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Abstract: 
 
The responses of species to environmental changes will determine future community 
composition and ecosystem function. Many syntheses of global change experiments examine the 
magnitude of treatment effect sizes, but we lack an understanding of how plant responses to 
treatments compare to ongoing changes in the unmanipulated (ambient or background) system. 
We used a database of long‐term global change studies manipulating CO2, nutrients, water, and 
temperature to answer three questions: (a) How do changes in plant species abundance in 
ambient plots relate to those in treated plots? (b) How does the magnitude of ambient change in 
species‐level abundance over time relate to responsiveness to global change treatments? (c) Does 
the direction of species‐level responses to global change treatments differ from the direction of 
ambient change? We estimated temporal trends in plant abundance for 791 plant species in 
ambient and treated plots across 16 long‐term global change experiments yielding 2,116 
experiment–species–treatment combinations. Surprisingly, for most species (57%) the magnitude 
of ambient change was greater than the magnitude of treatment effects. However, the direction of 
ambient change, whether a species was increasing or decreasing in abundance under ambient 
conditions, had no bearing on the direction of treatment effects. Although ambient communities 
are inherently dynamic, there is now widespread evidence that anthropogenic drivers are 
directionally altering plant communities in many ecosystems. Thus, global change treatment 
effects must be interpreted in the context of plant species trajectories that are likely driven by 
ongoing environmental changes. 
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Article: 
 
1 INTRODUCTION 
 
Plant community composition can respond to global change and mediate important long‐term 
effects of global change on ecosystem processes (Avolio et al., 2015; Cowles, Wragg, Wright, 
Powers, & Tilman, 2016; Langley & Hungate, 2014; Smith, Knapp, & Collins, 2009; Zhang, 
Niinemets, Sheffield, & Lichstein, 2018), so understanding those changes is key for projecting 
future ecosystem functions. For at least five decades (Valiela, Teal, & Sass, 1975), ecologists 
have conducted long‐term field experiments testing how plant communities will respond to 
environmental changes such as chemical (e.g., CO2 and nutrient pollution) and climatic drivers 
(e.g., temperature and precipitation change). These experiments are often considered predictive 
of which species will be favored by future environmental change, “winners,” and which will not, 
“losers,” based on whether the specific change driver alters some measure of performance such 
as abundance (Craine, 2009; Dukes & Mooney, 1999; Langley & Hungate, 2014; O'Brien & 
Leichenko, 2003; Poorter & Navas, 2003). Accordingly, many manipulative studies collect very 
high‐quality, detailed data on individual species abundance through time. Manipulative 
experiments are powerful in that plant response can be attributed to a single factor if adequate 
controls are included in the experimental design. However, global change experimental plots are 
typically small‐scale, and there are limits to the number of experimental treatments that can be 
feasibly imposed. When analyzed individually, these experiments often yield idiosyncratic 
treatment effects (Zhu, Chiariello, Tobeck, Fukami, & Field, 2016) that can vary in space and 
though time. Treatment effects often diminish through time, a finding that has been interpreted as 
evidence of acclimation or negative feedbacks (Leuzinger et al., 2011; Smith et al., 2015). With 
the goal of generalizing global patterns, meta‐analyses have summarized the results across many 
individual global change experiments (Andresen et al., 2016; Hedges, Gurevitch, & Curtis, 1999; 
Wu, Dijkstra, Koch, Peñuelas, & Hungate, 2011; Xia & Wan, 2008), and scientists have 
established networks of similar manipulative experiments (Borer, Grace, Harpole, MacDougall, 
& Seabloom, 2017). To reduce noise and complexity, such synthetic efforts often focus on effect 
sizes that are structured to isolate relative differences between treatments and controls (Hedges et 
al., 1999). Still, predicting changes in abundance of plant species or functional groups has proven 
exceptionally difficult (Kimball et al., 2016; Lavorel & Garnier, 2002; Meir, Mencuccini, & 
Dewar, 2015; Reich, Hobbie, Lee, & Pastore, 2018; Verheyen et al., 2017). 
 
