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Current agricultural systems focused on production of few commodities are facing 

production, economic, and environmental challenges. To address these challenges, 

Integrated Crop Livestock Systems (ICLS) have emerged through three primary methods 

1) perennial grasslands for grazing and/or hay production, 2) crop residue grazing, and 3) 

cover crop grazing. To evaluate potential of ICLS mitigating current challenges, a field-

scale model ICLS was developed in 2015. The ICLS includes 4-ha each of ‘Newell’ 

smooth bromegrass (Bromus inermis L.), ‘Liberty’ switchgrass (Panicum virgatum L.), 

and ‘Shawnee’ switchgrass. The ICLS also included 8-ha of continuous corn (Zea mays 

L.). In 2016, only hay was harvested from perennial grasslands and in 2017, 2018, and 

2019 the perennial grasslands were grazed. Following grazing, the switchgrass varieties 

were harvested for residual biomass production post-senescence. Continuous corn 

included residue removal treatments with and without a cover crop. This thesis reports 

results from three studies. To evaluate the response of cool-season annual grass cover 

crops to defoliation, a greenhouse study, in conjunction with a replicated field 

experiment, was conducted in 2018-2019 and 2019-2020. Results showed small grains 

used as cover crops had decreased survivability and biomass production when defoliated 

during early plant establishment. Production data from the ICLS was used to construct 



 

 

enterprise budgets to evaluate system profitability on marginally productive cropland. 

The ICLS was not consistently more profitable than continuous corn production. 

However, baling hay only and removing grazing from the ICLS was more profitable than 

continuous corn production. To evaluate ICLS as a mitigation strategy for soil GHG 

emissions, soil N2O and CH4 were measured during each growing season in the perennial 

grasslands and continuous corn. Results suggested that 1) grazing perennial grasslands 

did not consistently impact soil GHG emissions, 2) crop residue and cover crop 

management may impact soil N2O emissions, and 3) continuous corn production resulted 

in greater soil N2O emissions than perennial grasslands due to higher application amounts 

of synthetic N fertilizer. The results from this research can provide options for producers 

implementing ICLS and insight for further development of ICLS for Eastern NE that 

meet production, economic, and environmental challenges. 
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CHAPTER 1 

EXPLORING OPPORTUNITES FOR CROP LIVESTOCK INTEGRATION ON 

MARGINALLY-PRODUCTIVE DRYLAND CROPLAND IN EASTERN 

NEBRASKA 

Introduction to the Review 

Following World War II, American agriculture became highly specialized. Farms 

have specialized by focusing on the production of single commodities. These specialized 

agricultural systems have succeeded at meeting global food demand. However, they have 

also resulted in negative environmental impacts, production challenges, and small profit 

margins. Current agricultural production practices can cause soil erosion, nutrient loss, 

greenhouse gas (GHG) emissions, and loss of soil organic matter (SOM). Among 

environmental implications, specialized agriculture has become reliant on synthetic 

inputs. The synthetic inputs provide tools to manage pest and fertility problems. 

Unfortunately, the reliance on inputs has created many production challenges such as pest 

resistance. In addition to these challenges, farmers are facing low commodity prices and 

high input costs. Researchers have proposed a solution: integrated crop livestock systems 

(ICLS). Re-integrating crop and livestock agriculture has the ability to mitigate 

environmental change, solve production problems through biodiversity, and provide 

economic resiliency (Russelle, Entz, and Franzluebbers 2007). Interest in ICLS has been 

rising as a solution to the negative impacts of specialized agriculture.  

Several literature reviews have been conducted on the potential of ICLS to solve 

the known challenges associated with specialized agriculture (Russelle, Entz, and 

Franzluebbers 2007; Lemaire et al. 2014; Hilimire 2011; Sulc and Franzluebbers 2014; 

Sulc and Tracy 2007). Different opportunities to integrate crop and livestock agriculture 
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exist. The literature reviews have explored three ways to integrate crop and livestock 

production on farm. The first way is to integrate ruminant livestock by introducing 

perennial vegetation back into the crop rotation. The perennial vegetation provides a 

valuable feed resource for ruminants. Second, crop-livestock integration can occur 

through ruminants grazing crop residues. Third, livestock can be re-integrated by grazing 

cover crops as annual forages on existing crop fields. Below is a summary of what 

previous literature reviews have concluded on the three types of on-farm integration.  

Integration through Perennials:  

In general, incorporating perennial grasses improves soil quality and provides 

feed for ruminant livestock. In addition, perennial grassland has the potential to mitigate 

the negative environmental consequences of intensifying cropland production (Lemaire et 

al. 2014). Additionally, incorporating perennial forages into crop rotations can improve 

soil quality by increasing soil organic carbon (SOC), soil tilth, water holding capacity, 

and nutrient cycling (Russelle, Entz, and Franzluebbers 2007; Hilimire 2011). Increased 

nutrient cycling can lead to reduced nitrogen (N) losses. In addition to the environmental 

benefits, crop yield can increase from adding perennial forages into the cropping rotation. 

The increased diversity can help decrease insect, disease, and weed pressure, leading to 

increased yields. Among these well-known benefits, the reviewers concluded that the 

effect of grazing perennial grasses on GHG emissions is not well known. In agreement 

with the benefits listed in the previous reviews, reviewers outlined the opportunities in 

the United States for integrating perennial grass sod into crop rotations (Sulc and 

Franzluebbers 2014). The reviewers cite two main conclusions. First, current research in 

the US suggests perennial sod can be added to the crop rotation to increase environmental 
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sustainability while meeting production goals. Second, incorporating livestock into these 

rotations is the most efficient way to utilize forage resources and increase nutrient 

cycling. Another review also found numerous benefits to incorporating perennial 

vegetation (Sulc and Tracy 2007). Perennial pastures, especially legumes, when rotated 

with grain crops have positive environmental and economic benefits. However, the 

studies in the review harvested the forage mechanically instead of grazing. Therefore, 

after reviewing the literature, researchers concluded that more information is needed on 

the impact of grazing forages on crop productivity, soil parameters, and profitability in 

the US Corn Belt.  

Integration through Residue Grazing:  

A simpler way to integrate crop and livestock production is by having ruminant 

livestock graze crop residue. Crop residue provides feed for livestock during the 

perennial forage gap in autumn and winter while potentially improving profitability. 

Hillmire (2011) concluded that crop residue used as feed for ruminants can produce high 

quality animal protein, improve land use efficiency, and increase profitability. Sulc and 

Tracy (2007) noted that cattle grazing crop residue in the US Corn Belt is one of the 

simplest and most economical ways to integrate crop and livestock production. 

Additionally, the grazing recommendations for the Corn Belt are well known and 

successfully minimize the risk of negatively impacting soil quality. Sulc and 

Franzluebbers (2014) reported that cattle grazing corn residue is more economical than 

harvesting and feeding the residue. They also reported that compaction from grazing can 

be eliminated or decreased by proper grazing management. Overall, researchers 
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concluded that increasing system diversification through residue grazing is possible in all 

regions of the US.  

Integration through Cover Crops:  

To provide a higher quality forage for grazing on existing croplands, cover crops 

can be planted for grazing. Little is known about integrating crop and livestock 

production through cover crop grazing, but it is well known that cover crops can help 

mitigate the negative environmental effects of annual cropping systems (Lemaire et al. 

2014; Sulc and Tracy 2007). Despite the environmental benefits cover crops offer, 

planting and managing cover crops is costly. Livestock grazing the cover crop biomass 

could provide a way to offset the cost of cover crop management. Hillmire (2011) 

suggested cattle grazing cover crops can improve profitability. However, Sulc and Tracy 

(2007) concluded that little is known about proper grazing management strategies that 

maximize the environmental benefits cover crops provide. However, after analyzing 

research in the Midwest, others concluded that cover crop grazing is a viable option (Sulc 

and Franzluebbers 2014). Cover crop grazing has the potential to increase crop yield, 

improve soil quality, and reduce inputs.  

Opportunities in NE 

From the current reviewed literature, it is apparent that ICLS can help solve the 

environmental, productivity, and economic challenges associated with specialized 

agriculture. In Nebraska, agricultural systems have become highly specialized by 

focusing on the production of single commodities. Farms in Nebraska are facing the 

environmental, production, and economic challenges. Implementing ICLS in the region 
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could help producers mitigate the challenges producers are facing from specialized 

production systems. For example, most economic challenges facing producers are tied to 

commodity production with highly correlated prices. Implementing ICLS introduces 

diversification which can help meet this challenge through distributing risk among 

enterprises.  However, potential opportunities for ICLS in Nebraska have not been 

thoroughly explored. One possible location for ICLS in Nebraska is marginally 

productive cropland. Introducing ICLS on marginally productive cropland could improve 

profitability, environmental impact, and production challenges. In Nebraska, there are 

1.34 million hectares of marginally productive cropland available (Gopalakrishnan, 

Negri, and Snyder 2011). Marginally productive cropland is defined as land that is poorly 

drained, frequently flooded, or produces less than 9 tonnes ha-1 of corn grain. Despite the 

existence of marginally productive cropland and the promises of ICLS, the most viable 

methods of integration for Eastern NE are not well known. Additionally, the methods of 

integration that best solve the problems facing producers are not well known. Therefore, 

the purpose of this paper is to review the literature on the three potential ways crop and 

livestock enterprises could be integrated on marginally productive dryland in Eastern 

Nebraska. In addition, the potential impact of integration on 1) Productivity 2) 

Environment and 3) Economics is detailed.   

Integrating Crop-Livestock Systems with Perennial Pasture 

The environmental benefits of planting perennial vegetation are well known. 

Despite this fact, many grasslands in the Northern Great Plains (NGP) have been 

converted to cropland (Clay et al. 2014; Wright and Wimberly 2013). Bringing perennial 

vegetation back to the landscape provides an opportunity for ruminant animals to be 
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incorporated back into the production system. Integrating livestock into cropping systems 

by adding perennial vegetation has been previously outlined (Sulc and Franzluebbers 

2014; Entz et al. 2002; Lemaire et al. 2014; Russelle, Entz, and Franzluebbers 2007; Sulc 

and Tracy 2007). However, the best way to integrate livestock and crop production with 

perennials in the Western Corn Belt (WCB) is not well known. The following section 

outlines the current literature on how integrating perennial vegetation impacts the 

environment, crop and animal productivity, and farm profitability. The primary purpose 

is to explore opportunities for crop livestock integration by incorporating perennial 

grasses in Eastern Nebraska on marginally-productive dryland cropland.    

Environment 

Three important environmental areas impacted by the incorporation of perennial 

pasture are nutrient cycling, SOC, and soil GHG emissions. Below, literature was 

explored to identify how these environmental components are impacted by incorporating 

perennial pasture.  

Nutrient Cycling 

Efficient nutrient cycling is essential for creating a sustainable system. A recent 

review of the literature found integrating perennials into annual cropping systems can 

reduce nutrient leakages by using N more efficiently (Asbjornsen et al. 2014). 

Researchers have thoroughly studied the impact perennial legumes have on nutrient 

cycling in crop rotations. The most well-known legume to improve nutrient cycling is 

alfalfa (Medicago sativa L.). Integrating alfalfa into crop rotations can reduce the need 

for synthetic N fertilizer (Luna et al. 1994; Liebman et al. 2008). In return, reduced 

fertilizer inputs decrease N leaching. A review of literature in the NGP focused on 
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integrating perennials into crop rotations found that adding perennial forages to the crop 

rotation decreases nitrate leaching (Entz et al. 2002). Additionally, in the central US if 

cropland used for ethanol production was converted to low input perennial grasses, N 

leaching could be reduced (Davis et al. 2012). Clearly, perennial grasses can play a role 

in reducing N leaching. Perennial grasses are good N scavengers, especially C-4 warm-

season grasses. In New Mexico, grasslands accumulated 13% more total N than 

croplands (Ghimire et al. 2019). Perennial grasslands are often grazed by ruminant 

animals. Grazing management can reduce the need for N fertilizer (Luna et al. 1994). 

Reduced synthetic N fertilizer can decrease N losses. However, more recently, grazing 

has been shown to impact the length and volume of root biomass (Bonin et al. 2013). 

Decreased root length and biomass in perennial grasslands could potentially influence 

nutrient cycling (Bonin et al. 2013). However, they concluded that more information is 

needed on how grazing management influences perennial grass root growth and nutrient 

cycling (Bonin et al. 2013).  

It is well known that when cropland is turned into perennial vegetation, N 

leaching can be reduced. However, more information is needed to develop grazing 

recommendations that maximize nutrient cycling.  

Soil Organic Carbon (SOC)  

The positive impact perennial vegetation has on soil C sequestration has been 

previously summarized (Asbjornsen et al. 2014; Sanderson and Adler 2008; Hendrickson, 

Liebig, and Sassenrath 2008; Entz et al. 2002). Specifically, switchgrass (Panicum 

virgatum L.) grown for bioenergy production increases SOC in the NGP and CGP 

(Liebig et al. 2008; Schmer et al. 2011; Follett et al. 2012).  
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Pasture and grasslands have more organic C than conventionally tilled continuous 

corn production (Jastrow 1996). In New Mexico, grasslands accumulated 18% more SOC 

than cropland (Ghimire et al. 2019). SOC and soil organic matter (SOM) are closely 

related. Cultivated croplands lose SOM at a greater rate than undisturbed soil 

accumulates SOM (Schlesinger, William 1990). When perennial grasslands are converted 

to row-crop production, a significant amount of C is lost (Qin et al. 2016; Gelfand et al. 

2011). Researchers estimate re-paying the C debt created from the land conversion would 

take 40 years (Gelfand et al. 2011). Fortunately, when cropland is converted back to 

perennial grassland, SOC is accrued (Qin et al. 2016). Land planted to perennial grass 

through the Conservation Reserve Program (CRP) has shown an increase in active soil C 

and N, as well as an increase in soil microbial biomass (Baer, Rice, and Blair 2000). On 

active farms in the Prairie Pothole Region of North Dakota, soils under CRP management 

for at least 15 years had 9-16% higher SOC than adjacently managed annual cropland 

(Phillips, Eken, and West 2015). Similarly in Germany, 18 years after poorly drained 

cropland was converted to perennial grassland, a significant increase in SOC was 

observed (Auerswald and Fiener 2019). Restored prairies can also recover SOM lost 

through cultivation (Matamala et al. 2008). In addition, restored prairie has shown the 

ability to sequester C well into the future as long as it remains a prairie (Matamala et al. 

2008). Perennial vegetation can help restore SOM and SOC while being used for 

agriculture production. Perennial vegetation can be used for livestock feed and biofuel 

production.  

Specifically, switchgrass has been increasingly considered for use as a cellulosic 

biofuel. When existing grasslands were converted to switchgrass no change in SOC was 
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observed (Qin et al. 2016). When cropland was converted to switchgrass for bioenergy 

production in the NGP and CGP, SOC increased (Liebig et al. 2008; Schmer et al. 2011). 

Importantly, in the same study, the SOC accrued over five years of switchgrass 

vegetation across 10 on-farm sites varied (Liebig et al. 2008; Schmer et al. 2011). In 

Eastern Nebraska, after 9 years of switchgrass managed for bioenergy production, SOC 

increased at the 0-150 cm depth (Follett et al. 2012). Additionally, the results from that 

study indicate that N fertilizer and harvest management can influence the amount of SOC 

accrued (Follett et al. 2012). In North Dakota, after 3 years of switchgrass growth, SOC 

increased (Frank et al. 2004). In Pennsylvania, 7 years after planting and clipping 

switchgrass, an increase in SOC was observed (Sanderson and Adler 2008). A European 

biogeochemical model found that 15 years of switchgrass after annual grain crop 

production has the potential to increase the SOC inventory (Nocentini and Monti 2019).  

Increased root biomass has been observed in switchgrass when compared to cultivated 

cropland. The increased root biomass is what likely leads to the observed increases in 

SOC (Liebig et al. 2005). In North Dakota there was more root biomass in perennial 

grassland soils than continuous wheat (Triticum aestivum L.) or a wheat fallow rotation. 

Similarly, researchers concluded that increased root biomass likely leads to greater SOC 

content (Frank, Liebig, and Tanaka 2006). Harvesting perennial grass does not adversely 

affect SOC. However, the impact of grazing perennial grass on SOC is not well known.  

Introducing grazing animals may impact SOC. Researchers found that grazing 

decreased root volume when compared to non-grazed plots (Bonin et al. 2013). As root 

biomass increases, SOC increases. Therefore, grazing perennial grasses could potentially 

decrease SOC. However, in the southeast, when bahiagrass (Paspalum notatum Fluegge) 
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is planted and grazed, an increase in SOC can be seen (Gamble et al. 2019). In addition, 

sites with a long history of perennial grass production that are grazed show no change in 

SOC (Sanderson and Adler 2008).  

In summary, converting perennial vegetation to row crop production results in a 

decrease in SOC. Fortunately, when cropland is converted back to perennial grassland, 

SOC increases. Switchgrass has been shown to accrue SOC when harvested, although, 

rate and amount of accrual are dependent on location and management. Despite the 

known benefits of perennial vegetation on SOC, little is known about the impact of 

grazing perennial vegetation on SOC. A few studies suggest grazing should have no 

negative impact on SOC. However, more information on the best grazing management 

practices to maximize SOC accrual is needed for specific regions.  

Soil Greenhouse Gas (GHG) Emissions: 

In addition to a positive increase in SOC, perennial vegetation can decrease soil 

GHG emissions. Agricultural practices have a significant impact on the environment due 

to GHG emissions (Seguin et al. 2007). Temperature, moisture, cropping system, and 

fertilization all impact GHG emissions. Soil CO2 emissions occur at different times of the 

year for perennial and annual crops and are largely influenced by temperature (Nocentini 

and Monti 2019; Lee, Doolittle, and Owens 2007). Soil N2O emissions are also impacted 

by groundwater content on fertilized peat soils (van Beek, Pleijter, and Kuikman 2011). 

When pasture is grazed and fertilized, soil N2O emissions increase (Liebig et al. 2006). 

However, little is known about the sole effect grazing perennial grasses has on soil GHG 

emissions. In New Zealand, soil N2O increased when pastures were grazed (Saggar et al. 

2008). However, grazing bahiagrass at moderate stocking rates in the Southeastern 
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United States had no negative impacts on soil GHG emissions (Gamble et al. 2019). In 

Texas, adaptive multi-paddock grazing of native prairie, reduced N2O and CH4 emissions 

when compared to continuously grazed prairie (Dowhower et al. 2020). Additionally, 

adaptive multi-paddock grazing has the potential to mitigate GHG emissions when 

compared to feedlot finishing (Stanley et al. 2018). The evidence suggests that grazing 

management may be able to help mitigate soil GHG emissions.  

Perennial grasslands harvested for biomass can mitigate soil GHG emissions. 

Current cropland has the potential to mitigate GHG emissions if converted to low-input 

perennial grassland for bioenergy production. In Italy, if marginally productive cropland 

or areas with a surplus of grain production were converted to switchgrass production, 

GHG savings could be maximized (Nocentini and Monti 2019). In the central US, if 

cropland used for ethanol production was converted to low input perennial grasses, GHG 

emissions could be reduced (Davis et al. 2012). Additionally, perennial grass systems 

have the potential to be net GHG sinks. In eastern Nebraska, switchgrass grown for 

bioenergy production mitigated GHG emissions (Jin et al. 2019). Conversely, continuous 

corn grain production maintained GHG emissions (Jin et al. 2019). Unfortunately, when 

perennial land is converted back to annual grain production, the soil releases GHG into 

the atmosphere (Asbjornsen et al. 2014).  

Converting cropland to perennial grassland for bioenergy production reduces 

GHG emissions. However, the impact of grazing perennial grassland on soil GHG 

emissions is not as well known. Current research suggests that grazing management 

effects GHG emissions. For grazed grasslands to mitigate soil GHG exchange, grazing 

strategies that minimize soil GHG emissions in the CGP need to be developed. 
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Production 

In addition to the previously mentioned environmental benefits, incorporating 

perennial vegetation into annual crop rotations can increase grain yield and produce 

excellent forage for cattle.  

Grain Yield 

Integrating perennial legumes into annual crop rotations can increase grain yield 

per hectare. When alfalfa is integrated into annual cropping systems, subsequent grain 

yield increases. For example, investigators who conducted a literature review of the NGP 

found that wheat yields are significantly higher when following 3 years of alfalfa 

production than when following other annual crops in wetter soils (Entz et al. 2002). In 

central Iowa, greater yields in corn and soybean grain occurred when rotated with alfalfa 

(1 or 2 years of production) instead of the typical corn-soybean rotation (Liebman et al. 

2008). Mixed legume and grass perennial pastures also demonstrated an ability to 

increase grain yield. In the NGP, researchers found growing perennial grasses and alfalfa 

together for four to five years increases the following wheat yield (Franco et al. 2018). 

The previous two studies did not integrate livestock on the same land base. The forage 

was harvested and then fed to livestock. Integrating livestock into these diverse cropping 

systems on the same land base can be challenging. One way to meet this challenge is by 

integrating long-term perennial grass pasture. For example, researchers in Illinois had 

cattle graze perennial pastures during the growing season. When perennial pastures were 

dormant in the autumn, winter, and early spring, cattle grazed cover crops and crop 

residues. The researchers found that integrating livestock directly on to the cropland 
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increased grain yield in the subsequent year (Tracy and Zhang 2008; Maughan et al. 

2009).  

Incorporating perennial legumes into crop rotations increases subsequent crop 

yield. Perennial grass pastures are important for integrating livestock onto cropland 

because they allow for ownership of the cattle throughout the production system. 

However, little is known about how grass pasture converted back to corn production 

effects corn grain yield. 

Animal Gains  

In addition to increasing grain production, cool- and warm- season perennial grass 

pastures provide an excellent forage resource for cattle. In the Midwest, the need for 

stored feeds can be reduced by grazing excess perennial forage growth (Janovick et al. 

2000). Smooth bromegrass (Bromus Inermis L.) is one cool-season species commonly 

used for pasture in the Midwest. In eastern Nebraska, plant breeders developed ‘Newell’ 

smooth bromegrass. Grazing Newell produced 1.43 kg hd-1 d-1 over an average of 37 

grazing days when stocked at three steers per 0.4-ha (Vogel, Mitchell, Waldron, et al. 

2014). Warm-season grasses in the Midwest also have potential to produce adequate 

cattle gains. A 3-yr study in Iowa found an average of 529 kg of beef ha-1 was produced 

on rotationally grazed switchgrass over 35 days of grazing (George et al. 1997). The 

same study found that rotationally grazed big bluestem (Andropogon gerardii L.) 

produced an average of 397 kg of beef ha-1 over 48 days (George et al. 1997). 

Researchers who conducted a 3 year study in Nebraska, found that cattle grazing 

switchgrass gained between .59-.73 kg hd-1 d-1 on average (Anderson et al. 1988). During 

1973-1975 in South Dakota, researchers demonstrated that switchgrass pastures could be 
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grazed by yearling steers during July and August and produce adequate gains (0.93 kg hd-

1 d-1 or 146 kg of beef ha-1) (Krueger and Curtis 1979). Furthermore, Nebraska extension 

experts say when cattle graze warm season grasses throughout the summer the expected 

cattle gain is between 0.64-1.3 kg hd-1 d-1 (Mitchell and Anderson 2008). They also 

mention different varieties of warm-season grass pastures and the gain expected on each 

pasture. In Eastern Nebraska, cattle grazing ‘Trailblazer’ switchgrass gained 1.0 kg hd-1 

d-1 producing 560  kg ha-1; cattle grazing ‘Bonanza’ big bluestem gained 1.3 kg hd-1 d-1 

producing 454 kg ha-1; cattle grazing ‘Scout’ indiangrass (Sorghastrum nutans L.) gained 

0.9 kg hd-1 d-1 producing 429 kg ha-1 (Mitchell and Anderson 2008). Warm- and cool-

season grass pastures can be used synergistically to produce cattle gains. For example, in 

Iowa, when cattle grazed smooth bromegrass in the spring and autumn and switchgrass in 

the summer, cattle gained on average between 53.0-111.8 kg animal-1 (Moore et al. 

2004). Additionally, perennial grassland has the potential to be used as a dual-purpose 

crop.  

In Oklahoma, when cattle are stocked at light rates (2.5 steers ha-1) to graze 

switchgrass, the cattle gain on average 0.83 kg hd-1 d-1 over 81 days producing 167 kg of 

beef ha-1with an additional 10.6 Mg ha-1of harvested residual forage (Mosali et al. 2013). 

These findings illustrate the potential for switchgrass to be used for feed for livestock and 

biofuel production. Due to the interest in switchgrass as a biofuel feedstock, researchers 

developed a new variety ‘Liberty’, specifically for biofuel production (Vogel, Mitchell, 

Casler, et al. 2014).  

The beef production potential of cool- and warm- season grass pasture is well 

known for specific regions. In the WCB, switchgrass and smooth bromegrass perform 
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well. Switchgrass also has the potential to offer management flexibility. Producers can 

use cattle to graze the switchgrass and/or harvest the switchgrass for biomass production. 

More information is needed on how switchgrass performs as a dual-purpose crop in 

Nebraska. Additionally, the beef production potential of ‘Liberty’ switchgrass and its 

ability to be a dual-purpose crop are not known.  

Economics  

Including perennial vegetation on a farm needs to be profitable for producers to 

consider adopting perennials into their management system. System profitability is 

important because producer decisions are usually due to economic constraints (Seguin et 

al. 2007). Incorporating alfalfa into cropping rotations can increase profitability. In 

central Iowa, a diverse cropping system with alfalfa was found to be more profitable than 

the typical corn-soybean rotation in the area (Liebman et al. 2008). However, this system 

did not integrate cattle on the same land base. Using data from the same study, 

researchers found that integrating cattle by feeding the crops produced in diversified 

systems is profitable (Poffenbarger et al. 2017). However, the diversified system required 

greater capital and labor than corn-soybean rotations (Poffenbarger et al. 2017). Another 

way to integrate livestock into the production system is by grazing perennial grasses.  

The profitability potential of perennial grass pasture is well known in specific 

regions. Recently, economic studies have been conducted to evaluate the profitability of 

grazing different perennial forages. In the NGP, yearling steers grazing perennials before 

feedlot entry have higher profitability potential than yearling steers directly entering the 

feedlot (Şentürklü et al. 2018). In Mississippi, grazing big bluestem was found to have 

the lowest annual pasture cost and the highest net return when compared to a diverse 



16 

 

warm season pasture mix and a bahiagrass pasture (Rushing et al. 2019). In Nebraska, 

grazing big bluestem was found to be a profitable alternative to dryland corn production 

(Mitchell et al. 2005). In Oklahoma, when various switchgrass grazing and bioenergy 

feedstock scenarios were considered, moderately grazed switchgrass was the most 

profitable when bioenergy feedstock was valued at $0 (Biermacher et al. 2017). In 

Tennessee, risk averse and profit maximizing producers would select switchgrass for 

grazing (Boyer et al. 2019). Clearly, perennial grass pasture can be profitable in different 

states. Recently, there has been an increase in the interest of growing perennial grasses 

for cellulosic biofuel production. Switchgrass is one species that has been increasingly 

considered as a candidate for biofuel production. Switchgrass produces large quantities of 

biomass which can be used for biofuel feedstock, grazing, or both biofuel feedstock and 

grazing. In Oklahoma, lightly grazing switchgrass and then harvesting the residual 

growth for biofuel could earn $232-523 ha-1 depending on the price of the harvested 

feedstock (Biermacher et al. 2017). Switchgrass provides flexibility to the producer 

because it can either be grazed and/or harvested for bioenergy production (Mitchell et al. 

2010). 

Integrating perennial legumes into cropping rotations is profitable with and 

without cattle. Perennial grass grazing system profitability is determined based on the 

location and definition of the system. Different warm-season perennial grasses are 

profitable in different locations of the United States. However, little is known about the 

profitability of grazing switchgrass in Nebraska. Switchgrass can be used as a dual-

purpose crop profitably in Oklahoma. However, the profitability of switchgrass as a dual-

purpose crop in Nebraska is unknown.  
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Integrating Crop and Livestock Production with Crop Residue 

Integrating perennials and livestock to form ICLS requires additional labor and 

capital. A less intensive way to integrate crop and livestock production is by using crop 

residue as a feed resource for ruminant animals. In addition, crop residues are readily 

available when perennial grass pasture is dormant. In developing countries, crop residue 

grazing by ruminant livestock is a common practice. The practice of livestock grazing 

crop residue is mutually beneficial. The livestock provide fertility to the soil through 

excreta and the residue provides feed to the livestock (Rufino et al. 2011). The global 

impact of grazing crop residues on soil and crop production has been thoroughly outlined 

(Rakkar and Blanco-Canqui 2018). In general, livestock grazing crop residue is mutually 

beneficial for crop and animal productivity. Additionally, livestock grazing residue with 

dry soil conditions prevents damage to soil quality. Furthermore, residue grazing is more 

economical than feeding harvested forages. Crop residue grazing can improve the 

ecosystem services of cropland while maintaining crop productivity and soil quality 

(Rakkar and Blanco-Canqui 2018). Another way to utilize crop residue is by baling the 

residue. Harvested corn residue has been increasingly considered for both livestock feed 

and cellulosic ethanol production. Baling residue has more negative effects on soil and 

crop productivity than grazing, mainly due to a higher residue removal rate than the rate 

removed by grazing. 

The primary purpose of this section is to outline the existing literature on the 

impacts of grazing and harvesting crop residue on 1) indicators of soil quality and GHG 

emissions, 2) animal and crop production and 3) economic value of crop residues. 

Because an extensive global literature review has been conducted, the focus of the 
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following section will outline literature directly pertaining to corn production and/or the 

Central Great Plains (CGP). If no studies were found on corn and/or in the specified 

region, other studies with different crops and regions were reviewed. Narrowing the focus 

of the review will help to better outline the positive and negative impacts of crop residue 

removal in eastern Nebraska.  

Environment 

Soil Quality 

The impact of residue removal on soil quality is site specific. Many factors 

influence the change in soil quality from grazing. Factors include soil type, residue 

removal rate, precipitation, and crop rotation (Blanco-Canqui and Lal 2009).  

General soil quality and soil structure are not highly impacted by crop residue 

grazing. However, residue removal may negatively influence soil quality. In Iowa, after 

two years of residue removal for biofuel feedstock, soil quality declined (Al-Kaisi and 

Guzman 2012). Soil quality was measured by changes in SOC, bulk density and water 

infiltration. Researchers also found that the rate of decline was highly dependent on the 

tillage practice and N management employed in the field (Al-Kaisi and Guzman 2012). In 

a long-term study on crop residue grazing in Eastern NE, researchers found that grazing 

residue had no impact on soil structural quality (Rakkar et al. 2017). Additionally, after 

conducting a study across the precipitation gradient in Nebraska, researchers concluded 

time and duration of grazing are better predictors of changes in soil quality than 

precipitation or soil type (Rakkar et al. 2018). Therefore, grazing management is the most 

important tool for maintaining soil quality. Below is a description of how crop residue 

grazing has affected multiple soil properties in the region and in corn production.  
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Overall, compaction, erosion, soil water, soil microbial biomass, nutrient cycling, 

and soil C can all be maintained or improved through proper grazing management.  

Compaction 

In general, soil compaction from livestock grazing can be mitigated via manure 

addition or freeze thaw cycles  (Rakkar and Blanco-Canqui 2018). Also, when grazing at 

proper soil moisture on no-till fields with proper stocking rates, limited to no compaction 

can be expected (Rakkar and Blanco-Canqui 2018). Even if an increase in compaction 

occurs, the compaction is below the threshold to limit crop growth (Rakkar and Blanco-

Canqui 2018).  

Grazing corn residue typically has little to no effect on soil compaction in the 

CGP region. In Eastern Nebraska on irrigated cropland planted to a corn-soybean rotation 

with 16 years of crop residue grazing in the fall, no impact on soil compaction was 

observed (Rakkar et al. 2017). However, when cattle grazed residue in the spring, a minor 

effect on soil compaction was observed (Rakkar et al. 2017). But, the effect was below 

the threshold for root restrictive growth, so crop yields were not impacted by the slight 

increase in compaction (Rakkar et al. 2017). Generally as you move along the 

precipitation gradient in NE, grazing corn residue has little to no effect on soil 

compaction (Rakkar et al. 2018). The compaction observed from livestock grazing is due 

to residue management. Precipitation, soil texture, and organic matter content of the soil 

do not influence compaction. In a common corn-soybean rotation in Iowa, researchers 

tested compaction after cattle grazed corn residue. They found changes were minimal if 

grazing occurs while soils are frozen (Clark et al. 2004). In Illinois, there was a chance of 

compaction from livestock, but corn yields were not affected (Tracy and Zhang 2008; 
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Maughan et al. 2009). In Illinois, under continuous corn, continually grazing or strip 

grazing the residue did not significantly affect soil penetration resistance despite 

increased bulk density from grazing (Lehman 2015). Residue baling also appears to have 

minimal effect on soil compaction. Residue grazing and baling can increase soil bulk 

density, but the effect is highly dependent on soil type and location (Blanco-Canqui et al. 

2016).  

The risk of soil compaction can be reduced in Eastern Nebraska by following 

recommended grazing management practices such as not grazing under wet soil 

conditions. Likewise, susceptibility to wind and water erosion can be managed by grazing 

management practices such as stocking rate and the amount of residue left after grazing 

(Rakkar and Blanco-Canqui 2018).  

Erosion 

The chance of wind and water erosion caused by grazing crop residue can be 

easily managed in the region. In Illinois, under continuous corn, grazing corn residue 

decreased wet aggregate stability, increasing the risk of erosion (Lehman 2015). 

However, in a corn-soybean rotation in Iowa, grazing did not impact aggregate stability, 

therefore, grazing did not influence erosion (Clark et al. 2004). In a long term (16-yr) 

residue grazing study in Nebraska, grazing had no effect on aggregate stability (Rakkar et 

al. 2017). Therefore, grazing corn residue does not appear to affect erosion (Rakkar et al. 

2017). On the contrary, corn residue baling may increase erosion. In Nebraska, 

researchers found residue baling at rates greater than 50%, increased the risk of soil 

erosion (Rakkar et al. 2018). In a no-till corn system in west-central NE, baling residue 
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increases the risk of wind erosion when compared to grazing the residue (Blanco-Canqui 

et al. 2016).  

The risk of wind erosion in crop residue systems in Eastern NE can be managed 

by not removing more than 50% of the residue and employing grazing as the primary 

residue removal strategy. Similarly, soil water can be influenced by residue management.  

Soil Water 

Soil hydraulic properties are not negatively affected by grazing crop residues 

when proper stocking rates are used. When proper residue cover is retained, the soil water 

content is not negatively affected (Rakkar and Blanco-Canqui 2018). However, high rates 

of residue removal by baling decrease the surface soil water content (Rakkar et al. 2018). 

They found that soil water content was more dependent on the residue management than 

differences in soil texture, soil organic matter content, or precipitation (Rakkar et al. 

2018). 

Microbial Biomass and Nutrient Cycling  

The impact of residue removal on soil biology has been both positive and 

negative (Rakkar and Blanco-Canqui 2018). Across the precipitation gradient in NE 

researchers found that changes in microbial biomass from residue grazing or baling is 

largely due to tillage and cropping system (Rakkar et al. 2018). However, one study in 

Eastern NE found that after 16 years of grazing residue, microbial biomass increased, 

specifically the actinomycetes (Rakkar et al. 2017). Increased microbial biomass in these 

systems may improve nutrient cycling. In general, grazing crop residues, increases soil 

nutrients (Rakkar and Blanco-Canqui 2018). Continual grazing of corn residue in Illinois 

increased soil nitrate levels (Lehman 2015). In general, more research is needed to 
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determine the effects of crop residue removal on soil microbial populations. Carbon is an 

important player in soil microbial populations, serving as the microbes’ main food 

source.  

Soil Carbon 

Soil C can be improved through livestock grazing crop residue but is management 

dependent. A review of the global literature found that the effect of residue removal on 

soil C is variable (Rakkar and Blanco-Canqui 2018). The residue removal rate and 

manure input determine the effect of grazing residue on soil C (Rakkar and Blanco-

Canqui 2018). When soil C is saturated, grazing does not impact soil C, however, soils 

not saturated with C can increase or decrease soil C based on management (Rakkar and 

Blanco-Canqui 2018). Generally, moderate grazing can increase SOM (Rakkar and 

Blanco-Canqui 2018). However, a recent meta-analysis found that returning residue to 

the soil increased SOC (Liu et al. 2014).  

Residue grazing in the region does not appear to effect SOC. Long term grazing 

of corn residue in Nebraska does not cause a reduction in soil C (Rakkar et al. 2017). In 

Illinois, livestock grazing corn residue increased microbial biomass C. Total C 

concentration also increased in the ICLS when compared to continuous corn production 

(Tracy and Zhang 2008). Similarly, when residue was baled in Eastern NE, SOC did not 

change. However, when stover was retained, SOC increased (Jin et al. 2019). In west-

central NE a non-significant trend of decreased particulate organic matter was found 

when residue was baled (Blanco-Canqui et al. 2016). In Ohio, under continuous corn 

production when residue was baled at rates greater than 25% there was a significant 

decrease in SOC (Blanco-Canqui and Lal 2007).  
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In Eastern Nebraska, if residue removal rates do not exceed about 50%, no 

decrease in SOC should be observed from grazing or baling.  

Greenhouse Gas (GHG) Emissions 

The impact of grazing crop residue on GHG emissions is not well studied. 

Generally, GHG emissions are based on residue management, manure input, and micro-

climatic changes near the soil surface (Rakkar and Blanco-Canqui 2018).  

They concluded the effect of residue removal on GHG emissions is inconsistent 

(Rakkar and Blanco-Canqui 2018). Some studies have concluded that residue removal 

does not have a significant effect on GHG emissions. In a no-till, corn-soybean rotation 

in Iowa, N2O and CO2 emissions were not negatively affected when corn stover was 

removed (Johnson and Barbour 2010). In Ohio, under continuous corn no-till stover 

removal did not have a significant effect on CO2 emissions (Blanco-Canqui and Lal 

2007). Other studies have found that GHG emissions increase with residue removal.  

Across the US corn belt when stover was baled, CO2 and N2O emissions 

decreased (Jin et al. 2014). The same study found that averaged across 9 locations, stover 

removal decreased soil GHG emissions by 5%. In Eastern NE under high N fertilization, 

N2O emissions decreased when residue was removed compared to when residue was 

retained (Jin et al. 2019). In Iowa, when corn residue was removed, the continuous corn 

field remained a sink for atmospheric CO2 (Al-Kaisi and Guzman 2012). On the contrary, 

studies have found GHG emissions decrease when stover is removed. In South Dakota 

when corn stover was baled, N2O fluxes increased during the soybean growth phase. 

However there was no impact of residue harvest on GHG emissions during the corn 

growth phase (Lehman and Osborne 2016). Another study found that removing residue 
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can increase global warming potential (Guzman, Al-Kaisi, and Parkin 2015). More 

studies assessed the effect of retaining residue on GHG emissions.  

In general, when residue is retained, N2O emissions decrease, and C GHG 

emissions increase. In North Dakota, in a corn-SB rotation, when residue was retained, 

researchers observed a decrease in N2O emissions 2 out of 3 years (Wegner et al. 2018). 

In Ohio, when stover was retained, CO2 fluxes tended to be higher (Blanco-Canqui and 

Lal 2007). A recent meta-analysis also found that when residue is returned to the soil, 

CH4 and CO2 emissions may increase (Liu et al. 2014). Unfortunately, the effect of 

grazing residue on GHG emissions is not well known. Only one study in the Midwest has 

assessed the effect of grazing residue on GHG emissions. In Illinois when residue was 

grazed, CO2 effluxes were inconsistent when related to soil compaction and cattle 

presence (Tracy and Zhang 2008). Clearly the impact of residue removal on GHG 

emissions is contradictory.  

