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Original Article

Glucocorticoid Priming of Nonviral Gene Delivery
to hMSCs Increases Transfection by Reducing
Induced Stresses
Andrew Hamann,1 Tyler Kozisek,1 Kelly Broad,1 and Angela K. Pannier1

1Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA

Human mesenchymal stem cells (hMSCs) are under study for
cell and gene therapeutics because of their immunomodulatory
and regenerative properties. Safe and efficient gene delivery
could increase hMSC clinical potential by enabling expression
of transgenes for control over factor production, behavior, and
differentiation. Viral delivery is efficient but suffers from safety
issues, while nonviral methods are safe but highly inefficient,
especially in hMSCs.We previously demonstrated that priming
cells with glucocorticoids (Gcs) before delivery of DNA
complexes significantly increases hMSC transfection, which
correlates with a rescue of transfection-induced metabolic
and protein synthesis decline, and apoptosis. In this work, we
show that transgene expression enhancement is mediated by
transcriptional activation of endogenous hMSC genes by the
cytosolic glucocorticoid receptor (cGR) and that transfection
enhancement can be potentiated with a GR transcription-acti-
vation synergist. We demonstrate that the Gc-activated cGR
modulates endogenous hMSC gene expression to ameliorate
transfection-induced endoplasmic reticulum (ER) and oxida-
tive stresses, apoptosis, and inflammatory responses to prevent
hMSC metabolic and protein synthesis decline, resulting in
enhanced transgene expression after nonviral gene delivery to
hMSCs. These results provide insights important for
rational design of more efficient nonviral gene delivery and
priming techniques that could be utilized for clinical hMSC
applications.

INTRODUCTION
Because of their roles in wound healing,1 trophic tissue support,2,3

and immunomodulation,4 along with their differentiation ability5

and immune-privileged status,6,7 human mesenchymal stem cells
(hMSCs) are under study for cell and gene therapeutics,8 as well as
tissue engineering and regenerative medicine.9 In addition to their
natural healing and regenerative potentials, safe and efficient gene de-
livery to hMSCs could further endow these cells with beneficial prop-
erties for cell therapies.10 For example, hMSCs can be engineered to
express pro-survival genes;11,12 adhesion ligands targeting specific
cell-membrane receptors;13–15 lineage-specific genes for directed dif-
ferentiation;16,17 or genes that encode for the production and secre-
tion of growth factors,18,19 cytokines,20,21 and microRNA (miRNA)

in exosomes.22,23 Thus, researchers are investigating methods to effi-
ciently transfer genes to hMSCs.

Viral delivery is efficient but suffers from safety issues related to
immunogenicity and insertional mutagenesis,24,25 as well as small
transgene capacity and difficult design and scale-up.26 Nonviral
methods typically deliver plasmid DNA (pDNA) with lipid or poly-
mer transfection reagents that condense DNA to nanosized com-
plexes that are capable of crossing cell membranes and facilitating
in vitro transfection.27 Nonviral methods overcome many of the
shortcomings of viral delivery but suffer from low efficiency, espe-
cially in hMSCs. For example, optimized transfection of hMSCs
with the commercially available Lipofectamine (LF) 2000 results in
only 10%–30% of cells being successfully transfected,28–31 and the
ubiquitously used 25-kDa branched polyethylenimine (PEI) is only
able to achieve about 20% transfection.31–33 In addition, both lipid-
and polymer-based transfections are associated with significant
toxicity in hMSCs,34,35 limiting both transgene expression levels
and downstream therapeutic efficacy. Therefore, more efficient and
less toxic nonviral gene delivery methods to hMSCs are needed to
advance their therapeutic potential.

Previously, to both improve and better understand the biology of
nonviral gene delivery, our work has focused on pharmacologically
“priming” cells for increased transgene expression36 by modulating
relevant molecular pathways that are important to the biological pro-
cesses involved in gene delivery.37,38 Specifically, we demonstrated in
hMSCs transfected with pDNA lipoplexes, that the glucocorticoid
(Gc) dexamethasone (DEX) increases transgenic luciferase activity
about 10-fold, increases transgenic enhanced green fluorescent pro-
tein (EGFP) mean fluorescence intensity of EGFP-positive (EGFP+)
cells about 2-fold, increases transfection efficiency about 3-fold (i.e.,
percentage of EGFP+ transfected cells), and increases the duration
of transgene expression, all relative to unprimed transfected hMSCs.39
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It was also shown that binding of the glucocorticoid receptor (GR)
was required for the Gc-mediated enhancement and that DEX
ameliorated the decrease in metabolic activity induced by transfection
of hMSCs.39 Recently, we also demonstrated that enhanced transfec-
tion by Gc priming, in both bone-marrow-derived hMSCs (BMSCs)
and adipose-derived hMSCs (AMSCs) derived from multiple donors,
is not the result of increased cellular or nuclear pDNA internalization,
or of messenger RNA (mRNA) transcription, but that Gc rescues
hMSCs from transfection-induced apoptosis and protein synthesis
decline.40 In this work, we further investigate the potential mecha-
nisms by which Gc priming enhances hMSC transfection by
exploring how DEX and other specific GR modulators affect trans-
gene expression as well as endogenous pathways related to GR action
and nonviral gene delivery.