A growing body of evidence from observational studies of long‐term monitoring plots, remotely 
sensed data, or species range shifts demonstrates that vegetation distribution is responding 
strongly to environmental change (Doughty et al., 2016; Franklin, Serra‐Diaz, Syphard, & 
Regan, 2016; Jamiyansharav, Fernández‐Giménez, Angerer, Yadamsuren, & Dash, 2018; 
Maguire, Nieto‐Lugilde, Fitzpatrick, Williams, & Blois, 2015; Parmesan & Yohe, 2003; 
Schuster, Martinez, & Dukes, 2014; Simkin et al., 2016). While these studies capture ongoing 
responses to environmental change, attribution to a particular cause can be difficult (Cudlin et 
al., 2017), thereby complicating comparisons to manipulative studies. For instance, widely 
observed encroachment of woody plants into herbaceous ecosystems is commonly attributed to 
elevated CO2, among other competing hypotheses (Saintilan & Rogers, 2015). However, 



CO2 experiments may be ill‐suited to capture landscape‐scale vegetative shifts because the 
“island effect” inherent to plot‐level studies can exclude important large‐scale CO2 feedbacks 
such as altered regional humidity or energy balance (de Boeck et al. (2015), Leuzinger, Fatichi, 
Cusens, Körner, & Niklaus, 2015). 
 
These two threads of research, manipulative global change experiments and observations of 
ongoing change, have addressed the same questions independently, yielding some alternative 
assessments of change across landscapes and projections of future plant change in isolated plots. 
For instance, observational studies have recorded losses of legumes but attribute the net loss to 
landscape fragmentation or fire suppression (Leach & Givnish, 1996) or to mammalian 
herbivory (Ritchie & Tilman, 1995). Meanwhile, a meta‐analysis of 304 N fertilization 
experiments predicted that legumes will respond negatively to N addition (Xia & Wan, 2008). 
Coordinated studies have compared the two approaches at individual sites. A recent study of 
alpine tundra plant communities demonstrated good agreement between responses to ambient 
warming in monitored plots and to experimental warming in manipulated plots (Elmendorf et 
al., 2015). Yet, the prevailing evidence for plant phenology responses to warming is that 
experiments generally underestimate responses (Wolkovich et al., 2012). Combining approaches 
of experimental manipulation and observation can be powerful (de Boeck et al. 2015), but few 
studies have undertaken both simultaneously. Experiments often document background changes 
in plant species abundance in control plots—but this “ambient change” is not attributable to any 
manipulated variable. How does ambient change relate to measured treatment effects? To our 
knowledge, no multi‐site studies have explicitly compared global change treatment responses to 
ambient change within the same experiments. 
 
We used abundance data from 791 plant species across 16 global change experiments at least 
10 years in duration to assess long‐term, directional change in species‐level abundance in 
ambient plots (referred to as “ambient change”) and compared these measures to that observed in 
plots exposed to relatively long‐term manipulative treatments: CO2, water, nitrogen, phosphorus, 
or temperature. We focused on sustained, directional change in abundances. We propose that 
sustained, directional shifts in plant responses provide a signal of the longer‐term species 
trajectories rather than shorter‐term changes that could be cyclical (Stouffer, Wainwright, 
Flanagan, & Mayfield, 2018). We expect that owing to the importance of global change drivers 
for plant communities and the strength of treatments applied in global change experiments, 
treatment effects should overwhelm background trends in plant abundance. If ambient change in 
manipulative experiments is comparable in magnitude to global change treatment effects, then 
ambient change could have a profound influence on how we interpret experimental results. We 
asked three questions: (a) How do changes in plant abundance in unmanipulated “ambient” plots 
(ambient change) relate to that in treated plots (treatment change)? (b) How does the magnitude 
of ambient change relate to its responsiveness to global change (treatment effect)? (c) Does the 
direction of ambient change differ from the direction of treatment effect? By capitalizing on 
existing long‐term experimental data, the answers to these questions will shape the interpretation 
and design of future studies. 
 
2 MATERIALS AND METHODS 
 



We used species abundance data from experiments in herbaceous ecosystems including 
grasslands, tundra, pastures, and wetlands. Datasets for this analysis were obtained from the 
CoRRE (Community Responses to Resource Experiments) database (for details on data selection 
see https://corredata.weebly.com). The dataset includes only herbaceous communities as tree 
species abundance responses are extremely difficult to extrapolate from decade‐scale 
experiments (Franklin et al., 2016). Herbaceous plant communities can reach a relatively stable 
state more quickly than forests following disturbances that leave soil intact, such as herbivory or 
fire (Koerner et al., 2014). For this analysis, we selected studies from the database that 
manipulated at least one global change driver for 10 or more years. The only exception was the 
inclusion of one 8‐year dataset from the Tas‐FACE study to improve representation of warming 
and CO2 treatments and the southern hemisphere. We included the five treatments (elevated CO2, 
nitrogen, phosphorus, water addition, and warming) that were most commonly applied. The 
subset included 791 species across 16 experiments at 12 sites (See metadata, Supporting 
information Table S1). We treated the same species at different sites independently. Our analysis 
only included single‐factor treatments and controls. 
 
