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ABSTRACT

In this paper, linear and spherical semivariogram models were determined for use in kriging hourly and daily
solar irradiation for every season of the year. The data used to generate the models were from 18 weather stations
in western Nebraska. The models generated were tested using cross validation. The performance of the spherical
and linear semivariogram models were compared with each other and also with the semivariogram models based
on the best fit to the sample semivariogram of a particular day or hour. There were no significant differences
in the performance of the three models. This result and the comparable errors produced by the models in kriging
indicated that the linear and spherical models could be used to perform kriging at any hour and day of the year
without deriving an individual semivariogram model for that day or hour.

The seasonal mean absolute errors associated with kriging, within the network, when using the spherical or
the linear semivariograms models were between 10% and 13% of the mean irradiation for daily irradiation and
between 12% and 20% for hourly irradiation. These errors represent an improvement of 1%–2% when compared
with replacing data at a given site with the data of the nearest weather station.

1. Introduction

During the last four decades, many scientists have
addressed the problem of determining the spatial and
temporal variability of solar radiation. The reasons for
this attention are the great number of applications for
this climate variable and the limitations in the historical
density of radiation measurement networks imposed by
economic constraints.

In solar energy engineering, solar radiation data are
used for the design and performance simulation of sys-

* This paper has been approved as Journal No. 12746 of the Ne-
braska Agricultural Experiment Station.

Corresponding author address: Gabriel Merino, Dept. of Biolog-
ical Systems Engineering, 212 L. W. Chase Hall, Lincoln, NE 68583-
0726.
E-mail: gmerino@unlserve.unl.edu

tems such as thermal solar collectors, photovoltaic sys-
tems, and passive systems such as space heating and
solar buildings. Engineers use monthly mean values of
daily solar irradiation for preliminary sizing and pro-
ductivity estimation of solar energy systems (Markvart
1994). However, the use of monthly means of daily
values limits the accuracy of estimates, because most
solar energy systems exhibit a nonlinear dependence
upon weather variables. Thus, computer simulations are
generally used to accommodate the complexity involved
with design optimization of solar energy systems (Fiksel
et al. 1995). These simulations require hourly climatic
and load variables as input data.

Quite often, the engineer or the researcher faces the
problem of not having hourly or even daily solar ra-
diation data available at the site under study. In such
situations, one alternative is to extrapolate solar radia-
tion data measured at other locations. In such a case, it
becomes necessary to assess the spatial variability of
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solar radiation not only in terms of the radiation regime
itself but also with regard to the economic consequenc-
es.

Many authors have studied the extrapolation and in-
terpolation of daily and hourly solar radiation. Generally
speaking, they determined the spatial variability be-
tween data recorded at different weather stations as a
function of the station separation distances. To quantify
the spatial variability, most of the authors have used the
correlation coefficient (Kerr et al. 1968; Long and Ack-
erman 1995; Barnett et al. 1998), the coefficient of de-
termination (Kerr et al. 1968; Hubbard 1994), the co-
efficient of variability (Suckling 1983), or the standard
deviation of the differences of measured solar irradiation
(Suckling 1985; Long and Ackerman 1995). These sta-
tistics have been determined as functions of separation
distance between station pairs. In almost every study,
the statistics were calculated from sets of aggregated
data. From the calculated variability, conclusions have
been made about the errors involved when using the
data of a particular weather station as being represen-
tative of a nearby site.

In relation to the approaches described above, there
are limitations that should be highlighted. 1) The cor-
relation coefficient r may be low when the range of
values of solar radiation is small, even under high spatial
coherence (Hay and Hanson 1985). 2) As demonstrated
by Gunst (1995), when calculating the above statistics
for station pairs using aggregated data, diurnal and sea-
sonal trends inherent to solar radiation force the cal-
culated statistics to account not only for spatial coher-
ence but also for temporal correlation. 3) Most of the
studies have used aggregated data for a period of 1 yr
or less to estimate spatial correlation; however, as de-
termined by Hubbard (1994), when using aggregated
daily data, it is necessary to consider at least 5 yr of
data to get stable values of the determination coefficient.
4) When spatial correlation is estimated for daily and
hourly solar radiation from aggregated data, the esti-
mated values do not represent the coherence of the ra-
diation field in individual days or hours of the period
from which the data were obtained (Long and Ackerman
1995). This fact makes statistics calculated from aggre-
gate data useless for inferring extrapolation errors at
any particular day or hour.