RESULTS
Gc Priming Enhances Nonviral Gene Delivery to hMSCs

First, to again demonstrate that Gc priming can enhance nonviral
gene delivery to hMSCs, BMSCs and AMSCs derived from
multiple human donors (denoted as donor number or, hereinafter,

D[number]) (Table S1) were “primed” for transfection by treatment
with 150 nMDEX or ethanol vehicle control (VC) 25 min prior to de-
livery of LF 3000 complexed with pEGFP-Luc plasmid expressing a
fusion protein of EGFP and luciferase. DNA lipoplexes had an
average diameter of 1,016 ± 76 nm and an average zeta potential of
15.4 ± 0.5 mV. Treating hMSCs with DEX increased transgenic lucif-
erase expression from 4- to 8-fold over VCs, depending on donor and
tissue source, measured in luminescence relative light units (RLUs)
normalized to total protein (RLUs per milligram of protein), and
DEX increases were statistically significant in all four donors, relative
to VCs (p % 0.01) (Figure 1A). Treatment with DEX also increased
transfection efficiency (i.e., the proportion of hMSCs expressing
EGFP) from 1.5- to 2.3-fold over VCs, and DEX increases were statis-
tically significant in all four donors, relative to VCs (p % 0.05) (Fig-
ure 1B). We next aimed to explore the molecular mechanisms by
which Gc priming enhances hMSC transfection. Since the GR can
exist within either the membrane or the cytoplasm, we first investi-
gated which GR type mediates transfection priming in hMSCs.

Gc Transfection Enhancement Is Mediated by Binding of

Cytosolic GR

Our lab has demonstrated that Gc priming of hMSC transfection
enhancement is mediated by binding of Gc to the GR, as treatment
with the GR antagonist RU486 prevented transfection enhancement
by DEX.39 In order to determine whether the membrane-bound GR
(mGR) or cytosolic (cGR) is involved in the enhancement of transfec-
tion by Gc treatment, hMSCs were either treated with membrane-
impermeable bovine serum albumin (BSA)-conjugated cortisol
(BSA-Cort; Cort covalently linked to BSA at a density of about 30
Cort molecules per BSA molecule) or with cell-permeable unconju-
gated (free) BSA and cortisol (Cort) as a control. BSA-Cort can
bind mGR but cannot cross cell membranes to bind cGR,41 whereas
free Cort can bind mGR and cross cell membranes to bind cGR.
When hMSCs were primed with 0.5 mM or 1 mM BSA-Cort 25 min
prior to transfection with pEGFP-Luc complexed with LF reagents,
luciferase transgene expression was not significantly enhanced over
VCs, while 0.5 mM or 1 mM free unconjugated Cort with BSA was
able to significantly enhance transgene expression between 3- and
14-fold over VCs in D1, D2, and D3 BMSCs, as well as D1 AMSCs
(p % 0.05) (Figure 2). Failure of BSA-Cort to increase transgene
expression over VCs suggests that the cGR, a transcription factor
that activates and represses endogenous gene expression, must be
bound for Gc to enhance transfection in hMSCs and that mGR, which
exerts its effects via non-genomic signaling pathways,41 is not
involved in pathways that increase hMSC transfection. We next
aimed to explore by what mechanisms the cGR enhances hMSC
transfection.

Gc Transfection Enhancement Is Mediated by GR Gene

Transcription Activation

Since cGR activated by Gc is known to exert its effects by both acti-
vation and repression of specific gene transcription, we primed
hMSCs with varying concentrations of either DEX or compound A
(CpdA), a “dissociated Gc” that induces the GR to repress but not

A

B

Figure 1. Priming hMSCs with the Gc Drug DEX Significantly Enhances

Nonviral Gene Delivery

(A and B) 150 nM DEX treatment 25 min prior to transfection with lipid reagent,

Lipofectamine (LF) 3000, complexed with pDNA encoding a fusion protein of

luciferase and enhanced green fluorescent protein (EGFP), increased (A) transgenic

luciferase expression from 4- to 8-fold as measured in relative light units normalized

per milligram of cellular protein (RLU/mg protein) and (B) increased transfection

efficiency (i.e., the proportion of hMSCs expressing EGFP) by about 2-fold as

quantified by fluorescent microscopy, all relative to vehicle control (VC) treatment, in

D1 AMSCs, D3 AMSCs, D2 BMSCs, and D4 BMSCs. Data are plotted as mean ±

SEM (n = 3). Asterisks denote significance to VC conditions: *p% 0.05; **p% 0.01.