Table 1. Summary of parameters used in assessing change in abundance 

Parameter Description Analysis 
Linear responsiveness 

(r) 
Correlation coefficient of species abundance 

through time 
For global comparisons of species‐level 

abundance change across all experiments 
(dependent on linear change) 

Monotonic 
responsiveness (ρ) 

Spearman's rank correlation coefficient of species 
abundance through time 

For global comparisons of species‐level 
abundance change across experiments (not 
dependent on linear change) 

Magnitude of change (m) Absolute value of slope of species abundance 
through time 

For within‐site comparisons of magnitude of 
change 

Dynamic treatment 
effect 

Absolute value of difference 
between mtreatment and mambient 

For comparisons of dynamic treatment effects 
to ambient change 

Relative dynamic 
treatment effect 

Ratio of dynamic treatment effect to ambient 
change 

Average abundance (�̅�𝑥) Average abundance over time For calculation of static treatment effect size 
Static treatment effect Absolute value of difference 

between xtreatment and xambient 
For comparisons of treatment effects to ambient 

change 
Relative static treatment 

effect 
Ratio of static treatment effect to ambient change 

 
2.1 Assessment of species abundance change 
 
We assessed long‐term, directional change in plant abundance through time using different 
indices for different purposes. To capture responsiveness for comparisons of species‐level 
responses among sites, we used the correlation coefficients (Pearson's r, referred to as r) from 
correlations of absolute abundance of each species versus time (year 1 = first year treatments 
were applied). We estimated a separate r for each species in each treatment in each experiment, 
pooling across replicate plots. The sign of r expresses the direction of change and standardizes 
trajectories on a scale from −1 to 1 that is universally comparable among species and sites, and is 
not influenced by magnitude of abundance or change like slopes would be (Gurevitch, Curtis, & 
Jones, 2001). A value of 1 indicates consistent increase in species abundance; −1 indicates 
consistent decrease; 0 indicates no consistent trend (refer to Supporting information Figure S1 

https://corredata.weebly.com/


for examples of these relationships). To account for the possibility that long‐term increases or 
decreases in abundance were consistent but not linear, we also assessed change with Spearman's 
rank correlation coefficients (ρ) as an alternative estimate of responsiveness. Correlation 
coefficients capture the consistency of linear increase or decrease in abundance over time and 
across plots, but they do not capture the magnitude of change. 
 
To estimate and compare the magnitude of plant abundance change within sites, we used linear 
slopes of abundance through time (m) using plot‐level data for each timepoint. Though more 
complex relationships can occur, we used linear relationships because our questions centered on 
long‐term, directional change through time. Because techniques of measuring species abundance 
varied among studies (gridline intercept, % cover, biomass; Supporting information Table S2), 
the slopes are not directly comparable across sites. The parameters we used in characterizing 
plant change are summarized in Table 1. 
 
2.2 Comparison of species responsiveness across experiments 
 
To explore patterns of covariance among treatments in responsiveness between plant species 
abundance changes across the entire dataset, we used three different metrics. First, we used the 
responsiveness term defined above as correlation coefficient of species change through time. We 
correlated species responsiveness in ambient control plots (rambient) to species responsiveness in 
each global change treatment (rCO2, rnitrogen, rphosphorus, rwater, and rwarming) for a total of 1,172 site–
species–treatment combinations such that each point represents a single species. Second, to 
evaluate the validity of assuming linearity, we also compared across treatments using 
Spearman's ρ as an index of monotonic change through time (ρambient vs. ρCO2, ρnitrogen, ρphosphorus, 
ρwater, and ρwarming). Finally, though we could not compare m across experiments owing to 
differing metrics of abundance, we did compare the magnitude of change among treatments 
within each individual experiment. We correlated mambient with (mCO2, mnitrogen, mphosphorus, mwater, 
and mwarming) for each experiment. 
 
