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Estimating age from recapture data: integrating incremental growth
measures with ancillary data to infer age-at-length

MITCHELL J. EATON
1

AND WILLIAM A. LINK

USGS Patuxent Wildlife Research Center, 12100 Beech Forest Rd., Laurel, Maryland 20708 USA

Abstract. Estimating the age of individuals in wild populations can be of fundamental
importance for answering ecological questions, modeling population demographics, and
managing exploited or threatened species. Significant effort has been devoted to determining
age through the use of growth annuli, secondary physical characteristics related to age, and
growth models. Many species, however, either do not exhibit physical characteristics useful for
independent age validation or are too rare to justify sacrificing a large number of individuals
to establish the relationship between size and age. Length-at-age models are well represented
in the fisheries and other wildlife management literature. Many of these models overlook
variation in growth rates of individuals and consider growth parameters as population
parameters. More recent models have taken advantage of hierarchical structuring of
parameters and Bayesian inference methods to allow for variation among individuals as
functions of environmental covariates or individual-specific random effects. Here, we describe
hierarchical models in which growth curves vary as individual-specific stochastic processes,
and we show how these models can be fit using capture–recapture data for animals of
unknown age along with data for animals of known age. We combine these independent data
sources in a Bayesian analysis, distinguishing natural variation (among and within individuals)
from measurement error. We illustrate using data for African dwarf crocodiles, comparing
von Bertalanffy and logistic growth models. The analysis provides the means of predicting
crocodile age, given a single measurement of head length. The von Bertalanffy was much
better supported than the logistic growth model and predicted that dwarf crocodiles grow
from 19.4 cm total length at birth to 32.9 cm in the first year and 45.3 cm by the end of their
second year. Based on the minimum size of females observed with hatchlings, reproductive
maturity was estimated to be at nine years. These size benchmarks are believed to represent
thresholds for important demographic parameters; improved estimates of age, therefore, will
increase the precision of population projection models. The modeling approach that we
present can be applied to other species and offers significant advantages when multiple sources
of data are available and traditional aging techniques are not practical.

Key words: African dwarf crocodile; age-at-length; Bayesian analysis; Gamma process; growth model;
hierarchical models; mark–recapture; MCMC, Markov chain Monte Carlo; model selection; Osteolaemus
tetraspis; posterior predictive distribution; random effects.

INTRODUCTION

Aging is fundamental to the evolution and ecology of

all species. Age-specific declines in selective pressures

and somatic growth result in decreased reproductive and

survival rates, which, in turn, are primary determinants

of population growth (Cole 1954, Stearns 1992). Thus,

many population dynamics models require knowledge of

the ages of individuals to relate distinct demographic

rates to age class (Williams et al. 2002). Even if stage-

structured models are used to correlate demographic

processes to classes (size or stage) rather than age,

predicting transition rates between these classes relies on

estimates of age-dependent growth over time (Caswell

2001). Age estimation has also been used when testing

basic ecological and evolutionary hypotheses concerning

growth patterns (e.g., Bjorndal et al. 2003) and the

influence of environment, species interactions, or re-

sources on reproductive behavior (e.g., Ims 1990,

Rachlow and Bowyer 1991, Franken and Hik 2004).

Imprecise age estimates can reduce effectiveness in

managing endangered or exploited species by biasing

demographic parameters and extinction probabilities

(Leopold 1933, Alexander 1958, Cailliet et al. 1992).

Knowing the precise age of a free-living animal is rare,

requiring that individuals or cohorts be tagged as

newborns and followed until death. When obtaining

complete individual histories is not feasible, age must

instead be estimated. Such estimates are often based on

counts of growth annuli deposited in teeth, otoliths, scales,

bones, and other hard tissue. These methods may be

inappropriate because growth annuli are absent, or

unreliable due to bone lamina resorption or irregular
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deposition patterns (Hutton 1987a, Spencer 2002, Avens

et al. 2009). Additional aging techniques include tooth

eruption and wear patterns in ungulates and carnivores

(Wilson et al. 1984, Clarke et al. 1992, Clawson and

Causey 1995, Moore et al. 1995, Stander 1997), eye-lens

weight in mammals (Hearn and Mercer 1988), closure of

the epiphyseal plate in long bones (Kohn et al. 1997), and

a controversial technique based on chromosomal telomere

length (Haussmann and Vleck 2002). Several of these

methods require that animals be sacrificed, a constraint

that is not justifiable for many species, given the large

sample sizes needed. Others techniques may be too

imprecise to be useful for the particular study question.

In such cases, the alternative to direct age estimation is the

development of isometric or allometric growth curves to

relate age to measurements of body size, proportion, or

mass (Cheng and Kuk 2002, Laundré and Hernández

2002, Reilly 2002, Liu et al. 2009).

