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Abstract
Exosomes are natural nanoparticles that play an important role in cell-
to-cell communication. Communication is achieved through the transfer 
of cargos, such as microRNAs, from donor to recipient cells and binding 
of exosomes to cell surface receptors. Exosomes and their cargos are also 
obtained from dietary sources, such as milk. Exosome and cell glycopro-
teins are crucial for intestinal uptake. A large fraction of milk exosomes 
accumulates in the brain, whereas the tissue distribution of microRNA 
cargos varies among distinct species of microRNA. The fraction of milk 
exosomes that escapes absorption elicits changes in microbial communi-
ties in the gut. Dietary depletion of exosomes and their cargos causes a 
loss of circulating microRNAs and elicits phenotypes such as loss of cog-
nitive performance, increase in purine metabolites, loss of fecundity, and 
changes in the immune response. Milk exosomes meet the definition of 
bioactive food compounds. 
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Endogenous Exosomes 

Biogenesis 

Virtually every living organism, including animals, plants, and mi-
croorganisms, releases exosomes and exosome-like vesicles (1–3). Exo-
somes can be distinguished from other classes of extracellular vesicles 
(EVs), e.g., microvesicles and apoptotic bodies, by size and biogene-
sis (4). Exosomes are the smallest EVs known to date and measure 
approximately 100 nm. Biogenesis of exosomes initiates through the 
inward budding of vesicles (endocytosis) at the plasma membrane, 
which leads to the formation of early and late endosomes (Figure 1). 
Biogenesis continues with the invagination of the late endosomal lim-
iting membrane to form multivesicular bodies and the sorting of car-
gos into these bodies (6, 7). Exosome cargos include various species 

Figure 1 Exosome biogenesis. Figure adapted from Reference 5. Abbreviation: ES-
CRT, endosomal complex required for transport. 
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of coding and noncoding RNAs (ncRNAs), lipids, and proteins (6–9). 
Exosome biogenesis is achieved through two pathways: the endosomal 
complex required for transport (ESCRT) and a ceramide-dependent 
pathway (10, 11). Exosomes may be degraded in lysosomes or secreted 
into the extracellular space upon fusion of multivesicular bodies with 
the plasma membrane (6, 7). Exosomes are present in virtually all 
body fluids, including milk in humans and animals (12–17). Little is 
known about the homing signals that direct exosomes to a diverse 
array of recipient cells. The transmembrane protein CD47 prevents 
recognition and elimination of exosomes by macrophages, and glyco-
proteins on the exosome surface play a role in exosome uptake and 
probably recognition by recipient cells (18–20). 

Exosome Cargos 

Exosomes carry diverse cargos, including various species of RNA, 
proteins, and lipids (8, 21, 22). The pool of RNA cargos is diverse; e.g., 
exosomes from human plasma and serum contain ncRNAs such as 
microRNAs, transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small 
nuclear RNAs (snRNAs), piwi-interacting RNAs, and small nucleolar 
RNAs (snoRNAs) (8, 23, 24). The profile of ncRNAs in plasma from 
animals has not been characterized to the same extent as in humans, 
but microRNAs and piwi-interacting RNAs were detected in bovine 
plasma (25). That study did not distinguish between exosomal RNAs 
and RNAs associated with other complexes. A couple of recent papers 
suggest that RNA contaminants in spin columns might cause artifacts 
in RNA analyses and offered protocols to decrease the abundance of 
contaminants (26, 27). Exosomes also contain coding RNA, but most 
of the messenger RNA (mRNA) in exosomes released by human cells 
is truncated 