2.3 Comparisons of magnitude of change within experiments 
 
We compared the strength of ambient trends to treatment effects. We estimated linear slopes of 
abundance by treatment year, with treatment year 1 as the first year of measurement for ambient 
plots (mambient) and each treatment (mtreatment) for each site. The magnitude of ambient trends was 
defined as the absolute value of mambient in abundance change per year. 
 
2.4 The magnitude of dynamic and static treatment effects 
 
We used two methods to estimate the magnitude of treatment effects on species abundance 
within each site, one allowing for a dynamic treatment effect that may change over the course of 
the study (Figure 1a), and one considering a static treatment effect averaged over the course of 
the study (Figure 1b). 
 



 
Figure 1. Stylized data illustrating estimation of treatment effects. The dynamic treatment effect 
(a) is the difference in linear trend attributable to the treatment, and the static treatment effect (b) 
is the difference in mean abundance over the course of the experiment. For clarity, symbols here 
represent treatment means, though individual plot data were used for the analyses 
 
We estimated effects of each treatment on rate of species change for each experiment as the 
average absolute value of the difference between slopes (m) of treatment and control for each 
species. Because the units of slopes were not comparable across experiments, we relativized 
treatment effects for each experiment by dividing by the absolute value of the ambient slope for 
each species: 
 

Relative dynamic treatment effect =
|𝑚𝑚treatment − 𝑚𝑚ambient|

|𝑚𝑚ambient|
 

 
This ratio reflects the relative strength of treatment in altering plant trajectories compared to 
ambient change. Values >1 indicate that treatment effects are stronger than ambient change. 
 
A treatment could have a sustained effect that is not well captured by the linear slope through 
time. Therefore, we also estimated mean treatment effects for each site by averaging abundance 
across all treatment years of each experiment for each species. 
 
As above, we divided this mean treatment effect size by the absolute value of mambient to express 
the treatment effect relative to the magnitude of ambient change in abundance for each species: 
 

Relative static treatment effect =
|�̅�𝑥treatment − �̅�𝑥ambient|

|𝑚𝑚ambient|
 

 
where �̅�𝑥treatment and �̅�𝑥ambient represent mean abundance of species over the entire experiment. 
Here, we divided a difference in abundance by a rate of change in abundance, yielding a time 
expressed in years. This value can be considered the amount of time required for the magnitude 
of ambient change to exceed the magnitude of treatment effects. 
 
Both relative static and dynamic treatment effects were log‐normally distributed owing to some 
small values in the denominators, so we report medians of individual species treatment effects in 
characterizing the whole dataset. To avoid over‐representing experiments that have more species, 
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we also estimate mean treatment effects for each experiment. To calculate experiment means for 
each treatment, we used the equation: 10[mean(log10 𝑥𝑥)] where x is the treatment effect for each 
species. We report the mean of these site averages for each treatment (n = 3–11). 
 
2.5 Direction of treatment effects compared to direction of ambient change 
 
The treatment effect assessments above compare the magnitude of change without regard for the 
direction. To determine whether treatment effects were likely to amplify or moderate ambient 
change, we took the sign of the slope from each linear relationship of species abundance through 
time for each experiment–treatment to represent a binary direction, either positive or negative. 
We used Fisher's exact tests to determine whether the direction of the static treatment effect (+ or 
−) was related to the direction of ambient change (+ or −). 
 
2.6 Robustness 
 
To assess the robustness of the patterns, we restricted the dataset in three ways and re‐performed 
some of the above analyses. First, to determine how important experimental duration was for the 
patterns, we curtailed each dataset (to include only the first 5 years), from the full‐length dataset 
(from 8 to 31 years in duration). Second, we restricted analyses to species that constituted more 
than 1% and more than 5% of total plant abundance to determine whether abundant and rarer 
plants responded differently. Third, we restricted analyses to plant species for which abundance 
in ambient plots exhibited a slope with p < 0.05 to focus on species that exhibit consistent 
ambient change. We further restricted them to p < 0.001 to account for the possibility that 
multiple comparisons lead to spuriously significant results. Rather than using these P‐values for 
hypothesis testing, we used them as arbitrary demarcations to subset species that exhibit 
consistent (p < 0.05) or highly consistent (p < 0.001) directional, ambient change across plots 
and through time. All data filtering, summarizing and statistical calculations were performed in 
JMP Pro 13 (SAS Institute). 
 