The development of growth models for individuals in

wild populations has benefited from a long history in

animal ecology. This development is most apparent in

fisheries research, where length data are routinely

collected by commercial fisheries and growth models

are tested using subsamples of independent measures of

age (e.g., otoliths). Traditionally, growth model param-

eters have been considered as average population

parameters and are estimated using nonlinear regression

methods from size or length-at-age data where interin-

dividual variability is ignored (Kimura 1980, Wilson et

al. 1984, Cailliet et al. 1992). Marine and freshwater

populations have also served as model systems for more

sophisticated approaches to estimating growth.

Advances in growth modeling include the explicit

recognition of individual heterogeneity in growth pa-

rameters via the addition of random-effects terms (e.g.,

James 1991, Pilling et al. 2002, Tovar-Avila et al. 2009).

Other studies have evaluated the impact of error or

uncertainty in age determination on estimates of growth

(Leberg et al. 1989), including incorporation of process

and measurement error as a random effect in hierarchical

models (Schwarz and Runge 2009). Growth has been

modeled as a function of sex, geographic location, year

class, environmental factors, or other covariates using

nonlinear fixed-effects models (i.e., Kimura 2008), linear

mixed-effects models (Hart and Chute 2009), or meta-

analyses of multiple fisheries stocks using mixed-effects

hierarchical models (Helser and Lai 2004, Helser et al.

2007). Bayesian and hierarchical Bayesian modeling

approaches have been used widely in fisheries and

terrestrial science, including applications for estimating

individual growth (Pilling et al. 2002, He and Bence 2007,

Helser et al. 2007) and inference on population

demographic parameters (Wade 2000, Gross et al.

2002, Moore and Read 2008). The analysis of capture–

recapture data (Bacon-Shone 1988, Clark et al. 2005)

and the integration of disparate data sets (Wade 2000,

Clark 2005, Moore and Read 2008) have also benefited

from advances in Bayesian modeling.

Here, we describe hierarchical models in which

growth curves vary as individual-specific stochastic

processes. Some model parameters can be estimated

using capture–recapture data for animals of unknown

age; others require data for animals of known age. We

combine independent data sources in a Bayesian

analysis, distinguishing natural variation (among and

within individuals) from measurement error. Our

purpose in this modeling exercise is to produce

predictions of age from measurements of size, with

interval predictions appropriately describing uncertain-

ties due to variation among animals, measurement error,

and sampling variation in our data.

Our approach facilitates inclusion of relevant covar-

iates, prior knowledge about parameters, and ancillary

data into a single, integrated framework to then predict

the age of animals captured at a single occasion. In the

example that we present, supplemental data consist of

measurements of young animals captured once and

modeled to estimate birth size, and a limited number of

measurements from known-age individuals (i.e., new-

borns, age ¼ 0). Bayesian analysis, implemented using

Markov chain Monte Carlo, provides a formal basis for

multimodel inference, which we use for comparing

alternative growth models (Link and Barker 2010).

Although our use of hierarchical Bayesian inference for

modeling individual growth is not novel, the integration

of capture–recapture data with auxiliary information

should be a valuable addition to growth models used to

estimate age-at-size, especially for populations at low

abundance or for difficult-to-study species (Webb et al.

1983, Hutton 1987a).

We apply our model to growth increment data

collected during a four-year capture–recapture study

on the Central African dwarf crocodile (Osteolaemus

tetraspis, Cope). Traditional aging methods have been

problematic when applied to crocodilians due to their

longevity, slow and variable body growth (attributed to

varying environmental conditions and ectothermic

metabolism), and lack of morphological features relat-

ing to age. Advances in skeletochronology are promising

(e.g., Tucker 1997, Rasch et al. 2000), but resorption and

remodeling of bone in older animals and in reproductive

females limit the accuracy and usefulness of this

technique in crocodiles and other reptiles (Hutton

1987b, Tucker 1997, Bjorndal et al. 1998). Skeleto-

chronology, with the exception of analyzing lamina in

crocodilian osteoderms (Hutton 1987b), also requires

animals to be sacrificed. The dwarf crocodile is endemic

to closed-canopy forests of Central and West Africa and

is the smallest of the world’s crocodilians (see Plate 1).

The species is difficult to study in the wild, due to its

nocturnal behavior and preference for dense vegetation

cover, and is threatened with overhunting for the

bushmeat trade (Waitkuwait 1989, Kofron 1992, Riley

and Huchzer-meyer 1999, Thorbjarnarson and Eaton

2004, Eaton et al. 2009). Very little is known of the

ecology, life history, or demography of the dwarf
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crocodile. Progress toward reliable estimates of age,

including age at reproductive maturity and other
transitional demographic stages, will improve popula-

tion models and our ability to manage this and other
intensively exploited or threatened species (Hutton

1987a).

