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 Citizen science has a key role in modernizing effective communication between professional 

scientists and the general public. However, citizen science differs to that of professional science due to 

equipment and experience and is a topic argued against citizen science. However, technology in water 

quality testing has developed in simplicity and affordability to a point where high school students, with 

hands-on training, can collect groundwater samples and test for quality themselves. Nebraska 

groundwater quality is a critical part of the state and can utilize high school students as citizen 

scientists for their communities. High school students from rural communities across Nebraska 

collected and tested groundwater for safe drinking water quality utilizing chemistry test kits. The 

samples were also sent to a professional laboratory to be tested for the same analytes the students tested 

and further correlated. High school students had such limitations that come with colorimetric chemistry 

kits whereas the professional laboratory utilized analytical instruments with trained and experienced 

staff. For five analytes, nitrate, chloride, calcium hardness, pH and electrical conductivity, similarities 

and differences were expressed in terms of the coefficient of determination (R²) and the absolute 

difference in averages (|Δave|). For Nitrate, the R² was 0.632 ±0.255, and the |Δave| of 3.97 ±5.32. A 



comparison of the results between the citizen scientists and the professional scientists show similarities 

as well as areas for improvement. R² results for electrical conductivity were favorable where |Δave| 

results were not so favorable. |Δave| results for pH were favorable where R² results were not so 

favorable. Both R² and |Δave| results for nitrate were not polar opposites like results for pH and 

electrical conductivity. 
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CHAPTER 1 

INTRODUCTION 

 

Water is not only essential to sustain life, but it also plays an integral role in 

ecosystem support, economic development, community well-being and cultural values 

(Gleick 1998). With nearly 71% of Earth’s surface covered by water (USGS 2020), its 

quality is not less important than its quantity. About 99.3% of water on Earth is either 

saline water in the oceans (97.2%) or water stored in our ice caps and glaciers (2.1%) 

(Fetter 2018), making fresh water highly sought after and invaluable. Resources such as 

water with safe drinking quality are and will be stressed. Until recently, management of 

such natural resources was often the exclusive task of technical experts working under 

the auspices of the state (Pahl-Wostl 2009). However, as populations increase and 

sciences advance, the demands of research are outnumbering the capabilities of the state 

as the only decision-making authority. Awareness of uncertainty and change is increasing 

as new management practices that involve many stakeholders are being adopted (Pahl-

Wostl 2009). As it is a necessity to human life, the largest and most important stakeholder 

group is the general public as the representatives of the humans who drink the water for 

sustenance. Instead of having business or government decision-makers at the forefront of 

water quality, the general public actively involved in knowing the quality of their own 

drinking water is a step towards developing effective water ethics and water security 
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(Postel 2013). Citizen science is one such path in getting the general public actively 

involved in learning about and appreciating the quality of their own drinking water. 

Citizen science has constantly been redefined (Brouwer et al., 2018; Wiggins and 

Crowston 2011; Marshall, Lintott, and Fletcher 2015). Brouwer defined it as participation 

of the general public, i.e., non-scientists, in the generation of scientific knowledge. 

Wiggins and Crowston defined it as a collaborative research arrangement between 

experts and nonprofessionals, in which the nonprofessionals are involved in some aspect 

of the research process. Marshall and colleagues defined it as scientific research carried 

out by people who are not paid (citizens) but make intellectual contributions to scientific 

research nonetheless. Citizen science starts by taking into account that there are limited 

professional scientists who can collect data. With the utilization of the public as citizen 

scientists, theoretically, professional scientists can have observations and collections of 

various forms (i.e., samples, data, images, etc.), at various places both at the same time 

and at different times. Citizen scientists can collect and analyze more data than scientists 

alone (Conrad and Hilchey 2011). Citizen science is not just about collecting data. It’s 

also a practice that can help us accomplish many goals, including a chance to harmonize 

the sciences and communities (Hannibal 2017). A deeper observation into citizen science 

is through its long-term effects on the success of science, the distribution of knowledge, 

decision making, both private and public, and two community, scientific and social. 

In order for citizen science to succeed, it has to fulfill its scientific 

responsibilities. However, the success of science alone, comes from its roots in 

measurements. Nothing describes science better than Galileo Galilei’s quote “Measure 
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what is measurable, and make measurable what is not so” (Le-Gratiet et al., 2020). With 

so much emphasis placed on measuring, research on collective intelligence indicates that 

professional diversity is found in those doing the collection where new leaps of logic, 

innovation, and invention are more likely to arise (Dickinson et al., 2012). The successful 

distribution of data amongst the public participants and the professional scientists is a key 

goal of citizen science. The significance of data produced arguably might be the most 

highlighted emergence from these proactive citizens, more particularly from ongoing 

challenges and the desire for more combined and multidisciplinary solutions (Brouwer et 

al., 2018). With volumes of data now available in the palm of a hand via a smartphone, 

from the world wide web and from instant digital interactions, information is being 

spread at a far faster and more efficient way than before, as advances in 

telecommunication technology have led to a new type of citizen science (Brouwer et al., 

2018).  

 

1.1 Advantages in citizen science 

There are a variety of potential advantages in having citizens measure, collect and 

analyze scientific data. One such benefit of citizen science is an increase in quantity of 

data being collected for various research purposes (Dickinson et al., 2012). Another 

advantage to citizen science is when there is a single research objective by a professional 

scientist through means of answering a single question, other stakeholders may benefit 

from the findings (Miller-Rushing et al., 2012).  
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Another benefit of utilizing citizen science is in the eventual and long-term 

impacts on the scientific, legal and social communities it involves (Jordan et al., 2012). 

There is a bridge of scientific and social knowledge shared between the scientific 

community and the general public. As the general public gets involved into various 

sciences, there is an educational effect on participants otherwise not implemented 

(Dickinson et al., 2012). This participation leads to educated choices in the public’s 

future actions, policy implementations, and pursuit of scientific enlightenment. Ideally, a 

democracy will have a well-informed public to make better decisions to better its 

government (Durrance 1984; Mattson 1998). Equally, science should not be absent in 

order to have a well-informed public to make sound decisions. Citizen science has the 

potential to be effective in educating the public. 

Citizen scientists can not only help by filling gaps with unlimited and adequate 

data, but also with funding due to volunteer practices and to the presence of an 

indispensable public interest in a variety of scientific fields. Prioritization and 

sustainability of natural resources raises the question of how government and private 

funding of scientific research can help society without referring to or involving public 

interest (Dickinson et al., 2012). Public interest is directly affected by citizen science 

projects because the public is directly involved in the research itself. Government and 

private funding of such scientific research can go further with limited funding due to 

volunteers. Public interest affects all scientific fields, and is not limited or narrow in 

topic. Data collected via citizen scientists are progressively used to monitor a wide range 

of resources including biodiversity, ecosystems and community health, marine and 
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coastal resources, toxins, birds, water quality and quantity, trees and forests, and more 

(Chase and Levine 2016).  

 

1.2 Disadvantages in citizen science 

Many disadvantages have been reported within citizen science practices. Such 

disadvantages include unutilized data, data quality, challenges in communication, as well 

as management and organization. Projects involving citizen science may be able to 

collect a significant amount of scientific data, but that data will only be helpful if it is 

actually utilized (Kim et al., 2011). Data that is not utilized by professional scientists do 

not allow citizen science to make an impact in decision making (Figure 1) and may 

negate further funding of the citizen science endeavors. Scientists have a pivotal role in 

citizen science with responsibilities that, if overlooked, may harm citizen science as a 

whole. For example, research projects involving citizen scientists might have issues 

regarding data quality because citizens might have little to no training in scientific data 

management or research integrity, and therefore may not understand how to collect, 

record, or manage data properly (Resnik et al., 2015). For projects using citizen science 

to be successful, there needs to be constant and effective communication between the 

professional scientists and the citizen scientists in order for an understanding of what 

actions are being required and why these actions are necessary. Effective communication 

allows professional scientists to know what training is needed for successful data 

collection from citizen scientists. Such criticisms of citizen science projects regarding 

data quality implies that these often lack effective communication between the 
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professional scientists and the citizen scientists. As a result, professionals may believe 

that citizen scientists are not committed or skilled enough to perform at the level of 

professional scientists (Kosmala et al., 2016).  

However, the fault does not always lie on the shoulders of an enthused general 

public. Citizen science typically relies on volunteers, and the organizers need to have a 

thorough understanding of how to manage volunteers. Most organizations using citizen 

science lack the resources to conduct internal research and a thorough understanding of 

volunteer motivations to participate in citizen science projects (Alender 2015). The 

benefits of citizen science are many, but foremost is the actual scientific data being 

produced by the volunteering citizens. The focus of most projects using citizen science is 

therefore placed upon said benefits and not on understanding and helping the citizens 

making measurements and collecting data. The social value of citizen science is often 

ignored when the emphasis is only on the data produced. Little attention is paid to 

teaching and engaging citizen scientists, which can lead to misunderstandings or a lack of 

understanding of the purpose of the project. Other areas of disadvantages found in citizen 

science projects lie in ethical issues such as data sharing and intellectual property, conflict 

of interest and various forms of exploitation (Resnik et al., 2015). To avoid ethical 

mismanagement, some of the ways professional scientists can promote ethical research 

other than education and training is by developing guidelines for the involvement of 

citizens in research and by communicating effectively with participants at the beginning 

of each project (Resnik et al., 2015).  
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1.3 Citizen science and public awareness 

Citizen science is an effective way to inform the public on issues that directly and 

indirectly influence decision making. Decision making on local, regional, national and 

international levels are becoming heavily influenced by the general public as seen on 

Figure 1 (Mckinley et al. 2017). Citizen science directly affects public input which 

directly affects decision making, reinforcing citizen science as an effective stepping stone 

in the decision making process. Citizen science is having an impact through data to aid 

decision making, as well as contributing to and participating in environmental 

governance (Craglia and Granell 2014). The effects of citizen science derived results do 

not stop at decision making alone. Policy proposals and voting are also affected by the 

consequences of citizen science. Globally, Non-Governmental Organizations and 

decision-makers increase the utilization of citizen scientists to enhance the ability to 

monitor and manage natural resources and the environment (Conrad and Hilchey 2011). 