The distribution patterns of RNA classes and their individual mem-
bers depend on the tissue in which the exosomes originated; develop-
mental stage; and external factors, such as diet and physical activity 
(29–32). To date, approximately 1,900 and 800 microRNAs have been 
reported in humans and cows, respectively (33). RNA loading into exo-
somes is not a random process; the loading involves sorting mecha-
nisms that favor some cargos over others (6, 7, 34). For example, the 
abundance of microRNAs in exosomes secreted by immune cells has a 
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pattern distinct from that in the donor cells, and, compared with do-
nor cells, circular RNAs are enriched in the immune cell– derived exo-
somes (35, 36). RNA binding proteins, such as Y-box protein 1, regulate 
the sorting of distinct microRNAs, such as hsa-miR-223–3p, into human 
exosomes (37). The proto-oncoprotein KRAS also has been implicated 
in microRNA sorting to exosomes in colorectal cancer cell lines (38). 
The binding of RNAs to rafts in the limiting membrane in multivesicu-
lar bodies also appears to play a role in the RNA loading process (39). 
Encapsulation of RNAs in exosomes is of particular importance for the 
rather labile RNAs because it confers protection against degradation 
(36, 40). To date, 81 and 1,354 proteins have been reported for human 
and bovine exosomes, respectively (21, 22; see below). Proteins such as 
the tetraspanins CD9 and CD63 and the endosomal Alix and Tsg101 are 
used to authenticate exosome preparations, although the abundance of 
these markers may vary greatly depending on the donor cell (41, 42). 
Many exosomal proteins are glycosylated, in particular protein domains 
on the outer surface of the exosomes (43). The mechanisms that regu-
late protein sorting into exosomes are elusive. Posttranslational modi-
fication of proteins, in particular ubiquitination, appears to play a role 
in the sorting process (44). One interesting approach to studying pro-
tein delivery by exosomes included the delivery of ubiquitinated Cre re-
combinase to exosomes and the delivery of recombinase to various re-
gions of the brain in reporter mice (45). 

Little is known about lipid composition and sorting in exosomes. 
The ExoCarta 2012 database lists approximately 700 exosome lipids, 
but the data set includes exosomes from sources other than milk (21; 
see below). The cholesterol and sphingomyelin composition of exo-
somes from samples other than milk does not depend on donor cells, 
whereas the content of saturated fatty acids in phosphatidylcholine 
and phosphatidylethanolamine depends on donor cells (46–48). 

Exosomes may carry some DNA. For example, exosomes from can-
cer patients and cancer cell cultures contain double-stranded DNA, 
perhaps in the form of chromosomal fragments (49–52). Some exo-
somal DNA may be of mitochondrial origin (53). Cells might dispose 
of harmful cytoplasmic DNA through exosome secretion, and investi-
gators have suggested that exosomal DNA might be a biomarker for 
cancer (49, 52). The distribution between DNA inside exosomes and 
DNA adsorbed to the outer membrane surface is uncertain. 
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Cell-to-Cell Communication 

The homing of exosomes probably depends on glycoproteins on 
the surface of exosomes and recipient cells (20, 54; S. Sukreet & J. 
Zempleni, unpublished data). Proteins such as CD47 on the exosome 
surface prevent exosome elimination by macrophages (18, 55). Al-
though many of the effects of exosome messaging depend on the 
delivery of exosome cargos to recipient cells, the mere interaction 
between exosomes and receptor cell surfaces may also elicit cell re-
sponses. For example, fibronectin-mediated binding of exosomes to 
myeloma cells activated p38 and pERK signaling and expression of 
downstream target genes DKK1 and MMP-9, two molecules that pro-
mote myeloma progression (56). Consistent with this theory, exo-
some internalization was not necessary to elicit gene expression 
changes in human T cells (57). That said, the vast majority of previ-
ous studies in exosome signaling have focused on the delivery of mi-
croRNA cargos to the recipient cell interior. MicroRNAs are approx-
imately 20–24 nucleotides long, and sequence complementarity in 
the seed region (nucleotides 2–8) is of particular importance for the 
binding of microRNAs to their mRNA targets (58, 59). Presumably, 
the bias toward studies of microRNA cargos is due to the fact that 
more than 60% of human genes are putative targets for regulation 
by microRNAs, as well as the large number of microRNAs identified 
in humans and animals (33, 60). MicroRNAs decrease the expres-
sion of target genes by binding to complementary sequences pri-
marily in the 3× untranslated region of mRNAs (Figure 2), although 
some microRNAs may also bind to sequences in the 5× untranslated 
region and the coding sequence (58, 59, 61). Binding sites in the 5× 

untranslated region and coding sequence in mRNAs are rare, but they 
exist (62). Binding is facilitated by argonaute proteins and leads to 
the formation of a ribonucleoprotein complex referred to as RNA-
induced silencing complex (RISC); RISC is a 5× phosphomonoester-
producing endonuclease (63). If the sequence complementarity be-
tween microRNA and its mRNA target is high, the mRNA is degraded 
(58, 59, 63). If the complementarity outside the seed region is low, 
the mRNA in the microRNA/mRNA duplex is not translated. The ab-
sence of degradation is due to poor positioning of the mRNA toward 
the catalytic domain in RISC (58, 59). 
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Noncanonical pathways of microRNA signaling, such as binding 
to Toll-like receptors (TLRs), are of particular interest because of the 
roles of TLRs in host defense mechanisms (64). TLRs are widely ap-
preciated for their ability to bind single-stranded (TLR3, TLR7, TLR8) 
and double-stranded RNA (TLR3) as part of antiviral response mecha-
nisms (65–75). Single-stranded RNAs require endosomal delivery (exo-
somes) for stabilization against ribonucleases and activation of TLRs 
(76). TLRs reside on the cell surface or in the cell interior and may 

