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Imaging Luciferase-expressing Viruses

Michael A. Barry, Shannon May, and Eric A. Weaver

Abstract

Optical imaging of luciferage gene expression has become a powerful tool to track cells and

viruses in vivo in small animal models. Luciferase imaging has been used to study the location of

infection by replication-defective and replication-competent viruses and to track changes in the

distribution of viruses in mouse models. This approach has also been used in oncolytic studies as a

non-invasive means to monitor the growth and killing of tumor cells modified with luciferase

genes. In this chapter, we describe the techniques used for luciferase imaging as have been applied

to track replication-defective and replication-competent adenoviruses in mouse and hamster

models of oncolysis and virus pharmacology. Although these methods are simple, the process of

obtaining accurate luciferase imaging data has many caveats that will be discussed.
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1. Introduction

The technologies available to the basic scientist to track and localize viruses and tumor cells

have historically been quite primitive. In most cases, virus and cell trafficking has been

assessed by the use of terminal assays in which the animal must be sacrificed and the cells or

viruses are tracked after the animal is “taken apart” either at the organ level or in tissue

sections. These “grind and find” assays are quite laborious requiring that one actually

section the whole animal to be certain of the tissue localization of the virus to ensure that all

sites are observed and unexpected localization sites are not missed. Furthermore, these

terminal assays obviate the ability to perform kinetic studies in one animal over many time

points.

Given these difficulties, non-invasive and non-terminal virus and cancer cell tracking was

needed. One approach that partially satisfies this need is to "arm" viruses or cancer cells

with reporter genes that can be detected by imaging. Reporter genes encode proteins that are

easily detected in cells and in intact animals with sensitive imaging systems. The most used

reporter genes include β-galactosidase, luciferases, green fluorescent protein (GFP) and its

varied color derivatives, and alkaline phosphatase. Of these, luciferase and fluorescent

proteins can be used to varying degrees for optical imaging at visible wavelengths of light in

small animals. One can also use reporter genes such as thymidine kinase or the sodium

iodide symporter for higher energy PET and SPECT imaging in small animals, large

animals, and in humans.
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For most researchers, optical imaging is simpler and more easily obtainable in the laboratory

setting than radioactive imaging for PET or SPECT. Since PET and SPECT imaging are the

subject of another chapter, they will not be discussed further here. One can in some cases

directly image reporters like GFP and other fluorescent proteins in living animals. In

practice, high background fluorescence and scatter in the green, red, and far red wavelengths

makes the "noise" of imaging too high to easily detect most current fluorescent proteins in

vivo (Blum et al., 2004; Adams et al., 2007). Newer far red fluorescent proteins to date are

still difficult to image in mice (unpublished observations), but future near-infrared

fluorophores may circumvent this difficulty.

Given these issues, luciferase imaging is arguably the best choice for non-invasive,

inexpensive, and non-radioactive imaging in small animals. Given this we have "armed"

replication-defective and replication-competent adenovirus serotype 5 (Ad5) viruses with

luciferase and GFP-luciferase reporter genes to track 1) sites of infection, 2) persistence of

infection, 3) spread of virus, and 4) elimination of virus due to immune responses (Blum et

al., 2004; Mok et al., 2005; Hofherr et al., 2007; Hofherr et al., 2008; Shashkova et al.,

2008; Weaver and Barry, 2008; Doronin et al., 2009; Shashkova et al., 2009; Weaver et al.,

2009; Chen et al.). In addition, one can monitor immune responses against these proteins in

immunocompetent mice ((i.e. H-2d-restricted T cells in BALB/c mice vs. GFP, antibodies

against luciferase (Weaver and Barry, 2008; Weaver et al., 2009)). These virus persistence-

immune response studies of course cannot be performed in immunodeficient models using

human tumor xenografts.

With these applications in mind, below we provide the simple protocol for imaging codon-

optimized firefly luciferase with its substrate luciferin after Ad5 infection. Similar

approaches can be applied for other luciferases (e.g. Gaussia luciferase, Renilla luciferase).

These other luciferases use coelenterazine rather than luciferin as a substrate so injections of

substrate and timing of imaging are different. In our hands, the coelentarazine substrate is

less soluble and does not distribute as well as luciferin, so can be more difficult to use.