Fold change increase over VC conditions.
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activate gene transcription.42When hMSCs were treated 25 min prior
to transfection, DEX (10 nM to 1 mM) significantly increased trans-
genic luciferase expression over VCs (p % 0.01), while CpdA
(10 nM to 10 mM) did not increase luciferase expression over VCs,
in transfected D2 BMSCs, D3 BMSCs, D1 AMSCs, and D2 AMSCs
(Figure 3). Failure of CpdA to increase hMSC transgene expression
suggests that Gc priming enhances nonviral gene delivery as a result
of GR activation, but not repression, of the transcription of specific
endogenous hMSC genes. We next hypothesized that, if activation
of endogenous genes by cGR mediates hMSC transfection enhance-
ment, a known synergist of GR transcriptional activation may be
able to further increase transgene expression over Gc priming alone.

Gc Transfection Enhancement Can Be Potentiated by Inhibiting

GR Nuclear Exit

Since the aforementioned studies suggest that Gc enhances nonviral
gene delivery through activation of endogenous gene transcription
by cGR, we hypothesized that this enhancement could be increased
further with nuclear exportin 1 (XPO1) inhibitor KPT-330 (KPT),
a drug that has been shown to synergistically increase GR nuclear resi-
dence and transcriptional activation.43 Priming hMSCs with 150 nM
DEX and KPT (100 nM to 1 mM) 25 min prior to transfection signif-
icantly increased transgenic luciferase expression from 2- to 4-fold
over priming with DEX alone (p % 0.05) in D1 BMSCs, D2 BMSCs,
D3 BMSCs, D1 AMSCs, and D2 AMSCs (Figures 4 and S1). In addi-
tion, priming with 1 mM KPT alone did not significantly increase
transgene expression over no-priming controls (p > 0.05) in D1
AMSCs, D4 AMSCs, D1 BMSCs, and D4 BMSCs (Figure S1). After
demonstrating that hMSC transfection enhancement by Gc priming
is mediated by the activation of endogenous genes by GR and further
enhanced by a known synergist of GR transcriptional activation, we
next aimed to investigate what GR-modulated pathways may influ-
ence hMSC transfection.

Gc Ameliorates hMSC Oxidative Stress Induced by Transfection

Since it is known that transfection can induce cell stresses, our previ-
ous work showed that Gc ameliorates hMSC apoptosis induced by
transfection,40 and our results in the previous sections implicate GR
transcriptional activation as a potential mechanism of Gc transfection
priming, we next measured the effect of transfection and Gc priming
on hMSC oxidative stress by fluorescently staining cellular reactive
oxygen species (ROS) 48 h after transfection. Transfection of hMSCs
when primed with only VC significantly increased the proportion of
cells positively stained for ROS 4- to 5-fold over that of untransfected
hMSCs, (p % 0.0001), whereas priming with 150 nM DEX 25 min
prior to transfection significantly decreased the proportion of cells
positively stained for ROS to about half that of VCs (p % 0.001) in
D4 BMSCs, D1 AMSCs, D2 AMSCs, and D3 AMSCs (Figure 5).
Given that Gc priming ameliorated hMSC oxidative stress induced
by transfection, we next studied specific endogenous genes that GR
activation of transcription may modulate to improve hMSC health
and enhance their transfection.

Transfection and Gc Modulates Expression of Endogenous

Genes Related to ER Stress, Apoptosis, Oxidative Stress, and

Inflammation in hMSCs

To further elucidate mechanisms of transfection and Gc priming
in hMSCs, we investigated the expression of specific endogenous
genes related to transfection and GR action. Specifically, we quan-
tified mRNA expression of genes related to endoplasmic reticulum
(ER) stress, apoptosis, oxidative stress, and inflammation by qRT-
PCR, 24 h after transfection, when transgene production and
toxicity become evident in hMSCs. Transfection of hMSCs when
only primed with VC upregulated the ER stress-induced and
apoptosis mediator, CCAAT-enhancer-binding protein homolo-
gous protein (CHOP), from 2- to 4-fold relative to untransfected
cells, and this increase was statistically significant in D1 AMSCs

A

C D

B Figure 2. Cell-Impermeable Glucocorticoid Does

Not Enhance hMSC Transfection

Cell-permeable free cortisol (Cort), capable of binding

cytosolic glucocorticoid receptor (cGR), delivered with

bovine serum albumin (BSA) significantly increases

transgenic luciferase expression in transfected hMSCs

over the VC, but membrane-impermeable BSA-Cort

conjugate, only capable of binding membranous (mGR),

does not increase luciferase expression. hMSCs were

primed with compounds 25 min prior to transfection with

lipid-pDNA complexes and lysed for analysis after 48 h.