The above limitations have prompted the need to ad-
dress the problem of extrapolation of hourly and daily
solar irradiation from the perspective taken by Bland
and Clayton (1994) and by Bland (1996), that is, using
kriging as the extrapolation method. Bland and Clayton
(1994) analyzed the spatial structure of solar radiation
in Wisconsin by using satellite-derived measurements
of daily radiation to investigate the effects of network
density on errors of prediction when only sparse data
are available. Bland and Clayton (1994) included 44
days of 1984 in their study. On individual days, all
locations in the complete database were estimated by
kriging, using the semivariogram from that day and se-

mivariograms from other days. Semivariograms of solar
radiation calculated on individual days were essentially
linear. The researchers concluded that, when semivario-
grams from the day with the greatest variation are used,
errors less than 4.6 MJ m22 day21 can be expected for
80% of the area within the measurement grid on 90%
of the days, given a 270-km spacing between stations.
Increasing network density fourfold typically halved ab-
solute errors of estimation. The errors of prediction by
kriging were calculated as the absolute difference be-
tween the true value for the point from the complete
dataset and the kriged value. Bland (1996) studied the
adequacy of the current array of ground-based pyran-
ometers in the Midwest using kriging over a network
covering 655 000 km2 (four states). Bland (1996) con-
cluded that the array of 51 pyranometers provided suf-
ficient data to interpolate daily irradiation with a median
error of 2 MJ m22 day21 for partially cloudy days at
locations 40–80 km away from the nearest measure-
ment. These conclusions were made from the analysis
of 44 days of 1992 taken within the period of June to
November.

In this study, we examine the capability of a network
of weather stations in western Nebraska to estimate (by
kriging) hourly and daily solar radiation at any point
within the region covered by the network. This capa-
bility was judged according to the extrapolation errors
obtained when the data at a particular site are estimated
using the data of all the stations in the network simul-
taneously.

One of the principal kriging problems is to select one
from among the unlimited number of semivariogram
models that ensure unique solutions to the kriging equa-
tions. Because of the high variability of solar radiation
with time, finding semivariogram models that can be
applied to long time series of daily and hourly solar
irradiation is a difficult task and at the same time a
mandatory one in order to make kriging an efficient
process.

Instead of using an aggregate set of daily or hourly
solar radiation data to estimate semivariogram models,
all days and a set of 600 h of 1996 were analyzed in-
dividually. In that way, the problem of seasonal and
diurnal trends affecting the spatial variability was avoid-
ed. From the semivariograms obtained, semivariogram
models were developed that can be applied to any day
and hour of the year.

Accordingly, the objectives of this work were: 1) to
determine semivariogram models for kriging hourly so-
lar irradiation, 2) to determine semivariogram models
applicable for kriging daily solar irradiation, and 3) to
quantify the errors associated with estimates derived
from hourly and daily solar irradiation data with the
models obtained.

2. Materials and methods
a. Data

Hourly and daily integrated values of global solar
irradiation on a horizontal surface were analyzed in this
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FIG. 1. Map of climate stations in western Nebraska.

study. The data used are from 1996 and come from 18
weather stations in western Nebraska. These stations
form part of the High Plains Regional Climate Center’s
(HPRCC) Automated Weather Data Network.

At these stations, a silicon photodiode detector, the
Li-Cor, Inc., 200,1 is used to measure solar radiation.
The sensors are calibrated periodically with an Eppley
precision spectral pyranometer. This calibration gives
an absolute accuracy of about 5% (Barnett et al. 1998).
Maintenance is performed by the HPRCC. Data are
downloaded, quality controlled, and archived by the
HPRCC.

