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ABSTRACT

As small, flying, mammalian endotherms, insectivorous bats
are adapted to operate at high levels of energy expenditure. In
response to seasonally variable challenges, we predicted that
bats should balance energy budgets by flexibly adjusting aspects
of their physiology or behavior in ways that elevate metabolic
capacity. We examined variation in energy storage and path-
ways for oxidative metabolism in Brazilian free-tailed bats (Ta-
darida brasiliensis) related to estimated costs associated with
reproduction and migration. We collected pectoral muscle and
liver from female T. brasiliensis at six time points during the
summer and fall and measured changes in the activity of four
enzymes involved with lipid metabolism. Body mass varied sub-
stantially with life-cycle stage, suggesting that rapid accumula-
tion and use of fat stores occurs in response to current and an-
ticipated energy demands. Catabolic enzyme activity (carnitine
palmitoyl transferase [CPT], 3-hydroxyacyl-CoAdehydrogenase
[HOAD], and citrate synthase [CS]) in the muscle was increased
during lactation comparedwith early pregnancy but exhibited no
changebefore fallmigration.While therewasno temporal change
in lipid biosynthetic capacity in the liver, fatty acid synthase ac-
tivitywasnegatively correlatedwithbodymass.Variation inbody
mass and enzyme activity in T. brasiliensis during the summer
suggests that stored energy is mobilized and lipid oxidative ca-
pacity is increased during periods of increased demand and that
lipidbiosynthetic capacity is increasedwithdepletionof fat stores.
These results suggest that bats are able toflexibly adjustmetabolic
capacity based on energy requirement to maintain energy bal-
ance despite high levels of expenditure.

Keywords: lipid oxidation, energy trade-offs, muscle physi-
ology, reproduction, migration, bats.

Introduction

Energy metabolism is constrained in all animals by limits on
intake capacity and maximal rates of energy expenditure (Lev-
ins 1968; Speakman 1999). This universal generalization drives
trade-offs in the allocation of limited energy resources to major
life functions, leading to the evolution of physiological or be-
havioral adaptations that allow animals to meet metabolic re-
quirements while maximizing fitness (Stearns 1989; Weiner
1992; Zera and Harshman 2001; Ricklefs and Wikelski 2002;
Garland 2014). When animals operate at intensities approach-
ing maximum metabolic capacity, the physiological machinery
used to assimilate, process, and allocate energy can limit per-
formance by introducing bottlenecks that constrain the rate at
which nutrients are supplied to cells and converted into chemical
energy for tissue growth or work (Hammond and Diamond
1997). To balance energy budgets in response to challenges that
require elevated expenditure, animals can increase energy intake,
decrease allocation of energy to nonessential physiological func-
tions, or make physiological adjustments that increase meta-
bolic capacity in tissues requiring elevated output (Karasov
1986; Speakman 2008). For example, migratory birds fuel high-
intensity flights via both physiological trade-offs, such as de-
creased investment in immune function (reviewed in Buehler
and Piersma 2008), and increased capacity for fatty acid oxi-
dation (Guglielmo et al. 2002; McWilliams et al. 2004).
For animals that experience complex life histories or un-

predictable ecological pressures throughout the annual cycle,
the ability to continuously and reversibly adjust their physi-
ology, behavior, or morphology in response to challenges posed
by environmental condition or life-history stage may obtain a
selective advantage (Piersma and Drent 2003). Phenotypic flexi-
bility, the term used to describe these reversible within-individual
phenotypic changes, allows animals to maximize their perfor-
mance under a wide range of conditions and potentially avoid
the need for other functional trade-offs (Piersma and van Gils
2011). Highly aerobic animals in particular may benefit from
physiological mechanisms that allow elevated metabolic capac-
ity in situations of energetic constraint while limiting the cost
of maintaining excess capacity when in energy balance.
Bats are an appropriate system for addressing the dynamics

of energymetabolism through the annual cycle because they are
adapted for high rates of energy expenditure (Thomas and
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Suthers 1972; Speakman and Thomas 2003). Flapping flight is
the most costly mode of locomotion per unit time and is con-
siderably more energetically costly than forms of terrestrial lo-
comotion (Schmidt-Nielsen 1972). Flying bats expend energy at
about 16.5 times basal metabolic rate (Speakman and Thomas
2003), and although no specific estimates are available for bats,
there is no difference in the flight cost of bats and birds (Speak-
man and Thomas 2003). The cost of flight in birds is estimated at
180% of _VO2ðmaxÞ (Guglielmo 2010) and thus represents high-
intensity exercise.
Although bats are morphologically specialized for flight, the

