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Nadim J. Ajami1 and Joseph F. Petrosino1*

Abstract

Background: Most studies describing the human gut microbiome in healthy and diseased states have emphasized
the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a
fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric
or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated
the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2
(ITS2) region as well as the 18S rRNA gene.

Results: Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity
was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top
15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces,
Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.
8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal
communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers,
respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing
data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance
mycobiome constituents.

Conclusions: Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by
yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort
were high, revealing that unlike bacterial communities, an individual’s mycobiome is no more similar to itself over time
than to another person’s. Nonetheless, several fungal species persisted across a majority of samples, evidence that a
core gut mycobiome may exist. ITS2 sequencing data provided greater resolution of the mycobiome membership
compared to metagenomic and 18S rRNA gene sequencing data, suggesting that it is a more sensitive method for
studying the mycobiome of stool samples.

Keywords: Fungi, Microbiota, Microbiome, Fungal microbiome, Fecal microbiome, HMP, ITS2, There was a high degree o
Spacer, Metagenomics

* Correspondence: jpetrosi@bcm.edu
1Alkek Center for Metagenomics and Microbiome Research, Department of
Molecular Virology and Microbiology, Baylor College of Medicine, Houston,
TX, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Nash et al. Microbiome  (2017) 5:153 
DOI 10.1186/s40168-017-0373-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-017-0373-4&domain=pdf
mailto:jpetrosi@bcm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Fungi are ubiquitous in our environment and are known
to participate in natural and industrial processes includ-
ing production of antibiotics, bread, cheese, and alco-
holic beverages; decomposing natural debris; and
providing nutrients to plants in soil. Of the estimated
5.1 million different species of fungi in the world, only
around 300 cause disease regularly in humans [1, 2].
These relatively few fungi are responsible for millions of
infections each year, from superficial infections of the
skin and nails, to invasive infections of the lungs, blood,
and brain [3]. However, with the high prevalence of
fungi in the environment, it is not surprising that fungi
are also found on and in our bodies as constituents of
the human microbiome. The fungal microbiome, known
as the mycobiome, is an understudied component of the
human microbiome. Although the mycobiota make up a
small proportion of the entire human microbiome [4],
culture-independent methods utilizing high-throughput
sequencing techniques have allowed scientists to begin
to uncover the identity of our fungal commensals and
determine their role in human health and disease.
Fungi have been detected in the guts of several mam-

mals, including humans, mice, rats, pigs, and many rumin-
ant and non-ruminant herbivores [5–7]. Characterization
of C57BL/6 mice feces revealed greater than 97% of fungal
sequences belonged to only 10 fungal species, identifying
Candida tropicalis and Saccharomyces cerevisiae as the
most abundant commensal fungi [5]. In humans, fungi
have been found to colonize the gut shortly after birth [8].
In a study investigating correlations of archaea and fungi
with diet, volunteers had an abundance of Candida and
Saccharomyces species in their stool, with high Candida
abundance associated with recent consumption of carbo-
hydrates [9]. Fungi have been implicated in the exacerba-
tion of several human diseases, including inflammatory
bowel disease, graft versus host disease, Hirschsprung-
associated enterocolitis, colorectal cancer, and advanced
progression of hepatitis B virus infections [5, 10–15]. The
confirmed presence of fungi as a part of the human micro-
biome, as well as their potential role as contributors to
health and disease, highlight the need to characterize the
healthy human mycobiome more deeply. Knowledge of a
healthy mycobiome will aid in research identifying disease-
contributing fungal species and better define fungal-
bacterial relationships that are important for health.
One of the initial goals of the Human Microbiome

Project (HMP) was to characterize the “healthy” human
microbiome as a baseline for reference and comparison
studies [16]. Microbial communities in HMP healthy
donor stool samples were largely comprised of bacteria
from the Bacteroidetes and Firmicutes phyla, but varied
greatly between volunteers [17]. Although core oper-
ational taxonomic units (OTUs) were identified in HMP

donor stool, the relative abundance of these core OTUs
were found to vary nearly 5000-fold [18]. This suggests
that what constitutes a healthy gut microbiome can be
very different among individuals. However, the myco-
biome was not investigated in initial HMP studies.
Using DNA previously extracted from longitudinally

collected stool samples (two to three samples per volun-
teer, collected over an approximately 1-year period) from
HMP volunteers recruited at Baylor College of Medicine
(Houston, TX), we characterized the “healthy” human
gut mycobiome. Internal Transcribed Spacer 2 (ITS2) se-
quencing confirmed that fungal diversity in the gut is low.
Saccharomyces was found to be the most abundant fungal
genus in healthy human stool, followed by Malassezia and
Candida. These three genera were present in at least one
sample from nearly every volunteer in this study, although
the mycobiome was highly variable within and between
individuals. Sequencing of the 18S rRNA gene revealed
similar results to the ITS2 sequencing, but included
the addition of the non-fungal microbial eukaryote
(microeukaryote) Blastocystis as a prominent eukaryotic
member of the gut microbiome. Additionally, fungi identi-
fied in metagenomic sequences from HMP stool samples
agreed with the ITS2 sequencing results; however, deeper
metagenomic sequencing is likely required to fully survey
the fungal constituents of the gut. It is important to
understand what constitutes a healthy human gut myco-
biome as this allows for further understanding of fungal-
bacterial and fungal-host interactions, which may
contribute to human health and disease.

