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Abstract
Purpose Sediment accumulation has been and continues to be a significant threat to the integrity of the playa wetland ecosystem.
The purpose of this study was to determine the vertical depth to the clay soil layer (Bt horizon) and thus to calculate the thickness
of sediments accumulated in playa wetlands.
Materials and methods This study used the electromagnetic induction (EMI) survey method, specifically EM38-MK2 equipment,
to measure the vertical depth to the clay soil layer at the publicly managed wetlands in the Rainwater Basin, Nebraska, USA.
Results and discussion The results indicated that the depth to the clay soil layer ranges from 21 to 78 cm (n = 279) with a mean
sediment thickness of 39 cm. The annual sediment deposition rate since human settlement in the 1860s was calculated to be
0.26 cm year−1. The results provided science-based data to support future wetland restoration planning and the development of
decision support tools that prioritize conservation delivery efforts.
Conclusions Our research confirmed that the EMI technique is effective and efficient at determining the depth to the Bt horizon
for playa wetlands. Additionally, these results supported previous studies and continue to indicate that a large amount of sediment
has accrued in these playa wetlands within the Rainwater Basin area since settlement. Wetland restoration ecologists can use this
information to prioritize future wetland restoration work that intends to remove culturally accumulated sediments above the clay
soil layer. These findings provided a contemporary summary of wetland soil profile information that is typically used to develop
restoration plans. This research also filled the critical knowledge gap about the thickness of the upper soils and the depth to Bt in
publicly managed wetlands.

Keywords Bt horizon . Electromagnetic induction (EMI) survey . Playawetlands . Sediment

1 Introduction

1.1 Importance of sediment issues for playa wetlands

Playa wetlands are nearly circular, shallow depressions locat-
ed in semi-arid areas and are predominately formed by aeolian
processes (Smith 2003). Playas are found in the lowest areas
within closed watersheds and have a well-defined clay soil

layer (Bt horizon, also called the clay pan) just beneath the
wetland surface (LaGrange et al. 2011; NRCS 2015). This Bt
layer impedes downward water movement and supports
ponded conditions within these hydric soil footprints when
adequate runoff occurs. Soils within the upper profile have
more organic matter and larger particle sizes (NRCS 2015)
that increase water storage capacity within these layers rather
than facilitating surface water ponding. Therefore, the depth to
Bt or the thickness of the soil layers above the Bt can signif-
icantly affect wetland function, integrity, and sustainability for
playa wetlands (Tang et al. 2015a).

The Rainwater Basin region is located in the narrow corridor
of the Central Flyway and plays a significant role as stopover
habitat for waterfowl and shorebirds during spring migration
(Gersib et al. 1992; Brennan et al. 2005). When ponding oc-
curs, these wetlands provide abundant wetland-derived seed
resources that support the North American Waterfowl
Management Plan objectives (Drahota and Reichart 2015).
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Many of these playawetlands have been protected as waterfowl
production areas (WPAs) and wildlife management areas
(WMAs) that provide habitats for millions of waterfowl and
other waterbirds including the threatened piping plover
(Charadrius melodus) and bald eagle (Haliaeetus
leucocephalus), and the federally endangered whooping crane
(Grus americana) (LaGrange 2005; USFWS 2007).

Sediment accumulation has been and continues to be a sig-
nificant threat to the integrity of the playa wetland ecosystem
(Haukos and Smith 2003; Tsai et al. 2010; Daniel et al. 2015;
Tang et al. 2015a, b). LaGrange et al. (2011) highlighted the
consequences of sediment accumulation on playa wetlands,
specifically on hydrological function, water quality, plant com-
munity structure, and impacts to invertebrate and vertebrate
populations. Sediment within any wetland footprint can in-
crease the water storage capacity within the soil profile due to
the interstitial pore space in the unconsolidated sediment, and
therefore can reduce the frequency and duration of surface wa-
ter expression (Tsai et al. 2010; Tang et al. 2015b). The surface
runoff spates transport sediment from tilled uplands down slope
to playa wetlands causing rapid accumulation compared with
pre-settlement conditions when grassed uplands limited soil
movement. Thus, the water storage capacity of playa wetlands
has declined, and wetland function has been severely altered
(Goldsborough and Crumpton 1998; O'Connell et al. 2013). As
the accumulation of sediment increases in playa wetlands, the
water storage capacity within the soils above the clay pan in-
creases causing less frequent surface ponding, declines in water
depth, and shorter hydroperiods (Tang et al. 2018). Although
short-term gains in the ponded area may be noted after signif-
icant runoff events, the hydroperiod will be shorter and the
overall ponded area will be smaller during average climate
conditions given excessive sediment accumulation (Cariveau
et al. 2011; Uden et al. 2015). Furthermore, the loss of water
storage volume resulting from aggradation will not only pro-
vide favorable conditions for invasive plant species
(Galatowitsch et al. 1999; Smith and Haukos 2002) but also
make them more vulnerable to agricultural conversions (Tsai
et al. 2010; Tang et al. 2015b). Since playa wetlands are ex-
tremely sensitive to sediment accumulation, the thickness of
accumulated soils above the clay layer is an important measure
used in wetland restoration planning. Therefore, this research
focused on determining the thickness of soils accumulated
above the Bt horizon on publicly owned playa wetlands. This
research was designed to provide a scientific inventory of the
current conditions that restoration ecologists can use to plan and
prioritize wetland restoration decisions, particularly for sedi-
ment removal projects.