Figure 2 Gene repression by microRNAs. Figure adapted from Reference 5. Abbre-
viations: miRNA, microRNA; mRNA, messenger RNA; RISC, RNA-induced silenc-
ing complex. 
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be able to amplify weak microRNA signals (Table 1). Note that RNA 
other than microRNA in exosomes might also bind to TLRs, although 
this possibility has not yet been explored. The relevance of mRNA li-
gands in TLR activation and antiviral response is underscored by the 
observations that self-amplifying mRNA vaccines confer protection 
against influenza viruses, and bacterial RNAs stimulate innate im-
mune responses (77, 78). 

Prokaryotic and eukaryotic microbes communicate with their en-
vironment through EVs, suggesting that gut microbes might inter-
act with their host through EVs (3). The communication between mi-
crobes and environment includes Gram-positive bacteria, which use 
EVs to communicate despite having to transport EVs across their cell 
walls (79, 80). Exosomes secreted by Leishmania deliver proteins to 
macrophages in the host, and infection-like stressors upregulate exo-
some secretion by Leishmania (81). Viruses may participate in exo-
some signaling through hi-jacking and modifying exosomes (82). 

Table 1   Toll-like receptors and their cellular localization and ligands (65–75) 

TLR 	 Localization 	 Ligand(s) 

1 	 Cell surface 	 Triacyl glycopeptides 
2 	 Cell surface 	 Numerous 
3 	 Cell compartment 	 ss/dsRNA 
4 	 Cell surface 	 Diverse 
5 	 Cell surface 	 Flagellin, profilin 
6 	 Cell surface 	 Multiple diacyl lipopeptides 
7 	 Cell compartment 	 ssRNA and others 
8 	 Cell compartment 	 ss viral RNA 
9 	 Cell compartment 	 Unmethylated CpG deoxynucleotide DNA 
10 	 Unknown 	 Unknown 
11 	 Cell compartment 	 Profilin 
12 	 Unknown 	 Profilin 
13 	 Cell compartment 	 Bacterial rRNA (CGGAAAGACC) 
 
Abbreviations: ds, double-stranded; rRNA, ribosomal RNA; ss, single-stranded; TLR, Toll-
like receptor.
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Bioavailability and distribution of milk exosomes and their cargos 

Exosomes 

In 2012, evidence emerged that MIR168a from dietary sources 
(rice) is bioavailable across species boundaries (83). This discovery 
has sparked great interest in the bioavailability and distribution of 
milk exosomes and their cargos. The findings from these studies are 
discussed in the sections below. 