Jin et al. (2014) states that site specific management is essential to mitigate GHG 

emissions. In conclusion, site specific management is essential because GHG emissions 

vary spatially, temporally, and based on environmental conditions (Jin et al. 2014). 

Additionally, it is important to note that little is known about the impacts of grazing 

residue on soil GHG emissions.  

Production 

Grain Yield 

In general, livestock grazing crop residue does not negatively impact grain yield 

(Rakkar and Blanco-Canqui 2018). However, if grazing occurs when the soil is too wet, 
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grain yield can be negatively influenced. Below are findings on the impact residue 

removal has on grain yield related to corn production and the CGP region.  

In the Midwest grain yields are not negatively influenced by crop residue grazing. 

In Illinois, when a diverse crop rotation including winter cover crops was used and where 

corn stover was grazed one year and winter cover crops were grazed the next, corn grain 

yields increased (Tracy and Zhang 2008; Maughan et al. 2009). In Eastern NE, under 

irrigation and a corn soybean rotation, grain yields were not negatively affected by cattle 

grazing crop residue (Rakkar et al. 2017). In Iowa, grazing corn residue had little to no 

impact on the following soybean yield as long as grazing occurred when the soil was 

frozen or the field was disked before planting (Clark et al. 2004). In Illinois, under tillage 

and continuous corn production,  grazing residue did not influence the following grain 

yield (Lehman 2015). In Eastern Nebraska, under a corn-soybean rotation, corn residue 

grazing increased soybean yield and did not affect corn yield (Drewnoski et al. 2016). 

Across multiple sites and crop rotations in Nebraska, grazing corn residue did not 

influence corn grain yield  (Ulmer 2016). In West-Central NE, residue grazing or baling 

did not significantly affect corn grain yield (Stalker et al. 2015). Grazing or harvesting 

crop residue appears to have little to no effect on grain yield.  

In South Dakota, under rain-fed conditions, in a no-tillage corn or soybean 

rotation, grain yield was not impacted by corn residue removal at a rate of 55% (Lehman 

and Osborne 2016). In Iowa, in a no-till corn soybean rotation, grain yield was not 

affected by corn stover harvest (Johnson and Barbour 2010).  In Ohio, under continuous 

corn production when stover was baled at rates greater than 50%, corn grain yield was 
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reduced (Blanco-Canqui and Lal 2007). In Nebraska, no difference in corn yield was 

observed between land with and without stover removal (Jin et al. 2014).  

In general grazing and harvesting crop residue does not negatively impact corn 

grain yield. Corn residue can be grazed in Eastern NE when soils are dry at proper 

stocking rates without negatively impacting yield. Corn stover may be harvested and 

baled at a 50% removal rate with no likely negative impact on crop yield.  

Cattle Production 

Grazing crop residue provides a valuable feed resource for ruminant livestock 

(Rakkar and Blanco-Canqui 2018). In west central NE, beef cows in late gestation that 

grazed corn residue gained weight at light (2.5 AUM ha-1) and heavy (5 AUM ha-1) 

stocking rates (Stalker et al. 2015). Cows grazed corn residue from late November to 

early February with initial average body weights of 440 and 443 kg hd-1 for the groups 

stocked at 2.5 AUM ha-1 and 5 AUM ha-1, respectively (Stalker et al. 2015). The cattle at 

lower stocking rates gained more than those at heavy stocking rates (Stalker et al. 2015).  

Grazing crop residue maintains mature cow weight and can provide an excellent 

source of roughage for growing cattle in Nebraska. Additionally, grazing crop residue 

provides an economic advantage to both crop and livestock enterprises.  

Economic Impact of Crop Residue Grazing 

In addition to serving as a winter feed source, grazing crop residue provides an 

economic advantage to both crop and livestock enterprises. Adopting residue grazing can 

reduce winter feed cost and improve the profitability of livestock operations (Karn et al. 

2005). Because there are no negative impacts on soil properties and an economic 



27 

 

advantage to residue grazing, producers in the region have readily adopted the practice. 

Residue provides a valuable feed resource for cattle and a way to diversify the income 

stream crop producers receive. In NE, SD, KS, and ND corn stover grazing is worth $95 

million for the crop sector and $191 million for the livestock sector (Redfearn et al. 2019)  

In Nebraska, researchers studied how cattle grazing crop residue impacted system 

profitability. When cows and their calves grazed crop residues, profitability potential 

increased (Anderson et al. 2005). Cows grazed residue in the winter, and calves grazed 

residue after weaning. Following residue grazing, the calves were moved to pasture 

during spring and summer, then sent to the feedlot for finishing. The calves that grazed 

residue before feedlot entry had lower weaning and slaughter breakeven than calves that 

entered the feedlot after weaning (Anderson et al. 2005). There was also a lower cost per 

weaned calf in the treatment where cows grazed residue and were fed hay, compared to 

cows only fed hay (Anderson et al. 2005). Therefore, in Nebraska, crop residue grazing is 

a viable tool for improving crop and livestock enterprise profitability.  

Crop residue is an extremely valuable resource to the crop and livestock producer 

in Nebraska to aid in farm profitability. When crop residue is used for grazing, livestock 

should be stocked at proper rates to maintain no more than 25% residue removal in 

Nebraska (Rasby, Drewnoski, and Stalker 2014). The practice has been widely adapted 

and should be considered to integrate crop and livestock production.  

Integrating Crop and Livestock Production using Cover Crop/Annual Forage 

Grazing 

The practice of planting cover crops is rising in popularity due to the various 

ecosystem services they offer. Cover crops reduce erosion, nutrient losses, GHG 



28 

 

emissions and run off (Kaspar and Singer 2015). Cover crops also increase soil C and 

support soil biology (Kaspar and Singer 2015). In Nebraska, producers plant cover crops 

primarily to reduce soil erosion and suppress weeds (Oliveira, Butts, and Werle 2019). 

However, cover crop adoption has been limited because cover crops do not provide 

immediate financial return to the farmer (Kaspar and Singer 2015). Grazing cover crops 

can provide a form of livestock integration that increases land use efficiency, potentially 

leading to improved profitability (Carvalho et al. 2018). In Brazil, cattle moderately 

grazing cover crops produces sustainable production of both animal protein and grain 

(Carvalho et al. 2018). The synergy between the two systems has the potential to lead to 

higher profits and increase system resilience (Carvalho et al. 2018).  

Environment  

Compaction 

Compaction caused by grazing animals on cropland may be a barrier to adopting 

cover crop grazing as an ICLS strategy. However, the compaction caused by animals 

grazing cover crops, if observed, is minor and does not affect subsequent plant growth. In 

Georgia, grazing cover crops did not impact soil penetration resistance in no-till 

production (Franzluebbers and Stuedemann 2008b). In Alberta, researchers found that 

grazing intensity can be used to manage soil compaction when annual forages are grazed. 

However, all grazing intensities resulted in compaction levels below the level that 

restricts root growth (Twerdoff et al. 1999). In Ohio, after a cover crop was grazed, 

compaction increased but did not impact yield and was gone within a year (Faé et al. 

2009). In southern Iowa, preliminary data showed that cattle grazing cereal rye (Secale 

cereal L.) had minimal negative impact on soil compaction (Lundy et al. 2018). 
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Compaction caused by grazing animals does not appear to be a problem in ICLS.  

Water 

Water holding capacity of soil is important for agroecosystem function both to 

prevent runoff and hold water for crop growth. In Georgia, the stability of soil aggregates 

was not affected by grazing cover crops, but, water infiltration decreased when cover 

crops were grazed compared to non-grazed cover crops (Franzluebbers and Stuedemann 

2008b). In North Dakota, infiltration rate was not affected by swath grazing in winter 

when no till management was used (Liebig et al. 2011). In the Texas High Plains, an 

ICLS with annual forage grazing compared to continuous cotton production reduced the 

need for irrigation water by 24% (Allen et al. 2007; Johnson et al. 2013; Allen et al. 

2005). Therefore, ICLS could provide an opportunity for producers in areas where wells 

are running dry or where water withdrawal is either limited or regulated (Allen et al. 

2007; Johnson et al. 2013; Allen et al. 2005).  

ICLS with ruminant grazing animals appears to potentially improve water use 

efficiency.  

Plant Organic Matter Production (roots/litter) 

Addition of plant litter, root biomass, and root exudates increase soil C and 

provide multiple environmental benefits. Benefits include reduced soil erosion through 

cover cropping practices. When a cover crop is grazed, the accumulation of belowground 

(root) biomass is the most important factor that contributes SOC (Faé et al. 2009).   

Little research has been done to determine the impact of cover crop grazing on 

root growth. In Ohio, researchers found evidence that cover crop grazing negatively 
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impacts root growth. However, the grazed cover crop area still had greater root biomass 

than the area without a cover crop (Faé et al. 2009). Additionally, grazing intensity did 

not significantly affect triticale (xTritosecale) root mass (Mapfumo et al. 2002). Litter or 

above-ground plant biomass also can be an important contributor to soil health. The litter 

of triticale decreased as grazing intensity increased in both fall and spring (Mapfumo et 

al. 2002). Decreased litter contribution led to decreased C and N pools (Mapfumo et al. 

2002). Additional research has been done on dual-purpose crops used for both grain and 

grazing. 

In Australia, canola (Brassica Napus L.) has been used as a dual-purpose crop for 

grazing and oilseed production. Researchers found that grazing reduced plant dry matter, 

but if proper irrigation was provided the following yield was unaffected (McCormick, et 

al. 2012). In another study, researchers observed that when well-established wheat was 

grazed as a dual-purpose crop, root depth, rate of penetration, and above-ground biomass 

was unaffected (Kirkegaard et al. 2015). The biomass production was unaffected because 

the plant re-growth was able to keep up with the defoliation from grazing animals 

(Kirkegaard et al. 2015). However, when the wheat was repeatedly defoliated at the four-

leaf stage, researchers observed decreased rooting depth (Kirkegaard et al. 2015). 

Additionally, repeated defoliation during early plant establishment decreased above-

ground biomass (Kirkegaard et al. 2015).  

Little is known about the impact of grazing or defoliation on above and below 

ground biomass production. Additionally, how the grazing affects the ecosystem services 

provided by cover crops is not well known.  
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Soil Nutrients  

Cover crops increase SOC and reduce N leaching. In Illinois, after 12-yrs of cover 

crops, SOC increased (Olson, Ebelhar, and Lang 2014). In the Northern Corn Belt, a rye 

cover crop  in a corn-soybean rotation, following corn, decreased nitrate leaching (Strock, 

Porter, and Russelle 2004). Unfortunately, there is limited information on how grazing 

cover crops impacts their ability to increase SOC and reduce N leaching.  

In Georgia, researchers concluded that grazing cover crops was a viable option 

because grazing did not consistently negatively impact soil C and N (Franzluebbers and 

Stuedemann 2008b). Similarly, in Brazil, 9 years of light and moderate grazing intensities 

resulted in similar C and N stocks to non-grazed plots (Assmann et al. 2014). However, 

heavy grazing intensity did lead to soil deterioration (Assmann et al. 2014). In the 

southeastern U.S., grazing cover crops did not impact N mineralization (Franzluebbers 

and Stuedemann 2015). Additionally, grazing cover crops appears to boost microbial 

content in the soil. Researchers observed that grazing cover crops increased particulate 

organic C and microbial biomass (Faé et al. 2009). Under no-till management, they also 

observed an increase in soil microbial C when grazing of cover crops was compared to no 

grazing (Franzluebbers and Stuedemann 2015).  

Limited information is available on how grazing of cover crops affects the C and 

N cycle. However, it appears that grazing cover crops does not negatively impact the soil 

C and N content.  

Soil GHG 

Cover crops also have the potential to decrease GHG emissions through reduced 

fertilizer use. In Minnesota, when cover crops and reduced tillage were implemented into 
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a corn-soybean rotation, CH4 fluxes were negligible (Bavin et al. 2009). However, in the 

same study, N2O emissions were higher when no cover crop was used (Bavin et al. 2009). 

Researchers concluded the increase was due to different fertilizer use (Bavin et al. 2009). 

Anhydrous ammonia was applied in the conventional system whereas urea was applied to 

the system with reduced tillage and cover crops (Bavin et al. 2009). In agreement with 

this finding, monocropping was found to increase N2O emissions because of the need for 

higher synthetic fertilizer (Abagandura et al. 2019). These findings indicate that fertilizer 

source and rate impact soil GHG emissions. In the Great Plains, cover crops have been 

proven to decrease N2O emissions. In South Dakota, 2 of 3 years, they observed that 

cover crops decreased nitrous oxide emissions (Wegner et al. 2018). Cover crops can 

decrease soil N2O emissions.  

However, the impact of livestock grazing cover crops on soil GHG emissions is 

contradictory. When an ICLS with winter cover crop grazing was compared to a 

continuous cropping system, N2O emissions increased (Piva et al. 2014). Researchers 

hypothesize the increase was likely due to additional fertilizer and observed compaction 

in the ICLS (Piva et al. 2014). However, another study found that an ICLS in Brazil with 

cover crop grazing mitigated N2O emissions when compared to continuous cropland 

(Dieckow et al. 2015). Additionally, researchers found that grazing annual forages in 

South Dakota did not impact N2O or CH4 emissions but grazing did reduce CO2 

(Abagandura et al. 2019).  

These findings support that cover crop grazing may decrease GHG emissions but 

emphasize the need for more research. Additional research needs to be conducted to 

identify the impact of grazing cover crops on soil GHG emissions. 
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Production 

Grain Crop Yield 

For producers to adopt cover crop grazing, grain yield needs to remain unaffected 

or improved. Generally, grazing cover crops has no impact on subsequent grain yield. In 

Brazil, researchers found that cattle grazing an oat (Avena sativa L.) cover crop did not 

impact the following soybean grain yield (Da Silva et al. 2014). In Texas, researchers 

found that cotton yield was similar between a conventional cotton system and ICLS with 

cover crop grazing (Allen et al. 2007; Johnson et al. 2013). In Ohio, if cover crops were 

grazed with appropriate management under no-till, the following corn silage yield was 

not impacted (Faé et al. 2009). However, it is possible that cover crop grazing can 

improve grain yield through manure addition to the soil. In Brazil, the input of cattle 

manure improved soybean yield (Da Silva et al. 2014). Higher grazing intensities have 

the potential to negatively influence the following grain yield. In Brazil, when an annual 

ryegrass (Lolium multiflorum) and oat cover crop mixture was heavily grazed by cattle, 

the following corn grain yield was negatively impacted (Franchin et al. 2014). However, 

the same study found that the negative impact of grazing on corn yield could be mitigated 

with light to moderate grazing in combination with a shank method of planting (Franchin 

et al. 2014). In the Midwest, ICLS with cover crop grazing have improved grain yield. In 

Illinois, when cover crops were grazed by cattle the following grain yield improved when 

compared to a continuous corn production system (Maughan et al. 2009; Tracy and 

Zhang 2008).  
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The limited literature suggests that cover crops grazed by cattle with proper 

management does not negatively impact the following grain yield. In some cases, cover 

crop grazing may improve grain yield.  

Ruminant Animal Performance 

Cover crops can provide high quality forage for ruminants when perennial 

pastures are dormant. In different regions, cover crops provide adequate forage for animal 

performance. In Brazil, cattle that grazed a mixture of oats and ryegrass had adequate 

performance (Kunrath et al. 2014). In the Texas High Plains, when steers were stocked at 

1.75 hd ha-1, rye provided 33.5 grazing days, and wheat provided 25.3 grazing days 

(Allen et al. 2007). In Ohio, winter annual grass cover crops provided 105 AU grazing d 

ha-1 when planted after corn silage harvest (Faé et al. 2009). The heifers that grazed the 

winter annual grasses gained an average of 0.81 kg d-1 (Faé et al. 2009). In southern 

Iowa, preliminary data showed that cattle grazing cereal rye supplemented with distiller’s 

grain and soyhull can achieve an ADG of 0.7-1.4 kg hd-1 (Lundy et al. 2018). In 

Nebraska, steers that grazed an oat/brassica mix planted after wheat harvest, over 50 days 

in winter gained 0.7-0.9 kg hd-1 (Ulmer et al. 2016). Despite adequate animal 

performance, only 2% of surveyed producers in Nebraska report that increased grazing 

opportunity is a benefit to planting cover crops (Oliveira et al. 2019).  

Cover crops produce high quality forage which in turn produce adequate ruminant 

animal gains. However, the challenge of cover crop growth and establishment exists for 

northern climates.   
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Cover Crop Growth 

The success of cover crop grazing is highly dependent on the success of cover 

crop establishment. The planting date of the cover crop largely determines if enough 

forage will be available for either autumn or spring grazing. Typically, 40-60 days are 

needed to produce adequate forage growth for grazing (Drewnoski and Redfearn 2015). 

The date the cover crop can be planted is determined by the cash crop system used. In 

Nebraska, if a producer wants to provide forage in the fall, the cover crop should be 

planted after wheat, hybrid seed corn, or corn silage to produce adequate grazable forage 

(Drewnoski and Redfearn 2015). Planting after these cash crops should ensure a planting 

date during the first week of September which should be early enough to produce 

adequate grazable forage in autumn (Drewnoski and Redfearn 2015). If the cropping 

system requires later planting dates, winter hardy species can be planted mid-September- 

early October to provide a spring grazing opportunity (Drewnoski and Redfearn 2015). 

Cereal grains used as cover crops have been found to provide adequate forage growth. 

They also hold quality well over time, allowing for management flexibility (Coblentz and 

Walgenbach 2010). In Ohio, cereal rye produced 38% more forage than annual ryegrass 

which provided an additional 37 grazing days (Faé et al. 2009). Researchers have also 

found that grazing if done properly, can improve the cover crop growth rate as long as 

producers allow enough leaf growth to occur before grazing initiation (Gardner and 

Faulkner 2010).  

An adequate amount of growing degree days is needed to produce grazeable 

forage in the autumn. Cropping system is a large determining factor in the amount of 



36 

 

grazeable cover crop biomass. Little research exists on spring forage availability of 

winter hardy species.  

Economics 

Cover crops provide numerous environmental and production benefits; however, 

they are costly to manage. In Nebraska, the cost of seeding a small grain is $74- 99 ha-1 

(Drewnoski and Redfearn 2015). Additionally, surveyed Midwest producers illustrated 

that cover crops generally have a negative effect on whole farm profitability (Plastina et 

al. 2018). The negative effect is due to additional management costs including cover crop 

establishment and termination (Plastina et al. 2018). Using ruminant livestock to graze 

cover crops is one way to mitigate the negative effect cover crops have on farm 

profitability.  

Researchers throughout the United States have evaluated the feasibility of using 

cover crops as forage. In the Texas High Plains an ICLS with cattle grazing annual 

forages had less variation in profitability when compared to continuous cotton production 

(Johnson et al. 2013). In addition, the system provided ecological diversity which 

benefited soil health and wildlife populations (Johnson et al. 2013). These types of ICLS 

can improve profitability while reducing the need for external inputs (Allen et al. 2005). 

Fortunately, after reviewing the limited data available, investigators have concluded that 

cover crops can be grazed to provide economic return without negatively impacting the 

soil (Drewnoski et al. 2018). Grazing cover crops can positively impact the crop producer 

by generating a secondary revenue source. Similarly, grazing cover crops can also be 

advantageous for the livestock producer. In the NGP, researchers concluded that cattle 

grazing annual forage allowed for delayed feedlot entry, which produced greater 
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profitability potential (Şentürklü et al. 2018). In Ohio, researchers found that daily feed 

costs could be decreased by heifers grazing an oat rye cover crop mix instead of being fed 

in confinement (Faé et al. 2009). In the southeast, researchers found that cattle grazing 

cover crops did not negatively impact the soil (Franzluebbers and Stuedemann 2015). 

Therefore, the economic benefit of additional cattle gain can be used to promote the use 

of cover crops in the region (Franzluebbers and Stuedemann 2015).  

Grazing cover crops can be economically advantageous for both the crop and 

livestock producer. Although, the most economical system for the region is not well 

known.  

Conclusion 

In conclusion, ICLS should be considered in Eastern NE to meet the production, 

profitability, and environmental challenges facing the producer. Three main types of 

integration have shown promise for agricultural systems in Eastern Nebraska. Although 

integration of perennial vegetation shows promise, more research to develop the best 

system is needed. Generally, converting cropland to perennial grasses reduces nutrient 

loss, reduces soil GHG emissions, and increases SOC. Additionally, mechanically 

harvesting the grasslands sustains these trends. However, the best grazing management 

practices to reduce nutrient loss, reduce soil GHG emissions, and increase SOC need to 

be developed for the region. In the region, smooth bromegrass and switchgrass, along 

with other native, perennial warm-season grasses, and mixtures can produce adequate 

cattle gains. However, more information is needed on how switchgrass performs as a 

dual-purpose crop in Nebraska for grazing and bioenergy production. Lastly, more 

research is needed on the economic viability of implementing switchgrass in Nebraska 
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for grazing or dual-purpose use. A simpler form of ICLS includes crop residue grazing. 

Crop residue grazing has been readily adopted and should continue to be expanded in the 

region due to economic, production, and environmental benefits. However, more research 

is needed on the impact of grazing corn residue on soil GHG emissions. A form of ICLS 

that can increase forage quality and availability when perennial grasses are dormant is 

cover crop grazing. However, little is known about the impact of grazing on cover crop 

above- and below-ground biomass, which appears to influence the environmental 

services offered by cover crops. Additionally, little is known about the impact cattle 

grazing cover crops has on soil GHG emissions. It is apparent that cattle grazing cover 

crops is beneficial to both the crop and livestock enterprises. However, the success of this 

practice is largely controlled by forage availability, which is affected by planting date. 

Additionally, little is known about the spring forage availability of winter hardy species 

in the region. However, an optimal system for Eastern NE has not been well defined. 

Overall, each of the three ICLS strategies present opportunities for producers to meet 

environmental, production, and economic challenges.  

 

  



39 

 

References 

Abagandura, Gandura Omar, Songul Şentürklü, Navdeep Singh, Sandeep Kumar, 

Douglas G. Landblom, and Kris Ringwall. 2019. “Impacts of Crop Rotational 

Diversity and Grazing under Integrated Crop-Livestock System on Soil Surface 

Greenhouse Gas Fluxes.” PLoS ONE 14 (5). 

https://doi.org/10.1371/journal.pone.0217069. 

Al-Kaisi, Mahdi, and Jose Guzman. 2012. “Effects of Maize Residue Removal on Soil 

Quality and Greenhouse Gas Emissions Is Iowa.” Agrociencia Uruguay Special Is: 

20–28. 

Allen, V. G., M. T. Baker, E. Segarra, and C. P. Brown. 2007. “Integrated Irrigated Crop-

Livestock Systems in Dry Climates.” Agronomy Journal 99 (2): 346–60. 

https://doi.org/10.2134/agronj2006.0148. 

Allen, V. G., C. P. Brown, R. Kellison, E. Segarra, T. Wheeler, P. A. Dotray, J. C. 

Conkwright, C. J. Green, and V. Acosta-Martinez. 2005. “Integrating Cotton and 

Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the 

Southern High Plains.” Agronomy Journal 97 (2): 556–67. 

https://doi.org/10.2134/agronj2005.0556. 

Anderson, Bruce, J.K. Ward, K.P. Vogel, M.G. Ward, H.J. Gortz, and F.A. Haskins. 

1988. “Forage Quality and Performance of Yearlings Grazing Switchgrass Strains 

Selected for Differing Digestibility.” Journal of Animal Science 66 (9): 2239–44. 

https://doi.org/10.1017/CBO9781107415324.004. 

Anderson, R. V., R. J. Rasby, T. J. Klopfenstein, and R. T. Clark. 2005. “An Evaluation 

of Production and Economic Efficiency of Two Beef Systems from Calving to 

Slaughter.” Journal of Animal Science 83 (3): 694–704. 

https://doi.org/10.2527/2005.833694x. 

Asbjornsen, H., V. Hernandez-Santana, M. Liebman, J. Bayala, J. Chen, M. Helmers, C. 

K. Ong, and L. A. Schulte. 2014. “Targeting Perennial Vegetation in Agricultural 

Landscapes for Enhancing Ecosystem Services.” Renewable Agriculture and Food 

Systems 29 (2): 101–25. https://doi.org/10.1017/S1742170512000385. 

Assmann, Joice Mari, Ibanor Anghinoni, Amanda Posselt Martins, Sérgio Ely Valadão 

Gigante de Andrade Costa, Diego Cecagno, Filipe Selau Carlos, and Paulo Cesar de 

Faccio Carvalho. 2014. “Soil Carbon and Nitrogen Stocks and Fractions in a Long-

Term Integrated Crop-Livestock System under No-Tillage in Southern Brazil.” 

Agriculture, Ecosystems and Environment 190: 52–59. 

https://doi.org/10.1016/j.agee.2013.12.003. 

Auerswald, Karl, and Peter Fiener. 2019. “Soil Organic Carbon Storage Following 

Conversion from Cropland to Grassland on Sites Differing in Soil Drainage and 

Erosion History.” Science of the Total Environment 661: 481–91. 

https://doi.org/10.1016/j.scitotenv.2019.01.200. 

Baer, Sara G., Charles W. Rice, and John M. Blair. 2000. “Assessment of Soil Quality in 



40 

 

Fields with Short and Long Term Enrollment in the CRP.” Journal of Soil and 

Water Conservation 55 (2): 142–46. 

Beek, C. L. van, M. Pleijter, and P. J. Kuikman. 2011. “Nitrous Oxide Emissions from 

Fertilized and Unfertilized Grasslands on Peat Soil.” Nutrient Cycling in 

Agroecosystems 89 (3): 453–61. https://doi.org/10.1007/s10705-010-9408-y. 

Biermacher, Jon T., Mohua Haque, Jagadeesh Mosali, and James K. Rogers. 2017. 

“Economic Feasibility of Using Switchgrass Pasture to Produce Beef Cattle Gain 

and Bioenergy Feedstock.” Bioenergy Research 10 (3): 740–49. 

https://doi.org/10.1007/s12155-017-9835-6. 

Blanco-Canqui, Humberto, and R. Lal. 2007. “Soil and Crop Response to Harvesting 

Corn Residues for Biofuel Production.” Geoderma 141 (3–4): 355–62. 

https://doi.org/10.1016/j.geoderma.2007.06.012. 

Blanco-Canqui, Humberto, and R. Lal. 2009. “Crop Residue Removal Impacts on Soil 

Productivity and Environmental Quality.” Critical Reviews in Plant Sciences 28 (3): 

139–63. https://doi.org/10.1080/07352680902776507. 

Blanco-Canqui, Humberto, Aaron L. Stalker, Rick Rasby, Tim M. Shaver, Mary E. 

Drewnoski, Simon van Donk, and Leonard Kibet. 2016. “Does Cattle Grazing and 

Baling of Corn Residue Increase Water Erosion?” Soil Science Society of America 

Journal 80 (1): 168–77. https://doi.org/10.2136/sssaj2015.07.0254. 

Blanco-Canqui, Humberto, John Tatarko, Aaron L. Stalker, Tim M. Shaver, and Simon J. 

van Donk. 2016. “Impacts of Corn Residue Grazing and Baling on Wind Erosion 

Potential in a Semiarid Environment.” Soil Science Society of America Journal 80 

(4): 1027–37. https://doi.org/10.2136/sssaj2016.03.0073. 

Bonin, Catherine, Joao Flores, Rattan Lal, and Benjamin Tracy. 2013. “Root 

Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and 

Biomass Production.” Agronomy 3 (3): 508–23. 

https://doi.org/10.3390/agronomy3030508. 

Boyer, Christopher N, Katelynn Zechiel, Patrick D Keyser, Justin Rhinehart, CN Boyer, 

and G E Bates. 2019. “Risk and Returns from Grazing Beef Cattle on Warm-Season 

Grasses in Tennessee.” Agronomy Journal. 

https://doi.org/10.2134/agronj2019.01.0024. 

Carvalho, Paulo César de Faccio, Caitlin Adair Peterson, Pedro Arthur de Albuquerque 

Nunes, Amanda Posselt Martins, William de Souza Filho, Vanessa Thoma Bertolazi, 

Taíse Robinson Kunrath, Aníbal de Moraes, and Ibanor Anghinoni. 2018. “Animal 

Production and Soil Characteristics from Integrated Crop-Livestock Systems: 

Toward Sustainable Intensification.” Journal of Animal Science 96 (8): 3513–25. 

https://doi.org/10.1093/jas/sky085. 

Clark, Justin T., James R. Russell, Douglas L. Karlen, P. L. Singleton, W. Darrell Busby, 

and Brian C. Peterson. 2004. “Soil Surface Property and Soybean Yield Response to 

Corn Stover Grazing.” Agronomy Journal 96 (5): 1364–71. 

https://doi.org/10.2134/agronj2004.1364. 



41 

 

Clay, David E., Sharon A. Clay, Kurtis D. Reitsma, Barry H. Dunn, Alexander J. Smart, 

Gregg G. Carlson, David Horvath, and James J. Stone. 2014. “Does the Conversion 

of Grasslands to Row Crop Production in Semi-Arid Areas Threaten Global Food 

Supplies?” Global Food Security. https://doi.org/10.1016/j.gfs.2013.12.002. 

Coblentz, W. K., and R. P. Walgenbach. 2010. “Fall Growth, Nutritive Value, and 

Estimation of Total Digestible Nutrients for Cereal-Grain Forages in the North-

Central United States.” Journal of Animal Science 88 (1): 383–99. 

https://doi.org/10.2527/jas.2009-2224. 

Davis, Sarah C., William J. Parton, Stephen J. Del Grosso, Cindy Keough, Ernest Marx, 

Paul R. Adler, and Evan H. Delucia. 2012. “Impact of Second-Generation Biofuel 

Agriculture on Greenhouse-Gas Emissions in the Corn-Growing Regions of the 

US.” Frontiers in Ecology and the Environment 10 (2): 69–74. 

https://doi.org/10.1890/110003. 

Dieckow, Jeferson, Maico Pergher, Jonatas Thiago Piva, Cimélio Bayer, Anibal De 

Moraes, and Karuppan Sakadevan. 2015. “Soil Nitrous Oxide and Methane Fluxes 

in Integrated Crop-Livestock Systems in Subtropics.” Vol. 37. 

Dowhower, Steven L., W. Richard Teague, Ken D. Casey, and Rhonda Daniel. 2020. 

“Soil Greenhouse Gas Emissions as Impacted by Soil Moisture and Temperature 

under Continuous and Holistic Planned Grazing in Native Tallgrass Prairie.” 

Agriculture, Ecosystems and Environment 287. 

https://doi.org/10.1016/j.agee.2019.106647. 

Drewnoski, Mary E., Jim C. MacDonald, Galen E. Erickson, Kathy J. Hanford, and Terry 

J. Klopfenstein. 2016. “Long-Term Corn Residue Grazing Improves Subsequent 

Soybean Yields in a Corn-Soybean Rotation.” Crop, Forage & Turfgrass 

Management 2 (1): cftm2015.0192. https://doi.org/10.2134/cftm2015.0192. 

Drewnoski, Mary E, and Daren D Redfearn. 2015. “Annual Cool-Season Forages for 

Late-Fall or Early-Spring Double-Crop.” NebGuide G2262. 

Drewnoski, Mary, Jay Parsons, Humberto Blanco, Daren Redfearn, Kristin Hales, and 

Jim MacDonald. 2018. “Forages and Pastures Symposium: Cover Crops in 

Livestock Production: Whole-System Approach. Can Cover Crops Pull Double 

Duty: Conservation and Profitable Forage Production in the Midwestern United 

States?” Journal of Animal Science 96 (8): 3503–12. 

https://doi.org/10.1093/jas/sky026. 

Entz, Martin H., Vern S. Baron, Patrick M. Carr, Dwain W. Meyer, S. Ray Smith, and W. 

Paul McCaughey. 2002. “Potential of Forages to Diversify Cropping Systems in the 

Northern Great Plains.” Agronomy Journal 94 (2): 240–50. 

https://doi.org/10.2134/agronj2002.0240. 

Faé, Giovani Stefani, R. Mark Sulc, David J. Barker, Richard P. Dick, Maurice L. 

Eastridge, and Nicola Lorenz. 2009. “Integrating Winter Annual Forages into a No-

till Corn Silage System.” Agronomy Journal 101 (5): 1286–96. 

https://doi.org/10.2134/agronj2009.0144. 



42 

 

Follett, Ronald F., Kenneth P. Vogel, Gary E. Varvel, Robert B. Mitchell, and John 

Kimble. 2012. “Soil Carbon Sequestration by Switchgrass and No-Till Maize Grown 

for Bioenergy.” Bioenergy Research 5 (4): 866–75. https://doi.org/10.1007/s12155-

012-9198-y. 

Franchin, Marcia F., Alcir J. Modolo, Paulo F. Adami, and Emerson Trogello. 2014. 

“Effect of Grazing Intensities and Seed Furrow Openers on Corn Development and 

Yield in a Crop-Livestock System.” Maydica 59 (1): 42–49. 

Franco, J. G., S. E. Duke, J. R. Hendrickson, M. A. Liebig, D. W. Archer, and D. L. 

Tanaka. 2018. “Spring Wheat Yields Following Perennial Forages in a Semiarid No-

till Cropping System.” Agronomy Journal 110 (6): 2408–16. 

https://doi.org/10.2134/agronj2018.01.0072. 

Frank, A. B., J. D. Berdahl, J. D. Hanson, M. A. Liebig, and H. A. Johnson. 2004. 

“Biomass and Carbon Partitioning in Switchgrass.” Crop Science 44 (4): 1391–96. 

https://doi.org/10.2135/cropsci2004.1391. 

Frank, A. B., M. A. Liebig, and D. L. Tanaka. 2006. “Management Effects on Soil CO2 

Efflux in Northern Semiarid Grassland and Cropland.” Soil and Tillage Research 

89: 78–85. https://doi.org/10.1016/j.still.2005.06.009. 

Franzluebbers, A. J., and J. A. Stuedemann. 2015. “Does Grazing of Cover Crops Impact 

Biologically Active Soil Carbon and Nitrogen Fractions under Inversion or No 

Tillage Management?” Journal of Soil and Water Conservation 70 (6): 365–73. 

https://doi.org/10.2489/jswc.70.6.365. 

Franzluebbers, Alan J., and John A. Stuedemann. 2008a. “Early Response of Soil 

Organic Fractions to Tillage and Integrated Crop–Livestock Production.” Soil 

Science Society of America Journal 72 (3): 613–25. 

https://doi.org/10.2136/sssaj2007.0121. 

Franzluebbers, Alan J., and John A. Stuedemann. 2008b. “Soil Physical Responses to 

Cattle Grazing Cover Crops under Conventional and No Tillage in the Southern 

Piedmont USA.” Soil and Tillage Research 100 (1–2): 141–53. 

https://doi.org/10.1016/j.still.2008.05.011. 

Gamble, Audrey V., Julie A. Howe, Kris B. Balkcom, C. Wesley Wood, Nicolas 

DiLorenzo, Dexter B. Watts, and Edzard van Santen. 2019. “Soil Organic Carbon 

Storage and Greenhouse Gas Emissions in a Grazed Perennial Forage–Crop 

Rotation System.” Agrosystems, Geosciences, & Environment 2 (1): 1–9. 

https://doi.org/10.2134/age2018.09.0040. 

Gardner, J C, and D B Faulkner. 2010. “Integrated Crop Livestock System: Use of Cover 

Crops with Integrated Crop-Lives Tock Production Systems,” no. 11: 1–16. 

CCW120511croplivestock_AAB1E. 

Gelfand, Ilya, Terenzio Zenone, Poonam Jasrotia, Jiquan Chen, Stephen K. Hamilton, 

and G. Philip Robertson. 2011. “Carbon Debt of Conservation Reserve Program 

(CRP) Grasslands Converted to Bioenergy Production.” Proceedings of the National 

Academy of Sciences of the United States of America 108 (33): 13864–69. 



43 

 

https://doi.org/10.1073/pnas.1017277108. 

George, J Ronald, Dwayne R Buxton, Stephen K Barnhart, and Kenneth J Moore. 1997. 

“Animal and Plant Responses for Steers Grazing Switchgrass and Big Bluestem 

Pastures.” 

Ghimire, Rajan, Vesh R. Thapa, Amanda Cano, and Veronica Acosta-Martinez. 2019. 

“Soil Organic Matter and Microbial Community Responses to Semiarid Croplands 

and Grasslands Management.” Applied Soil Ecology. 

https://doi.org/10.1016/j.apsoil.2019.05.002. 

Gopalakrishnan, Gayathri, M. Cristina Negri, and Seth W. Snyder. 2011. “A Novel 

Framework to Classify Marginal Land for Sustainable Biomass Feedstock 

Production.” Journal of Environmental Quality 40 (5): 1593–1600. 

https://doi.org/10.2134/jeq2010.0539. 

Guzman, Jose, Mahdi Al-Kaisi, and Timothy Parkin. 2015. “Greenhouse Gas Emissions 

Dynamics as Influenced by Corn Residue Removal in Continuous Corn System.” 

Soil Science Society of America Journal 79 (2): 612–25. 

https://doi.org/10.2136/sssaj2014.07.0298. 

Hendrickson, John R., M. A. Liebig, and G. F. Sassenrath. 2008. “Environment and 

Integrated Agricultural Systems.” Renewable Agriculture and Food Systems 23 (4): 

304–13. https://doi.org/10.1017/S1742170508002329. 

Hilimire, Kathleen. 2011. “Integrated Crop/Livestock Agriculture in the United States: A 

Review.” Journal of Sustainable Agriculture 35 (4): 376–93. 

https://doi.org/10.1080/10440046.2011.562042. 

Janovick, N A, J R Russell, D R Strohbehn, and D G Morrical. 2000. “Productivity and 

Hay Requirements of Beef Cattle in a Midwestern Year-Round Grazing System 1 , 

2,” 2503–15. 

Jastrow, D. 1996. “Soil Aggregate Formation and the Accrual of Particulate and Mineral-

Associated Organic Matter.” Soil Biology and Biochemistry 28 (4/5): 665–76. 

https://doi.org/10.1016/0038-0717(95)00159-X. 

Jin, Virginia L., John M. Baker, Jane M.F. Johnson, Douglas L. Karlen, R. Michael 

Lehman, Shannon L. Osborne, Thomas J. Sauer, et al. 2014. “Soil Greenhouse Gas 

Emissions in Response to Corn Stover Removal and Tillage Management Across the 

US Corn Belt.” Bioenergy Research 7 (2): 517–27. https://doi.org/10.1007/s12155-

014-9421-0. 

Jin, Virginia L., Marty R. Schmer, Catherine E. Stewart, Robert B. Mitchell, Candiss O. 

Williams, Brian J. Wienhold, Gary E. Varvel, Ronald F. Follett, John Kimble, and 

Kenneth P. Vogel. 2019. “Management Controls the Net Greenhouse Gas Outcomes 

of Growing Bioenergy Feedstocks on Marginally Productive Croplands.” Science 

Advances 5 (12): 1–7. https://doi.org/10.1126/sciadv.aav9318. 

Johnson, J M F, and Nancy Barbour. 2010. “Crop Yield and Greenhouse Gas Responses 

to Stover Harvest on Glacial till Mollisol.” 19th World Congress of Soil Science, 



44 

 

Soil Solutions for a Changing World 8 (August). 

Johnson, Phillip, Cody John Zilverberg, Vivien G. Allen, Justin Weinheimer, Philip 

Brown, Rick Kellison, and Eduardo Segarra. 2013. “Integrating Cotton and Beef 

Production in the Texas Southern High Plains: III. An Economic Evaluation.” 

Agronomy Journal 105 (4): 929–37. https://doi.org/10.2134/agronj2012.0465. 

Karn, J.F., D.L. Tanaka, M.A. Liebig, R.E. Ries, S.L. Kronberg, and J.D. Hanson. 2005. 