1.2 Culturally accelerated sediment on playa wetlands

Culturally accelerated sedimentation occurs when land man-
agement practices accelerate the deposition of soils into playa

wetlands breaking the balance of input and output of sediment
in the natural sedimentation process (LaGrange et al. 2011).
The culturally accelerated sediment from the cropland portion
of the watershed has become the primary input into playa
wetlands (LaGrange et al. 2011). Figure 1 illustrates the jux-
taposition of rapid soil accumulation above the clay soil layer
(the Bt horizon) (modified from Schafersman 2011).

Before European settlement in the Great Plains, playa wet-
lands occurred in a landscape with minimal anthropogenic dis-
turbances, and persisted through natural disturbances such as
drought and deluge events, fire, and grazing. All of these dis-
turbances facilitated some soil deposition events along with
deflation events that frequently removed deposited soils. In the
natural cycle of soil erosion, transport, and deposition into
playas, the amount of sediment moving into wetlands would
be offset by the amount of sediment moving out of playa wet-
lands via wind deflation. Therefore, the inputs and outputs of
sediment, to some degree, were considered to be in balance (Gill
1996; Luo et al. 1997, 1999; Smith 2003; LaGrange et al. 2011).

However, from the mid to late 1800s, the European settle-
ment of the central USA began to occur after the arrival of
railroads to the Great Plains (LaGrange et al. 2011; Tang et al.
2015a). The Homestead Act passed by Congress in 1862 re-
quired claim holders to build a certain size dwelling, and im-
prove the land by growing crops within 5 years of the home-
stead application (Potter and Schamel 1997). This facilitated
rapid conversion of grassland into cropland in the late 1800s
(Layton et al. 1927), and most of the landscape was converted
to croplands in south-central Nebraska. These tilled lands
were exposed to wind and water erosion for a good portion
of the year. As a result, an increase in the rate and amount of
eroded topsoil was transported and deposited into
depressional playa wetlands.

The accumulated sediments are functioning as a subsurface
storage area and can store a considerable amount of water. The
capacity of playa wetlands has been reduced by excessive
sediment inputs. In fact, many only pond water after a consid-
erable amount of precipitation has occurred in a short amount
of time because of excessive sediment accumulation.
Consequently, playas with high amounts of sediment accumu-
lation require larger runoff events to facilitate ponding
(Cariveau et al. 2011). Therefore, contemporary hydroperiods
are significantly different from the pre-settlement era.
Culturally accelerated sedimentation expedites successional
transitions from wetland habitat to mesic or even upland hab-
itat, and without appropriate removal of excessive sediment
inputs, many playas will continue to be dysfunctional
(LaGrange et al. 2011; Tang et al. 2016, 2018). Mapping the
shallow soil vertical profile is critical in understanding the
pattern, distribution, and trend of sediment accumulation in
playa wetlands. Thus, this study focused on determining the
depth to Bt that is frequently used as a benchmark depth for
designing and implementing wetland restoration projects.
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1.3 Approaches for sediment estimation

Recent research has greatly improved our understanding of
playa sediment issues in the Rainwater Basin (Renard et al.
1997; Beas et al. 2013a; Daniel et al. 2015, 2017; Tang et al.
2015b). Although the soil erosion models can be used to esti-
mate soil erosion rates at the landscape level, the actual sedi-
ment deposition rate is subject to the transport capacity at the
watershed scale (Renard et al. 1997). Cropland area at the wa-
tershed scale can have a significant influence on runoff rates,
sedimentation rates, and declines in water storage capacity in
playas (Daniel et al. 2015). The contemporary inundation pat-
terns of playa wetlands in the Rainwater Basin have been af-
fected by excessive amounts of sediment deposited (Tang et al.
2015b). Recent studies also examined the effectiveness of sed-
iment removal on playa wetland performance. Sediment re-
moval has been linked to improvements in plant community
characteristics (Beas et al. 2013a), and improvements in carbon
and nitrogen storage in playa wetlands (Daniel et al. 2017). Yet,
we still lack the ability to efficiently evaluate the depth to Bt that
will help develop prioritization models to support conservation
delivery efforts, particularly for sediment removal projects.

Wetland researchers, managers, and restoration ecologists
still rely heavily on traditional field drilling or sampling tech-
niques that allow the examination of wetland sediment profiles
(Gleason and Euliss 1998; Olson and Jones 2001; Tang et al.
2015a). Traditional point measurement sampling techniques,
such as soil coring, mechanical probes, and pit excavation,
can provide soil profile information, but they are destructive,

labor-intensive, and time-consuming. Moreover, these tradi-
tional soil survey tools not only provide partial or limited infor-
mation but also provide an incomplete characterization of the
subsurface profile at a localized level that is helpful for devel-
oping wetland restoration plans. Soil scientists must apply both
visual and tactile observations to make interpretations based on
inferencesmade across typically large and extensive areas using
wide-ranging core samples (Sudduth et al. 1999). By increasing
our ability to provide detailed site-specific soil profiles rapidly,
we can describe the variability and dynamics soil moisture and
clay content. Therefore, determining the depth to Bt is essential
to defining the potential hydrologic impacts caused by accumu-
lated sediment that ultimately support comprehensive wetland
restoration designs.