Results
Fungal diversity and composition in healthy human stool
To investigate gut fungal diversity and composition, a
total of 333 HMP stool sample microbial DNA extrac-
tions were retrieved and underwent ITS2 amplification
and sequencing. After rarefaction, the number of sam-
ples analyzed was reduced to 317 (from 147 volunteers),
with each sample normalized to 1954 sequences. Missing
taxonomic information in databases resulted in many
fungal OTUs being classified as “Fungi sp.” These OTUs
constituted 17% of the total OTUs. Altogether, 701
fungal OTUs were detected in the sample set, capturing
247 named genera.
Observed OTUs within samples ranged from 2 to 92

(Table 1). The Shannon diversity index, which measures
evenness and richness of communities within a sample, var-
ied between 0.004 and 2.94, indicating low alpha diversity
for most samples (Table 1). There was a significant differ-
ence between bacterial and fungal communities in both the
number of observed OTUs and the Shannon diversity
index values (Fig. 1a), supporting previous studies suggest-
ing fungal diversity is lower than that of bacteria in a
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healthy human gut [19, 20]. No associations were observed
between bacterial and fungal alpha diversity values as
assessed by linear regression (Fig. 1).
Samples primarily consisted of fungi from the Asco-

mycota and Basidiomycota phyla, with Ascomycota be-
ing the most abundant phylum represented (Fig. 2a).
The dominance of these phyla has been reported for
other parts of the human body, including the skin, va-
gina, and oral cavity [21–24], suggesting that these
phyla may be well-suited for life on mammalian hosts.
Saccharomyces was the most abundant genus among
all samples, followed by Malassezia and Candida
(Fig. 2b). Overall, genera that include yeast species,

including the three listed above as well as Cyberlindnera,
Pichia, Debaryomyces, Galactomyces, and Clavispora,
comprise eight of the 15 most abundant genera in the
samples (Fig. 2b).

Variability of the mycobiome
We sought to determine the variability between and
within HMP volunteers’ gut fungal communities. In the
original HMP study, the within-volunteer bacterial beta
diversity measured between consecutive samples was
lower (i.e., greater temporal similarity) compared to
samples donated by other volunteers. That is, variation
observed within a volunteer over time was lower than
between-volunteer variation. This was true for all major
body sites sampled [17]. In order to investigate whether
within-volunteer fungal community diversity in the gut
was lower than between-volunteer diversity as observed
for bacterial communities, we measured variability using
the Bray-Curtis dissimilarity metric. Ordination by prin-
cipal coordinates analysis (PCoA) of bacterial (Fig. 3a)
and fungal (Fig. 3b) communities reveals that HMP vol-
unteers show more similar fecal bacterial community

Table 1 Alpha Diversity of fungal communities in HMP stool
samples

Observed OTUs Shannon diversity index

Mean 14 1.27

Median 12 1.24

Minimum 2 0.004

Maximum 92 2.94

Fig. 1 Fungal and bacteria alpha diversity. a Observed OTUs and Shannon diversity index values of HMP samples with both 16S rRNA gene and
ITS2 sequencing data compared. Only visit 1 samples are shown for statistical purposes. Visit 2 and visit 3 comparisons showed similar results. For
statistical analysis, only samples with both ITS2 and 16S rRNA gene sequencing data were used. ***P < 0.0001 for both observed OTUs and
Shannon diversity index (Mann-Whitney test). b Associations between fungal (ITS2) and bacterial (16S) alpha diversity (observed OTUs and
Shannon diversity index values) for a given sample. Shaded gray region represents 95% confidence intervals. Linear regression analysis: P = 0.693
for observed OTUs and P = 0.929 for Shannon diversity. Only samples with ITS2 and 16S rRNA gene sequencing data are plotted and analyzed
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structure than fecal fungal community structure over
time. Pairwise comparisons of Bray-Curtis dissimilarity
values between longitudinal samples donated by the
same volunteer and between samples donated by differ-
ent volunteers for the 16S rRNA gene and ITS2 sequen-
cing data were performed. The results reveal that, unlike
bacterial communities, fungal communities exhibit high
intra- and inter-volunteer dissimilarity (i.e., Bray-Curtis
dissimilarity approaching 1.0) (Fig. 3c). This indicates
that while longitudinal samples of one individual’s fecal
bacterial microbiome are more similar to each other
than those of another individual, this does not appear to
be the case for the fecal mycobiome.

Stability of the mycobiome
To investigate the stability of the mycobiome, we mea-
sured the recurrence of fungal OTUs across all samples,
as well as across each volunteers’ longitudinal samples.
Despite the high degree of variability in the fungal com-
munities of healthy human stool, there were several fun-
gal taxa detected in a large proportion of HMP samples.
S. cerevisiae, M. restricta, and C. albicans OTUs were
present in 96.8, 88.3, and 80.8% of samples, respectively
(Table 2). Additionally, longitudinal sampling of these
volunteers allowed us to identify OTUs present at all
visits of each volunteer. Excluding volunteers with only

one sampling time point, S. cerevisiae, M. restricta, and
C. albicans were detected at all visits in 92.2, 78.3, and
63.6% of volunteers, respectively (n = 129; Table 2).
Although we observed great variability in the gut myco-
biome among healthy volunteers, these three fungal spe-
cies present in a majority of longitudinally collected
samples suggest they may be resident commensals in the
human gastrointestinal tract and part of our core gut
mycobiome. However, we cannot rule out the possibility
that consistent detection of these fungi in stool may in-
dicate regular exposure to these organisms through
environmental contact or diet.