(A–D) Free Cort treatment resulted in 3- to 14-fold in-

creases in transgene expression, normalized to total

cellular protein, over VC in (A) D1 BMSCs, (B) D2 BMSCs,

(C) D3 BMSCs, and (D) D1 AMSCs. Data are plotted as

mean ± SEM (n = 3) of luciferase luminescence relative

light units per milligram of total protein (RLU/mg protein).

Asterisks denote significance to VC conditions: *p% 0.05;

**p % 0.01; ***p % 0.001; ****p % 0.0001. Fold change

increase over VC conditions.
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(p % 0.05) and D2 AMSCs (p % 0.0001) (Figure 6A). However,
transfected hMSCs primed with DEX had CHOP expression levels
that were downregulated relative to VC, and this decrease was sta-
tistically significant in D1 AMSCs (p % 0.05) and D2 AMSCs
(p % 0.001) (Figure 6A). Furthermore, expression of the antioxi-
dant gene metallothionein was upregulated 2- to 5-fold by trans-
fection (in the presence of VC) relative to untransfected hMSCs,
and this increase was statistically significant in D2 BMSCs (p %

0.001) and D3 BMSCs (p % 0.01) (Figure 6B). Metallothionein
expression was further upregulated by DEX priming relative to
VC-primed hMSCs, and this increase was statistically significant
in all donors (p % 0.01) (Figure 6B). Additionally, expression of
the inflammatory cytokine interleukin-6 (IL-6), was significantly
upregulated in all VC-primed transfected hMSCs from 10- to
40-fold relative to untransfected cells (p % 0.05) (Figure 6C).
DEX priming downregulated IL-6 expression relative to VC-
primed transfected cells, and this decrease was statistically signif-
icant in D2 BMSCs (p % 0.0001), D1 AMSCs (p % 0.05), and
D2 AMSCs (p % 0.05) (Figure 6C). Finally, inflammatory enzyme
cyclooxygenase-2 (COX2) expression was significantly upregulated
in all transfected VC-primed hMSCs from 10- to 60-fold, relative
to untransfected cells (p % 0.05) (Figure 6D). DEX priming down-
regulated COX2 expression relative to transfected VC primed
hMSCs, and this decrease was statistically significant in D2 BMSCs
(p % 0.05), D3 BMSCs (p % 0.05), and D1 AMSCs (p % 0.05).
(Figure 6D). Taken together, the results of these endogenous
gene expression studies suggest that hMSC transfection induces
ER stress and apoptosis (CHOP), oxidative stress (metallothio-
nein), and inflammatory (IL-6 and COX2) pathways, and the
expression of these genes (and, thus, these processes) is reduced
to levels closer to that of untransfected cells, through gene activa-
tion by GR after Gc priming, resulting in improved cell health and
subsequent transgene expression.

DISCUSSION
This work explored themechanisms by which Gc-bound GR enhances
nonviral gene delivery to hMSCs. The Gc priming effect on hMSC
transfection is robust and consistent, as evidenced by significant in-
creases in total transgenic luciferase expression from both BMSCs
and AMSCs derived from multiple human donors (Figure 1A), as
well as significant increases in transfection efficiency (i.e., proportion
of hMSCs expressing transgene) (Figure 1B). Gc enhancement of
hMSC transfection reported in this work is consistent with our previ-
ous demonstration of about 10-fold increases in total luciferase expres-
sion39,40 and about 2-fold increases in transfection efficiency.39

Most Gc effects are mediated by binding of GR, and we previously
demonstrated that binding of GR is required to mediate Gc priming
enhancement of hMSC transfection, as pre-treatment with the GR
antagonist RU486 abrogated enhancement by DEX.39 Since GR can
exist either as a cytosolic inducible transcription factor (i.e., cGR) or
as a membrane-bound receptor that exerts its effects via non-genomic
signaling pathways (i.e., mGR),41 we investigated here which receptor
was involved in hMSC transfection enhancement by priming with Gc
that was either cell permeable or cell impermeable. Previous studies
have successfully usedBSA-conjugatedGc todiscriminate between spe-
cific activities of cGR and mGR,41,44–46 and here cell-permeable free
Cort significantly enhanced hMSC transgene expression, while cell-
impermeable BSA-Cort conjugate did not (Figure 2), implicating
cGR in the hMSCGc transfectionprimingmechanism. SinceGc-bound
cGR is transported to and translocated into nuclei, it has been suggested
that Gc may enhance transfection by increasing nuclear pDNA accu-
mulation,47 but we previously demonstrated that DEX priming did
not increase pDNA cellular or nuclear internalization or transgene
transcription, in hMSCs,38 leading us to next explore the effect of Gc
priming on hMSC expression of endogenous genes related to
transfection.