Bioavailability and intestinal transport. The paradigm that exo-
somes and their cargos are exclusively derived from endogenous syn-
thesis has been challenged in a series of studies illustrating that exo-
somes and their RNA cargos in bovine milk are bioavailable in humans 
and mice, i.e., across species boundaries (14, 84, 85). These observa-
tions were corroborated in cell culture studies, which suggested that 
Caco-2 human intestinal cells, IEC-6 primary rat small intestinal cells, 
human umbilical cord vascular endothelial cells, and THP-1 human 
macrophage-like cells take up bovine milk exosomes (86–88). The up-
take of milk exosomes by endocytosis follows Michaelis–Menten ki-
netics in Caco-2 and IEC-6 cells and venous endothelial cells (86, 88). 
Protease treatment and excess glucose and galactose inhibited the up-
take of milk exosomes in intestinal cell cultures, suggesting that exo-
some recognition depends on glycoproteins on the surface of exosomes 
and cells (86, 88). Sukreet and colleagues identified 90 and 41 gly-
can features in protein loops exposed on the outer surface of bovine 
milk exosomes and Caco-2 cells (Table 2) (89; S. Sukreet & J. Zem-
pleni, unpublished data). Enzymatic removal of glycans on the sur-
face of milk exosomes and human intestinal Caco-2 and human pri-
mary fetal small intestinal (FHs) cells resulted in a significant loss in 
the uptake of fluorophore (FM 4–64)-labeled exosomes by the respec-
tive target cells (S. Sukreet & J. Zempleni, unpublished data). N-acetyl-
glucosamine and α-Nacetylgalactosamine modifications were partic-
ularly important for the uptake of bovine milk exosomes by Caco-2 
and FHs cells. The apparent bioavailability of bovine milk exosomes 
was estimated to be 5% in mice, but that estimate is based on using 
a lipophilic fluorophore label (1,1-dioctadecyl-3,3,3,3-tetramethylin-
dotricarbocyanine iodide, DiR) known to transfer from exosomes to 
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proteins and lipoproteins and presumably other structures (94). More-
over, estimates of exosome bioavailability based on DiR-labeled exo-
somes are approximately five times lower than estimates based on 
using fluorophore-tagged microRNA cargos, and the apparent distri-
bution of DiR-labeled milk exosomes is different from that of any other 
exosome label tested (95). Enzymatic removal of N-glycans on the sur-
face of bovine milk exosomes prior to delivery by oral gavage resulted 
in a significant loss in exosome bioavailability in mice (S. Sukreet & 
J. Zempleni, unpublished data). The apparent bioavailability of milk 
exosomes is higher if exosomes from the same species are ingested 
compared with administration across species boundaries. For exam-
ple, visual inspection of images in which endogenously labeled exo-
somes were delivered through the natural route of suckling in mice 
appears to suggest a bioavailability of more than 25%, although the 
authors did not attempt to quantify the bioavailability of murine milk 
exosomes in mouse pups (95). 

Distribution. DiR-labeled bovine milk exosomes, administered 
through oral gavage, accumulated in liver, spleen, pancreas, and kid-
ney but were also detectable in lung, colon, and brain in nude mice 
(96). These studies used doses of exosomes far higher than what can 

Table 2 Pool of total proteins and glycoproteins on the surface of bovine milk exo-
somes and Caco-2 cellsa 

Proteins 	 Number of proteins 	  
 	 Exosomes 	 Caco-2 cells 

Total proteins 	 484 	 929 
Glycoproteins on the outer surface 	 90 	 41 

Glycan modifications 	  	  
N-Glycans 	 55 	 29 
O-Glycans 	 19 	 6 
C-Glycans 	 16 	 6 
 
a. Proteins were identified by liquid chromatography–mass spectrometry/mass spectrom-

etry with (exosomes) and without (Caco-2 cells) prior enzymatic removal of glycan fea-
tures. Glycan modifications impair the detection of proteins; i.e., the number of proteins 
reported for Caco-2 cells is probably an underestimate. The localization of proteins to mem-
branes and the orientation of glycans were predicted by using TMHMM, NetCGlyc, NetN-
Glyc, and NetOGlyc (90–93).
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be achieved through dietary intake, lacked important controls, and 
disregarded the differences in distribution of the DiR label discussed 
above. Subsequent studies with lower concentrations and additional 
controls suggest that the majority of DiR-labeled bovine milk exo-
somes accumulate in the intestinal mucosa, liver, and large intesti-
nal content, and concentrations in other tissues were barely higher 
than background (95). Presumably, accumulation of milk exosomes 
in liver and spleen depends on resident macrophages in these tissues 
(97). Consistent with the theory of macrophage-dependent distribu-
tion of milk exosomes, depletion of macrophages by treating mice 
with clodronate resulted in an almost exclusive accumulation of exo-
somes in the liver and a loss of accumulation in the spleen after oral 
gavage (95). Likewise, a loss of exosome accumulation in the liver 
was observed when proteins were removed from the surface of exo-
somes with trypsin prior to oral gavage. Glycoproteins on the sur-
face of DiR-labeled exosomes are important for recognition by target 
cells (including macrophages), because enzymatic removal of N-gly-
cans caused a loss of milk exosomes delivered by oral gavage in mice 
(S. Sukreet & J. Zempleni, unpublished data). Bovine milk exosomes, 
administered by oral gavage, accumulated in the placenta and were 
transferred to fetuses in C57BL/6 mice (M. Sadri & J. Zempleni, un-
published data). Notwithstanding concerns regarding distribution ar-
tifacts caused by DiR, these initial studies provided important first 
insights on milk exosome distribution. Subsequent studies assessed 
the distribution of milk exosomes and their RNA cargos by using la-
bels other than DiR. 

