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Leaf Reflectance and Transmittance in Soybean and Corn

E. A. Walter-Shea,* J. M. Norman, B. L. Blad, and B. F. Robinson

ABSTRACT

Leaves have a major influence on canopy reflectance when they
constitute the main spatial component in a vegetative canopy. Near
normal-incidence, directional-hemispherical reflectance and trans-
mittance of in situ individual leaves of soybean (Glycine max.,
Merr.) and corn (Zea mays, L.) were characterized as a function of
wavelengths;and growth. Spectral properties were measured in seven
wavebands with an integrating sphere and prototype radiometer
unit. Individual leaves periodically were monitored from emergence
and unfolding through 47 d in soybean and 77 d in corn. Visible
reflectance a[md transmittance decreased in soybean as leaves ex-
panded, but increased after full leaf expansion. An opposite pattern
was observed with soybean near-infrared radiation (NIR) reflec-
tance. Specﬁ-al properties varied little in mid- and upper-canopy
corn leaves with the exception of the green spectral region. Near
constant values were attributed to the fact that corn leaves are fully
expanded by the time they have fully emerged. Reflectance and
transmittance properties of adaxial and abaxial surfaces differed by
as much as an absolute 5% in soybeans while there were essentially
no differences in corn. Differences in surface reflectance and trans-
mittance in soybean were attributed to the dorsiventral morphology
of soybean leaves. Reflectance and transmittance from adaxial and
abaxial leaf surfaces may have to be considered in modeling soybean
canopies while one surface should suffice to describe light interaction
with corn canopy leaves.

EAVES are the primary scattering units in a vege-
tative canopy. Radiant energy incident on a leaf

can be scattered from the leaf surface into or away
from the leaf, giving rise to specularly reflected and
diffusely reflected and transmitted radiation. Radiant
energy also will be absorbed by the leaf. Partitioning
of radiation is a function of leaf cellular structure
(Gates et al., 1965; Knipling. 1970; Gausman et al.,
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1970; Woolley, 1971), leaf surface coatings and rough-
ness (Gausman, 1977; Grant et al., 1987), and mor-
phological and physiological parameters (Gausman et
al., 1971a,b; Gausman and Allen, 1973). Leaf anatom-
ical structure and biochemical composition are critical
to the amount of radiation absorbed, transmitted, or
reflected.

Relatively little incident visible radiation (0.35-0.7
um) is reflected or transmitted in healthy green leaves
due to absorption by chlorophyll and other leaf pig-
ments (Gausman, 1982; Maas and Dunlap, 1989). De-
creased visible reflectance with leaf development and
maturation in cotton (Gossypium hirsutum L.) (Gaus-
man et al., 1970), white oak (Quercus alba 1.) (Gates
et al., 1965) and apple (Malus domestica Borkh.) (Pal-
mer, 1977) have been attributed to pigment accu-
mulation. In contrast, leaves absorb relatively little
incident near-infrared (NIR)! radiation (0.75-1.35
um) because NIR scattering by the leaf mesophyll re-
sults in high reflectance and transmittance. Any
change in the internal leaf structure will ultimately
affect NIR properties. Near-infrared radiation reflec-
tance was less in younger than in older cotton leaves
with little difference in visible reflectance (Gausman -
et al., 1970).

The objective of this research was to characterize
directional-hemispherical reflectance and transmit-
tance properties at near-normal incidence of individ-
ual in situ soybean and corn leaves as a function of
wavelength and leaf growth.

MATERIALS AND METHODS

Data were acquired in soybean and corn during 1984 at
the University of Nebraska Sandhills Agricultural Labora-
tory (41°37'N, 10°50'W and 975 m above mean sea level),
70 km north of North-Platte, NE. Soybean was planted at
32.8 plants m-? in north-south rows with a row spacing of
0.76 m. ‘Corsoy’ soybean was irrigated at 100% (well-
watered) or 33% (water-stressed) soil moisture replacement.

! Abbreviations: NIR, near-infrared radiation; TM, Landsat The-
matic Mapper; DOY, day of vear. RLG. relative leaflet growth; and
LA, leaflet arca.
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Fig. 1. A photograph of (a) the LI-COR Integrating Sphere Model 1800-12 and (b) LI-COR 1800-12B Illuminator attached to (c) the prototype

radiometer.

Soil moisture loss was determined using a Troxler Model
3222 Moisture Depth Gauge? (Troxler Electronic Labora-
tories, Inc., Research Triangle, NC 27709).

Pioneer 3901 corn was planted at 7.3 plants m-2 in north-
south rows with a row spacing of 0.76 m. The corn was
irrigated at 100% soil water replacement (well-watered) treat-
ment only.