Associations with host phenotype
To determine whether the mycobiome was associated
with any host phenotypes, we utilized clinical metadata
collected on HMP volunteers. These metadata include
age, gender, BMI, race/ethnicity, tobacco use, insurance
status, and more (for full list, see Additional file 1). Al-
though the HMP consortium was able to identify modest
associations between host phenotype and bacterial com-
munities [17], based on EnvFit analysis [25], no signifi-
cant covariate was associated with mycobiome profiles.
Our data suggest, in line with conclusions from the
HMP study, that the majority of variation in the human
microbiome is not explained well by available

Fig. 2 Relative abundance of fungi at the a phylum level and b genus level. a Relative abundance of fungal phyla in each sample. “Fungi sp.”
here represents unknown/unidentified fungal phylum. b Relative abundance of fungal genera in each sample. “Fungi sp.” here represents
unknown/unidentified fungal genus
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phenotypic metadata and that other factors such as diet,
environment, daily cycles, and host genetics may play a
larger role in influencing the human gut mycobiome.

Correlations between taxa
We investigated taxa correlations by combining available
16S rRNA gene and ITS2 sequencing data from the same
samples. Both fungal-fungal relationships and fungal-
bacterial relationships were interrogated using SparCC [26].
Analysis of HMP fecal ITS2 sequencing data revealed
the strongest positive correlation occurred between
Sarocladium and Fusarium, while Candida and
Saccharomyces exhibited the strongest negative correl-
ation (Fig. 4a). Comparing abundances of fungal and
bacterial genera using SparCC revealed both positive and
negative correlations between taxa in the two domains
(Fig. 4b). Rikenellaceae and Botrytis showed the strongest
inter-domain positive correlation, and Penicillium and
Faecalibacterium exhibited the strongest negative correl-
ation. The biological relevance of these correlations re-
mains unknown, but identification of relationships
between fungal and bacterial taxa within a healthy human
gut may reveal interactions that inform future studies
seeking to modulate the relative abundances of certain

taxa in the gut microbiome (e.g., through the use of fungi
or fungal metabolites that impact targeted bacterial
species).

18S rRNA gene sequencing
To determine whether the ITS2 primers were appropri-
ately capturing the majority of the mycobiome taxa, a re-
gion of the 18S rRNA gene was amplified from 44

Fig. 3 Variability of the mycobiome. a Bacterial (16S) and b Fungal (ITS2) Bray-Curtis dissimilarity shown on principal coordinates analysis (PCoA) plots for a
subset of volunteers (20 volunteers, randomly chosen, subsetted for clarity). Samples are colored by volunteer, and each volunteer was assigned the same
color in both a and b. Lines connect samples donated by the same volunteer. c Pairwise comparisons of Bray-Curtis dissimilarity values between samples
donated by the same volunteer (within volunteers) and between samples donated by different volunteers (between volunteers) for 16S rRNA gene and
ITS2 sequencing data. Bray-Curtis dissimilarity values range from 0 to 1, with 0 being the least dissimilar and 1 being the most dissimilar. ***P< 0.0001; ns:
not significant

Table 2 The prevalence of OTUs within samples and volunteers

OTU % of samples with
OTU (n = 317)

% of volunteers with OTU
at all time points (n = 129)

Saccharomyces cerevisiae 96.8 92.2

Malassezia restricta 88.3 78.3

Candida albicans 80.8 63.6

Candida sake 62.1 40.3

Cyberlindnera jadinii 62.1 40.3

Cladosporium sp. 59.3 34.9

Penicillium sp. 46.7 24.0

Galactomyces candidum 46.1 38.0

Malassezia globosa 36.0 12.4

Agaricus bisporus 35.0 17.1
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Baylor College of Medicine volunteers who had three
sample collections. The 18S rRNA gene is more con-
served and typically cannot resolve taxonomy as well as
the ITS region, but provides an independent measure of
fungal diversity that can identify biases in ITS2 analysis.
The 18S rRNA gene-specific primers used by the Earth
Microbiome Project (139f/EukBr) and Parfrey et al.
(515f/1119r) [27] amplify a significant number of bacter-
ial 16S rRNA genes. Therefore, to reduce the unwanted
16S rRNA gene signal, we designed new primers that
would capture eukaryotic diversity as broadly as possible,
while better discriminating against bacterial 16S rRNA
gene targets. Utilizing two studies that identified the best
regions for generating 18S rRNA gene primers [28, 29]
and an alignment of sequences from representatives of
every known microeukaryotic group, we designed the
1152F and 1428R (S. cerevisiae numbering) primers.
These primers amplify the 18S rRNA gene V6/V7 re-
gion, which is of an appropriate size for Illumina MiSeq
sequencing. Primer 1152F had at most 1 mismatch with
all examined representative microeukaryotes, while
1428R had at most 2 mismatches. The region internal to
the primers varied from 211 base pairs (Microsporidia)
to 380 base pairs (Acanthamoeba). Since PCR and se-
quencing with a 400-base pair control showed a similar

number of reads as a 271-base pair control, we were
confident that there was not a dramatic bias against or-
ganisms with large V6/V7 18S rRNA gene regions.
18S rRNA gene sequencing of HMP samples yielded a