1.4 Electromagnetic induction technique in sediment
research

The electromagnetic induction (EMI) technique has been used
to characterize the spatial variability of soil properties, such as
clay content and soil salinity since the 1970s (de Jong et al.
1979; Williams and Baker 1982). EMI can measure the ap-
parent soil electrical conductivity by inducing an electrical
current in the soil (Saey et al. 2009), but has not been ade-
quately tested for use in playa wetlands. The EMI approach is
non-invasive, and it can provide immediate results. Therefore,
it can be used to develop the inventory of lateral changes in
soil properties underlying soil surfaces (Saey et al. 2009). The
measurement depth is primarily determined by the coil

Fig. 1 Illustration of culturally accelerated sediment in playa wetlands (modified from Schafersman 2011). The darker orange area indicates new soils
that may have been deposited since settlement and are filling the area with soil rather than ponded water
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orientation, coil spacing, frequency of the induced current,
and the height of the EMI instrument above the ground
(Gebbers et al. 2007; Saey et al. 2009). Electrical conductivity
in the soil is determined from the combination of physical and
chemical soil properties (Corwin and Lesch 2005) such as soil
porosity, soil salinity, clay content, water content, concentra-
tion of dissolved electrolytes in the soil solution, cation ex-
change capacity, composition of colloids, and temperature
(Sundberg 1932; McNeill 1980; Rhoades et al. 1989;
Sudduth et al. 1999; Saey et al. 2009; Sudduth et al. 2010;
Herrero and Castaneda 2015). In principle, the apparent elec-
trical conductivity at different depths can be obtained from the
measures at different heights above the soil surface (Borchers
et al. 1997). Soil electrical conductivity rises when soil con-
ditions change such as increases in water content or percent
clay (Freeland 1989).

The EMI techniques have been verified as useful tools to
distinguish soil types and properties (Ammons et al. 1989;
Heil and Schmidhalter 2012; White et al. 2012; Doolittle
and Brevik 2014). Sudduth et al. (1995) used the EMI to
examine the depths to clay pan, and Doolittle et al. (1995)
used it to determine the thickness of floodplain splay deposits.
In addition, EMI can effectively distinguish and map the soil
conditions by detecting soil water content (Hezarjaribi and
Sourell 2007; Huth and Poulton 2007) and soil salinity
(Cook and Walker 1992; Yao et al. 2012; Herrero and
Castaneda 2015). Doolittle et al. (1994) observed high corre-
lations between the observed depth to claypan and the
response of the EMI measurement in central Missouri.
Sudduth et al. (1995) found high statistical agreement between
the soil probe depth and the EMI estimated depth. Kitchen
et al. (1996) used the EMI technique to estimate sand deposi-
tion by detecting the conductivity between sand and other
soils. Boettinger et al. (1997) evaluated the soil depths for
216 soil sampling points at the 0–150-cm level and concluded
that EMI is useful tool “for nondestructively assessing soil
depth to a cemented subsoil horizon quickly and inexpensive-
ly.” Bork et al. (1998) evaluated the two EMI meters (EM38
and EM31 models) for non-destructively assessing soil depth
to bedrock in grazing lands with different vegetation compo-
sitions. Freeland et al. (2001) pointed out the EMI technique is
particularly suitable for the areas where subsurface properties
are reasonably homogeneous.

The EMI response can clearly reflect the variations in prop-
erties (e.g., clay, water, or salt content) particularly when they
dominate over other properties (Cook and Walker 1992;
Freeland et al. 2001). The Natural Resource Conservation
Service (NRCS 2002) found that the EMI method could accu-
rately mirror soil survey maps and determined that the higher
conductivity readings at greater soil depths was attributed to the
increased clay and moisture contents of each soil horizon. This
led them to recommend the EMI technique as a reliable method
for soil survey verification and wetland delineation within the

Platte River area of Nebraska (NRCS 2002). Saey et al. (2008)
used the EMI technique (EM38DDmodel) to map the depth to
the Tertiary clay substrate and reached a high correlation
coefficient with independent observations. Saey et al. (2009)
reconstructed the interface depth between the Quaternary loess
and the Tertiary clay. Doolittle and Brevik (2014) summarized
the EMI technique as a rapid, non-destructive, cost-effective
approach to measure the spatial variability of soil properties.
Based on the established literature, this study adopted the EMI
technique and further expanded its application to identify the
upper compacted layer of a playa wetland for precise
wetland evaluations.

1.5 Research objectives

The overall goal of this research was to test the EMI survey
technique to determine the depth to Bt in publicly managed
wetlands in the Rainwater Basin, Nebraska, USA. We evalu-
ated the EMI survey technique to determine if it can efficiently
establish a depth to Bt and thus estimate the thickness of
accumulated sediments in wetlands. This study was designed
to fill a critical knowledge gap about the vertical profile of
playa wetlands that can help to determine future wetland res-
toration priorities on public properties.