substantial energetic cost of flying introduces specific con-
straints on foraging strategy, energy storage, and metabolic
machinery. The mammalian exercise model predicts that mam-
mals should typically oxidize fatty acids at low exercise intensi-
ties and carbohydrates at high exercise intensities (Weber 1992;
Brooks 1998; McClelland 2004; Weber 2011). Under this sce-
nario, bats should fuelflightwith carbohydrates, as flapping flight
is higher intensity compared with terrestrial forms of exercise
(Schmidt-Nielsen 1972; Speakman and Thomas 2003). Realis-
tically, however, this is not possible. Given rates of energy ex-
penditure during flight and the low energy density of glycogen
(5.3 kJ g21), bats would deplete their glycogen stores within a
matter of minutes if they exclusively fueled flight with carbohy-
drates (Yacoe et al. 1982). It is likely that bats, like birds, fuel en-
durance flight primarily with fat (McGuire and Guglielmo 2009;
Guglielmo 2010, 2018; McGuire et al. 2013a), which is more
economical for flight because the high energy density of fat re-
duces the mass of energy stores flying animals must carry (Jenni
and Jenni-Eiermann 1998; McWilliams et al. 2004).
Fat is stored primarily as triglycerides inwhite adipose tissue,

with relatively small amounts of fat stored in lipid droplets in
muscle tissue. Under the mammalian exercise model, endur-
ance exercise can be maintained only at the intensity permitted
by delivery of fatty acids from adipose tissue into the mito-
chondria of muscle cells (McGuire and Guglielmo 2009). After
being released into circulation, free fatty acids are carried by
plasma albumin to themuscle and transported intomuscle cells
viamembrane-bound fatty acid transport proteins (McClelland
2004;Guglielmo2010;McGuire et al. 2013b). In the cytosol, free
fatty acids are transported to the mitochondria by heart-type
fatty acid binding protein and converted to fatty acyl-CoAs
before being transported to the mitochondria for oxidation
(McWilliams et al. 2004; McFarlan et al. 2009; McGuire et al.
2013b).
During exercise, fatty acids are translocated into the mito-

chondria of muscle cells, where they are catabolized into prod-
ucts that can be used in the Kreb’s cycle for energy production.
In bat muscle, rates of energy output during flight may be lim-
ited by the overall capacity of catabolic enzymes to transport and
oxidize fatty acids in the mitochondria. Several studies have dem-
onstrated augmented oxidative enzyme activity in the flight
muscle of birds and bats during periods of increased exercise
intensity (Guglielmo et al. 2002; McWilliams et al. 2004; Mc-
Farlan et al. 2009;Guglielmo2010; Price et al. 2010;McGuire et al.
2013b). Three enzymes in particular have been shown to be

upregulated during migratory periods: carnitine palmitoyl trans-
ferase (CPT), 3-hydroxyacyl-CoA dehydrogenase (HOAD), and
citrate synthase (CS). CPT is involved in translocating fatty acids
from the cytosol across the mitochondrial membrane. HOAD is
an enzyme in the b-oxidation pathway and provides a metric of
fatty acid catabolism. CS is an enzyme in the Kreb’s cycle and is
indicative of overall muscle aerobic capacity. Combined, these
three enzymes provide an indication of fatty acid mobilization,
catabolism, and oxidation.
In anticipation of energetically demanding life stages, bats,

likemany animals, accumulate energy stores. Beforemigration,
bats deposit fat to fuel long-distance migratory flights (Voigt
et al. 2010, 2012; McGuire et al. 2013a). In situations when fat
stores are depleted and requirements for oxidative metabolism
exceed rates of fatty acid acquisition from dietary sources, li-
pogenesis may be upregulated in the liver. Fatty acid synthase
(FAS) is an enzyme in the liver that synthesizes fatty acids de
novo (Guynn and Veech 1975; Muesing and Porter 1975; Ne-
pokroeff et al. 1975; Ramenofsky 1990) and may be seasonally
modulated as for catabolic enzymes. For example, in western
sandpipers (Calidris mauri) hepatic FAS activity increases sub-
stantially during migration, associated with periods of rapid re-
fueling and fat deposition (Egeler et al. 2000).
While previous studies have examined migration-related