mean of 17,189 reads/sample. While no reads mapped to
bacteria, just 16% mapped to fungi, with the remaining
reads mapping to mammals (mean 57% reads/sample),
Stramenopiles (13%), plants (13%), non-mammalian ani-
mals (0.2%), Intramacronucleata (0.02%), and Amoebozoa
(0.001%).The 18S rRNA gene sequencing of HMP stool
DNA was different from the ITS2 sequencing data in its
detection of the animals Mammalia (presumably mostly
food- or host-derived), Aves (bird), Teleostei (fish),
Ostreoida (oyster), Heterobranchia (snail), Diptera (fly),
Acari (mites/ticks), and Collembola (springtail), the
microeukaryotes Blastocystis (Stramenopiles), Entamoeba
(Amoebozoa), Chromulinaceae sp. (chrysophyte flagel-
late), and Colpodea (ciliate). Only one fungus, the basidio-
mycete Tritirachium, was detected by 18S rRNA gene
sequencing but not ITS2 sequencing. Notably, 18S rRNA
gene sequencing results revealed the presence of the non-
fungal microeukaryote Blastocystis in HMP stool samples.
Multiple Blastocystis subtypes (ST) were detected: 19 sam-
ples from 11 volunteers had at least 10 sequences of
Blastocystis, dominating 12 of those samples with > 99.9%

Fig. 4 Correlations occurring between fungal taxa (ITS2) and a fungal taxa (ITS2) or b bacterial taxa (16S). Red squares represent significant (P < 0.05
after FDR adjustment) negative correlations. Blue squares represent significant (P < 0.05 after FDR adjustment) positive correlations. Darker colors
represent stronger correlations. Non-significant correlations are not shown
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of their 18S rRNA gene sequences (Additional file 2: Table
S1). Volunteers with detectable Blastocystis had increased
bacterial diversity, but no significant difference in their
fungal diversity was observed (Additional file 2: Figure
S1). Filtering out host and plant sequences from 18S rRNA
gene sequencing data left 37 volunteers (66 samples) with
at least 100 sequences. The four most abundant fungi de-
tected were the same as observed using ITS2 primers:
Saccharomyces, Malassezia, Candida, and Cyberlindnera.

Fungi in metagenomic sequences
We sought to investigate whether fungi could be de-
tected in HMP fecal metagenomic sequencing data. The
HMP included relatively deep (targeting 10 gigabases
per sample) whole genome shotgun (WGS) sequencing
on stool samples to investigate metabolic pathways
encoded by fecal bacteria [16]. We mined these metage-
nomic sequences for reads that map to fungal genomes.
Of the > 27 billion metagenomic sequences generated,
approximately 0.01% aligned to fungal genomes. Mapped
fungal sequences in each sample supported the ITS2 se-
quencing data, finding Saccharomyces spp., Malassezia
spp., and Candida spp. among the most abundant fungi
(Table 3; Additional file 3: Tables S2 and S3). Addition-
ally, species in these genera were detected in a large
number of samples and volunteers, though not as preva-
lently as what was identified in the ITS2 sequencing
data. This is likely due to insufficient WGS sequencing
depth given the extremely low abundance of fungi in
stool, in which higher abundance microbes like bacteria
comprise the majority of metagenomic sequencing data.
Greater WGS sequencing depth, as well as more
complete fungal genomes to map this data to, are likely
required to determine the full collection of fungi across
volunteers and samples. Because of the high abundance
of bacterial DNA in stool samples, ITS2 sequencing may
be both a more accurate and sensitive method for

characterizing the human gut mycobiome, providing
greater resolution compared to moderately deep WGS
sequencing.

Discussion
Previous studies have examined fungal communities
largely in small disease centric cohorts, and information
detailing the healthy human mycobiome in a large, well-
studied cohort is lacking. In this study, extracted DNA
from fecal samples from the Human Microbiome Project
was used to investigate what constitutes a normal gut
mycobiome. This study represents the first time the fecal
mycobiome has been described in a large cohort of
healthy individuals (over 100 volunteers), with longitu-
dinal samples provided by each volunteer (up to three
samples per volunteer, totaling 317 samples). Further-
more, this is the first study that includes ITS, 18S rRNA
gene, 16S rRNA gene, and WGS metagenomic sequen-
cing data on the same samples, thus enabling a valid-
ation of methods and correlative analyses. The results
indicate that fungal diversity is lower than bacterial diversity
in the gut, and that yeast genera such as Saccharomyces,
Malassezia, and Candida are the most abundant genera
present in this cohort. Candida spp. have commonly been
identified as members of the healthy human mycobiome,
not only in the gut [9, 20] but also at several other body
sites, including the oral cavity [21, 22], vagina [24], and skin
[23, 30]. Previous studies have observed high levels of
Malassezia at different body sites, describing it as a prom-
inent commensal of the skin and oral mycobiomes [21, 23].
Interestingly, a study by Hoffmann et al. examining the
mycobiome of the gut in relation to diet in a smaller set of
healthy volunteers recognized Saccharomyces and Candida
as prevalent members of the gut mycobiome, but did not
identify Malassezia as a member of the gut mycobiota [9].
The discrepancy between the Hoffmann study and the re-
sults in the current study are likely due to differences in
study methodologies: while this study amplified the ITS2
region of the fungal rRNA operon, Hoffmann et al. ampli-
fied the Internal Transcribed Spacer 1 (ITS1) region. In
data described in Additional file 4, amplification and se-
quencing of a fecal samples found that the primers used to
amply the ITS1 region (ITS1F and ITS2 [31, 32], also used
in the Hoffmann study) did not detect Malassezia, indicat-
ing that sequence mismatches in the primers may not allow
for optimal amplification of Malassezia DNA. Alternatively,
Malassezia may not have been identified in the Hoffmann
study due to differences in cohort characteristics, such as
diet or geographical location. While volunteers in this study
were recruited from Houston, Texas, the volunteers in the
Hoffmann study were recruited from Pennsylvania. Differ-
ences in climate may impact the fungi to which individuals
are exposed, which may in turn impact the colonization of
fungi in the gut.