2 Methods

2.1 Study area

The location of the Rainwater Basin is shown in Fig. 2. The
Rainwater Basin region encompasses 15,907 km2 including
all or parts of 21 counties on the Loess Plains of south-central
Nebraska (LaGrange 2005). The Rainwater Basin consists of
natural wind-formed wetland depressions that tend to have a
northeast to southwest orientation (Kuzila and Lewis 1993).
The landscape of the playa complex features flat to gently
rolling plains which are formed by deep deposits of wind-
blown loess, and the size of wetlands range from less than
4,000 m2 (approximately 1 acre) to over 4.0 km2 (approxi-
mately 1,000 acres). Each playa is identified by a characteris-
tic hydric soil that typically has prolonged ponding during the
growing season (Allen et al. 1972; Beas et al. 2013a). Our
study sites in the Rainwater Basin comprise 93 publicly man-
aged wetland watersheds including 35 Wildlife Management
Areas (WMAs) managed by the Nebraska Game and Parks
Commission and 58 Waterfowl Production Areas (WPAs)
managed by US Fish and Wildlife Service.

2.2 Equipment and software

The EMI instrument used in this study is the EM38-MK2
manufactured by Geonics Limited, Mississauga, Ontario,
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Canada. The EM38-MK2 equipment includes a lightweight
bar approximately 1m in length that contains a transmitter and
two receiver coils (Grisso et al. 2009). It is designed to be held
by hand and take stationary electrical conductivity readings
(Sudduth et al. 2010), and it includes a digital readout of
electrical conductivity in millisiemens (mS) per meter with
calibration controls. Collected data can be logged into a
DAS 70-AR Data Acquisition System embedded in an
Archer 2 Field Computer, connected by either Bluetooth wire-
less technology or an RS-232 serial cable.

We used the differential global positioning system receiver
which has a 1–2-m accuracy to document each sampling
point. At each sample location, EM38-MK2 was used to mea-
sure changes in the magnetic field between a transmitting and
receiving coil. The device operated at a frequency of 14.5 kHz
and provides measurements of ground apparent electrical con-
ductivity (Quad-Phase). Two transmitter receiver coil separa-
tions occurred at 1.0 m and 0.5 mwith 3 effective depth ranges
at 0.75m and 1.5 m in vertical dipole mode, and two ranged at
0.38m and 0.75m in horizontal dipole mode. In this study, the
instrument was operated only in the vertical dipole mode with
coil separation at 1.0 m to reach the effective signal detection
depth of approximately 1.5 m. After the field data collection,
the Interpex Limited 1X1Dv3 inversion software (Interpex.
com at Golden, Colorado, USA) was used to generate one-

dimensional conductivity versus depth profiles. The depth to
Bt was derived from the inversion results.

2.3 Data source for soil series

The Soil Survey Geographic (SSURGO) database (NRCS
2015) was produced by the US Department of Agriculture’s
Natural Resources Conservation Service. We used the
SSURGO data to determine the locations of hydric soil foot-
prints and the soil classifications for each public wetland
(Tang et al. 2015b). The primary wetland soil series found
on public lands include Massie, Scott, Fillmore, Butler, and
Rusco. According to the soil classifications, Massie series
consists of very poorly and deep drained clay pan soil that
formed in loess modified by water (NRCS 2015). Massie
soils, when present, are typically in the lowest portions of
hydric footprints and are often the wettest areas. Massie soils
generally tend to function as semi-permanently ponded wet-
land habitat (Cowardin et al. 1979). The Scott soil series con-
sists of very deep and poorly drained soils (NRCS 2015).
Scott soils occur in the lower elevations of these depressional
wetlands (NRCS 2015), but are above the Massie soil areas
when present. Scott soils normally provide seasonal ponded
habitat (Cowardin et al. 1979). Other soil types, such as
Butlers, Fillmore, and Rusco soils, tend to be temporarily

Fig. 2 Location of the publicly managed wetlands in the Rainwater Basin
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ponded (Cowardin et al. 1979). Fillmore soils consist of some-
what poorly and very deep drained soils in shallow closed
depressions or basins of stream terraces and uplands (NRCS
2015). The Fillmore series is normally positioned at lower
elevations than the Butler series, but are higher than the
Massie series when they occur within the same hydrologic
soil footprint. Butler soils are somewhat poorly and very well
drained soils that formed in loess or mixed loess (NRCS
2015). Butler soils are typically positions on flat or shallow
depressions on loess uplands and high stream terraces (NRCS
2015), and are normally positioned higher than Fillmore and
Scott soils in the landscape when they occur within the same
hydric soil footprint. For example, at the Jones WPA water-
shed scale (as illustrated in the Fig. 3), the Holdrege soils
dominated for 84.0% of the watershed areas. Holdrege soils
are mainly distributed in uplands within the watershed. Each
of the Fillmore silt loam soils and Scott silt loam soils occupy
4.9% of watershed while other soil types (Butler silt loam,
Crete silt loam, Detroit silt loam, Uly and Coly silt loams)
account for 6.2% of watershed areas.

2.4 Data collection and analysis methods

At each wetland footprint, we determined hydrologic routes,
delivery points, and obvious silt plumes to minimize the pos-
sible influence from point-source deposition. Then, we

identified areas that were likely to have uniform soil deposi-
tion within the lowest area of each hydric soil footprint, and
then in an area that was easy to access. After these areas were
located, we randomly positioned sampling areas. Then we
cleared vegetation to create a bare soil area and collected three
field measurements in the cleared area. The sampling strategy
focused on the soils at the lowest elevation within each hydric
soil footprint on public lands. Therefore, the data were col-
lected with the following priority: (1) Massie series, (2) Scott
series, (3) Fillmore series, and then the other soils. On the
SSURGO soil map, these soil series are horizontally distrib-
uted on landscape, yet in the field these soil series represent
different elevations at the watershed scale. We did remove
dead plant material and live vegetation from the sample loca-
tions to ensure the ground conductivity meter was not influ-
enced by electrical insulting material on the soil surface.
Additionally, the soil surface was leveled off to create a rela-
tively accurate reference plane when measuring the height
above the referenced soil surface. Then, EM38-MK2 was de-
ployed to collect conductivity values in both east-west and
north-south directions in vertical mode with the transmitter
receiver coil separation at 1.0 m. At the sample point, the
instrument was held above the reference plane at a height of
0–150 cm, in 10-cm increments, and it stayed at each elevated
increment for approximately 1min to allow the unit to average
the readings at each height increment.