changes in lipid metabolism, bats also face varying energetic chal-
lenges throughout the summer and during premigratory periods.
In the summer, female bats are confronted with the energetic and
nutritional costs of reproduction, which include the production
and maintenance of fetal, placental, and mammary tissues dur-
ing gestation and lactation (Gittleman and Thompson 1988).
Due to restrictions on body size, small mammals face the chal-
lenge of acquiring sufficient energy to satisfy reproductive
costs without exceeding available resources from energy stores
(Speakman 2008). This may be particularly challenging for bats
due to constraints on body mass associated with flight (Oftedal
2000). Bats undergo large increases in body mass during preg-
nancy, with newborn bats weighing up to 30% of the maternal
postpartummass, which increases the energetic cost of flight and
limits the amount of energy that can be stored before lactation
(Kurta and Kunz 1987; Webb et al. 1992; Hughes and Rayner
1993; McLean and Speakman 2000). Lactation is generally
considered the most energetically demanding period of the re-
productive cycle (Racey and Speakman 1987; Kurta et al. 1989;
Kunz et al. 1995; Hood et al. 2006), with lactating females ex-
periencing energy demands two and a half to five times greater
than those of nonreproductive counterparts (Oftedal 1984). Bats
devote 20%–40% of daily energy expenditure to milk production
during lactation (Racey and Speakman 1987) and have to nurse
for extended periods of time because juveniles are not weaned
until they become volant when reaching nearly adult size (Barclay
1995).
To maintain energy balance and maximize performance in

response to variable challenges during the active season (e.g.,
reproduction andmigration), we hypothesized that female bats
wouldflexibly adjust physiological traits related to energy storage
and metabolic capacity with changes in energy expenditure. We

Dynamics of Lipid Metabolism in Brazilian Free-Tailed Bats 387



expected to observe changes in body mass on short timescales
throughout the active season as bats used and accumulated fat
stores in response to costs associated with each life-cycle stage.
We also predicted that lipid biosynthetic capacity (FAS activity)
in the liver and lipid oxidative capacity (CPT, HOAD, and CS
activity) in the pectoral muscle would be elevated in response to
increased energy expenditure during lactation. Before fall mi-
gration, we expected FAS activity to increase concurrently with
premigratory fat deposition and lipid oxidative capacity to in-
crease relative to postlactation as bats prepared to make long-
distance migratory flights.

Methods

Study System

Brazilian free-tailed bats (Tadarida brasiliensis) are small in-
sectivores in the family Molossidae that are abundant through-
out the Americas at latitudes below 407N (Hall 1981;McCracken
et al. 2018). The subspecies T. brasiliensis mexicana occurs in Mex-
ico and the southwestern United States and makes long-distance
seasonal migrations (Villa and Cockrum 1962; Fleming and Eby
2003; Russell et al. 2005). It is estimated that 1100 million bats
migrate annually fromoverwintering sites in centralMexico to the
south-central United States, where they form large summer col-
onies in caves and bridges across the region (Wahl 1993). Mi-
gration is female biased, with cave populations consisting almost
entirely of females and their young during the summer (Lee and
McCracken 2005). Mating occurs in transitional roosts inMexico
during the northward migration (McCracken andWilkinson 2000)
or following arrival at summer sites in late March and early
April (Keeley andKeeley 2004). Females typically give birth to a
single pup in mid-June (Davis et al. 1962) and nurse young for
6–7 wk (McCracken and Gustin 1991). After weaning, bats begin
to disperse and form smaller colonies away frommaternity caves
and return to central Mexico starting in September and October
(Villa and Cockrum 1962; Russell et al. 2005). By late fall, bats
migrating south from the Great Plains region are concentrated
from central Texas southward (Glass 1982). In recent years, an
increasing number of bats have been overwintering in Texas
(Weaver et al. 2015; Stepanian and Wainwright 2018).
Free-tailed bats are specialized for fast continuous flight due

to the long pointed shape of their wings, which results in a high
aspect ratio and high wing loading (Norberg and Rayner 1987).
Tadarida brasiliensis have the fastest recorded flight speed of all
bat species (McCracken et al. 2016) and travel up to 50 km from
their roosts on a single foraging flight (Davis et al. 1962; Wil-
liams et al. 1973). Unsurprisingly, the flight muscles of T. bra-
siliensis are comprised predominantly of fast-twitch oxidative
muscle fibers (Foehring andHermanson 1984), which represents
an adaptation for the high metabolic cost of prolonged flight.