3 RESULTS 
 
3.1 Assessment of ambient change and how it relates to change in treated plots 
 
The distribution of rambient across species was flatter than a normal distribution (Shapiro–Wilk W 
test, p < 0.001, Figure 2, left panel). That pattern became more pronounced when the dataset was 
restricted to abundant (>1% relative abundance) species (Figure 2, right panel), indicating more 
consistent ambient change in species that play larger roles in ecosystems. Changes in plant 
species abundances under each treatment were closely related to changes in abundances in 
ambient controls (Figure 3). In other words, when species were increasing (or decreasing) in 
abundance over time in ambient plots, they were often also increasing (or decreasing) in 
abundance over time in treatment plots. These patterns could be driven by rare species, which 
may not strongly influence ecosystem processes. Therefore, we tested the robustness of these 
patterns by restricting the database to only abundant species, by species that show consistent 
directional change, and by curtailing the duration of studies. Restricting the analysis to include 
only species that contributed over 1% and 5% of plant abundance (29.1% and 9.4% of all 
species) yielded stronger patterns (R2 across treatments = 0.61 and 0.60, Table 2). For species 



that experienced consistent, directional change under ambient conditions (31.9% of linear trends 
had a p < 0.05; 10.0% had p < 0.001), the relationship between rambient and rtreatment was also 
strong (mean R2 across treatments = 0.66 for p < 0.05 and R2 = 0.82 for p < 0.001). Curtailing the 
duration of the datasets to five years generally weakened the relationships (mean R2 = 0.33). 
Using Spearman's rank correlation coefficients to characterize abundance change through time 
yielded ρambient that were very closely related to rambient (R2 = 0.92) indicating that assuming 
linearity in abundance change did not greatly affect the analysis. 
 

 
Figure 2. Distribution of long‐term ambient changes in species abundance (rambient = correlation 
coefficient for species abundance vs. time). On the left (a), the full dataset is shown and hatched 
bars represent the site‐species that exhibited consistent, directional change (slope p < 0.05 for 
correlations between abundance and year) under ambient conditions. On the right (b), the dataset 
is restricted to include only abundant species (>1% relative abundance), and hatched bars 
represent site‐species that were exhibited highly consistent, directional change (p < 0.001) 
 
The degree of covariation among rtreatment and rambient depended on treatment. Elevated CO2 had 
the highest agreement with ambient; rambient predicted 65% of the variability in rCO2. Species 
responsiveness in phosphorus treatments (rphosphorus) was the lowest at 24%. The degree of 
covariation among rtreatment and rambient also varied sharply by experiment (Supporting information 
Figure S2). For instance, responsiveness at Smithsonian Ecological Research Center (SERC), a 
coastal wetland, strongly covaried across treatments (R2 = 0.90). Niwot Ridge (alpine tundra) had 
much lower average correlations of rtreatment with rambient (R2 = 0.11). Though, we could directly 
not compare mambient to mtreatment across the entire dataset, and we did so within individual 
experiments. Here, too, there was high agreement (Supporting information Figure S3, across all 
experiment–treatment combinations average R2 = 0.59). 
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Figure 3. Scatterplots of the relationship between rambient and rtreatment across all species separated 
by treatment. All p < 0.0001; (a) rCO2 = 0.773*rambient + 0.014; (b) rwater = 0.697*rambient − 0.026; 
(c) rnitrogen = 0.703*rambient − 0.014; (d) rphosphorus = 0.559*rambient + 0.004; (e) rwarming = 
0.770*rambient + 0.007 rambient = the correlation coefficient of ambient plant abundance versus 
time rtreatment = the correlation coefficient of treatment plant abundance versus time  



 
Table 2. R2 of rambient with each rtreatment across all studies and for various subsets of the data 
R2 with rambient N Full Curtailed >1% >5% p < 0.05 p < 0.001 
r CO2 155 0.65 0.47 0.80 0.74 0.84 0.87 
r H2O 173 0.48 0.42 0.63 0.60 0.67 0.75 
r nitrogen 380 0.40 0.34 0.38 0.48 0.57 0.79 
r phosphorus 330 0.24 0.26 0.53 0.66 0.37 0.92 
r warming 134 0.57 0.33 0.70 0.53 0.84 0.78 
Notes. Covariation was stronger for the full duration of the study rather than datasets curtailed to years 1–5, and 
tended to increase when the dataset was restricted to abundant (>1% and >5% relative abundance) and consistently 
changing (p < 0.05 and p < 0.001) species. 
 