A map of the weather stations used is shown in Fig.
1. The latitude and longitude differences between sta-
tions are not greater than 2.58 and 4.58, respectively,
and the distances fluctuate between 10 and 375 km. With
these small ranges in latitude and longitude, possible
problems of anisotropy were avoided (Gunst 1995).

b. Ordinary kriging

1) THE KRIGING SYSTEM

In this study, ordinary kriging was evaluated as a
procedure for extrapolation of hourly and daily solar
irradiation data. Ordinary kriging is a linear estimator
by which an estimated value of solar irradiation in a
particular site can be calculated, from solar radiation
measured at other sites, according to the linear com-
bination

k

Z*(x) 5 v Z(x ), (1)O j j
j51

1 Mention of a vendor does not imply endorsement over other ven-
dors.

where Z is solar irradiation, Z*(x) is the estimated value
of Z at point x, Z(xj) is the measured value of Z at point
xj, vj is the weight given to observed value Z(xj) (these
weights are allowed to change as estimates are computed
at different locations), x is the coordinates [Universal
Transverse Mercator (UTM)] of an estimated point, xj

is the coordinates (UTM) of a measured value, and k is
the number of measured values used in the estimation.
The weights vj are calculated using the ordinary kriging
system of equations (Isaaks and Srivastava 1989).

A common approach when solving the kriging system
of equations is to employ what is called a semivariogram
function g(h). An estimate of the semivariogram can be
calculated from the equation

n(h)1
2g(h) 5 [Z(x ) 2 Z(x )] . (2)O i i1h2n(h) i51

In this equation, Z(xi) and Z(xi1h) are values of the var-
iable Z measured at points xi and xi1h, respectively, sep-
arated by a distance h. Data measurements sites are
rarely spaced exactly at h distances apart; therefore, to
use Eq. (2) to estimate semivariograms, data must be
grouped into pairs with similar separation distances of
about h (distance lags). Each lag contains n(h) number
of pairs.

Once the semivariogram function has been computed
from the sampled values of Z at different locations, the
next step is to fit a parametric semivariogram model to
the sample semivariogram g(h). There are two reasons
for not using the sample semivariogram directly in the
ordinary kriging system. First, the kriging system of
equations may need semivariogram values for distances
that are not present in the sample data; this requirement
will depend on the location at which Z is being esti-
mated. Second, the use of the sample semivariogram
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does not guarantee the existence and uniqueness of the
solution to the ordinary kriging system of equations. To
accomplish such requirements, a semivariogram func-
tion that is negative definite must be provided (Arms-
trong and Diamond 1984). A common method used to
fit parametric semivariogram models to the sample se-
mivariogram is least squares curve fitting (Cressie
1985). That approach was taken in this work using the
proprietary software GS1 (Robertson 1998).

The most common semivariogram models used to fit
sample semivariograms and therefore used to describe
the spatial variability of the variable under study are
Gaussian, spherical, exponential, and linear. The param-
eters that characterize these models are the nugget, sill,
and range and are calculated through the fitting process.
As is reported later in this paper, the semivariograms
that fit the sample semivariograms obtained when an-
alyzing daily and hourly solar irradiation were in almost
every case the linear or spherical models.

The parameters that determine the semivariogram
models to fit the sample semivariograms were calculated
using GS1 (Robertson 1998). First, this software cal-
culated the sample semivariogram from measured val-
ues of solar irradiation and the spatial coordinates cor-
responding to these values by using Eq. (2). Then,
curves corresponding to spherical, linear, Gaussian, and
exponential were derived using least squares curve fit-
ting. As a result of this process, the parameters for each
model and the regression coefficient R2 of the fitting
procedure were determined. The semivariogram model
with the higher value of R2 was selected as the appro-
priate model to represent the sample semivariogram.

2) CROSS VALIDATION

This technique was performed using the public-do-
main software package GEO-EAS (Geostatistical En-
vironmental Assessment Software; Englund and Sparks
1988). Cross validation was used to compare kriged
estimates obtained with different semivariogram models
and true measured values. This process allowed a com-
parison between different semivariogram models and a
quantification of the errors associated with the kriging
process. The errors were calculated as the difference
between the estimated (kriged) solar irradiation at the
stations and the actual value of solar irradiation mea-
sured at these stations. The estimated value at a partic-
ular station was obtained by discarding the actual value
temporarily from the dataset and then estimating (krig-
ing) that value using the remaining data from the rest
of the stations. This procedure was repeated for all the
stations. Thus, a list of true values and estimated values
was obtained for the set of stations, and the distribution
of errors was analyzed.