2. Materials

2.1. Dulbecco’s Phosphate Buffered Saline (DPBS) (Gibco/BRL, Bethesda, MD)

2.2. Luciferin—(Molecular Imaging Products Company, Bend, OR) diluted to 20 mg/ml in

DPBS, filter sterilize using a 0.22 micron filter. Aliquot and store at −80C. Protect from

light exposure and avoid repeated freeze-thaws.

3. Methods

3.1. Animal Preparation for Luciferase Imaging

Appropriate animal protocol and biosafety approvals must be obtained before performing

these experiments. Investigators should apply appropriate biosafety containment in

instruments and rooms whenever imaging is performed. The following is an example of

luciferase imaging after intramuscular (i.m.) injection of a replication-defective Ad5 vector

(Ad-Luc).
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1. Dilute Ad-Luc in DPBS to 2e11 virus particles (vp)/ml.

2. Using a 0.3 ml 29 G ½” syringe inject 0.025 ml of virus into each quadriceps of the

mouse.

3. After 24 hrs. place the mouse in an isofluorane induction chamber (3–5%).

4. Once the animal is under sedation, inject 0.2 ml of luciferin (20 mg/ml in sterile

DPBS) intraperitonealy (i.p.). Inject the luciferin substrate 5 – 10 minutes prior to

image capture.

5. Working quickly, transfer the mouse to the imaging system and maintain sedation

with 1–3% isofluorane. We have found that mice can be maintained for extended

lengths of time without risk to the animals at these isofluorane levels.

6. Image the mouse dorsally using a 10 minute exposure with 4×4 binning or 1×1

binning depending on signal intensity.

Note: Alternative anesthesia. If isofluorane is not available the mice can be anesthesized

with ketamine and xylazine. Dilute the ketamine (27.77 mg/ml) and xylazine (1.11 mg/ml)

in sterile dH20 and inject 0.1 ml i.p. into a 20 – 25 g mouse using a 1.0 ml 26G 5/8” syringe.

The mouse will be sedated for approximately 30 minutes.

3.2. Image Capture Using Lumazone Imager

Note: Each imaging system will require different steps in order to obtain both the

chemiluminescent luciferase image as well as the brightfield white image of the animal

itself. Below is provided the steps for a Lumazone (Roper) imager.

1. Make sure cap is on the white light source in the imaging cabinet

2. Open Lumazone software. The ‘Lumazone Analyzer’ box should display:

3. Select ‘Configure’

a. Choose ‘Luciferin’ from Experiment Type drop down (This only affects

how the image is titled after multi-channel acquire is chosen and imaging

is complete)

b. Select ‘Chemiluminescence’ box

c. Select ‘Brightfield’ box

d. Select ‘OK’

4. Select Focus/Exposure

a. Select on ‘Chemi’ button (for chemiluminescence)

i. Make sure ‘Adjust Exp for Binning’ box is checked

ii. Choose binning setting

iii. Set ‘Exp Pvw’ time (should show in MM:ss:mmm)

iv. If ‘Adjust Exp for Binning’ box is not checked, you will also

need to set the ‘Exp Acq’ time

Barry et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2014 August 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



b. Select ‘BF’ (for brightfield)

c. Select ‘Live’ to check and/or modify the focus of the image

d. Select ‘Close’

e. Select ‘Multichannel Acquire’ in the ‘Lumazone Analyzer’ box to begin

taking the image

f. Once the image has been captured, Select on the ‘Best Fit Display Range

or Contrast Equalization’ button to bring the picture into focus – complete

for each image.

g. 2 images will display. One image is the BF / whitelight image. One image

is the chemiluminescence image.

h. Save the images

3.3. Image Display

The bright light and chemiluminescent images are captured as gray scale images (Figure 1).

In order to create an image that is more aesthetically pleasing an easier to interpret by eye,

the images can be pseudo-colored and overlaid onto a white light image of the animals.

1. Load the experiment. This will open up an image of the light emitted in vivo and a

white light image of the animals (Figure 1A).

2. Select the Calibrated LUT function on the analyze toolbar and select the image you

want to calibrate. When prompted select “No” in order to create a new image for

calibration. This will bring up an entirely new image window and will not alter the

original image (Figure 1B).