A

C D

B Figure 3. hMSC Transfection Is Not Enhanced by

Glucocorticoid without Transcription-Activation

Properties

DEX, which induces GR to both induce and repress

endogenous gene transcription, significantly increases

transgenic luciferase expression in transfected hMSCs

over the VC, but CpdA, which only induces GR to

repress endogenous gene transcription, does not in-

crease luciferase expression over VC. hMSCs were

primed with compounds 25 min prior to transfection with

LF 3000 pDNA complexes and lysed for analysis after

48 h. (A–D) D1 BMSCs (A); D3 BMSCs (B); D1 AMSCs

(C); and D2 AMSCs (D). Data are plotted as mean ± SEM

(n = 3) of luciferase luminescence relative light units per

milligram of total protein (RLU/mg protein). Asterisks

denote significance to VC conditions: **p % 0.01; ***p %

0.001; ****p % 0.0001. Fold change increase over VC

conditions.
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Since cGR exerts its effects through both repression and activation of
endogenous gene transcription, we primed hMSCs with CpdA, a
“dissociated” Gc that has been shown to repress the expression of in-
flammatory genes by causing GR to inhibit pro-inflammatory tran-
scription factors similarly to DEX but that, in contrast with DEX,
does not induce DNA binding and transcription from GR-targeted
genes.42,48,49 CpdA’s inability to increase transfected hMSC transgene
expression over VCs, as DEX priming does (Figure 3), suggests that
DEX-bound GR enhances nonviral gene delivery through transcrip-
tional activation, but not repression, of specific endogenous genes
related to hMSC transfection. We further explored the ability of the
GR to activate endogenous gene expression to prime hMSC transfec-
tion by treating with both DEX and KPT. KPT is an inhibitor of
XPO1, which has been shown to increase GR nuclear residence and
transcriptional activation.43 Priming of KPT and DEX was able to
further enhance hMSC transgene expression 2- to 4-fold over DEX
alone (Figure 4), suggesting that a transfection strategy utilizing
combinatorial priming could result in hMSC transgene expression
sufficient for some clinical applications. KPT and DEX combinatorial
priming enhanced transgene expression over DEX alone, presumably
by increasing transcriptional activation of endogenous genes that
modulate relevant hMSC transfection pathways, which we explored
further in subsequent studies.

Since nonviral gene delivery has been shown to induce cellular
stresses,37,50 and we have previously demonstrated that DEX priming
of hMSCs prevents the transfection-induced decline of metabolism39

and protein synthesis40 and reduces transfection-induced apoptosis,40

we investigated the effect of hMSC transfection and Gc priming on
the production of ROSs, which are common mediators of cell stress
and are produced by multiple cells when exposed to cationic

A

C D

B Figure 4. DEX Transfection Priming Is Potentiated by

Compound that Inhibits GR Nuclear Export

(A–D) 150 nM DEX increases transgenic luciferase expres-

sion in transfected hMSCs over VC; and 150 nM DEX with

varying doses of KPT-330 (KPT), a compound that inhibits

nuclear export of the GR, significantly increases transgene

expression from2- to4-fold overDEXalone in (A)D2BMSCs,

(B) D3 BMSCs, (C) D1 AMSCs, and (D) D2 AMSCs. hMSCs

were primed with compounds 25 min prior to transfection

with LF 3000 pDNA complexes and lysed for analysis after

48 h. Data are plotted as mean ± SEM (n = 3) of luciferase

luminescence relative light units per mg of total protein (RLU/

mg protein). Asterisks denote significance to 150 nM DEX-

alone conditions: *p% 0.05; **p% 0.01; ***p% 0.001. Fold

change increase over 150 nM DEX-alone conditions.

lipids51,52 and polymers53 used for gene delivery.
Transfection significantly increased ROSs in
hMSCs over untransfected cells, and DEX prim-
ing of transfection significantly decreased ROSs
relative to VC (Figure 5). Transfection-induced
oxidative stress and apoptosis, as well as
declining metabolism and protein synthesis in

hMSCs, could be linked to ER stress,54,55 since ER stress can cause
ROS generation and apoptosis and directly attenuates protein trans-
lation.56 Given the relationship between gene delivery, Gc treatment,
ER and oxidative stresses, apoptosis, and inflammation, we next
quantified the expression of specific stress-associated genes in
response to transfection and DEX priming in hMSCs.