“An Integrated Approach to Crop/Livestock Systems: Wintering Beef Cows on 

Swathed Crops.” Renewable Agriculture and Food Systems 20 (4): 232–42. 

https://doi.org/10.1079/raf2005108. 

Kaspar, T.C., and J.W. Singer. 2015. “The Use of Cover Crops to Manage Soil.” Soil 

Management: Building a Stable Base for Agriculture, 321–37. 

https://doi.org/10.2136/2011.soilmanagement.c21. 

Krueger, C. R., and D. C. Curtis. 1979. “Evaluation of Big Bluestem, Indiangrass, 

Sideoats Grama, and Switchgrass Pastures with Yearling Steers.” Agronomy Journal 

71 (3): 480–82. https://doi.org/10.2134/agronj1979.00021962007100030024x. 

Kunrath, Taise Robinson, Mónica Cadenazzi, Daniel Martins Brambilla, Ibanor 

Anghinoni, Anibal de Moraes, Raquel Santiago Barro, and Paulo César de Faccio 

Carvalho. 2014. “Management Targets for Continuously Stocked Mixed Oat×annual 

Ryegrass Pasture in a No-till Integrated Crop-Livestock System.” European Journal 

of Agronomy 57 (December): 71–76. https://doi.org/10.1016/j.eja.2013.09.013. 

Lee, D. K., J. J. Doolittle, and V. N. Owens. 2007. “Soil Carbon Dioxide Fluxes in 

Established Switchgrass Land Managed for Biomass Production.” Soil Biology and 

Biochemistry 39: 178–86. https://doi.org/10.1016/j.soilbio.2006.07.004. 

Lehman, Blake. 2015. “Agronomic Assessment of Grazing Method of Corn Residues on 

Cow Performance, Residue Utilization, Crop Yield, and Soil Properties.” 

Lehman, R. Michael, and Shannon L. Osborne. 2016. “Soil Greenhouse Gas Emissions 

and Carbon Dynamics of a No-Till, Corn-Based Cellulosic Ethanol Production 

System.” Bioenergy Research 9 (4): 1101–8. https://doi.org/10.1007/s12155-016-

9754-y. 

Lemaire, Gilles, Alan Franzluebbers, Paulo César de Faccio Carvalho, and Benoît 

Dedieu. 2014. “Integrated Crop-Livestock Systems: Strategies to Achieve Synergy 

between Agricultural Production and Environmental Quality.” Agriculture, 

Ecosystems and Environment 190: 4–8. https://doi.org/10.1016/j.agee.2013.08.009. 

Liebig, M. A., J. R. Gross, S. L. Kronberg, J. D. Hanson, A. B. Frank, and R. L. Phillips. 

2006. “Soil Response to Long-Term Grazing in the Northern Great Plains of North 

America.” Agriculture, Ecosystems and Environment 115 (1–4): 270–76. 

https://doi.org/10.1016/j.agee.2005.12.015. 

Liebig, M. A., H. A. Johnson, J. D. Hanson, and A. B. Frank. 2005. “Soil Carbon under 

Switchgrass Stands and Cultivated Cropland.” Biomass and Bioenergy 28: 347–54. 

https://doi.org/10.1016/j.biombioe.2004.11.004. 



45 

 

Liebig, M. A., M. R. Schmer, K. P. Vogel, and R. B. Mitchell. 2008. “Soil Carbon 

Storage by Switchgrass Grown for Bioenergy.” BioEnergy Research 1 (3–4): 215–

22. https://doi.org/10.1007/s12155-008-9019-5. 

Liebig, Mark A., Don L. Tanaka, Scott L. Kronberg, Eric J. Scholljegerdes, and Jim F. 

Karn. 2011. “Soil Hydrological Attributes of an Integrated Crop-Livestock 

Agroecosystem: Increased Adaptation through Resistance to Soil Change.” Applied 

and Environmental Soil Science 2011: 1–6. https://doi.org/10.1155/2011/464827. 

Liebman, Matt, Lance R. Gibson, David N. Sundberg, Andrew H. Heggenstaller, Paula 

R. Westerman, Craig A. Chase, Robert G. Hartzler, Fabián D. Menalled, Adam S. 

Davis, and Philip M. Dixon. 2008. “Agronomic and Economic Performance 

Characteristics of Conventional and Low-External-Input Cropping Systems in the 

Central Corn Belt.” Agronomy Journal 100 (3): 600–610. 

https://doi.org/10.2134/agronj2007.0222. 

Liu, Chang, Meng Lu, Jun Cui, Bo Li, and Changming Fang. 2014. “Effects of Straw 

Carbon Input on Carbon Dynamics in Agricultural Soils: A Meta-Analysis.” Global 

Change Biology 20 (5): 1366–81. https://doi.org/10.1111/gcb.12517. 

Luna, John, Vivien Allen, Joseph Fontenot, Lee Daniels, David Vaughan, Scott Hagood, 

Daniel Taylor, and Curtis Laub. 1994. “Whole Farm Systems Research: An 

Integrated Crop and Livestock Systems Comparison Study.” American Journal of 

Alternative Agriculture 9 (1–2): 57–63. 

https://doi.org/10.1017/S0889189300005580. 

Mapfumo, E, M A Naeth, V S Baron, Ac Dick, and D S Chanasyk. 2002. “Grazing 

Impacts on Litter and Roots: Perennial versus Annu-Al Grasses 6000 C&E Trail.” 

Journal of Range Management 55 (1): 16–22. 

Matamala, R., J. D. Jastrow, R. M. Miller, and C. T. Garten. 2008. “Temporal Changes in 

C and N Stocks of Restored Prairie: Implications for C Sequestration Strategies.” 

Ecological Applications 18 (6): 1470–88. https://doi.org/10.1890/07-1609.1. 

Maughan, Matthew W., João Paulo C. Flores, Ibanor Anghinoni, German Bollero, Fabián 

G. Fernández, and Benjamin F. Tracy. 2009. “Soil Quality and Corn Yield under 

Crop-Livestock Integration in Illinois.” Agronomy Journal 101 (6): 1503–10. 

https://doi.org/10.2134/agronj2009.0068. 

Mitchell, By Rob, Ken Vogel, Gary Varvel, Terry Klopfenstein, Dick Clark, and Bruce 

Anderson. 2005. “Big Bluestem Pasture in the Great Plains : An Alternative for 

Dryland Corn.” Rangelands, no. April: 31–35. 

Mitchell, Rob, Linda Wallace, Wallace W Wilhelm, Gary Varvel, and Brian Wienhold. 

2010. “Grasslands, Rangelands, and Agricultural Systems.” Biofuels and 

Sustainability Reports. 

Mitchell, Robert, and Bruce Anderson. 2008. “Switchgrass , Big Bluestem , and 

Indiangrass for Grazing and Hay.” NebGuide. 

http://extensionpublications.unl.edu/assets/pdf/g1908.pdf. 



46 

 

Moore, K. J., T. A. White, R. L. Hintz, P. K. Patrick, and E. C. Brummer. 2004. 

“Sequential Grazing of Cool- and Warm-Season Pastures.” Agronomy Journal 96 

(4): 1103–11. https://doi.org/10.2134/agronj2004.1103. 

Mosali, Jagadeesh, Jon T. Biermacher, Billy Cook, and John Blanton. 2013. “Bioenergy 

for Cattle and Cars: A Switchgrass Production System That Engages Cattle 

Producers.” Agronomy Journal 105 (4): 960–66. 

https://doi.org/10.2134/agronj2012.0384. 

Nocentini, Andrea, and Andrea Monti. 2019. “Comparing Soil Respiration and Carbon 

Pools of a Maize-Wheat Rotation and Switchgrass for Predicting Land-Use Change-

Driven SOC Variations.” Agricultural Systems 173: 209–17. 

https://doi.org/10.1016/j.agsy.2019.03.003. 

Oliveira, Maxwel C., Liberty Butts, and Rodrigo Werle. 2019. “Assessment of Cover 

Crop Management Strategies in Nebraska, US.” Agriculture (Switzerland) 9 (6): 1–

14. https://doi.org/10.3390/agriculture9060124. 

Phillips, Rebecca L., Mikki R. Eken, and Mark S. West. 2015. “Soil Organic Carbon 

Beneath Croplands and Re-Established Grasslands in the North Dakota Prairie 

Pothole Region.” Environmental Management 55 (5): 1191–99. 

https://doi.org/10.1007/s00267-015-0459-3. 

Poffenbarger, Hanna, Georgeanne Artz, Garland Dahlke, William Edwards, Mark Hanna, 

James Russell, Harris Sellers, and Matt Liebman. 2017. “An Economic Analysis of 

Integrated Crop-Livestock Systems in Iowa, U.S.A.” Agricultural Systems. 

https://doi.org/10.1016/j.agsy.2017.07.001. 

Qin, Zhangcai, Jennifer B. Dunn, Hoyoung Kwon, Steffen Mueller, and Michelle M. 

Wander. 2016. “Soil Carbon Sequestration and Land Use Change Associated with 

Biofuel Production: Empirical Evidence.” GCB Bioenergy 8 (1): 66–80. 

https://doi.org/10.1111/gcbb.12237. 

Rakkar, Manbir K., and Humberto Blanco-Canqui. 2018. “Grazing of Crop Residues: 

Impacts on Soils and Crop Production.” Agriculture, Ecosystems and Environment 

258 (November 2017): 71–90. https://doi.org/10.1016/j.agee.2017.11.018. 

Rakkar, Manbir K., Humberto Blanco-Canqui, Rhae A. Drijber, Mary E. Drewnoski, 

James C. MacDonald, and Terry Klopfenstein. 2017. “Impacts of Cattle Grazing of 

Corn Residues on Soil Properties after 16 Years.” Soil Science Society of America 

Journal 81 (2): 414–24. https://doi.org/10.2136/sssaj2016.07.0227. 

Rakkar, Manbir K., Humberto Blanco-Canqui, Rick J. Rasby, Kristen Ulmer, Jordan 

Cox-O’neill, Mary E. Drewnoski, Rhae A. Drijber, Karla Jenkins, and James C. 

Macdonald. 2018. “Grazing Crop Residues Has Less Impact in the Short-Term on 

Soil Properties than Baling in the Central Great Plains.” Agronomy Journal 111 (1): 

109–21. https://doi.org/10.2134/agronj2018.03.0224. 

Rasby, R.J., M.E. Drewnoski, and A. Stalker. 2014. “Grazing Crop Residue with Beef 

Cattle.” Extension Service of the University of Nebraska EC278. 



47 

 

Redfearn, Daren, Jay Parsons, Mary Drewnoski, Marty Schmer, Rob Mitchell, James 

MacDonald, Jaymelynn Farney, and Alexander Smart. 2019. “Assessing the Value 

of Grazed Corn Residue for Crop and Cattle Producers.” Ael 4 (1): 0. 

https://doi.org/10.2134/ael2018.12.0066. 

Rufino, M. C., J. Dury, P. Tittonell, M. T. van Wijk, M. Herrero, S. Zingore, P. 

Mapfumo, and K. E. Giller. 2011. “Competing Use of Organic Resources, Village-

Level Interactions between Farm Types and Climate Variability in a Communal 

Area of NE Zimbabwe.” Agricultural Systems 104 (2): 175–90. 

https://doi.org/10.1016/j.agsy.2010.06.001. 

Rushing, J B, J G Maples, J D Rivera, and J C Lyles. 2019. “Early-Season Grazing of 

Native Grasses Offers Potential Profitable Benefit.” Agronomy Journal. 

https://doi.org/10.2134/agronj2019.06.0478. 

Russelle, Michael P., Martin H. Entz, and Alan J. Franzluebbers. 2007. “Reconsidering 

Integrated Crop-Livestock Systems in North America.” Agronomy Journal 99 (2): 

325–34. https://doi.org/10.2134/agronj2006.0139. 

Saggar, Surinder, K. R. Tate, D. L. Giltrap, and J. Singh. 2008. “Soil-Atmosphere 

Exchange of Nitrous Oxide and Methane in New Zealand Terrestrial Ecosystems 

and Their Mitigation Options: A Review.” Plant and Soil 309 (1–2): 25–42. 

https://doi.org/10.1007/s11104-007-9421-3. 

Sanderson, Matt A., and Paul R. Adler. 2008. “Perennial Forages as Second Generation 

Bioenergy Crops.” International Journal of Molecular Sciences 9 (5): 768–88. 

https://doi.org/10.3390/ijms9050768. 

Schlesinger, William, H. 1990. “Evidence from Chronosequence Studies for a Low 

Carbon-Storage Potential of Soils.” Nature 348 (November): 232–34. 

https://doi.org/10.1038/nature03031.1. 

Schmer, M. R., M. A. Liebig, K. P. Vogel, and R. B. Mitchell. 2011. “Field-Scale Soil 

Property Changes under Switchgrass Managed for Bioenergy.” GCB Bioenergy 3 

(6): 439–48. https://doi.org/10.1111/j.1757-1707.2011.01099.x. 

Seguin, Bernard, Dominique Arrouays, Jérome Balesdent, Jean François Soussana, 

Alberte Bondeau, Pascalle Smith, Sönke Zaehle, Nathalie de Noblet, and Nicolas 

Viovy. 2007. “Moderating the Impact of Agriculture on Climate.” Agricultural and 

Forest Meteorology 142 (2–4): 278–87. 

https://doi.org/10.1016/j.agrformet.2006.07.012. 

Şentürklü, Songul, Douglas G. Landblom, Robert Maddock, Tim Petry, Cheryl J. 

Wachenheim, and Steve I. Paisley. 2018. “Effect of Yearling Steer Sequence 

Grazing of Perennial and Annual Forages in an Integrated Crop and Livestock 

System on Grazing Performance, Delayed Feedlot Entry, Finishing Performance, 

Carcass Measurements, and Systems Economics.” Journal of Animal Science 96 (6): 

2204–18. https://doi.org/10.1093/jas/sky150. 

Silva, Francine Damian Da, Telmo Jorge Carneiro Amado, Christian Bredemeier, 

Carolina Bremm, Ibanor Anghinoni, and Paulo Cesar de Faccio Carvalho. 2014. 



48 

 

“Pasture Grazing Intensity and Presence or Absence of Cattle Dung Input and Its 

Relationships to Soybean Nutrition and Yield in Integrated Crop-Livestock Systems 

under No-Till.” European Journal of Agronomy 57: 84–91. 

https://doi.org/10.1016/j.eja.2013.10.009. 

Stalker, L. A., H. Blanco-Canqui, J. A. Gigax, A. L. McGee, T. M. Shaver, and S. J. van 

Donk. 2015. “Corn Residue Stocking Rate Affects Cattle Performance but Not 

Subsequent Grain Yield.” Journal of Animal Science 93 (10): 4977–83. 

https://doi.org/10.2527/jas.2015-9259. 

Stanley, Paige L., Jason E. Rowntree, David K. Beede, Marcia S. DeLonge, and Michael 

W. Hamm. 2018. “Impacts of Soil Carbon Sequestration on Life Cycle Greenhouse 

Gas Emissions in Midwestern USA Beef Finishing Systems.” Agricultural Systems 

162 (February): 249–58. https://doi.org/10.1016/j.agsy.2018.02.003. 

Strock, J. S., P. M. Porter, and M. P. Russelle. 2004. “Cover Cropping to Reduce Nitrate 

Loss through Subsurface Drainage in the Northern U.S. Corn Belt.” Journal of 

Environment Quality 33 (3): 1010. https://doi.org/10.2134/jeq2004.1010. 

Sulc, R. Mark, and Alan J. Franzluebbers. 2014. “Exploring Integrated Crop-Livestock 

Systems in Different Ecoregions of the United States.” European Journal of 

Agronomy 57: 21–30. https://doi.org/10.1016/j.eja.2013.10.007. 

Sulc, R. Mark, and Benjamin F. Tracy. 2007. “Integrated Crop-Livestock Systems in the 

U.S. Corn Belt.” Agronomy Journal 99 (2): 335–45. 

https://doi.org/10.2134/agronj2006.0086. 

Tracy, Benjamin F., and Yan Zhang. 2008. “Soil Compaction, Corn Yield Response, and 

Soil Nutrient Pool Dynamics within an Integrated Crop-Livestock System in 

Illinois.” Crop Science 48 (3): 1211–18. 

https://doi.org/10.2135/cropsci2007.07.0390. 

Twerdoff, D. A., D. S. Chanasyk, E. Mapfumo, M. A. Naeth, and V. S. Baron. 1999. 

“Impacts of Forage Grazing and Cultivation on Near-Surface Relative Compaction.” 

Canadian Journal of Soil Science 79 (3): 465–71. https://doi.org/10.4141/S98-076. 

Ulmer, Kristen. 2016. “Managing Corn Residue and Double Cropped Forages in Crop 

and Livestock Systems.” 

http://digitalcommons.unl.edu/animalscidiss%0Ahttp://digitalcommons.unl.edu/ani

malscidiss/129. 

Ulmer, Kristen M, Robert G Bondurant, Jana L Harding Harding, and Gary Lesoing. 

2016. “Observations of Forage Quality and Calf Gain When Grazing Double 

Cropped Forage Following Wheat Harvest.” 

Vogel, K. P., R. B. Mitchell, M. D. Casler, and G. Sarath. 2014. “Registration of ‘liberty’ 

Switchgrass.” Journal of Plant Registrations 8 (3): 242–47. 

https://doi.org/10.3198/jpr2013.12.0076crc. 

Vogel, K. P., R. B. Mitchell, B. L. Waldron, M. R. Haferkamp, J. D. Berdahl, D. D. 

Baltensperger, Galen Erickson, and T. J. Klopfenstein. 2014. “Registration of 



49 

 

‘Newell’ Smooth Bromegrass.” Journal of Plant Registrations 9 (1): 35–40. 

https://doi.org/10.3198/jpr2014.08.0055crc. 

Wegner, Brianna R., Kopila Subedi Chalise, Shikha Singh, Liming Lai, Gandura Omar 

Abagandura, Sandeep Kumar, Shannon L. Osborne, R. Michael Lehman, and 

Sindhu Jagadamma. 2018. “Response of Soil Surface Greenhouse Gas Fluxes to 

Crop Residue Removal and Cover Crops under a Corn-Soybean Rotation.” Journal 

of Environmental Quality 47 (5): 1146–54. https://doi.org/10.2134/jeq2018.03.0093. 

Wright, Christopher K., and Michael C. Wimberly. 2013. “Recent Land Use Change in 

the Western Corn Belt Threatens Grasslands and Wetlands.” Proceedings of the 

National Academy of Sciences of the United States of America 110 (10): 4134–39. 

https://doi.org/10.1073/pnas.1215404110. 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

CHAPTER 2 

RESPONSE OF COOL-SEASON ANNUAL GRASSES TO DEFOLIATION 

DURING EARLY PLANT ESTABLISHMENT 

Abstract 

Cool-season annual grass cover crops are gaining popularity among row-crop 

producers because of the soil conservation benefits they offer. However, managing cover 

crops can have substantial input costs, which can be partially offset through grazing. The 

objective of this study was to understand how cool-season small grain cover crops 

responded to clipping height and frequency in a greenhouse study and cattle presence 

during autumn triticale emergence in a complementary field experiment. In the 

greenhouse study, we measured above- and below-ground biomass production from 

cereal rye (Secale cereale L.), winter wheat (Triticum aestivum L.), winter triticale 

(Triticosecale), and oat (Avena sativa L). Plants were clipped to either a 5- or 10-cm 

stubble height (clipping height) and at 7- or 14-day intervals (clipping frequency). A non-

clipped control was included. A field study was also conducted where steers grazed corn 

stover previously sown to triticale in the autumn. The impact of cattle presence on 

triticale production was measured in both the autumn and spring for each growing season. 

Results from the greenhouse study showed two and a half and six times the number of 

experimental units clipped to 10-cm remained when compared to those clipped to 5-cm in 

2018 and 2019, respectively. In 2018 and 2019, the non-clipped control produced more 

root biomass than the clipped treatments. In 2018, the plants clipped at 14-d intervals 

produced double the amount of biomass during the simulated grazing season when 

compared to plants clipped at 7-d intervals. In 2019, rye and triticale produced more 

biomass during the simulated grazing season when clipped at 14-d intervals than 7-d 
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intervals. Furthermore, in spring of 2019, the non-grazed stover paddocks had 23% 

greater frequency of occurrence than grazed stover paddocks. Defoliation and cattle 

presence during early establishment resulted in reduced biomass production and winter 

survival of cool-season annual grasses. Our results suggest that grazing during early 

establishment is not the best practice if producing cover crop above- and below-ground 

biomass is the main objective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

 

Introduction 

Cover crops provide a potential mechanism for soil regeneration. Cover crops can 

be various plants, but cool-season annual grasses tend to be the most popular type, 

comprising more hectares than brassicas (126,780-ha), legumes (107,383-ha), or warm 

season annuals (29,575-ha) (CTIC 2017). Cool-season annual grasses comprised 

246,399-ha in the United States in 2017 (CTIC 2017). Cover crops can reduce soil 

erosion, build soil organic matter, and increase nutrient retention (Hargrove, 1991; 

Magdoff and Harold, 2009; Noland et al., 2018). Cover crops maintain litter on the soil 

surface which can provide soil structure improvements, increased water infiltration, 

reduced impacts from heavy precipitation events, including less runoff, erosion, and 

evaporation (Naeth et al. 1990; Willms, Smoliak, and Bailey 1986). Cover crops also 

help retain nutrients. One example is triticale (xTriticosecale) scavenging both carbon 

and nitrogen in the autumn and spring (Mapfumo et al. 2002). The retained nutrients in 

the cover crop are then recycled. The above- and below-ground cover crop residue is 

broken down by soil microorganisms with nutrients returned to the soil for the cash crop 

to utilize (Magdoff and Harold 2009; Mc Calla 1978). Even though the benefits of cover 

crops have been shown, producers are still concerned because cover crops can be costly 

to manage, including additional operational costs such as buying seed, planting, and 

termination (Snapp et al. 2005). Additionally, a recent survey in the Midwest revealed 

that cover crops typically have a negative effect on whole farm profitability (Plastina et 

al. 2018).  
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Extra operational costs discourage some producers from planting cover crops 

because the cover crop does not typically generate direct revenue. However, cover crops 

can provide an opportunity for additional revenue by extending the grazing season on an 

integrated crop-livestock production system. Cereal rye (Secale cereale L.), a common 

cover crop, has sufficient growth to graze 2.7 cows ha−1 for 30 days in the spring (Faé et 

al. 2009). By incorporating livestock back on to the land, proper ecosystem function can 

be restored by increasing nutrient cycling, microbial activity, and organic matter content 

(Tracy and Zhang 2008). Livestock can be placed on agricultural land to graze cover 

crops and as a result increase the resilience of the system. However, some concern exists 

on how the root biomass of the cover crop is affected by grazing. Reduced root biomass 

could negatively impact the environmental benefits offered by the cover crop.   

When perennial grasses are defoliated, root biomass decreases (Gao, Giese, and 

Lin 2008; Mapfumo et al. 2002). Therefore, if cover crops are grazed, a decrease in root 

and shoot biomass production is expected. Defoliated canola (Brassica napus L.) has 

decreased root and shoot biomass (McCormick et al., 2012). However, triticale, a cool-

season annual, shows root biomass under light, moderate, and heavy grazing intensities 

that is not significantly different from each other (Mapfumo et al. 2002). Additionally, 

grazing has no substantial effect on rooting depth or root mass in well-established wheat 

(Triticum aestivum L.), another cool-season annual (Kirkegaard et al. 2015).   

The observed differences from previous studies suggest cover crops should be 

grazed differently than perennials to optimize soil health. Adequate growth of cover 

crops is essential to increase soil organic matter, microbial activity, and nutrient retention 

(Hargrove, 1991; Magdoff and Harold, 2009; Noland et al., 2018). Cover crop roots 
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provide important ecosystem services. Based on previous studies, properly managed 

grazing appears to have little impact on root growth of cool-season annual grasses when 

managed as a grazed forage crop. However, rooting depth of wheat decreases when 

defoliation occurs during early plant establishment (Kirkegaard et al. 2015).  Avoiding 

defoliation during early establishment in Eastern NE may be a challenge for some 

producers. The challenge exists because cover crops are typically planted after corn (Zea 

mays L.) or soybean (Glycine max L.) harvest in autumn, and corn residue is a valuable 

forage resource in autumn and winter in Nebraska (Redfearn et al. 2019; Schmer et al. 

2017). Therefore, a producer may want their cattle to graze the corn stover during 

autumn, before the cover crop is well-established. We do not know how grazing will 

affect above- and below-ground biomass production and plant survival of cool-season 

annual grass cover crops during early plant development. Additionally, limited 

information is available on which cool-season annual grass species provides the greatest 

soil health benefits and forage productivity.  

We explored if defoliation or exposure to cattle presence during early 

establishment of cool-season annual grass cover crops negatively affected above- and 

below-ground biomass production.  The first objective was to measure the response of 

cool-season annual grasses to clipping heights and frequencies to simulated defoliation 

by measuring above- and below-ground biomass in the greenhouse. In order to identify 

management strategies for cover crop grazing, this experiment explored three clipping 

heights (non-clipped and clipped to either a 10- or 5-cm stubble height) at two 

frequencies (7- and 14-d) using four cool-season annual grass species (winter wheat, 

winter triticale, cereal rye, and oat (Avena sativa L.)). Biomass production throughout the 
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growing season, final above-ground biomass, and root biomass were recorded for each 

experimental unit. In general, defoliation during early plant establishment had negative 

repercussions.  

Since the greenhouse study was conducted in potted sand and plants were not 

grazed, a field study was conducted for comparison. The second objective was to 

measure the response of winter triticale to cattle presence during early plant 

establishment in a field experiment. To measure this response, plant stands were 

evaluated using frequency of occurrence, and plant above-ground biomass. The results 

from the field study support the generalization that defoliation during early plant 

establishment had negative repercussions. 

The third objective was to use the information from the greenhouse and field 

studies to develop grazing recommendations for cool-season annual grass cover crops in 

Eastern Nebraska. Data from these studies will guide grazing management practices as 

well as provide insight for future studies on best management practices for cover crop 

grazing. These management practices will optimize soil health and forage production. 

Proper grazing recommendations are essential to increase the resiliency of 

agroecosystems by integrating livestock into cropping systems.   

Materials & Methods 

Greenhouse Study 

Experiment Location & Designs 

 The experiment was conducted in the USDA Forage Research Laboratory 

greenhouse located in Lincoln, NE. The experiment was repeated two times, the first in 
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autumn of 2018 and the second in autumn of 2019. The length of the study was eight 

weeks in order to represent a typical grazing season of cover crops (Drewnoski and 

Redfearn 2015). Ambient light and temperature were used to simulate fall-planted cover 

crops. Four cool-season, annual, small grain grass species were used including: oats 

(Avena sativa L.), cereal rye (Secale cereale L.), triticale (xTriticosecale), and wheat 

(Triticum aestivum L.). In addition to a non-clipped control, two levels of clipping were 

used to maintain a stubble height of 5-cm and 10-cm. Plants were clipped at 7- and 14-d 

intervals to represent different grazing frequencies. Each treatment combination had three 

replications. Pot locations on greenhouse benches were randomized within each 

replication. The 7- and 14-d intervals were on separate benches to reduce competition 

from the 14-d interval plants.  

Planting & Plant Care 

Round pots (25 cm tall by 22.5 cm diameter) were lined with landscaping fabric 

to prevent sand from leaving the pot. Sand was used as the growth media because of its 

ease of being efficiently and effectively washed from the roots.  Pots were then filled 

with sand and 22 seeds were placed on top of the sand. Seeds were covered with 2.5 cm 

of sand to ensure consistent seeding depth. Seeds were planted on August 30, 2018 and 

August 29, 2019. Varieties of the species used were: Elbon cereal rye, SY TF 813 PVP 

winter hardy triticale, WB 4303 West Bred winter wheat, and Kona oats. Pots were 

watered as needed and 3 tablespoons of Miracle-Gro (The Scotts Company LLC, 2019), a 

granular fertilizer with analysis 15-30-15, per 9.5 liters of water was supplied at watering 

when needed to provide nutrients to the plant throughout the duration of the experiment. 

Stand counts were taken at the beginning and at 14-d intervals for each pot in 2018 and at 
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7-d intervals in 2019.  Two weeks after emergence, plant material was hand-clipped with 

scissors to a 5- or 10-cm stubble height. Hand removal of fall-armyworms (Spodoptera 

frugiperda Smith) was needed in 2018 because they entered the greenhouse from outside. 

Some aphid feeding activity was observed and recorded in 2019.   

Simulated Grazing Measurements 

Defoliation began September 18, 2018 with the final clipping on November 13, 

2018. In 2019, defoliation began September 17 and the last clipping was November 12. 

Defoliation height was measured at the beginning of the study from sand level and 

marked with a sharpie on a wooden dowel inserted into the center of the pot. Clipped 

plant material was placed in a labeled paper bag, weighed, dried for a minimum of 72 

hours at 50⁰C, and then weighed again. The clipping events were summed for each pot to 

calculate total biomass produced during the simulated grazing season. Experimental units 

(EU’s) were eliminated from the study if an estimated 75% of the plants in the pot were 

senesced. Dates of death were recorded for each EU and the residual biomass was clipped 

to sand level, dried, and weighed according to the above protocol. At the completion of 

the study the remaining EU’s were clipped to sand level and residual above-ground 

biomass was weighed and recorded according to the study protocol.  

Root Measurements (Below-ground biomass)  

 At completion of the study, root biomass was measured to determine relative 

differences among treatments. Large root masses were separated from the sand by rinsing 

with water. Additional roots were removed by flotation in water. Remaining roots were 

separated using a 2-mm sieve. Roots were processed like the above-ground biomass. To 

account for remaining sand particles attached to the dry roots, an ashing procedure was 
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used on the dried roots. Roots with remaining sand particles were placed in previously 

weighed glass vials. Vials were placed in a muffle furnace at 450⁰C for six hours to burn 

all organic material. Vials were then moved to a 100⁰ C oven for at least 16 hours. Vials 

were removed and caps placed back on and allowed to cool for three hours or until 

weights of the vials were stable. Cooled vials were weighed to four decimal places. Root 

mass was calculated by subtracting weight of the ash, vial, and cap from the combined 

weight of the vial, cap, and initial mass (USDA-ARS FRL). 

Statistical Analysis 

Differences in residual above-ground biomass, biomass production during the 

simulated grazing season, root mass, and total combined biomass were analyzed as an 

RCBD using the PROC GLIMMIX procedure in SAS. Significance for the main effects 

and interaction terms were evaluated using a p-value<0.05. Significant year interaction 

was observed so 2018 and 2019 were analyzed separately for further analysis. Normality 

and homogeneous variance were evaluated using the conditional studentized residuals 

and the UNIVARIATE procedure in SAS. Data was transformed as needed to account for 

non-normality and/or heterogeneous variance. Transformed data was then evaluated 

using the PROC GLIMMIX procedure in SAS. Significance for main effects and 

interaction terms were evaluated using a p-value <0.05. LS-means were reported for 

either the significant main effects or significant interactions.  

Field Study 

Cover Crop & Grazing Management 

The field study was located at the Eastern Nebraska Research and Extension 

Center near Mead, NE. The field study was part of a larger, 20-ha field-scale model 
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demonstration site. The continuous corn portion of the study (8-ha) had 50% of the land 

planted to a triticale cover crop (Figure 2-1). In 2018, triticale was planted on September 

17 at 56 kg ha-1. In 2019, the triticale was planted on October 9 at 112 kg ha-1. In 2018, 

the corn stover and triticale was grazed by 6 steers per 1.35 ha paddock from September 

27 to October 12 for 15 days. In 2019, the corn stover and triticale was grazed by 6 steers 

per 1.35 ha paddock from October 23 to October 29 for 6 days.  Cattle were removed 

when forage availability became limiting. When cattle began jumping the fence, the cattle 

were removed from the paddocks. Half of the paddock (0.68-ha) was planted to triticale 

each year. In the same block, 0.68-ha were planted to triticale and not grazed. A total of 3 

replications (blocks) were included.  To evaluate the impact of cattle presence during 

early plant emergence on triticale stand and biomass production, frequency of occurrence 

and harvested biomass were collected for grazed and non-grazed areas.  

Frequency of Occurrence & Biomass Measurements  

Frequency of occurrence and biomass measurements were collected using a 76-

cm by 76-cm frame to evaluate triticale production. In autumn 2018, two subsamples per 

grazed experimental unit were taken and averaged for frequency of occurrence and 

biomass production. Three or four subsamples were taken and averaged per non-grazed 

experimental unit for frequency of occurrence and two subsamples were taken and 

averaged per non-grazed experimental unit for biomass production. Frequency of 

occurrence was measured on October 11. Biomass was sampled on October 23.  In 

autumn 2019, three subsamples per experimental unit were taken and averaged for 

frequency of occurrence and two subsamples per experimental unit were taken and 

averaged for biomass production. Six subsamples were taken and averaged per non-



60 

 

grazed experimental unit for frequency of occurrence and three subsamples were taken 

and averaged per experimental unit for biomass production. Data for autumn 2019 was 

collected November 6.  In spring 2019 and 2020, three subsamples per grazed 

experimental unit were taken and averaged for frequency of occurrence and biomass 

production. Six subsamples were taken and averaged per non-grazed experimental unit 

for frequency of occurrence and biomass production.  Frequency of occurrence samples 

were taken on March 26, and April 1 in 2019 and 2020, respectively. Biomass was 

sampled on April 23 and April 22 in 2019 and 2020, respectively. Forage biomass 

samples were dried for 72-hr or until a steady weight was held. 

Statistical Analysis  

The statistical analyses for the field data were conducted as a randomized 

complete block design with repeated measures. SAS statistical software was used with 

the PROC GLIMMIX procedure. Each growing season (Autumn 2018-Spring 2019; 

Autumn 2019-Spring 2020) was analyzed separately because of different planting rates 

and grazing durations. For the autumn 2018-spring 2019 season biomass production and 

frequency of occurrence, there was a significant grazing treatment by time 

(autumn/spring) interaction (p-value<0.05). Therefore, the LS means reported are those 

of each grazing treatment and time combination. For autumn 2019/spring 2020 biomass 

production, only time was significant (p-value<0.05), so the LS means reported is for 

each time only. No significant differences were found among time and/or treatment for 

frequency of occurrence measurements in autumn 2019/spring 2020.  
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Results 

Greenhouse Experiment 

The results suggested a species by height interaction for residual above-ground 

and below-ground biomass production. Generally, the non-clipped control produced the 

greatest amount of biomass followed by the 10-cm clipping height with the least biomass 

production from the 5-cm clipping height. Clipping frequency appeared to impact the 

production of biomass throughout the simulated grazing season. Generally, plants clipped 

at 14-d intervals produced more forage than plants clipped at 7-d intervals. Plants clipped 

to a 10-cm stubble height at 14-d intervals resulted in greater survivability than plants 

clipped to a 5-cm stubble height at 14- or 7-d intervals. In general, defoliation during 

early plant establishment had negative repercussions.  

Survival  

Longevity of Treatment Combinations 

 To determine the effect of clipping frequency and clipping height during early 

establishment on plant survival EU’s were removed when an estimated 75% of the plants 

in the EU were dead. Our unexpected plant death resulted in all oat EU’s being removed 

during the study both years except two replications clipped to 10-cm at the 14-d interval 

in 2018 (Table 2-1). Likewise, in 2018, winter triticale only had 2 EU’s remaining at the 

end of the study (Table 2-1). In 2018, cereal rye and winter wheat were closer to each 

other in survival, 41.67%, and 75.00% of clipped EU’s remained, respectively (Table 2-

1). In 2019, percent survival for species were similar. Winter triticale had 25% of clipped 

EU’s remaining and winter wheat and cereal rye had 41.67% and 50% of clipped EU’s 

remaining, respectively. These results indicated wheat and cereal rye provided the best 

survivability. In 2018 and 2019 all species clipped to 5-cm at 7-d intervals were removed 
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except one winter wheat and one cereal rye EU in 2018. However, in 2018, 3 winter 

wheat and 1 cereal rye EU clipped to 10-cm at 7-d intervals remained at the conclusion of 

the study. Therefore, one third of the EU’s subject to clipping, remained for the 10-cm 7-

d interval in 2018 (Table 2-1). In 2019 the survival decreased, only one fourth of the 

EU’s subject to clipping remained for the 10-cm 7-d interval. Importantly, in 2018 over 

two and a half times the amount of EU’s clipped to 10-cm remained when compared to 

the EU’s clipped to 5-cm. Similarly, in 2019, 6 times the amount of EU’s clipped to 10-

cm remained compared to the EU’s clipped to 5-cm. Importantly, in 2018 we also found 

6 of 24 EU’s clipped at 7-d intervals and 12 of 24 EU’s clipped at 14-d intervals 

remained at the conclusion of the study (Table 2-1). In 2019, only 3 of 24 EU’s clipped at 

7-d intervals and 11 of 24 EU’s clipped at 14-d intervals remained at the conclusion of 

the study. These results indicate that a longer clipping interval resulted in greater plant 

survivability. Additionally, clipping to a higher stubble height (10-cm) has the potential 

to produce greater survivability.  

Above-ground biomass 

To determine effects of different clipping heights at different frequencies on 

residual above-ground biomass of cereal rye, winter triticale, winter wheat, and oat plants 

were clipped to 5- and 10-cm heights at 7- and 14-d intervals.  A species x height 

interaction was detected in 2019 (P < 0.05) for the residual above-ground biomass. In 

2018, species and height main effects were significant (P<0.05). Therefore, data 

presented are the LS-means for 2018 and 2019 at the species by height interaction level.    

Within a species, the non-clipped control for all species produced greater residual 

above-ground biomass in both years of the study. When compared to the 10- and 5-cm 
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height, in 2018, the non-clipped control had at least 3.9 and 9 times more residual above-

ground biomass, respectively (Figure 2-2). Likewise, when compared to the 10- and 5-cm 

height, in 2019, the non-clipped control had at least 3.8 and 10.7 times more residual 

above-ground biomass, respectively (Figure 2-3). Significant differences (P < 0.05) 

between the 10- and 5-cm clipping height within species were also detected. Every 10-cm 

clipping height produced more residual above-ground biomass than the 5-cm clipping 

height. Notably, in 2018 at the 10-cm clipping height, triticale produced nearly 3.1, oats 

nearly 2.9, wheat 2.2, and cereal rye 2.1 times more residual above-ground biomass than 

the 5-cm clipping height (Figure 2-2). Likewise, in 2019 at the 10-cm clipping height 

cereal rye produced nearly 5.4, triticale 4.7, wheat 4, and oats nearly 2.8 times more 

residual above-ground biomass than the 5-cm clipping height (Figure 2-3). These results 

indicate clipping height significantly impacts the litter remaining on the soil surface. 

Clipping heights across species were also compared. Winter wheat and cereal rye 

produced the most biomass for the non-clipped control (Figure 2-2). Triticale produced a 

similar amount of residual above-ground biomass as both cereal rye and oat, and oat 

produced the least amount of biomass for the non-clipped control (Figure 2-2). Similarly, 

in 2019, winter wheat, cereal rye, and triticale produced more biomass than oat (Figure 2-

3).  In 2018, biomass production followed the 10- and 5-cm clipping heights. In 2018, at 

the 10-cm level wheat produced more residual above-ground biomass than triticale and 

oat (P < 0.05, Figure 2-2). Cereal rye produced a similar amount of biomass as wheat and 

triticale but produced significantly more biomass than oat (P < 0.05, Figure 2-2). 

Furthermore, at the 5-cm height wheat produced significantly (P < 0.05) more residual 

above-ground biomass than triticale and oat. Similarly, at the 5-cm height cereal rye 
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produced significantly (P < 0.05) more residual above-ground biomass than oat (Figure 

2-2). However, in 2019 no significant species differences were observed at the 5- or 10-

cm height (Figure 2-3). These results indicate that winter wheat, cereal rye, and triticale 

could be more tolerant to defoliation than oat.  

