the same and nicely complemented 
each other. In the BLT mouse model, it was demonstrated that 
both latency reversal approaches were effective at inducing 
systemic production of HIV from resting human CD4+ T cells in 
the periphery and tissues. In the NHP model, it was demon-

strated that these latency reversal approaches can be serially 
administered, resulting in reproducible induction of SIV in 
plasma and resting CD4+ T cells from lymph nodes. Both models 
also provided important information regarding the tolerability of 
the different LRAs.

It should be made clear that neither NHPs nor BLT mice fully 
recapitulate the human condition. NHPs provide a robust 
platform for evaluation of in vivo efficacy and toxicity using 
significantly longer time frames for experimentation and 
providing larger samples for analysis. BLT mice provide a nimble 
platform for rapid evaluation of in vivo efficacy and potential 
toxicity using human cells and relevant human viruses. However, 
both models complement each other in ways that result in 
robust information useful for determining the suitability of novel 
approaches to an HIV cure. Moving forward, a new generation 
of BLT humanized mice that incorporate autologous human 
non-hematopoietic cells is rapidly providing opportunities for 
in vivo evaluation of novel approaches to HIV cure that require 
interventions specific for humans (Wahl et al., 2019).

Experimental Medicine Studies
Given the nascent state of HIV cure research, there are limited 
clinical studies of latency reversal, immunotherapeutic, or com-

bination strategies (Table 1). In addition to the immunological 
and virological challenges of eradicating HIV, progression into 
clinical studies has launched discussions regarding the balance 
of risk versus benefit at a stage when studies involve little or no 
benefit to the participant within the context of largely transla-
tional research.

Because of concerns of ongoing viral replication despite 
ART, numerous studies of ART intensification were performed 
without evidence of a decrease in the HIV reservoir or in HIV 
expression (Rasmussen and Søgaard, 2018). Although still in 
dispute by a few investigators, overall, studies strongly suggest 
that ongoing replication does not contribute to maintaining 
the HIV reservoir in patients suppressed on currently available 
ART (Bale and Kearney, 2019).
Latency Reversal
Several clinical studies have demonstrated modest induction of 
viral expression in response to LRAs, with HDACis remaining the 
most fully characterized. Although HDACis in clinical studies
have been well-tolerated and resulted in reproducible increases

in cell-associated viral RNA expression (Archin et al., 2012, 2017;

Søgaard et al., 2015; Winckelmann et al., 2017; Rasmussen

et al., 2014), none have been shown to significantly deplete

the viral reservoir. The absence of a reduction in the viral

reservoir with LRAs may be due to (1) only partial or ‘‘ineffective’’

reactivation of the overall pool of latently infected cells, (2)

inadequate LRA penetration into tissue compartments harboring

latent HIV, (3) ineffective clearance of reactivated cells, or a

combination of these shortcomings. A variety of other

biomolecules are under investigation as LRAs as described,

but experience in clinical studies remains limited because of

safety concerns related to potential off-target effects.

However, the TLR-9 agonist (MGN1703) was well-tolerated in

PLWH on suppressive ART as a twice-weekly subcutaneous

injection for 24 weeks (Vibholm et al., 2019). Despite observed

increases in HIV-1-specific T cell responses and T cell activation

with multiple doses of MGN1703, there were no difference in

the time to viral rebound in participants who underwent ART

interruption with or without continued MGN1703 dosing (Vib-

holm et al., 2019). N-803, an IL-15 superagonist, resulted in

quantifiable low-level viremia in 2 of 9 participants on suppres-

sive ART, perhaps because of indirect mechanisms (Z. Davis

et al., 2018, Conference on Retroviruses and Opportunistic In-

fections, abstract).