Fig. 3 Data collection and soil core sites in Jones WPA hydric soil footprint (left upper). The representative watershed is outlined in blue (right upper)
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The EMI data were analyzed using the Interpex Limited
1X1Dv3 software (Golden, Colorado, USA). The Occam in-
version smooth method was used to generate one-dimensional
conductivity depth profiles for each replicate at each sample
site. The data were visualized using 15–20 layers, depending
on the best-fit pattern that minimizes the root mean square of
the EMI conductivity value. After that, the multiple iteration
inversion was used to analyze the equivalent layered pattern
where only three split layers were displayed. Then, the equiv-
alent layered pattern that best fits the conductivity value and
the smoothing method were chosen to represent the vertical
soil conductivity profile.

3 Results

3.1 Results validation in two wetlands

The EMI measurement results were validated with field sur-
vey data in two public wetlands. First, at JonesWPA in Phelps
County, Nebraska, three soil cores were taken within the Scott
soil series in 2012. The depth to Bt for those three cores were
verified in the field by soil scientists (M. Kuzila and N.
Dominy) and later quantified in the lab by visual observation
by a University of Nebraska soil scientist (M. Kuzila). In this
study, the data collection with EM38-MK2 was calibrated
three times at each study wetland on August 16, 2016 (Fig.
3). The EMI sampling points were matched up with the soil
cores points by using the sameGPS coordinates. As illustrated
in Fig. 4, these three split layers from top to bottom separately
represent the sediment soil layer (includes the “A” and “E”
horizons), the Bt horizon, and the subsoil layer underlying the
clay pan. In these clay-pan depressional wetlands, the domi-
nant factor causing the EMI measurement changes on the
vertical sediment profile is the variations of soil types. Clay
soil particles have a huge surface area to volume ratio; thus, it
has a much higher exchange capacity than other soil types.
Therefore, the reflection of the clay soil layer can appear much
denser than the top layer of accumulated sediments. The first
horizontal red line from the top surface is the marker to dis-
tinguish the accumulated soils above the Bt horizon. The in-
ferred depth to Bt from the inversion results in Fig. 4 were
27 cm, 25 cm, and 28 cm at site 1, site 2, and site 3, respec-
tively. The depths to the clay soil layer from the lab observa-
tions for the three sites were 25 cm, 20 cm, and 25 cm, respec-
tively. The field observation photo is shown in Fig. 5. The soil
scientists determined the depth to Bt was 25 cm, indicating
that the thickness of accumulated soils was also 25 cm. This
resulted in no significant difference between the two measure-
ment strategies of soil core sampling and EMI measurements.

We further validated the utility of EMI method at the
Kenesaw WPA in Adams County, Nebraska on September
6, 2016. Seven data collection sites were measured using the

EM38-MK2 equipment. The first four sampling points located
in higher elevations within the wetland footprint that were
land leveled prior to acquisition. The EMI equipment indicat-
ed a mean depth to Bt of 46 cm (range 38 to 53 cm). Then, we
sampled three points within an area near the lowest elevations
of the wetland (the deepest areas were pits excavated in the
1970s so we did not sample within the lowest elevations). In
this area, the mean depth to Bt was 29 cm (range was 24–
35 cm). Interestingly, the soil core sampling in these same
areas indicated that the depth to Bt was 45 cm and 30 cm,
respectively. The EMI measurements were essentially consis-
tent with the mean depth to Bt at within these two areas within
the wetland footprint. Therefore, these results indicate that the
EMI can serve as a reliable alternative tool to effectively detect
the depth to Bt in the playa wetlands.

3.2 Depth to clay for all public wetlands

We evaluated 93 publically managed wetlands by conducting
3 field measurements within each wetland footprint for a total
of 279 measurements. We found that the mean depth to Bt for
all 279 sampling points was 39 cm with a standard deviation
of 11 cm. There were large variations in depth to Bt across
these wetlands that ranged from 21 to 78 cm (Fig. 6). Yet, we
used all of the data to calculate a mean annual sediment depo-
sition rate of 0.26 cm year−1 for all publiclymanaged wetlands
with the assumption that rapid sedimentation has been occur-
ring over the last 150 years given the increase in anthropogen-
ic activities.

We found that a significant number of the wetlands had
thick sediment accumulations above the Bt. Across all sample
locations, the sediment thickness profiles at the 10th percen-
tile, 25th percentile, 50th percentile, and 75th percentile
reached 27 cm, 30 cm, 38 cm, and 45 cm, respectively.