Below-ground biomass 

To determine effects of different clipping heights at different frequencies on root 

biomass of cereal rye, winter triticale, winter wheat, and oat plants were clipped to 5- and 

10-cm heights at 7- and 14-d intervals. A significant species x height interaction was 

detected both years (P < 0.05) for the root biomass. Therefore, the data presented are the 

LS-means for each year at the species by height interaction level.  

The non-clipped control produced significantly (P < 0.05) more root biomass both 

years than clipped treatments for cereal rye, winter wheat, oat, and winter triticale (Figure 

2-4; Figure 2-5). Winter wheat, triticale, and cereal rye produced (P<0.05) more biomass 

when clipped to a 10-cm stubble height when compared to a 5-cm stubble height in both 

2018 and 2019 (Figure 2-4; Figure 2-5). Both years, oat did not produce a significant 

difference in root biomass among clipping height (Figure 2-4; Figure 2-5).  In 2018, 

cereal rye and triticale produced about twice the root biomass when clipped to 10-cm 

instead of 5-cm (Figure 2-4). Wheat produced about three times the amount of root 

biomass when clipped to a 10-cm height instead of a 5-cm height (Figure 2-4). In 2019, 

wheat and cereal rye produced about double the amount of root biomass when clipped to 

a 10-cm height instead of a 5-cm height (Figure 2-5). Triticale produced about a third 

more root biomass when clipped to a 10-cm height instead of a 5-cm height (Figure 2-5). 

These results indicate that defoliation during early plant establishment reduces root 
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growth. Additionally, moderate defoliation of winter wheat, triticale and cereal rye may 

produce more root biomass than heavily defoliating those species.  

In 2018, wheat produced more root biomass for the non-clipped control than 

cereal rye and oat (Figure 2-4).  Additionally, triticale produced more root biomass than 

oat (Figure 2-4). Similarly, in 2019, winter wheat, cereal rye and triticale produced 

significantly greater root biomass for the non-clipped control than oat (Figure 2-5). In 

2018 at the 10-cm clipping height, wheat produced almost two times the root biomass 

than the other species (Figure 2-4). In 2019, the 10-cm clipping height winter wheat and 

cereal rye produced almost double (P<0.05) the amount of root biomass as oat (Figure 2-

5). Additionally, triticale produced more root biomasss than oat, but no significant 

difference was detected (Figure 2-5). However, in 2018 and 2019 at the 5-cm height no 

significant difference between species existed for root biomass (Figure 2-4; Figure 2-5). 

These results indicate that winter wheat clipped to a 10-cm stubble height may maximize 

root production when compared to other species clipped to a 10-cm stubble height, 

especially oat. 

Production Season 

To determine effects of different clipping heights at different frequencies on 

biomass production during the simulated grazing season of cereal rye, winter triticale, 

winter wheat, and oat plants were clipped to 5- and 10-cm heights at 7- and 14-d 

intervals.  In 2018, the main effects of species and interval were significant (P<0.05). 

Therefore, the data presented for 2018 are LS-means for both the species and interval 

main effects. In 2019, the species by interval interaction was significant (P<0.05). 
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Therefore, the data presented for 2019 are the LS-means at the species by interval 

interaction level.  

In 2018, the plants clipped at 14-d intervals produced almost double the amount 

of biomass during the simulated growing season as the plants clipped at 7-d intervals 

(Figure 2-6). In 2018, wheat produced greater biomass during the simulated grazing 

season than all other species (Figure 2-7). In 2019, cereal rye and triticale produced 

significantly (P<0.05) more biomass during the simulated grazing season when clipped at 

14-d intervals than at 7-d intervals (Figure 2-8). However, oat and wheat produced 

similar amounts of biomass at both clipping intervals (Figure 2-8). At the 7-d interval, 

wheat produced (P<0.05) double the amount of biomass during the growing season than 

the other species (Figure 2-8). At the 14-d clipping interval winter wheat, winter triticale, 

and cereal rye produced at least triple (P<0.05) the amount of biomass as oat (Figure 2-

8). These results indicate that grazing winter wheat, cereal rye, or triticale less frequently 

can maximize the forage production throughout the simulated grazing season.  

Total Biomass  

To determine effects of different clipping heights at different frequencies on total 

biomass production of cereal rye, winter triticale, winter wheat, and oat plants were 

clipped to 5- and 10-cm heights at 7- and 14-d intervals.  In 2018, the species main effect 

and height by interval interaction were found to be significant (P<0.05). Therefore, the 

data presented for 2018 are LS-means for both the species main effect and height by 

interval interaction. In 2019, the species by height interaction was found to be significant 

(P<0.05). Therefore, the data presented for 2019 are the LS-means at the species by 

height interaction level. 
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In 2018, winter wheat produced significantly (P<0.05) more total biomass than 

winter triticale, cereal rye, and oat (Figure 2-9). Additionally, cereal rye and triticale 

produced significantly (P<0.05) more total biomass than oat (Figure 2-9). The non-

clipped control for the 7- and 14-d clipping interval produced (P<0.05) greater biomass 

than clipping to a 5- or 10-cm stubble height (Figure 2-10). Additionally, the 10-cm 

clipping height produced significantly (P<0.05) greater total biomass than the 5-cm 

clipping height for both intervals (Figure 2-10). Interestingly, the plants clipped to 10-cm 

at 14-d intervals produced over 1.5 times more (P<0.05) total biomass than the plants 

clipped to 10-cm at 7-d intervals (Figure 2-10). In 2019, winter wheat, winter triticale and 

cereal rye produced significantly (P<0.05) more total biomass than oat at the non-clipped 

level (Figure 2-11). At the 5-cm clipping height no significant (P<0.05) differences were 

found among species (Figure 2-11). However, at the 10-cm clipping height, wheat 

produced more than oat (P<0.05), and cereal rye produced more total biomass than 

triticale and oat (P<0.05) (Figure 2-11). Within species, winter wheat and cereal rye 

produced at least double (P<0.05) the amount of total biomass at the 10-cm clipping 

height than the 5-cm clipping height (Figure 2-11). These results indicate that defoliation 

negatively impacts biomass production however, if defoliation must occur, defoliating to 

a higher stubble height, less frequently can maximize total biomass production during 

early plant establishment.  Additionally, winter wheat and cereal rye appear to produce 

the most total biomass.   
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Field Experiment 

The results from the field experiment support the evidence in the greenhouse 

study. Cattle presence during early plant establishment negatively impacted winter cover 

crop survival and above-ground biomass production.    

Biomass 

Decreased triticale stands reduces biomass availability for both forage production 

and ecosystem services. We evaluated the effect of cattle presence during early triticale 

establishment on biomass production. Therefore, forage biomass was sampled in the 

autumn after grazing, and in the spring before cover crop termination. Both years forage 

biomass increased from autumn to spring as expected (Figure 2-13; Figure 2-14). The 

first year in autumn, the non-grazed plots had almost 3 times more biomass than the 

grazed plots (Figure 2-13). In the spring, the non-grazed plots had double the amount of 

biomass as the grazed plots (Figure 2-13). The second year, cattle presence did not 

significantly impact biomass production (Figure 2-14) likely because the stover grazing 

duration was reduced. These results indicate that cattle presence during early plant 

establishment for a longer duration may have a negative impact on biomass production.  

Frequency of Occurrence  

We evaluated the impact of cattle presence during early triticale establishment in 

a field setting. Therefore, we collected percent frequency of occurrence in grazed and 

non-grazed areas after grazing in the autumn and spring. Stands in the Spring of 2019 

were reduced by greater than 20% compared to stands in autumn (Figure 2-12). 

Additionally, in the spring the non-grazed areas had 23% greater stands than grazed areas 

(Figure 2-12). However, in the second year, corn stover with triticale was grazed for a 
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shorter duration (less intensely), which resulted in no significant differences from autumn 

to spring or among grazing treatments. Our results indicate that cattle presence for a 

longer duration during early plant establishment in the autumn may result in reduced 

winter survival and decreased spring stands.  

Discussion 

The purpose of our greenhouse and field studies were to gain insight on how 

grazing cool-season annual grasses during early development affects above- and below-

ground biomass production. Information from both studies will guide cover crop grazing 

recommendations for cool-season annual grass species in Eastern Nebraska. These 

studies suggest that defoliation during early plant establishment (e.g. two weeks after 

plant emergence) is not recommended due to decreased above- and below-ground 

biomass production and decreased plant stands. Our study showed defoliation during 

early establishment had several negative repercussions on plant survival, shoot 

production, root production, and total biomass production.  

Our results suggest that plant senescence in the greenhouse study was caused by 

cold weather, shortened day length, and additional stress from clipping to a 5- and 10-cm 

stubble height. Only 37.5% and 29.2% of the EU’s subject to clipping survived to the end 

of the 8-week study in 2018 and 2019, respectively (Table 2-1).  In addition, we found 

moderate defoliation (10-cm stubble height) at a lower frequency (14-d clipping interval) 

resulted in greater longevity than heavy defoliation both years (Table 2-1). Furthermore, 

the field study supported our findings in the greenhouse. Cattle presence in autumn of 

2018 negatively impacted winter survivability by reducing plant stands in Spring of 2019 

(Figure 2-12).  However, no significant differences were found in the field study for 
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Autumn 2019/Spring 2020 likely due to late cover crop planting and reduced duration of 

cattle presence. The evidence indicates grazing heavily during early emergence may have 

negative consequences, leading to plant death during winter and reduced spring stands. 

The observed plant death may be explained by the decrease in rooting depth and shoot 

production known to occur in winter wheat (Kirkegaard et al. 2015). Decreased root 

production can lead to decreased water and nutrient intake which can lead to plant death 

(Gregory 1994). Decreased shoot production can lead to less leaf area, decreasing 

photosynthetic capacity and plant growth (Joggi, Hofer, and Nosberger 1983). Cover crop 

survival is important because it allows living plants to be present in the soil. Those living 

plants can decrease nutrient leaching and reduce erosion. 

Above- and below-ground biomass is an indicator of the living plants’ 

productivity. In the greenhouse, we observed a decrease in both root and shoot 

production of clipped plants when compared to non-clipped control plants (Figure 2-4; 

Figure 2-5; Figure 2-2; Figure 2-3). Additionally, clipping frequency influenced the shoot 

biomass production. Generally, clipping at 14-d intervals produced a greater amount of 

biomass than clipping at 7-d intervals (Figure 2-6; Figure 2-8). The greenhouse findings 

on above-ground biomass were further supported by the findings in the field study. Cattle 

presence in the autumn of 2018 decreased the above-ground biomass production of 

winter triticale in both autumn 2018 and spring 2019 (Figure 2-13). The field and 

greenhouse studies produced similar findings to existing literature. Grazing canola 

resulted in decreased biomass production (McCormick et al., 2012). Although a brassica, 

the study further supports our observed decrease in shoot and root biomass production 

under clipping to a 5- and 10-cm stubble height. Winter wheat and triticale also had 
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decreased shoot production when exposed to a wide variety of grazing intensities 

(Mapfumo et al. 2002; Kirkegaard et al. 2015). Importantly, shoot biomass decreases at 

higher grazing frequencies and intensities in winter wheat (Kirkegaard et al. 2015). These 

studies support our findings of decreased biomass production during simulated grazing 

and residual above-ground biomass production when exposed to clipping, especially 

when clipped to a 5-cm stubble height. The studies also support our finding that more 

frequent clipping decreased plant biomass. In our study, moderate defoliation to a 10-cm 

stubble height resulted in greater residual above- and below-ground biomass compared 

with heavy defoliation to a 5-cm stubble height (Figure 2-2; Figure 2-3; Figure 2-4; 

Figure 2-5).  Additionally, more frequent clipping at 7-d intervals generally resulted in 

decreased biomass production during the growing season (Figure 2-6; Figure 2-8). 

Therefore, our findings suggest grazing to a higher stubble height has the potential to 

provide more total biomass, while not grazing produces the most biomass. Additionally, 

grazing at lower frequencies can maximize forage production during the grazing season. 

In addition to reduced above-ground biomass production, we also found that among 

species, clipping reduced root biomass compared with no clipping (Figure 2-4; Figure 2-

5). These results can be explained by an observed decrease in rooting depth of winter 

wheat that is subject to defoliation (Kirkegaard et al. 2015).  

Moderate, less frequent grazing may enhance winter survival, shoot biomass 

production, and root biomass production compared with heavy grazing. Specifically, 

moderately (10-cm height) clipping winter wheat, winter triticale, or cereal rye optimized 

root and shoot biomass production (Figure 2-4; Figure 2-5).  Decreased root production 

when plants were exposed to defoliation can be explained by plant assimilate allocation. 
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Root assimilates are reallocated to shoot growth to aid in recovery after defoliation 

(Briske and Richards 1993).  This allows shoot production to increase while root 

production decreases after defoliation. Therefore, defoliation to a higher stubble height 

less frequently allows for increased root production leading to a plant that can access soil 

resources and produce more forage.  

The decreased root production observed under defoliation can also be explained 

by the seed germination and early plant development. Seminal roots emerge first from the 

seed and are the most important for accessing deep soil resources (Watt et al. 2006). 

Later, nodal roots emerge and develop (Watt et al. 2006). Nodal root growth is restricted 

to the upper layer of the soil when plants have later emergence (Watt et al. 2006). When 

grasses are young and actively growing, up to 50% of plant assimilate may be distributed 

to root growth (Gregory and Atwell 1991; Gregory 2006). When a defoliation event 

occurs during early plant development, assimilate may be diverted from root growth to 

aid in shoot regrowth (Briske and Richards 1995).  The diversion of plant assimilates 

from root development to shoot repair might explain why clipping plants to 10- and 5-cm 

stubble heights reduced root growth.  

The effects of grazing intensity on root characteristics have been observed in 

several perennial grasses, winter wheat grown for grain production, triticale, and canola. 

Root biomass in smooth bromegrass is greater under medium intensity than heavy 

grazing intensity (Mapfumo et al. 2002).   On the contrary, root biomass in meadow 

bromegrass decreased under medium and heavy grazing (Mapfumo et al. 2002). 

Perennial grass root biomass commonly decreased under defoliation (Gao, Giese, and Lin 
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2008; Matches 1992). These findings support our observations of decreased root biomass 

production in cool season annuals.  

However, when winter wheat and winter triticale are grazed, different impacts on 

root biomass occur depending on management. Rooting depth of winter wheat decreased 

when heavy defoliation occurred during early establishment (Kirkegaard et al. 2015).  

Root length density in grazed areas also decreases (Kirkegaard et al. 2015). These 

characteristics can lead to decreased root biomass. On the other hand, well established 

stands of winter wheat subject to defoliation did not exhibit decreased root biomass 

production (Kirkegaard et al. 2015). Our finding of decreased root biomass when plants 

are subject to moderate or heavy defoliation during early emergence is supported by these 

previous findings. Additionally, no differences among grazing intensities on root biomass 

production in winter triticale were found (Mapfumo et al. 2002). Our research found 

differences between clipping triticale to a 10- and 5-cm stubble height in 2018 and 2019 

(Figure 2-4; Figure 2-5). When triticale was clipped to a 10-cm instead of a 5-cm stubble 

height, almost double the root biomass was produced.  In agreement with our findings, an 

increase in average root biomass at the moderate defoliation intensity when compared to 

the heavy grazing intensity of winter triticale can be expected (Mapfumo et al. 2002). 

These findings support the idea that grazing to a higher stubble height have the potential 

to produce greater root biomass than grazing to a lower stubble height.  Based on our 

study and previous evidence, grazing during early establishment results in decreased root 

biomass production, which can lead to decreased survival and shoot production. 

 Current evidence shows that grazing during early establishment especially at high 

intensities can have detrimental effects on biomass production and stand survival. 
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However, grazing well-established plant stands produces adequate biomass and plant 

survival (Kirkegaard et al. 2015; Mapfumo et al. 2002). Current grazing 

recommendations for cool-season annuals suggest waiting until 40-60 days after 

emergence in order to have sufficient biomass production and survivability (Drewnoski 

and Redfearn 2015). Future research is needed to determine if grazing between 14-40 

days following emergence is sufficient without compromising root and shoot growth. The 

greenhouse study had two limitations. Plants were clipped and not grazed with the study 

conducted in a greenhouse using sand for the growth medium. Both limitations did not 

allow us to determine defoliation responses in the field with different soil types and 

animal grazing activity. The first limitation was addressed by monitoring stand and 

biomass production of winter triticale in a field setting. The second limitation was not 

addressed. However, the controlled environment allowed us to evaluate the specific plant 

responses, including biomass production throughout a simulated grazing season. 

Additionally, we were able to readily evaluate the root biomass of different clipping 

heights and frequencies in the top 20-cm of sand. Further research in a field setting to 

monitor cover crop root response to defoliation is needed.  

Conclusions 

In conclusion, grazing cool-season annual grasses during early establishment is 

not recommended. Defoliation during early establishment resulted in reduced biomass 

production and winter survival of cool-season annual grasses. Our results suggest that 

grazing during early establishment is not the best practice if producing cover crop above- 

and below-ground biomass is the main objective. Therefore, if a producer wants to graze 

cornstalks and have a successful cover crop, they will need to wait for the cover crop to 
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be well established before allowing cattle on the field. However, if grazing of the cover 

crop must occur during early growth, grazing winter wheat, winter triticale, or cereal rye 

to a higher stubble height, less frequently is the most desirable. Grazing to a higher 

stubble height, less frequently during early plant establishment has the potential to 

produce more biomass and result in a better stand than grazing to a lower stubble height 

more frequently.  
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Table 2- 1. Week the experimental unit (EU) was removed from the study in 2018 and 

2019. 

Numbers in columns four and five represent number out of 3 replications of treatment 

combinations (EU’s) remaining at the end of the study for each treatment combination. 

Numbers in the sixth and seventh columns represent number of EU’s remaining out of 

twelve EU’s at the conclusion of the study at the indicated clipping height and interval.  

      Remaining EU's  Total Left in Each 

Height Interval   by End of Study Height and Interval  

    Species 2018 2019 2018 2019 

5-cm 7-d       2 0 

    Oat 0 0     

  

Winter 
Wheat 1 0   

    
Winter 

Triticale 0 0     

  Rye 1 0   

              

10-cm 7-d       4 3 

    Oat 0 0     

  

Winter 
Wheat 3 2   

    
Winter 

Triticale 0 0     

  Rye 1 1   

              

5-cm 14-d       3 2 

    Oat 0 0     

  

Winter 
Wheat 2 0   

    
Winter 

Triticale 0 0     

  Rye 1 2   

              

10-cm 14-d       9 9 

    Oat 2 0     

  

Winter 
Wheat 3 3   

    
Winter 

Triticale 2 3     

  Rye 2 3   
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Field layout for the continuous corn portion of the field-scale model demonstration site. 

The size of the corn field was 8-ha. Each EU is 0.68-ha. The green represents the grazing 

paddock. The dots represent where the cover crop was planted. The solid blue represents 

no grazing or cover crop. There were 3 replications of every treatment combination. The 

1.35-hectare paddocks were grazed by 6-steers in the autumn after corn grain harvest.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- 1. Field map of cover crop and grazing treatments. 
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Figure 2- 2. Residual above-ground biomass of oats, winter wheat, winter triticale, and 

cereal rye at each clipping height in 2018.  

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. A non-

clipped control was included. Treatments with the same letter are not different (P<0.05).  
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Figure 2- 3. Residual above-ground biomass of oats, winter wheat, winter triticale, and 

cereal rye at each clipping height in 2019.  

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. A non-

clipped control was included. Treatments with the same letter are not different (P<0.05).  
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Figure 2- 4. Root biomass of oats, winter wheat, winter triticale, and cereal rye at each 

clipping height in 2018. 

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. A non-

clipped control was included. Treatments with the same letter are not different (P<0.05).  
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Figure 2- 5. Root biomass of oats, winter wheat, winter triticale, and cereal rye at each 

clipping height in 2019. 

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. A non-

clipped control was included. Treatments with the same letter are not different (P<0.05).  

 

  

0

0.5

1

1.5

2

2.5

Non-
clipped

10-cm 5-cm Non-
clipped

10-cm 5-cm Non-
clipped

10-cm 5-cm Non-
clipped

10-cm 5-cm

Oats Winter Wheat Winter Triticale Cereal Rye

R
o
o
t 

B
io

m
a
ss

 (
g
 p

o
t-

1
)

B

DEF EF

A

BC

DE

A

CD
EF

A

BC

F



82 

 

 

Figure 2- 6. Above-ground biomass production during the simulated grazing season 

averaged across species and clipping height in 2018.  

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. The clipped 

plant matter during the simulated growing season was summed to analyze the difference 

in forage production among treatments. Treatments with the same letter are not different 

(P<0.05).  
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Figure 2- 7. Above-ground biomass production during the simulated grazing season of 

oats, winter wheat, winter triticale, and cereal rye averaged across clipping height and 

frequency in 2018. 

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. The clipped 

plant matter during the simulated growing season was summed to analyze the difference 

in forage production among treatments. Treatments with the same letter are not different 

(P<0.05).  
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Figure 2- 8. Above-ground biomass production during the simulated grazing season of 

oats, winter wheat, winter triticale, and cereal rye averaged across clipping height in 

2019.  

Plants were clipped to a 5- or 10-cm stubble height at 7- or 14- day intervals. The clipped 

plant matter during the simulated growing season was summed to analyze the difference 

in forage production among treatments. Treatments with the same letter are not different 

(P<0.05).  
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Figure 2- 9. Total biomass production of species in 2018.  

Bottom brown bar, average dry root mass. Middle light green bar, average forage 

production during simulated grazing season. Top dark green bar, average residual above-

ground biomass at completion of grazing season. A, B, and C denote statistical difference 

(P<0.05) among species.  
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Figure 2- 10. Total biomass production at the height by interval interaction level in 2018.  

Bottom brown bar, average dry root mass. Middle light green bar, average forage 

production during simulated grazing season. Top dark green bar, average residual above-

ground biomass at completion of grazing season. A, B, C, and D denote statistical 

difference (P<0.05) at the height x interval level.  
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Figure 2- 11. Total biomass production at the species by height interaction level in 2019.  

Bottom brown bar, average dry root mass. Middle light green bar, average forage 

production during simulated grazing season. Top dark green bar, average residual above-

ground biomass at completion of grazing season. A, B, C, D, and E denote statistical 

difference (P<0.05) at the species x height level.  
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Figure 2- 12. Frequency of occurrence for non-grazed and grazed triticale during autumn 

2018 and spring 2019.  

Corn stover with triticale cover crop was grazed from September 27 to October 12. 

Biomass was sampled in the autumn on October 11 and in the spring on March 26. Dark 

orange bar with dots, average frequency of occurrence of triticale for autumn of 2018. 

Dark green bar with squiggly lines, average frequency of occurrence of triticale for spring 

of 2019. Different letters, A and B, denote statistical difference (P<0.05). 
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Figure 2- 13. Biomass production for non-grazed and grazed triticale during autumn 

2018 and spring 2019.   

Corn stover with triticale cover crop was grazed from September 27 to October 12. 

Biomass was sampled in the autumn on October 23 and in the spring on April 23. Dark 

orange bar with dots, average biomass production of triticale for autumn of 2018. Dark 

green bar with squiggly lines, biomass production of triticale for spring of 2019. 

Different letters, A, B, C, D, denote statistical difference (P<0.05).  
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Figure 2- 14. Biomass production of triticale during autumn 2019 and spring 2020.  

Corn stover with triticale cover crop was grazed from October 23 to October 29. Biomass 

was sampled in the autumn on November 6 and in the spring on April 22. Dark orange 

bar with dots, average biomass production of triticale for autumn of 2019. Dark green bar 

with squiggly lines, biomass production of triticale for spring of 2020. Different letters, A 

and B, denote statistical difference (P<0.05).  
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CHAPTER 3  

AN ECONOMIC ANALYSIS OF A MODEL INTEGRATED CROP LIVESTOCK 

SYSTEM IN EASTERN NEBRASKA 

Abstract 

Farm diversification in the United States has decreased since the conclusion of 

WWII. The current specialized agricultural system focused on the production of a few 

commodities is facing production, economic, and environmental challenges. Amidst these 

challenges, Integrated Crop Livestock Systems (ICLS) have emerged as a possible 

solution. One method of integration includes incorporating perennial grasslands. To 

explore the viability of ICLS in Eastern Nebraska through perennial grasslands, a field-

scale model ICLS was established on marginally productive, poorly drained cropland. 

The ICLS includes 4-ha each of ‘Newell’ smooth bromegrass (Bromus inermis L.), 

‘Liberty’ switchgrass (Panicum virgatum L.), and ‘Shawnee’ switchgrass. The ICLS also 

includes 8-ha of continuous corn (Zea mays L.) production. In 2018 and 2019, 18 

yearling steers grazed 4-ha of Newell in spring and autumn. During summer, the herd 

was equally divided prior to grazing 4-ha of Liberty or 4-ha of Shawnee for 3 months. 

Both switchgrass varieties were harvested for biomass post-senescence. The 8-ha of 

continuous corn was grown using best management practices. To determine if the ICLS 

was more profitable than continuous corn production on marginal land, production data 

from the study was used to construct enterprise budgets to evaluate system profitability. 

The ICLS was not consistently more profitable than continuous corn production. 

However, baling hay only and not grazing the ICLS was consistently more profitable than 

continuous corn production. Our results indicate ICLS with perennial grass vegetation 

and continuous corn have the potential to be more profitable than continuous corn on 
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poorly drained cropland in Eastern NE. Incorporating perennial grass for either grazing or 

hay production in Eastern NE can increase farm profitability on marginal land while 

improving the farm’s environmental impact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

Introduction 

Farm diversity has decreased since the conclusion of WWII (Dimitri, Effland, and 

Conklin 2005; Sulc and Tracy 2007). Modern agriculture has successfully met global 

food demand, but the success of modern highly specialized systems came at a cost. These 

intensive, highly specialized systems typically focus on the production of a few 

commodities and can cause soil erosion, nutrient loss, decreased soil organic carbon 

(SOC), pest resistance, water pollution, and greenhouse gas (GHG) emissions (Sulc and 

Tracy 2007). Amidst the highly specialized agricultural systems, Integrated Crop 

Livestock Systems (ICLS) have emerged to mitigate these negative effects. Integrating 

livestock back onto the land can increase economic and environmental resiliency through 

diversification (Parthasarathy and Ndjeunga 2005; Devendra and Thomas 2002; Tracy 

and Zhang 2008). An ICLS can exist in many forms. Farm level integration can include 

livestock grazing annual cover crops, annual crop residues, or perennial grasses (Sulc and 

Tracy 2007; Russelle, Entz, and Franzluebbers 2007). By incorporating livestock back on 

to the land, proper ecosystem function can be restored by increasing nutrient cycling, 

microbial activity, and soil organic matter content (Tracy & Zhang 2008). One way to 

mitigate the negative environmental implications caused by modern row-crop production 

practices is to plant perennial grasses (Asbjornsen et al. 2014).  

Ecosystem services provided by perennial vegetation are well known on a 

landscape scale (Asbjornsen et al. 2014). Perennial vegetation increases soil organic 

carbon (Nocentini and Monti 2019; Entz et al. 2002; Liebig et al. 2008; Sanderson 2008), 

decreases nitrogen leaching (Davis et al. 2012; Entz et al. 2002), improves soil quality 

(Maughan et al. 2009; Tracy and Zhang 2008), and has the potential to decrease GHG 



97 

 

emissions (Jin et al. 2019; Davis et al. 2012). The Conservation Reserve Program (CRP) 

encourages producers to plant marginally productive cropland to perennial vegetation 

through payments for land planted to perennial vegetation. When grain prices increased 

in the mid-2000’s, land planted to perennial vegetation was returned  to row-crop 

production (Wright and Wimberly 2013; Clay et al. 2014). Increased input costs and 

depressed grain prices have made planting row-crops on marginally productive land less 

lucrative. One way to stabilize farm net return is by diversifying enterprises. Converting 

marginally productive land back to perennial grassland provides an opportunity to 

integrate grazing animals back into the production system, potentially increasing the 

economic and environmental resiliency of the farm. However, establishing perennial 

vegetation can be costly (Biermacher et al. 2017; Jacobs et al. 2016; Mitchell et al. 2005).  

Fortunately, incorporating perennial vegetation into the landscape can be 

profitable. In central Iowa, diverse crop rotations with perennial legumes are more 

profitable than traditional corn (Zea mays L.) -soybean (Glycine max L.) rotations 

(Liebman et al. 2008). Perennial grass pastures throughout the United States have also 

demonstrated the potential to be profitable. Big bluestem (Andropogon gerardii L.)  is a 

common warm-season grass that has been studied for profitability. In Mississippi, 

grazing big bluestem is profitable because of the low annual pasture cost and high net 

return when compared to other commonly used forages (Rushing et al. 2019). In 

Nebraska, planting big bluestem and grazing it with yearling steers can be more 

profitable than planting dryland corn (Mitchell et al. 2005). The potential profitability of 

switchgrass (Panicum virgatum L.) has also been studied. Risk averse producers in 

Tennessee who are profit maximizing would select switchgrass for grazing (Boyer et al. 
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2019). In Oklahoma, lightly and moderately grazing switchgrass with cattle is profitable 

but heavily grazing switchgrass is not (Biermacher et al. 2017). The same study looked at 

switchgrass as a dual-purpose crop, for both grazing and biomass production. 

Researchers found that lightly grazing (2.2 steers ha-1) switchgrass and harvesting 

residual growth for biomass was the most profitable switchgrass system (Biermacher et 

al. 2017). If managed properly, switchgrass can provide livestock feed via grazing and 

residual biomass production in the same growing season, profitably. Non-irrigated, 

marginally productive cropland in Eastern Nebraska provides the potential to plant 

perennial grasses for grazing to increase farm net return. The profitability of perennial 

grass grazing ICLS compared to continuous corn on marginally productive dryland in the 

Western Corn Belt is not known.  

Therefore, we sought to determine if a field-scale ICLS model demonstration site 

in Eastern NE could be profitable. The field-scale ICLS site includes 4-ha each of 

‘Newell’ smooth bromegrass, ‘Liberty’ switchgrass, and ‘Shawnee’ switchgrass. In 

addition, the site includes 8-ha of continuous corn production. The first objective of the 

study was to determine if grazing perennial grasslands, harvesting residual biomass, and 

raising continuous corn on marginally productive land increased profitability when 

compared to continuous corn production. To determine potential profitability of the ICLS 

in Eastern NE, animal weight gain and corn yields from the field-scale site were used 

with market data to build enterprise budgets. Enterprise budgets were used to calculate 

system profitability for 2018 and 2019.  

The second objective of the study was to evaluate the sensitivity of the ICLS to 

variation in market prices. A sensitivity analysis was conducted to evaluate the stability 
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of the profit potential of the grazing enterprise using data from the site in combination 

with cattle market data for Nebraska from 2009-2019.  

The third objective was to evaluate potential alternative perennial grass ICLS for 

the region. To evaluate alternative perennial grass systems for the region, the potential 

profitability of two scenarios was assessed: 1) Renting pasture on the gain and 2) Only 

harvesting hay. The two alternative systems were compared with the profitability of the 

ICLS and continuous corn.  

Materials & Methods 

Field-scale Model Demonstration Site  

The site was located at the Eastern Nebraska Research and Extension Center 

located near Ithaca, Nebraska. The site was established on 20-ha of non-irrigated, 

marginally productive cropland in 2015. For this study, marginally productive cropland is 

defined as poorly drained soil. Approximately 40% of the land at the site is classified as 

somewhat poorly drained (Table 3-1). The soils on the site are approximately 13.5% 

Fillmore silt loam, 19.7% Yutan silty clay loam, 40.3% Tomek silt loam, and 26.5% Filbert 

silt loam (Table 3-1). Non-irrigated, marginally productive cropland provides an 

opportunity to increase farm profitability and environmental sustainability by diversifying 

land use  through integration of perennial vegetation (Mitchell et al. 2016). In order to 

diversify land use at the site, 12-ha were planted to perennial grass and 8-ha were kept in 

continuous corn production. Of the 12-ha planted to perennial grass, 4-ha each were planted 

to ‘Newell’ smooth bromegrass (Bromus inermis L.), ‘Liberty’ switchgrass (Panicum 

virgatum L.), and ‘Shawnee’ switchgrass. Newell was planted because of the cultivar’s 

increased digestibility when compared to other smooth bromegrass varieties. The increased 
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digestibility leads to higher cattle average daily gains than its’ predecessor ‘Lincoln’ 

smooth bromegrass (Vogel, Mitchell, Waldron, et al. 2014). Liberty was planted because 

it is a lowland ecotype developed for use as a cellulosic bioenergy crop (Vogel, Mitchell, 

Casler, et al. 2014). Shawnee was planted because it is an upland ecotype that was 

developed to have improved forage quality, leading to greater potential animal gains 

(Vogel et al. 1996). Including the two varieties of switchgrass allows for comparison of 

animal gain and biomass production potential of the varieties. Additionally, including a 

grazing variety and biomass producing variety of switchgrass offers management 

flexibility. In 2018 and 2019 the site received 86.9 cm and 84.5 cm of rainfall, respectively, 

within 2% of the 30-yr average (Figure 3-1).  

Perennial Grass Management  

The Newell and Liberty pastures were established in 2015. Shawnee was 

established in 2006. All perennial grass pastures were harvested for hay in 2016 to allow 

for adequate plant establishment before grazing. In 2017, Newell was grazed in the spring 

by 18-hd of crossbred yearling steers (341.6 kg hd-1). The herd was moved to flash graze 

the Liberty for 7-d to determine the impact of brief grazing on biomass yield. No animal 

weight gain data was collected from the flash grazing event. Following the flash grazing 

event, the 18-hd of steers (367 kg hd-1) grazed the Shawnee until September 1. Finally, 

the steers were moved back to Newell to graze the re-growth for one month. No data is 

presented for 2016 or 2017 since management was different. In 2018 and 2019, 18-hd of 

crossbred yearling steers (393.7 kg hd-1; 288.9 kg hd-1, respectively) grazed the Newell 

pasture from May-June. After grazing Newell, the herd was divided and 9-hd (416.0 kg 

hd-1; 339.3 kg hd-1, respectively) grazed the Liberty for 79 days and the other 9-hd (413.0 
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kg hd-1; 339.7 kg hd-1, respectively) grazed the Shawnee for 79 days. At the conclusion of 

grazing the Shawnee and Liberty pastures, the herd was recombined and the 18-hd (456.8 

kg hd-1; 362.4 kg hd-1, respectively) returned to graze the regrowth of the Newell pasture. 

Figure 3-3 lists the specific dates of each grazing event. The same grazing sequence was 

followed in 2018 and 2019 in order to have two years of identical management for the 

economic analysis (Figure 3-4). Cattle weight gain data was collected after each grazing 

event to determine cattle average daily gain on each forage resource. The limit feeding 

protocol outlined by Watson et al. was used to determine animal weight gain (Watson et 

al. 2013). Cattle weight gain data was used to construct the grazing enterprise budget.  

Row- Crop Management 

In 2018 and 2019 the corn (Zea mays L.) was planted at 65,236 seeds ha-1. The 

field was fertilized with 140 kg of nitrogen (N) per hectare applied as urea (46-0-0). Pre- 

and post- emergent herbicide was applied in 2018 and 2019. In 2018, pre-emergent 

herbicide was applied on April 17 (Table 3-2). Then, 2.63 L ha-1 of Roundup Powermax 

was applied on May 24 followed by 2.34 L ha-1 of Roundup Powermax and 0.18 L ha-1 of 

Callisto on June 13 (Table 3-2). In 2019, pre-emergent herbicide was applied on April 17 

followed by one post-emergent application of herbicide on June 17 (Table 3-2). Corn 

yields were measured using a John Deere 3620 Greenstar yield monitor and were 

extracted with GIS software. The corn yields were used to construct the continuous corn 

budget.  

Evaluating ICLS System Profitability 

Three 20-ha ICLS were compared to 20-ha of continuous corn in 2018 and 2019. 

The ICLS were compared to continuous corn production because corn is the primary cash 
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crop in Eastern NE. The three ICLS were based off the actual management and data 

collected from the field-scale site. The difference between the three ICLS was the number 

of hectares assigned to each switchgrass variety. Each system, ICLS and continuous corn, 

were based on 20-ha of land, the size of the field-scale model demonstration site.  

Each ICLS consisted of 12-ha of grazing, 8-ha of residual hay production, and 8-

ha of continuous corn. The 8-ha of hay production was the residual biomass harvested in 

November after livestock grazed the Liberty and Shawnee pastures. The diversified ICLS 

reflects the profitability of the actual field-scale model demonstration site in Eastern 

Nebraska. The diversified ICLS consists of 4-ha of Newell for grazing, 4-ha each of 

Liberty and Shawnee for grazing and residual hay production, and 8-ha of continuous 

corn. In order to evaluate the potential profitability of each of the switchgrass varieties, 

two systems were evaluated using data from the field-scale model demonstration site. 

The Newell-Liberty-Newell ICLS (Liberty ICLS) consisted of 8-ha of Liberty pasture 

and 4-ha of Newell pasture for the grazing enterprise. The Newell-Shawnee-Newell ICLS 

(Shawnee ICLS) consisted of 8-ha of Shawnee pasture and 4-ha of Newell pasture for the 

grazing enterprise. In the study, 8-ha of each switchgrass variety was not grazed or 

hayed, only 4-ha of each variety was grazed and hayed. Therefore, the data collected 

from the site was doubled to calculate the production data for the 8-ha of Liberty and 

Shawnee. In order to assess the profitability of the ICLS and continuous corn, enterprise 

budgets were developed for each system using production data from the field-scale model 

demonstration site. 
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Enterprise Budgets 

General Assumptions 

The land value for all enterprise budgets was $7660.26 ha-1. This was the average 

value of rainfed cropland in the state of Nebraska for 2019. To calculate opportunity cost, 

a rate of 3% was used. To calculate real estate tax, a tax rate of 1.35% was applied to the 

land value. These assumptions were supplied by the 2019 UNL crop budgets. The returns 

reported for all enterprises do not include land opportunity cost because no enterprise was 

profitable when the full rate of land opportunity cost was applied.  

Pasture Establishment Budget 

In order to calculate the cost of establishing pasture, multiple sources were used. 

To determine the seeding rate, cost of seed, planting, pre-herbicide, post-herbicide, 

spraying and interest the ISU Ag Decision Maker Converting Cropland to Switchgrass 

was used (Jacobs, Mitchell, and Hart 2016). The value of real estate taxes was used for 

the cost of land and was determined from the 2019 UNL Crop budgets using the 

Nebraska dryland state average of $7660.26 ha-1 at a rate of 1.35%. The cost of water 

development for cattle was taken from  Mitchell et al. (2005). The fencing cost was 

calculated using the 2018 UNL Custom Rate Survey state average per kilometer of fence, 

$5,676.86 km-1. The cost is based on fencing 32-ha of pasture (Mitchell et al. 2005). The 

assumed life of the pasture was 30 years and an interest rate of 5.5% was used to 

calculate the yearly establishment cost. The yearly amortized establishment cost per 

hectare was calculated by the following equation: total cost of 

establishment*(0.055/((1+0.055)^-30)). (Supplementary Information D) 
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Steer Grazing Budget 

The steer grazing enterprise budget included the cost of purchasing the cattle, 

interest for purchasing the cattle, labor, veterinary services, mineral, transportation, and 

marketing for the cattle. In addition, the amortized cost of pasture establishment, pasture 

fertilization, interest on operating capital, and real estate tax on the land were included. 