Vaccines

Therapeutic vaccines have been proposed as a method for

improving clearance of HIV-infected cells in PLWH suppressed

on ART, and the focus has been predominantly on vaccines

that induce T cell responses. Although clinical studies of thera-

peutic HIV vaccines have shown an effect on HIV-specific

T cell immunity, the overall response has been disappointing

(reviewed in Robinson, 2018), and to date, therapeutic vaccina-

tion has not resulted in sustained viral suppression following

analytic treatment interruption (B.Mothe et al., 2017, Conference

on Retroviruses and Opportunistic Infections, abstract; Sneller

et al., 2017).

bnAbs and Other Antibodies

An immunotherapeutic strategy for HIV cure includes passive

transfer of NAbs. Several monoclonal NAbs have been shown

to reduce viremia in untreated PLWH (Caskey et al., 2015,

2017; Lynch et al., 2015). However, a randomized controlled trial

of two infusions of the NAb VRC01 versus placebo in PLWH on

suppressive ART showed no difference in the cell-associated

HIV RNA/DNA ratio and no effect on low-level viremia (Riddler

et al., 2018). As mentioned above, bNAbs have been shown to

delay the time to viral rebound in ART-suppressed participants

following ATI (Bar et al., 2016; Scheid et al., 2016) but also to

select for resistant viral variants. Monoclonal bNAbs clearly

have an antiretroviral effect, and dual combination can maintain

suppression without resistance emergence (Mendoza et al.,

2018). Two participants in this study sustained suppression

even after antibody concentration waned, suggesting an addi-

tional mechanism of activity beyond direct inhibition. Whether

bNAbs with greater potency and breadth than VRC01 will help

clear HIV-infected cells is being studied.

Other mAbs used for treatment of other conditions have also

been explored, including a mAb against a4b7 integrin, which



enables homing of T lymphocytes to the gut. Preclinical studies

of the anti-a4b7mAb suggested a role in preventing SIV infection

and preserving CD4+ T cells in gut-associated lymphoid

tissue (GALT) and peripheral blood as well as in limiting SIV

infection in GALT. However, administration of the anti-a4b7

mAb to suppressed PLWH did not affect time to viral rebound

during ATI (Sneller et al., 2019).

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs) have revolutionized cancer

therapy by reversing cancer-related immune dysfunction associ-

ated with specific malignancies. HIV-specific T cell exhaustion

persists even on effective ART and may be a barrier to HIV

cure. In addition, CD4+ T cells expressing immune checkpoint

markers are enriched for latent HIV (Banga et al., 2016; Chomont

et al., 2009; Fromentin et al., 2016). Therefore, ICIs could provide

a strategy for reversing HIV-associated immune dysfunction and

targeting cells with latent HIV-1. There has been one clinical

study of ICIs in PLWH on ART without malignancy, in which a

single low-dose infusion of an anti-PD-L1 mAb (BMS-936559)

appeared to enhance HIV-1-specific immune responses in 2 of

6 participants (Gay et al., 2017).

The role of immune checkpoint pathways in maintaining la-

tency has been suggested in a case report of a PLWH on ART,

with a 20-fold increase in cell-associated HIV RNA in CD4+

T cells observed following multiple infusions of anti-CTLA-4 (ipi-

limumab) (Wightman et al., 2015). The same individual later

received a single infusion of nivolumab for metastatic melanoma

treatment, with a 24-fold significant increase in ca-HIV RNA

post-infusion, both suggesting in vivo latency reversal following

ICI administration. However, anti-HIV immune enhancement

and LRA activity are not universally observed, and in otherwise

healthy PLWH on effective ART, the relatively frequent and

sometimes severe autoimmune adverse events associated

with ICIs may make this approach unacceptable.

Additional adaption of immunotherapy advances in cancer

treatment to strategies for HIV cure, bolstered by the two

cases of clinical cure following SCT for cancer treatment

(R.K. Gupta et al., 2019, Conference on Retroviruses and

Opportunistic Infections, abstract), includes adoptive T cell

therapy, gene editing, bispecific antibodies and anti-HIV

CAR T cells. Although earlier studies of adoptive T cell therapy

for HIV-1 established their safety (reviewed in Lam and

Bollard, 2013), antiviral efficacy was transient, in part because

of reliance on monoclonal T cells, extensive in vitro expansion

resulting in a potentially exhausted phenotype, and infusion of

T cells into viremic untreated patients. When applied in the

setting of ART suppression, HIV-specific T cells persisted in

the blood and were capable of homing to rectal tissue, but

virologic outcomes were not reported (Chapuis et al., 2011).