METHODS

Study site

Field studies were conducted on the central coast of
the Republic of Gabon (Loango National Park,

approximately 28180 S, 98360 E; (Eaton 2006). The
national park is located within the Ogooué River

watershed and is characterized by an edaphic paleo-
dune vegetation community and gallery mosaic forests

interspersed with savannas. The region contains a
diversity of interior freshwater and coastal habitat,

including swamp forests, seasonally inundated upland
river forests, and networks of brackish lagoons and
associated waterways.

Data collection

Surveys were conducted between July and November
each year from 2004 to 2007, with most observations

made in July and August. Surveys took place at night,
on foot or in canoe, with one spotter using a headlamp

or flashlight to locate and approach animals and one to
two assistants helping with captures and measuring.

Crocodiles were captured by snare pole, tongs, or by
hand to ensure representation of all size classes. Length

measurements were recorded using a flexible steel tape
and included head length (HL, measured from the tip of

the snout to the medial posterior edge of the supraoc-
cipital plate), snout–vent length (SVL, measured ven-

trally to the posterior termination of the cloaca), and
total length (TL, measured ventrally to the tip of tail,
noting whether the tail was complete or damaged). Body

mass was recorded with a spring scale (500 g to 20 kg;
Pesola AG, Baar, Switzerland) selected based on the size

of the crocodile. Sex was determined by probing the
cloaca and visually examining the genitalia. Crocodiles

were individually marked by notching a combination of
caudal scutes, and then were released at the point of

capture. All surveyed streams and lagoons were revisited
at least twice per season and during each year of the

study. Measurements recorded for crocodiles captured
on more than one occasion constitute the basis of the

growth analysis and, hence, are described as our primary
data set (see Appendix A). The primary data can be used

to estimate all parameters of the growth models that we
consider, except one parameter related to birth size.

To provide information necessary to fully parameter-
ize our growth models, we included a supplementary

data set (Appendix B) containing the measurements of
47 of the smallest dwarf crocodile hatchlings captured
during the study (none of which was recaptured) and

four captive hatchling dwarf crocodiles. These ancillary
data were used to develop a model-based prediction of

birth size. Six of the 51 young crocodiles were of known

age (0–27 days), including two wild dwarf crocodiles

caught emerging from a nest (i.e., age zero) and the four

captive animals [two from Lincoln Park Zoo (Chicago,

Illinois, USA; D. Bohem, personal communication) and

two from Toronto Zoo (Toronto, Canada; A. Lentini,

personal communication)]. Of these six known-age

animals, four had measurements of TL only, one had

only a HL measurement, and one had both TL and HL

measures. The remaining 45 hatchlings were of un-

known age and hence were not used to inform birth size

directly, but only the relationship between HL and TL

for small individuals.

Growth models

The primary data set included recapture measure-

ments of 46 crocodiles. A total of 97 head length

measurements were obtained from 41 animals captured

twice and 5 captured three times. The majority (65%) of

captures occurred in July and August. The interval

between captures was 544 6 293.8 days (mean 6 SD;

minimum 40 days, maximum 1208 days; Appendix A:

Table A1). The data included animals ranging in size

(first capture) from 30 to 153 cm TL, encompassing

nearly the full span of body sizes observed in the wild.

We chose to model head length because of its strong

isometric relationship to total length, biases introduced

in TL measurements by tail-tip amputations, and lower

error associated with bone to bone measurements

(Webb et al. 1983). We considered two common models

relating body size to age. These were the von Bertalanffy

(VB) growth model (Fabens 1965), where an individual

of age A has size

SðAÞ ¼ að1� be�kAÞ ð1Þ

and the logistic growth (LG) model (Schoener and

Schoener 1978), where

SðAÞ ¼ að1� bÞekA

bþ ð1� bÞekA
: ð2Þ

We have parameterized the models so that a is the

asymptotic head length (S(‘)¼ a), b relates birth size to

asymptotic size (S(0)¼ a(1� b)), and k . 0 is a growth

rate coefficient.

Individual-specific variation

One would not anticipate that all individuals will have

the same asymptotic size, nor that individual growth

patterns will conform exactly to the pattern S(A)

described by Eqs. 1 or 2. We thus describe a model

under which the true head size for animal i at age A,

denoted Hi(A), is a single realization of a nondecreasing

stochastic process, with S(A) being the population mean

for individuals of age A.