Study Site and Sample Collection

We captured adult female bats using hand nets and mist nets
at Frio Cave in Uvalde County, Texas, from April to November
2016. Estimates of summer T. brasiliensis populations at Frio

Cave range from 1 to 10 million individuals (Betke et al. 2008).
We identified individuals in late pregnancy by the presence of a
palpable embryo, and we identified lactating bats by manually ex-
pressing milk from the mammary glands. Subadults were iden-
tified by the degree of ossification of the metacarpal-phalanges
joint (Brunet-Rossinni and Wilkinson 2009). All subadults were
released on capture.
Tissue sampling took place approximately monthly over the

course of the study period and was timed to correspond with
early pregnancy inApril, late pregnancy inMay, late lactation in
July, postlactation in August, premigration in September, and
earlymigration in November. Animals were not collected during
early lactation or midlactation, when females would have had
dependent young.All batswere euthanizedbycervical dislocation
under isoflurane anesthesia, and samples of pectoral muscle and
liver were quickly dissected and stored over liquid N2 until anal-
ysis. All animal collection and experimental protocols were ap-
proved by the Texas Tech University Animal Care and Use Com-
mittee (protocol 16014-05) and conducted under a permit from
the Texas Parks and Wildlife Department (permit SPR-0416-
115).

Preparation of Tissue Homogenates

Liver and muscle samples were prepared by combining ap-
proximately 100 mg of tissue with nine volumes of stabilizing
homogenization buffer (20 mM NA2HPO4, 0.5 mM EDTA,
0.2% defatted bovine serum albumin, 50% glycerol, and 0.1%
Triton X-100, plus 50 mg mL21 aprotinin for muscle homoge-
nate) and homogenized using a handheld homogenizer (Bench-
mark D1000; Benchmark Scientific, Edison, NJ) for 3 # 10 s,
keeping samples on ice for at least 30 s between intervals. We
sonicated the homogenates (W-225R with H-1 probe; Heat
Systems–Ultrasonics, Plainview, NY) for 3# 10 s to lyse cellular
and mitochondrial membranes and then centrifuged the samples
at 12,000 g at 47C for 10 min. Supernatant fractions were stored
at 2807C until analysis.

Enzyme Assays

All enzyme assays were carried out in triplicate at 397C in 96-
well microplates and read using a PowerWave microplate spec-
trophotometer (BioTek,Winooski, VT). Assays for CS,HOAD,
andCPTwere adapted frommethods inMcGuire et al. (2013a),
and the assay for FAS was adapted frommethods in Egeler et al.
(2000). CPT was assayed in 50 mM Tris buffer (pH 8.0) with
5mM carnitine, 0.75 mMDTNB, 0.35 mM palmitoyl CoA, and
4mL of homogenate diluted 1∶40.HOADwas assayed in 50mM
imidazole buffer (pH 7.4) with 0.2 mM NADH, 1 mM EDTA,
0.1 mM acetoacetyl CoA, and 4 mL of homogenate diluted
1∶40. CS was assayed in 50 mM Tris buffer (pH 8.0) with
0.25mMoxaloacetic acid, 0.75mMDTNB, 0.3mMacetyl CoA,
and 4mL of homogenate diluted 1∶80. FASwas assayed in 1mM
EDTA, 0.1M potassium phosphate, 25 mMacetyl CoA, 0.2 mM
NADPH, 75 mM malonyl CoA, and 8 mL of homogenate di-
luted 1∶4 in 1 mM DTT, 1 mM EDTA, and 0.1 M potassium
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phosphate and incubated for 10 min at 397C (Guynn and Veech
1975; Muesing and Porter 1975; Nepokroeff et al. 1975; Egeler
et al. 2000).
Absorbance was measured at 397C in 1-min intervals for a