Conrad and Hilchey provided some examples, one being Global Community Monitoring 

in which programs around the world, some with documented success like the SIPCOT 

Area Community Environmental Monitors in India assisted the establishment of national 

standards for toxic gases in ambient air. The impact of citizen science may not only affect 

decision making in government, but it may also affect decision making in science. 

Decision making can be affected at all levels ranging from countries and corporations to 

local community scales. 
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Figure 1. Impact of citizen science on society. The two pathways that citizen science can take to inform 

conservation, natural resource management and environmental protection by acquiring scientific 

information and fostering direct (solid arrows) and indirect (dashed arrows) public input and engagement 

(Source: Mckinley et al. 2017). 

 

Citizen science has the potential to mend broken relationships of mistrust amongst 

various stakeholders in communities. The potential effects on the community resulting 

from activities in citizen science are that of social capital, community capacity, economic 

impact (job creation), and trust development between the public, scientists, and land 

managers (Jordan et al., 2012). However, from a traditional perspective, professional 
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scientists and site or project managers tend to engage the community in a “one-way 

communicational model,” limited to keep the community at a distance by limiting 

information which creates mistrust between scientists, regulatory officials and the 

affected communities (Ramirez-andreotta et al., 2015). Professionalization of the sciences 

has ousted amateur scientists for their lack of credibility and validation (Miller-Rushing 

et al., 2012). That credibility can be rebuilt with citizen science and bringing a 

communication model that all can participate in. On the professional perspective, citizen 

science programs have been noted as one way to augment limited resources and meet 

federal reporting requirements (Jalbert and Kinchy 2016). Public participation by the 

citizens in access to justice regarding environmental matters is a result that has come 

from the 1998 Aarhus Convention (Conrad and Hilchey 2011), empowering the 

community to build ownership and responsibility in natural resources. Citizen science 

benefits both the professional fields as well as the public at large.  

 

1.4 Where citizen science has been applied 

Environmental and life science research projects have widely used citizen science 

for its various benefits, often because the scale of these projects requires more resources 

than typically available. The longest known citizen science endeavor in the western 

hemisphere is in ornithology with the National Audubon Society’s Annual Christmas 

Bird Count (CBC) which started at the turn of the 20th century (Dunn et al., 2005). The 

CBC has proactive citizens sign up in their local regions under a lead-count ornithologist. 

As beginners, new bird watchers are encouraged to join a group with a professional 
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ornithologist to better understand what their responsibilities are as bird watching citizen 

scientists (“Christmas Bird Count” 2018). Data from such large geographic regions such 

as in the CBC are complicated due to variation in counts for summaries, such as multiple 

entries from the same location with different counts (Link et al., 2006). Ornithology 

based citizen science has been well documented in Costa Rica and Ethiopia (Şekercioĝlu 

2012), across North America with the Avian Knowledge Network and Project 

FeederWatch (Caruana et al., 2006), the North American Breeding Bird Survey (Kosmala 

et al., 2016) and the Tucson Bird Count (Turner and Richter 2011; McCaffey 2005). 

Examples of citizen science can be found in a variety of studies, including 

(Silvertown 2009), statistics (Isaac et al. 2014), psychology (Nov et al., 2011), astronomy 

(Marshall et al., 2015), computer science (Kawrykow et al., 2012), medicine (Ranard et 

al., 2013), and more (Alender 2015). Within water sciences, citizen science has been 

invaluable, with multiple projects in hydrology as well as surface water quantity and 

quality (Buytaert et al., 2014). 

Although there are examples of citizen science use in hydrology, its scope has 

been limited. Complex and expensive devises and techniques are usually necessary for 

hydrologic measurements. Most citizen science projects have been limited to the 

monitoring of surface water quantity, quality and the measurement of precipitation 

(Grace-McCaskey et al., 2017). Few citizen science projects have been focused on 

groundwater. Additionally, citizen science projects tend not to be diverse (i.e. only 

activists) (Conrad and Hilchey, 2011). However, citizen science projects have utilized 

high school (HS) students rather than relying on activists. One example is found in 
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PowerStreams, a research-education-cooperation between a limnological research 

institute and five high schools in Austria (Weigelhofer et al., 2019). PowerStreams has 

high school students test surface water for the effects of agricultural land use on multiple 

in-stream processes. Having high school students as citizen scientists produced the 

needed large number of experiments for reliable estimations, but the students required 

extra supervision for safety and accuracy, as well as further simplification of concepts, 

instructions and equipment (Weigelhofer et al., 2019). Another example can be found in 

the Groundwater Education Through Water Evaluation and Testing (GET WET!) 

program started by Dr. Teresa Thornton and John Peckenham in Maine. This program has 

high school students become citizen scientists and test groundwater quality in private 

wells within their communities. GET WET! now is active at various locations within the 

United States (Orange County 2014; T. E. Thornton 2014).    

 

1.5 Where citizen science has been avoided 

Quality Assurance / Quality Control (QA/QC) requires that laboratories adopt a 

set of procedures to prove the legitimacy of test results (Ibe and Kullenberg, 1995). Ibe 

and Kullenberg (1995) state that selection of internationally-validated methodologies, 

reference material and intercomparison exercises make up QA/QC. Credible mechanisms 

that make up QA/QC generate the precision and accuracy that should be found in data is 

then used globally, regionally and nationally to protect the environment through 

regulation (Ibe and Kullenberg, 1995). 
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Effective QA/QC involving professional scientists in citizen science projects have 

been lacking. In order for data that has been collected, observed and analyzed by citizen 

science to be useful, it first must be trusted as a valid and reliable source (Thornton and 

Leahy 2012). Fundamentally, policy changes regarding quality protection are dependent 

on how end users trust the quality of the data collected (Peckenham and Peckenham 

2014). Citizen science projects only have scientific impact when the collected data is 

used (Kim et al. 2011). One way to ensure data is more likely to be trusted is by including 

a QA/QC component that directly involves professional scientists with citizen science. In 

the GET-WET! program, high school students use a prepared laboratory standard for each 

test including chloride, hardness, total iron and nitrate. Additionally, they use 

commercially produced standards for pH and electrical conductivity (EC) tests 

(Peckenham and Peckenham 2014). These QA/QC components are performed by high 

school students and not professional scientists. For citizen science to be effectively 

trusted and further used in communities and in decision making, there needs to be a form 

of validation from professional scientists. 

The use of QA/QC in citizen science projects need to be simplified and effectively 

explained to participants. QA/QC is an invaluable part of the scientific method and 

should not be rushed or partially completed. Examples of simple QA/QC are: having a 

professional laboratory test a sample that citizen scientists tested, have citizen scientists 

test the same sample twice and check for duplicate results, and have the citizen scientists 

test a blank sample with deionized/distilled water. 
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1.6 Motivation and contribution 

 The state of Nebraska has approximately 88% of residents relying on groundwater 

as their source of drinking water (NDEQ 2018). Approximately 20% of Nebraskan’s rely 

on drinking water from private wells (Central District Health Department 2019) and few, 

if any, of these wells are regularly tested. Currently, there is no state or federal law 

mandating a requirement to test private domestic wells for water quality. This means that 

well owners lack any legal incentives to test their domestic wells for the quality of their 

own drinking water. Without such incentives, hazardous tendencies of avoiding or 

ignoring the practice of testing drinking water sources for quality may bring up an “out of 

sight, out of mind” attitude. 

In 2018, Nebraska’s market value of agriculture products sold was calculated at 

over 23 billion USD (USDA 2019). To effectively produce such high amounts of 

agricultural products, the influence of additional substances as fertilizers and pesticides 

are utilized. Often, historically high applications of agrichemicals in vulnerable areas 

impaired groundwater quality (Juntakut et al. 2019). With a heavy agricultural industry 

across the state, Nebraska has groundwater quality concerns that involve high nitrates, 

pesticides, bacteria and arsenic contamination, among others (NDEQ 2018).  

Within rural communities across Nebraska, there continues to be a void between 

the scientific communities and the general public. With such institutions such as 

Nebraska’s Natural Resources Districts and Extension, progress has been made in 
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bridging this divide, but there is still better communication to develop. Citizen science 

offers an effective conversation of perspectives, ideas and data between groups, 

strengthening communication, cooperation and collaboration with scientific communities 

and the general public. With an impracticable probability of acquiring an additional 

professional workforce large enough to accomplish what citizen science can produce, 

both scientifically and socially, it’s inconceivable to neglect the opportunity to utilize 

citizen scientists. Instead of utilizing activists, this unconventional citizen science 

approach, of informing and training multiple stakeholders (i.e. high school students, 

teachers and well owners in rural Nebraska), about how groundwater quality monitoring 

could greatly benefit the citizens, their health, agricultural industry and their land 

management practices.  