We also calculated the mean values of the 3 sampling
points in each wetland to ascertain the internal variations of
the EMI measurements. Across all 93 wetlands, the mean was
less than 6 cm. These results indicated a high level of internal
consistency of the EMI measurements in each site. But, even
in one wetland area, the EMI measurements may still be var-
ied by many possible external factors (e.g., micro-topographic
condition, vegetation condition, drainage pattern, agricultural
disturbance). In this study, only five sites, accounting for 5%
of the total 93 sites, had the internal variations larger
than 11 cm, which was the overall standard deviation
for all 279 samples.

We summarized the mean value of the depth to Bt in both
ownership categories (Fig. 7)—WMAs and WPAs. For the
105 sampling points in the 35 state-managed WMAwetlands,
the depth to Bt ranged from 24 to 78 cm. The mean thickness
of accumulated soils above the Bt in these WMAs was 42 cm
with a standard deviation of 12 cm, and the maximum depth to
Bt was 78 cm at Southeast Sacramento WMA. For the 174
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sampling points within the 58 federally managed WPA wet-
lands, the depth to Bt ranged from 21 to 71 cm. The mean
thickness of accumulated soils above the Bt in these wetlands
was 37 cm with a standard deviation of 9 cm, and the maxi-
mum depth to Bt was 70 cm at Weseman WPA.

3.3 Depth to clay within specific wetland soil series

We determined the mean depth to Bt for each of the primary
soil types within the lowest portion of the wetlands sampled
(Fig. 8). For the 153 sampling points within the Massie soils,
the Bt depth ranged from 23 to 78 cm. The mean thickness of

accumulated soils above the Bt in the Massie soils was 40 cm
with a standard deviation of 11 cm. In contrast, the 84 sam-
pling points within the Scott soil areas had a range of depth
from 24 to 62 cm. The mean thickness of accumulated soils in
the Scott soils was 38 cm with a standard deviation of 10 cm.
Similarly, for the 27 sampling points collected in the Fillmore
soils, the depth to clay soil layer ranged from 24 to 66 cm. The
mean thickness of accumulated soils in the Fillmore soils was
37 cm with a standard deviation of 12 cm. The one-way
ANOVA statistical test resulted in no statistical difference
(p > 0.05) for the mean depth within the different soil series.

3.4 Depth to clay under watershed context

We compared the depth to Bt and watershed size (Fig. 9) with
the assumption that more sediment could accumulate within
wetland footprints that have larger watersheds. Yet, the one-
way ANOVA statistical test results did not indicate any sig-
nificant differences (p > 0.05) in the thickness of accumulated
soils above the Bt by watershed sizes. For the 63 sampling
points in the smaller watersheds (area < 0.40 km2), the mean
thickness of accumulated soils above the Bt was found at
40 cm with a standard deviation of 11 cm. For the 156 sam-
pling points in the medium-small watersheds (area between
0.41 and 2.02 km2), the mean thickness of accumulated soils
above the Bt was found at 39 cm with a standard deviation of
11 cm. For the 36 sampling points in the medium-large wa-
tersheds (area between 2.03 and 4.05 km2), the mean

Jones WPA site 1                                   Jones WPA site 2                                  Jones WPA site 3
Fig. 4 Comparison of the EMI measurements and soil core samples at the
three areas in Jones WPA (the top horizontal red line indicates the best-fit
pattern from the Occam inversion smooth method based on the

electromagnetic conductivity. The black dot indicates the field observa-
tion result from the soil cores)

Fig. 5 A soil core from Jones WPA indicating 25 cm of sediment
accumulation above the Bt horizon (darker soils deeper in the profile)
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thickness of accumulated soils above the Bt was found
at 38 cm with a standard deviation of 10 cm. For the
24 sampling points in the large watersheds (area above
2.03 km2), the mean thickness of accumulated soils
above the Bt was found at 41 cm with a standard de-
viation of 10 cm.

We also evaluated watershed slope and the accumulation of
soils above the Bt in these wetlands (Fig. 10). For the 66
sampling points in watersheds with a slope above 10°, the
mean thickness of accumulated soils above the Bt reached
45 cmwith a standard deviation of 12 cm. For the 99 sampling
points in the watersheds with slopes of 5–10°, the mean thick-
ness of accumulated soils above the Bt was 38 cm with a
standard deviation of 11 cm. For the 114 sampling points in
the watersheds with slopes less than 5°, the mean thickness of

accumulated soils above the Bt was 37 cm with a standard
deviation of 7 cm.

4 Discussion

4.1 Sediment accumulation rate

The thickness of soils, presumably the accumulations of or-
ganic matter and sediment deposited through fluvial and
eolian processes, accumulated above the Bt horizon in each
playa wetland represented the sediments in association with
entire corresponding watershed. Soils originating from higher
lands have been transported to the lowest areas in these
hydrologically closed watersheds. We selected sample
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locations at the lowest points within hydric soil footprints that
were distal from watershed delivery points to avoid sampling
in areas with excessive accumulations. We found that
wetlands within the Rainwater Basin had similar sediment
accumulation ranges in the High Plains playa wetlands.
O'Connell et al. (2013) found that High Plain playa wetlands
with either native grasslands or croplands had depth to the Bt
horizon ranging from 1.0 to 78.0 cm. Based on our inversion
analysis results and assuming no accumulation of soils above
the Bt in some wetlands as indicated by Layton et al. (1927),
the annual post-settlement sediment accumulation rates (0.14–
0.52 cm year−1) were similar to the 0.18–0.29 cm year−1 in

five playa wetland sites found by Tang et al. (2015a) and were
also similar to the mean of 0.34 cm year−1 found by Jones and
Olson (1990).