Reflectance and transmittance of individual soybean leaf-
lets and corn leaves were measured in situ with a LI-1800-
12 Integrating Sphere (LI-COR, Inc., Lincoln, NE 68504)
attached to a prototype field-portable radiometer (Fig. 1)
(Mesarch et al., 1991). The integrating sphere included a light
source power supply, (LI-COR 1800-12B Illuminator), a
pressed barium sulfate (BaSQO,) reference standard, and sam-
ple chamber to hold the leaf. The light source, a 6 V, 10 W
glass halogen lamp, provided a collimated beam with <5%
stray light. Three apertures on the sphere allowed the lamp
to be positioned for reference, reflected, or transmitted ra-
diation measurements. The light source was mounted across
from the pressed BaSO, standard for reference readings,
across from the sample for reflected, and directly behind the
sample for transmitted light readings. The leaf, external to
the sphere, was placed in the sample chamber, completing
the sphere interior. The leaf portion in the sample chamber
was directly illuminated when the lamp was positioned for
reflected or transmitted light readings. Reflected or trans-
mitted radiation was diffusely reflected from the painted
BaSO, coating of the wall, which uniformly illuminated the
sphere by internal reflectance and resulted in a good ap-
proximation to directional-hemispherical reflectance and
transmittance factors at near-normal incidence.

Radiation in the integrating sphere exited through the sen-
sor port to the attached radiometer and produced an analog
voltage response to the radiant energy from the sphere. Volt-
age was proportional to the amount of radiant energy in the
sphere reflected from or transmitted through the leaf sample.
The detector did not view any part of the sample; the field
of view was occupied by the sphere wall. Seven narrow-pass
radiometer filters were used. All filters, except Waveband 5
(1.15-1.30 pm), corresponded to the Landsat Thematic Map-
per (TM) wavebands (Table 1). Response measurements

2 The use of trade names does not imply endorsement of the prod-
ucts by the authors.

from surfaces of known transmittance varied most with
Waveband 7; this waveband was excluded from the analysis.
Output (volts proportional to the flux) was recorded on an
Omnidata Polycorder (Omnidata Inc., P.O. Box 3489, Lo-
gan, UT 84321).

Measurements were made on intact abaxial (lower) and
adaxial (upper) surfaces of individual soybean leaflets and
corn leaves. Measurements were made intermittently from
leaflet unfolding or leaf emergence through 47 d in soybean
and 77 d in corn, twice daily when possible.

Stray light due to an imperfectly collimated beam and the
dark current response (integrating sphere not illuminated)
were measured periodically. Output from the instrument was
corrected for stray light and dark current responses.

Calculations of Reflectance and Transmittance

Reflectance (p,) of leaves was calculated as the ratio of
voltage equivalence of reflected radiation from the sample
surface for Waveband k (E,,) to the voltage equivalence of
reflected radiation from the standard for Waveband k (E,g,)-
Both were corrected for dark current readings (E,,), and
Eyen) associated with each waveband and reading time,
and for stray light (E,,) and associated dark current reading
(Eqe) as follows:

P = [Er,k - Ed(r),k - (Es,k — Ed(s),k)] . [1]
[Eref,k - Ed(ref),k - (Es,k - Ed(s),k)]

where p,¢, TEpresents a correction for the non-perfect re-
flector property of the pressed BaSO, standard of the inte-
grating sphere.

Transmittance (r,) of leaves for each Waveband k was
computed similarly:

Prefk

— [Ewx — Eawyl ‘p
[Eref,k - Ed(ref),k - (Es,k - Ed(s),k)] refk

Tk

(2]

Soybean

Directional-hemispherical reflectance and transmittance
of abaxial and adaxial surfaces at near-normal incidence of
intact field-grown soybean leaflets were monitored from the
time of leaflet unfolding (average day of year [DOY] 208)
to the end of the experiment at which time leaf yellowing
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Table 1. Spectral bands measured with the integrating sphere/ra-
diometer’ arrangement and the Barnes Model 12-1000 Modular
Multiband Radiometer (MMR). TM refers to Thematic Mapper
wavebamjs.