The distribution of exosomes in porcine milk, endogenously la-
beled with a fluorescent protein (ZsGreen1), was different from that 
observed for DiR-labeled bovine milk exosomes. Porcine milk exo-
somes accumulated in the liver and brain after intravenous injec-
tion in mice and in the brain in wild-type piglets nursed by ZsGreen1 
sows (95). A similar pattern of exosome distribution was observed 
when wild-type mouse pups were nursed by transgenic dams express-
ing a fluorescent fusion protein in milk; exosomes were detected in 
the heart, lungs, kidneys, liver, and brain of pups. The distribution 
patterns of exosomes labeled with fluorescent proteins probably are 
more accurate than the patterns of DiR-labeled exosomes, because 
DiR may detach from exosomes and transfer to protein and lipopro-
teins (94; see below). 
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MicroRNAs 

MicroRNAs are highly conserved among species and play impor-
tant roles in gene regulation (see above). Studies in plant foods pro-
vided evidence that dietary microRNAs are bioavailable across species 
boundaries (83). To date, the majority of studies assessing the bio-
availability of cargos in milk exosomes have focused on microRNAs. 

Bioavailability and intestinal transport. Various studies identified 
between 100 and 1,500 species of microRNAs in bovine milk exosomes 
(87, 98–101; S. Sukreet & J. Zempleni, unpublished data). The varia-
tion among these studies is due to differences in experimental condi-
tions, including the stringency applied in bioinformatics analysis (mis-
matches allowed), use of raw milk versus processed milk, choice of 
sample (milk versus whey fraction versus exosomes), inclusion versus 
exclusion of novel microRNAs, and platforms used [microarray ver-
sus RNA-sequencing (RNA-Seq) analysis]. Although bovine milk is the 
most heavily investigated species, data are also available for humans, 
pigs, giant pandas, and goats (16, 17, 102, 103). Encapsulation of mi-
croRNAs in exosomes confers protection against degradation by harsh 
conditions such as low pH and RNases, as encountered in the gastro-
intestinal tract (99, 104). Some loss of microRNA occurs during the 
processing of raw milk and through the microwaving of milk (105). 

Evidence suggests that milk microRNAs enter recipient cells 
through the endocytosis of their exosome shells (86, 88). Data from 
studies in dual-chamber systems suggest that some microRNAs 
cross the intestinal mucosa more efficiently than others, and reverse 
transport from the basolateral to the luminal side is minimal in hu-
man Caco-2 colon carcinoma cells (86). It remains to be determined 
whether the discrimination among distinct species of microRNAs in 
the transport across the intestinal mucosa also depends on Y-box pro-
tein 1 and KRAS, as described above, or whether endogenous mRNAs 
act as microRNA sponges, leading to RNA degradation (37, 38, 106). 
As an alternative to exosome-dependent transport of microRNAs, a 
transporter for plant-derived microRNAs is expressed in the stomach 
and to a lesser extent in spleen, lung, liver, kidney, heart, brain, and 
skeletal muscle in mice. The identity of the transporter is privileged 
information, and readers are referred to an upcoming publication (C.Y. 
Zhang, Nanjing University, personal communication). 
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Evidence is accumulating that microRNAs in bovine and porcine 
milk are bioavailable in humans, pigs, and mice (14, 84, 85, 107; re-
viewed in 5). MicroRNAs in bovine milk enter circulating immune cells 
in humans and cell cultures and elicit changes in gene expression (14, 
99). Moreover, microRNAs may bind to Toll-like receptors (64, 108). 
Numerous independent laboratories have contributed evidence in sup-
port of the theory that dietary microRNAs, in addition to those from 
milk, are bioavailable across species boundaries (84, 86–88, 96, 108–
120). That said, there is also evidence that postprandial increases of 
some microRNAs in plasma may be due to a food-induced increase in 
endogenous microRNA synthesis in humans (121). 