total of 10min for all assays. CS andCPT reactionswere indicated
by the rateof reductionofDTNBby freeCoAmeasuredat412nm.
HOAD and FAS activities were indicated, respectively, by the
consumption and production of NADH measured at 314 nm.
Maximal enzyme activities were calculated using the following
equation: activity p ½(DA# tV# df)=(sV# Ε# d)�, where
DA is the slope of absorbance change, tV is the total reaction
volume (mL), df is the sample dilution factor, sV is the volume of
sample added to the reaction mixture (mL), Ε is the molar ex-
tinction coefficient (mM21 cm21), and d is the length of the light
path (cm). Light path was measured as the vertical height of the
reaction volume in the microplate well. For FAS activity calcu-
lations, DA was divided by 14, as only 1 mol of fatty acid is
produced for every 14 mol of NADPH consumed.

Data Analysis

All analyses were conducted in R (ver. 3.4.1; R Development
Core Team 2017). Relationships between body mass, enzyme
activities, and sampling period were analyzed using general
linear models and Tukey tests for post hoc pairwise compari-
sons. Starting with fully saturated models, we sequentially re-
moved the least significant termand reevaluated themodel until
only significant terms remained. CS and HOAD activities ex-
hibited heteroscedasticity among sampling periods and were
thus analyzed using generalized least squares models with un-
equal variance structures using the gls function with the varI-
dent variance structure from the nlmeR package (Pinheiro et al.
2017). This method takes differences in residual variation among

groups into account by including variance as a covariate in the
models (Zuur et al. 2009). Models were graphically validated by
plotting the standardized residuals and checking for homo-
geneity of variance among groups.

Results

Bodymass of adult females varied in relation to sampling period
(n p 58; F5, 52 p 29:45, P < 0:001; fig. 1). Predictably, body
mass increased during pregnancy with an observed increase
of 20% (2.4 g) between April and May (P p 0:002). Body mass
decreased following parturition (2.0 g; P p 0:001) and con-
tinued to decrease through lactation (1.6 g; P p 0:001). Body
mass then increased between the end of lactation and the pre-
sumed beginning of fall migration by 45% (5.0 g; P < 0:001).
CS activity varied with sampling period (n p 58; F5, 52 p

7:11, P < 0:001; fig. 2a), increasing by 24% from early preg-
nancy in April to late lactation in July (P < 0:001), and this
elevated activity was consistent for the duration of the study
period. HOAD activity also varied among sampling periods
(n p 58; F5, 52 p 4:15, P p 0:003; fig. 2b), increasing by 67%
from early pregnancy to lactation (P p 0:02). CPT activity ex-
hibited temporal variation similar to CS and HOAD (n p 58;
F5, 52 p 4:58, P p 0:001; fig. 2c), with the highest mean activ-
ity observed postlactation (66% increase from early pregnancy;
P p 0:004). For all three catabolic enzymes, there was no change
in activity between lactation (for CS and HOAD) or postlacta-
tion (for CPT) andmigration. There was no relationship between
bodymass andenzymeactivity forCS (F1, 56 p 0:15,P p 0:7) or
HOAD (F1, 56 p 0:18, P p 0:7), but body mass was negatively
related to CPT activity (F1, 56 p 5:17, P p 0:03).
Variation in mean FAS activity among sampling periods

approached significance (n p 56;F5, 49 p 2:25,P p 0:06;fig. 3).
However, FAS activity was negatively correlated with body

Figure 1. Body mass in Brazilian free-tailed bats during early pregnancy, late pregnancy, lactation, postlactation, premigration, and early fall
migration. Bars indicate mean 5 SE. Groups with the same letter were not significantly different.
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mass across all groups (F1, 54 p 12:53, P < 0:001). This rela-
tionship remained significant after removing pregnant females,
for which body mass may not reflect body condition, from the
analysis (F41, 1 p 11:5, P p 0:002; fig. 4).