The average purchase weight was calculated as the average weight of the 9 steers at the 

beginning of grazing in May. The price per kg was calculated using the market price in 

Nebraska for the weight class of steers on the date nearest the beginning of grazing. The 

number of cattle and hectares grazed listed in the budget reflect the actual management of 

the field-scale model demonstration site. The labor, vet, and marketing costs were 

calculated using the average producer reported cost from 2008-2018 in Nebraska, South 

Dakota, & North Dakota reported through the University of Minnesota FINBIN. The cost 

of mineral was calculated using the feeding rate at the site of 2 oz hd-1 d-1. The 

transportation was calculated using the distance from the Eastern Nebraska Research and 

Extension Center to the Wahoo Livestock Sale Barn (16.9-km) at a rate of $2.49 km-1 

reported through the UNL 2018 Custom Rate Survey for hauling cattle with a gooseneck 

trailer. The establishment cost allocated is explained in the pasture establishment cost 

budget. The cost of fertilizer, spreading fertilizer, and interest rate were calculated using 

the information in the ISU Ag Decision Maker tool Converting Cropland to Switchgrass 

(Jacobs, Mitchell, and Hart 2016). The average selling weight was calculated as the 

average weight of the 9 steers at the conclusion of grazing in September. The price per kg 

was calculated using the market price in Nebraska for the weight class of steers on the 

date nearest the conclusion of grazing. (Supplementary Information F and G) 
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Continuous Corn Budget 

The continuous corn budget was constructed based on the management of the 

field-scale model demonstration site using the UNL Crop Budgets. Budget number 21-

Corn from 2019 was used as the base template. From there, the field operations were 

changed to reflect the actual management of the system. The average yield from the 8-ha 

system, including wet and non-harvested areas of the field, was entered into the budget to 

help calculate yield-dependent costs. The seeding and fertilizer rates were adjusted to 

65,236 seeds ha-1 and 140 kg ha-1 of nitrogen applied as urea (46-0-0). The herbicide 

products and rates were adjusted to reflect the management for each year (Table 3-2). 

The average price of corn in Nebraska for the harvested month was used. Revenue from 

renting cornstalks for grazing was also added because corn residue grazing is a common 

practice in Nebraska (Schmer et al. 2017; Redfearn et al. 2019). (Supplementary 

Information A) 

Continuous Corn ICLS Budget  

The only thing changed for the ICLS continuous corn enterprise budget was the 

ownership cost of machinery. The costs associated with machinery ownership in the 

ICLS budget were increased because the corn machinery was spread over 60% fewer 

hectares. This is because the ICLS only has 8-ha of continuous corn production instead of 

20-ha. Therefore, the cost of machinery ownership per hectare increased by 2.5 times. 

(Supplementary Information B) 

Hay Budget 

The purpose of the hay enterprise budget was to determine if harvesting residual 

hay would increase net return to the pasture. The hay enterprise budget does not include 

any land opportunity cost, land tax, or pasture establishment cost. The entire land tax and 
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establishment cost for the pasture is charged to the steer grazing enterprise. This is 

because the grazing enterprise was the primary enterprise we were interested in 

evaluating. The harvesting of residual biomass was considered a bonus. The hay budget 

was developed using the UNL Crop Budgets. Crop Budget 48-Grass hay for 2019 was 

used (Supplementary Information H). The field operations were adjusted to reflect actual 

management of the field-scale model demonstration system. The yield in the budget was 

also adjusted to reflect the amount of residual hay harvested each year from the pasture in 

November. The price of hay was calculated using USDA NASS market data. The hay 

price was the average price for large, fair quality round bales in Nebraska during 

November and December. Revenue was calculated by yield times price (Supplementary 

Information J). Not every farmer considering adopting an ICLS model has hay 

equipment. Additionally, farmers considering adopting an ICLS may want to modify 

their ownership of corn production equipment to increase profitability. 

Own Machinery or Custom Farm?  

In order to evaluate if owning hay and row-crop machinery was more profitable 

than custom farming hay and corn, custom farm budgets were built for hay and corn 

enterprises. For the custom corn budget, spraying herbicide, spreading fertilizer, planting, 

and harvesting services were calculated using the average custom rate for Eastern 

Nebraska listed on the UNL 2018 custom rate survey. The cost of seed, herbicide, and 

fertilizer for corn production was used from the 2019 UNL crop budgets, specifically, 

budget number 21-no till continuous dryland corn. The UNL crop budget was also used 

to determine the interest rate, real estate opportunity cost, and real estate taxes. The 

fertilizer rate, planting rate, yield, corn price, and cornstalk rental price remained the 

same as the continuous corn budget where machinery ownership was assumed. 
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(Supplementary Information C) For the custom hay budget, the cost of mowing, raking, 

baling, and moving the bales were calculated using the Nebraska state average custom 

rate from the UNL 2018 custom rate survey (Supplementary Information I). The yield 

and hay prices remained the same as the hay budget where machinery ownership was 

assumed. 

Assessing the Potential of Other Management Scenarios for the Site  

Rent on the Gain  

Another option to integrate livestock on the land instead of owning cattle is to 

charge cattle owners rent on the gain for perennial pasture. Therefore, to evaluate the 

profitability of the grazing system without ownership of the cattle, the rent on the gain 

scenario was used. The cost of pasture establishment, land tax, fertilizer, and interest 

remained constant from the enterprise budgets. To calculate revenue, the amount of cattle 

gain per hectare was needed and a value per kilogram of gain was needed. The gain per 

hectare was calculated using the ICLS experimental data from 2018 and 2019. The rental 

rate per kg of gain was determined by using 50% of the value of gain (Childs 2018).  

The value of gain was calculated as: (ending - beginning value of the cattle) / 

(ending - beginning weight).  

Revenue per hectare was calculated as: the rental rate per kg of gain * the total kg 

of gain per hectare of the system.  

Net profit was calculated by revenue – total cost.  

This scenario included the net profit from the ICLS corn budget to reflect 8-ha in 

continuous corn production and 12-ha in pasture. (Supplementary Information L) 
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Hay Harvest Only Scenario  

A producer may want to incorporate perennial grasses to harvest for hay instead 

of grazing the pasture. The cost of establishment for this scenario was less than the ICLS 

hay budget because the cost of fencing and water is not included since no grazing 

occurred. In this scenario, all 4-ha pastures were harvested for hay once annually. Since 

the hay in the ICLS was harvested after grazing, the yields used to calculate the revenue 

for the hay only scenario were the averages from the variety’s registration papers. For 

Liberty an average yield of 18,100 kg ha-1 was used (Vogel, Mitchell, Casler, et al. 2014). 

For Shawnee an average yield of 14,027 kg ha-1 was used (Hopkins et al. 1995). For 

Newell an average yield of 7820 kg ha-1 was used (Vogel et al. 2015). The price for 

Liberty and Shawnee hay was based on the average price in Nebraska in November and 

December of 2018 or 2019 for fair quality large round bales. The price for Newell was 

based on the average price for good quality grass hay large round bales in Nebraska 

during November and December of 2018 or 2019. Smooth bromegrass has better forage 

quality than switchgrass, therefore, the price for good hay instead of fair was used. The 

price data for each classification was generated through a custom report from the USDA 

NASS database. Ownership of the machinery needed to make hay was assumed because 

owning hay making equipment is more favorable than having hay custom made. The cost 

of producing hay was calculated using the same crop UNL budgets as the ICLS hay 

enterprise. However, the hay harvest only scenario was more expensive on a per hectare 

basis because of the increased hay yields due to the absence of grazing, requiring more 

materials and hours of equipment use. This scenario included the net profit from the 
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ICLS corn budget to reflect 8-ha of continuous corn and 12-ha of hay production. 

(Supplementary Information M) 

Sensitivity Analysis  

Grazing Enterprise 

Since cattle markets are subject to fluctuation, we assessed how sensitive the 

profitability of the grazing enterprise was to the purchase and sale price of the steers. The 

four groups of cattle evaluated reflected each group of cattle that grazed either Liberty or 

Shawnee in 2018 or 2019. Both 2018 and 2019 scenarios were used because of the large 

difference in body weight at grazing initiation. Using the four scenarios allowed us to 

evaluate if either weight class at grazing initiation produced superior profitability. The 

start and end weight of the cattle were held constant for each price scenario. Scenarios 

were simulated by using the average steer feeder price in Nebraska closest to the date of 

grazing initiation and cessation of the study in 2018 and 2019. 11 years of price data 

produced 44 scenarios. The steer price data used was from 2009-2019. We first 

calculated the change in the value of the calf [(sale weight*sale price) - (purchase 

weight*purchase price)]. The profitability on a per head basis was then calculated by 

subtracting the cost per head from the increased value of the calf. In order to evaluate 

what price the cattle would need to be sold at to produce a profit, breakeven prices per 

head were calculated using the formula: (cost of purchasing steer + cost of producing 

steer)/weight of the steer. The break-even price per unit of weight was then compared to 

the price per unit of weight at sale. Breakeven costs can help a producer decide whether 

or not they should buy cattle, and if they do, what sale price they should insure with 
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livestock risk protection to mitigate downward movement in market prices to maximize 

the probability of being profitable.  

Bale Hay only Enterprise 

Because hay yields and prices fluctuate, a sensitivity analysis was conducted for 

profitability of hay production subject to fluctuating yields and market prices. We wanted 

to identify the lowest price and yield a producer could receive while still being more 

profitable than continuous corn production. In order to conduct the sensitivity analysis for 

each perennial grass variety we used a combination of 10 different prices and 11 different 

yields. The 10 different prices were calculated by taking the base hay price from the 

original scenario and either increasing (4 prices) or decreasing (5 prices) the price by 5% 

increments. The change in yield was calculated by taking the base yield from the variety 

registration papers and either increasing (3 times) or decreasing (7 times) the yield by 5% 

increments. The cost of production changed as hay yield changed due to the change in 

variable costs. Variable costs per hectare rise or fall as yields increase or decrease, 

respectively. Costs were calculated using the same budget template found in 

Supplementary Information H. The sensitivity analysis allowed us to determine at what 

yield and price each pasture would stop being more profitable than continuous corn. 

Knowing the yield and price where there is less profit than continuous corn production 

can help a producer understand the risk they are taking on by planting perennial grassland 

for hay production. This sensitivity analysis allows producers to decide if planting a 

perennial grassland for hay production is a good decision or not.  
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Results 

System Profitability 

We sought to determine if the field-scale model ICLS demonstration site was 

more profitable than continuous corn on marginal rainfed cropland in eastern Nebraska. 

In 2018, the diversified ICLS was over 1.5 times more profitable than the continuous 

corn system (Figure 3-5). However, in 2019 both systems lost money, with the ICLS 

losing more money than continuous corn (Figure 3-5). These observations indicate that 

the ICLS can be more profitable than continuous corn production on marginal dryland. 

However, the stability of profitability is unclear for the ICLS at the field-scale model 

demonstration site.  

In order to detect if there was a difference in profitability between the two 

switchgrass varieties, data was extrapolated from the 6-ha grazing system for each 

switchgrass variety to a 12-ha grazing system of a single switchgrass variety. This 

allowed us to make statements about the profitability of using both switchgrass varieties 

versus a single switchgrass variety. We found that in 2018, if the site were all Shawnee, 

the ICLS could have produced greater profits by $826 per 20-ha system than if it were all 

Liberty or a combination of Shawnee and Liberty (Figure 3-5). But, in 2019 if all the 

switchgrass was Shawnee, the system lost more money than if it was all Liberty or if it 

was a diversified system (Figure 3-5). Therefore, we cannot conclude if either 

switchgrass variety is better suited for the ICLS.  

In order to develop the most profitable scenarios, the ownership of both hay and 

row-crop machinery were compared to custom farming rates for hay and corn production. 

We found that it was more profitable to sell the corn machinery and custom farm the corn 
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cropland for the ICLS (Supplementary Information B and C). Also, owning hay making 

equipment was more profitable than custom farming the hay (Supplementary Information 

H and I). These observations allowed us to determine that using custom farming rates for 

corn enterprises and ownership of hay machinery for hay enterprises were most favorable 

for the creation of budgets. Therefore, custom farming costs for the corn production 

system and ownership costs of hay machinery were used to develop the enterprise 

budgets.  

Cost & Revenue Potential  

Different enterprises require different inputs and field operations. Therefore, the 

difference in cost and revenue potential for each enterprise was compared. Purchasing 

yearling steers and grazing marginally productive land required twice as much capital as 

planting the land to continuous corn (Table 3-3). The revenue potential for the grazing 

system was also double that of continuous corn. The grazing system generated 1.5 times 

more profit than the continuous corn system in 2018. However, grazing lost more money 

($136 ha-1) than growing continuous corn in 2019. The cost for making hay in the 

diversified system was the lowest because no land taxes or establishment costs were 

attributed to the hay enterprise. When land taxes and establishment costs are not 

attributed to hay production, the hay enterprise makes 2.5 times the cost of production in 

revenue (Table 3-3). These findings indicate grazing enterprises require more capital but 

have the potential to generate more revenue.  

Establishment Costs  

It is important to note that ICLS with perennial grasses require additional capital 

to establish pastures for grazing. In order to assess the cost of establishing perennial 
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grass, establishment cost budgets were developed for each species of perennial grass. 

Building fence and developing water attributed 55% of the total cost of establishment 

(Supplementary Information D). This indicates that perennial grass systems for hay 

instead of grazing may be more achievable because of lower establishment costs.  

Alternative Systems 

To explore the profitability of solely producing hay and not grazing, a scenario 

with only hay production and no fencing or water development establishment costs was 

conducted. When the perennial grass was harvested for hay each year, the enterprise was 

profitable each year (Table 3-4). In 2018 and 2019, harvesting hay produced more profit 

per hectare than planting continuous corn on marginal land (Table 3-4). Another way to 

reduce input costs associated with ICLS is by not purchasing cattle. Instead of purchasing 

cattle, cattle could be rented on the gain for the ICLS. Therefore, we sought to explore 

the profitability of a scenario where producers could rent on the gain, using data from the 

site in 2018 and 2019. The rent on the gain scenario for the diversified ICLS was not 

profitable in 2018 or 2019 (Table 3-4). When the rent on the gain scenario was assessed, 

if the system was all Liberty, then renting on the gain was not profitable in either 2018 or 

2019. If the pastures were all Shawnee, the enterprise was profitable in 2018 but not in 

2019 (Supplementary Information L). Renting on the gain does not appear to be a viable 

option for the ICLS in Eastern Nebraska on marginally productive dryland.  

Sensitivity Analysis 

Cattle Price & Weight 

In 2018 the grazing enterprise was profitable, but in 2019 it was not. The weight 

of cattle at grazing initiation varied on average by 104.8 kg hd-1 from 2018 to 2019. The 
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year to year variation in weight influenced the price at purchase and sale of the steers. 

Additional variation was added by weather and forage availability which led to 

differences in weight gain. Since variability existed among years, the response of the two 

different grazing systems each year to cattle market fluctuation was evaluated. Therefore, 

historic cattle price data from Nebraska was used to evaluate the response of each of the 

four systems to market fluctuation at the time of purchase and sale. To simulate market 

fluctuation, data from 2009 to 2019 was used for each weight class of cattle in each 

grazing system. The value of the steer increased from purchase to the time of sale 10 of 

11 years for each weight class. The range of increased value was highly variable, between 

$34-695 hd-1. With 2015 price data the lighter steers decreased in value for both the 

Shawnee (-$46 hd-1) and Liberty (-$55 hd-1) grazing systems. When the price at sale was 

greater than the breakeven, the grazing enterprise was profitable. Even though the value 

of the steer generally increased, the breakeven price of all four systems was lower than 

the price at sale only 2 of 11 years. When 2013 and 2014 market data was used, the price 

received at sale was greater than the breakeven price for all four systems. Additionally, 

when 2017 market data was used, the lighter weight steers in the Liberty grazing system 

also had a greater price at sale than the breakeven. When 2018 market data was used, the 

heavier weight steers in both the Liberty and Shawnee grazing systems had a greater 

price at sale than breakeven. 2014 cattle price data produced profits at least 2.5x greater 

than other profitable years for all four systems. Of the 44 scenarios produced by the 

sensitivity analysis, only 11 were profitable. In general, the data from the sensitivity 

analysis shows that the grazing enterprise is not consistently profitable. Generally, the 

grazing enterprise was only profitable when cattle prices increased from purchase to sale.  
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Hay Yield and Price (Supplementary Information O) 

Baling hay for all three perennial grasses was more profitable than growing 

continuous corn in 2018 and 2019. Hay yield and price are subject to fluctuation. 

Therefore, the profitability of each perennial grass was evaluated as yield and price were 

changed. In order to do this, a sensitivity analysis was conducted. The base yield for the 

sensitivity analysis was the known average of the cultivar and the price of hay was the 

average for November and December in NE for 2018 and 2019. The results show that 

when yield is reduced by 35% and price is reduced by 25%, Liberty and Shawnee 

pastures baled for hay were more profitable than continuous corn in 2018 ($95.23 ha-1) 

and 2019 (-$5.65 ha-1). Liberty produced for hay could make 3 times as much profit per 

hectare when compared to continuous corn production. Additionally, Shawnee produced 

for hay could make 1.5 times as much profit per hectare when compared to continuous 

corn production. Similarly, every yield and price combination for the Newell pasture 

produced profit. However, when hay yield was reduced by 35% in combination with a 

price reduction of at least 20% the pasture was not as profitable as continuous corn 

production in 2018. Additionally, a yield reduction of 30% and price reduction of 25% 

resulted in less profit than continuous corn production in 2018. Only 3 of 110 price and 

yield combinations made the Newell pasture less profitable than continuous corn in 2018. 

When the scenarios for Newell were compared to continuous corn production in 2019, 

every yield and price combination tested was more profitable. These results indicate that 

a producer planting either of the three varieties or a combination of them on marginally 

productive land can be more profitable than continuous corn in Eastern NE.  
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Productivity & Commodity Pricing 

Row Crop 

Productivity and commodity pricing play an important role in system profitability. 

Therefore, we compared the production of the three commodities (corn grain, beef, and 

hay) and the prices received for the commodities. Corn yield in 2018 was around 1100 kg 

ha-1 greater than in 2019. Corn price was slightly greater in 2019 than in 2018 (Table 3-

5). Despite lower prices in 2018, the continuous corn was more profitable than in 2019 

because of decreased yields in 2019. 

Perennial Grass Grazing Systems  

In the diversified ICLS grazing system, the cattle gained more weight in 2019 

than in 2018 (Table 3-5). In 2018, cattle grazing the Shawnee produced more weight than 

the cattle grazing Liberty (Table 3-5). However, in 2019, the cattle grazing Liberty 

produced more beef per hectare (Table 3-5). The cattle at the beginning of grazing in 

2019 were 104.8 kg per steer lighter than in 2018 (Table 3-6). The purchase price of the 

steers was less than the selling price in 2018 versus 2019 (Table 3-5). Because of greater 

cattle weight at grazing initiation in conjunction with higher prices at selling in 2018, the 

ICLS was more profitable in 2018 than in 2019. Cattle average daily gain (ADG) in 2018 

was greatest on Shawnee, followed by Spring grazing of Newell, then Liberty, with the 

least ADG from fall grazing of the re-growth of Newell (Table 3-6). In 2019, the greatest 

ADG was spring grazing of Newell, followed by fall grazing of the re-growth of the 

Newell, then grazing of the Liberty, with the least ADG from grazing of Shawnee (Table 

3-6). Grazing days for the switchgrass varieties were consistent across years (Table 3-6). 

The spring grazing of Newell was 4 days less in 2019 than in 2018 and the fall grazing of 
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the re-growth of the Newell was 7 days greater in 2019 than in 2018 (Table 3-6). No 

switchgrass variety was consistently superior in producing animal gains. However, 

Newell produced adequate daily gains each year.  

Residual Hay Production  

Presumably, Liberty produces greater biomass yields than Shawnee (Vogel, 

Mitchell, Casler, et al. 2014; Vogel, Hopkins, and Moore 1996). Therefore, we wanted to 

see which variety produced more residual biomass after grazing. Residual hay production 

for Liberty was greater than Shawnee residual hay production both years. Both 

switchgrass varieties had greater residual hay yield in 2018 than in 2019. The hay prices 

were slightly greater in 2019 than in 2018 (Table 3-5). Hay was more profitable in 2019 

than in 2018 because of greater prices. Liberty is better suited as a dual-purpose crop for 

grazing and biomass production due to greater yield.  

Discussion 

The purpose of the economic analysis was to evaluate if the ICLS was more 

profitable than continuous corn production in Eastern NE on marginally productive 

cropland. The ICLS consisted of three enterprises: perennial grass grazing, residual hay 

production, and continuous corn production. Our findings indicate that the ICLS is not 

consistently more profitable than continuous corn production. In our analysis, the ICLS 

was more profitable than continuous corn one of two years (Figure 3-5). The year to year 

variation in the profitability of the grazing enterprise was large (-$974 – 3231 20-ha-1). 

The variation was caused by market fluctuation and differences in steer weight among 

years. Therefore, the sensitivity of the grazing enterprise to cattle market fluctuation and 

steer weight was evaluated. The sensitivity analysis revealed that each grazing system, 
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regardless of cattle price and weight class, typically resulted in a net loss (Supplementary 

Information N). Therefore, purchasing steers to graze the model ICLS without 

supplementation is not recommended. 

Even though our results indicate that grazing the model ICLS is not consistently 

more profitable than continuous corn, using alternative perennial grass varieties may be 

more profitable. In Eastern NE a grazing enterprise with steers grazing big bluestem was 

more profitable than continuous corn production two-thirds of the time (Mitchell et al. 

2005). The increased profitability of big bluestem may be due to greater beef production. 

Steers grazing big bluestem (454 kg ha-1) gained twice as much weight per land area than 

the proposed ICLS (11.1-210.9 kg ha-1) (Mitchell et al. 2005).  Greater gains produce 

more profit with less variability when steers graze Big Bluestem ($75.19- 404.19 ha-1) 

instead of the ICLS ($-179.30- 202.9 ha-1) (Mitchell et al. 2005). Evidence suggests that 

big bluestem is likely a better option for perennial warm season grass pasture than 

switchgrass in Eastern Nebraska because it produces greater cattle gains. Despite other 

warm-season grass options, switchgrass was selected to be a part of the ICLS. 

Switchgrass was selected for the ICLS because of the recent interest switchgrass has 

received for use as a cellulosic biofuel (Mitchell et al. 2016; Mitchell et al. 2010; Vogel, 

Mitchell, Waldron, et al. 2014). Having multiple uses for a perennial grassland allows the 

producer to have management flexibility.  

For example, switchgrass can be used as a dual-purpose crop. Switchgrass has 

shown promise as a dual-purpose crop for both cattle production and cellulosic ethanol in 

Oklahoma. In Oklahoma, steers lightly grazing (2.2 steers ha-1) switchgrass for 81 days 

on average gain 0.83 kg hd-1 d-1 (Mosali et al. 2013; Biermacher et al. 2017). In addition 
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to grazing, the residual harvested switchgrass produces on average 10.6 Mg ha-1 (Mosali 

et al. 2013; Biermacher et al. 2017). The system management in Oklahoma is near 

identical to what the ICLS used. However, the steer gains on switchgrass were 25% less 

than and the residual hay yield was 80% less than the production in Oklahoma (Table 3-

6; Table 3-5). The difference in production explains the difference in profitability. In 

Oklahoma the system made between $232-523 ha-1 (Biermacher et al., 2017). The system 

in Oklahoma produced greater profitability than the ICLS (Table 3-4). Using switchgrass 

as a dual-purpose crop in Oklahoma is feasible, but not in Eastern Nebraska. This system 

likely does not work as well in Nebraska because of the reduced growing degree days and 

limited precipitation resulting in reduced residual biomass growth. However, the system 

could be more profitable in Eastern NE if the switchgrass is grazed for a shorter duration, 

leaving more growing degree days to produce greater biomass for residual hay 

production.  

Even though the grazing enterprise did not have reliable profitability, perennial 

grasslands still offer numerous environmental benefits (Asbjornsen et al. 2014). 

Therefore, perennial grasslands should still be considered when developing an ICLS. An 

alternative to purchasing cattle is renting cattle on the gain to graze the pasture. Renting 

on the gain eliminates the need for additional capital to purchase livestock. Therefore, the 

profitability of renting on the gain for the grazing enterprise was compared to continuous 

corn. The results show that renting cattle on the gain was not more profitable than 

continuous corn production either year (Table 3-4). Renting on an AUM basis also 

eliminates the need for additional capital to purchase livestock and is an alternative that 

could be explored as well. However, perennial grasses can also be harvested for hay to be 
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used as cattle feed. Since grazing the ICLS was not consistently profitable, the 

profitability of producing hay from the perennial grasslands in the ICLS were compared 

to continuous corn production. The findings indicate that hay production on marginally 

productive cropland can be more profitable than continuous corn production in Eastern 

NE (Table 3-4). Furthermore, additional findings indicate that when hay yield and price 

decrease, baling hay is still more profitable than continuous corn production 

(Supplementary Information O). Therefore, planting perennial grass varieties for hay 

production on marginally productive cropland instead of continuous corn in Eastern NE 

is more profitable. It is well known that perennial forages for hay production can be more 

profitable than row-crop systems in the Midwest. In Iowa, a diverse 4-yr cropping system 

including alfalfa for hay production is more profitable than the typical corn-soybean grain 

system (Liebman et al. 2008).  In Iowa, integrated systems with alfalfa hay production 

and livestock are similar in profit to non-integrated cash crop systems, however, their 

profitability is more variable (Poffenbarger et al. 2017). The integrated systems also 

require a greater amount of labor and capital (Poffenbarger et al. 2017). Previous findings 

in conjunction with our results illustrate that adopting a diversified hay production system 

instead of a grazing system may be the most secure option for producers in Eastern NE to 

achieve profitability.   

The profitability potential of the ICLS studied was limited because of the grazing 

system selected. The grazing system for the ICLS was selected to obtain cattle gains from 

each forage source individually. This was essential so the cattle weight gain potential 

from grazing the newly developed cultivar Liberty could be evaluated. Liberty was 

developed for cellulosic ethanol production; therefore, the biomass potential of the 
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cultivar is well known (Vogel, Mitchell, Casler, et al. 2014). However, this was the first 

grazing research on Liberty so its potential use for grazing was not well known. 

Alternative grazing systems could produce better outcomes for an ICLS in Eastern NE.  

Recommendations for the region suggest that switchgrass should be grazed 

uniformly in June and July or grazed in June with the re-growth grazed in August 

(Mitchell and Anderson 2008). The proposed grazing sequences maximize forage quality, 

which optimize cattle performance. Cattle in the ICLS spent 79-d (June-August) on the 

Liberty and Shawnee pastures and an average of 46-d on the Newell pasture (Table 3-6). 

Grazing switchgrass less, and smooth bromegrass more can improve cattle gain. In 

Central Iowa, cattle in a grazing system with smooth bromegrass (range 72-93-d) and 

switchgrass (range 27-56-d) gained 53.0-111.8 kg hd-1 (Moore et al. 2004). On average, 

cattle in this system gained 87.14 kg hd-1, whereas cattle grazing the ICLS Liberty gained 

on average 76.5 kg hd-1, and cattle grazing the ICLS Shawnee gained on average 79.5 kg 

hd-1 (Supplementary Information F and G). These findings suggest that grazing smooth 

bromegrass and switchgrass in more timely manners could improve the cattle 

performance in the ICLS. Additionally, cattle grazing big bluestem instead of switchgrass 

as the warm-season grass in these systems could produce greater gains (88.62 kg hd-1) 

than switchgrass or the ICLS (Moore et al. 2004). Furthermore, if cattle were to only 

graze the smooth bromegrass (99.38 kg hd-1) all season cattle gain could be maximized 

(Moore et al. 2004). Despite higher cattle gains from only grazing smooth bromegrass, 

including a warm-season pasture in the rotation provides a valuable rest to cool-season 

pastures (Moore et al. 2004). Another reasonable option to improve cattle gain is 

rotational grazing. Rotationally grazing switchgrass or big bluestem results in 2.76, and 
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1.81 times greater gain, respectively (George et al. 1997). It is apparent that using 

different warm-season pasture varieties and/or different grazing systems may improve the 

profitability potential for an ICLS in Eastern NE. Additionally, to capture animal 

performance on each component of the ICLS it was necessary to weigh steers after 

Newell grazing. The weighing process requires 7-d (Watson et al. 2013). This prevented 

the steers from grazing switchgrass at the peak of forage quality and livestock 

performance potential. 

Another way to improve the profitability potential of an ICLS with steer grazing 

is to consider different specialized market opportunities. Niche markets exist for different 

consumer demands; i.e. free-range, locally grown, grass-fed/finished, pasture-raised label 

claims (Russelle, Entz, and Franzluebbers 2007; Dimitri, Effland, and Conklin 2005; 

Asai et al. 2018; Parthasarathy Rao P. and Ndjeunga 2005; Entz et al. 2002). These labels 

provide a premium price to livestock producers for their production practices. For 

example, grass-finished or pasture-raised labels offer a premium price above cattle 

market prices (USDA Livestock Poultry and Grain Market News 2020). The premium 

could make these grazing systems more profitable. Additionally, direct to consumer 

markets provide additional premiums to the producer through locally raised label claims. 

Therefore, producers interested in adding grazed perennial grass enterprises should 

consider pursuing different markets including, locally grown, pasture-raised, and grass-

finished protein.  

It is important to realize that the economic analyses conducted are limited based 

on the assumptions made for the analyses. Additionally, the assumptions are based on the 

actual management of the field-scale model demonstration site. These assumptions 
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determine cost and revenue potential of enterprises and farms. Therefore, it is essential 

for producers considering an ICLS to develop their own enterprise budgets using their 

own set of assumptions. Evaluating each producer’s individual scenario will result in a 

more accurate picture of the profitability potential of implementing an ICLS. Evaluating 

the potential profitability of specific enterprises will help guide producer decision-

making.  

Future research should evaluate the potential of different grazing systems that 

maximize forage quality, therefore, maximizing cattle performance. Another research 

opportunity is to develop a different perennial grass grazing system with more desirable 

warm-season species to increase cattle performance. Additionally, an annual forage 

grazing system could be explored to create flexibility for the grower to either grow corn 

or grow cattle depending on markets and projected profitability. This study can serve as a 

framework for a producer to use to evaluate their profitability potential of converting to 

an ICLS.  

Conclusion  

Our results indicate ICLS with perennial grass vegetation and continuous corn 

have the potential to be more profitable than continuous corn on poorly drained cropland 

in Eastern NE. Incorporating perennial grass for either grazing or hay production in 

Eastern NE can increase farm profitability on marginal land while improving the farm’s 

environmental impact. Outputs from this research will be used to further develop model 

ICLS for Eastern NE. The primary purpose of the economic analysis was to evaluate the 

profitability of the ICLS in comparison to continuous corn production. The ICLS with 

switchgrass was not consistently more profitable than continuous corn production. 
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Secondly, we purposed to discover if baling hay only and not grazing the ICLS was 

profitable. Our evidence suggests that baling hay is not only consistently more profitable 

than grazing bromegrass and switchgrass, it is also more profitable than continuous corn 

production in Eastern NE. Our research can help guide future work on developing ICLS 

for marginal cropland in Eastern NE. It also will serve as a framework to help producers 

decide if adopting an ICLS is a viable option for their farm. 
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Table 3- 1. Web soil survey map units. 

Table of the total area for each soil map unit at the field-scale model demonstration site 

from Web Soil Survey.  

Map Unit Symbol Map Unit Name Hectares in AOI Percent in AOI 

3948 
Fillmore silt loam, terrace, 
occasionally ponded 2.80 13.8% 

7105 
Yutan silty clay loam, terrace, 2 
to 6 percent slopes, eroded 4.00 19.6% 

7280 
Tomek silt loam, 0 to 2 percent 
slopes 8.18 40.2% 

7340 
Filbert silt loam, 0 to 1 percent 
slopes 5.38 26.4% 
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Table 3- 2. Herbicide application rate for continuous corn in 2018 and 2019. 

List of herbicides, rates, and times of application for the continuous corn in the field-scale 

model demonstration site. 

Year Application  Herbicide  Rate        
L ha-1 

2018 

 Pre-emergent  

    Atrazine 4L 2.34 

  Balance  0.37 

    2,4-D 0.58 

 Post-emergent 

    Roundup Powermax 2.63 

  Roundup Powermax 2.34 

    Callisto 0.18 

2019    

  Pre-emergent      

  Accuron 4.68 

    LV6 2,4-D  0.39 

  Roundup Powermax 2.34 

  
Post-
emergent     

  Callisto 0.18 

    Roundup Powermax 1.75 

    Atrazine 4L 0.58 
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Table 3- 3. The revenue, cost, and profit per hectare for each enterprise by year. 

Comparison of the cost, revenue, and profit per hectare among each enterprise (corn, grazing, and hay) and the amount of land 

attributed to each enterprise in each system. The cost and revenue for the ICLS corn production and continuous corn production were 

determined for each year based on the budgets in Supplementary Information C. The corn yield for each year was the 8-ha field 

average from the model demonstration site. The cost and revenue for the grazing enterprise were determined for each year based on 

the budgets in supplementary information F and G. The cattle gains used were the average gain of the cattle in each grazing system. 

The hay cost and revenue were based on the budgets in supplementary information H and supplementary information J, respectively. 

The hay yield for each year was based on the residual harvested switchgrass biomass of each variety. The profit per hectare was 

calculated by subtracting the costs from the revenue for each enterprise. The number of hectares distributed to each enterprise of the 

Diversified ICLS were based on the actual hectares of the field-scale model demonstration site.  

 

Enterprise: Corn Grazing Hay Combined Grazing 

and Hay

Enterprise: Corn Grazing Hay Combined Grazing 

and Hay

Hectares 8 12 8 12 Hectares 8 12 8 12

Revenue ($ ha-1) 1067.48 2232.25 136.22 2323.06 Revenue ($ ha-1) 961.69 1829.99 144.19 1926.12

Cost ($ ha-1) 972.25 2087.89 48.77 2120.40 Cost ($ ha-1) 967.35 1971.40 46.71 2002.54

Profit ($ ha-1) 95.23 144.36 87.45 202.66 Profit ($ ha-1) -5.66 -141.41 97.48 -76.42

Enterprise: Corn Grazing Hay Enterprise: Corn Grazing Hay

Hectares 20 0 0 Hectares 20 0 0

Revenue ($ ha
-1

) 1067.48 - - Revenue ($ ha
-1

) 961.69 - -

Cost ($ ha-1) 972.25 - - Cost ($ ha-1) 967.35 - -

Profit ($ ha-1) 95.23 - - Profit ($ ha-1) -5.66 - -

Enterprise: Corn Grazing Hay

Combined Grazing 

and Hay Enterprise: Corn Grazing Hay

Combined Grazing 

and Hay

Hectares 8 12 8 12 Hectares 8 12 8 12

Revenue ($ ha
-1

) 1067.48 2167.52 181.62 2288.60 Revenue ($ ha
-1

) 961.69 1863.94 194.49 1993.60

Cost ($ ha-1) 972.25 2081.7 57.42 2119.98 Cost ($ ha-1) 967.35 1967.45 55.04 2004.14

Profit ($ ha-1) 95.23 85.82 124.2 168.62 Profit ($ ha-1) -5.66 -103.51 139.45 -10.54

Enterprise: Corn Grazing Hay

Combined Grazing 

and Hay Enterprise: Corn Grazing Hay

Combined Grazing 

and Hay

Hectares 8 12 8 12 Hectares 8 12 8 12

Revenue ($ ha
-1

) 1067.48 2296.97 90.81 2357.51 Revenue ($ ha
-1

) 961.69 1796.04 93.89 1858.63

Cost ($ ha-1) 972.25 2094.08 40.11 2120.82 Cost ($ ha-1) 967.35 1975.34 38.38 2000.93

Profit ($ ha-1) 95.23 202.89 50.7 236.69 Profit ($ ha-1) -5.66 -179.3 55.51 -142.29

20192018

Newell'-'Liberty'-'Newell' System Newell'-'Liberty'-'Newell' System

Newell'-'Shawnee'-'Newell' System Newell'-'Shawnee'-'Newell' System

Diversified ICLS Diversified ICLS

Continuous Corn Continuous Corn
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Table 3- 4. Comparison of net returns for the alternative systems using custom corn operations.  

Comparison of the enterprise return per hectare and whole system return in 2018 and 2019. Whole systems were based on 20-ha. The 

hay and grazing enterprise shared 8-ha of the same land base. The cost and revenue for the ICLS corn production and continuous corn 

production were determined for each year based on the budgets in Supplementary Information C. The corn yield for each year was 

based on the 8-ha field average from the model demonstration site. The cost and revenue for the grazing enterprise were determined 

for each year based on the budgets in supplementary information F and G. The cattle gains for each year were the average gains of the 

cattle in each grazing system. The hay cost and revenue for the ICLS including grazing were based on the budgets in supplementary 

information H and G, respectively. The hay yield for each year was based on the residual harvested switchgrass biomass. The hay 

yield for the hay only scenario is based on the variety’s proven yield from their plant registrations. The hay cost and revenue for the 

hay only scenario is based on the budget table in Supplementary Information M. The rent on the gain scenario was based on the 

budget in Supplementary Information L.  

 

 

Continuous Corn 

Year Enterprise: Grazing Hay Corn Grazing Hay Corn

 'Newell-

Liberty-

Newell' 

Grazing

 'Newell-

Shawnee-

Newell' 

Grazing

 'Liberty' 

Hay 

 'Shawnee' 

Hay Corn Corn

 'Newell-

Liberty-

Newell' 

Grazing

 'Newell-

Shawnee-

Newell' 

Grazing

 'Liberty' 

Hay 

 'Shawnee' 

Hay Corn  'Newell'  'Shawnee'  'Liberty' Corn

Return per 

hectare
85.82 124.19 95.23 202.90 50.71 95.23 85.82 202.90 124.19 50.71 95.23 95.23 -30.59 28.10 124.19 50.71 95.23 377.63 602.49 857.31 95.23

# of hectares 12 8 8 12 8 8 6 6 4 4 8 20 6 6 4 4 8 4 4 4 8

return to 

enterprise
1041.90 1005.20 770.80 2463.30 410.40 770.80 520.95 1231.65 502.60 205.20 770.80 1927.00 -185.70 170.55 502.60 205.20 770.80 1528.20 2438.20 3469.40 770.80

return to 

system
1927.00

Return per 

hectare
-103.51 139.47 -5.66 -179.30 55.52 -5.66 -103.51 -179.30 139.47 55.52 -5.66 -5.66 -126.54 -164.32 139.47 55.52 -5.66 477.06 763.16 1064.85 -5.66

# of hectares 12 8 8 12 8 8 6 6 4 4 8 20 6 6 4 4 8 4 4 4 8

return to 

enterprise
-1256.70 1128.80 -45.80 -2176.80 449.40 -45.80 -628.35 -1088.40 564.40 224.70 -45.80 -114.50 -768.15 -997.50 564.40 224.70 -45.80 1930.60 3088.40 4309.30 -45.80

return to 

system
-114.50-173.70 -1773.20 -973.45 -1022.35 9282.50

2018

1463.45 8206.60

2019

2817.90 3644.50 3231.20

Systems Returns Custom Corn Operations
 'Newell-Liberty-Newell' ICLS  'Newell-Shawnee-Newell'                        

ICLS

Diversified ICLS Rent on the Gain ICLS Hay Only ICLS 



 

 

1
2
9
 

Table 3- 5. Production and market price of each commodity in 2018 and 2019.  

Comparison of the productivity and price of each commodity by year (corn, grazing, and hay). The corn yield, hay yield, and cattle 

gain were based on production data collected from the site.  The corn price was based on the average corn price in Nebraska in 

October each year.  The cattle prices were based on the price closest to the date of purchase and selling for the weight classes of the 

steers. The data used to calculate this was provided by the Livestock Marketing Information Center (LMIC). The hay prices were the 

average price of fair quality hay in Nebraska over November and December for each year. The hay prices were generated via a custom 

report through USDA-NASS.  