In the spirit of transparency, we briefly discuss concerns raised re-
garding the bioavailability of microRNAs in milk in papers by Laubier 
et al. (122), Auerbach et al. (123), Title et al. (124), and Kang et al. 
(125). Laubier et al. (122) fostered wild-type pups to transgenic mice 
that overexpressed miR-30b and failed to see a substantial increase 
in tissue levels of miR-30b in pups. The failure to observe an increase 
in miR-30b in pup tissues was probably due to the fact that the miR-
30b in overexpression dams was not encapsulated in milk exosomes, 
thereby compromising miR-30b stability and bioavailability (5, 86, 99, 
104). Auerbach et al. (123) reported a failure to detect bovine miR-
29b and miR-200c in human plasma following consumption of milk. 
Subsequent studies suggest that the integrity of the samples used in 
that study was compromised and the RNA was degraded (85). Title 
et al. (124) detected only trace amounts of miR-375 in the plasma of 
miR-375 knockout mouse pups fostered to wild-type dams. Our stud-
ies suggest that unlike many other microRNAs, miR-375 in milk is 
subject to “first passage elimination” in intestinal mucosa and liver, 
and, therefore, its concentrations in circulation and peripheral tissues 
are low (95, 126, 127). Kang et al. (125) conducted a meta-analysis of 
published RNA-Seq data sets and concluded that the abundance of di-
etary microRNAs in body fluids is very low and possibly due to assay 
artifacts. Their analysis is biased by applying considerably lower lev-
els of stringency when mapping human microRNAs compared with 
dietary microRNAs, by disregarding the abundance of microRNAs in 
foods, by withholding details of data normalization protocols across 
data sets, and by dismissing the possibility that local concentrations 
of dietary microRNAs at the site of absorption might be high. This be-
ing said, sample contamination in RNA-Seq analysis through reagents 



Zempleni  et  al .  in  Annual  Rev iew of  Animal  B iosc iences  7  (2019)        13

is a potential pitfall in microRNA analysis and needs to be taken into 
account during sample preparation (26). Voices of caution deserve 
recognition despite their unfortunate focus on how many copies of 
microRNAs are delivered to cells (124, 128). The binding of microR-
NAs to mRNAs does not elicit microRNA decay when sequence com-
plementarity is low; in such cases, low copy numbers of microRNAs 
may result in the degradation of a large number of mRNA copies, 
analogous to enzyme-dependent reactions (129, 130). It appears to be 
more productive to answer the question of how milk microRNAs elicit 
changes in gene expression and phenotypes than to engage in discus-
sions about how many copies of microRNAs are absorbed and deliv-
ered to cells (131, 132). 

Distribution. Distinct species of synthetic fluorophore-labeled mi-
croRNAs, transfected into bovine milk exosomes and administered by 
oral gavage, have unique distribution profiles in mice (95). For exam-
ple, miR-375 accumulates primarily in the intestinal mucosa, liver, 
and brain (with some accumulation in kidneys); miR-320a accumu-
lates primarily in the liver; miR-155–5p accumulates primarily in the 
spleen; and miR-34a accumulates primarily in the brain. The authors 
used a dual fluorophore and quencher strategy to demonstrate that 
the fluorophore label was not released from microRNAs following ad-
ministration by oral gavage; i.e., microRNAs (as opposed to released 
label) were traced. 

RNAs Other Than MicroRNAs 

The following species of RNA were identified in bovine milk exo-
somes, in order of abundance: tRNAs, but also some rRNAs, snRNAs, 
snoRNAs, repetitive sequences, and nonannotated sequences (100). sn-
RNAs play a role in the splicing of premessenger RNA in the spliceo-
some (133), whereas snoRNAs primarily guide modifications of rRNA, 
tRNA, and snRNA (134). The functions of these ncRNAs in milk are un-
known. Studies that focused on the discovery of coding RNA in milk 
exosomes identified approximately 19,000 and 3,200 bovine mRNAs 
by microarray and RNA-Seq analysis, respectively (87; S. Sukreet & 
J. Zempleni, unpublished data). The vast majority of mRNAs were 
truncated with a bias toward the 3× end of the mRNAs (S. Sukreet & 
J. Zempleni, unpublished data). Approximately 100 of the truncated 
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transcripts retained a natural AUG start codon (D. Wu & J. Zempleni, 
unpublished data). The mRNAs in milk exosomes might be translated 
into protein using in vitro translation protocols and U937 cells, sug-
gesting that foreign proteins might originate from milk exosomes in 
host species (D. Wu & J. Zempleni, unpublished data). These obser-
vations implicate milk exosomes in food allergies and immune toler-
ance, although this possibility remains to be tested. 

Of the non-bovine mRNAs in bovine milk exosomes, 83% and 38% 
mapped to microbial species in raw milk and store-bought milk, re-
spectively. Studies using fluorophore-labeled synthetic fragments of 
microbial mRNAs suggest that the mRNAs enter cells in the intestinal 
mucosa (D. Wu & J. Zempleni, unpublished data). Synthetic microbial 
mRNA, transfected into liposomes, activated interferon-β in reporter 
cell cultures (F. Zhou & J. Zempleni, unpublished data). 