The distribution of errors was analyzed using three
summary statistics: the mean error (ME), the mean ab-
solute error (MAE), and the root-mean-square error
(rmse):

k

[Z*(x ) 2 Z(x )]O i i
i51ME 5 , (3)

k
k

|Z*(x ) 2 Z(x )|O i i
i51MAE 5 , (4)

k
1/2k 

2 [Z*(x ) 2 Z(x )]O i i i51rmse 5 , (5) 
k 

where k is the number of measured values in the dataset
Z*(xi) is the estimated value of variable Z at point xi,
and Z(xi) is the actual value of Z at point xi.

The ME quantified the overall bias and detected if
the semivariogram model was producing overestimation
or underestimation in the kriging process. The MAE
quantified the net bias generated, and the rmse incor-
porated both the bias and the spread of the error dis-
tribution (Isaaks and Srivastava 1989).

3. Data analysis and results

a. Determination of generic semivariogram models
for hourly and daily solar irradiation

For each day of 1996, a sample semivariogram was
calculated using Eq. (2) and daily solar irradiation data
from the 18 weather stations. The next step was to fit
a semivariogram model to each sample semivariogram
using the least squares curve-fitting procedure. The
model with the greatest value of R2 was taken as most
representative of the sample semivariogram. The out-
puts of this process were the semivariogram model pa-
rameters and a value of the corresponding regression
coefficient, R2. After semivariogram models were de-
termined for every day of 1996, they were grouped ac-
cording to the season of the year to which they belonged.
Because it was considered visually impossible to as-
sociate any of the semivariogram models with the sam-
ple semivariogram when the R2value was less than 0.3,
only semivariogram models that were determined to
have a regression coefficient greater than 0.3 were kept
for further analysis. To determine if particular days (with
low or high irradiation) were arbitrarily left out of the
analysis when dropping semivariogram models with low
R2, graphs were made of average daily irradiation (over
the 18 stations) versus R2 for each season. The result
of this is shown in Fig. 2 for the summer season. No
significant correlation was found in this figure between
the average daily irradiation and R2, and similar results
were found for the other seasons.

In the curve-fitting process, the exponential model
always represented a very low occurrence frequency
(less than 6%). Therefore, only spherical and linear
models were considered as feasible candidates for krig-
ing daily solar irradiation.
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FIG. 2. Average daily irradiation of 18 climate stations vs regression coefficient R2 of the best-
fit model to the sample semivariograms for all days in summer.

TABLE 1. Linear and spherical semivariogram model parameters by season, average regression coefficient R, and frequency of occurrence
for daily solar irradiation.

Season Model
Nugget

(MJ m22 day21)2

Sill
(MJ m22 day21)2 Range (km) R2 Frequency (%)

Summer

Autumn

Winter

Spring

Linear
Spherical
Linear
Spherical
Linear
Spherical
Linear
Spherical

1.07
0.07
0.33
0.15
0.11
0.22
0.48
0.50

46.55
28.61
14.80

9.17
4.96
3.40

29.65
21.14

343.21
187.56
343.21
233.80
343.21
248.59
343.21
222.97

0.63
0.46
0.65
0.48
0.69
0.51
0.71
0.54

15.2
21.7
35.1
26.3
49.4
27.4
35.8
33.7

The next problem to solve was to find only one spher-
ical model and one linear model for each season. The
approach taken was to average the semivariogram pa-
rameters for a given model over individual days (Gunst
1995). In summary, using this method for each season,
eight semivariogram models, two for each season (linear
and spherical), were produced.

The same procedure to obtain semivariogram models
for daily irradiation was applied to obtain the models
for hourly irradiation. The only difference in the anal-
ysis was that not all hours of 1996 were analyzed. Ini-
tially, 30 days were randomly selected from each season,
and then from each day, 5 h were again randomly se-
lected. This procedure gave 600 h to be analyzed. The
same procedure described above for daily data was ap-
plied to these hours. An important problem found at this
point was the high variability between the semivario-
gram model parameters calculated for different hours.
Thus, to obtain semivariogram parameters that were re-
ally representative of each season, more random days
and therefore more random hours were added to the

analysis until the model parameters calculated from the
averages became stable.

To determine if particular hours (with low or high
irradiation) were left out of the analysis when dropping
semivariogram models with low R2, graphs were made
of average hourly irradiation (over the 18 stations) ver-
sus R2 for each season. The result is shown in Fig. 3
for the summer season. No significant correlation was
found in this figure between the average hourly irra-
diation and R2, and similar results were found for the
other seasons.