Our model involves Gamma processes. A Gamma

process is a type of Lévy process, these latter being

examples of continuous-time Markov processes (for

October 2011 2489ESTIMATING AGE FROM GROWTH MEASUREMENTS



detailed mathematical exposition, see Applebaum

[2009]; for applications to growth models, see Russo et

al. [2009]). For our purposes it suffices to note three

features of a Gamma process g(x) with parameters p, k
. 0, where g(x) is indexed by the positive real numbers

x . 0:

1) g(0)¼ 0. For x . 0, g(x) ; C( px, k), i.e., g(x) has
a Gamma distribution with mean px/k and variance px/

k2.
2) The increment g(x2)� g(x1) over the interval (x1,

x2] is also a Gamma random variable, [g(x2)� g(x1)] ;

C( p(x2 � x1), k), where x1 , x2.

3) Increments for disjoint intervals are independent.

We model individual growth as Hi(A) ¼ gi(S(A)),

where S(A) is given by Eqs. 1 or 2; here gi(x) are

independent and identically distributed Gamma pro-

cesses with p ¼ k. This model specifies that an

individual’s true head size is a nondecreasing stochastic

process, and that for individuals of age A, the

population mean and variance are S(A) and S(A)/k,
respectively. Fig. 1 displays growth curves for five

individuals, simulated under the von Bertalanffy model,

with a¼ 23.2, b¼ 0.86, k¼ 0.29, and k¼ 6.6, along with

the population mean curve.

Suppose animal i is captured on m . 1 sampling

occasions, at unknown ages

Ai1 , Ai2 , � � �, Aim:

Because the VB and LG curves are strictly increasing,

0 , SðAi1Þ, SðAi2Þ, � � �, SðAimÞ:

That is, the expected head sizes partition the interval (0,

S(Aim)] into m disjoint intervals

�
0; SðAi1Þ

i
;
�

SðAi1Þ; SðAi2Þ
i
;
�

SðAi2Þ; SðAi3Þ
i
;

. . . ;
�

SðAim�1Þ; SðAimÞ
i
:

Changes in the Gamma process gi(x) over these m

intervals are thus independent Gamma random vari-

ables. These changes are Ii1¼gi(S(Ai1))� gi(0)¼Hi(Ai1)

� 0, the true head size at first capture, and Iij¼gi(S(Aij))

� gi(S(Ai,j�1)) ¼ Hi(Aij) � Hi(Ai,j�1), the change in true

head size over interval j, for j¼ 2, 3, . . . , m.

Our model thus describes the true head sizes on the m

sampling occasions as sums of independent Gamma

random variables,Hi(Aij)¼Rj
k¼1Iik. Letting I�ij ¼S(Ai, j)�

S(Ai, j�1), we have Iij ; C(kI�ij , k); the mean of Iij is I�ij ,
and the variance is I�ij /k.
Under the VB model, if j . 1,

SðAijÞ ¼ SðAi; j�1Þ þ
�

a� SðAi; j�1Þ
�
ð1� e�kDijÞ ð3Þ

where Dij ¼ Aij � Ai,j�1, the time between capture

occasions, is known. Thus given a, k, the expected head

size at the (unknown) age of first capture S(Ai1), and the

times between captures Dij, one can compute all of the

expected head sizes S(Aij) through recursive application

of Eq. 3, and from these the values I�ij ¼S(Aij)� S(Ai, j�1)

needed to describe the distributions of the Gamma

increments Iij. Our model for true head size thus includes

one individual-specific parameter, S(Ai1), and three

parameters common to the population (a, k, and k).
Similarly, under the LG model:

1

SðAijÞ
¼ 1

SðAi;j�1Þ
þ 1

a
� 1

SðAi;j�1Þ

� �
ð1� e�kDijÞ: ð4Þ

Once again, our model for true head size is seen to be

fully parameterized by values S(Ai1), a, k, and k.

Bayesian analysis of recapture data

We model head length measurement hij for individual

i at capture occasion j in our primary data set as

hij ¼ HiðAijÞ þ eR
ij

where eR
ij are independent, normally distributed mea-

FIG. 1. Five simulated growth curves for
African dwarf crocodiles (Osteolaemus tetraspis)
under a von Bertalanffy Gamma process model
(gray lines), showing variation within and among
individuals. The black curve is the population
expected value under the same model. Parameter
values used are the median point estimates
derived from the recapture analysis, a ¼ 23.2, b
¼ 0.86, k ¼ 0.29, and k ¼ 6.6, where a is
asymptotic head length, b is a constant relating
birth size to asymptotic size, k is a growth rate
coefficient (scaled to 1000-day intervals), and k is
the ratio of mean to variance for describing
individual heterogeneity.
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surement errors, having mean zero and common

variance r2
R. The super- and subscripts R (recapture)

in the error and variance terms are included to

distinguish these from other error terms to be described.