Table 3 Top 10 most prevalent fungi found in metagenomic
WGS sequences

Species Volunteers
(n = 215)

Samples
(n = 472)

Reads
(n = 27,091,491,028)

Malassezia restricta 131 191 5829

Saccharomyces cerevisiae 128 198 6205

Malassezia globosa 115 168 2373

Cyberlindnera jadinii 67 92 88,922

Saccharomyces pastorianus 66 84 307

Candida albicans 45 55 2426

Debaryomyces hansenii 31 32 278

Malassezia sympodialis 24 28 92

Alternaria alternata 24 24 81

Candida parapsilosis 23 25 158
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We determined that the gut mycobiome is highly vari-
able between individuals as well as within individuals
over time. A similar trend was observed in a study fol-
lowing fungal communities in mice, where it was found
that the gut mycobiome varied substantially over time in
mice receiving antibiotics as well as untreated control
mice [33]. Furthermore, it was observed that different
cages of mice receiving the same treatment also varied
in their dominant fungal lineage. These findings oc-
curred in mice housed in the same animal facility and
on a homogeneous diet. Additionally, a human gut
mycobiome study comprised of 24 individuals with two
sampling time points found that detection of the same
fungus at both time points occurred less than 20% of the
time [20]. While the gut mycobiome was found to be
variable within individuals, others have shown that the
oral mycobiome stays fairly stable over time within an
individual [34]. These results prompt a fundamental un-
answered question in the field: which, if any, fungi are
truly colonizing the human gut? It is known that the hu-
man microbiome is greatly impacted by diet, environ-
ment, and lifestyle [9, 35–37]. However, a limitation to
the current culture-independent techniques reported
here is that they only assess DNA signatures. Thus,
these data cannot distinguish between the DNA contrib-
uted from live or dead cells and do not differentiate mi-
crobes that are colonizing the gut from transients
derived from our diet and/or environment. But culture-
dependent studies have identified many of the same
abundant fungi we have detected here, including Can-
dida spp. [38–43], Saccharomyces cerevisiae [40, 43],
Malassezia spp. [38, 39, 44], Penicillium spp. [38–40,
42], Cladosporium spp. [38, 42], and Aspergillus spp.
[38–40, 42, 44]. Candida, Penicillim, and Aspergillus
spp. have been identified in fecal samples from many dif-
ferent volunteers across several studies, but Malassezia
and Saccharomyces spp. are cultured less consistently.
Malassezia has more stringent growth conditions (i.e., it
cannot be grown on common yeast-friendly medias like
Sabouraud or Potato Dextrose), which could account for
its lack of detection in many studies. Saccharomyces, on
the other hand, is easily cultured, suggesting its high
abundance and prevalence in ITS2 sequencing data may
be originating from other sources, especially since it is a
common component in many foods. This is also likely
the case for Cyberlindnera jadinii, a food additive also
known as “torula yeast,” which was found in high abun-
dance in some volunteers. Mycologists Suhr and Hallen-
Adams have proposed that the majority of fungal taxa
detected in culture-independent studies are likely not vi-
able in the gut due to growth constraints (e.g., several
Penicillium species do not grow at 37 °C) or known eco-
logical niches (e.g., Ustilago maydis is an obligate maize
pathogen) [45]. Notwithstanding, colonization is not

necessary to exert a biologically significant effect on the
host (e.g., many proposed probiotics do not necessarily
colonize the gut for prolonged periods [46, 47]). More
research must be done to determine which fungi, if any,
may be colonizing the human gut and how they may be
impacting resident microbes and the host.
Comparing results between existing mycobiome stud-

ies presents many challenges. First, non-standardized ap-
proaches are used by various labs to explore the
mycobiome, and analysis strategies are rapidly evolving.
Many molecular and bioinformatics methods utilized by
researchers were optimized for isolation and analysis of
bacterial communities and may not always be appropri-
ate for fungi. Although the extraction method used on
HMP stool samples was optimized for bacterial commu-
nity analysis, we determined that this did not have a sig-
nificant effect on alpha diversity, beta diversity, or
taxonomy compared to an extraction method utilizing
harsher mechanical lysis that is similar to methods used
in current mycobiome studies (Additional file 5). Fur-
thermore, there is still debate on the optimal region of
the rRNA operon to assay for fungal community profil-
ing. While the ITS1 region is a common target for mo-
lecular studies, our laboratory and others have found
ITS2 may be more suitable for detecting fungal com-
mensals. A closer look at ITS1F and ITS2 primers re-
vealed that these commonly used ITS1 region-targeting
primers contain critical mismatches to common fungal
taxa found in the human microbiome, including
Galactomyces geotrichum, Yarrowia lipolytica, and fungi
belonging to the Malasseziales and Tremellales orders
[48]. Additionally, available fungal databases are quite
sparse and less well-curated compared to bacterial data-
bases, both in terms of the overall number of sequences
and the accuracy of taxonomic information. Misidentifi-
cations in fungal databases occur frequently, a circum-
stance that is compounded by fungal dimorphism (the
ability of some fungi to change morphologically between
hyphal and yeast forms depending on environmental
conditions). This phenomenon often results in different
studies identifying identical ITS sequences as two differ-
ent fungi. Moreover, database entries may contain insuffi-
cient taxonomic information to correctly identify fungi,
leading to the “Fungi sp.” or “unclassified fungi” identifica-
tions seen in our and others’ data [20]. Our study found
that approximately 17% of OTUs lacked taxonomic infor-
mation. Finally, availability of fungal genomes is also lack-
ing compared to bacteria, though there are efforts
underway to change this [49]. This scarcity of complete
fungal genomes makes identifying fungi in complex sam-
ples difficult and is compounded by the generally low rela-
tive abundance of fungi compared with other microbes. In
the HMP samples used in this study, we found that fungal
sequences constituted approximately 0.01% of the total
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number of metagenomic sequences. However, this num-
ber may increase as more fungal genomes are sequenced
and more data may be mapped to these genomes.
To confirm that no major components of the myco-