Waveband Wavelengths
pm
1 TM1 0.45-0.52
2 TM2 0.52-0.60
3 TM3 0.63-0.69
4 TM4 0.76-0.90
[ Jp—— 1.15-1.30
6 TMS 1.55-1.75
7 TM7 2.08-2.35

was visually detected (DOY 254). Measurements were ini-
tiated when terminal trifoliate leaflets were greater than 15
mm in w1dth since the integrating sphere sample chamber
prevented use of smaller leaflets. Thus, the relative portion
of the leaflet sampled for measurement varied during growth.
Initial measurements included most of the leaflet area due
to the small size of leaflets. The lower and wider part of the
terminal leaflet was sampled as the leaflet grew and ap-
proached full expansion to avoid the leaflet midrib. Leaflet
area was approximated from length and maximum width
measurements made at the beginning of each day of leaflet
reflectance’ and transmittance measurements to provide a
general indicator of leaflet growth and expansion (Ross,
1981). Relative leaflet growth (RLG), an indicator of leaflet
growth, was calculated as the ratio of estimated leaflet area
at the time of optical measurements (LA) to the maximum
leaflet area, achieved during the experiment (LA,,,), such
that RLG = LA/LA,,,.

Leaflet reflectance and transmittance data were obtained
twice daily: when possible from both abaxial and adaxial
leaflet surfaces from nodal Positions 10 and 11 (considering
the unifolidte leaf position to be Node 1) from two plants
in well-watéred and water-stressed plots. There was no sig-
nificant difference of optical properties between morning and
afternoon for most wavebands (transmittance through corn
and soybean adaxial leaf surfaces was significantly different
at 0.10 for Band 6). Data for all times of day were pooled
so that plotted values represent the mean of four to eight
leaflet measurements.

Corn

Dlrectlonal hemispherical reflectances and transmittances
were measured on corn leaves from node Positions 11, 12,
16, and 17.'Replicated reflectance and transmittance prop-
erties of Leaves 11 and 12 and of Leaves 16 and 17 were
averaged to represent mid- and upper-canopy leaves,
respectively.

Optical properties of abaxial and adaxial surfaces of intact
leaves on two plants were measured at near-normal inci-
dence from leaf tip emergence (average DOY 178 of the mid-
canopy leaves) to the end of the experiment (DOY 254).
Three leaf positions, representing a chronological sequence
of leaf emergence, were selected for measurement. The first
measurement position represented the leaf surface generally
exposed the'second day after leaf tip emergence. The second
measurement position represented leaf surfaces generally ex-
posed after the fifth day of leaf tip emergence and the third
measurement position represented leaf surfaces exposed
when the leaf approached full emergence. All positions were
monitored until full leaf emergence, but subsequently, only
the second position (about mid-leaf) was monitored for the
remainder of the experiment.

RESULTS AND DISCUSSION
Leaf Spectral Properties

Soybean. Relative leaflet growth of water-stressed
and well-watered soybean leaflets did not differ signif-
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Fig. 2. Mean relative leaflet growth of four well-watered (solid circle,
line) and four water-stressed soybean leaflets (solid triangle,
dashed) throughout the experimental period. Relative leaf growth
is the ratio of an approximate leaflet area at the time of reflectance
measurements to the average maximum leaflet area achieved dur-
ing the experimental period. Vertical dashed lines indicate days
for which soybean ieaflet optical properties are presented. Error
bars represent + 1 standard deviation.

icantly (Fig. 2). Vascular and mesophyl! tissues are well
established at the time leaflet unfolding commences but
cells comprising these tissues are immature (Dale and
Milthorpe, 1983). Cell division ceases first in the epi-
dermis then shortly afterward in the spongy mesophyll
(Decker and Postlethwait, 1961). Cell enlargement fol-
lows in these tissues while cell division and expansion
continues in the palisade layer. Expansion continues as
the leaf approaches full size. Average RLG estimates
at DOY 230 (approximately 3 wk after initial mea-
surement) indicated that cell division and expansion
had ceased in most of the soybean leaflets cells. Visual
observations of leaf color indicated that leaf senescence
had been initiated by DOY 242 for both water-stressed
and well-watered plots.