A directed acyclic graph (Fig. 2) indicates the hierar-

chical model structure underlying head length measure-

ments. Observed quantities are indicated by nodes

outlined with dashed lines. Stochastic elements of the

model are indicated by ovals; unshaded ovals have

distributions determined by the nodes with arrows lead-

ing to them and shaded ovals indicate model parameters

requiring priors for Bayesian analysis. Derived quantities

are indicated by tilted rectangles; these are functions of the

nodes with arrows leading to them.

We assigned uniform priors on [0,100] to S(Ai1), the

expected size of an animal at the unknown age of first

capture for animal i, and diffuse mean zero normal priors

(SD¼ 1000) to the logarithms of a and k; we denote this

prior byN(0, 10002). The measurement error variance r2
R

was assigned a diffuse inverse gamma distribution (scale

¼ shape¼ 0.001), denoted IG(0.001, 0.001).

We considered models in which parameters a and k

were allowed to vary by sex to test for gender-specific

differences in growth or asymptotic size. We compared

the VB and LG models using Bayesian multimodel

inference based on reversible jump Markov chain Monte

Carlo, MCMC (Link and Barker 2010).

Modeling supplementary data

The primary data set (Appendix A; head length

measurements for crocodiles of unknown age) provides

no information about the parameter b; the parameter is

not involved in calculating expected increments I�ij using

Eqs. 3 or 4. Given that parameter b relates birth size to

asymptotic size a, it is not surprising that we cannot

estimate it using data from animals of unknown age;

parameter b was estimated using a supplementary data

set, as we now describe.

The supplemental data set (Appendix B) consisted of

data for 51 young crocodiles and included a combina-

tion of TL and HL measurements:

HLi ¼ lHL
i þ eHL

i

where lHL
i ¼ aHL þ bHLAgei, and

TLi ¼ lTL
i þ eTL

i

where TLi is the true total length of individual i and

lTL
i ¼ aTL þ bTLlHL

i :

Our choice of a linear growth model for hatchlings

was motivated by a desire for reliable, model-insensitive

predictions of birth size; we note that the choice is

consistent with either the VB or the LG model, both of

which are nearly linear over the size range of young

crocodiles. Regression coefficients a and b were assigned

N(0, 1002) priors. Errors eHL
i and eTL

i were assumed to be

normal random variables with a mean of zero and

variances r2
HL and r2

TL, respectively; these were assigned

IG(0.001, 0.001) priors. For the 45 smallest individuals

of unknown age, we assigned uniform priors for Age

over the range 0–100 days. Regression estimates of

FIG. 2. Directed acyclical graph describing the recapture model. Subscripts i and j index individual and capture occasion,
respectively; D is the time between capture occasions, S(A) is the expected head length of an animal of age A, Iij is the change in true
head length of individual i over the capture interval from j� 1 to j, I�ij is the expected value of Iij, H refers to the true head length of
an individual, h is the measured head length, and r2

R is the measurement error variance. See Methods: Individual-specific variation
and Bayesian analysis of recapture data for details of parameters included in the recapture model.
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hatchling HL from TL, when combined with informa-

tion on known-age individuals, allowed predictions of

birth size, S(0). Combining these with predictions of

asymptotic size a from the recapture data set, we were

able to predict values of the parameter b ¼ 1 � S(0)/a.

Predicting age

Our primary goal was to produce tabulated age

predictions based on HL measurements. These predic-

tions are to be used for (hypothetical) future observa-

tions, rather than for specific observations in our data

set. We use posterior predictive distributions (Gilks et al.

1996, Link and Barker 2010) to properly account for

measurement error and inexact knowledge of model

parameters.

To establish the relationship between head (HL) and

total length (TL), we conducted a regression analysis

using data for 515 crocodiles for which we had a

complete set of head and body measurements. The

relationship,

TL ¼ �3:795þ 6:902HL

with R2¼ 0.995 was used to convert head length to total

body length when reporting a predicted age. Because

investigators often classify young crocodilians as distinct

age classes in mixed-age/stage demographic models

(based on higher mortality rates assumed for smaller

animals; see Nichols 1987, Tucker 2000), we also use the

predictive model and HL to TL conversion to estimate

the size of dwarf crocodiles at one and two years of age.

By properly assigning field measurements to these age

classes, we are able to increase the precision of stage

transition estimates and, therefore, improve demograph-

ic model projections. As another important state

variable boundary used in stage-based demographic

models, we predicted the age at which female dwarf

crocodiles reach reproductive maturity, based on the

minimum size of females observed in the presence of

hatchlings (15.0 cm HL; Eaton 2006).