 

 

 

 

 

 

 

 

 

 

 

 

Yield Price Gain

Purchase 

Price

Selling 

Price Gain

Purchase 

Price 

Selling 

Price Gain

Purchase 

Price 

Selling 

Price Yield Price Yield Price 

kg ha -1 $ kg -1 kg ha -1 $ kg -1 $ kg -1 kg ha -1 $ kg -1 $ kg -1 kg ha -1 $ kg -1 $ kg -1 kg ha -1 $ kg -1 kg ha-1 $ kg -1

2018 7551.82 0.14 97.21 2.99 3.28 81.40 2.99 3.27 113.01 2.99 3.29 2354.45 0.08 1177.22 0.08

2019 6449.49 0.15 133.87 3.81 3.26 145.30 3.81 3.26 122.43 3.81 3.26 2194.68 0.09 1059.50 0.09

Corn Diversified Grazing ICLS  'Newell'-'Liberty'-'Newell' 'Newell'-'Shawnee'-'Newell' Liberty Hay Shawnee Hay
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Table 3- 6. Cattle performance based on forage type for each year.  

The cattle gains were based on the data collected from the field-scale model demonstration site. The grazing days were the actual 

number of days the cattle grazed each pasture. The initial and final body weight was the average of the cattle at the beginning and 

conclusion of grazing.  

 

 

 

 

 

 

 

 

Initial BW Final BW Average Rate of Gain Range of ADG Beef Gain on Pasture

kg kg kg hd -1 d -1 kg kg ha -1

2018

Spring Newell 30 393.7 410.5 0.55 -0.56 to 1.19 76.0

Liberty 79 416 448 0.41 0.21 to 0.70 72.5

Shawnee 79 413 461 0.61 0.31 to 0.86 106.8

Fall Newell 13 456.8 459.5 0.19 -1.05 to 1.81 11.1

2019

Spring Newell 26 288.9 336.1 1.81 1.17 to 2.95 210.9

Liberty 79 339.3 369.7 0.38 0.05 to 0.62 67.3

Shawnee 79 339.7 355.6 0.2   -0.11 to 0.42 36

Fall Newell 23 362.42 379.2 0.72 0.32 to 1.16 73.2

Grazing Days
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Figure 3- 1. Monthly precipitation in Mead, NE.  

Precipitation received at Mead, NE for 2018 and 2019. The 30-yr average is for Saunders 

County, where Mead is located. Data obtained from the High Plains Regional Climate 

Center.  
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Figure 3- 2. Web soil survey map.  

A map of the field-scale demonstration site with the locations of the soil map units.  
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Figure 3- 3. Management by component by year. 

Outline of how each component of the field-scale model demonstration site was managed each year.  

 

 

 



134 

 

 

 

Figure 3- 4. Grazing sequence in 2018 and 2019. 

Diagram of the grazing systems used in 2018 and 2019. The cattle in the ‘Liberty’ system 

grazed the Liberty switchgrass & the cattle in the ‘Shawnee’ system grazed the Shawnee 

switchgrass during June-August. The herd was combined to graze the Newell smooth 

bromegrass in both Spring and Autumn.  
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Figure 3- 5. The revenue, cost, and net return of systems.  

Comparison of the cost, revenue, and net return among each enterprise (corn, grazing, and hay) and the evaluated systems. The yellow 

bar represents the corn enterprise, the green bar with dots represents the grazing enterprise, and the green bar with diagonal stripes 

represents the hay enterprise. The cost and revenue for the ICLS corn production and continuous corn production were determined for 

each year based on the budgets in Supplementary Information C. The corn yield for each year was the 8-ha field average from the 

model demonstration site. The cost and revenue for the grazing enterprise were determined for each year based on the budgets in 

supplementary information F and G. The cattle gains for each year were the average gains of the cattle in each grazing system. The 

hay cost and revenue were based on the budgets in supplementary information H and supplementary information J, respectively. The 

hay yield for each year was based on the residual harvested switchgrass biomass. The net return was calculated by subtracting the 

costs from the revenue for each enterprise. The system net return is listed above the net return stacked bar for each year. The system 

net return is the addition of each of the enterprise net returns. Parentheses indicate negative net returns for the system.
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Supplementary Information  

A. Corn budget with machinery ownership for continuous corn system in 2018 and 2019. 

 

Continuous Corn 2018 UNL Crop Budgets 2019 21-Corn

Unit Power Imp. Power Imp.

Spray Spring Burndown Herbicide 1 1.00 0.30 0.35 0.64 1.08 0.81 4.18 10.33$          

Spread Fertilizer 1 1.57 0.87 0.68 0.00 2.12 0.00 5.24 12.95$          

Plant No-Till 1 2.40 0.97 0.86 4.41 2.70 6.13 17.47 43.17$          

Spray Herbicide 2 2.00 0.60 0.69 1.28 2.16 1.63 8.36 20.66$          

Combine Dryland Corn 1 3.14 4.30 7.31 1.53 5.84 4.33 26.45 65.36$          

Cart 120.28 bu 1.72 0.67 0.67 1.10 2.11 0.65 6.92 17.10$          

Truck Custom

Dry Grain Custom -$              

Total for Field Operations 11.83 7.71 10.56 8.96 16.01 13.55 68.62 169.56$        

Materials & Services Rate Unit

Glyphosate w/Surfactant 1 100% 68 ounce 0.12 7.97 19.69$          

2,4-D Ester LV4 1 100% 0.5 pint 2.13 1.06 2.62$            

46-0-0 2 100% 125 lbs N 0.42 52.50 129.73$        

Balance Flexx 2 100% 5 ounce 3.70 18.50 45.71$          

Corn SmartStax RIB Complete 3 100% 26.4 k seed 3.75 99.00 244.63$        

Atrazine 4L 4 100% 1 quart 3.25 3.25 8.03$            

Laudis 4 100% 2.5 ounce 4.45 11.13 27.50$          

Armezon Pro 4 0% 14 ounce 1.33 0.00 -$              

Haul Grain Bushels 8 100% 120.28 bushel 0.11 13.23 32.69$          

Dry 2 Points Removed 9 10% 120.28 bushel 0.08 0.96 2.37$            

Scouting Dryland Corn 100% 1 acre 7.00 7.00 17.30$          

25.00 25.00 61.78$          -$              

Total Materials & Services 239.60 592.06$        

Total listed costs for Field Operations and Materials and Services 308.22 761.63$        

Interest on Operations Capital 278.66$    5.50% for 6.0 mo. 7.66 18.94$          

Total Operating and Use Related Ownership Costs 315.88 780.56$        

Overhead    (accounting, liability insurance, vehicle cost, office expense) 20.00 49.42$          

Real Estate Opportunity 3,100$          3.00% 93.00 229.81$        

Real Estate Taxes 3,100$          1.35% 41.85 103.41$        

Total Cost per Acre Including Overhead 470.73 1,163.21$    

Total Cost with No Real Estate Opportunity Cost Per Acre 377.73 933.40$        

Revenue Per Acre 120.28 bu per acre @ $3.55 per bu 426.99 1,055.12$    

$5 per acre cornstalk rental rate 5.00 12.36$          

Total Revenue Per Acre 431.99 1,067.48$    

Return Above All Cost Per Acre -38.74 (95.73)$        

Return Above All Cost Except Real Estate Opportunity Per Acre 54.26 134.08$        

Source: https://cropwatch.unl.edu/budgets

Total           

per hectare

Total           

per hectare

Total             

per acre

Applied 

Price

Times 

or Qty

Labor @ 

$20.00 /Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Ownership

Herbicide

Herbicide

Fertilizer

Herbicide

Seed

Herbicide

Herbicide

Herbicide

Operation 

Index

Percent 

Acres 

Applied

Application 

Field Operations

per acre @

Custom

Custom

Scouting

Crop Insurance

cash expense @

Dryland (State) per acre @
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Continuous Corn 2019 UNL Crop Budgets 2019 21-Corn

Unit Power Imp. Power Imp.

Spray Spring Burndown Herbicide 1 1.00 0.30 0.35 0.64 1.08 0.81 4.18 10.33$         

Spread Fertilizer 1 1.57 0.87 0.68 0.00 2.12 0.00 5.24 12.95$         

Plant No-Till 1 2.40 0.97 0.86 4.41 2.70 6.13 17.47 43.17$         

Spray Herbicide 1 1.00 0.30 0.35 0.64 1.08 0.81 4.18 10.33$         

Combine Dryland Corn 1 3.14 4.30 7.31 1.53 5.84 4.33 26.45 65.36$         

Cart 102.72 bu 1.47 0.57 0.58 0.94 1.80 0.55 5.91 14.60$         

Truck Custom

Dry Grain Custom -$             

Total for Field Operations 10.58 7.31 10.13 8.16 14.62 12.63 63.43 156.74$       

Materials & Services Rate Unit

Glyphosate w/Surfactant 1 100% 56 ounce 0.12 6.56 16.21$         

Acuron 1 100% 2 quart 15.00 30.00 74.13$         

46-0-0 2 100% 125 lbs N 0.42 52.50 129.73$       

2,4-D Ester LV4 2 100% 0.333 pint 2.13 0.71 1.75$            

Corn SmartStax RIB Complete 3 100% 26.4 k seed 3.75 99.00 244.63$       

Laudis 4 100% 2.5 ounce 4.45 11.13 27.50$         

Atrazine 4L 4 100% 0.25 quart 3.25 0.81 2.00$            

Haul Grain Bushels 8 100% 102.72 bushel 0.11 11.30 27.92$         

Dry 2 Points Removed 9 10% 102.72 bushel 0.08 0.82 2.03$            

Scouting Dryland Corn 100% 1 acre 7.00 7.00 17.30$         

25.00 25.00 61.78$         -$             

Total Materials & Services 244.83 604.99$       

Total listed costs for Field Operations and Materials and Services 308.26 761.73$       

Interest on Operations Capital 281.01$  5.50% for 6.0 mo. 7.73 19.10$         

Total Operating and Use Related Ownership Costs 315.99 780.82$       

Overhead    (accounting, liability insurance, vehicle cost, office expense) 20.00 49.42$         

Real Estate Opportunity 3,100$          3.00% 93.00 229.81$       

Real Estate Taxes 3,100$          1.35% 41.85 103.41$       

Total Cost per Acre Including Overhead 470.84 1,163.46$    

Total Cost with No Real Estate Opportunity Cost Per Acre 377.84 933.66$       

Revenue Per Acre 102.723 bu per acre @ $3.74 per bu 384.18 949.34$       

$5 per acre cornstalk rental rate 5.00 12.36$         

Total Revenue Per Acre 389.18 961.69$       

Return Above All Cost Per Acre -81.65 (201.77)$      

Return Above All Cost Except Real Estate Opportunity Per Acre 11.35 28.04$         

Source: https://cropwatch.unl.edu/budgets

Total           

per hectare

Total           

per hectare

Total             

per acre

Field Operations

Times 

or Qty

Labor @ 

$20.00 

/Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Ownership

per acre @

Custom

Custom

Scouting

Crop Insurance

cash expense @

Dryland (State) per acre @

Herbicide

Herbicide

Fertilizer

Herbicide

Seed

Herbicide

Herbicide

Operation 

Index

Percent 

Acres 

Applied

Application 
Applied 

Price
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B. Corn budget with machinery ownership for ICLS in 2018 and 2019. 

 

ICLS Corn 2018 UNL Crop Budgets 2019 21-Corn

Unit Power Imp. Power Imp.

Spray Spring Burndown Herbicide 1 1.00 0.30 0.35 0.64 2.70 2.03 7.02 17.35$          

Spread Fertilizer 1 1.57 0.87 0.68 0.00 2.12 0 5.24 12.95$          

Plant No-Till 1 2.40 0.97 0.86 4.41 6.75 15.33 30.72 75.91$          

Spray Herbicide 2 2.00 0.60 0.69 1.28 5.40 4.08 14.05 34.72$          

Combine Dryland Corn 1 3.14 4.30 7.31 1.53 14.60 10.83 41.71 103.07$        

Cart 120.28 bu 1.72 0.67 0.67 1.10 5.28 1.63 11.06 27.33$          

Truck Custom

Dry Grain Custom -$              

Total for Field Operations 11.83 7.71 10.56 8.96 36.85 33.88 109.80 271.32$        

Materials & Services Rate Unit

Glyphosate w/Surfactant 1 100% 68 ounce 0.12 7.97 19.69$          

2,4-D Ester LV4 1 100% 0.5 pint 2.13 1.06 2.62$            

46-0-0 2 100% 125 lbs N 0.42 52.50 129.73$        

Balance Flexx 2 100% 5 ounce 3.70 18.50 45.71$          

Corn SmartStax RIB Complete 3 100% 26.4 k seed 3.75 99.00 244.63$        

Atrazine 4L 4 100% 1 quart 3.25 3.25 8.03$            

Laudis 4 100% 2.5 ounce 4.45 11.13 27.50$          

Armezon Pro 4 0% 14 ounce 1.33 0.00 -$              

Haul Grain Bushels 8 100% 120.28 bushel 0.11 13.23 32.69$          

Dry 2 Points Removed 9 10% 120.28 bushel 0.08 0.96 2.37$            

Scouting Dryland Corn 100% 1 acre 7.00 7.00 17.30$          

25.00 25.00 61.78$          -$              

Total Materials & Services 239.60 592.06$        

Total listed costs for Field Operations and Materials and Services 349.40 863.38$        

Interest on Operations Capital 278.66$    5.50% for 6.0 mo. 7.66 18.94$          

Total Operating and Use Related Ownership Costs 357.06 882.32$        

Overhead    (accounting, liability insurance, vehicle cost, office expense) 20.00 49.42$          

Real Estate Opportunity 3,100$          3.00% 93.00 229.81$        

Real Estate Taxes 3,100$          1.35% 41.85 103.41$        

Total Cost per Acre Including Overhead 511.91 1,264.96$    

Total Cost with No Real Estate Opportunity Cost Per Acre 418.91 1,035.16$    

Revenue Per Acre 120.28 bu per acre @ $3.55 per bu 426.99 1,055.12$    

$5 per acre cornstalk rental rate 5.00 12.36$          

Total Revenue Per Acre 431.99 1,067.48$    

Return Above All Cost Per Acre -79.92 (197.48)$      

Return Above All Cost Except Real Estate Opportunity Per Acre 13.08 32.32$          

Source: https://cropwatch.unl.edu/budgets

Ownership costs of machinery are increased by 2.5x to reflect 60% less land planted to corn

Total           

per hectare

Total             

per acre

Total           

per hectare

Applied 

Price

Field Operations

Times 

or Qty

Labor @ 

$20.00 /Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Ownership

per acre @

Custom

Custom

Scouting

Crop Insurance

cash expense @

Dryland (State) per acre @

Herbicide

Herbicide

Fertilizer

Herbicide

Seed

Herbicide

Herbicide

Herbicide

Operation 

Index

Percent 

Acres 

Applied

Application 
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ICLS Corn 2019 UNL Crop Budgets 2019 21-Corn

Unit Power Imp. Power Imp.

Spray Spring Burndown Herbicide 1 1.00 0.30 0.35 0.64 2.70 2.03 7.02 17.35$            

Spread Fertilizer 1 1.57 0.87 0.68 0.00 2.12 0.00 5.24 12.95$            

Plant No-Till 1 2.40 0.97 0.86 4.41 6.75 15.33 30.72 75.91$            

Spray Herbicide 1 1.00 0.30 0.35 0.64 2.70 2.03 7.02 17.35$            

Combine Dryland Corn 1 3.14 4.30 7.31 1.53 14.60 10.83 41.71 103.07$          

Cart 102.72 bu 1.47 0.57 0.58 0.94 4.50 1.38 9.44 23.33$            

Truck Custom

Dry Grain Custom -$                

Total for Field Operations 10.58 7.31 10.13 8.16 33.37 31.58 101.15 249.95$          

Materials & Services Rate Unit

Glyphosate w/Surfactant 1 100% 56 ounce 0.12 6.56 16.21$            

Acuron 1 100% 2 quart 15.00 30.00 74.13$            

46-0-0 2 100% 125 lbs N 0.42 52.50 129.73$          

2,4-D Ester LV4 2 100% 0.333 pint 2.13 0.71 1.75$               

Corn SmartStax RIB Complete 3 100% 26.4 k seed 3.75 99.00 244.63$          

Laudis 4 100% 2.5 ounce 4.45 11.13 27.50$            

Atrazine 4L 4 100% 0.25 quart 3.25 0.81 2.00$               

Haul Grain Bushels 8 100% 102.72 bushel 0.11 11.30 27.92$            

Dry 2 Points Removed 9 10% 102.72 bushel 0.08 0.82 2.03$               

Scouting Dryland Corn 100% 1 acre 7.00 7.00 17.30$            

25.00 25.00 61.78$            -$                

Total Materials & Services 244.83 604.99$          

Total listed costs for Field Operations and Materials and Services 345.98 854.93$          

Interest on Operations Capital 281.01$  5.50% for 6.0 mo. 7.73 19.10$            

Total Operating and Use Related Ownership Costs 353.71 874.03$          

Overhead    (accounting, liability insurance, vehicle cost, office expense) 20.00 49.42$            

Real Estate Opportunity 3,100$          3.00% 93.00 229.81$          

Real Estate Taxes 3,100$          1.35% 41.85 103.41$          

Total Cost per Acre Including Overhead 508.56 1,256.67$       

Total Cost with No Real Estate Opportunity Cost Per Acre 415.56

Revenue Per Acre 102.723 bu per acre @ $3.74 per bu 384.18

$5 per acre cornstalk rental rate 5.00 12.36$            

Total Revenue Per Acre 389.18 961.69$          

Return Above All Cost Per Acre -119.37 (294.98)$         

Return Above All Cost Except Real Estate Opportunity Per Acre -26.37 (65.17)$           

Source: https://cropwatch.unl.edu/budgets

Ownership costs of machinery are increased by 2.5x to reflect 60% less land planted to corn

per acre @

Custom

Custom

Scouting

Crop Insurance

cash expense @

Dryland (State) per acre @

Herbicide

Herbicide

Fertilizer

Herbicide

Seed

Herbicide

Herbicide

Operation 

Index

Percent 

Acres 

Applied

Application 

Field Operations

Times 

or Qty

Total           per 
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Total           per 
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Total             
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$20.00 
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Total             
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Ownership
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C. Corn budget with custom farming in 2018 and 2019.  

 

Source Services Times or Quantity Custom Rate Total per Acre Total per Hectare
1 Spray Spring Burndown Herbicide 1 7.16 7.16 17.69
2

Spread Fertilizer 1 5.70 5.70 14.08
3

Plant No-Till 1 19.95 19.95 49.30
1

Spray Herbicide 2 7.16 14.32 35.39
4 Combine 1 36.00 36.00 88.96
5

Haul Grain 1 13.23 13.23 32.69
5 Dry Grain (10% of total acres) 1 0.96 0.96 2.37
5

Crop Insurance 1 25.00 25.00 61.78
5 Scouting 1 7.00 7.00 17.30

Total Services: 129.32 319.56

Materials Application Rate per Acre Rate per Unit Total per Acre Total per Hectare
5 Glyphosate w/Surfactant 68 fl oz 0.12 7.97 19.69
5 2,4-D Ester LV4 0.5 pint 2.13 1.06 2.62
5 46-0-0 125 lb of N 0.42 52.50 129.73
5 Balance Flexx 5 fl oz 3.7 18.50 45.71
5 Corn SmartStax RIB Complete 26,400 seeds 3.75 99.00 244.63
5 Atrazine 4L 1 quart 3.25 3.25 8.03
5 Laudis 2.5 fl oz 4.45 11.13 27.50

Total Materials: 193.41 477.93

Total costs for materials & Services: 322.73 797.48
5 Interest on Operations Capital 5.5% for 6 mos 8.88 21.93

Total Operating Expenses: 331.61 819.41

5 Overhead 20.00 49.42
5 Real Estate Opportunity $3100 per acre at 3% 93.00 229.81
5 Real Estate Taxes $3100 per acre at 1.35% 41.85 103.41

Total Cost Including Overhead: 486.46 1202.05

Total Cost with No Real Estate Opportunity Cost: 393.46 972.25

Revenue Unit Price per Unit Total per Acre Total per Hectare

120.28 bu 3.55 426.99 1055.12

1 ac 5 5.00 12.36

Total Revenue: 431.99 1067.48

Return Above All Cost: -54.46 -134.58

Return Above All Cost Except Real Estate Opportunity: 38.54 95.23

1
Spraying Weed Control, boom, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
2

Dry Fertilizer Solid Broadcast, including power, labor & applicator, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
3 Planting Row Crops, no coulters or row cleaning devices, includes no-till, without band applicator, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
4 Combining Dryland Corn, flat rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
5

Based on 2019 UNL Crop Budgets 

Budget 21-No Till, Continuous Dryland Corn

Herbicide products and rates are the actual applied to the ICLS demonstration site

Custom Rate Corn Budget 2018 
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Source Services Times or Quantity Custom Rate Total per Acre Total per Hectare
1

Spray Spring Burndown Herbicide 1 7.16 7.16 17.69
2

Spread Fertilizer 1 5.70 5.70 14.08
3 Plant No-Till 1 19.95 19.95 49.30
1

Spray Herbicide 1 7.16 7.16 17.69
4

Combine 1 36.00 36.00 88.96
5

Haul Grain 1 11.30 11.30 27.92
5

Dry Grain (10% of total acres) 1 0.82 0.82 2.03
5

Crop Insurance 1 25.00 25.00 61.78
5 Scouting 1 7.00 7.00 17.30

Total Services: 120.09 296.75

Materials Application Rate per Acre Rate per Unit Total per Acre Total per Hectare
5 Glyphosate w/Surfactant 56 fl oz 0.12 6.56 16.21
5 2,4-D Ester LV4 0.33 pt 2.13 0.71 1.75
5

46-0-0 125 lb of N 0.42 52.50 129.73
5 Acuron 2 quarts 15 30.00 74.13
5

Corn SmartStax RIB Complete 26,400 seeds 3.75 99.00 244.63
5

Atrazine 4L 0.25 quart 3.25 0.81 2.00
5 Laudis 2.5 fl oz 4.45 11.13 27.50

Total Materials: 200.71 495.96

Total costs for materials & Services: 320.80 792.71
5 Interest on Operations Capital 5.5% for 6 mos 8.82 21.80

Total Operating Expenses: 329.62 814.51

5 Overhead 20.00 49.42
5 Real Estate Opportunity $3100 per acre at 3% 93.00 229.81
5 Real Estate Taxes $3100 per acre at 1.35% 41.85 103.41

Total Cost Including Overhead: 484.47 1197.15

Total Cost with No Real Estate Opportunity Cost: 391.47 967.35

Revenue Unit Price per Unit Total per Acre Total per Hectare

102.723 bu 3.74 384.18 949.34

1 ac 5 5.00 12.36

Total Revenue: 389.18 961.69

Return Above All Cost: -95.29 -235.46

Return Above All Cost Except Real Estate Opportunity: -2.29 -5.65

1
Spraying Weed Control, boom, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
2 Dry Fertilizer Solid Broadcast, including power, labor & applicator, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
3 Planting Row Crops, no coulters or row cleaning devices, includes no-till, without band applicator, rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
4 Combining Dryland Corn, flat rate per acre

Average Rate for Eastern NE Custom Rate Survey 2018
5 Based on 2019 UNL Crop Budgets 

Budget 21-No Till, Continuous Dryland Corn

Herbicide products and rates are the actual applied to the ICLS demonstration site

Custom Rate Corn Budget 2019 
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D. Pasture amortized establishment costs over a 30 year useful life.  

 

E. Newell smooth bromegrass pasture management cost.  

 

 

 

1 Seeding Rate (Kg Ha-1) 5.6 1 Seeding Rate (Kg Ha-1) 5.0
1

Seed Cost ($ Kg
-1

 ) 22.04
1

Seed Cost ($ Kg
-1

 ) 33.06

Seeding Cost per Hectare 123.55$         Seeding Cost per Hectare 166.80$        

$ ha-1 $ ha-1

1 Custom Planting 39.66 1 Custom Planting 39.66
1

Pre Herbicide 16.61
1

Pre Herbicide 16.61
1 Post Herbicide 15.81 1 Post Herbicide 15.81
1 Custom Spray 37.31 1 Custom Spray 37.31
1 Interest 7.76 1 Interest 9.22
2

Land Charge 103.41
2

Land Charge 103.41
3 Water Development 263.54 3 Water Development 263.54
4 Fencing 423.29 4 Fencing 423.29

Total Cost of Establishment per Hectare 1,030.95$     Total Cost of Establishment per Hectare 1,075.65$     

Assumed Pasture Life (years) 30 Assumed Pasture Life (years) 30

Interest Rate (%) 5.5 Interest Rate (%) 5.5

Yearly Establishment Cost per Hectare 70.93$           Yearly Establishment Cost per Hectare 74.01$           

Sources
1 ISU Ag Decision Maker Converting Cropland to Switchgrass
2

UNL Crop Budgets, land value $3,100 @ 1.35%
3 Big Bluestem Pasture in the Great Plains: An Alternative for Dryland Corn

Rob Mitchell, Ken Vogel, Gary Varvel, Terry Klopfenstein, Dick Clark, Bruce Anderson 

120 foot well, tank, and solar power
4

2018 UNL Custom Rate Survey State Average for Fencing Cost

$9,136 per mile of fence. Cost is based on fencing an 80 acre pasture

 'Newell' Smooth Bromegrass  

Pasture Establishment 

 'Shawnee' & 'Liberty' Switchgrass 

Pasture Establishment 

$ ac-1 $ ha -1

Fertilizer Application 5.00$      12.35$    ISU Ag Decision Maker Converting Cropland to Switchgrass

Fertilizer 22.00$    54.34$    ISU Ag Decision Maker Converting Cropland to Switchgrass

Interest on Operating Costs 0.90$      2.22$      ISU Ag Decision Maker Converting Cropland to Switchgrass

Land Taxes 41.85$    103.37$  

Total costs 69.75$    172.28$  

Yearly Management 
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F. Steer budget for Newell-Liberty-Newell grazing system in 2018 and 2019. 

 

Expenses
1 Average Purchase Weight of Cattle (Kg) 392
2

Price $ kg
-1

2.99
3 Number of Cattle 9
3

Hectares of Pasture Grazed 6

Cost of Buying Stockers per Hectare 1,738.01$        

4 Interest for Purchasing Cattle @8% for 4 mos 46.35
5 Labor 16.65
5

Vet 7.81
6

Mineral 9.04
7

Transportation 13.17
5

Marketing 5.31

Additional Cost with Owning Yearlings per Hectare 98.34$              

8 Amoritized Establishment Cost per Hectare 72.99
(weighted average, 4 hectares of switchgrass & 2 

hectares of smooth bromegrass)
9

Fertilizer per Hectare 54.36
9 Spread Fertilizer per Hectare 12.36
9

Interest on Operating Capital per Hectare 2.22
10

Real Estate Tax per Hectare 103.41

Cost of Pasture per Hectare 245.35$            

Total Cost of System per Hectare 2,081.70$        

Revenue
1

Average Selling Weight of Cattle (Kg) 447
2 Price $ kg-1 3.27
3

Number of Cattle 9
3

Hectares of Pasture Grazed 6

Total Revenue Per Hectare 2,167.52$        

Net Profit per Hectare 85.82$              

Sources
1

Actual average weight of the cattle at the beginning of 

grazing in May and at the conclusion of grazing in 

September from the field-scale model demonstration 

site
2

Average cattle market price in NE on the date bought or 

sold (when they went on and off pasture) price data 

from LMCI
3

Number of cattle used to graze the system and number 

of hectares in the actual system 
4

ISU Stocker Cattle Budget 
5 Average cost (2008-2018) in Nebraska, South Dakota, 

and North Dakota. Reported from FINBIN University of 

Minnesota
6

Cost of mineral fed in the field-scale model 

demonstration site. 2 oz per head per day 
7 UNL 2018 Custom Rate Survey for hauling cattle using a 

gooseneck trailer. Based on 10 miles from the Eastern 

Nebraska Research and Extension to Wahoo Livestock 

Sales 
8 See establishment cost tables 
9 ISU Ag Decision Maker Converting Cropland to Switchgrass

10 UNL Crop Budgets, land value $3,100 @ 1.35%

Newell-Liberty-Newell  System 2018
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Expenses
1

Average Purchase Weight of Cattle (Kg) 288
2

Price $ kg
-1

3.81
3 Number of Cattle 9
3 Hectares of Pasture Grazed 6

Cost of Buying Stockers per Hectare 1,626.30$        

4
Interest for Purchasing Cattle @8% for 4 mos 43.37

5 Labor 16.65
5

Vet 7.81
6

Mineral 9.49
7 Transportation 13.17
5

Marketing 5.31

Additional Cost with Owning Yearlings per Hectare 95.80$              

8 Amoritized Establishment Cost per Hectare 72.99

(weighted average, 4 hectares of switchgrass & 2 hectares 

of smooth bromegrass)
9

Fertilizer per Hectare 54.36
9 Spread Fertilizer per Hectare 12.36
9

Interest on Operating Capital per Hectare 2.22
10

Real Estate Tax per Hectare 103.41

Cost of Pasture per Hectare 245.35$            

Total Cost of System per Hectare 1,967.45$        

Revenue
1 Average Selling Weight of Cattle (Kg) 386.12
2 Price $ kg-1 3.26
3 Number of Cattle 9
3 Hectares of Pasture Grazed 6

Total Revenue Per Hectare 1,863.94$        

Net Profit per Hectare (103.51)$          

Sources
1

Actual average weight of the cattle at the beginning of 

grazing in May and at the conclusion of grazing in 

September from the field-scale model demonstration site
2 Average cattle market price in NE on the date bought or 

sold (when they went on and off pasture) price data from 

LMCI
3 Number of cattle used to graze the system and number of 

hectares in the actual system 
4

ISU Stocker Cattle Budget 
5 Average cost (2008-2018) in Nebraska, South Dakota, and 

North Dakota. Reported from FINBIN University of 

Minnesota
6

Cost of mineral fed in the field-scale model demonstration 

site. 2 oz per head per day 
7

UNL 2018 Custom Rate Survey for hauling cattle using a 

gooseneck trailer. Based on 10 miles from the Eastern 

Nebraska Research and Extension to Wahoo Livestock 

Sales 
8 See establishment cost tables 
9 ISU Ag Decision Maker Converting Cropland to Switchgrass

10
UNL Crop Budgets, land value $3,100 @ 1.35%

Newell-Liberty-Newell  System 2019
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G. Steer budget for Newell-Shawnee-Newell grazing system in 2018 and 2019. 

 

Expenses
1 Average Purchase Weight of Cattle (Kg) 395
2 Price $ kg-1 2.99
3 Number of Cattle 9
3 Hectares of Pasture Grazed 6

Cost of Buying Stockers per Hectare 1,750.07$        

4 Interest for Purchasing Cattle @8% for 4 mos 46.67
5 Labor 16.65
5 Vet 7.81
6 Mineral 9.04
7 Transportation 13.17
5 Marketing 5.31

Additional Cost with Owning Yearlings per Hectare 98.66$              

8
Amoritized Establishment Cost per Hectare 72.99

(weighted average, 4 hectares of switchgrass & 2 hectares of 

smooth bromegrass)
9 Fertilizer per Hectare 54.36
9 Spread Fertilizer per Hectare 12.36
9

Interest on Operating Capital per Hectare 2.22
10 Real Estate Tax per Hectare 103.41

Cost of Pasture per Hectare 245.35$            

Total Cost of System per Hectare 2,094.08$        

Revenue
1 Average Selling Weight of Cattle (Kg) 471
2 Price $ kg-1 3.29
3 Number of Cattle 9
3

Hectares of Pasture Grazed 6

Total Revenue Per Hectare 2,296.97$        

Net Profit per Hectare 202.89$            

Sources
1 Actual average weight of the cattle at the beginning of grazing 

in May and at the conclusion of grazing in September from 

the field-scale model demonstration site
2

Average cattle market price in NE on the date bought or sold 

(when they went on and off pasture) price data from LMCI
3 Number of cattle used to graze the system and number of 

hectares in the actual system 
4 ISU Stocker Cattle Budget 
5

Average cost (2008-2018) in Nebraska, South Dakota, and 

North Dakota. Reported from FINBIN University of 

Minnesota
6 Cost of mineral fed in the field-scale model demonstration 

site. 2 oz per head per day 
7

UNL 2018 Custom Rate Survey for hauling cattle using a 

gooseneck trailer. Based on 10 miles from the Eastern 

Nebraska Research and Extension to Wahoo Livestock Sales 
8

See establishment cost tables 
9 ISU Ag Decision Maker Converting Cropland to Switchgrass

10 UNL Crop Budgets, land value $3,100 @ 1.35%

Newell-Shawnee-Newell  System 2018
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Expenses
1

Average Purchase Weight of Cattle (Kg) 289
2

Price $ kg
-1

3.81
3

Number of Cattle 9
3

Hectares of Pasture Grazed 6

Cost of Buying Stockers per Hectare 1,633.98$ 

4
Interest for Purchasing Cattle @8% for 4 mos 43.57

5
Labor 16.65

5 Vet 7.81
6 Mineral 9.49
7

Transportation 13.17
5 Marketing 5.31

Additional Cost with Owning Yearlings per Hectare 96.01$       

8
Amoritized Establishment Cost per Hectare 72.99

(weighted average, 4 hectares of switchgrass & 2 hectares of 

smooth bromegrass)
9 Fertilizer per Hectare 54.36
9

Spread Fertilizer per Hectare 12.36
9 Interest on Operating Capital per Hectare 2.22

10 Real Estate Tax per Hectare 103.41

Cost of Pasture per Hectare 245.35$     

Total Cost of System per Hectare 1,975.34$ 

Revenue
1 Average Selling Weight of Cattle (Kg) 372
2 Price $ kg-1 3.26
3

Number of Cattle 9
3 Hectares of Pasture Grazed 6

Total Revenue Per Hectare 1,796.04$ 

Net Profit per Hectare (179.30)$   

Sources
1 Actual average weight of the cattle at the beginning of grazing in 

May and at the conclusion of grazing in September from the field-

scale model demonstration site
2 Average cattle market price in NE on the date bought or sold 

(when they went on and off pasture) price data from LMCI
3 Number of cattle used to graze the system and number of 

hectares in the actual system 
4 ISU Stocker Cattle Budget 
5 Average cost (2008-2018) in Nebraska, South Dakota, and North 

Dakota. Reported from FINBIN University of Minnesota
6 Cost of mineral fed in the field-scale model demonstration site. 

2 oz per head per day 
7 UNL 2018 Custom Rate Survey for hauling cattle using a 

gooseneck trailer. Based on 10 miles from the Eastern Nebraska 

Research and Extension to Wahoo Livestock Sales 
8 See establishment cost tables 
9 ISU Ag Decision Maker Converting Cropland to Switchgrass

10 UNL Crop Budgets, land value $3,100 @ 1.35%

Newell-Shawnee-Newell  System 2019
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H. Cost of hay production with ownership of machinery for 2018 and 2019.  

 

 

 

Liberty 2018 UNL Crop Budgets 2019 48-Grass Hay 

Operations & Materials Cost 

Unit Power Imp. Power Imp.

Swath/Condition Hay 1 2.00 1.43 2.31 0.00 3.33 0.00 9.07$     22.41$    

Bale Large Round 1.05 ton 2.31 0.86 0.91 1.13 2.83 1.09 9.13$     22.56$    

Move Large Round 1.05 ton 1.16 0.60 0.45 0.00 1.42 0.06 3.69$     9.12$      -$        

Total for Field Operations 5.47 2.89 3.67 1.13 7.58 1.15 21.89$   54.09$    

Materials & Services Rate Unit

Twine Large Round 3 100% 1.05 ton 0.91 0.96$     2.37$      -$        

Total Materials & Services 0.96$         2.37$      

Total listed costs for Field Operations and Materials and Services 22.85$      56.46$    

Interest on Operations Capital 14.12$    5.50% for 6.0 mo. 0.39$         0.96$      

Total Operating and Use Related Ownership Costs 23.24$      57.42$    

Field Operations

Times 

or Qty

Labor @ 

$20.00 

/Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Total           

per 

hectare

Operation 

Index

Percent 

Acres 

Applied

Application 
Applied 

Price

Total           

per 

hectare

Ownership

Other

Total             

per acre

cash expense @

Liberty 2019 UNL Crop Budgets 2019 48-Grass Hay 

Operations & Materials Cost 

Unit Power Imp. Power Imp.

Swath/Condition Hay 1 2.00 1.43 2.31 0.00 3.33 0.00 9.07 22.41$    

Bale Large Round 0.9788 ton 2.15 0.81 0.85 1.05 2.64 1.01 8.51 21.03$    

Move Large Round 0.9788 ton 1.08 0.56 0.42 0.00 1.32 0.05 3.43 8.48$      -$        

Total for Field Operations 5.23 2.80 3.58 1.05 7.29 1.06 21.01 51.92$    

Materials & Services Rate Unit

Twine Large Round 3 100% 0.9788 ton 0.91 0.89 2.20$      -$        

Total Materials & Services 0.89 2.20$      

Total listed costs for Field Operations and Materials and Services 21.90 54.12$    

Interest on Operations Capital 13.55$    5.50% for 6.0 mo. 0.37 0.92$      

Total Operating and Use Related Ownership Costs 22.27 55.04$    

cash expense @

Repairs
Total             

per acre

Total           

per 

hectare

Operation 

Index

Percent 

Acres 

Applied

Application 
Applied 

Price

Total           

per 

hectare

Ownership

Other

Total             

per acre

Field Operations

Times 

or Qty

Labor @ 

$20.00 

/Hr

Fuel @ 

$2.49 and 

Lube

Shawnee 2018 UNL Crop Budgets 2019 48-Grass Hay 

Operations & Materials Cost 

Unit Power Imp. Power Imp.

Swath/Condition Hay 1 2.00 1.43 2.31 0.00 3.33 0.00 9.07 22.41$    

Bale Large Round 0.525 ton 1.16 0.43 0.45 0.56 1.42 0.54 4.56 11.27$    

Move Large Round 0.525 ton 0.58 0.30 0.23 0.00 0.71 0.03 1.85 4.57$      -$        

Total for Field Operations 3.74 2.16 2.99 0.56 5.46 0.57 15.48 38.25$    

Materials & Services Rate Unit

Twine Large Round 3 100% 0.525 ton 0.91 0.48 1.19$      -$        

Total Materials & Services 0.48 1.19$      

Total listed costs for Field Operations and Materials and Services 15.96 39.44$    

Interest on Operations Capital 9.93$      5.50% for 6.0 mo. 0.27 0.67$      

Total Operating and Use Related Ownership Costs 16.23 40.11$    

Field Operations

Times 

or Qty

Labor @ 

$20.00 

/Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Total           

per 

hectare

Operation 

Index

Percent 

Acres 

Applied

Application 
Applied 

Price

Total           

per 

hectare

Ownership

Other

Total             

per acre

cash expense @
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Shawnee 2019 UNL Crop Budgets 2019 48-Grass Hay 

Operations & Materials Cost 

Unit Power Imp. Power Imp.

Swath/Condition Hay 1 2.00 1.43 2.31 0.00 3.33 0.00 9.07 22.41$    

Bale Large Round 0.4725 ton 1.04 0.39 0.41 0.51 1.27 0.49 4.11 10.16$    

Move Large Round 0.4725 ton 0.52 0.27 0.20 0.00 0.64 0.03 1.66 4.10$      -$        

Total for Field Operations 3.56 2.09 2.92 0.51 5.24 0.52 14.84 36.67$    

Materials & Services Rate Unit

Twine Large Round 3 100% 0.4725 ton 0.91 0.43 1.06$      -$        

Total Materials & Services 0.43 1.06$      

Total listed costs for Field Operations and Materials and Services 15.27 37.73$    

Interest on Operations Capital 9.51$      5.50% for 6.0 mo. 0.26 0.65$      

Total Operating and Use Related Ownership Costs 15.53 38.38$    

Field Operations

Times 

or Qty

Labor @ 

$20.00 

/Hr

Fuel @ 

$2.49 and 

Lube

Repairs
Total             

per acre

Total           

per 

hectare

Operation 

Index

Percent 

Acres 

Applied

Application 
Applied 

Price

Total           

per 

hectare

Ownership

Other

Total             

per acre

cash expense @
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I. Custom rate hay budgets for 2018 and 2019.  