Transfection strongly upregulated the ER stress-induced and
apoptosis mediator CHOP gene57 relative to untransfected hMSCs,
while DEX priming with transfection significantly attenuated
CHOP upregulation relative to transfection without DEX priming
(Figure 6A). Transfection-induced ER stress likely causes the sharp
decline in protein synthesis and increased apoptosis induced by trans-
fection of hMSCs, which is attenuated by DEX priming in hMSCs.40

Other studies have shown that hMSCs are vulnerable to ER stress-
induced apoptosis after transplantation,58,59 and DEX has been
shown to modulate ER stress responses in other cell types by promot-
ing correct protein folding60 and trafficking61 and by preventing
apoptosis.62 Gc has also been shown to improve recombinant protein
production in Chinese hamster ovary (CHO) cells by reducing
protein aggregation through upregulation of genes that modulate
oxidative conditions,63 suggesting a connection between hMSC trans-
fection, DEX priming, ER stress, apoptosis, and oxidative stress. DEX
priming also strongly upregulated expression of the antioxidant pro-
tein metallothionein64 (Figure 6B), which likely explains DEX prim-
ing’s ability to ameliorate hMSC oxidative stress that is induced by
transfection. Finally, like oxidative stress, inflammatory responses
are commonly linked to ER stress.65–68 In our gene expression studies,
inflammatory cytokine IL-6 and enzyme COX2 were also strongly
induced by transfection and downregulated by DEX priming (Figures
6C and 6D), which likely influenced the ability of hMSCs to recover
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from ER stress. Taken together, our gene expression studies suggest
that transfection in hMSCs induces ER stress, which contributes to
oxidative stress, apoptosis, attenuation of protein synthesis, and in-
flammatory response, all of which are attenuated by DEX priming
to allow for increased transgenic protein production relative to un-
primed transfected hMSCs.

In summary, this work reiterates that Gc priming of hMSC transfec-
tion significantly enhances transgene expression and suggests that
enhancement is mediated by transcriptional activation of endogenous
genes by cGR. In addition, we show that transfection enhancement
can be further increased with the XPO1 inhibitor KPT, potentially
by increasing cGR nuclear residence and transcriptional activity.
Taken with our previous results,38 this work demonstrates that trans-
fection in hMSCs induces toxicity through ER and oxidative stresses,
apoptosis, and inflammatory responses, which result in decreased cell
metabolism and protein synthesis. Gc priming reduces these transfec-
tion-induced stresses to prevent the decline of hMSCmetabolism and
protein synthesis, resulting in increased transgene expression. Future
work should focus on new priming strategies that address the effects
of transfection-induced ER and oxidative stresses, apoptosis, and in-
flammatory responses toward developing safe and efficient gene de-
livery protocols for clinical hMSC applications.

MATERIALS AND METHODS
Cell Culture

BMSCs were purchased at passage 2 from Lonza (Walkersville, MD,
USA) or acquired at passage 1 from the Texas A&M Institute for
Regenerative Medicine Health Science Center College of Medicine
(Bryan, TX, USA). All BMSCs were positive for CD29, CD44,
CD105, and CD166 cell-surface markers and negative for CD14,
CD34, and CD45. AMSCs were purchased at passage 1 from Lonza

A

C D

B Figure 5. DEX Priming Decreases hMSC Oxidative

Stress Induced by Transfection

(A–D) hMSCs were either untreated, transfected with

150 nM DEX priming, or transfected with VC priming. After

48 h, cellular reactive oxygen species (ROS) and nuclei

were stained to calculate the fraction of hMSCs experi-

encing oxidative stress using fluorescent microscopy in (A)

D1 AMSCs, (B) D2 AMSCs, (C) D3 AMSCs, and (D) D4

BMSCs. Data are plotted as mean ± SEM (n = 3). Asterisks

denote significance to designated conditions: ***p %

0.001; ****p % 0.0001.

and were positive for CD13, CD29, CD44,
CD73, CD90, CD105, and CD166 and negative
for CD14, CD31, and CD45 cell-surface markers.
All human cells were acquired with informed
consent using established ethical methods
approved by the appropriate authorities. All ex-
periments and methods were performed in
accordance with relevant guidelines and regula-
tions. All experimental protocols were approved

by the University of Nebraska-Lincoln Institutional Biosafety Com-
mittee. See Table S1 for BMSC and AMSC donor information. All
cells were expanded and cultured in Minimum Essential Medium
Alpha (MEM a; GIBCO, Grand Island, NY, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS; GIBCO), 6 mM
L-glutamine (GIBCO), and 1% penicillin-streptomycin (Pen-Strep;
10,000 U/mL; GIBCO) and incubated at 37�C with 5% CO2. At
80% confluence, cell media were removed, and cells were washed
with 1� phosphate buffered saline (PBS) and dissociated with
0.25% trypsin-ethylenediaminetetraacetic acid (EDTA; GIBCO);
then, an equal volume of growth medium was added, and cells were
pelleted to remove trypsin-EDTA, resuspended, and counted with
trypan blue staining and a hemocytometer before diluting in growth
medium (for transfection studies, as described next) or medium with
5% dimethyl sulfoxide (DMSO) to 6 � 104 cells per milliliter for
freezing in 1-mL aliquots stored in liquid nitrogen.