To describe our approach, let matrix R denote the

recapture data, and let vector h ¼ (k, a, r2
R) denote the

parameters of growth and error models. Let S denote

the supplementary data matrix and let w ¼ (aHL, r2
HL)

denote the mean and variance of the predictive

distribution of S(0). We indicate by [h jR] and [w jS]
the posterior distributions of these parameters, respec-

tively. Because the models for R and S share no

parameters, and because R and S are independent, the

joint posterior distribution [h, w jR, S] is simply the

product [h jR] 3 [w jS]; we sample this joint posterior

distribution by drawing h ; [h jR] and, independently, w
; [w jS].
Suppose that we knew the values of parameter vectors

h and w. Given measurement h, Bayesian inference for

PLATE 1. Juvenile male dwarf crocodile (Osteolaemus tetraspis) captured, marked, and measured on 12 July, 2004, in the
Republic of Gabon. This individual was observed on the Rabi River near Loango National Park and measured 14.2 cm head
length, 92 cm total length. Based on the von Bertalanffy growth model presented here, we estimated this crocodile to be
approximately eight years old (90% CI ¼ 5.6–17.8). Photo credit: M. J. Eaton.
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age (AGE) would be based on draws from the posterior

distribution [AGE j h, w, h] } [h j h, w, AGE][AGE].

Instead, we sample values h* and w* from the posterior

distributions [h jR] and [w jS] and then sample AGE

from the distribution [AGE j h*, w*, h]. In so doing, we
are drawing values for AGE from the posterior

predictive distribution

f ðAGEjR; S; hÞ ¼
R
½AGEjh;w; h�½h;wjR; S� ]h ]w:

This distribution is distinguished from an ordinary

posterior distribution in that h is treated as a hypothet-

ical value: we are predicting AGE for an individual not
yet seen, rather than one of the individuals in our data

set. The importance of this distinction is that we do not

allow this hypothetical observation to inform our

inference about parameters h and w.

Joint analysis of R and S was conducted using

program OpenBUGS, version 3.1.1 (Lunn et al. 2009).

Four parallel Markov chains of length 4.5 million were

produced; the first 0.5 million values were discarded as

burn-in, and every remaining 10th value was recorded,

resulting in four chains of length 0.4 million for a total

of 1.6 million samples. Run time was roughly 18.5 h on

an i7x980-based desktop computer. The quality of these
Markov chains for evaluating posterior distributions of

interest was evaluated by visual inspection of Gelman-

Rubin diagnostics (based on the first 50 000 observa-

tions in the four thinned chains). Autocorrelations for

all nodes died off exponentially, and were negligible at

lag 50. Sampling of the posterior predictive distribution

f(AGE jR, S; h), while treating h as hypothetical data, is

made possible by use of the ‘‘cut’’ command in

OpenBUGS (code is available in the Supplement).

RESULTS

From a total of 619 dwarf crocodiles captured during

the study, 46 were recaptured at least once. Annual

growth in head length, averaged across all initial capture

sizes, was estimated at 1.23 6 0.70 cm HL/year (mean 6

SD), equivalent to 8.49 cm TL/year, but was size

dependent and declined with head length.

A comparison of the von Bertalanffy and logistic

growth models using Bayesian multimodel inference

overwhelmingly favored the VB to the LG model, with a

Bayes factor of 10 611 (95% CI ¼ 6320). In the

following summary we provide parameter estimates and

derived values under the VB model; all point estimates

are posterior medians and all interval estimates are 95%

CIs unless otherwise indicated.

The largest head length measurement recorded in the

wild (24.7 cm) fell near the median point prediction for

asymptotic head size (a¼23.25), and was within the 95%

credible interval (CI) of (20.2, 28.02) under the VB

model (Table 1). The standard deviation of the

measurement error term eR
ij , rR ¼

ffiffiffiffiffiffi
r2

R

p
, was estimated

to be 0.25 cm (0.11, 0.48). The point estimate for b

(0.856) indicates that the birth size of a dwarf crocodile

is about one-seventh its asymptotic size (14.4%; CI ¼
11.8–17.2%). At birth, dwarf crocodiles were predicted

to have a head length of 3.36 cm (3.06, 3.71),

corresponding to a total length of 19.4 cm (CI ¼ 17.3–

21.8). By the end of the first year, dwarf crocodiles were

predicted to grow to 5.32 cm HL (CI¼ 3.63–7.39) or TL

¼ 32.9 cm (CI¼ 21.3–47.2) in the first year, and to reach

7.11 cm HL (CI¼ 5.11–9.50) or 45.3 cm TL (CI¼ 31.5–

61.8) by the end of their second year (Table 1). Based on

TABLE 1. Features of posterior distributions from an integrated growth model to predict the age of
African dwarf crocodiles from independent data sets.