The objectives of this research are: i) to evaluate how effective citizen science 

using high school students can be in monitoring groundwater quality, ii) to see which 

parameters tested by high school citizen scientists are most similar to their laboratory 

tested counterparts. I intend to submit one article, a case study, in the Journal of the 

American Water Resources Association. 
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CHAPTER 2 

MATERIAL AND METHODS 

 

High school (HS) identification 

Public HSs in rural settings across Nebraska were identified separately by 

participants from 2017 and 2018. Participating HSs from 2017 were identified by specific 

science and Future Farmers of America (FFA) teachers who had a history of participating 

in joint HS – University of Nebraska-Lincoln (UNL) science projects and being within a 

20 to 120 mile driving radius from UNL. Participating HSs from 2018 were identified by 

being within a 50 to 350 mile driving radius from UNL and either by science and FFA 

teachers having demonstrated an interest in joining the Know Your Well project, or 

science and FFA teachers who had a history of participating in joint HS – UNL science 

projects. Science/agricultural teachers from HSs meeting the above criteria were invited 

to take part in this hands-on research experience with their students. There were 4 

participating HSs in the first year (2017) and 6 in the second year (2018). A total of 10 

schools were involved in the data being compared to this research. 

 

Training 

Three visits to each school were needed at the beginning of each sampling 

campaign. The first visit is to introduce pre-field research, the second visit is to introduce 

field research, and the third visit is to introduce lab research. In the first visit, HS students 

were introduced to why and how to get involved in groundwater quality issues around 
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their area and the importance of citizen science in water science studies. This includes 

highlighting the importance and urgency in knowing Nebraska’s groundwater quality at a 

local level, and how to identify registered rural domestic wells around their communities. 

As pre-field research, students identified rural domestic wells within or near their 

communities by contacting the well owners and/or using the interactive online map 

available at the Nebraska Department of Natural Resources website 

(https://dnr.nebraska.gov/groundwater). Once the HS students identified suitable rural 

domestic wells, contacted the well owners, and verified their interest in participating in 

this study, a second visit was scheduled. 

During the second visit, the students observed how scientists collect and test 

groundwater samples. Engaging teaching techniques can make a difference for the 

students and are based on instructional methods, including meaningful learning activities 

that engage students in the learning process (Prince 2004). Through this experience, 

students were able to i) observe domestic wells and their surrounding areas, ii) use 

scientific instrumentation to collect, preserve and store groundwater samples, and iii) use 

a digital approach to collect crucial data, like global positioning system (GPS) 

coordinates, through the Know Your Well App (https://itunes.apple.com/us/app/know-

your-well/id1278672864?mt=8), the Know Your Well website 

(https://knowyourwell.unl.edu/welcome), an online questioner and a binder with a 

detailed questionnaire summarizing the different field activities (Appendix A).  

During the third visit, students used chemistry kits (Table 1) to analyze collected 

groundwater samples, and observe the importance of recording results and the different 

https://dnr.nebraska.gov/groundwater
https://itunes.apple.com/us/app/know-your-well/id1278672864?mt=8
https://itunes.apple.com/us/app/know-your-well/id1278672864?mt=8
https://knowyourwell.unl.edu/welcome
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methods to do so. Such methods included recording the results on paper, on the App, or 

with the online questioner found on the website. Student groups collected enough water 

samples to test 13 analytes; and as part of a QA/QC component, they sent each sample to 

the Water Sciences Laboratory (WSL) to be tested for the same analytes, eight of which 

are discussed in this research. By having a professional laboratory component for 

validation, results provide an opportunity for recommendations where citizen science in 

groundwater quality data was successful and where it needed improvement. 

 

Table 1. Test kits and laboratory instrumentation used by citizen scientists (high school students) and 

professional scientists (WSL), respectively. 

Instrumentation 

Citizen Scientists vs. Water Sciences Laboratory 

Parameters Citizen Scientists Water Sciences Laboratory 

Basic Water Quality 

pH Hanna Instruments Multi-Parameter 

Tester 

Fisher Scientific pH Meter 

Electrical conductivity Fisher Scientific Conductivity Meter 

Hardness CHEMetrix Calcium Hardness Test Kit Estimated using Ca/Mg Equation 

Major Anions & Cations 

Nitrate CHEMetrix Nitrate Test Kit AQ2 Discrete Analyzer  

Chloride HACH Chloride Test Kit Ion Chromatograph 

Calcium, Magnesium N.a. Atomic Absorption Spectroscopy 

Metals 

Iron CHEMetrix Iron Test Kit 
Inductively Coupled Plasma Mass 

Spectrometry 
Manganese CHEMetrix Manganese Test Kit 

Copper CHEMetrix Copper Test Kit 

 

 With equipment to collect and test up to twenty samples, and following the first 

three visits, the students had enough experience to participate as citizen scientists. During 

each field activity, groundwater temperature, pH and conductivity were measured using a 

multi-parameter probe (Figure 2)(Appendix B). The probe was calibrated by the HS 



18 
 

 

students using 7.0 pH and 1314 µS/cm electrical conductivity buffers. Following a survey 

(Appendix A) of the land and land-use near the well, the citizen scientists collected which 

were groundwater samples in analytically specific containers stored in portable coolers 

until they could be transferred to refrigerators with a 3-7 °C temperature. Groundwater 

samples were collected using a half-inch clear vinyl hose connected to the hydrant of the 

rural domestic well with a garden hose adapter. The hydrant was then turned on to 

continuously run water for approximately five minutes, to purge the stagnant water found 

in the groundwater plumbing system. After that, the citizen scientists filled four different 

bottles with groundwater. Two sample bottles, a 250mL NalgeneTM bottle and a 120 mL 

sterile plastic sampling bottle with an indicator line of 100mL, were kept with the citizen 

scientists, while two sample bottles, a 125mL Nalgene bottle, and a 1L glass amber 

bottle, were sent to/picked up/ brought to the WSL at UNL. The groundwater samples 

collected in the 125mL Nalgene bottle will be preserved with five drops (approximately 

5mL) of hydrochloric acid (16M HCl). Samples were stored in a cooler during the 

transport to the HS and the WSL. Samples collected in the 250mL, 125mL and 1000mL 

bottles will be stored at 4°C before analysis, while samples collected in the 120mL bottle 

were immediately analyzed upon returning from the field.  
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Figure 2. Multimeters used by students to test for pH and electrical conductivity 

 

One critically-important analyte the citizen scientists tested for was nitrate-N. The 

students utilized a CHEMetrics nitrate chemistry kit that uses colorimetric methods in 

producing a result. The lowest possible detection of nitrate in the sample is 4 mg/L. The 

next highest reference after 4 mg/L is 7 mg/L followed by 10 mg/L, 14 mg/L, 18 mg/L, 

25 mg/L, 35 mg/L and its limit at 45 mg/L. The students had to make a visual judgment 

using the provided comparator displaying different shades of red to indicate different 

levels of nitrate in water (Figure 3). For comparison, the WSL was able to get results as 

low as 0.01 mg/L of nitrate-N using an autoanalyzer (AQ2, Seal Analytical, Mequon, 

WI) calibrated daily with standards and without the bias of a human eye. Similar 

techniques were practiced by the citizen scientists without analytical instrumentation on 

ammonia, Atrazine, chloride, copper, calcium hardness, iron, manganese, nitrite, total 

coliform and E. coli. Additional details regarding the analytical methodology practiced 

by the citizen scientists are given in Appendix B.  
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Figure 3. Indicator levels used by participating high school students. The provided CHEMetrics nitrate test 

kit had the lowest possible detection limit at 4 mg/L and its limit was 45 mg/L. 

 

 Each sample duplicate was then transported to the Water Sciences Laboratory 

(WSL) where it was tested for the same analytes using different methods and instruments 

appropriate in an environmental testing laboratory (Table 1). Unpreserved groundwater 

samples, stored in the 1L bottles, were used to measure major anions, pH, electrical 

conductivity and 18 pesticides. Preserved groundwater samples, stored in the 125mL 

bottles, were used to measure major cations, ammonia, nitrate, nitrite and metals. 

Additional details regarding the analytical methodology practiced by the professional 

laboratory are given in Appendix C. 

 As the citizen scientists submitted results regarding their water quality and the 

WSL produced their data from the same sample, similarities and differences in results 

were observed. Three separate approaches were used to compare the data produced by the 

student scientists to the laboratory methods. In the first scenario, i) the detection limits of 

the equipment being used by both citizen scientists and professional scientists have no 
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effect on each other. As an example, pH, electrical conductivity, nitrate and chloride for 

both the citizen scientist and the WSL have results that can be observed and directly 

compared. In such cases, an estimate of the coefficient of determination was made by 

graphing the data and interpolating it linearly (Zhang 2017). The second scenario ii) was 

to observe the differences in average, where the total average for one analyte is recorded 

by the citizen scientists, subtracted by the total average of the results for that analyte by 

WSL. The closer the difference is to zero, the more similar the results are to one another. 

In the third scenario, iii) there is data that is not possible to directly correlate due to 

results being incomparable. This final challenge is due to the differences in detection 

limits on equipment being used (Table 2). As an example, copper, iron and manganese 

were detected in the µg/L (ppb) by WSL, whereas the citizen scientists measured in the 

mg/L (ppm). With a color correlation approach, a relationship of similarities and 

differences in the results were produced.  

 

Table 2. Analytical detection limits of equipment used by the citizen scientists (high school students) and 

the professional scientists (WSL). 

  Nitrate Hardness Chloride pH EC Copper Iron Manganese 

  mg/L mgCaCO3/L mg/L  µS/cm mg/L mg/L mg/L 

High 

Schools 
4 50 5 0.01 1 0.1 0.1 9 

WSL 0.01 0.05 0.1 0.01 1 0.0001 0.00028 0.00019 

 

 

 To help correlate the data between HS and WSL, a visual interpretation of the 

concentrations measured will be utilized through box-whisker plots. The concentration 
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distributions will be represented in percentiles (Figure 4). One percentile that will be used 

is the 90th percentile where everything below the 90th percentile mark represents 90% of 

the values submitted. The 90th percentile is observed in order to compare it between 90th 

percentiles that were produces from other data sets. Other percentiles that make up the 

rest of the observed box-whisker plot are the 75th, 50th (median), 25th, and 10th percentiles 

(Choo et al., 2020). 