For transfection experiments, after dissociation and counting as
described earlier, hMSCs were seeded into 48- or 96-well plates
(Corning Life Sciences, Corning, NY, USA) at passages 3 through 6,
at 6,000 cells per square centimeter, allowed to adhere for 48 h until
about 80% confluence, and then transfected as described later.

Priming Reagents

DEX and Cort were purchased from Sigma-Aldrich (Sigma, St. Louis,
MO, USA), CpdA was purchased from Enzo Life Sciences (Farming-
dale, NY, USA), and KPT was purchased from Cayman Chemical
(Ann Arbor, MI, USA). The aforementioned compounds were dis-
solved in 100% ethanol (EtOH) and stored at �20�C. BSA-Cort
was purchased from MyBioSource (San Diego, CA, USA) and dis-
solved in sterile water and stored at �20�C. Unconjugated BSA was
purchased from Sigma and dissolved in sterile water and stored at

Molecular Therapy: Methods & Clinical Development

718 Molecular Therapy: Methods & Clinical Development Vol. 18 September 2020



�20�C. For delivery to cells, DEX, Cort, CpdA, and KPT were diluted
in EtOH, while BSA-Cort and unconjugated BSA were diluted in ster-
ile water and delivered to cell-culture media, at <1% total media vol-
ume, 25 min prior to the addition of DNA lipoplexes. EtOH was
delivered as a VC in place of DEX, Cort, CpdA, and KPT. As a control
for BSA-Cort, Cort was delivered along with an equal amount of un-
conjugated BSA in water.

Transfections

pEGFP-Luc plasmid DNA was purchased from Clontech (Mountain
View, CA, USA), and the plasmid encodes a fusion protein of EGFP
and Luc under the direction of a cytomegalovirus (CMV) promoter
and containing simian virus 40 (SV40) enhancer. The plasmid is non-
integrating, producing transient transfection. Plasmids were purified
from E. coli bacteria using QIAGEN reagents (Valencia, CA, USA)
and stored in Tris-EDTA (TE) buffer solution (10 mM Tris, 1 mM
EDTA [pH 7.4]) at�20�C. pDNA complexed with LF transfection re-
agents (Invitrogen, Carlsbad, CA, USA) was delivered to the cell media
in well plates after the priming of cells, as described earlier. All cells
were transfected with LF 3000 except BMSCs that were transfected
with LF LTX in BSA-Cort priming experiments (Figures 2A and 2B).
Lipoplexes were formed with LF LTX or LF 3000 in serum-free Opti-
MEM media (Invitrogen) following the manufacturer’s instructions
and as noted in the text. Amounts of DNA and DNA:lipid ratios
were optimized to allow for high transfection and low toxicity. All
transfections were performed with 0.2 mg pDNA per square centimeter
of cell growth area and a DNA:lipid ratio of 1:2, formed in Opti-MEM
for 10 min following the manufacturer’s instructions. The size and zeta
potential of the DNA lipoplexes were determined by dynamic light
scattering and laser doppler micro-electrophoresis, respectively, using
a Zetasizer Nano ZS90 (Malvern Instruments, Malvern, Worcester-

shire, UK). Size measurements were taken at 25�C at a scattering angle
of 90�, and size was reported as the Z-average diameter, in nanometers
(d.nm). Zeta potential measurements were also taken at 25�C using
folded capillary cells with the measurement mode set to automatic,
and the values were reported in millivolts (n = 3). Media were changed
3 h after transfection in all experiments except BSA-Cort priming ex-
periments (Figure 2). Experiments with free DNA were not included,
as free DNA is generally considered impermeable to cells in vitro,
requiring cationic polymers or lipids to condense DNA and facilitate
cellular uptake and transfection.27

Transfection Assessment

Fluorescence and phase microscopy was conducted 48 h after lipoplex
delivery to qualitatively assess cell health and EGFP expression using
a Leica DMI 3000B fluorescence microscope (Leica Microsystems,
Wetzlar, Germany). For quantification of transfection efficiency,
cell nuclei were stained with 1 mg/mL Hoechst 33342 (Sigma), and
cells were then imaged using the Cytation 1 Cell Imaging System (Bio-
Tek Instruments, Winooski, VT, USA) configured with a 4� objec-
tive and light cubes for DAPI (nuclei stain) and GFP (transfected
reporter). After image preprocessing and deconvolution to subtract
background fluorescence from captured digital images, Gen5 soft-
ware (BioTek) object analysis was used to determine the number of
cells from DAPI images and to determine number and signal inten-
sities of GFP+ cells. Analysis identified objects in both channels by
their fluorescence with a minimum and maximum size selection of
10 mm and 100 mm, respectively. DAPI and GFP intensity thresholds
of 4,000 and 1,500 relative fluorescent units (RFUs) were used, respec-
tively. Transfection efficiency was calculated by dividing the number
of GFP objects by number of DAPI objects. After microscopy, cells
were washed with PBS and lysed with 1� reporter lysis buffer