Parameter Mean SD

Posterior percentiles

2.50% 50% 97.50%

a 23.45 1.96 20.19 23.25 28.04
b 0.856 0.014 0.829 0.856 0.882
S[0]� 3.36 0.16 3.06 3.36 3.71
S[1]� 5.36 0.94 3.63 5.32 7.39
S[2]� 7.16 1.09 5.12 7.11 9.50
aHL 3.36 0.10 3.19 3.36 3.57
aTL 0.93 2.20 �3.77 1.06 4.89
bHL 0.022 0.001 0.020 0.022 0.025
bTL 6.07 0.44 5.29 6.05 7.01
k 0.29 0.05 0.21 0.29 0.39
k 11.16 18.70 3.17 6.55 60.64
rHL 0.13 0.03 0.08 0.13 0.19
rTL 1.05 0.16 0.77 1.05 1.38
rR 0.25 0.10 0.11 0.24 0.48

Notes: Data sets included body measurements from recapture observations, single capture
events, and a small number of known-age individuals. Abbreviations: HL, head length; TL, total
length; R, recapture measurement. Parameters: a, asymptotic head length; b, a constant relating
birth size to asymptotic size; k, a growth rate coefficient scaled to 1000-day intervals; k, the ratio of
mean to variance for describing individual heterogeneity; a and b, regression intercept and slope
coefficients, respectively, relating expected head length (HL) to animal age, and total length (TL) to
head length; rHL and rTL are standard deviations of the error terms for true head and total lengths.

� Model-averaged population estimate of head length (HL) at ages 0, 1, and 2 years.
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an estimate of 100 cm TL as the size of reproductive
maturity for dwarf crocodiles, the median age of first
reproduction was predicted at 9.0 years (80% CI ¼ 6.8–

15.7 years; Fig. 3). Asymptotic head length (23.25 cm)
predicted the maximum total length of an adult dwarf
crocodile to be 156.7 cm (135.6, 182.2), which very

closely approximates our largest measurement recorded
in the wild (TL¼ 158.9 cm). Gender-specific estimates of

parameters a and k were both slightly higher for male
crocodiles, suggesting that males may grow faster and
reach a larger asymptotic size than females, but credible

intervals overlapped and no significant differences were
detected in our data set. Because growth declines with
age, the predictive capacity of our model is diminished

by the time a crocodile reaches ;15.5 cm in head length
(103 cm TL, median posterior age estimate¼ 9.9 years),

at which point the upper 90% percentile becomes quite
long (Fig. 3). It is apparent from the model output that
the upper quantiles of posterior age predictions are

sensitive to priors placed on animal age. This is not
surprising, given that the model ( justifiably) constrains
growth to be asymptotic, and therefore an individual

near asymptotic size could be any age beyond the
minimum required to approach the asymptote. Because

we did not know the life span of dwarf crocodiles in the
wild, we felt it was inappropriate to use an informative
prior on age. Lower quantiles of posterior age predic-

tions appear to be robust to priors on age.

DISCUSSION

This paper contributes to the study of animal growth,
developing an approach that merges information from

disparate sources into a common framework to derive
predictions of age from observations of animal length.
Because growth- and age-specific physiological processes

are key determinants of a species’ life history strategy,

our motivation for developing this modeling structure
was to improve the prediction of an individual’s age,
thereby assisting efforts to conserve and manage poorly

known or threatened species through better population
models. Reliable methods to determine an individual’s
age offer several benefits to modeling population

dynamics and can aid in species conservation efforts.
The ability to derive accurate age predictions by
combining disparate data sets collected under routine

field studies is valuable for calculating life history traits,
including stage transition probabilities, age at first

reproduction, and stable age or stage distribution
(Cochran and Ellner 1992, Caswell 2001, Spencer
2002). For example, population growth rates in many

long-lived species are sensitive to parameters governing
the transition from nonbreeding to breeding status
(Lebreton and Clobert 1991). Linking observations of

reproductive behavior with age predictions to estimate
the duration spent in pre-breeding classes (i.e., average

age at reproductive maturity), therefore, has significant
implications for reducing bias in demographic models,
regardless of the model structure (i.e., age- or size-

based). Indeed, deriving measurement-based age esti-
mates from a sampled population, assuming that
detection probability is equal across all sizes, allows

the investigator the choice between using age- or size-
based methods in modeling that population. Another

potential benefit of predicting age from size is the ability
to model the distribution of birth dates from captures of
young of the year, potentially answering a wide variety

of ecological and management-oriented questions relat-
ed to timing of parturition (Mazzotti et al. 1986, Platt
and Thorbjarnarson 2000).