3. Two windows will open when the calibrated image is created. Select Best Fit in the

Display Range Window and use the LUT range to adjust the image and remove low

level background signal (Figure 1C)

4. Select OK on the Calibrated LUT window and Yes to placing a calibration bar on

the image.

5. Modify the calibration bar as needed and place in an area of the image that does not

show signal (Figure 1D).

6. Make changes to the font and overall appearance of the calibration bar and select

OK. This will create a pseudo-colored image with a calibration bar.

7. In order to show the position of the signal relative to the animal, an overlayed

image can be created.

8. Select Overlay Images and Yes the image is calibrated. Select the calibrated image

and then the white light image of the animals and an overlayed image will be

created (Figure 1E)
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3.4. Image Data Analysis

After capturing an image data analysis need to be performed. There are several ways to

capture and analyze the data. The primary issue of concern is light contamination, either

from outside the imaging chambers, from other animals or from background signal inherent

to all electronics. The following is an example of image analysis performed using the

Lumazone Imaging System.

1. Capture an image as previously described.

2. Load the experiment to be analyzed.

3. The first thing that needs to be done is to subtract the background signal. This can

be done using gray values without intensity calibration or using photons as

determined by intensity calibration.

4. Define an area of interest (AOI) in the image outside of the area where the mice are

imaged Edit>New AOI (Figure 2A).

5. In order to define background levels the AOI background signal levels need to be

determined. Open up count/size: Measure>Count/Size. Select the range of intensity

to measure. For this procedure the range should be the full scope of the range. For

the Lumazone this range is 0 to 65535. Select the measurements to be determined

using the Count/Size function: Measure>Count/Size>Measure>Select

Measurements. In this case, select the Den./Inten. (mean). Select count on the

Count/Size function. To view the value either click on the AOI or select

Measure>Count/Size>Measure>View>Object Attributes. In this example the Den./

Inten. (mean) = 811.51459.

6. Once the background signal levels have been determined they can be subtracted

from the image. Open up image operations: Process>Operations. Check the

following: Operation = Subtract, 2nd operand = Number, Put result in = New

Image. Enter the background signal (811.51459), deselect the AOI, and select apply

(Figure 2B). Select the Best Fit icon to view the best display range and contrast

equalization.

7. Create an AOI over the area of the image to be quantitated. In the Count/Size

function select the measurements to acquire. In general, the Den./Inten. (sum)

values are the most representative of the signal being measured. However, in some

cases the Den./Inten. (mean) may be more informative.

8. Depending on the values desired gray values or converted photons/second can be

reported. Select (none) in the intensity calibration if gray values are desired or

select the calibration curve that was established when the unit was installed. In this

case “Lumazone Bottom” will give values reported as photons/second by

converting gray values to photons using the calibration curve. Select Apply.

9. In the Count/Size function select Count and Measure. Double click on the AOI to

view the object attributes. In this example there are 9.01972e9 photons/sec emitted

from the AOI (Figure 2B).

Barry et al. Page 5

Methods Mol Biol. Author manuscript; available in PMC 2014 August 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. Notes

Although the basic procedure of image capture during luciferase imaging is relatively

simple, luciferase imaging is a dynamic procedure. As with all catalytic reactions the signal

is constantly changing. Luciferin, for example, is being degraded by the enzyme lucferase.

Therefore, the procedures should be performed in a consistent and timely manner. Also,

another issue of concern is how long of an exposure is needed. This will change from

experiment to experiment and will be dependent upon many factors including how much

virus was administered, the route, and even the position of the animal. Over-exposure as

shown in Figure 2C can lead to a loss of valuable data. In this example the exposure time

should be reduced. Another issue is that light can be reflected off other objects, but still

represents signal from the animal (Figure 2C). A chamber that has dividers to separate the

animals during luciferase imaging will help eliminate this problem.
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Figure 1. Bright light and chemiluminescent images
A) Image of the light emitted in vivo and a white light image of the animals. B) Calibrated

LUT function. C) Best Fit in the display range window to remove low level background

signal. D) Background area selection. E) Image overlay selection.
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Figure 2. Quantitating luciferase photon output
A) Defining an area of interest. B) Applying background correction.
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