biome were being missed due to known ITS2 primer
bias, a subset of samples were analyzed by broad
eukaryotic 18S rRNA gene amplification and sequen-
cing. Only one additional fungal genus, Tritirachium,
was detected that was not among the named genera
detected by ITS2 sequencing in the 89 shared sam-
ples. The discovery of this low abundance genus in a
single sample was likely due to further sampling of a
diverse sample rather than an ITS2 primer bias. The
18S rRNA gene results lend support to the complete-
ness of the ITS2 fungal data but also demonstrate
that fungi are not the only microeukaryotes present
in the gut. In particular, the animal gut symbiont
Blastocystis was present in 25% (11/44) of the volun-
teers examined, which is within the carriage range
found in other developed countries. In contrast,
Dientamoeba fragilis, another intestinal microeukar-
yote common in some healthy populations, was not
detected in HMP samples [50]. The Blastocystis sub-
types that were detected (ST1, ST2, ST3) are, to-
gether with ST4, the most frequently identified in
humans [51]. Colonization by Blastocystis has been
associated with increased bacterial diversity [52], and
this held true for HMP samples. However, the detec-
tion of Blastocystis did not correspond to increased
fungal diversity—yet another distinct attribute of the
mycobiome. We also found that 18S rRNA gene se-
quencing data mapped to a variety of presumably
dietary sources, such as fish, meat, fowl, and plants,
raising the idea that perhaps 18S rRNA gene sequen-
cing data could be used to validate, or as a surrogate
for, dietary information collected by questionnaires.

Conclusions
The human gut mycobiome is low in diversity compared
to gut bacterial communities and is dominated by the
yeast genera Saccharomyces, Malassezia, and Candida.
Both inter- and intra-volunteer variability were high, yet
several species tended to persist across all samples and
within longitudinal samples belonging to a single indi-
vidual. While no associations between the mycobiome
and volunteer metadata were detected, correlation ana-
lysis revealed newly discovered relationships between
and among bacterial and fungal taxa, and further studies
of these correlations could identify novel means by
which to modulate the abundance of specific micro-
biome constituents. Finally, 18S rRNA gene and WGS
metagenomic sequencing aligned with the results of
ITS2 sequencing, but ITS2 data provided greater

resolution of the mycobiome membership, suggesting
that ITS2 sequencing is a more accurate and sensitive
method for studying the mycobiome in stool samples.
Understanding what constitutes a “normal” or “healthy”
gut mycobiome could assist in future research efforts to
determine contributions of commensal fungi to the
health of the host or the exacerbation of disease.

Methods
Sample collection and DNA extraction
Stool samples were collected and DNA was extracted as
previously described [53]. In brief, stool samples were
collected, and approximately 2 ml of stool was homoge-
nized by vortexing in 5 ml of MO BIO lysis buffer
(PowerLyzer PowerSoil Bead solution, MO BIO Labora-
tories). After slow-speed centrifugation, 1 ml of super-
natant was added to MO BIO Garnet Bead tubes
containing 750 μl of lysis buffer. The sample was then
incubated at 65 °C for 10 min followed by 95 °C for
10 min. Further DNA extraction steps were performed
using the standard protocol from the MO BIO Power-
Soil DNA Isolation Kit. After initial sample extraction,
aliquoted DNA samples were stored at − 80 °C before
retrieval for this study. The present study only used
DNA from stool samples collected at Baylor College of
Medicine in Houston, TX, from volunteers who donated
between one and three stool samples over the course of
approximately 1 year. Detailed information about volun-
teer inclusion criteria, consent forms, sample collection,
extraction protocols, and supplemental study information
can be found on the HMP Data Analysis and Coordination
Center website (http://www.hmpdacc.org/).
Harsher mechanical lysis methods are often employed