In the example presented here, we integrated three
modest data sets to predict the age of a hypothetical

African dwarf crocodile of a given length. Data sets

FIG. 3. Posterior median predictions and 90% prediction intervals for African dwarf crocodile age, given measured head length.
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included incremental growth records from a mark–

recapture study, measurements from a small sample of

young individuals, and a few observations of known-age

animals used to estimate the final growth parameter,

birth size. The von Bertalanffy growth model, common-

ly used for describing the growth of reptiles, was

determined to be a substantially better predictor of age

than the logistic model for our particular data. By

combining these data under a common framework,

relatively narrow credible intervals for age were esti-

mated for animals up to ;66% of asymptotic size (15.5

cm HL or 103 cm TL). Beyond this size, growth rate

declined and size became a poor predictor of age. Under

any model in which size asymptotes with age, size-based

age prediction is inevitably difficult for animals captured

when nearly fully grown. Although age estimates for

large dwarf crocodiles were imprecise, lower credible

intervals still provided useful information on minimum

age. For example, an animal nearing asymptotic size

(i.e., 21 cm HL, 141 cm TL) was estimated with 90%
probability to be a minimum of 16.5 years old. Our

estimate for age at reproductive size for dwarf crocodiles

(80% CI¼ 6.8–15.7 years) was very similar to the range

observed for mature females in captive populations (5–

13 years; Tryon 1980, Schmidt 2007).

The species that we selected for demonstrating the

model represents a group of animals for which

independent age estimation is not possible, but the

general statistical approach presented is applicable to a

variety of incremental growth data for any species that

can be fit to a growth model. Capture–recapture studies

have become standard practice in animal ecology,

offering valuable sources of information that are not

always exploited to their full benefit. The opportunity to

integrate additional sources of information, many forms

of which are collected in standard field studies, into a

common framework is the primary contribution of our

model and should be appealing to many investigators.

Such an approach is not limited to the analysis of

growth, but can be applied to other areas of ecology

including parameter estimation for population demo-

graphic modeling (i.e., Cave et al. 2010) and, in general,

the merging of process and observation models

(Harwood and Stokes 2003). The strength of our

approach lies in the flexibility of the model structure,

which can assimilate independent data sets into a single

modeling framework to maximize available information

while also permitting missing data and accommodating

multimodel inference. With small data sets, such as ours,

the inclusion of individual heterogeneity of modeled

growth parameters through random effects terms can be

problematic. Our data set, for example, contained only

five observations of animals captured more than twice,

making it difficult to directly estimate individual

heterogeneity in parameters such as asymptotic length

(a) or growth rate (k). Such limitations for estimating

individual variability in multiple growth parameters are

well recognized (Hart and Chute 2009). We used a

Gamma process model to incorporate individual vari-

ability in growth patterns, allowing us to model the

expected population mean head length while treating

true individual head size as a latent variable. The

Gamma process is an appealing and convenient model

for analysis of growth based on capture–recapture data,

in that it specifies a nondecreasing, continuous-time

Markov process with independent increments.

The growth model that we have developed applies

advances in Bayesian and hierarchical modeling to

combine independent data sets into an integrated

framework for inference on the age of animals based

only on body size. The formulation of this model and

the analysis of the crocodile data sets provided a few

valuable insights that we include as recommendations to

other investigators. First, because growth models

depend heavily on multiple recaptures to estimate

asymptotic size and, in our case, predict age, carefully

considering the study’s sampling design to maximize the

probability of encountering individuals on multiple

occasions will improve model inference. Second, with

regard to higher upper bounds on credible intervals for

animals approaching asymptotic size, one possible

solution to increase the precision for predicting the age

of older animals is to incorporate informative priors on

maximum age. Such data could come from other studies

of the same species, from related species, or from captive

records. As a final caveat, we caution against applying

estimated parameter values and age predictions to

populations outside the direct geographic region of

inference, because growth is often environmentally

mediated and geographically variable.
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APPENDIX A

Recapture data for 46 African dwarf crocodiles, including date of original and subsequent captures, head length at each capture,
and time in days between captures (Ecological Archives A021-110-A1).

APPENDIX B

Head and total length of 51 young dwarf crocodiles used to estimate birth size parameter for Logistic and von Bertalanffy
growth models (Ecological Archives A021-110-A2).

SUPPLEMENT

OpenBUGS code for modeling recapture data and measurements of young crocodiles of known and unknown ages (Ecological
Archives A021-110-S1).
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