 

 

Source Services Custom Rate Total per Acre Total per Hectare
1 Mowing & Raking 1 17.60 17.60 43.49
2 Bale 1 9.49 9.49 23.46
3 Move 1 2.00 2.00 4.93

Total Cost of Hay: 29.09 71.88

Revenue Unit Price per Unit Total per Acre Total per Hectare
4 0.525 ton per acre 70 36.75 90.81

Return: 7.66 18.94

1 Mowing and Raking (Where one rate is quoted or contracted.), rate per acre

State Average UNL 2018 Custom Rate Survey 
2

Baling Large Round Bales Without Net Wrap (average lbs/bale = 1432), based on $13.56 per bale

State Average UNL 2018 Custom Rate Survey 
3

Lifting and Moving Large Round Bales With Tractor (average distance = 1.54 miles), based on $2.85 per bale

State Average UNL 2018 Custom Rate Survey 
4 Yield from ICLS Model Demonstration Site

Hay Price is NE Average in November & December for Fair Grass Hay Large Round Bales

USDA AMS Custom Report Data 

Shawnee Hay 2018

Source Services Custom Rate Total per Acre Total per Hectare
1 Mowing & Raking 1 17.60 17.60 43.49
2 Bale 1 9.49 9.49 23.46
3 Move 1 2.00 2.00 4.93

Total Cost of Hay: 29.09 71.88

Revenue Unit Price per Unit Total per Acre Total per Hectare
4 0.4725 ton per acre 80.42 38.00 93.90

Return: 8.91 22.02

1 Mowing and Raking (Where one rate is quoted or contracted.), rate per acre

State Average UNL 2018 Custom Rate Survey 
2

Baling Large Round Bales Without Net Wrap (average lbs/bale = 1432), based on $13.56 per bale

State Average UNL 2018 Custom Rate Survey 
3

Lifting and Moving Large Round Bales With Tractor (average distance = 1.54 miles), based on $2.85 per bale

State Average UNL 2018 Custom Rate Survey 
4 Yield from ICLS Model Demonstration Site

Hay Price is NE Average in November & December for Fair Grass Hay Large Round Bales

USDA AMS Custom Report Data 

Shawnee Hay 2019
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Source Services Custom Rate Total per Acre Total per Hectare
1 Mowing & Raking 1 17.60 17.60 43.49
2 Bale 1 18.98 18.98 46.91
3 Move 1 3.99 3.99 9.86

Total Cost of Hay: 40.57 100.26

Revenue Unit Price per Unit Total per Acre Total per Hectare
4 1.05 ton per acre 70 73.50 181.62

Return: 32.93 81.36

1 Mowing and Raking (Where one rate is quoted or contracted.), rate per acre

State Average UNL 2018 Custom Rate Survey 
2

Baling Large Round Bales Without Net Wrap (average lbs/bale = 1432), based on $13.56 per bale

State Average UNL 2018 Custom Rate Survey 
3

Lifting and Moving Large Round Bales With Tractor (average distance = 1.54 miles), based on $2.85 per bale

State Average UNL 2018 Custom Rate Survey 
4 Yield from ICLS Model Demonstration Site

Hay Price is NE Average in November & December for Fair Grass Hay Large Round Bales

USDA AMS Custom Report Data 

Liberty Hay 2018

Source Services Custom Rate Total per Acre Total per Hectare
1 Mowing & Raking 1 17.60 17.60 43.49
2 Bale 1 19.66 19.66 48.59
3 Move 1 4.13 4.13 10.21

Total Cost of Hay: 41.39 102.29

Revenue Unit Price per Unit Total per Acre Total per Hectare
4 0.97875 ton per acre 80.42 78.71 194.50

Return: 37.32 92.21

1 Mowing and Raking (Where one rate is quoted or contracted.), rate per acre

State Average UNL 2018 Custom Rate Survey 
2

Baling Large Round Bales Without Net Wrap (average lbs/bale = 1432), based on $13.56 per bale

State Average UNL 2018 Custom Rate Survey 
3

Lifting and Moving Large Round Bales With Tractor (average distance = 1.54 miles), based on $2.85 per bale

State Average UNL 2018 Custom Rate Survey 
4 Yield from ICLS Model Demonstration Site

Hay Price is NE Average in November & December for Fair Grass Hay Large Round Bales

USDA AMS Custom Report Data 

Liberty Hay 2019
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J. Revenue for Shawnee and Liberty hay production in 2018 and 2019.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield                          

ton ac
-1

 Average Price       

per Ton Acres

Revenue              

per Acre

Revenue             

per Hectare

Liberty 2018 1.05 70.00 10.00 73.50 181.62

Liberty 2019 0.98 80.42 10.00 78.71 194.49

Shawnee 2018 0.53 70.00 10.00 36.75 90.81

Shawnee 2019 0.47 80.42 10.00 38.00 93.89

* hay prices are from the average price in November and December for fair grass hay 

large round bales in Nebraska. Price data is from the USDA AMS Custom Report 

Hay Revenue 
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K. Comparison of each system with ownership of hay and corn machinery and ownership of hay with custom farming rates for corn 

production.  

 

Continuous Corn 

Year Enterprise: Grazing Hay Corn Grazing Hay Corn

 'Newell-Liberty-Newell' 

Grazing

 'Newell-Shawnee-Newell' 

Grazing

 'Liberty' 

Hay 

 'Shawnee' 

Hay Corn Corn

Return per 

hectare
85.82 124.19 32.32 202.90 50.71 32.32 85.82 202.90 124.19 50.71 32.32 134.08

Hectares 12 8 8 12 8 8 6 6 4 4 8 20

return to 

enterprise
1041.90 1005.20 261.60 2463.30 410.40 261.60 520.95 1231.65 502.60 205.20 261.60 2713.00

return to 

system
2713.00

Return per 

hectare
-103.51 139.47 -65.19 -179.30 55.52 -65.19 -103.51 -179.30 139.47 55.52 -65.19 28.05

Hectares 12 8 8 12 8 8 6 6 4 4 8 20

return to 

enterprise
-1256.70 1128.80 -527.60 -2176.80 449.40 -527.60 -628.35 -1088.40 564.40 224.70 -527.60 567.50

return to 

system
567.50

Systems Returns Ownership of All Machinery

 'Newell-Liberty-Newell' ICLS  'Newell-Shawnee-Newell' ICLS Diversified ICLS

2018

2308.70 3135.30 2722.00

2019

-655.50 -2255.00 -1455.25



 

 

 

1
5
3
 

 

 

 

 

 

 

Continuous Corn 

Year Enterprise: Grazing Hay Corn Grazing Hay Corn

 'Newell-Liberty-Newell' 

Grazing

 'Newell-Shawnee-Newell' 

Grazing

 'Liberty' 

Hay 

 'Shawnee' 

Hay Corn Corn

Return per 

hectare
85.82 124.19 95.23 202.90 50.71 95.23 85.82 202.90 124.19 50.71 95.23 95.23

Hectares 12 8 8 12 8 8 6 6 4 4 8 20

return to 

enterprise
1041.90 1005.20 770.80 2463.30 410.40 770.80 520.95 1231.65 502.60 205.20 770.80 1927.00

return to 

system
1927.00

Return per 

hectare
-103.51 139.47 -5.66 -179.30 55.52 -5.66 -103.51 -179.30 139.47 55.52 -5.66 -5.66

Hectares 12 8 8 12 8 8 6 6 4 4 8 20

return to 

enterprise
-1256.70 1128.80 -45.80 -2176.80 449.40 -45.80 -628.35 -1088.40 564.40 224.70 -45.80 -114.50

return to 

system
-114.50

Systems Returns Custom Corn Operations

 'Newell-Liberty-Newell' ICLS  'Newell-Shawnee-Newell' ICLS Diversified ICLS

2018

2019

-173.70 -1773.20

2817.90 3644.50 3231.20

-973.45
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L. Cost of gain calculations and rent on gain scenarios  

The cost of gain was calculated using the sale weight, purchase weight, and total cost per 

head. (Total Cost per Hd)/(Sale weight- Purchase weight). The value of gain was 

calculated using the sale and purchase price, and the sale and purchase weight of the 

steers grazing the system.  

 

 

 

 

 

 

Year 2018 2019 2018 2019

Sale Weight (Kg) 447 386 471 372

Purchase weight (Kg) 392 288 395 289

Total Cost ($ hd -1 ) 231.81 230.1 232.03 230.24

Cost of Gain ($ Kg
-1

) 4.22 2.35 3.04 2.79

Cost of Gain 

Newell-Liberty-Newell Newell-Shawnee-Newell 

Year 2018 2019 2018 2019 2018 2019

Sale Price ($ kg
-1

) 3.27 3.26 3.29 3.26 3.28 3.26

Sale Price ($ hd
-1

) 1461.94 1257.18 1549.25 1211.39 1505.60 1234.28

Purchase Price ($ kg
-1

) 2.99 3.81 2.99 3.81 2.99 3.81

Purchase Price  ($ hd
-1

) 1172.25 1096.90 1180.38 1102.08 1176.31 1099.49

Sale Weight (kg) 447.37 386.12 471.42 372.05 459.39 379.08

Purchase weight (kg) 392.47 288.11 395.19 289.47 393.83 288.79

Value of Gain (VOG) ($ kg
-1

) 5.28 1.64 4.84 1.32 5.06 1.48

Rental Rate (50% of VOG) 0.50 0.50 0.50 0.50 0.50 0.50

Rental Rate ($ kg of gain-1) 2.64 0.82 2.42 0.66 2.53 0.74

Kg of gain 54.90 98.00 76.23 82.58 65.56 90.29

Revenue ($ hd-1) 144.85 80.14 184.44 54.65 164.64 67.40

Number of Head 18 18 18 18 18 18

Revenue per System 2607.25 1442.55 3319.86 983.74 2963.56 1213.15

Number of Hectares per System 12 12 12 12 12 12

Revenue ($ ha-1) 214.75 118.82 273.45 81.03 244.10 99.92

Cost of Pasture Establishment 72.99 72.99 72.99 72.99 72.99 72.99

Land Tax 103.41 103.41 103.41 103.41 103.41 103.41

Fertilizer 66.72 66.72 66.72 66.72 66.72 66.72

Interest 2.22 2.22 2.22 2.22 2.22 2.22

Total Cost ($ ha-1) 245.35 245.35 245.35 245.35 245.35 245.35

Net Profit ($ ha-1) -30.60 -126.53 28.10 -164.32 -1.25 -145.43

Total Cost per System 2978.70 2978.70 2978.70 2978.70 2978.70 2978.70

Total Profit for System -371.45 -1536.15 341.16 -1994.96 -15.14 -1765.55

Newell-Liberty-Newell Newell-Shawnee-Newell Diversified ICLS

Rent on Gain Profitability
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M. Profitability of baling hay only.  

 

 

 

 

 

 

 

 

 

Yield (kg ha
-1

) 

Establishment Cost ($ ha
-1

) 

Fertilization ($ ha
-1

) 

Land Taxes ($ per ha
-1

) 

Overhead

Cost of Making Hay ($ per ha-1) 

Total Cost ($ ha-1)

Year 2018 2019 2018 2019 2018 2019

Price ($ kg-1) 0.0771 0.0886 0.0771 0.0886 0.0975 0.1102

Revenue ($ ha-1) 1396.23 1604.07 1082.04 1243.11 762.14 861.76

Net Profit ($ ha-1) 859.37 1067.21 605.18 766.25 379.28 478.90

Liberty Shawnee Newell

18100 14027 7820

26.76 26.76 23.67

68.94 68.94 68.94

103.41 103.41 103.41

536.86 476.86 382.86

49.42 49.42 49.42

288.32 228.33 137.42
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N. Sensitivity analysis for cattle price and weight. 

 

Cost of Purchasing 

Steer

Purchase 

Date

Sale Weight Price at Sale Revenue from Selling 

Steer

Sale Date Change in Value of 

Steer

# of Steers in 

System

# of Hectares 

Grazed

Change in Value of 

Herd

Change in Value of Herd 

per ha

Cost of Growing Steers 

per ha

Profit per ha

$ hd-1 2-May lb per steer $ cwt-1 $ hd-1 18-Sep

815.87 1-May 986.00 90.15 888.88 18-Sep 73.01 9.00 6.07 657.10 108.25 343.69 -235.44

928.66 30-Apr 986.00 104.42 1029.58 17-Sep 100.92 9.00 6.07 908.25 149.62 343.69 -194.07

1098.46 29-Apr 986.00 126.67 1248.97 16-Sep 150.50 9.00 6.07 1354.52 223.14 343.69 -120.55

1246.38 4-May 986.00 137.57 1356.44 21-Sep 110.06 9.00 6.07 990.56 163.18 343.69 -180.51

1127.70 3-May 986.00 142.06 1400.71 20-Sep 273.01 9.00 6.07 2457.10 404.77 343.69 61.08

1489.96 2-May 986.00 211.94 2089.73 19-Sep 599.77 9.00 6.07 5397.89 889.23 343.69 545.54

1774.37 1-May 986.00 183.41 1808.42 18-Sep 34.05 9.00 6.07 306.43 50.48 343.69 -293.21

1212.47 29-Apr 986.00 130.33 1285.05 16-Sep 72.58 9.00 6.07 653.25 107.61 343.69 -236.08

1352.43 5-May 986.00 147.77 1457.01 15-Sep 104.58 9.00 6.07 941.26 155.06 343.69 -188.63

1172.25 4-May 986.00 148.27 1461.94 21-Sep 289.69 9.00 6.07 2607.25 429.51 343.69 85.82

1213.68 3-May 986.00 135.92 1340.17 20-Sep 126.49 9.00 6.07 1138.41 187.54 343.69 -156.15

724.15 1-May 851.00 96.38 820.19 25-Sep 96.04 9.00 6.07 864.36 142.39 341.15 -198.76

843.72 30-Apr 851.00 108.32 921.80 24-Sep 78.08 9.00 6.07 702.71 115.76 341.15 -225.39

950.47 29-Apr 851.00 131.67 1120.51 23-Sep 170.04 9.00 6.07 1530.39 252.11 341.15 -89.04

1130.11 4-May 851.00 139.60 1188.00 28-Sep 57.89 9.00 6.07 520.98 85.82 341.15 -255.33

944.82 3-May 851.00 155.56 1323.82 27-Sep 379.00 9.00 6.07 3410.99 561.92 341.15 220.77

1317.63 2-May 851.00 230.17 1958.75 26-Sep 641.12 9.00 6.07 5770.10 950.55 341.15 609.40

1674.11 1-May 851.00 190.28 1619.28 25-Sep -54.83 9.00 6.07 -493.48 -81.29 341.15 -422.44

1064.70 29-Apr 851.00 141.79 1206.63 23-Sep 141.93 9.00 6.07 1277.36 210.43 341.15 -130.72

1113.98 5-May 851.00 164.52 1400.07 29-Sep 286.08 9.00 6.07 2574.76 424.16 341.15 83.01

1089.98 4-May 851.00 151.91 1292.75 28-Sep 202.78 9.00 6.07 1824.99 300.64 341.15 -40.51

1096.90 3-May 851.00 144.30 1227.99 27-Sep 131.09 9.00 6.07 1179.85 194.36 341.15 -146.79

821.53 1-May 1039.00 87.10 904.97 18-Sep 83.44 9.00 6.07 750.98 123.71 344.01 -220.30

935.11 30-Apr 1039.00 101.25 1051.99 24-Sep 116.88 9.00 6.07 1051.94 173.29 344.01 -170.72

1106.08 29-Apr 1039.00 122.27 1270.39 16-Sep 164.30 9.00 6.07 1478.72 243.60 344.01 -100.41

1255.02 4-May 1039.00 134.50 1397.46 14-Sep 142.43 9.00 6.07 1281.88 211.17 344.01 -132.84

1135.52 3-May 1039.00 146.25 1519.54 20-Sep 384.01 9.00 6.07 3456.13 569.35 344.01 225.34

1500.30 2-May 1039.00 211.25 2194.89 19-Sep 694.59 9.00 6.07 6251.31 1029.82 344.01 685.81

1786.68 1-May 1039.00 181.10 1881.63 18-Sep 94.95 9.00 6.07 854.52 140.77 344.01 -203.24

1220.88 29-Apr 1039.00 126.76 1317.04 16-Sep 96.16 9.00 6.07 865.40 142.56 344.01 -201.45

1361.81 4-May 1039.00 141.85 1473.82 15-Sep 112.01 9.00 6.07 1008.12 166.07 344.01 -177.94

1180.38 4-May 1039.00 149.11 1549.25 21-Sep 368.87 9.00 6.07 3319.86 546.90 344.01 202.89

1222.10 3-May 1039.00 133.94 1391.64 20-Sep 169.54 9.00 6.07 1525.83 251.36 344.01 -92.65

727.58 1-May 820.00 99.28 814.10 25-Sep 86.52 9.00 6.07 778.69 128.28 341.36 -213.08

847.71 30-Apr 820.00 110.79 908.48 24-Sep 60.77 9.00 6.07 546.91 90.10 341.36 -251.26

954.96 29-Apr 820.00 134.65 1104.13 23-Sep 149.17 9.00 6.07 1342.54 221.17 341.36 -120.19

1135.45 4-May 820.00 143.15 1173.83 28-Sep 38.38 9.00 6.07 345.43 56.91 341.36 -284.45

949.28 3-May 820.00 163.19 1338.16 27-Sep 388.88 9.00 6.07 3499.90 576.56 341.36 235.20

1323.85 2-May 820.00 236.68 1940.78 26-Sep 616.93 9.00 6.07 5552.33 914.67 341.36 573.31

1682.02 1-May 820.00 199.52 1636.06 25-Sep -45.96 9.00 6.07 -413.63 -68.14 341.36 -409.50

1069.73 29-Apr 820.00 142.65 1169.73 23-Sep 100.00 9.00 6.07 899.96 148.26 341.36 -193.10

1119.24 4-May 820.00 162.72 1334.30 29-Sep 215.06 9.00 6.07 1935.55 318.86 341.36 -22.50

1095.13 4-May 820.00 159.77 1310.11 28-Sep 214.99 9.00 6.07 1934.88 318.75 341.36 -22.61

1102.08 3-May 820.00 147.73 1211.39 27-Sep 109.30 9.00 6.07 983.74 162.06 341.36 -179.30
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Year of Price 

Data

Switchgrass 

Type

Purchase  

Weight

Price at 

Purchase

Cost of Purchasing 

Steer

Purchase 

Date Sale Weight Price at Sale Break Even per CWT

lb per steer $ cwt-1 $ hd-1 2-May lb per steer $ cwt-1 $ cwt-1

2009 Liberty 865 94.32 815.87 1-May 986.00 90.15 106.26

2010 Liberty 865 107.36 928.66 30-Apr 986.00 104.42 117.70

2011 Liberty 865 126.99 1098.46 29-Apr 986.00 126.67 134.92

2012 Liberty 865 144.09 1246.38 4-May 986.00 137.57 149.92

2013 Liberty 865 130.37 1127.70 3-May 986.00 142.06 137.88

2014 Liberty 865 172.25 1489.96 2-May 986.00 211.94 174.62

2015 Liberty 865 205.13 1774.37 1-May 986.00 183.41 203.47

2016 Liberty 865 140.17 1212.47 29-Apr 986.00 130.33 146.48

2017 Liberty 865 156.35 1352.43 5-May 986.00 147.77 160.67

2018 Liberty 865 135.52 1172.25 4-May 986.00 148.27 142.40

2019 Liberty 865 140.31 1213.68 3-May 986.00 135.92 146.60

2009 Liberty 635 114.04 724.15 1-May 851.00 96.38 112.13

2010 Liberty 635 132.87 843.72 30-Apr 851.00 108.32 126.18

2011 Liberty 635 149.68 950.47 29-Apr 851.00 131.67 138.73

2012 Liberty 635 177.97 1130.11 4-May 851.00 139.60 159.84

2013 Liberty 635 148.79 944.82 3-May 851.00 155.56 138.06

2014 Liberty 635 207.50 1317.63 2-May 851.00 230.17 181.87

2015 Liberty 635 263.64 1674.11 1-May 851.00 190.28 223.76

2016 Liberty 635 167.67 1064.70 29-Apr 851.00 141.79 152.15

2017 Liberty 635 175.43 1113.98 5-May 851.00 164.52 157.94

2018 Liberty 635 171.65 1089.98 4-May 851.00 151.91 155.12

2019 Liberty 635 172.74 1096.90 3-May 851.00 144.30 155.93

2009 Shawnee 871 94.32 821.53 1-May 1039.00 87.10 101.40

2010 Shawnee 871 107.36 935.11 30-Apr 1039.00 101.25 112.33

2011 Shawnee 871 126.99 1106.08 29-Apr 1039.00 122.27 128.79

2012 Shawnee 871 144.09 1255.02 4-May 1039.00 134.50 143.12

2013 Shawnee 871 130.37 1135.52 3-May 1039.00 146.25 131.62

2014 Shawnee 871 172.25 1500.30 2-May 1039.00 211.25 166.73

2015 Shawnee 871 205.13 1786.68 1-May 1039.00 181.10 194.29

2016 Shawnee 871 140.17 1220.88 29-Apr 1039.00 126.76 139.84

2017 Shawnee 871 156.35 1361.81 4-May 1039.00 141.85 153.40

2018 Shawnee 871 135.52 1180.38 4-May 1039.00 149.11 135.94

2019 Shawnee 871 140.31 1222.10 3-May 1039.00 133.94 139.95

2009 Shawnee 638 114.04 727.58 1-May 820.00 99.28 116.81

2010 Shawnee 638 132.87 847.71 30-Apr 820.00 110.79 131.46

2011 Shawnee 638 149.68 954.96 29-Apr 820.00 134.65 144.54

2012 Shawnee 638 177.97 1135.45 4-May 820.00 143.15 166.55

2013 Shawnee 638 148.79 949.28 3-May 820.00 163.19 143.84

2014 Shawnee 638 207.50 1323.85 2-May 820.00 236.68 189.52

2015 Shawnee 638 263.64 1682.02 1-May 820.00 199.52 233.20

2016 Shawnee 638 167.67 1069.73 29-Apr 820.00 142.65 158.53

2017 Shawnee 638 175.43 1119.24 4-May 820.00 162.72 164.57

2018 Shawnee 638 171.65 1095.13 4-May 820.00 159.77 161.63

2019 Shawnee 638 172.74 1102.08 3-May 820.00 147.73 162.48



 

 

 

 

1
5
8
 

O. Hay sensitivity analysis.  

Yellow shaded box represents the base net return calculated using the average 2018 and 2019 hay price with the proven yield from the 

variety’s registration papers. Red box indicates that net return per hectare is less than the net return for continuous corn production in 

2018.  

 

 

0.0622 0.0663 0.0704 0.0746 0.0787 0.0829 0.0870 0.0912 0.0953 0.0995 Cost   ($ ha-1)

11747.58 288 336 385 434 482 531 580 628 677 726 442.61

12651.24 331 383 435 488 540 593 645 698 750 802 455.81

13554.90 374 430 486 542 598 654 711 767 823 879 468.96

14458.56 417 477 536 596 656 716 776 836 896 956 482.15

15362.22 456 520 584 647 711 775 838 902 966 1029 498.61

16265.88 499 567 634 702 769 836 904 971 1039 1106 511.78

17169.54 542 613 685 756 827 898 969 1040 1112 1183 524.95

18073.20 585 660 735 810 885 960 1035 1110 1184 1259 538.15

18976.86 628 707 786 864 943 1022 1100 1179 1257 1336 551.29

19880.52 671 754 836 918 1001 1083 1166 1248 1330 1413 564.49

20784.18 714 800 887 973 1059 1145 1231 1317 1403 1489 577.68

Net Return ($ ha
-1

) for Liberty Hay Production Only

Price $ Kg-1

Yield       

Kg ha-1
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0.0622 0.0663 0.0704 0.0746 0.0787 0.0829 0.0870 0.0912 0.0953 0.0995 Cost   ($ ha-1)

9094.90 159 197 234 272 310 347 385 423 460 498 406.41

9794.51 193 233 274 314 355 396 436 477 517 558 416.25

10494.11 226 270 313 357 400 444 487 531 574 618 426.16

11193.72 260 306 353 399 445 492 538 584 631 677 436.04

11893.33 293 343 392 441 491 540 589 638 688 737 445.93

12592.94 327 379 431 484 536 588 640 692 744 797 455.81

13292.54 361 416 472 527 582 637 692 747 802 857 464.93

13992.15 394 452 510 568 626 684 742 800 858 916 475.58

14691.76 424 485 546 607 668 729 790 851 912 972 488.77

15391.37 458 522 586 649 713 777 841 905 968 1032 498.61

16090.98 492 558 625 692 758 825 892 959 1025 1092 508.49

Yield       

Kg Ha-1

Net Return ($ ha
-1

) for Shawnee Hay Production Only

Price $ Kg-1



 

 

 

 

1
6
0
 

0.0779 0.0831 0.0883 0.0934 0.0986 0.1038 0.1090 0.1142 0.1194 0.1246 Cost   ($ ha-1)

5072.16 48 74 101 127 153 180 206 232 259 285 347.08

5462.32 75 103 132 160 188 217 245 274 302 330 350.35

5852.49 99 129 160 190 220 251 281 311 342 372 356.97

6242.65 123 155 187 220 252 285 317 349 382 414 363.59

6632.82 146 181 215 250 284 319 353 387 422 456 370.19

7022.98 173 210 246 283 319 356 392 429 465 502 373.47

7413.15 197 236 274 313 351 390 428 467 505 544 380.02

7803.32 221 262 302 343 383 424 464 505 545 586 386.62

8193.48 245 287 330 372 415 457 500 543 585 628 393.24

8583.65 272 316 361 406 450 495 539 584 628 673 396.50

8973.81 296 342 389 436 482 529 575 622 668 715 403.08

Net Return ($ ha
-1

) for Newell Hay Production Only

Price $ Kg-1

Yield       

Kg Ha-1
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CHAPTER 4 

Soil GHG Emissions are Variable and Management Dependent  

Abstract 

The current specialized agricultural production system focused on production of 

single commodities is facing production, economic, and environmental challenges. 

Amidst the challenges, researchers have identified Integrated Crop Livestock Systems 

(ICLS) as a possible solution. Integration can occur through perennial grasslands, cover 

crop grazing, and crop residue grazing. To explore the potential of ICLS in Eastern 

Nebraska to mitigate challenges a field-scale model ICLS was established on marginally 

productive, poorly drained cropland. The ICLS includes 4-ha each of ‘Newell’ smooth 

bromegrass (Bromus inermis L.), ‘Liberty’ switchgrass (Panicum virgatum L.), and 

‘Shawnee’ switchgrass. The perennial grasslands were grazed by steers in 2017, 2018, 

and 2019. The ICLS also includes 8-ha of continuous corn (Zea mays L.) production. 

Corn residue was removed by baling in 2016 and 2017 and by grazing in 2018 and 2019. 

To assess the impact of these livestock integration practices on soil GHG emissions, soil 

N2O and CH4 were measured each growing season (2017, 2018, and 2019). Our results 

indicate that 1) grazing perennial grasslands does not consistently impact soil GHG 

emissions 2) crop residue and cover crop management may impact soil N2O emissions 

and 3) generally continuous corn production results in more soil N2O emissions than 

perennial grasslands due to increased synthetic N fertilizer. This research can provide 

insight for further development and research for ICLS in Eastern NE that minimize soil 

GHG emissions.  
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Introduction 

Farm diversity in the United States has decreased since the conclusion of WWII 

(Dimitri, Effland, and Conklin 2005; Sulc and Tracy 2007), but specialization of 

agriculture has met current global food demand. However, the success of specialized 

agriculture came at a cost. The intensive, specialized systems cause soil erosion, nutrient 

loss, decreased soil organic carbon, pest resistance, water pollution, and contribute to 

global greenhouse gas (GHG) emissions (Sulc and Tracy 2007). To address these 

negative effects, Integrated Crop Livestock Systems (ICLS) have emerged as a potential 

solution to mitigate GHG emissions. Integrating livestock back onto the land can increase 

economic and environmental resiliency through diversification (Parthasarathy and 

Ndjeunga 2005; Devendra and Thomas 2002; Tracy and Zhang 2008). Integration can 

include livestock grazing annual cover crops, annual crop residues, or perennial 

grasslands (Sulc and Tracy 2007; Russelle, Entz, and Franzluebbers 2007). Concerns 

about agriculture’s role in GHG emissions among the public and policymakers has risen. 

Therefore, interest in production practices that mitigate GHG emissions has risen (Seguin 

et al. 2007). Methods of ICLS show potential for mitigating soil GHG emissions, 

however, GHG emissions are variable and depend on many factors.  

A potential avenue for ICLS in Eastern NE is converting marginally productive 

cropland to perennial grassland. Non-irrigated, marginally productive cropland provides 

an opportunity to increase farm profitability and environmental sustainability by 

diversifying land use through integration of perennial vegetation (Mitchell et al. 2016).  

Literature has shown that perennial grasslands harvested for biomass can mitigate soil 

GHG emissions compared to annual row-crop systems. In Italy, converting marginally 
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productive cropland or areas with a surplus of grain production to switchgrass (Panicum 

virgatum L.) production maximized GHG savings (Nocentini and Monti 2019). In the 

central US, converting cropland used for ethanol production to low input perennial 

grasslands decreased GHG emissions (Davis et al. 2012). In eastern Nebraska, 

switchgrass grown for bioenergy production mitigated GHG  emissions while continuous 

corn (Zea mays L.) grain production was GHG neutral (Jin et al. 2019).  

The result of grazing perennial grasslands on soil GHG emissions is less known 

and reports inconsistent. Grazing and fertilizing perennial grasslands increased soil 

nitrous oxide (N2O) emissions in the Northern Great Plains (Liebig et al. 2006) and in 

New Zealand (Saggar et al. 2008). In contrast, in the southeastern United States, when 

moderately grazed bahiagrass (Paspalum notatum Fluegge) was compared to non-grazed, 

fewer GHG emissions were observed dependent on location, season, and crop (Gamble et 

al. 2019) and adaptive multi-paddock grazing in Texas native prairie reduced N2O and 

CH4 emissions when compared to continuously grazed prairie or feedlot finishing cattle 

(Stanley et al. 2018). Because reported impacts of grazing perennial grassland on soil 

GHG emissions are highly variable and site-dependent, more information is needed to 

determine how management impacts GHG emissions in grazed perennial grasslands.  

Another method of ICLS is cover crop grazing. Cover crops are popular among 

crop producers and have shown the potential to decrease GHG emissions through reduced 

fertilizer use. In the Great Plains, use of cover crops decrease soil N2O emissions 

(Wegner et al., 2018).  In Minnesota, when cover crops were used in a corn-soybean 

(Glycine max Merr.) rotation, soil N2O emissions were reduced (Bavin et al. 2009). 

However, researchers indicated that the difference in soil N2O was likely due to fertilizer 
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rate and source. Anhydrous ammonia applied at higher rates elevated soil N2O when 

compared to urea applied at a lower rate (Bavin et al. 2009). Additionally, monocropping 

increased N2O emissions because of the increased need for synthetic fertilizer 

(Abagandura et al. 2019). A meta-analysis evaluating the effect of cover crops on soil 

N2O emissions revealed that soil N2O emissions are highly management dependent 

(Basche et al. 2014). Data from 26 studies was evaluated. 40% of the studies showed that 

cover crops reduced N2O emissions while 60% of the studies showed that cover crops 

increased N2O emissions (Basche et al. 2014). Generally, when cover crops were 

legumes, when residue was incorporated, when precipitation increased, when 

precipitation was highly variable, or measurements were taken during the crop 

decomposition phase, N2O increased (Basche et al. 2014). N2O emissions are 

management dependent. Additionally, researchers have called for N2O measurements 

throughout the entire year to more accurately capture the net effect of cover crops on N2O 

emissions (Basche et al. 2014).   

Similar to grazing perennial grasslands the impacts of livestock grazing cover 

crops on soil GHG emissions is inconsistent. Grazing a winter cover crop increased N2O 

emissions compared to a continuous cropping system, likely due to additional fertilizer 

input used on cover crops (Piva et al. 2014). In Brazil, cover crop grazing mitigated soil 

GHG emissions when compared to a continuous cropping system (Dieckow et al. 2015), 

but in South Dakota, grazing annual forages had no impact on soil N2O or methane (CH4) 

emissions (Abagandura et al. 2019). Again, more research is needed to develop the best 

grazing management practices to mitigate GHG emissions.  
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A more common method of ICLS in Nebraska is cattle grazing corn residue 

(Schmer et al. 2017; Redfearn et al. 2019). The effect of crop residue grazing on GHG 

emissions is not well known. Only one study in the Midwest has explored the impact of 

cattle grazing crop residue on GHG emissions. They found that carbon dioxide (CO2) 

fluxes were inconsistent with cattle grazing (Tracy and Zhang 2008). However, more 

studies have been conducted on crop residue removal. Unfortunately, the effect of crop 

residue removal on GHG emissions is inconsistent. Several studies showed that residue 

removal had no effect on GHG emissions. In Iowa, residue removal under a no-till corn-

soybean rotation did not affect N2O and CO2 emissions (Johnson and Barbour 2010). 

Additionally, in Ohio, stover removal under no-till continuous corn production did not 

affect CO2 emissions (Blanco-Canqui and Lal 2007). Other research has shown that crop 

residue removal decreased soil GHG emissions. Across the US corn belt, when corn 

stover is baled, CO2 and N2O emissions decreased (Jin et al. 2014). Additionally in 

Eastern NE, corn residue removal decreased N2O emissions when compared to cropland 

with retained residue (Jin et al. 2019). However, some studies have shown that retaining 

residue decreased N2O emissions. In North Dakota, when residue was retained under a 

corn-soybean rotation N2O emissions generally decreased (Wegner et al. 2018). 

Additionally, residue removal has been shown to increase GHG emissions. In South 

Dakota, when corn stover was baled in a corn-soybean rotation, N2O fluxes increased 

during the following soybean growth phase but did not impact N2O fluxes during the corn 

phase (Lehman and Osborne 2016). One meta-analysis suggests that the presence of crop 

residue stimulates microbial respiration which can deplete oxygen causing an anaerobic 

environment favoring denitrification and therefore N2O production (Chen et al. 2013). 
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The same meta-analysis suggests that residue quality and quantity combined with soil 

properties could better indicate N2O emissions (Chen et al. 2013). The impacts of residue 

removal by baling or grazing on GHG emissions is highly variable and not conclusive. 

The observed differences in soil GHG emissions among studies has been previously 

recognized. Soil GHG emissions are highly variable and dependent on management, 

weather, fertilizer, manure, environment, and soil conditions (Jin et al. 2014; Rakkar et 

al. 2018; Chen et al. 2013).   

We sought to determine if a field-scale ICLS in Eastern NE mitigated soil GHG 

emissions. The field-scale ICLS demonstration site includes 4-ha each of ‘Newell’ 

smooth bromegrass (Bromus inermis L.), ‘Liberty’ switchgrass, and ‘Shawnee’ 

switchgrass. In addition, the site includes 8-ha of continuous corn production. The first 

objective of the study was to determine if grazing perennial grasslands effected soil GHG 

emissions. The second objective of the study was to determine if grazing or baling corn 

residue with and without a cover crop influenced soil GHG emissions. The third objective 

was to evaluate if soil GHG emissions differed between perennial grasslands and 

continuous corn production.  

To evaluate if grazing perennial grasslands influenced soil GHG emissions each 

perennial grassland contained three pseudo-replicates split into a non-grazed, flash-

grazed (grazed for 7-d), and continually grazed exclosure. Soil GHG emissions were 

recorded for each exclosure throughout three growing seasons (2017-2019). The 

cumulative N2O and CH4 emissions were evaluated separately for each growing season. 

To evaluate if grazing or baling corn residue with and without a cover crop influenced 

soil GHG emissions, the 8-ha of continuous corn production were split into three 
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replications of 6 different treatment combinations. The 6 different treatments included, no 

residue removal with no cover crop, no residue removal with a cover crop, residue 

removal by baling with no cover crop, residue removal by baling with a cover crop, 

residue removal by grazing with no cover crop, and residue removal by grazing with a 

cover crop. Soil GHG emissions were recorded for each experimental unit and evaluated 

for each of the three growing seasons separately. To evaluate the difference between soil 

GHG emissions for perennial grasslands and continuous corn production, contrast 

statements between the perennial grassland and continuous corn emissions were 

conducted for each growing season.  

Materials & Methods 

Field-scale Model Demonstration Site  

The field-scale demonstration site was located at the Eastern Nebraska Research 

and Extension Center near Ithaca, Nebraska. The site was established on 20-ha of non-

irrigated, marginally productive cropland in 2015. For this study, marginally productive 

cropland is defined as poorly drained soil. Approximately 40% of the land at the site is 

classified as somewhat poorly drained (Table 4-1). Soils at the site are silt loams and silty 

clay loams of soil series common to this region: Tomek (Fine, smectitic, mesic Pachic 

Argiudoll; 40%), Filbert (Fine, smectitic, mesic Vertic Argialboll; 27%), Yutan (Fine-

silty, mixed, superactive, mesic Mollic Hapludalf; 20%), and Fillmore (Fine, smectitic, 

mesic Vertic Argialboll; 13%) (Table 4-1). The long term average precipitation and air 

temperature are 74.7 cm and 9.9C, respectively (NCDC; Station ID Mead 6 S 2020). 

Weather data for the study was collected from a weather station located 600 m SE of the 
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ICLS. During the growing season (April-October), in 2017, 2018, and 2019, the site 

received 675, 537, and 633 mm of rainfall, respectively (Figure 4-1).   

At this 20-ha site, 12-ha were planted to perennial grass and 8-ha were planted to 

continuous corn production in 2015. Of the 12-ha planted to long-term perennial grass, 4-

ha each were planted to Newell smooth bromegrass, Liberty switchgrass, and Shawnee 

switchgrass. Newell smooth bromegrass (Newell) was planted because of the cultivar’s 

increased digestibility when compared to other smooth bromegrass varieties. The increased 

digestibility leads to higher cattle average daily gains than its’ competitor ‘Lincoln’ smooth 

bromegrass (Vogel, Mitchell, Waldron, et al. 2014). Liberty switchgrass (Liberty) was 

planted because it is a lowland ecotype developed for use as a cellulosic bioenergy crop 

(Vogel, Mitchell, Casler, et al. 2014). Shawnee switchgrass (Shawnee) was planted 

because it is an upland ecotype that was developed to have improved forage quality, leading 

to greater potential animal gains (Vogel, Hopkins, Moore 1996). The Newell and Liberty 

pastures were established in 2015 and Shawnee was established in 2006. Including the two 

varieties of switchgrass allows for comparison of animal gain and biomass production 

potential of the varieties. Additionally, including a grazing variety and biomass producing 

variety of switchgrass offers management flexibility.  