Interactions of Milk Exosomes with the Gut Microbiome 

A physiologically significant fraction (∼75%) of foreign milk exo-
somes escapes absorption and enters the large intestine (95). As de-
scribed above, microorganisms communicate with their environ-
ment through EVs. Consistent with this premise, consumption of an 
exosome- and RNA-depleted (ERD) diet elicited changes in micro-
bial communities in mice compared with mice fed an exosome- and 
RNA-sufficient (ERS) control diet (see the sidebar titled Exosome- and 
RNA-Defined Diets). An ERD diet caused a change in the prevalence 
of bacteria in 5 microbial phyla, 7 orders, and 52 operational taxo-
nomic units compared with controls fed an ERS diet at ages 7, 15, and 
47 weeks (F. Zhou & J. Zempleni, unpublished data). 

There is a precedent for milk constituents conferring a growth 
advantage to select gut microbes. For example, human milk oligo
saccharides selectively amplify populations of Bifidobacterium infantis 
(136). The effects of milk exosome–induced changes in microbial com-
munities on host phenotypes remain to be assessed. A recent report 
suggests that the selection pressure of milk exosomes is sufficiently 
strong to cause an enrichment of polymorphisms and mutations of 
murine rectal bacteria in both exosome-free and exosome-supple-
mented cultures compared with reference genomes (F. Zhou & J. Zem-
pleni, unpublished data). 
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Exosome- and RNA-defined diets 

Exosome- and RNA-depleted (ERD) and exosome- and RNA-
sufficient (ERS) diets are based on an AIN-93G formulation and 
were referred to as ExoMinus and ExoPlus diets in the original 
publication (14, 135). In these diets, lyophilized milk powder (and 
soy protein) substitutes for milk casein in the AIN-93G formula 
to prepare a diet lacking dairy exosomes in the casein fraction. 
Macronutrients and micronutrients other than exosomes and their 
RNA cargos are the same in ERD and ERS diets. The milk added 
to the diets provides the equivalent of 0.5 L of milk consumed by 
a human adult per mouse and day. The milk used to prepare the 
powder for the ERD diet is ultrasonicated for 1.5 h and incubated 
for 1 h at 37◦C prior to lyophilization; the milk used to prepare the 
powder for the ERS is not ultrasonicated. Ultrasonication leads to a 
transient disruption of exosome membranes and depletion of RNA 
cargos in exosomes. Exosome membranes close during incubation, 
i.e., the number of exosomes remains the same in ERD and ERS 
milk. In the initial paper reporting the use of ERD and ERS diets, 
microRNA depletion was confirmed by quantitative real-time PCR 
analysis of miR-29b and miR-200c. Subsequent studies confirmed 
and expanded these finding by using RNA-sequencing (RNA-Seq) 
analysis, suggesting a near-complete loss of both microRNAs and 
messenger RNAs in ERD milk (S. Sukreet & J. Zempleni, unpub-
lished data). Recent evidence suggests that ultrasonication causes 
not only a depletion of RNA cargos but also a decrease in the trans-
port of exosomes by intestinal cells (S. Sukreet & J. Zempleni, un-
published data). Presumably, the decrease in cellular uptake of 
exosomes is due to sonication-induced changes in exosome mor-
phology and lipid composition of the exosome membrane bilayer. 
Changes in surface glycoprotein features might also contribute to 
the loss in bioavailability. That said, the loss of RNA cargos in com-
bination with poor bioavailability of sonicated exosomes makes 
ERD and ERS diets a powerful tool to assess phenotypes of dietary 
milk exosome and RNA depletion. Note that plasma levels of miR-
29b and miR-200c decreased by approximately 60% in C57BL/6 
mice fed the ERD diet for four weeks, starting at age three weeks, 
compared with ERS controls (14). 
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Phenotypes of dietary depletion of exosomes and cargos 