A relationship between reflectance and transmit-
tance properties and leaflet growth was observed (com-
pare Fig. 2 and 3). Reflectance and transmittance in
the visible wavebands generally decreased as leaflets
developed and approached full expansion (ca. DOY
230). The trend was most clearly evident in the green
spectral region (Waveband 2) (Fig. 3). For example, re-
flectance in the green spectral region from adaxial leaflet
surfaces in well-watered soybeans decreased approxi-
mately 4% from initial reflectance values (approximately
27% relative decrease), while transmittance decreased by
approximately 13% (approximately 65% relative de-
crease). Changes in reflectance and transmittance in the
visible portion of the spectrum indicate pigment devel-
opment. Cell organelles, such as chloroplasts, develop
concurrently with mesophyll cell enlargement (Leech,
1985). As a result, absorption in the visible wavebands
increased (i.e., reflectance and transmittance decreased)
as full leaflet expansion was approached (ca. DOY 230).
Reflectance and transmittance increased after leaflets
were fully expanded and leaf yellowing was initiated as
was similarly observed in cotton leaves (Gausman,
1982). Increased reflectance in the visible portion can
be attributed to chlorophyll degradation, unmasking
anthocyanin or carotene pigments in the blue and red
bands (Gausman, 1985).
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Spongy mesophyll celis enlarge while palisade cells
continue to divide and elongate (Decker and Postleth-
wait, 1961). Mesophyll intercellular spaces of C; spe-
cies are assumed to form during the later stages of cell
enlargement as epidermal cells expand causing the sep-
aration between leaf mesophyll cells (Digby and Firn,
1985). Near-infrared optical properties are a function
of the number of intracellular refractive index discon-
tinuities, which increase as the leaf develops (Gates,
et al., 1965; Knipling, 1970; Woolley, 1971). Relative
leaf growth estimates serve as indicators of internal
structural changes. Near-infrared reflectance increased
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Fig. 3. Mean reflectance and transmittance of adaxial surface of
well-watered soybean leaflet (Nodes 10 and 11) for selected days
of the experimental period for Wavebands 1 through 6. Error bars
(square) represent + 1 standard deviation.
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Fig. 4. Absolute difference (percent) between adaxial surfaces of well-
watered (WW) and water-stressed (WS) soybean leaflet (WW-WS)
(Nodes 10 and 11) mean reflectance and transmittance on selected
days of the experimental period for Wavebands 1 through 6.

with leaf expansion, while visible reflectance decreased
with leaf expansion. Similar changes in visible and
NIR reflectances were observed in oak (Gates et al.,
1965; Boyer et al., 1988) and cotton (Gausman et al.,
1970). Near-infrared transmittance decreased when
NIR reflectance from leaflet surfaces increased (Fig.
3). For example, in well-watered soybeans, NIR re-
flectance increased from approximately 42 to 48% (ap-
proximately 14% relative increase). Near-infrared
transmittance through the same leaflet surfaces de-
creased from approximately 52 to 45% (approximately
13% relative decrease). Near-infrared reflectance and
transmittance remained fairly constant following full
leaf expansion while visible reflectance and transmit-
tance increased. If more time had elapsed it is expected
that NIR reflectance would have decreased and NIR
transmittance would have increased as was reported
for oak leaves (Boyer et al., 1988).

Slight and variable differences were detected be-
tween well-watered and water-stressed leaflet proper-
ties of similar surfaces (Fig. 4). The lack of variation
is attributed to the similarity of leaflet growth (Fig. 2).
Visible reflectance and transmittance of water-stressed
leaflets typically were slightly higher than well-watered
leaflets while differences varied in near- and mid-IR
wavebands.

Differences in reflectance and transmittance prop-
erties between abaxial and adaxial soybean leaflet sur-
faces were observed in most wavebands (Fig. 5).
Abaxial surfaces reflected and transmitted more in the
visible and transmitted more in the NIR but reflected
less in the NIR than adaxial surfaces. Differences were
greatest for visible reflectance and NIR transmittance.
The same trend in pattern and magnitude was ob-
served in water-stressed leaflets. Differences in pu-
bescence, cuticle thickness or chlorophyll distribution
between the two leaflet surfaces could contribute to
reflectance and transmittance differences in the visible
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Fig. 5. Absolute difference (percent) between abaxial (AB) and adax-
ial (AD) well-watered soybean leaflet surface (AB-AD) (Nodes 10
and 11) mean reflectance and transmittance on selected days of
the experimental period for Wavebands 1 through 6.
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wavebands. Chlorophyll is generally more densely
packed in the upper part of the leaflet mesophyll of
dicotyledonous plants (Terashima and Saeki, 1983).
Light absorption by chlorophyll concentrated in the
upper leaf surface has been used to account for the
lower reflectance from and transmittance through
adaxial surfaces than from abaxial surfaces (Gausman,
1985). The difference in magnitude of NIR reflectance
from uppeér and lower surfaces can be attributed to
differences in light beam pathway between the palisade
and spongy mesophyll layers. Air-cell wall interfaces
can be as numerous or even more numerous in the
palisade tissue as in the spongy mesophyll (Gausman
et al., 1971a). The numerous interfaces in the palisade
layer could account for the larger reflectance from
adaxial surfaces than observed from abaxial surfaces
(Woolley, 1971).