Discussion

The bats in our study exhibited substantial variation in body
mass throughout the active season (fig. 1) due to the growth and
loss of fetal tissue as well as assumed changes in the quantity of
stored fat. Although the relative contributions of fat and lean
tissue mass changes are unknown, a separate study of the same
individual bats included in our study found that lean mass
change was minimal relative to overall body mass changes, sug-
gesting that variation in bodymass following birth was primarily
due to changes in fat mass (Sommers 2017).
Between late lactation and early postlactation we observed

a 13% loss of body mass in females, which is consistent with
several previous observations of fat depletion in lactating bats
and suggests that fat stores are mobilized to maintain milk
production when nutrient intake is insufficient (Reynolds and
Kunz 2000; Hood et al. 2006). As with other insectivorous bat
species, declines in fat mass during lactation suggest that the
cost of lactation in Tadarida brasiliensis may exceed what is
available from food consumption and necessitate at least partial
reliance on energy stores. While subsidies from maternal fat
stores for fueling lactation may be minimal compared with
energy allocated to milk production from daily food intake
(Speakman and Racey 1987; Kurta et al. 1989; McLean and
Speakman 1999), the accumulation of daily contributions across
the duration of lactation could lead to the body mass declines we
observed in this study.
Energy requirement is often the main constraint on repro-

ductive performance and output in small mammals due to body
size restrictions that limit the amount of energy that can be
stored as fat (Bronson 1989; Speakman 2008). To satisfy in-
creased energy demands during reproduction, most small mam-
mals must increase daily food consumption (Thompson 1992;
Poppit et al. 1993). Bats have been observed to increase nightly
food intake (Barclay 1989; Kunz et al. 1995) and foraging times
(Barclay 1989; Rydell 1989; Duvergé et al. 2000; Lee and Mc-
Cracken 2001) during reproduction, with foraging activity peak-
ing in late lactation (Kunz 1974; Anthony andKunz 1977;Kurta
et al. 1990). Due to the substantial cost of flight, bats expend
more than half of their daily energy budgets during reproduc-
tion on foraging (Kurta et al. 1989). In summer, weather pat-
terns in south-central Texas are relatively stable, and a variety of
energy-dense insects are abundant (Kunz et al. 1995; Lee and
McCracken 2005). In the absence of environmental constraints
on foraging or limits on prey availability, changes in foraging
activity during reproduction should directly reflect changes in
energy need.
Regardless of whether animals use stored energy or ingested

nutrients to meet demands, increased expenditure may require
flexible adjustments in the capacity of the physiological ma-
chinery used to assimilate and metabolize energy. This is par-
ticularly true if animals operate at or near their metabolic ceil-
ing, the maximal sustained working capacity of an individual
(Drent andDan 1980; Piersma and vanGils 2011). The changes
we observed in CS and HOAD activity (fig. 2a and 2b, respec-
tively) in the flight muscle of T. brasiliensis correspond with

Figure 2. Seasonal changes in enzyme activities in Brazilian free-tailed
bats were observed for citrate synthase (CS; a), 3-hydroxyacyl-CoA
dehydrogenase (HOAD; b), and carnitine palmitoyl transferase (CPT; c)
during early pregnancy, late pregnancy, lactation, postlactation, premi-
gration, and early fall migration. These enzymes indicate aerobic capac-
ity, b-oxidation, and translocation of fatty acids into mitochondria,
respectively. Bars indicate mean5 SE. Groups with the same letter were
not significantly different.
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estimated increases in expenditure on foraging flights during
late lactation (Kunz 1974; Anthony and Kunz 1977; Kurta et al.
1989; Kurta et al. 1990), which supports our prediction that
lipid oxidative capacity would be elevated in response to in-
creased energy demands. Conversely, CPT activity (fig. 2c) was
highest during the postlactation time point, when energy de-
mands should be the lowest, but it is possible that the observed
increase in activity was a carryover effect from peak energy
demands experienced during late lactation.
We observed a 45% increase in bodymass between the end of

lactation and early fall migration (fig. 1), which is consistent
with observations of migration-related hyperphagy and fat
deposition in this species (O’Shea 1976; Widmaier et al. 1996).
Conversely, there were no changes in enzyme activities during
this same time period. While many species of migratory birds
increase oxidative capacity before migration (Marsh 1981; Zajac
et al. 2011), others require endurance flight training to stimulate
upregulation of catabolic enzymes (Guglielmo et al. 2002). In this
study, we saw no evidence of increased enzyme activity premi-
gration (fig. 2), suggesting that this species does not anticipate
migration by elevating its capacity for lipid oxidation. Addi-
tionally, we saw no change in enzyme activity during the early
migration time point, when individuals were likelymigrating and
usingFrioCave as a stopover (Krauel et al. 2015). It is possible that
the individuals sampled for this time point were overwintering
residents, but given the size of this population (Betke et al. 2008)
comparedwith estimates of overwinteringpopulations in the area
(Stepanian andWainwright 2018), it is likely that theywere either
preparing for migration or en route.
Our results suggest that this species, which is an aerial in-