The semivariogram models obtained for daily and
hourly solar irradiation data are presented in Table 1
and Table 2, respectively. In these tables, R2 is the av-
erage regression coefficient of the models from which
the parameters were derived. The frequency column ac-
counts for the fraction of the total semivariograms cal-
culated for each season that corresponded to a particular
type of model. For example, for daily irradiation, 15.2%
of the sample semivariograms calculated for summer
were best fit with linear models and 21.7% with spher-
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FIG. 3. Average hourly irradiation of 18 climate stations vs regression coefficient R2 of the
best-fit model to the sample semivariogram for 250 h in summer.

TABLE 2. Linear and spherical semivariogram model parameters by season, average regression coefficient R, and frequency of occurrence
for hourly solar irradiation.

Season Model
Nugget

(MJ m22 h21)2

Sill
(MJ m22 h21)2 Range (km) R2 Frequency (%)

Summer

Autumn

Winter

Spring

Linear
Spherical
Linear
Spherical
Linear
Spherical
Linear
Spherical

0.050
0.026
0.024
0.009
0.010
0.005
0.022
0.016

0.90
0.54
0.70
0.24
0.19
0.10
0.58
0.40

343.2
240.0
343.2
200.0
343.2
210.0
343.2
250.0

0.54
0.46
0.62
0.46
0.62
0.33
0.73
0.48

20.8
12.8
15.6
25.2
20.4
31.8
28.2
21.4

ical models (see Table 1). The information in Table 1
indicates that linear models fit the sample semivario-
gram with more frequency than the spherical semiva-
riogram and with a higher average regression coeffi-
cient, which agrees with the results reported by Bland
and Clayton (1994). Also, the nugget values for the
linear model found here agree with the values reported
by Bland (1996).

The seasonal variability of daily and hourly solar ir-
radiation was reflected in the considerable seasonal var-
iations of the sill parameter for the linear model as well
as for the spherical model. This result agrees with that
observed by Suckling (1985). The same issue is evident
from the variations with season observed in the range
parameters for the spherical model. The maximum range
obtained in this model was about 250 km for daily and
for hourly irradiation, which is over 100 km less than
the largest distance between stations in the network.
This supports the hypothesis that the network chosen
was big enough to describe daily and hourly spatial
variability. The range values reported for the linear mod-

els do not change, because they correspond to the max-
imum lag distances used when the sample semivario-
grams were calculated. Actually, a linear model does
not have a range.

b. Cross validation using the generic semivariogram
models generated

The goal of this process was to compare the perfor-
mance (in kriging) of the semivariogram models gen-
erated for every season with the semivariogram models
that best fit the sample semivariograms obtained for any
particular day or hour.

To perform cross validation with semivariogram mod-
els for daily and hourly solar irradiation, 30 days and
30 h were randomly selected within every season of
1996. In each of these 120 days and 120 h, three cross
validations were performed using the daily (hourly) so-
lar irradiation measured at the 18 stations. The first cross
validation was made using the linear semivariogram
model determined for the corresponding season from
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TABLE 3. Cross validation results of daily solar irradiation by season for 120 days in 1996 using spherical model, best-fit models, and the
NN procedure. Statistics are defined in text.

Season Model r2

ME
(MJ m22 day21)

MAE
(MJ m22 day21)

Rmse
(MJ m22 day21)

Summer
(21.31)**

Spring
(17.30)

Autumn
(10.08)

Winter
(8.54)

Spherical
Best-fit
NN
Spherical
Best-fit
NN
Spherical
Best-fit
NN
Spherical
Best-fit
NN

0.54
0.53
0.50
0.80
0.79
0.71
0.89
0.90
0.86
0.89
0.90
0.82

0.12 (0.6%)*
0.14 (0.7%)

20.75 (23.5%)
0.23 (1.3%)
0.12 (0.7%)

20.88 (25.1%)
0.09 (0.9%)

20.06 (0.6%)
20.30 (23.0%)

0.08 (0.9%)
0.08 (0.9%)

20.23 (22.7%)

2.80 (13.1%)*
2.76 (13.0%)
2.80 (13.1%)
1.96 (11.3%)
1.95 (11.3%)
2.14 (12.4%)
1.16 (11.5%)
1.12 (11.1%)
1.30 (12.9%)
0.89 (10.4%)
0.87 (10.2%)
1.04 (12.2%)

3.89
3.94
4.25
2.87
2.95
3.64
1.70
1.64
1.89
1.20
1.18
1.46

* Percentage of the mean irradiation.
** Mean irradiation (MJ m22 day21).