for fungal DNA extraction because of the chitin in fun-
gal cell walls [21, 38, 54, 55]. We wanted to confirm that
the method used for microbial DNA extraction from
HMP stool samples was not preventing us from captur-
ing all the fungal diversity in the samples. Using stool
from five healthy non-HMP donors, we compared fungal
diversity and taxonomy using the HMP method of mi-
crobial DNA extraction (MO BIO PowerSoil DNA
Isolation Kit) and a modified version of this protocol
that is similar to what other investigators have used [21,
38, 54, 55]. This modified protocol included 0.5-mm
glass beads in place of garnet beads and use of the
FastPrep-24 Instrument (MP Biomedicals, speed 6.5 for
1 min, performed twice with a 5 min break in between)
in place of a benchtop vortexer. Results (Additional file 5:
Figure S2) revealed no difference in fungal taxonomy,
alpha diversity, or beta diversity between the unmodified
MO BIO PowerSoil DNA Isolation Kit protocol and the
modified version in which harsher mechanical lysis steps
were used.
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ITS2 amplification and sequencing
Before analyzing HMP samples, conditions for PCR were
optimized as described in Additional file 4: Table S4 and
S5. The Internal Transcribed Spacer 2 (ITS2) region was
amplified from HMP stool DNA using primers ITS3 and
ITS4 [32]. Each primer included an Illumina adapter and
linker sequence designed using PrimerProspector [56].
Each reverse primer (ITS4) also contained a unique 12
base pair Golay barcode [57]. Amplification, sequencing,
and index primers can be found in Additional file 6: Table
S6. PCRs (20 μl total volume) contained 2 μl of Accuprime
10X PCR Buffer II (Invitrogen), 0.15 μl of Accuprime Taq
High Fidelity DNA Polymerase (Invitrogen), 1 μl of each
primer (0.4 μM final concentration), 14.25 μl of template
DNA, and 1.60 μl of BSA. PCR cycling conditions were as
follows: initial denaturation at 95 °C for 2 min, 35 amplifi-
cation cycles of 95 °C for 20 s, 56 °C for 45 s, and 72 °C
for 90 s, followed by a final extension step of 72 °C for
10 min. PCR products were visualized using agarose gel
electrophoresis, quantified using Quant-iT PicoGreen
dsDNA Assay Kit (Molecular Probes), and then cleaned
using ChargeSwitch PCR Clean-Up Kit (Invitrogen). Sam-
ples were pooled and sequenced on the Illumina MiSeq
platform using the Illumina MiSeq Reagent v3 600-cycle
(2 × 300 bp) Kit.

Bioinformatics and statistical analysis
ITS2 sequencing analysis
The ITS2 read pairs were demultiplexed based on the
unique molecular barcodes. Reads were merged and fil-
tered using USEARCH v7.0.1090 [58] using default set-
tings, except with a minimum overlap length set to
50 bp and with staggered alignments enabled. A custom
algorithm was used to cut off overhangs if read pairs
were staggered. In the event of a conflict, the base with
the higher Q score was chosen. Merged reads containing
more than 0.5% expected errors were discarded.
ITS2 sequences were stepwise clustered into OTUs at

a similarity cutoff value of 97% using the UPARSE pipe-
line [59]. Chimeras were removed using USEARCH
v8.0.1517 and UCHIME [60]. OTUs were aligned against
a combined database comprised of sequences from the
NCBI GenBank Plant (including fungi) and Environmen-
tal databases [61]. Abundances were recovered by map-
ping the demultiplexed reads to the UPARSE OTUs. A
custom script constructed an OTU table from the out-
put files generated in the previous two steps. Unmapped
(< 80% identity or < 95% coverage) OTUs were manually
analyzed by BLASTN [62].
Samples were rarefied to 1954 reads/sample, unless other-

wise noted, based on rarefaction analysis (Additional file 7:
Figure S3a), to optimize number of sequences/sample with-
out losing too many samples from the dataset. Analysis and
visualization of microbiome communities was conducted in

R version 3.3.3 [63], utilizing the phyloseq package version
1.19.1 [64] to import sample data and calculate alpha- and
beta-diversity metrics. Plots were made using ggplot2 pack-
age version 2.2.1 [65], except for Fig. 4, which is described
below. Significance of categorical variables was determined
using the non-parametric Mann-Whitney test or Kruskal-
Wallis test and adjusted for multiple comparisons with the
FDR algorithm [66], unless otherwise stated. For box and
whisker plots, the line represents the median value and the
upper and lower hinges correspond to the first and third
quartile. The whiskers extend from the box to the largest or
smallest (upper or lower whisker, respectively) value no fur-
ther than 1.5 * the inter-quartile range. Points plotted be-
yond the whiskers are considered outliers.
To determine associations with host phenotype, we

performed the “EnvFit” function within the “Vegan”
package version 2.4-2 [25] in R to determine covariates
significantly associated with the mycobiome profiles.
The model was performed based on the Bray-Curtis dis-
similarity in NMDS ordination. Significance was deter-
mined by 10,000 permutations, and resulting p values
were adjusted for multiple comparisons with the FDR al-
gorithm [66].
Correlation analysis between taxa was performed using

SparCC [26]. Fungal and bacterial taxa must make up at
least 0.05% of the overall abundance to be included in the
correlation analysis. Correlation values were plotted in R
using the corrplot package version 0.77 [67]. p values were
adjusted for multiple comparisons with the FDR algorithm
[66]. Significant correlation values are signified by a col-
ored square (either blue or red). That is, squares that lack
color represent correlation values that are not significant
(p > 0.05 after FDR adjustment) based on the statistical
test built into the package. For comparisons between bac-
terial and fungal taxa, samples were included only if they
had both 16S rRNA gene sequencing and ITS2 sequencing
data available. Raw correlation values and p values for
SparCC analyses can be found in Additional file 8: Tables
S8, S9, S10, S11, S12, and S13.

16S rRNA gene sequencing analysis
HMP 16S V3-V5 sequences were downloaded from http://
www.hmpdacc.org. Read pairs were demultiplexed and
then merged using USEARCH v7.0.1090 [58], allowing zero
mismatches and a minimum overlap of 50 bp. Sequences
were clustered into OTUs at a similarity cutoff value of
97% using the UPARSE algorithm [59]. OTUs were subse-
quently mapped to the SILVA database v123 [68] for taxo-
nomic classification. An OTU table was constructed and
used for further analyses.