 

 

Figure 4. A summary of the assembly of a box-whisker plot.  

outlier 

90th percentile  

75th percentile 

median 

25th percentile 

10th percentile 

outlier 
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CHAPTER 3 

RESULTS & DISCUSSION 

 

3.1 Coefficient of determination 

The R2 represents the proportion of variance explained by a linear model, ranging 

from 0-1 where the closer to 1, the more comparable the data (Nakagawa et al., 2017). 

Analyte concentrations within their method ranges and detection limits used in the R2 

approach for comparison: nitrate-N, calcium hardness, chloride, pH and EC. In 

comparing all nitrate-N measurements, the ten HSs had an average R2 of 0.63 with 

samples ranging from 5 to 20 (Table 3). The group average R2 and the standard deviation 

for the HS that participated in the first year was 0.57 and 0.34, respectively. The group 

average R2 and the standard deviation for the HS that participated in the second year was 

0.67 and 0.21, respectively. The highest individual R2 value was 0.97 from Cottonwood 

HS with 20 samples, followed by a 0.91 from Aspen HS with 13 samples. The lowest R2 

value was 0.22 from Ash HS with 19 samples, followed by 0.34 from Sycamore HS with 

10 samples. The school closest to the total average R2 is Birch HS with an R2 value of 

0.59 and 7 samples, followed by 0.68 from Chestnut HS with 15 samples. 
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Table 3. Using data from samples tested for nitrate by both the high school students and WSL, a linear 

trendline can be produced with an R2. An R2 average and standard deviation were also produced for all 

schools in both years, as well as for the schools from Year 1 and Year 2. n is the number of samples being 

compared.  

Nitrate 

High School a b R² n R² Average 

Standard 

Deviation 

Year 1 

Oak 1.738 -3.113 0.811 20 

0.572 

0.632 

0.339 

0.255 

Maple 0.764 6.723 0.344 18 

Ash 0.562 6.514 0.223 19 

Aspen 0.996 1.155 0.910 13 

Year 2 

Birch 1.039 2.920 0.589 7 

0.672 0.208 

Sycamore 0.548 0.305 0.335 10 

Willow 1.113 2.061 0.722 16 

Chestnut 0.506 4.013 0.683 15 

Cottonwood 0.977 1.093 0.971 20 

Elm 0.783 0.487 0.733 5 

 

 

Comparing R2 for calcium hardness measurements, all ten HSs had an average R2 

of 0.38 with samples ranging from 4 to 20 (Appendix D). The average R2 for the HS that 

participated in the first year and second year were 0.35 and 0.40, respectively. The 

highest R2 value was 0.89 from Elm HS with 4 samples, followed by a 0.80 from Oak HS 

with 20 samples. The lowest R2 value was 0.001 from Sycamore HS with 10 samples, 

followed by 0.03 from Ash HS with 19 samples. The school closest to the total average 

R2 is Maple HS with an R2 value of 0.33 and 18 samples. 

The R2 for chloride comparing measurements for ten HSs had an average R2 of 

0.37 with samples ranging from 6 to 20 (Appendix D). The average R2 for the HSs that 

participated in the first year and second year were 0.50 and 0.28, respectively. The 

highest R2 value was 0.99 from Oak HS with 20 samples, followed by a 0.82 from 
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Cottonwood HS with 20 samples. The lowest R2 value was 0.02 from Birch HS with 7 

samples, followed by 0.07 from Chestnut HS with 11 samples. The school closest to the 

total average R2 is Maple HS with an R2 value of 0.39 and 18 samples, followed by 0.54 

from Willow HS with 16 samples. 

The R2 for pH comparing measurements for ten HSs had an average R2 of 0.27 

with samples ranging from 4 to 20 (Appendix D). The average R2 for the HSs that 

participated in the first year and second year were 0.31 and 0.24, respectively. The 

highest R2 value was 0.69 from Elm HS with 7 samples, followed by a 0.67 from Ash HS 

with 4 samples. The lowest R2 value was 0 from Willow HS with 14 samples, followed 

by 0.001 from Cottonwood HS with 20 samples. The school closest to the total average 

R2 is Maple HS with an R2 value of 0.24 and 16 samples, followed by 0.19 from Oak HS 

with 20 samples. 

The R2 for EC comparing measurements for ten HSs that participated had an 

average R2 of 0.82 with samples ranging from 2 to 20 (Appendix D). The average R2 for 

the HSs that participated in the first year and second year were 0.71 and 0.90, 

respectively. The highest R2 value was 1.00 from Ash HS with 2 samples, followed by a 

0.95 from Willow HS with 14 samples. The lowest R2 value was 0.12 from Aspen HS 

with 14 samples, followed by 0.80 from Maple HS with 16 samples. The school closest to 

the total average R2 is Birch HS with an R2 value of 0.84 and 13 samples, followed by 

0.80 from Maple HS with 16 samples. 
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3.2 Differences in averages 

A second approach used to compare the same five analytes is through taking the 

differences in averages. The purpose of using this method is to have a comparison to the 

results from R2. With the differences in average, the closer the results are to zero, the 

more similar the results from the HSs and WSL are similar to one another. Analytes with 

a larger range will have differences in average much higher than those with lower ranges. 

Regarding nitrate-N, the range of difference in average was from 11.25 to 1.18. The 

differences in average that came closest to 0 are 1.18 from Aspen with 13 samples, 

followed by 1.35 from Elm with 5 samples, and 1.38 from Sycamore with 10 samples 

(Table 4). Aspen, Elm and Sycamore showed standard deviations of 1.54, 0.60, and 1.29, 

respectively. The differences in average that were furthest from 0 are 11.25 from Ash 

with 19 samples, followed by 6.74 from Maple with 18 samples, and 5.24 from Oak with 

20 samples. Ash, Maple, and Oak showed standard deviations of 13.27, 7.97, and 11.42, 

respectively (Table 4).  
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Table 4. Using data from samples tested for nitrate-N by both the high school students and WSL, an 

average was produced. The average for the results of the high school students was then subtracted from the 

average for the results of WSL. The closer the differences in average are to 0, the more similar they are. 

The R2, standard deviation and number of samples (n) is displayed for observational purposes. n is the 

number of samples being compared.  

 
 

Nitrate |WSL - HS| 

n 
High School R² 

Diff. in 

average 
Stand. Dev. 

Year 1 

Oak 0.811 5.24 11.42 20 

Maple 0.344 6.74 7.95 18 

Ash 0.223 11.25 13.27 19 

Aspen 0.910 1.18 1.54 13 

Year 2 

Birch 0.589 3.19 5.83 7 

Sycamore 0.335 1.38 1.29 10 

Willow 0.722 3.50 4.48 16 

Chestnut 0.683 4.45 5.46 15 

Cottonwood 0.971 1.40 1.38 20 

Elm 0.733 1.35 0.60 5 

 

 In comparing calcium hardness measurements, the range of results produced by 

the difference in average was from 211.76 to 10.80. The differences in average that came 

closest to 0 are 10.80 from Elm with 4 samples, followed by 39.86 from Birch with 7 

samples, and 70.19 from Chestnut with 15 samples (Appendix D). Elm, Birch and 

Chestnut showed standard deviations of 8.54, 80.23, and 70.78, respectively. The 

differences in average that were furthest from 0 are 211.76 from Willow with 16 samples, 

followed by 172.24 from Sycamore with 10 samples, and 170.09 from Oak with 20 

samples. Willow, Sycamore, and Oak showed standard deviations of 128.66, 177.04, and 

144.31, respectively (Appendix D). 
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 In comparing chloride measurements, the range of results produced by the 

difference in average was from 56.80 to 21.39. The differences in average that came 

closest to 0 are 21.39 from Sycamore with 10 samples, followed by 22.32 from Willow 

with 16 samples, and 23.03 from Cottonwood with 20 samples (Appendix D). Sycamore, 

Willow and Cottonwood showed standard deviations of 10.73, 13.08, and 18.68, 

respectively. The differences in average that were furthest from 0 are 56.80 from Ash 

with 19 samples, followed by 49.81 from Elm with 6 samples, and 43.94 from Aspen 

with 14 samples. Ash, Maple, and Oak showed standard deviations of 29.11, 26.10, and 

72.14, respectively (Appendix D). 

 In comparing pH measurements, the range of results produced by the difference in 

averages was from 2.15 to 0.17. The differences in average that came closest to 0 are 0.17 

from Chestnut with 18 samples, followed by 0.20 from Cottonwood with 20 samples, and 

0.21 from Birch with 13 samples (Appendix D). Chestnut, Cottonwood and Birch showed 

standard deviations of 0.18, 0.22, and 0.29, respectively. The differences in average that 

were furthest from 0 are 2.15 from Ash with 4 samples, followed by 0.89 from Aspen 

with 14 samples, and 0.86 from Willow with 14 samples. Ash, Aspen, and Willow 

showed standard deviations of 3.76, 0.62, and 2.65, respectively (Appendix D). 