Perennial Grass Grazing Management  

All perennial grass pastures were harvested for hay in 2016 to plan the grazing 

experiment and allow for adequate plant establishment before grazing. Results for 2016 

were not reported because 2016 was considered the establishment year. Each perennial 

grassland had 3 randomly placed, replicated exclosures. Each exclosure was split into 

non-grazed, continually grazed, and flash-grazed (Figure 4-4). Each pasture received 56 
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kg N ha-1 each year. In 2017, the Newell smooth bromegrass was grazed in the spring by 

18-hd of crossbred yearling steers (mean body wt.=342 kg) for 21 days. The steers were 

moved to flash graze the Liberty perennial grassland for 7 days to determine the impact 

of a brief grazing event on biomass yield. Following the flash grazing event, the same 

steers (mean body wt.=367 kg) grazed the Shawnee switchgrass for 73 days until 

September 1. The steers were moved back to the Newell to graze the smooth bromegrass 

re-growth for 29 days. In 2018, 18-hd of crossbred yearling steers (mean body wt.= 393.7 

kg) grazed the Newell perennial grassland from May-June. After grazing Newell, the 

herd was divided. 9-hd (mean body wt.=416.0 kg) of steers grazed the Liberty for 79 days 

and the other 9-hd (mean body wt.=413.0 kg) of steers grazed the Shawnee for 79 days. 

At the conclusion of grazing the switchgrass pastures, the herd was recombined and the 

18-hd (mean body wt.=456.8 kg hd-1) returned to graze the regrowth of the Newell 

pasture for 13 days. In 2019, 18-hd of crossbred yearling steers (mean body wt.=288.9 

kg) grazed the Newell perennial grassland from May-June. After grazing Newell, the 

herd was divided. 9-hd (mean body wt.=339.3 kg) of steers grazed the Liberty for 79 days 

and the other 9-hd (mean body wt.=339.7 kg) of steers grazed the Shawnee for 79 days. 

At the conclusion of grazing the switchgrass pastures, the herd was recombined and the 

18-hd (mean body wt.=362.4 kg hd-1) returned to graze the regrowth of the Newell 

pasture for 23 days. The same grazing sequence was followed in 2018 and 2019 to have 

two years of identical management.  
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Row-crop Management 

Each year corn was planted at 65,236 seeds ha-1. The field was fertilized with 140 

kg ha-1 of nitrogen applied as urea (46-0-0) each spring. Pre- and post-emergent herbicide 

was applied. Herbicide products and rates for each year can be viewed in Table 4-2.  

To test how different corn residue management effected soil GHG emissions, 

50% of the corn residue was removed by baling on specified plots in 2016 and 2017 

(Figure 4-4). In 2018 and 2019, residue was removed by grazing (Figure 4-4). In 2018 

grazing began on September 27 and ended on October 12 with 6 steers (459.6 kg hd-1) 

1.35 ha-1. In 2019 grazing began on October 23 and ended on October 29 with 6 steers 

(379.3 kg hd-1) 1.35 ha-1. To evaluate the effect of a winter cover crop on GHG emissions 

during the subsequent growing season, winter hardy triticale was planted on specified 

plots after corn grain harvest each year (Figure 4-4). Triticale was terminated in spring 

before corn planting.  

Baseline Soil Sampling 

Baseline soils data were collected when the study was established. Soil samples 

were collected on June 14, 2016 using a hydraulic sampling system. Two soil cores (3.1 

cm DIA) were sampled per perennial grassland plot and three cores were sampled per 

corn plot. In each plot, cores were separated into six depth increments (0-5 cm, 5-15 cm, 

15-30 cm, 30-60 cm, 60-90 cm, 90-120 cm) and composited by depth. Soils were air-

dried, homogenized, and passed through a 2-mm sieve prior to soil chemical analyses. 

Soil bulk density was determined by using the volume and dry weights (dried at 105 °C) 

from the sample cores. Soil electrical conductivity (dS/m) and pH were determined in 

solution after extraction with deionized water (1:1 soil:water ratio). A subsample of 
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sieved soil was finely ground then analyzed for total carbon and nitrogen (%) using dry 

combustion. A subsample of sieved soil was sent to a commercial testing lab for 

determination of exchangeable cations (K, Ca, Mg, Na; mg kg-1) (Ward Laboratory; 

Kearney, NE). Cation concentrations were converted to cmolc kg-1 based on 

corresponding atomic weights and valences, then summed for total base cations. Initial 

soil properties are displayed in table initial soil properties and were calculated as a 

weighted average for the 0-30cm depth.  

Soil GHG Emissions  

Soil GHG emissions were sampled from every experimental unit throughout each 

growing season using the standardized protocols from the USDA-ARS’s Greenhouse gas 

Reduction through Agricultural Carbon Enhancement network (GRACEnet) (Hutchinson 

and Mosier 1981; Parkin and Venterea 2010; Jin et al. 2017). Vented static chambers 

were covered with reflective insulation. Both chambers and sampling bases that were 

installed in the field were built with 20-gage stainless steel. The bases covered an area of 

1707 cm2 (52.7 cm x 32.4 cm) and were installed to a soil depth of 5-7 cm so the base 

height above ground was 5-7 cm. One chamber base was placed within each experimental 

unit. For the corn, the chamber base was placed in each plot perpendicular to corn rows 

so the short edge was parallel to the row and the remainder of the base extended into the 

inter-row area. The base had twice as much area between row compared to inter-row soil 

microsites. The between-row microsite included the area where fertilizer was applied in 

the corn. To accommodate field management during the growing season, the bases were 

removed and then re-installed following completion of the field management activity. To 

minimize the immediate effects of soil disturbance when bases were reinstalled they were 
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allowed to equilibrate for a minimum of 24 h but typically for 2-4 days before gas 

sampling (Reicosky et al. 2005). Headspace gas samples were collected via syringes and 

then injected into evacuated vials at time 0-, 10-, 20-, and 30-min for each sampling 

event. Samples were taken during the morning of each sampling date to account for 

diurnal variability and approximate daily average temperature. Sampling occurred 

repeatedly during the growing season (April-October) each year as weather and staff 

availability allowed. In 2017, 8 sampling events occurred during the growing season, 

with one sampling event outside of the growing season, resulting in a total of 348 GS 

observations. In 2018, 5 sampling events occurred during the growing season, with one 

sampling event outside of the growing season, resulting in a total of 265 GS observations. 

In 2019, 9 sampling events occurred during the growing season, with none outside the 

growing season, resulting in 402 GS observations. Supplementary data collected on each 

sampling date included air temperature, soil temperature at 15-cm, and soil moisture from 

0 to 15-cm depth measured with a handheld time domain reflectometer (FieldScout TDR 

300; Spectrum Tech- nologies, Aurora, IL, USA) with a site-specific calibration. Soil 

bulk density values were used to convert volumetric soil water content to water-filled 

pore space (WFPS).  

A headspace autosampler (CombiPAL; CTC Analytics, Zwingen, Switzerland) 

connected to a gas chromatograph (450-GC; Varian, Middelburg, the Netherlands) with 

different detectors for simultaneous measurement of N2O (electron capture detector), CH4 

(flame ionization detector), and CO2 (thermal conductivity detector) was used to measure 

sample GHG concentrations within 10-d of sample collection. Soil CO2 data is not 

presented. The fluxes for soil N2O and CH4 were computed by the linear or quadratic 
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change in the gas concentration in the headspace over time in the enclosed chamber 

volume (Wagner, Reicosky, and Alessi 1997; Venterea, Maharjan, and Dolan 2011). 

Additionally, the soil N2O fluxes were corrected for suppression of the surface–

atmosphere concentration gradient (Venterea 2010). Non-zero fluxes were rates greater 

than (production of gas from soils) or less than (soils consuming gas) the flux detection 

limit which was calculated by ambient gas concentration, analytical precision, and 

chamber deployment time (Parkin, Venterea, and Hargreaves 2012). Cumulative growing 

season N2O and CH4 emissions for each year were calculated by linear interpolation of 

daily emissions between sampling dates and summing daily emissions over the growing 

season.  

Statistics 

To determine the effect of grazing and flash grazing on soil GHG emissions of 

different perennial grass species, cumulative soil GHG emissions from each growing 

season were calculated and analyzed. The cumulative GHG emissions were evaluated for 

the perennial grasslands as a pseudo-replicated split plot design where the main effects 

and treatment interactions of grass species (Newell, Shawnee, Liberty) and grazing 

management (none, flash, conventional) were tested. To evaluate the effect of corn 

residue and cover crop management on soil GHG emissions, cumulative soil GHG 

emissions were calculated and analyzed for each growing season. Cumulative GHG 

emissions were evaluated for the continuous corn as a randomized complete block design 

where the stover (baled, grazed, retained) in conjunction with cover crop (with or without 

Triticale) management was tested. SAS statistical software was used with the PROC 

GLIMMIX procedure.  
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Treatment effects on cumulative emissions were analyzed for each growing 

season because each growing season had different management and a different number of 

GHG observations. For the corn, residue was removed by baling in 2016 and 2017 

effecting 2017 and 2018 emissions. In 2017 and 2018 no grazing occurred so the 

experimental units that were supposed to be grazed were assigned the retained residue 

treatment. In 2018, grazing occurred effecting the 2019 GHG emissions. In 2019, the 

experimental units were evaluated with their original assigned treatment combinations. 

Although, residue was not removed by baling in 2018, the experimental units with 

residue baling treatments were considered as experimental units with baled residue 

because of the previous treatment history in 2016 and 2017. It is important to note that 

the experimental units with residue grazing were twice the size as the plots with residue 

retained and residue removed by baling. For the perennial grasslands, grazing 

management differed from 2017 to 2018 and 2019. In 2017, the Liberty was only flash-

grazed and not continually grazed. Therefore, the continually grazed treatments were 

assigned the flash-grazed treatment. In 2018 and 2019 the original assigned treatment 

combinations were used.  

Normality and homogeneous variance were evaluated using the conditional 

studentized residuals and the UNIVARIATE procedure in SAS. Significance for main 

effects and interaction terms were evaluated using a p-value<0.05, and 0.05 < p < 0.10 

were considered marginally significant. Treatment least significant means were reported 

for the significant main effect or significant interactions.  

In order to identify if a difference in soil GHG emissions existed based on land-

use (i.e. perennial grassland or annual corn production) the means of the perennial 
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grassland and continuous corn were compared. The means were compared by using 

contrast statements at the significant main or treatment interaction level for the corn or 

perennial grasslands using data from the study. Every corn mean was compared to every 

perennial grassland mean within each growing season. Contrast statements were 

unbalanced because the most granular level of data was reported. If no significant effects 

were observed, the overall mean was reported. All reported measured variables are 

reported as means.  

Results  

Growing season soil CH4 emissions 

Perennial Grass 

The observed CH4 emissions were small, but some differences were observed. In 

2017, only the species main effect was significant. Therefore, the LS-means are presented 

at the species level. In 2018 and 2019 the species by grazing interaction was significant. 

Therefore, the LS-means are presented at the species by grazing interaction level.  

In 2017, the Newell smooth bromegrass (BRM) and Liberty switchgrass (LBY) 

perennial grasslands produced more CH4 than the Shawnee switchgrass (SHN) perennial 

grassland. The SHN perennial grassland consumed CH4.  

In 2018, the non-grazed BRM exclosure produced around double the amount of 

CH4 as the conventionally and flash-grazed BRM exclosures. However, on the contrary, 

in 2018, the LBY conventionally grazed exclosure produced over twice as much CH4 as 

the LBY non-grazed. Additionally, in 2018, there was no difference among grazing 

treatments for the SHN perennial grassland. Furthermore, in 2018, the LBY 
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conventionally grazed exclosure produced triple the amount of CH4 when compared to 

the conventionally grazed SHN exclosure. In 2018 SHN and LBY were both grazed for 

79-d. In 2018, no differences in flash-grazed treatments across species were observed. In 

2018, the BRM non-grazed perennial grassland produced at least 2.5 times more than the 

LBY and SHN non-grazed perennial grasslands. The BRM was grazed for less time than 

the LBY and SHN perennial grassland.  

In 2019, no differences among the grazing treatments for the LBY and SHN 

exclosures were observed. In 2019, the BRM non-grazed exclosure produced more than 

the BRM flash grazed exclosure. In fact, the BRM flash-grazed exclosure consumed CH4. 

This result also occurred in 2018. In both years, LBY and SHN were grazed for 79-d. For 

the flash-grazed and non-grazed exclosures there were no significant differences 

observed among species. The results for soil CH4 emissions are not the same among 

species in 2017, 2018, and 2019. Additionally, the patterns among years are vague. These 

results likely indicate that soil CH4 emissions were controlled by soil type and location 

within the perennial grassland, instead of by grazing and species.  

Corn 

To determine the effect of residue removal by baling and grazing with and 

without a cover crop on soil GHG emissions, cumulative soil GHG emissions from the 

growing season were calculated and analyzed. The observed CH4 emissions were small, 

but some differences were observed. In 2017, treatment was significant. Therefore, the 

LS-means are presented at the treatment level. In 2018 and 2019 the treatment was not 

significant. Therefore, the overall mean is presented.  
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In 2017 when corn residue was baled, and no cover crop was planted, CH4 was 

emitted from the soil. However, when residue was baled with a cover crop, CH4 was 

consumed by the soil. Additionally, when stover was retained with and without a cover 

crop CH4 was consumed. In 2018 and 2019 no treatment effect was observed for CH4 

emissions. In 2018 and 2019 the overall corn mean was 0.14 and 0.72 kg C ha-1 yr-1, 

respectively. 

Growing season soil N2O emissions 

Perennial Grass 

In 2017, no significant main effects or interactions were observed for soil N2O 

emissions from the perennial grasslands. The overall mean emissions for the perennial 

grasslands was 0.81 kg N ha-1 yr-1. In 2018, a marginally significant interaction was 

detected between species and grazing. Therefore, the LS-means are presented for each 

species and grazing combination. In 2019, a significant species main effect was observed. 

Therefore, the LS-means are presented for each species.  

In 2018, the BRM conventionally grazed exclosures produced almost double the 

amount of N2O than the BRM flash grazed exclosures. Additionally, the BRM non-

grazed exclosure was similar to the BRM conventional and flash grazed exclosures. In 

2018 there were no significant differences among grazing treatments in the LBY or SHN 

perennial grasslands.  

In 2018, the BRM conventionally grazed exclosure produced at least 2.5 times 

more N2O than the LBY and SHN conventionally grazed exclosures. The BRM perennial 

grassland was grazed for fewer days than the LBY and SHN perennial grasslands. 
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Additionally, the non-grazed BRM pasture produced three times the N2O as the non-

grazed SHN pasture. There were no differences among species in the flash grazed 

treatments.  In 2019, the BRM perennial grassland produced 2.5 times the amount of N2O 

than the SHN and LBY pasture. Overall, grazing perennial grasslands did not consistently 

negatively influence soil N2O emissions. 

Corn  

In 2017 and 2019, the treatment was significant for soil N2O emissions. 

Therefore, the LS-means for the emissions of each corn treatment are presented. In 2018, 

the treatment effect was not significant. Therefore, the overall mean for the corn is 

presented. In 2017, when residue was retained with a cover crop, N2O emissions were 

reduced by at least 2.5 times when compared to plots with retained residue without a 

cover crop and plots with residue baling with a cover crop. In 2018, there were no 

differences among treatments. The overall mean emissions for the corn was 4.56 kg N ha-

1 yr-1. 

 In 2019, grazing with and without a cover crop produced more N2O than plots 

with retained residue and a cover crop, plots with baled residue and a cover crop, and 

plots with baled residue without a cover crop. Although not different, including a cover 

crop in grazed areas reduced N2O emissions on average, by half in the grazed treatments.  

Comparison of perennial grass versus corn soil GHG emissions 

CH4 

In 2017 baling residue with no cover crop produced more CH4 than the LBY and 

SHN perennial grasslands. However, when residue was baled and a cover crop was 
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included, the corn became a CH4 sink and produced less than the BRM and LBY 

perennial grasslands. When residue was retained with and without a cover crop the corn 

field consumed CH4, resulting in the BRM perennial grassland producing more CH4. On 

the other hand, the SHN perennial grassland consumed 4 more times the CH4 than the 

cornfield with retained residue and a cover crop.  

In 2018, each perennial grassland treatment mean was compared with the overall 

treatment mean of the corn. The flash and conventionally grazed LBY exclosures 

produced at least double the amount of CH4 as the continuous corn field. Importantly, the 

non-grazed BRM exclosure produced 3.5 times more CH4 than the continuous corn field.  

In 2019, each perennial grassland treatment mean was compared with the overall 

treatment mean from the corn. No significant differences were detected between the corn-

field and perennial grassland treatments. The results from each year indicate that soil type 

and weather may have influenced the amount of CH4 produced or consumed by the soil 

more than the crop planted (corn vs perennial grassland). 

N2O 

To evaluate the difference in N2O emissions between the perennial grassland and 

corn field contrast statements were made between the means for the significant main 

effect or at the significant interaction level. In 2017, the corn treatments produced at least 

3 times more N2O than the overall mean of the perennial grasslands.  

In 2018 no significant differences were detected between the overall continuous 

corn and perennial grassland grazing treatments despite the numeric differences. Corn 
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produced at least 4.5 times the amount of N2O than the perennial grassland. The 

variability of the data set likely reduced the ability to detect a significant difference.  

In 2019, grazing with no cover crop in the continuous corn produced at least 3 

times more N2O than all perennial grass species. Grazing with a cover crop produced 3.5 

times more N2O than LBY and SHN perennial grasslands but produced a similar amount 

of N2O to the BRM perennial grassland. When residue was retained with and without a 

cover crop at least 3 times more N2O was produced when compared to the LBY and SHN 

perennial grasslands. However, when compared to the BRM, those corn treatments 

produced less N2O. Likewise, when baling residue with and without a cover crop was 

compared to the BRM perennial grassland, they produced less N2O. However, when the 

baled with and without a cover crop corn treatments were compared to LBY, the corn 

treatments produced more N2O. These results indicate that perennial grasslands could 

produce less N2O than continuous corn.  

Overall, the results from 2017-2019 show that perennial grasses have reduced soil 

N2O emissions likely due to less synthetic nitrogen fertilizer.   

Discussion 

Pasture  

Grazing has been shown to increase methane uptake (Gamble et al. 2019), but we 

found no consistent effects on grazing or grass species on soil CH4 fluxes in the present 

study. Similarly, there were no consistent effects of grazing or grass species on soil N2O 

emissions. Although there was no main or interaction effect of grazing on grassland soil 

CH4 flux in 2017, the SHN grassland consumed CH4, whereas the LBY and BRM 
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pastures emitted CH4.  The observed difference among perennial grasslands may be 

because the SHN grassland was grazed for 23 more days than the BRM and 66 more days 

than the LBY grasslands. Generally, CH4 emissions were extremely small and highly 

variable, making them negligible when considering whole system global warming 

potential.  

Our results also indicate that grazing perennial grasslands did not have a 

consistent impact on soil N2O emissions. Only one of the three growing seasons indicated 

that grazing and species of grass impacted soil N2O emissions. Within a species, most 

grazing treatments were statistically similar. This observation indicates that grazing did 

not impact soil N2O emissions. Further evidence suggests that grazing did not impact 

N2O emissions. In 2017, no significant species or grazing effect was found despite the 

management differences among the perennial grasslands. In 2017, the LBY perennial 

grassland was only grazed for 7-d whereas the BRM and SHN grasslands were grazed for 

50-d and 73-d, respectively. This observation indicates that grazing duration may not 

affect soil N2O emissions. Further evidence in 2019 suggests that grazing duration did not 

impact soil N2O emissions. The perennial grassland with fewer grazing days produced 

more soil N2O emissions. The BRM grassland was grazed for 49-d and the SHN and 

LBY grasslands were grazed for 79-d. Even though the BRM was grazed for 30 less 

days, the grassland produced more soil N2O emissions. The minimal differences in the 

soil N2O emissions may be since each entire grassland (non-grazed, flash-grazed, and 

conventionally grazed) received the same level of fertilizer.  

Observed increases of soil N2O in grazed grasslands when compared to non-

grazed grasslands are typically due to fertilization. In North Dakota, soil N2O emissions 
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increase when the pasture is grazed and fertilized when compared to a grazed non-

fertilized grassland (Liebig et al. 2006). Additionally, in New Zealand, grazed pastures 

often exhibit increased soil N2O when compared to non-grazed grasslands because of 

increased fertilization and the input of animal dung and urine (Saggar et al. 2008). When 

grazed perennial grasslands receive nitrogen fertilizer, soil N2O emissions increase. 

Interestingly, one study found that grazing perennial grasses can lower N2O emissions. In 

the Southeastern United States, cattle grazing bahiagrass at moderate stocking rates either 

had no impact on soil N2O or reduced soil N2O emissions (Gamble et al. 2019). Grazing 

perennial grasslands has the potential to decrease N2O emissions, but the result is 

dependent on fertilizer management. It is also important to note that grazing 

management, including the duration of a grazing event can impact soil GHG emissions. 

In Texas, adaptive multi-paddock grazing of native prairie, reduces N2O and CH4 

emissions when compared to continuously grazed prairie (Dowhower et al. 2020). 

Continuous Corn 

Our results suggest that crop residue and cover crop management do not impact 

soil CH4 emissions but may affect soil N2O emissions. Two of the three growing seasons 

indicated that cover crop and residue management did not affect soil CH4 emissions. 

However, two of the three growing seasons indicated that cover crop and residue 

management may impact soil N2O emissions. In 2017, plots with baled residue and a 

cover crop produced more N2O than plots with retained residue and a cover crop. This 

result indicates that residue removal may increase soil N2O emissions. Additionally, in 

2017, plots with retained residue and a cover crop produced less N2O than plots with 

retained residue and no cover crop. This result indicates that including a cover crop has 
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the potential to reduce soil N2O emissions. Despite these treatment differences, in 2018, 

no treatment effect was detected. However, in 2019, grazing residue increased soil N2O 

emissions. Grazed plots produced more N2O than plots with retained residue and no 

cover crop and plots with previously baled residue with and without a cover crop. It is 

important to note that cover crop did not impact N2O emissions in 2019. The inconsistent 

results of cover crops reducing GHG emissions is consistent with previous research. This 

result is supported by previous work in the Great Plains. In South Dakota, cover crops 

have been proven to decrease N2O emissions 67% of the time (Wegner et al. 2018). 

Additionally, a meta-analysis found that the inclusion of cover crops can increase or 

decrease N2O emissions (Basche et al. 2014).  

Unfortunately, the effect of grazing residue on GHG emissions is not well studied. 

One study in the Midwest has assessed the effect of grazing residue on GHG emissions. 

In Illinois when residue was grazed, CO2 effluxes were inconsistent when related to soil 

compaction and cattle presence (Tracy and Zhang 2008). However, some research has 

been conducted on the effect of livestock grazing cover crops. These studies may help to 

gain insight on the effect of grazing crop residue. One study has demonstrated that cover 

crop grazing mitigates soil N2O when compared to continuous cropping (Dieckow et al. 

2015). Another study has shown that grazing annual forages in South Dakota does not 

impact N2O emissions (Abagandura et al. 2019). However, another study revealed an 

increase in soil N2O emissions. When an ICLS with cover crop grazing is compared to a 

continuous cropping system, N2O emissions increase (Piva et al. 2014). However, 

researchers believe the observed increase was likely due to additional synthetic fertilizer 
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the grazed cover crop received. Increased synthetic fertilizer generally increases soil N2O 

emissions (Bavin et al. 2009; Abagandura et al. 2019).  

Our evidence suggests that residue removal may increase soil N2O emissions. 

However, our results were not consistent. The inconsistent findings are similar to what 

reviewers concluded after conducting a global literature review on residue removal. The 

effect of residue removal on GHG emissions is inconsistent (Rakkar and Blanco-Canqui 

2018). In the US, the effect of residue removal on soil N2O emissions is variable. Under 

no-till management residue removal in a corn-soybean rotation does not negatively effect 

N2O emissions (Johnson and Barbour 2010). Additionally, across the US Corn Belt when 

stover is baled N2O emissions decrease (Jin et al. 2014). Furthermore, in Eastern NE, 

when residue is removed, N2O emissions decrease (Jin et al. 2019). However, in South 

Dakota when residue is baled under a corn-soybean rotation N2O fluxes increase during 

the soybean growth phase but are not impacted during the corn growth phase (Lehman 

and Osborne 2016). Clearly, the effect of residue removal on soil GHG emissions is 

variable. Researchers have concluded that site specific management is essential for GHG 

mitigation because GHG emissions vary spatially, temporally, and are based on 

environmental conditions (Jin et al. 2014; Rakkar and Blanco-Canqui 2018).  

Pasture vs Continuous Corn 

Our results suggest that CH4 emissions do not differ among perennial grasslands 

and continuous cropland. No consistent patterns were observed in CH4 emissions among 

perennial grasslands and continuous corn through 2017-2019. However, our results 

indicate that perennial grasslands may reduce soil N2O when compared to continuous 

corn production. In 2017, continuous corn produced more N2O than perennial grasslands. 
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In 2018, continuous corn produced numerically more N2O than the perennial grasslands, 

however, no statistical difference was found. This observation was likely due to the high 

variability in the corn N2O emissions. In 2019, 4 of the corn treatments produced more 

N2O than 2 of the perennial grasslands. Additionally, 2 of the corn treatments produced 

more N2O than one of the perennial grasslands. However, 4 of the corn treatments 

produced less N2O than one of the perennial grasslands. This observation indicates that 

retaining residue with and without a cover crop could reduce N2O emissions below some 

perennial grasslands.  Overall, our results were variable and likely dependent on the 

reduced synthetic N fertilizer input for perennial grasslands when compared to 

continuous cropland.  

Little is known about the difference in GHG emissions between grazed perennial 

grasslands and cropland. However, it is well known that low-input perennial grasslands 

managed for bioenergy production can reduce soil GHG emissions. In Italy, if marginally 

productive cropland or areas with a surplus of grain production were converted to 

switchgrass production, GHG savings could be maximized (Nocentini and Monti 2019). 

In the central US, if cropland used for ethanol production was converted to low input 

perennial grassland, GHG emissions could be reduced (Davis et al. 2012). Additionally, 

perennial grasslands have the potential to be net GHG sinks. In eastern Nebraska, 

switchgrass grown for bioenergy production mitigates GHG emissions (Jin et al. 2019). 

Conversely, continuous corn grain production maintains GHG  emissions (Jin et al. 

2019). It is well known that converting cropland to perennial grassland for bioenergy 

production reduces GHG emissions. However, the impact of grazing perennial grassland 
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on soil GHG emissions is not as well known. Further research needs to expand upon the 

difference in GHG emissions for grazed perennial grasslands versus continuous cropland.  

Limitations  

Two limitations existed in this study. The first limitation was that the pasture 

exclosures were pseudo-replicated, so we were unable to make statements about the 

effect of species on the GHG emissions. The second limitation was that not every 

treatment occurred each year. This resulted in unbalanced data for the continuous corn 

portion in 2017 and 2018 (i.e. the grazed treatments became retained residue). In 2017 

the LBY perennial grassland also had unbalanced data. The LBY continually grazed 

exclosures in 2017 became the same as the flash grazed exclosures because the cattle 

only grazed the grassland for 7-d.  

Conclusion  

Grazing perennial grasses does not consistently have a negative effect on soil CH4 

and N2O emissions. Additionally, crop residue and cover crop management in continuous 

corn production does not impact CH4 emissions but may impact N2O emissions. 

Generally, continuous corn production results in greater N2O emissions than perennial 

grasslands because of increased synthetic N fertilizer input. The findings from this 

research can provide insight for further development and research of ICLS for Eastern 

NE that minimize soil GHG emissions. Future research should evaluate if certain 

perennial species and grazing management (duration) result in reduced soil GHG 

emissions. Additionally, future research should address enteric GHG emissions in 

conjunction with soil GHG emissions. Evaluating systems GHG emissions will allow for 

a more direct comparison between ICLS and continuous crop production. Lastly, future 
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research should evaluate the role of cover crop use in reducing soil N2O emissions when 

corn residue is grazed.  
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Table 4- 1. Table Web Soil Survey Map Units.  

Table of the total area for each soil map unit at the field-scale model demonstration site.  

Map Unit 
Symbol Map Unit Name Hectares in AOI 

Percent in 
AOI 

3948 
Fillmore silt loam, terrace, 
occasionally ponded 2.80 13.8% 

7105 
Yutan silty clay loam, terrace, 
2 to 6 percent slopes, eroded 4.00 19.6% 

7280 
Tomek silt loam, 0 to 2 
percent slopes 8.18 40.2% 

7340 
Filbert silt loam, 0 to 1 
percent slopes 5.38 26.4% 
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Table 4- 2. Table Herbicide Application Rate. 

List of herbicides, rates, and times of application for the continuous corn in the field-scale 

model demonstration site.  

 

Year Application  Herbicide  Rate        
L ha-1 

2017 
  

 

  Pre-emergent    

Lexar 4.68 

    Roundup 2.63   

2,4-D  0.7 

  Post-emergent   

Roundup 2.34 

    Laudis 0.13   

Atrazine  0.35 

2018 

 Pre-emergent  

    Atrazine 4L 2.34 

  Balance  0.37 

    2,4-D 0.58 

 Post-emergent 

    Roundup Powermax 2.63 

  Roundup Powermax 2.34 

    Callisto 0.18 

2019    

  Pre-emergent      

  Accuron 4.68 

    LV6 2,4-D  0.39 

  Roundup Powermax 2.34 

  
Post-
emergent     

  Callisto 0.18 

    Roundup Powermax 1.75 

    Atrazine 4L 0.58 



 

 

 

 

1
9
4
 

Table 4- 3. Table Initial Soil Properties.  

Initial soil properties for each experimental unit at the ICLS site. Values presented are the weighted average for 0-30cm.  

 

Bulk E.C. p.H. N C K Ca Mg Na Total base

density 1:1 cations

Species Grazing Cover Crop Mg/m
3

dS/m soil:H2O % % cmolc/kg cmolc/kg cmolc/kg cmolc/kg cmolc/kg

BRM Continuous - 1.32 0.51 5.36 0.15 1.66 0.78 10.29 3.30 0.10 14.46

BRM None - 1.35 0.50 5.32 0.14 1.54 0.71 10.12 3.48 0.08 14.38

BRM Flash - 1.34 0.51 5.41 0.15 1.57 0.72 10.84 3.60 0.10 15.26

SHN Continuous - 1.24 0.50 5.38 0.15 1.68 0.76 12.44 3.81 0.10 17.11

SHN None - 1.16 0.48 5.38 0.14 1.65 0.66 11.22 3.30 0.10 15.28

SHN Flash - 1.23 0.54 5.50 0.14 1.61 0.70 11.78 3.94 0.10 16.52

LBY Continuous - 1.32 0.50 5.23 0.15 1.64 0.80 11.28 3.41 0.11 15.60

LBY None - 1.30 0.51 5.18 0.15 1.66 0.79 10.68 3.37 0.11 14.94

LBY Flash - 1.32 0.52 5.18 0.14 1.54 0.81 11.85 3.96 0.12 16.73

Corn Grazed None 1.33 0.51 5.18 0.15 1.66 0.75 10.37 2.94 0.11 14.17

Corn Grazed Triticale 1.28 0.54 5.28 0.17 1.88 0.80 10.94 3.20 0.12 15.06

Corn Baled None 1.39 0.50 5.16 0.15 1.67 0.96 10.54 3.13 0.10 14.73

Corn Baled Triticale 1.32 0.51 5.23 0.16 1.70 0.84 11.24 3.27 0.12 15.48

Corn Retained None 1.36 0.52 5.38 0.15 1.74 1.18 11.06 2.99 0.08 15.29

Corn Retained Triticale 1.33 0.65 5.37 0.16 1.70 0.77 11.24 2.99 0.10 15.10

Initial Soil Properties 
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Table 4- 4. Perennial grassland CH4 LS Means.  

Average kg of carbon emitted from the soil as CH4 each year of the study in the perennial 

grassland portion of the study. In 2017 8 observations were recorded, in 2018 5 

observations were recorded, in 2019 9 observations were recorded. Means presented are 

at the significant treatment or main effect level. Treatments with the same letter (A,B,C) 

are not statistically different and treatments with different letters are statistically different 

at P<.05. P-values between 0.05 and 0.1 were considered marginally significant. BRM is 

Newell Smooth Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass. 

None is the non-grazed treatment. Conv is the conventionally grazed treatment. Flash is 

the flash-grazed treatment.  

Perennial grassland CH4 

2017   kg C ha-1 yr-1 

 BRM 0.17 A 

 LBY 0.03 A 

 SHN -0.16 B 

 p-value 0.0136  
2018       

 BRM None 0.51 A 

 LBY Conv 0.45 AB 

 LBY Flash 0.31 ABC 

 BRM Conv 0.27 BC 

 BRM Flash 0.26 BC 

 SHN Flash 0.24 BC 

 LBY None 0.19 C 

 SHN Conv 0.15 C 

 SHN None 0.09 C 

 p-value  0.0074  
2019       

 LBY Conv 1.72 A 

 BRM None 1.53 A 

 LBY Flash 1.17 AB 

 BRM Conv 1.16 AB 

 SHN Flash 1.13 AB 

 SHN None 1.07 AB 

 LBY None 0.67 AB 

 BRM Flash -0.28 B 

 SHN Conv -0.58 B 

 p-value  0.0611  
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Table 4- 5. Perennial grassland N2O LS means. 

Average kg of nitrogen emitted from the soil as N2O each year of the study in the 

perennial grassland portion of the study. In 2017 8 observations were recorded, in 2018 5 

observations were recorded, in 2019 9 observations were recorded. Means presented are 

at the significant treatment or main effect level. Treatments with the same letter (A,B,C) 

are not statistically different and treatments with different letters are statistically different 

at P<.05. P-values between 0.05 and 0.1 were considered marginally significant. BRM is 

Newell Smooth Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass. 

None is the non-grazed treatment. Conv is the conventionally grazed treatment. Flash is 

the flash-grazed treatment.  

Perennial grassland N2O 

2017   kg N ha-1 yr-1 

 Overall 0.81  
2018       

 BRM Conv 0.98 A 

 BRM None 0.64 AB 

 SHN Flash 0.53 BC 

 BRM Flash 0.45 BC 

 SHN Conv 0.39 BC 

 LBY Flash 0.30 BC 

 LBY None 0.27 BC 

 SHN None 0.19 C 

 LBY Conv 0.17 C 

 p-value  0.0537  
2019       

 BRM 5.48 A 

 SHN 1.93 B  

 LBY 0.99 B 

 p-value 0.0003  
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Table 4- 6. Corn CH4 LS means.  

Average kg of carbon emitted from the soil as CH4 each year of the study in the corn 

portion of the study. In 2017 8 observations were recorded, in 2018 5 observations were 

recorded, in 2019 9 observations were recorded. Means presented are at the significant 

treatment or main effect level. Treatments with the same letter (A,B) are not statistically 

different and treatments with different letters are statistically different at P<.05. P-values 

between 0.05 and 0.1 were considered marginally significant. Bal is residue removal by 

baling. RTN is residue retained. GRZ is residue removal by grazing. NoCC is no cover 

crop was included. CC is cover crop was included.  

Continuous Corn CH4 

2017   kg C ha-1 yr-1 

 Bal/NoCC 0.24 A 

 RTN/NoCC -0.04 B  

 RTN/CC  -0.05 B  

 Bal/CC -0.14 B  

 p-value 0.0502  
2018       

 Overall 0.14  

    

2019       

 Overall 0.72  
 

 

 

 

 

 

 

 

 



198 

 

 

 

 

Table 4- 7. Corn N2O LS means.  

Average kg of nitrogen emitted from the soil as N2O each year of the study in the corn 

portion of the study. In 2017 8 observations were recorded, in 2018 5 observations were 

recorded, in 2019 9 observations were recorded. Means presented are at the significant 

treatment or main effect level. Treatments with the same letter (A,B) are not statistically 

different and treatments with different letters are statistically different at P<.05. P-values 

between 0.05 and 0.1 were considered marginally significant. Bal is residue removal by 

baling. RTN is residue retained. GRZ is residue removal by grazing. NoCC is no cover 

crop was included. CC is cover crop was included. 

Continuous Corn N2O 

2017   kg N ha-1 yr-1 

 Bal/CC 7.75 A 

 RTN/NoCC 6.79 A  

 Bal/NoCC 6.72 AB 

 RTN/CC  2.59 B 

 p-value  0.0759  

    

2018       

 Overall 4.55  

    

2019       

 GRZ/NoCC 15.89 A 

 GRZ/CC 8.65 A 

 RTN/CC 3.96 AB 

 RTN/NoCC 3.27 B 

 BAL/CC 1.75 B 

 BAL/NoCC 1.72 B 

 p-value  0.0807  
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Figure 4- 1. Figure Web Soil Survey Map. 

A map of the field-scale modern demonstration site with the locations of the soil map 

units.  
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Figure 4- 2. Average precipitation, high and low temperature during growing season.  

Average precipitation and high and low temperature for each month in the growing season for 2017, 2018, and 2019. Weather station 

located 600m SE of the ICLS site.   
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Figure 4- 3. Figure management by component by year.  

Outline of how each component of the field-scale model demonstration site was managed each year.  
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Figure 4- 4. Treatment map.  

Treatment layout for the ICLS. Corn residue grazing only occurred in Autumn of 2018 

and 2019. Stover was only baled in 2017 and 2018. Liberty was only flash grazed in 

2018.  
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Figure 4- 5. 2017 CH4 emission contrasts.  

Average kilograms of carbon emitted from the soil as CH4 during the growing season in 2017 for each significant treatment or main 

effect. Soil GHG emissions were measured 8 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. * denotes corn treatment mean is significantly different from LBY mean. ^ denotes corn treatment mean is 

significantly different from SHN. # denotes corn treatment mean is significantly different from BRM. Bal is residue removal by 

baling. RTN is residue retained. NoCC is no cover crop was included. CC is cover crop was included. BRM is Newell Smooth 

Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass.  
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Figure 4- 6. 2018 CH4 emission contrasts.  

Average kilograms of carbon emitted from the soil as CH4 during the growing season in 2018 for each significant treatment or main 

effect. Soil GHG emissions were measured 5 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. * denotes perennial grassland treatment mean is significantly different from corn mean.  BRM is Newell 

Smooth Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass. None is the non-grazed treatment. Conv is the 

conventionally grazed treatment. Flash is the flash-grazed treatment.  
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Figure 4- 7. Figure 2019 CH4 emission contrasts  

Average kilograms of carbon emitted from the soil as CH4 during the growing season in 2018 for each significant treatment or main 

effect. Soil GHG emissions were measured 9 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. No perennial grassland treatments were significantly different from the continuous corn mean. BRM is 

Newell Smooth Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass. None is the non-grazed treatment. Conv is the 

conventionally grazed treatment. Flash is the flash-grazed treatment.  
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Figure 4- 8. 2017 N2O emission contrasts.  

Average kilograms of nitrogen emitted from the soil as N2O during the growing season in 2017 for each significant treatment or main 

effect. Soil GHG emissions were measured 8 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. * denotes corn treatment mean is significantly different from overall perennial grassland mean.  Bal is 

residue removal by baling. RTN is residue retained. NoCC is no cover crop was included. CC is cover crop was included.  
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Figure 4- 9. 2018 N2O emission contrasts.  

Average kilograms of nitrogen emitted from the soil as N2O during the growing season in 2018 for each significant treatment or main 

effect. Soil GHG emissions were measured 5 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. No means were significantly different.   BRM is Newell Smooth Bromegrass. LBY is Liberty switchgrass. 

SHN is Shawnee switchgrass. None is the non-grazed treatment. Conv is the conventionally grazed treatment. Flash is the flash-grazed 

treatment.  
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Figure 4- 10. 2019 N2O emission contrasts. 

Average kilograms of nitrogen emitted from the soil as N2O during the growing season in 2017 for each significant treatment or main 

effect. Soil GHG emissions were measured 9 times per season Contrasts between perennial grassland and corn treatments were 

performed using a P<0.05. * denotes corn treatment mean is significantly different from LBY mean. ^ denotes corn treatment mean is 

significantly different from SHN. # denotes corn treatment mean is significantly different from BRM. BRM is Newell Smooth 

Bromegrass. LBY is Liberty switchgrass. SHN is Shawnee switchgrass. Bal is residue removal by baling. RTN is residue retained. 

GRZ is residue removal by grazing. NoCC is no cover crop was included. CC is cover crop was included
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