The results of this study also showed that soils accumulated
above the Bt horizon have been increased during the past
century. Even though considerable variations existed, it is ap-
parent that the depth to Bt is increasing based on the earliest
documented soil conditions in contrast with contemporary soil
conditions in Rainwater Basin wetlands. The available depth
to Bt in the early Nebraska soil survey between 1919 and 1934
(Layton et al. 1927; and summarized in LaGrange et al. 2011),
in the wetland soil surveys during 1997–2009 in the SSURGO
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data (NRCS 2015), and our EMI measurements in 2016 indi-
cated a consistent progression of soil accumulation above the
Bt. The mean depth to the contemporary Bt horizon has in-
creased from the earliest documented soil conditions (1916–
1934) because culturally accelerated sedimentation related to
human activities that facilitated rapid soil movement into pla-
ya wetlands, yet these reference conditions are 50–70 years
after many of these lands were first plowed. In early soil sur-
veys published from 1916 to 1934, the depth to Bt for
Fillmore soils had a range of 15–38 cm, and Scott soils had
a range of 13–30 cm (LaGrange et al. 2011). The first soil
survey did not describe aMassie soil series so these areas were
classified into the Scott soils series. Although the sample size
and locations were different between the SSURGO surveys
and the EMI surveys, similar trends were observed in in-
creased sediment accumulation among the playa wetlands.
In the 1990s–2000s field soil survey results for playa wetlands
in the Rainwater Basin, the depth to Bt in Fillmore soils had a
sediment thickness range of 28–74 cm (our EMI result: 24–
66 cm), Scott soils had a sediment thickness range of 8–23 cm
(our EMI result: 24–66 cm), and the Massie soils had a
sediment thickness range of 10–64 cm (our EMI result:
23–78 cm). Additionally, the sampling locations from
the first soil surveys were likely different, but the in-
creased soil thickness above the Bt in current playa soils
is apparent. These early soil surveys within Rainwater Basin
counties indicate the depth to Bt in Fillmore soils rang-
ing from 15–38 cm and ranging from 2.5–64 cm in
Scott soils (NRCS 2019).

The variations in the thickness of culturally accelerated
sediment above the clay were a result of environmental

influences associated with deposition and deflation events.
The variability of culturally accelerated sedimentation actual-
ly reflects a series of complex hydrologic and climatic pro-
cesses such as hydrological alteration, conservation practices
within each watershed, eolian processes (both deposition and
deflation), the grid road system, variations in topography that
have occurred since settlement, and vegetative conditions that
can add organic matter over time.

The rate of culturally accelerated sedimentation has not
been physically measured but has been projected for
Rainwater Basin wetlands. Yet, some studies have identified
factors that directly influence accumulation rates such as cli-
mate conditions, soil types, wetland and watershed size, and
land use types within the watershed (Tsai et al. 2007; Novotny
2008; O'Connell et al. 2013; Tang et al. 2015b). Among those
factors, the variations in microtopography in combination
with the human-made hydrologic alterations at watershed
scale are all important roles in effecting sediment accumula-
tion in wetlands. For example, roads cut off the pathway for
natural runoff conveyance into wetlands, and concentration
pits collect and store large volumes of water that would oth-
erwise flow into wetlands. Both man-made features and agri-
cultural infrastructure have wholly changed watersheds in the
Rainwater Basin, and thus changed the patterns of sediment
inputs into wetlands. Additionally, the upper soil horizon in
many wetlands has been mixed by either hoof action as a
result of wetland grazing or other management techniques
such as discing or rototilling in wetlands (Tang et al. 2015a).
In terms of micro-level topographic variations, wind erosion
can naturally create different patterns of soil deposition in-
cluding sediment dunes within wetlands that can also
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influence local sediment accumulation rates and can alter wa-
ter movement patterns within the wetlands (LaGrange et al.
2011). During extended dry periods and drought years,
Rainwater Basin wetlands can develop deep desecration
cracks at the soil surface (Wilson 2010). The deep
cracks in combination with the deep vegetative tap roots
during droughts (Lindh et al. 2014) can contribute to
creating conduits that facilitate downward water move-
ment (Wilson 2010), and at times can even create visi-
ble vortices and therefore could initiate downward sed-
iment movement. All of these factors can create high
variability in sediment accumulation patterns within
Rainwater Basin wetlands.

4.2 Policy implications for wetland conservation
and restoration practices

To slow down the culturally accelerated sedimentation pro-
cess, federal conservation programs have implemented prac-
tices such as the use of cover crops, no-till farming, and res-
toration of portions of watersheds from cultivated croplands to
native grasslands in targeted areas (e.g., steeper slopes, water
ways) across the Rainwater Basin area (Tsai et al. 2007;
Cariveau et al. 2011). Establishing vegetative buffer strips
along wetlands has been widely recognized as a simple, effec-
tive, and inexpensive conservation practice that can reduce
sediment deposition in playa wetlands (Chaubey et al. 1994;
Gleason 1996; Beas et al. 2013b; Smith et al. 2014; Tang et al.
2015b). If conservation programs focus on implementing
practices that reduce the rate and amount of sediment deliv-
ered to wetlands, managers could then expect longer sustain-
ability in a desirable condition after within-basin sediment
removal restoration work has been completed. Therefore,
these practices could also reduce the amount of water deliv-
ered to the wetland and therefore future research is
needed to determine how wetland function is influenced
by each practice considered.