 In comparing EC measurements, the range of results produced by the difference 

in average was from 416.54 to 38.71. The differences in average that came closest to 0 

are 38.71 from Elm with 7 samples, followed by 76.17 from Chestnut with 18 samples, 

and 102.27 from Birch with 13 samples (Appendix D). Chestnut, Cottonwood and Birch 
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showed standard deviations of 30.57, 48.92, and 144.54, respectively. The differences in 

average that were furthest from 0 are 416.54 from Aspen with 14 samples, followed by 

178.38 from Maple with 16 samples, and 139.79 from Willow with 14 samples. Ash, 

Aspen, and Willow showed standard deviations of 240.98, 161.70, and 63.67, 

respectively (Appendix D). 

 

3.3 Color correlation 

Data collected yet not able to be directly correlated using R2, was analyzed using 

an alternative color correlation due to differences in sensitivity of results. Results that 

were produced by the HSs had to be within +/- 0.05 mg/L of the result produced by WSL 

to be considered in agreement. Regarding copper, Oak HS was able to collect 20 samples. 

All 20 samples tested by the students were in agreement with the results produced by 

WSL (Table 5).  On the color correlation table (Table 6), Oak HS was able to reach 

100%, with 20 out of 20 samples in agreement, whereas Ash HS was able to 74% with 14 

of 19 total samples in agreement. Five of the ten HSs were able to reach 100% in the 

copper color correlation, each with varying amounts of samples analyzed. The most 

samples analyzed was 20 from both Oak and Cottonwood HSs. The fewest samples 

analyzed was seven from both Birch and Elm HSs. The average for all ten schools was 

93.6%, where the first year’s average was 88.8% and the second year’s average was 

96.8%. 
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Table 5. Samples tested for copper, iron and manganese by both WSL and HS. These were then compared 

to the number of HS samples that tested to be within range (WR) of the WSL results. 

Schools 
Copper Iron Manganese 

n in 

agreement 

n analyzed by 

WSL & HS 

n in 

agreement 

n analyzed by WSL 

& HS 

n in 

agreement 

n analyzed by WSL 

& HS 

Oak 20 20 14 20 20 20 

Maple 16 18 16 18 18 18 

Ash 14 19 18 19 17 19 

Aspen 12 13 10 13 13 13 

Birch 7 7 7 7 7 7 

Sycamore 10 10 7 10 10 10 

Willow 16 16 12 16 16 16 

Chestnut 12 14 16 17 12 13 

Cottonwood 19 20 20 20 20 20 

Elm 7 7 7 7 6 6 

WSL instruments –> 0.001 mg/L =1 µg/L, HS instruments –> 0.1 mg/L 
 

 

Table 6. Color correlation from results found on Table 5, where green is the 100% WR and varying 

degrees of yellow and orange down to red which is the lowest at 70% WR. 

Schools Copper Iron Manganese 

Oak 100 70 100 

Maple 89 89 100 

Ash 74 95 89 

Aspen 92 77 100 

Birch 100 100 100 

Sycamore 100 70 100 

Willow 100 75 100 

Chestnut 86 94 92 

Cottonwood 95 100 100 

Elm 100 100 100 

 

Regarding iron, Cottonwood HS was able to collect 20 samples. All 20 samples 

tested by the students were in agreement with the results produced by WSL (Table 5).  

On the color correlation table (Table 6), Oak HS was able to reach 100%, with 20 out of 
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20 samples in agreement, whereas Oak HS was able to 70% with 14 of 20 total samples 

in agreement. Three of the ten HSs were able to reach 100% in the iron color correlation, 

each with varying amounts of samples analyzed. The most samples analyzed were 20 

from both Oak and Cottonwood HSs. The fewest samples analyzed were seven from both 

Birch and Elm HSs. The average for all ten schools was 87.0%, where the first year’s 

average was 82.8% and the second year’s average was 89.8%. 

Regarding manganese, both Oak and Cottonwood HSs were able to collect 20 

samples. All 20 samples from both schools tested by the students were in agreement with 

the results produced by WSL (Table 5).  On the color correlation table (Table 6), both 

Oak and Cottonwood HSs were able to reach 100%, with 20 out of 20 samples in 

agreement, whereas Ash HS was able to 89% with 17 of 19 total samples in agreement. 

Eight of the ten HSs were able to reach 100% in the manganese color correlation, each 

with varying amounts of samples analyzed. The most samples analyzed were 20 from 

both Oak and Cottonwood HSs. The fewest samples analyzed were six from Elm HS. The 

average for all ten schools was 98.1%, where the first year’s average was 97.3% and the 

second year’s average was 98.7%. 

 

3.4 Nitrate-N 

Using a box-whisker plot as a visualization method for nitrate-N results, paired 

measurements allow a variety of observations (Figure 5). For example, each WSL’s 50th 
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percentile, also known as the median, may not be the same as their paired HS’s median. 

The medians, however, do not fall outside the 75th and 25th percentiles of their paired data 

sets, which is desirable. The same can be said about the 75th percentiles of one data set 

not falling outside their paired data set’s 90th percentiles. This is also mirrored on the 

lower percentiles. Although the box-whisker plots may show that each HS is different 

than their WSL counterpart, they also show similarities in concentration ranges.  

 

Figure 5. Nitrate-N results expressed as box-whisker plots for each locations’ High School and Water 

Sciences Laboratory. High School (n) where n is the number of samples being compared.  
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There are missing medians found in Figure 5 due to a combination of minimal 

results submitted with a majority of those results being zero. Three HS box-whisker plots 

are missing medians. Aspen HS reported 13 results, 9 of which were zeros. The HS had 

limitations on results, one such limitation was the range of detection being between 4 and 

45 mg/L without the practice of dilution. A value below 4 mg/L proved to be challenging 

to detect and were recorded as zero. This explains a high number of results being reported 

as zero. This affects the box-whisker plot, as it does not express a median on its display. 

Birch and Willow HS share such examples of reported zeros and their box-whisker plots 

and lack medians. This was not the case with data reported from WSL due to the 0.01 

mg/L detection limit.  

Limitations in measurement methods between HS and WSL offer an explanation 

for the observable differences in results. Differences such as analytical instrumentation 

and simplified test kits, and with differences in detection, results can be observed, such as 

Oak HS’s first sample (Figure 6). This sample was collected and tested for nitrate as 7 

mg/L by the students and 8.16 mg/L by WSL. The HS did not have analytical 

instrumentation to produce a result equal to that of WSL’s 8.16 mg/L. They were given 

the detection examples of 4, 7, 10, 14, 18, 25, 35 and 45 mg/L without any training or 

education on dilution. The HS’s choice of 7 mg/L was the closest to what eventually the 

WSL tested for. Even with differences in testing techniques, this is an example of how 

similar the results came to be. However, not all results were as similar. For example, Ash 
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HS reported a sample as low as 4 mg/L by the students, yet when further tested by WSL, 

it was measured at 47.0 mg/L (Figure 7). Another approach used in detection technique 

was where the students could not decide the result upon the provided detection examples 

of 4, 7, 10, 14, 18, 25, 35 and 45 mg/L. Students would choose in between the detection 

examples, such as 12 and 16 mg/L. As a result, as seen on Figure 8, where all schools’ 

results for nitrate-N are observed, results are concentrated around 0, 4, 7, 10, 14, and 25 

mg/L. Such concentration of data occurred because of the limitation of choices the 

students had based on the suggested detection examples provided in the chemistry kits 

the students used. 
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Figure 6. Oak nitrate-N expressed as a scatter-plot of result comparisons between Oak high school and the 

Water Sciences Laboratory. 
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Figure 7. Ash nitrate-N expressed as a scatter-plot of result comparisons between Ash high school and the 

Water Sciences Laboratory. 
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Figure 8. All schools nitrate-N expressed on one scatter-plot with confidence and prediction bands. 

 

For nitrate-N, the number of samples (n) had a lack of influence on the estimate of 

the coefficient of determination (R2) results. Both Cottonwood and Oak produced results 

for 20 samples each, with an R2 result of 0.97 and 0.81, respectively. However, both Ash 

and Maple produced results for 19 and 18 samples, respectively, each with an R2 result of 

0.22 and 0.34, respectively. To add to this observation, Birch, Sycamore, Elm and Aspen 

were the four schools that had the lowest n values ranging from 5 to 13 samples, with R2 
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results ranging from 0.34 to 0.91. Calcium hardness, pH and electrical conductivity (EC) 

showed a similar trend. 

Differences in R2 between the schools participating in the first year vs the second 

year vary. The average of R2 values for nitrate-N is higher from schools who participated 

in the second year with an R2 average of 0.67 whereas the first year had an average of 

0.57, both having averages above the 0.50 mark. The differences in averages between HS 

and WSL (|Δave| = |HS average – WSL average|) is a means of correlation dissimilar to 

R2, and in nitrate-N ranges from a 45 maximum to an ideal minimum of zero, with a 22.5 

as a middle marker, by definition. The lowest |Δave| was 1.3 from Sycamore HS while 

the highest |Δave| was 11.0 from Ash. The average from all ten schools was 3.6.  

 

3.5 Calcium Hardness 

Calcium hardness in water, like nitrate-N concentration, was determined by 

students using their visual judgment of the color in the chemical reaction and the 

indication levels of calcium hardness in mg/L. The difference was in the use of what the 

calcium hardness kit called a control bar, where operating it was prone to human error. 

Because of this added human error, the median for each HS was consistently less than the 

median for their paired WSL (Figure 9). The range for the calcium hardness kit that the 

students used was from 50 mg/L to 500 mg/L and a concentration of results can be seen 

on each 50, 200, 250, 350 and 500 mg/L, which were suggested indication levels for 

calcium hardness in the sample (Figure 10).  



39 
 

 

 

Figure 9. Calcium hardness results expressed as box-whisker plots for each locations’ High School and 

Water Sciences Laboratory. 
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Figure 10. All schools calcium hardness expressed on one scatter-plot with confidence and prediction 

bands. 