18S rRNA gene analysis
The eukaryotic 18S rRNA gene was amplified, sequenced,
and processed as for ITS2, with the following exceptions:
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(1) 5 μl template was used in PCR, with annealing at 50 °
C, (2) the only reads retained were those that contained
no mismatches to expected barcode/linker/primer se-
quences, (3) to maximize phylogeny resolution, sequences
were stepwise clustered into OTUs at a similarity cutoff
value of 99%, and (4) OTUs were mapped to the SILVA
database [68]. Dual-barcoded primers were composed of
the 58 bp Illumina flow cell binding and sequencing pri-
mer regions, one of 22 different 4 bp barcodes, a TT
linker, and the 20 or 23 bp 18S rRNA gene-targeting
sequence (Additional file 6: Table S7).
Differences in bacterial and fungal diversity associated

with the presence of Blastocystis were determined using
the Mann-Whitney test with one random sample/volun-
teer. There was 16S rRNA gene sequencing data for 5
Blastocystis-positive and 26 Blastocystis-negative volun-
teers and ITS2 sequencing data for 11 Blastocystis-positive
and 35 Blastocystis-negative volunteers. Rarefaction
curves for 18S rRNA gene sequencing data is provided in
Additional file 7: Figure S3b.

Fungi in metagenomic sequences
The HMP HiSeq metagenomic data set (from NCBI
Accession PRJNA43017, also available at http://
www.hmpdacc.org/) consisted of 27,091,491,028 total se-
quences from 472 stool samples of 215 volunteers, 64 of
which overlapped with volunteers whose samples under-
went ITS2 sequencing in this study. MetaPhlAn2 [69]
and searches against ITS databases yielded very few fun-
gal hits. Therefore, we instead mapped reads against all
1315 fungal genomes in NCBI (downloaded July 19,
2016). However, all examined hits initially mapped to ei-
ther bacterial contamination within the fungal data, or
fungal genes with high identity to bacterial homologs.
Therefore, we used a 35 bp seed size MegaBLAST of the
fungal genome assemblies against all NCBI genome as-
semblies to eliminate non-fungal hits of ≥ 85% identity,
reducing the database of fungal genomes 1 gigabase
(GB) from its original 47 GB size (46 GB final size).
HMP reads were trimmed using BBDuk and searched
against the cleaned fungal database using Bowtie2 [70]
with a seed size of 20 bp. Positive hits were further re-
fined by (1) only examining hits with 0 or 1 mismatches,
(2) searching the reads against Silva SSU and LSU v. 128
databases [68] using Bowtie2 and removing any hits, and
(3) running all translated and untranslated reads against
non-redundant GenBank protein and nucleotide data-
bases using DIAMOND [71] and BLASTN [72] to re-
move those reads that hit bacteria, archaea, non-fungal
eukaryotes, or nothing. Taxonomic names were assigned
from the top nucleotide (96%) or protein (4% with no
taxonomic name by BLASTN) hit. Further pipeline de-
velopment is needed to better classify reads from con-
served fungal genes that match multiple taxa equally

well. Each taxonomic name was assigned from the top
hit to the fungal genome assembly database; however, if
multiple taxa hit equally, the assigned name was ran-
domly chosen. Therefore, conserved fungal genes have
the potential to overestimate the contribution of closely
related taxa.
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mycobiome. (PDF 17 kb)

Additional file 2: Blastocystis. Description – Table S1: Blastocystis-positive
samples, percentage of 18S sequences Blastocystis, and subtypes of
Blastocystis identified. Figure S1: Alpha diversity of samples in which
Blastocystis was (blue) or was not (yellow) detected. a 16S rRNA gene
alpha diversity from dataset rarefied to 735 reads. Due to small sample
size, the statistical significance varied greatly depending on the
rarefaction and randomly chosen samples. b ITS2 alpha diversity from
dataset rarefied to 4043 reads. (PDF 51 kb)
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S2: Complete list of fungi found in metagenomic sequencing data. Table
S3: Fungal reads found in metagenomic sequencing data. (XLSX 6137 kb)

Additional file 4: Comparative analysis of fungal primers. Description – PCR
primer optimization background, methods, and results. Table S4: Primers
used in PCR primer optimization tests. Table S5: Alpha Diversity of different
primer pairs. (PDF 201 kb)

Additional file 5: Extraction methods comparison. Description – Fungal
DNA extraction methods comparison methods and results. Figure S2: a
Alpha diversity (Observed OTUs and Shannon diversity) of both fungal
DNA extraction methods. b Beta diversity (Bray-Curtis dissimilarity) of
samples, colored by method, shaped by donor. c Relative abundance of
fungal taxa. (PDF 344 kb)
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Table S6: ITS2 sequencing and index primers used in this study. Table
S7: 18S sequencing primers used in this study. (XLSX 24 kb)

Additional file 7: Rarefaction curves for ITS2 and 18S rRNA gene
sequencing. Description – Figure S3: Rarefaction analysis curves for a
ITS2 sequencing data and b 18S rRNA gene sequencing data. Shaded
region represents 95% confidence interval. (PDF 29 kb)

Additional file 8: SparCC correlations and p-values. Description – Table
S8: ITS2 vs ITS2 correlations. Table S9: ITS2 vs ITS2 p-values. Table S10:
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