Previous studies also examined infusing T cells specific for a

single HLA-restricted epitope, either by clonal selection or

introducing an artificial, high-affinity TCR for the HLA-A2

Gag epitope SL9 (Varela-Rohena et al., 2008). Infused T cell

clones showed little persistence and no clear long-term reduc-

tion in viral load. More recently, infusions of ex vivo polyclonal

HIV-specific T cells targeting multiple HIV epitopes were safe

and increased CD8+ T cell-mediated antiviral activity in 2 of 6

participants but did not increase the overall frequency of HIV-
specific T cells, likely because of the low dose employed

(Sung et al., 2018). Ex vivo site-specific modification of the

CCR-5 gene in autologous CD4+ cells using zinc-finger

nuclease with re-infusion in PLWH on ART was safe and re-

sulted in HIV RNA suppression in 1 of 4 participants

who interrupted ART (Tebas et al., 2014). Studies employing

gene editing in stem cells for PLWH undergoing SCT for ma-

lignancy are ongoing.

Combination Studies

Because pilot studies of latency reversal and pilot studies of

enhancement of HIV clearance mechanisms have now demon-

strated safety, study of the combination of these two interven-

tions may now proceed. Results from clinical studies combining

these two strategies are limited. In a single-arm trial of romidep-

sin in combination with an adjuvant vaccine, there was lack

of HIV-1 reactivation in all participants following romidepsin

administration and no effect on the time to viral rebound with

an ATI (Leth et al., 2016). A randomized controlled trial combining

latency reversal with an HIV vaccine enrolled participants

treated within 4 weeks of diagnosis with primary HIV infection

who received prime vaccination with ChAdV63.HIVconsv and

MVA.HIVconsv boost 8 weeks later, followed by 10 doses of

vorinostat every 3 days (Fidler et al., 2020). No reduction in the

viral reservoir was observed, as measured by viral outgrowth be-

tween weeks 16 and 18 post-randomization, despite signifi-

cantly higher HIV-specific CD4+ T cell responses and functional

CD8+ T cell responses in the intervention versus the ART-only

arm. In this population, treated for a relatively short period of

time after initial infection, the natural decay of persistent HIV

DNA seen in early ART may have obscured a weak effect of

the interventions. Initial reports of pilot studies employing similar

approaches have also failed to achieve a measurable depletion

of latent, persistent infection (Gay et al., 2020; B. Mothe et al.,

2017, Conference on Retroviruses and Opportunistic Infections,

abstract).

In sum, several clinical studies of HIV cure have shown

some ability to enhance HIV-specific immune responses

without an associated effect on the viral reservoir or viral con-

trol in the absence of ART. More potent LRAs are needed to

more effectively reactivate latent HIV. Whether any of the

currently available immunotherapeutic strategies, in isolation

or in combination, could substantially deplete the pool of

latently infected cells induced to express the virus remains un-

answered.

Toward an HIV Cure in the Fifth Decade of AIDS
Eradication of infection in PLWH is still not achievable at any

scale. But now, in the fifth decade of the AIDS pandemic, we

mark more than 10 years of scientific effort refocused toward

the goal of viral eradication. Increasingly, tools to approach

this goal are emerging. As the understanding of the many mech-

anisms of viral persistence grows, novel approaches to disrupt

and target latency are advancing toward clinical testing.

Advances in the use of HIV antibodies and HIV vaccine

development may also be employed to enlist the body’s own

defenses in recognition and clearance of infected cells. When

these barriers are breached, we may discover additional cellular

reservoirs of infection and mechanisms of persistence that



require alternate or combinatorial therapeutic approaches. The
progress made so far in deciphering HIV pathogenesis and
developing treatment strategies gives hope that eradication of
established HIV infection is an attainable goal.
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McMichael, A., and Phillips, R. (1995). Cytotoxic T lymphocyte lysis inhibited

by viable HIV mutants. Science 270, 1360–1362.

Melkus, M.W., Estes, J.D., Padgett-Thomas, A., Gatlin, J., Denton, P.W., Oth-

ieno, F.A., Wege, A.K., Haase, A.T., and Garcia, J.V. (2006). Humanized mice

mount specific adaptive and innate immune responses to EBV and TSST-1.

Nat. Med. 12, 1316–1322.

Mendoza, P., Gruell, H., Nogueira, L., Pai, J.A., Butler, A.L., Millard, K., Leh-
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