 

The average R2 values for calcium hardness is higher from schools that 

participated in the second year with an R2 average of 0.40 where the first year had an 

average of 0.35, both having averages below the 0.50 mark. Due to the control bar in the 

kit the students used, added to the variability of eyes from various students, and 

instructions that were not intended for a targeted audience of HS students, the calcium 

hardness kit proved to be challenging for HS. The lowest |Δave| was 10.8 from Elm HS 
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while the highest |Δave| was 211.8 from Willow HS. The average of all ten schools was 

108.9. The nitrate-N R2 values turned out to be higher than the calcium hardness R2 

values due to the control bar as an added potential to human error, but also to a higher 

range, where nitrate-N went from 4-45 mg/L, calcium hardness went from 50 to 500 

mg/L.  

 

3.6 Chloride 

For chloride, n did have an influence on the R2. Both Oak and Cottonwood 

produced results for 20 samples, each with an R2 result of 0.99 and 0.82, respectively, 

and were the two highest R2 values. Both Elm and Birch produced results for 6 and 7 

samples, respectively, each with an R2 result of 0.03 and 0.02, and were the two lowest 

R2 values. Five schools with the highest n values, which were Oak, Cottonwood, Ash, 

Maple and Willow, ranged from 16 to 20, each had higher R2 values, ranging from 0.99 

to 0.39. In comparison, the five schools with the lowest n values, ranged from 6 to 14, 

which were Aspen, Chestnut, Sycamore, Birch and Elm, had an R2 value ranging from 

0.02 to 0.2. 

The average R2 value for chloride is higher from schools who participated in the 

first year with an R2 average of 0.50 compared to the second year with an average of 

0.28. Students had to make a visual judgment on how many drops through titration it took 

the sample to transition into a vague “rust orange” color. With different students 

interpreting what the ideal “rust orange” color might be, an optically opinionated answer 

was provided. Each HS produced results higher than the WSL (Figure 11) due to the 
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uncertainty of what “rusty orange” looks like. The is an observable grouping bellow 100 

mg/L (Figure 12), with 5 samples recorded as being more than 100 mg/L by the students. 

Where calcium hardness had a very sensitive process, chloride had was lacking 

sensitivity. The students often went too far in titration because the “rust orange” color 

was not yet observed. Yet with titration, an additional drop would already surpass the 

“rust orange” color, making the students more confident that they have reached the 

required “rust orange” color.  

 

Figure 11. Chloride results expressed as box-whisker plots for each locations’ High School and Water 

Sciences Laboratory. 
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Figure 12. All schools chloride expressed on one scatter-plot with confidence and prediction bands. 

 

The |Δave| showed a different perspective of the correlation. Where nitrate-N had 

desirable correlation both in R2 and |Δave|, >0.50 and <40.0, respectively, and calcium 

hardness had undesirable correlation both in R2 and |Δave|, chloride had undesirable 

correlation in R2, and desirable correlation in |Δave|. The R2 average for both years was 



44 
 

 

0.35, while the average for |Δave| was 37.0. Both correlation approaches may not always 

agree. 

 

3.7 pH & EC 

In contrast to the other measured water quality parameters, a probe was used to 

measure pH and EC by the students as well as the WSL. HS students used a multimeter 

probe capable of measuring pH, EC and temperature, while individual probes were used 

at the WSL. By using a probe, the errors associated to the test kits were removed. The R2 

average for all ten schools was 0.27 with the first year’s average being 0.30 and the 

second year’s average being 0.24. Similar to chloride, the |Δave| proved to be different 

than the R2. The |Δave| had an average of 0.56 for all ten schools. This is in part due to 

the short range of results from 6.15 to 8.38, making the |Δave| very small. In contrast, 

EC’s R2 average for all ten schools was 0.82 with the first year’s average being 0.71 and 

the second year’s average being 0.90. The |Δave| proved to be different than the R2, yet 

opposite to pH and chloride. The |Δave| had an average of 147.5 for all ten schools. This 

is in part due to the very large range of results from 60.0 to 2650.0, making the |Δave| 

very high. 

For the students to measure pH and EC, a meter that is capable of measuring 

multiple parameters was used. Schools who participated in year one were provided with 

Eutech Waterproof Multi-Parameter Water Tester while schools who participated in year 

two were provided with an Oakton PCTSTestr. Even though the brand of these two 

probes are different, each can test for pH and EC using the same technology and 
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techniques. Providing buffers for each test, the procedures for calibration are identical. 

Yet using the same device produces varying results. The pH R2 values were well below 

the 0.50 mark, where R2 has 0.50 as the middle marker, by definition. While the EC R2 

values turned out to be well above the 0.50 mark. And, the pH |Δave| values were often 

less than 1 while the EC |Δave| values were often above 100 due to the difference in 

range. An additional reason for these differences in correlations is due to the testing that 

the students did, as they were directly from the source, in the field, with no travel/storage 

time. Even with controlled environments, the storage and duration may have influenced 

each sample before it being tested by the laboratory. 

 

3.8 Copper, iron and manganese 

Not every analyte was able to be correlated using R2 and |Δave|. Results being 

produced by WSL for copper, iron and manganese fell well below the detection limit 

from the chemistry kits used by the students (Table 2 found in M&M chapter). To be 

considered within range (WR), a WSL result needs to be within 0.05 mg/L for HS results 

of copper and iron and a WSL result within 4.5 mg/L for HS results of manganese (Table 

5). 

To correlate the results from Table 5, a color correlation approach can be 

observed in Table 6. The majority of results were WR 100% (green), yet iron showed the 

to be the most challenging, even with 70% (red) as its lowest correlation, followed by 

copper with 74%. Manganese proved to be the most with 100% WR due to its larger 

range of acceptable WR at 4.5 mg/L compared to copper and irons’ acceptable WR at 
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0.05 mg/L. These were once again up to the students to make visual judgments using the 

provided comparators. Students experienced similar challenges testing for coper, iron and 

manganese as they did testing for nitrate-N. Similarly, correlated results came out 

indicating the students’ use of these chemistry kits were effective even with limitations. 

The R2 values for EC were good due to their nearness to 1.0. However the |Δave| 

values for EC were not great due to their large numbers further away from zero. The R2 

values for pH were not great due to their nearness to zero. However the |Δave| values for 

pH were good due to their low numbers closer to zero. Results for nitrate were stable in a 

sense due to the  R2 values being mid range yet closer to 1.0 rather than zero, and the  

|Δave| values not being as high as EC’s  and as low as pH’s. Nitrate did not have the 

dramatic variance in range like pH and EC did and therefore R2 and |Δave| values were 

not polar opposites.  

Previous studies of citizen science and water quality have some aspects similar to 

this project. In previous studies, comparison between citizen science data and 

professional data has been done via analysis of variance, repeatability and 

reproducibility, difference diagrams, method trueness and precision, bubble, spider and 

box-whisker plots, Kapa and B statistic, and the coefficient of determination. In one such 

study, Muenich et al. (2016) had similarities in having citizens collect samples in the 

Wabash River Watershed. The collected samples were similarly tested by both the citizen 

scientists and again by professional scientists for purposes of QA/QC. They tested for 

similar analytes such as nitrate and pH. However, the differences between Muenich’s 

study and this one are that they sampled surface water instead of groundwater, was a five 
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year study instead, and used adults from the community instead of HS students as citizen 

scientists. The citizen scientists in the Wabash River Watershed used test strips to 

determine results whereas in this study chemistry kits were utilized (Muenich et al., 

2016). In Muenich et al. (2016), results were represented in different statistical methods. 

Muenich utilized percent agreement, bubble plots, Kapa and B Statistic to compare the 

results produced between their citizen scientists and professional scientists, where this 

study utilized percent agreement, boxplots, R2 and differences in |Δave| (|HS average – 

WSL average|). The percent agreement used in Muenich’s study, similarly used in this 

one, also had percent agreement results in the 80s and 90s. However, boxplots and spider 

plots were utilized to demonstrate the special distribution of the results and not the 

comparison between citizen scientists and professional scientists.  

Another previous study was done by Peckenham and Peckenham (2014) with 

citizen scientists from New England. Similarly, in Peckenham’s study, the citizen 

scientists were HS students and they sampled and tested for water quality from 

groundwater in their communities. However similar Peckenham’s study may be, their 

method of QA/QC was very different. The citizen scientists did not have professional 

scientists to check comparability on results. Rather, the testing of the collected samples 

were tested with repeatability in duplicates and blanks as well as known concentrations 

and standards. Such a study produced statistics in the form of different diagrams and 

method trueness, the closeness of agreement between the average values (Menditto et al., 

2007).  
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Another previous study was done by Weigelhofer et al. (2019) with citizen 

scientists as HS students in Austria. The students were able to test surface water for 

phosphorous concentrations alone. Students were able to run replicates as a means of 

QA/QC. The professional laboratory was able to test the students’ replicates and 

determine a coefficient of determination (Weigelhofer et al., 2019).  

The difference between Peckenham’s study and this one is the involvement of a 

professional laboratory testing every sample the citizen scientists test for purposes of 

QA/QC. Meunich’s study focused on surface water and non-HS student participants as 

citizen scientists. Weigelhofer’s study also focused on surface water rather than 

groundwater, but did utilize HS students and used a professional laboratory, but not to 

compare every sample the students tested. Each had their own methods to test for 

comparability and each different than this study. 