A

C D

B Figure 6. Transfection and DEX Priming Modulates

Endogenous hMSC Genes

(A–D) Transfection and DEX priming modulates expression

of genes related to endoplasmic reticulum (ER) stress,

apoptosis, oxidative stress, and inflammation in hMSCs, as

quantified by qRT-PCR 24 h after transfection. In D2

BMSCs, D3 BMSCs, D1 AMSCs, and D2 AMSCs: (A) ER

stress-induced and apoptosis mediator CCAAT-enhancer-

binding protein homologous protein (CHOP) messenger

RNA (mRNA) was upregulated by transfection when treated

with only VC and downregulated by DEX treatment when

transfected relative to VC; (B) antioxidant protein metal-

lothionein mRNA was upregulated by transfection when

treated with VC and further upregulated by transfection with

DEX; (C) inflammatory cytokine interleukin-6 (IL-6) mRNA

was upregulated by transfection when treated with VC and

downregulated by DEX treatment when transfected relative

to VC; and (D) inflammatory enzyme cyclooxygenase-2

(COX2) mRNA was upregulated by transfection when

treated with VC and downregulated by DEX treatment when

transfected relative to VC. Data are plotted as mean ± SEM

(n = 3). Pound symbols denote significance to untransfected

conditions: #p % 0.05; ##p % 0.01; ###p % 0.001; ####p %

0.0001. Asterisks denote significance to VC conditions:

*p % 0.05; **p % 0.01; ***p % 0.001; ****p % 0.0001.
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(Promega, Madison, WI, USA) and stored at �80�C. Transgenic
luciferase activity levels were quantified by measuring luciferase
luminescence in RLUs with a Luciferase Assay Kit (Promega) and a
luminometer (Turner Designs, Sunnyvale, CA, USA). RLUs were
normalized to total protein amount determined with a Pierce BCA
protein colorimetric assay (Pierce, Rockford, IL, USA) using the
DU730 UV-Vis spectrophotometer (Beckman-Coulter, Brea, CA,
USA) to measure absorbance at 562 nm. Plotted fold changes for
an experimental condition were calculated by dividing each treatment
condition replicate value by each control replicate value.

Oxidative Stress Assays

Forty-eight hours after priming and transfection, as described earlier,
cell nuclei were stained with 1 mg/mL Hoechst 33342 (Sigma), and
cellular ROSs were stained with CellROX Deep Red Reagent (Invitro-
gen) following the manufacturer’s protocol. Cells were then imaged
using the Cytation 1 Cell Imaging System (BioTek) configured with
a 4� objective and light cubes for DAPI (nuclei stain) and red fluo-
rescent protein (RFP) (ROS stain). After image preprocessing and de-
convolution to subtract background fluorescence from captured dig-
ital images, Gen5 software (BioTek) object analysis was used to
determine the number of cells from DAPI images and to determine
the number and signal intensities of ROS-positive cells. Analysis iden-
tified objects in both channels by their fluorescence with a minimum
and maximum size selection of 10 mm and 100 mm, respectively.
DAPI and RFP intensity thresholds of 4,000 and 5,000 RFUs were
used, respectively. The proportion of cells experiencing oxidative
stress was calculated by dividing number of RFP objects by number
of DAPI objects.

mRNA Quantification Studies

To quantify relative mRNA transcript copy numbers of selected
genes, 24 h after BMSC and AMSC transfection with the LF 3000
as described earlier, cell lysate was prepared using the SingleShot
Cell Lysis Kit (Bio-Rad, Hercules, CA, USA), and RNA was reverse
transcribed using the iScript cDNA Kit (Bio-Rad). qRT-PCR was per-
formed on a QuantStudio 6 Flex Real-Time PCR System (Thermo)
with Power SYBR Green Master Mix (Thermo Fisher Scientific),
and expression was calculated by the DDCt method normalizing to
endogenous controls RPL13A and HPRT1. See Table S2 for primer
sequences (Integrated DNA Technologies).

Statistics

All experiments were performed in triplicate (n = 3) on duplicate days
in both AMSCs and BMSCs derived from multiple human donors, as
noted in the figures. All values are reported as mean ± standard error
of the mean (SEM). Comparative analyses were completed using one-
way analysis of variance (ANOVA) with Bonferroni post-test or un-
paired t test, where appropriate. Statistical difference was considered
at *p% 0.05, **p% 0.01, ***p% 0.001, and ****p% 0.0001. Statistics
and fold changes highlighted within figures are for treated versus con-
trol groups. All statistics were evaluated using Prism GraphPad soft-
ware (GraphPad Software, La Jolla, CA, USA).
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