Selecting cost-effective restoration practices can be chal-
lenging when faced with significantly altered habitats that
provide limited ecosystem services, particularly when funds
are limited (Adame et al. 2014). Sediment removal is recog-
nized as a direct and effective way to restore wetlands impact-
ed by the culturally accelerated sedimentation, and this treat-
ment can increase ponded area, ponded volume, and average
ponded depth in wetlands (Luo et al. 1997; Tsai et al. 2007;
Cariveau et al. 2011). However, over-excavation can also re-
move portions of the clay soil layer and increase the potential
of downward transmissivity, and thus pose unnecessary
threats on the bio-geochemical and hydrological functions of
wetlands. Therefore, it is important to precisely determine the
depth to the clay soil layer before implementing any sediment
removal restoration projects to reduce the risk of removing
any of the Bt horizon.

5 Conclusions

This study demonstrated the utility of using the EMI technique
to determine the depth to Bt for hydric soils and therefore the
culturally accelerated sediment thickness in playa wetlands.
Our research findings confirmed that the EMI technique is
effective and efficient in determining the amount soil above
the Bt horizon. The depth to Bt measurement provided impor-
tant vertical profile information that can help characterize the
spatial variability of soil deposition in playa wetlands. The
detected sediment thickness values provided important scien-
tific data that will help guide future wetland restoration pro-
jects that include sediment removal. The depth to Bt reflects
the contemporary hydrologic capacity in playa wetlands. Our
results provided an overall summary of contemporary sedi-
ment accumulations in all publicly managed wetlands.
Essentially, compared with 1920s soil surveys, the increased
soil thickness above the Bt in playa wetlands clearly demon-
strated the impacts of human activities during the past century
that have accelerated soil accumulation rates. The sediment
thickness profiles highlighted the continuous long-term chal-
lenge of sediment management efforts for playa wetlands
within agricultural landscapes.

Compared with the traditional methods used to determine
the depth to Bt, such as soil cores, fly ash, and pollen analysis,
this alternative method is rapid (with 10–15 min for each
sampling point), simple (with standard operation manual),
non-invasive (no need for machine or truck for soil core dril-
ling), cost-effective (with the investment of the equipment and
software cost for approximately US$20,000–30,000), and re-
usable (one machine for long-term use), and it requires only
basic knowledge in geophysical and soil science. However,
the geophysical interpretations can only be used as prelimi-
nary evaluations of site conditions. Remote and general site
investigations (e.g., SSURGO soil review) are interpretive
results that cannot be used as a replacement for direct
ground-truth observations for each wetland. The use of the
EMI technique could reduce the number of soil core observa-
tions needed, and therefore supplement the ground-truth soil
profile observation and interpretation.

At the same time, we need to recognize the limitations of
EMI methods. For example, the sediment thickness itself
could be subject to many factors, including micro-elevation,
on-site hydrological conditions, vegetation coverage, wetland
size, watershed characteristics, climate conditions, and human
activities. The EMI measurement could be effected by other
operational or contextual variables, such as temperature, water
table, salinity, and water quality conditions (e.g., total dis-
solved solids, salts, and minerals). There are also field limita-
tions for using the EMI method in wetlands. It was extremely
difficult to gain access to all parts of many wetlands because
of ponding and/or extremely dense and tall vegetation. These
conditions would create additional challenges if transects are
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needed for a full grid-type evaluation which might be needed
when comprehensive restoration plans are desired. Thus, the
practical application for continuous mobilized mapping using
EM38-MK2 for the large wetland areas may be limited by site
conditions. Therefore, data collection to represent the general
sedimentation accumulation conditions of whole wetlands can
only be made in the accessible hydric soil areas or when con-
ditions are ideal such as after prescribed fire. Yet, this may
prevent seasonal opportunities when environmental and habitat
conditions facilitate efficient data collection. Furthermore, ex-
perimental random error is unavoidable in terms of the certain
height of equipment above the ground because of the variations
in micro-topography in wetlands in combination with the un-
steadiness when elevating and holding the equipment by hand.
In addition, the sampling locations also influence the represen-
tativeness of sediment thickness throughout certain wetlands.
In particular, the road systems and culvert placement have sig-
nificantly changed the natural hydrologic connectivity that is
critical to playa wetland function in the Rainwater Basin.

The results of this study indicate that significant amounts of
soil have accumulated above the Bt horizon in all 93 publicly
managed playa wetlands in the Rainwater Basin area.
Additionally, considerable variations in the depth to Bt, pre-
sumably recent sediment accumulation, were detected across
all wetlands. This research indicates that it is possible to con-
duct a transect survey that would provide a detailed sediment
profile to help visualize soil conditions at the wetland scale.
Future wetland restoration designs should include careful
evaluation of watershed features and within-basin factors that
influence each wetland’s hydrologic capacity such as the
amount of organic matter within soil that has accumulated
above the Bt layer. We recommend that the sediment profile
of any wetland targeted for restoration be examined to deter-
mine the depth to Bt to help identify the amount of soil that
could be removed to increase sustainability and wetland func-
tion and to maximize ponding frequency while also determin-
ing the maximum depth of removal to avoid removing the
high clay content soils within the Bt horizon.
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