sectivore morphologically and physiologically adapted for fast,
continuousflight (Davis et al. 1962;Williams et al. 1973; Foehring
and Hermanson 1984; McCracken et al. 2016), may not require

additional physiological compensations to adequately satisfy
migration-related demands. Tadarida brasiliensis fly 1100 km a
night on regular foraging flights in summer (Davis et al. 1962;
Williams et al. 1973), so making nightly long-distance flights to
centralMexico during fallmigrationmay not be very challenging,
particularly if they forage opportunistically while in flight. These
adaptations and differences in ecology may also explain why
the absolute activities of CS, CPT, and HOAD observed in this
species are lower on average than those observed in migrating
birds (Marsh 1981; Lundgren andKiessling 1985;Guglielmo et al.
2002; McFarlan et al. 2009). Alternatively, if the bats sampled for
the early migration time point were in fact summer residents still
preparing to leave, it remains possible that changes in oxidative
capacity may have occurred after they started actively migrating.
The changes we observed in the activity of lipid oxidative

enzymes in the flight muscle over the active season suggest that
the energy costs associated with reproduction require increased
capacity for conversion of fatty acids into usable energy. How-
ever, these pathways rely on the availability of fatty acids from the
diet or from adipose stores as well as sufficient capacity for fatty
acid uptake from circulation.Migrating birds and bats are known
to upregulate fatty acid transport proteins, such as heart-type
fatty acid binding protein and plasma-membrane fatty acid
binding protein (Guglielmo et al. 2002; McFarlan et al. 2009;
McGuire et al. 2013b), to meet requirements for fatty acid trans-
port into the muscle during migratory flight. As bats rely on fatty
acids to fly, we predicted that bats would exhibit increased fatty
acid synthesis in the liver in response to increased energy ex-
penditure during lactation. Although we observed no change in
FAS activity among sampling events (fig. 3), we did find a nega-
tive correlation between enzyme activity and body mass across
all life-cycle stages (fig. 4). These results suggest that bats do not
upregulate FAS to cope with short-term energy costs but that

Figure 3. Changes in fatty acid synthase (FAS) activity in Brazilian free-tailed bats during early pregnancy, late pregnancy, lactation,
postlactation, premigration, and early fall migration. Bars indicate mean 5 SE.
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bats with less stored fat (i.e., with lower body condition) may
relymore on de novo fatty acid synthesis regardless of life-cycle
stage. While it is perhaps surprising that we did not see in-
creased FAS activity simultaneous to premigration fattening,
bats are known to forage on high-fat migratory moths at this
time of year, which may make de novo fatty acid synthesis un-
necessary (Krauel et al. 2015, 2018). Furthermore, bats may also
increase fuel deposition rate by using torporduring the day. In the
absence of any biochemical compensation, reduced daytime
energy expenditure leads to increased net fueling rate from the
same amount of ingested energy (McGuire and Guglielmo 2009;
McGuire et al. 2014).

Conclusion

Bats fuelflightwith lipids, and thus the capacity to oxidize lipids
in working tissues should be a limiting step in pathways for
aerobicmetabolism.Our study demonstrates that batsmobilize
stored fat and increase lipid oxidative capacity in flight muscle
in late lactation, which reflect estimated increases in daily en-
ergy expenditure during reproduction. Additionally, bats that
weighed less exhibited increased fatty acid synthesis in the liver,
suggesting that bats may compensate for smaller fat stores by
relying more heavily on pathways for de novo fatty acid syn-
thesis. In light of these results, we suggest that highly aerobic
mammals, which are adapted to regularly maintain extreme
levels of energy expenditure, are able to raise the metabolic
capacity of working tissues on short timescales in response to
need by flexibly adjusting physiological traits that constrain
energy output. Whether metabolic capacity in bats and other
highly aerobic mammals is more greatly constrained by periph-
eral factors (e.g., aerobic capacity in the muscle) or by central
factors (e.g., assimilation efficiency) is a valuable topic of future
research.
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