The effectiveness of citizen science in this study can be seen in comparing results 

from the citizen scientists and the professional laboratory.  For data to be effective in R2, 

it should be high, whereas |Δave| should be low. Even though pH and EC were tested by 

the citizen scientists on the same testing apparatus, the R2 values and the |Δave| values 

were different due to range. With pH having low R2 values and low |Δave| values, EC had 

high values for both R2 and |Δave|.  

 

 

 



49 
 

 

CHAPTER 4 

CONCLUSION AND RECOMMENDATIONS 

 

As seen with the multiple parameters used in this project, results show that citizen 

science can be effective in monitoring groundwater quality, but still needs improvement. 

Observing HS students use non-analytical instrumentation and produce even some results 

similar to that of the WSL indicates that high quality and effective citizen science is 

possible. Even with limitations in resources and experience, the HS and WSL results 

showed similarities with correlations from R2, |Δave| and box-whisker. However, this 

wasn’t the case for all parameters. Copper, manganese and nitrate-N measurements 

showed the greatest similarities in all correlation approaches. EC showed similarities in 

R2 and differences in |Δave|, but vise-versa when it came to pH. Calcium hardness, 

chloride and iron showed the greatest differences in all correlation analyses.  

With differences in correlation across all parameters, a variety of approaches can 

be pursued in order to better validate and improve the role of citizen science in 

groundwater quality sciences. To produce a better correlation between citizen scientists 

and professional scientists, human error needs to be addressed. To start, some or all of the 

equipment that the citizen scientists use can be analytical instrumentation, which would 

initially add to equipment and training cost and time, especially to first time HS teachers 

participating in such study. Practices of titration and ampule chemistry can presently be 

replaced with a handheld multi-analyte photometer due to ongoing advancements in 

technology and its affordability. This would level the approaches between citizen 
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scientists and professional scientists by having both parties utilize analytical 

instrumentation, lowering the probability of human error from citizen scientists.  

Practices that are considered standard in a professional laboratory should be 

introduced to the routine of citizen scientists. The citizen scientists were confined to the 

limits of the chemistry kits without an introduction to the practice of dilution, which were 

also found in professional laboratories, yet the practice of dilution allowed professional 

scientists to generate results greater than the provided limits. QA/QC are various 

practices that are standard in professional laboratories and should also be introduced to 

citizen scientists in order to strengthen validation potential. Simplifications of QA/QC 

practices such as testing duplicate, blank and spiked samples can add validity to citizen 

science. 

Professional scientists and citizen scientists are two parties that have mutual goals 

in progressing the understanding of sciences. In order to reach success, effective 

communication is a necessity. The more transparent the communication and the more 

welcoming it can be, an understanding between the two parties may suggest progress in 

scientific progress. Technology can help, but it can also backfire. To have a proactive 

approach in the potential benefits from technology such as websites, social media and 

applications, there needs to be an understanding of its uses, its users and the constant 

evolution towards perfection. People change, including professional scientists and citizen 

scientists, as well as science itself. Technology that attempts to help in scientific 

communication needs to proactively improve with its uses and its users. 
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Citizen science is showing progress and hope in the validation of its sciences, 

especially in the groundwater sciences. Though not perfect, with suggested improvements 

and most importantly, with cooperation and collaboration among its professional fields, 

citizen science can improve science for all and science in itself. Citizen science, though it 

can produce immediate results as seen in this research, its greater strength of investment 

will be found in the long term as citizens will contribute to the development of the 

sciences, future scientists, better-informed citizens and a better understanding of science 

by citizens.  
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APPENDIX A 

Pre-Field Activity 

 

(Name) High School  

Today's date: 

Recorder's name: 

Questions for the well owner/user 

-Name of the resident well user: 

-Address: 

-City: 

-Zip code: 

-Well owner (if different from resident): 

-When was the well installed? 

-Any complaints about smell or taste of water? 

-Does the well ever go dry? (if so, when?) 

-Any maintenance done to the well itself within the last five years? 

-Any major land use / development changes around the well within the last five years? 

-How many people use this well? 

-Has any manure or pesticides been applied near the well within the last five years? 

 

Information that might be available on line (or by the well owner/user) 

-Well GPS Coordinates: 

-Bore hole diameter: 

-Total depth of well: 

-Water level: 

-Well construction completed: 

-Drilling method: 

-Aquifer type:   Confined / Unconfined 

-Aquifer class:   Bedrock / Sand or gravel 

-Well type (construction method):   Drilled / Driven / Dug 

- What is the well casing material made of? 
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Field Activity 

 

 
(Name) High School 

Name of observer(s) / recorder(s): 

Well ID: Today's date: 

Describe the settings: 

 (the weather, temperature, how your feeling, anything that should be noted 

or  expressed) 

On-site observations 

 

GPS coordinates for the: 

(use App if able) 
Latitude Longitude 

Well Head   

nearest surface water 

(lake, pond, creek, river, etc.) 

  

nearest cropland   

nearest barnyard or pasture   

nearest septic system   

 

 

    -Topography of well location:    

     hill top  /  hill slope  / level land  /  depression 

    -Condition of well cover: 

     intact  /  observable openings  /  damaged 

    -Is there evidence for surface run-off entry into the well? 

    -Is there evidence of pooling/puddling within 12 feet of the well? 

 

Readings (multimeter) 

Groundwater temperature: (Celsius)  

pH :  

Conductivity : (μs/cm)  

 

Anything else to note? 
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High School Laboratory Tests 

 

 

(Name) High School 

Sample ID 

Ammonia:    __________   [0 – 10 ppm (mg/L)] 

 -additional observations: 

Pesticides (Atrazine):    _________ [positive / negative (to more than 3 ppb 

of atrazine)] 

 -additional observations: 

Calcium Hardness:    __________   [50 – 500 ppm (mg/L)] 

 -additional observations: 

Chloride:    __________   [0 – 400 ppm (mg/L)] 

 -additional observations: 

Bacteria (Colilert):    __________  [positive / negative (to more than 1 MPN 

/ 100 mL)] 

 -additional observations: 

Copper:    __________      [0 – 10 ppm (mg/L)] 

 -additional observations: 

Iron:    __________   [0 – 10 ppm (mg/L)] 

 -additional observations: 

Manganese:    __________   [0 – 50 ppm (mg/L)] 

 -additional observations: 

Nitrate:    __________   [0 – 45 ppm (mg/L)] 

 -additional observations: 

Nitrite:    __________   [0 – 2.5 ppm (mg/L)] 

 -additional observations: 
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APPENDIX B 

 

Ammonia CHEMets Kit 

K-1510 

https://www.chemetrics.com/product/ammonia-chemets-kit-2/ 

https://chemetrics.b-cdn.net/uploads/2019/01/i1510.pdf 

 

Atrazine Strip Test Kit (Abraxis) 

PN 500009 

https://abraxis.eurofins-technologies.com/home/products/rapid-test-kits/pesticides-

herbicides/pesticide-test-strip-kits/atrazine-dipstick-20-test/  

https://abraxis.eurofins-technologies.com/media/6304/atrazine-strip-r110519.pdf 

 

Bacteria (total coliforms and E. coli) 

IDEXX Colilert 

https://www.idexx.com/en/water/water-products-services/colilert/ 

https://www.idexx.com/files/colilert-procedure-en.pdf 

 

Calcium Hardness Tirets Kit (CHEMets) 

K-1705 

https://www.chemetrics.com/product/hardness-calcium-titrets-titration-cells/ 

https://www.chemetrics.com/product/ammonia-chemets-kit-2/
https://chemetrics.b-cdn.net/uploads/2019/01/i1510.pdf
https://abraxis.eurofins-technologies.com/home/products/rapid-test-kits/pesticides-herbicides/pesticide-test-strip-kits/atrazine-dipstick-20-test/
https://abraxis.eurofins-technologies.com/home/products/rapid-test-kits/pesticides-herbicides/pesticide-test-strip-kits/atrazine-dipstick-20-test/
https://abraxis.eurofins-technologies.com/media/6304/atrazine-strip-r110519.pdf
https://www.idexx.com/en/water/water-products-services/colilert/
https://www.idexx.com/files/colilert-procedure-en.pdf
https://www.chemetrics.com/product/hardness-calcium-titrets-titration-cells/
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https://chemetrics.b-cdn.net/uploads/2019/01/i1705.pdf  

 

Chloride Test Kit (HACH) 

Model 8-P Cat. No. 1440-01 

https://www.hach.com/chloride-low-range-test-kit-model-8-p/product-

downloads?id=7640219502 

 

Copper CHEMets Kit 

K-3510 

https://www.chemetrics.com/product/copper-soluble-chemets-visual-kit/ 

https://chemetrics.b-cdn.net/uploads/2019/10/i3510.pdf 

 

Iron CHEMets Kit 

K-6010 

https://www.chemetrics.com/product/iron-total-soluble-chemets-visual-kit-k-6010/ 

https://chemetrics.b-cdn.net/uploads/2019/11/i6x10.pdf 

 

Manganese VACUettes Kit (CHEMets) 

K-6502D 

https://www.chemetrics.com/product/manganese-vacuettes-visual-high-range-kit/ 

https://chemetrics.b-cdn.net/uploads/2019/01/i6502d.pdf 

 

https://chemetrics.b-cdn.net/uploads/2019/01/i1705.pdf
https://www.hach.com/chloride-low-range-test-kit-model-8-p/product-downloads?id=7640219502
https://www.hach.com/chloride-low-range-test-kit-model-8-p/product-downloads?id=7640219502
https://www.chemetrics.com/product/copper-soluble-chemets-visual-kit/
https://chemetrics.b-cdn.net/uploads/2019/10/i3510.pdf
https://www.chemetrics.com/product/iron-total-soluble-chemets-visual-kit-k-6010/
https://chemetrics.b-cdn.net/uploads/2019/11/i6x10.pdf
https://www.chemetrics.com/product/manganese-vacuettes-visual-high-range-kit/
https://chemetrics.b-cdn.net/uploads/2019/01/i6502d.pdf
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Nitrate CHEMets Kit 