TABLE 4. Cross validation results of hourly solar irradiation by season for 120 h in 1996 using spherical model, best-fit models, and NN
procedure. Statistics are defined in the text.

Season Model r2

ME
(MJ m22 m21)

MAE
(MJ m22 m21)

rmse
(MJ m22 m21)

Summer
(2.18)**

Spring
(1.83)

Autumn
(1.07)

Winter
(0.96)

Spherical
Best-fit
NN
Spherical
Best-fit
NN
Spherical
Best-fit
NN
Spherical
Best-fit
NN

0.68
0.70
0.63
0.81
0.82
0.75
0.82
0.84
0.80
0.87
0.88
0.83

20.05 (22.3%)*
20.04 (21.8%)

0.01 (0.5%)
0.01 (0.5%)
0.003 (0.2%)

20.027 (21.5%)
0.01 (0.9%)
0.01 (1.9%)

20.02 (21.9%)
0.01 (1.0%)
0.01 (1.0%)

20.03 (23.1%)

0.35 (16.1%)*
0.33 (15.1%)
0.38 (17.4%)
0.23 (12.6%)
0.23 (12.6%)
0.27 (14.8%)
0.21 (19.6%)
0.20 (18.7%)
0.22 (20.6%)
0.15 (15.6%)
0.15 (15.6%)
0.17 (17.7%)

0.48
0.46
0.51
0.33
0.33
0.39
0.31
0.29
0.33
0.22
0.21
0.26

* Percentage of the mean irradiation.
** Mean irradiation (MJ m22 h21).

which the particular day (hour) studied belonged. The
second cross validation was made with the spherical
semivariogram model determined for the same season.
Last, a third cross validation was made using the se-
mivariogram model that best fit the sample semivario-
gram calculated with the data corresponding to the day
(hour) studied. This third model, determined through a
fitting procedure, varied from day (hour) to day (hour)
and could be any of the semivariogram models presented
before (linear, spherical, Gaussian, or exponential).

The output of the process described above was three
sets of estimated and measured solar radiation for each
of the 120 days (hours) randomly selected. Each set
consisted of 18 measured and 18 estimated values, since
18 stations were considered. On the other hand, each
set corresponds to the particular model used to generate
the estimated data (linear, spherical, or the model fit to
the sample semivariogram). To evaluate quantitatively
the performance of each model, the statistics MAE,
rmse, and ME were applied to these sets after they were
grouped together according to the season considered.

Thus, for example, for summer and spherical model, the
statistics were applied to the complete set of actual and
estimated values at the 18 stations in the 30 days (hours)
selected.

No significant differences were found between the
statistics calculated with the actual and estimated solar
radiation using the linear model and the spherical model;
therefore, only the results with the spherical model are
reported in this paper. The resultant statistics are pre-
sented in Table 3 and Table 4 for daily and hourly ir-
radiation, respectively. In these tables, the coefficient of
determination r2 of the correlation made between the
measured and estimated values was also included. The
ME and the MAE statistics are given as actual values
and as a percentage of the average measured irradiation
(mean irradiation) over the 18 stations and over the days
(hours) considered in the cross validation.

For the worst case (summer), graphical representa-
tions of correlation between actual and estimated values
with the spherical model are reported in Fig. 4 and Fig.
5 for daily and hourly irradiation, respectively. As can
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FIG. 4. Estimated vs actual daily solar irradiation using the spherical semivariogram model for daily
irradiation in summer.

FIG. 5. Estimated vs actual hourly solar irradiation using the spherical semivariogram model
for daily irradiation in summer.

be seen in Fig. 4, the spread in estimated daily values
is higher for intermediate values of solar irradiation than
for low or high solar radiation. This result indicates that
kriging, like any other extrapolation method (Long and
Ackerman 1995), performs better for overcast or clear
sky days than for partly cloudy days. The same phe-
nomenon was observed for hourly solar radiation, with
a lower degree of differentiation due to the fact that the
errors obtained with kriging are higher for hourly data
than for daily data (in percentage).