Corn. Mean spectral values varied little for mid-
canopy leaf surfaces during leaf emergence and the
remaining experimental period in most wavebands ex-
cept the green spectral band (Fig. 6). Near constant
values in the near- and mid-IR wavebands were at-
tributed to internal cell structure and the monocot leaf
maturation process. The corn leaf basal meristem is
enclosed by sheaths and upper leaf bases and is not
exposed during growth and maturation (Dale and Mil-
thorpe, 1983). Cells at the leaf tip become fully dif-
ferentiated earlier than those at the base and will reach
full maturity before basal meristem cells cease dividing
(Dale and Milthorpe, 1983). The exposed portion of
an emerging corn leaf will be fully expanded although
cell division and expansion will continue inside the
sheath. Near constant NIR reflectance and transmit-
tance values indicated that the corn leaf structure was
maintained throughout the experiment.

Chloroplast development apparently is concurrent
with mesophyll cell enlargements (Leech, 1985). How-
ever, slight variations in reflectance and transmittance
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Fig. 6. Well-watered adaxial mid-canopy corn leaf surface (Nodes
11 and 12) mean reflectance and transmittance for selected days
of the experimental period for Wavebands 1 through 6. Error bars
(©) represent + 1 standard deviation.

in the visible spectral region were observed that sug-
gest a change in the content of chlorophyll and other
pigments over time. For example, initial visible re-
flectance from adaxial mid-canopy corn leaves was
12% but decreased to approximately 9% at DOY 228
(approximately 22% relative difference). No color
change was detected visually during the experimental
period.

Slight differences in the reflectance from and trans-
mittance through abaxial and adaxial surfaces were
observed in mid-canopy corn leaves (Fig. 7). Similar
comparable reflectances occurred in upper-canopy
corn leaves. In monocots, concentric layers of bundle
sheath cells surrounded by mesophyll cells predomi-
nate, while leaf palisade and spongy mesophyll tissue
layers (upper and lower, respectively) are well defined
in dicots. The present data indicated that the internal
structural integrity of well-watered corn leaves is
maintained over time. Also, little variation was ob-
served in spectral properties between mid- and upper-
canopy leaves (Fig. 8).

Comparison Between Soybean and Corn. Visible re-
flectance and transmittance properties of fully ex-
panded, well-watered adaxial soybean leaflets were
similar to those of adaxial corn leaf surfaces (compare
Fig. 3 and 6). Visible reflectance and transmittance
values were generally higher for immature soybean
leaflets and those undergoing senescence than for ma-
ture corn leaves while NIR reflectance and transmit-
tance values for immature soybean leaflets were
similar to those values of corn leaves. The similarity
is attributed to an internal compacted cellular struc-
ture for corn leaves and, at this time, soybean leaflets.
Soybean NIR reflectance became greater than corn
NIR reflectance while soybean NIR transmittance was
lower than that of corn as soybean leaflets expanded.
Soybean leaflet dorsiventral structure as compared to
corn leaf compact structure probably contributes to
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Fig. 7. Absolute difference (percent) between abaxial (AB) and adax-
ial (AD) well-watered mid-canopy corn leaf surface (AB-AD)
mean reflectance and transmittance on selected days of the ex-
perimental period for Wavebands 1 through 6.
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lected days of the experimental period.

the higher reflectance and lower transmittance (Gaus-
man, 1983).

CONCLUSIONS

Directional-hemispherical visible reflectance and
transmittance at near-normal incidence decreased as
soybean leaflets developed and approached full leaf
expansion. Values increased after leaflets were fully
expanded. The reverse occurred for NIR reflectance,
but the change in NIR transmittance was similar to
that in visible reflectance and transmittance over time.
The magnitude of changes in soybean leaf reflectance
from abaxial and adaxial surfaces over time may not
be large, while transmittance differences can be large,
particularly in the green spectral region. Slight and
varied differences between optical properties of well-
watered and water-stressed soybean leaflets were most
pronounced in the visible wavelength region during
the latter part of the experiment. Soybean leaflets dif-
fered in reflectance and transmittance between abaxial
and adaxial surfaces by approximately 5% (absolute
difference) while corn leaf surface optical properties
were nearly identical between surfaces. Spectral prop-
erties of exposed corn leaf surfaces remained fairly
constant throughout the field experiment in all wave-
bands except the green waveband. Differences in re-
flectance and transmittance properties during soybean
leaflet and corn leaf growth can be attributed to dif-
ferences in cellular structure and maturation in dicots
and monocots. Leaf optical property observations such
as these presented may be critical in photosynthesis
studies and crop canopy radiative transfer modeling,
especially for simulations of a developing canopy. Re-
flectance and transmittance from adaxial and abaxial

surfaces may have to be considered in modeling soy-
bean canopies while only one surface should be suffi-
cient to describe light interaction with corn canopy
leaves.
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