K-6909D 

https://www.chemetrics.com/product/nitrate-test-kit-chemets-visual-kit-k6909d/ 

https://chemetrics.b-cdn.net/uploads/2019/11/i6909a_d.pdf 

 

Nitrite CHEMets Kit 

K-7004 

https://www.chemetrics.com/product/nitrite-chemets-visual-kit-k-7004/ 

https://chemetrics.b-cdn.net/uploads/2019/01/i7004.pdf 

 

Ph and electroconductivity 

Hanna Instruments Multiparameter Tester / Oakton PCTSTester 

https://www.coleparmer.com/i/oakton-pctstestr-50-waterproof-pocket-ph-cond-tds-

salinity-tester-premium-50-series/3563435  

https://pim-resources.coleparmer.com/instruction-manual/1065o100-man-35634-35-

final.pdf  

 

 

 

 

 

 

 

https://www.chemetrics.com/product/nitrate-test-kit-chemets-visual-kit-k6909d/
https://chemetrics.b-cdn.net/uploads/2019/11/i6909a_d.pdf
https://www.chemetrics.com/product/nitrite-chemets-visual-kit-k-7004/
https://chemetrics.b-cdn.net/uploads/2019/01/i7004.pdf
https://www.coleparmer.com/i/oakton-pctstestr-50-waterproof-pocket-ph-cond-tds-salinity-tester-premium-50-series/3563435
https://www.coleparmer.com/i/oakton-pctstestr-50-waterproof-pocket-ph-cond-tds-salinity-tester-premium-50-series/3563435
https://pim-resources.coleparmer.com/instruction-manual/1065o100-man-35634-35-final.pdf
https://pim-resources.coleparmer.com/instruction-manual/1065o100-man-35634-35-final.pdf
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APPENDIX C 

 

 

Equipment SOP Number SOP Author 

pH Meter 03_05_01.001 Suzanne Polzkill 

Conductivity Meter 03_03_01.001 Suzanne Polzkill, Tania Biswas 

AQ2 02_01_01.001 

02_03_01.003 

Tania Biswas 

Tania Biswas 

IC 10_01_01.007 Tania Biswas 

AA 01_02_01.003 Nathan Roddy, Tania Biswas 

ICP-MS 09_01_01.002 Tania Biswas 

GC-MS 06_01_01.004 Dave Cassada 

 

IDEXX Colilert Procedure Manual: http://www.idexx.com/resource-

library/water/colilertprocedure-en.pdf. 

 

 

 

 

 

 

 

http://www.idexx.com/resource-library/water/colilertprocedure
http://www.idexx.com/resource-library/water/colilertprocedure
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APPENDIX D 

 

Nitrate 

High School a b R² n R² Average Standard Deviation 

Year 

1 

Oak 1.7384 -3.113 0.8113 20 

0.5722 

0.6323 

0.3394 

0.2552 

Maple 0.7637 6.7233 0.3444 18 

Ash 0.5618 6.5142 0.2227 19 

Aspen 0.996 1.1551 0.9104 13 

Year 

2 

Birch 1.0392 2.9196 0.5894 7 

0.6723 0.2080 

Sycamore 0.5476 0.3048 0.3351 10 

Willow 1.1132 2.0613 0.722 16 

Chestnut 0.5061 4.013 0.6828 15 

Cottonwood 0.9773 1.0929 0.9714 20 

Elm 0.7828 0.4871 0.7332 5 

 

 

 

Calcium Hardness 

High School a b R² n R² Average Standard Deviation 

Year 

1 

Oak 1.9168 -64.53 0.7992 20 

0.3451 

0.3794 

0.3277 

0.3380 

Maple 0.5618 116.88 0.33 18 

Ash 0.1874 221.16 0.0275 19 

Aspen 0.3058 208.17 0.2236 13 

Year 

2 

Birch 1.2698 -12.137 0.7875 7 

0.4023 0.3737 

Sycamore -0.0955 363.85 0.0011 10 

Willow -0.297 365.6 0.0662 16 

Chestnut 0.6368 122.41 0.4437 15 

Cottonwood 0.5685 183.41 0.2217 20 

Elm 1.1873 -16.889 0.8938 4 
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Chloride 

High School a b R² n 
R² Average 

Standard 

Deviation 

Year 

1 

Oak 0.6796 -18.684 0.9853 20 

0.4986 

0.3664 

0.3781 

0.3470 

Maple 0.3214 -2.3915 0.3849 18 

Ash 0.5097 -14.944 0.5461 19 

Aspen 0.1138 10.159 0.078 14 

Year 

2 

Birch 0.036 2.2776 0.02 7 

0.2784 0.3282 

Sycamore 0.2148 0.6733 0.1971 10 

Willow 0.3244 -1.7739 0.5381 16 

Chestnut -0.0751 17.488 0.069 11 

Cottonwood 0.4275 -35919 0.818 20 

Elm -0.0167 3.0601 0.0279 6 

 

 

pH 

High School a b R² n R² Average Standard Deviation 

Year 1 

Oak 0.4545 4.0672 0.1912 20 

0.3048 

0.2678 

0.2500 

0.2836 

Maple 0.3537 4.6768 0.2383 16 

Ash 0.8761 1.1347 0.6723 4 

Aspen -0.9843 14.562 0.1173 14 

Year 2 

Birch 0.7079 2.0716 0.6212 13 

0.2431 0.3248 

Sycamore 0.0441 6.8632 0.005 10 

Willow 0.0002 7.1995 0 14 

Chestnut 0.3325 4.6507 0.1411 18 

Cottonwood 0.0276 7.0813 0.0012 20 

Elm 0.5936 2.7534 0.69 7 
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Electrical conductivity 

High School a b R² n R² Average 
Standard 

Deviation 

Year 1 

Oak 0.9945 37.166 0.9091 20 

0.7081 

0.8231 

0.4007 

0.2541 

Maple 0.7231 89.862 0.804 16 

Ash 1.4353 -386.99 1 2 

Aspen -0.5482 902.65 0.1192 14 

Year 2 

Birch 0.7142 4.5522 0.8349 13 

0.8997 0.0481 

Sycamore 0.7282 89.495 0.9533 10 

Willow 0.888 -49.853 0.9531 14 

Chestnut 0.9678 -42.252 0.8821 18 

Cottonwood 0.865 -8.6192 0.8648 20 

Elm 0.9446 -13.274 0.9101 7 
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Nitrate |WSL - HS| n 

High School R² Average Stand. Dev.  

Year 1 

Oak 0.680 5.24 11.42 20 

Maple 0.344 6.74 7.95 18 

Ash 0.223 11.25 13.27 19 

Aspen 0.910 1.18 1.54 13 

Year 2 

Birch 0.589 3.19 5.83 7 

Sycamore 0.335 1.38 1.29 10 

Willow 0.722 3.50 4.48 16 

Chestnut 0.683 4.45 5.46 15 

Cottonwood 0.971 1.40 1.38 20 

Elm 0.733 1.35 0.60 5 

Calcium Hardness |WSL - HS| n 

High School R² Average Stand. Dev.  

Year 1 

Oak 0.799 170.09 144.31 20 

Maple 0.330 91.76 79.26 18 

Ash 0.028 109.44 89.16 19 

Aspen 0.224 120.31 68.13 13 

Year 2 

Birch 0.788 39.86 80.23 7 

Sycamore 0.001 172.24 177.04 10 

Willow 0.066 211.76 128.66 16 

Chestnut 0.444 70.19 70.78 15 

Cottonwood 0.222 92.13 77.69 20 

Elm 0.894 10.80 8.54 4 

Chloride |WSL - HS| n 

High School R² Average Stand. Dev.  

Year 1 

Oak 0.985 43.03 37.43 20 

Maple 0.385 37.30 15.91 18 

Ash 0.546 56.80 29.11 19 

Aspen 0.078 43.94 72.14 14 

Year 2 
Birch 0.020 31.32 2.50 7 

Sycamore 0.197 21.39 10.73 10 
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Willow 0.538 22.32 13.08 16 

Chestnut 0.069 41.15 49.50 11 

Cottonwood 0.818 23.03 18.68 20 

Elm 0.028 49.81 26.10 6 

pH |WSL - HS| n 

High School R² Average Stand. Dev.  

Year 1 

Oak 0.191 0.24 0.23 20 

Maple 0.238 0.42 0.47 16 

Ash 0.672 2.15 3.76 4 

Aspen 0.117 0.89 0.62 14 

Year 2 

Birch 0.621 0.21 0.29 13 

Sycamore 0.005 0.27 0.32 10 

Willow 0.000 0.86 2.65 14 

Chestnut 0.141 0.17 0.18 18 

Cottonwood 0.001 0.20 0.22 20 

Elm 0.690 0.21 0.15 7 

Electrical conductivity |WSL - HS| n 

High School R² Average Stand. Dev.  

Year 1 

Oak 0.909 129.60 91.19 20 

Maple 0.804 178.38 161.70 16 

Ash 1.000 139.50 21.92 2 

Aspen 0.119 416.54 240.98 14 

Year 2 

Birch 0.835 102.27 144.54 13 

Sycamore 0.953 137.75 121.34 10 

Willow 0.953 139.79 63.67 14 

Chestnut 0.882 76.17 48.92 18 

Cottonwood 0.865 116.30 73.11 20 

Elm 0.910 38.71 30.57 7 
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