ERD and ERS diets were used to assess the phenotypes from dietary 
depletion of bovine milk exosomes in mice. Effects on brain function 
were among the strongest phenotypes observed. For example, female 
C57BL/6 mice fed the ERD diet displayed a loss of spatial learning and 
memory (SLM) compared with ERS controls (137). Effects of diet were 
more pronounced in pups born to parents fed the ERD diet and contin-
ued on the parental diets compared with mice started on experimen-
tal diets at age three weeks. Effects of the diets on SLM were similar 
in pups ages four and seven weeks. Aberrant metabolism of purines 
has been implicated in the loss of SLM in mice fed the ERD diet. The 
purine metabolites adenosine and ATP play an important role in SLM, 
and hepatic levels of purine metabolites were substantially higher in 
mice fed the ERD diet compared with ERS controls (138, 139). Effects 
of milk feeding on purine metabolites were similar in human cohorts 
compared with the changes observed in mice: The concentrations of 
purine metabolites were higher in plasma and urine in human milk 
avoiders compared with milk consumers and in infants fed soy for-
mula compared with infants fed human milk or milk formula (139). 
The mechanisms by which milk exosomes and RNA cargos alter pu-
rine metabolism is unknown, although the authors proposed that miR-
362-3p and miR-30a-5p in milk exosomes might be responsible for 
the differential expression of 5×-nucleotidase, cytosolic IIIB, and ad-
enosine deaminase in livers from mice fed ERD or ERS diets. Effects 
of milk exosome intake on brain biology were corroborated in stud-
ies of kainic acid–induced seizures (E. Mutai & J. Zempleni, unpub-
lished data). Seizure severity was stronger in mice fed an ERD diet 
than in ERS controls. Note that food and water intake, body composi-
tion, physical activity, and protein metabolism were the same in mice 
fed ERD and ERS diets (140). 

Dietary depletion of milk exosomes and RNA cargos caused a loss 
in fecundity. When male and female mice fed ERD were mated in all 
possible permutations [male ERD × female ERD, male ERS × female 
ERD, male ERD × female ERS, and male ERS × female ERS (control)], 
the litter size produced by ERS/ERS breeders was twice that of the 
litter size in other groups (M. Sadri & J. Zempleni, unpublished data). 
Seventeen genes were differentially expressed in placentas from ERD 
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and ERS dams; the majority of these genes are implicated in cell ad-
hesion, suggesting that the decrease in litter sizes might have been 
due to loss of implantation. This theory is consistent with previous 
observations that (endogenous) miR-30d is crucial for fetal implan-
tation, and synthetic miR-30d, transfected into bovine milk exosomes 
and delivered orally to pregnant mice on gestational day 16.5, accu-
mulates in the placenta and fetus (141, 142). 

Exosome- and RNA-defined diets elicited moderate changes in im-
mune responses at the intestinal level. Histopathology analysis sug-
gested that the composite score of inflammatory bowel disease was 
lower in the cecum of male Mdr1a−/− mice fed ERS compared with 
male Mdr1a−/− mice fed ERD (D. Wu & J. Zempleni, unpublished data). 
Mdr1a−/− mice are genetically predisposed to developing inflammatory 
bowel disease (143). The proinflammatory effect of ERD was attrib-
uted to an increased expression of the proinflammatory chemokine 
MIG in ERD mice compared with ERS controls. Eighty-seven genes 
were differentially expressed in the cecum of the dietary groups in 
Mdr1a−/− mice; 16 of the differentially expressed genes are implicated 
in immune function and inflammation. 

Milk exosomes and their microRNA cargos elicit a modest, if any, 
response from the human immune system. For example, the secre-
tion of proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflam-
matory (IL-10) cytokines by human peripheral blood mononuclear 
cells (PBMCs) ex vivo was not affected by milk consumption prior to 
PBMC collection or by the addition of bovine milk exosomes trans-
fected with four immune-relevant microRNAs (miR-15b, miR-21, miR-
155, and miR-223) to culture media. Milk exosomes and their cargos 
also elicited an immune response in healthy humans (E. Mutai & J. 
Zempleni, unpublished data). These observations are consistent with 
a moderate, nonsignificant increase in plasma cytokine concentra-
tions following oral administration of bovine milk in nude mice (144). 

Conclusions and future outlook 

The field of dietary exosomes and RNAs, particularly those in milk, 
has witnessed rapid expansion and progress during the past four 
years. But much uncharted territory remains to be explored. Exam-
ples include the discovery of the mechanisms through which dietary 
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depletion of milk exosomes elicits phenotypes, exosome–microbiome 
interactions, and the importance of exosomes and their cargos in hu-
man milk and infant formulas in infant nutrition. The use of milk 
exosomes in drug delivery also is a potentially rewarding field, which 
would benefit greatly from the development of protocols to direct 
drug-loaded exosomes to specific tissues. 
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