To compare the performance of kriging with a simpler
procedure to estimate missing solar radiation data, cross
validation was also performed using the nearest neigh-

bor (NN) technique. In this procedure, each estimated
data value for each station was obtained by substituting
for each actual data value with the actual data from the
nearest station. This analysis was performed for daily
and hourly solar radiation using the data from the same
hours and days that were used to test the semivariogram
models.

The results reported in Table 3 and Table 4 indicated
no significant differences in the statistics r2, ME, MAE,
and rmse when the generated models (linear and spher-
ical) and the best-fit models (for individual days and
hours) were used in cross validation. The same conclu-
sion can be made for hourly data (Table 4). The meaning
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of this is that the spherical or the generic linear models
generated (Tables 1 and 2) could be used to perform
kriging on any day (hour) without developing a specific
semivariogram for that particular day or hour.

The best result obtained with these semivariogram
models in cross validation for daily radiation was ob-
tained in winter, when the MAEs were less than 1 MJ
m22 day21, which corresponded to about 10% of the
daily measured irradiation. The determination coeffi-
cient r2 between actual and estimated daily irradiation
was about 0.9 in this case. On the other hand, the worst
results were obtained in summer, with an MAE of about
2.8 MJ m22 day21, which corresponded to about 13%
of the mean measured irradiation. In this case, r2 was
about 0.5. These results represent a considerable im-
provement when compared with the errors predicted by
Suckling (1985) and Kerr et al. (1968).

For hourly irradiation, the best result in cross vali-
dation was also obtained in winter, when the MAEs were
about 0.15 MJ m22 h21, which corresponded to about
15% of the hourly measured irradiation. The determi-
nation coefficient r2 between actual and estimated hour-
ly irradiation was about 0.9 in this case. On the other
hand, the worst results were obtained in summer, with
an MAE of about 0.35 MJ m22 h21, which corresponded
to about 16% of the mean measured irradiation. In this
case, r2 was about 0.7. Thus, we have larger percentage
errors when kriging hourly data using the generated and
best-fit models than when kriging daily data. However,
considering the errors obtained and the distances be-
tween stations in the network, a considerable improve-
ment is obtained when compared with the results re-
ported by Hay and Hanson (1985) and Barnett et al.
(1998).

When using the generic spherical (or linear) semi-
variogram models or the best-fit models, the results
based on cross validation were better than the results
obtained with the NN procedure (see Tables 3 and 4).
Thus, for the MAE an improvement between 1% and
2% (Tables 3 and 4) of the mean irradiation can be
obtained using kriging versus the NN procedure.

4. Conclusions

In this paper, spatial variability of daily and hourly
solar irradiation was analyzed from a different point of
view. Ordinary kriging was evaluated as a method for
extrapolation of irradiation within a network of weather
stations in western Nebraska.

To determine semivariogram models to perform krig-
ing of solar irradiation, days and hours were analyzed
individually to avoid the influence of seasonal and daily
trends in the spatial structure. From this analysis, sea-
sonal semivariogram models (linear and spherical) were
developed and tested against the semivariogram models
that best fit a particular day or hour. Because the results
indicated no significant differences in kriging when us-

ing the linear, spherical, or best-fit semivariogram mod-
els, it can be concluded that the seasonal linear models
and the seasonal spherical models will work equally well
for kriging solar radiation. This finding is considered to
be of major importance, because it allows development
of computational programs for kriging irradiation in the
region without choosing semivariograms on a daily or
hourly basis.

All kriging approaches gave the poorest performance
in the summer season, which was linked to intermediate
solar radiation values that apparently exhibit higher var-
iability due to the complexity of summer convective
cloud systems. The seasonal mean absolute errors ob-
tained in kriging, within the network, when using the
spherical or the linear semivariogram models were be-
tween 10% and 13% of the mean irradiation for daily
irradiation and between 12% and 20% for hourly solar
irradiation. These errors are not considered to be ex-
cessive, given that the accuracy of measurements has
been estimated to be 5%. These errors represent an im-
provement of 1% to 2% when compared with those
obtained by replacing data at a given site with data from
the nearest weather station. In any case, these errors
have to be evaluated in terms of the specific application
of interest. Such analysis will be addressed in a future
work.
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