3.2 Magnitude and direction of treatment effects compared to ambient change 
 
We compared rate of abundance change in ambient plots (|mambient|) to the treatment effect on that 
rate of change (|mtreatment − mambient|). Relativizing treatment effects to ambient change allowed us 
to assess patterns across the entire dataset. Across all experiments, the median species had a 
relative dynamic treatment effect of 0.83 (N = 1,058), and 57% of species had a value less than 1. 
The means across treatments did not differ from each other (Figure 4a, n = 3–11, one‐way 
ANOVA, p = 0.438), nor did any differ from 1 (95% confidence intervals enveloped 1). When 
the dataset was restricted to abundant species (>1% or >5% relative abundance averaged over 
entire experiment) or to cases in which ambient change was consistent (p < 0.05 or p < 0.001), 
the magnitude of relative dynamic treatment effects was similar but generally decreased 
(Table 3). 
 

 
Figure 4. (a) Means of the relative dynamic treatment effect for each treatment. Each circle 
represents one experiment. Effects <1 are smaller than ambient change. (b) The relative static 
treatment effect expressed in years required for ambient change to exceed the static treatment 
effect in magnitude for an average species in each experiment. Values represent means for each 
experiment (n = 3–11) 
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Table 3. Relative dynamic and relative static treatment effects for each subset 
Treatment Full Curtailed >1% >5% p < 0.05 p < 0.001 
Relative dynamic treatment effects 

CO2 0.8 (0.2) 0.8 (0.1) 0.6 (0.2) 0.6 (0.2) 0.5 (0.1) 0.4 (0.2) 
Water 0.9 (0.1) 0.9 (0.1) 0.9 (0.2) 1.1 (0.4) 0.5 (0.1) 0.6 (0.3) 
N 1.1 (0.1) 1.2 (0.2) 1.3 (0.2) 1.2 (0.2) 0.8 (0.1) 0.5 (0.1) 
P 1.0 (0.1) 1.0 (0.2) 0.6 (0.1) 1.6 (1.2) 0.5 (0.2) 0.2 (0.1) 
Warming 0.8 (0.1) 0.8 (0.1) 0.6 (0.1) 0.4 (0.0) 0.4 (0.0) 0.2 (0.1) 

Relative static treatment effect 
CO2 3.8 (1.2) 2.0 (0.1) 3.5 (1.2) 4.4 (2.0) 1.7 (0.4) 1.4 (0.5) 
Water 6.9 (1.4) 2.1 (0.2) 6.2 (1.3) 6.8 (2.1) 3.4 (0.8) 3.6 (1.2) 
N 9.3 (1.8) 2.6 (0.4) 10.1 (1.7) 10.8 (1.8) 4.8 (1.0) 3.4 (0.8) 
P 4.8 (1.0) 2.1 (0.2) 3.8 (1.2) 9.9 (6.8) 2.9 (1.1) 2.2 (1.0) 
Warming 3.9 (1.5) 1.9 (0.0) 2.8 (0.8) 4.5 (1.7) 1.4 (0.4) 1.3 (0.4) 

Notes. For relative dynamic treatment effects, the magnitude of ambient change for each species is set to 1. Relative 
static treatment effects are expressed in years of ambient change required to overcome the treatment effect on a 
species averaged over the course of the study. Values represent experimental means with standard error in 
parentheses (n = 3–11). 
 

 
Figure 5. The distribution of species across the four possible categories of directional effects for 
each treatment. The direction of ambient change was not related to the direction of static 
treatment effect for any treatment (Fisher's exact test, two tail, all p > 0.1) 
 
We also used a second method of assessing the relative strength of ambient change by estimating 
the difference in average abundance over the study period for each species from that in ambient 
(�̅�𝑥treatment − �̅�𝑥ambient). We divided this metric, an abundance, by change in ambient abundance 
through time, a rate (mambient), to yield the length of time required for ambient change to exceed 
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the magnitude of static treatment effects (Figure 4b). The median across all species was 4.3 yr. 
Relative static treatment effect did not vary significantly among treatments (one‐way 
ANOVA, p = 0.137, n = 3–11). 
 
Species directions (increasing or decreasing in abundance) in all treatments agreed with 
directions in ambient plots for 81% of cases. Still, we tested the tendency of the direction 
of treatment effects (whether the treatment increased to decreased abundance relative to ambient) 
to agree with the direction of ambient change. The direction of ambient change had no bearing 
on direction of static treatment effects for any treatment (Fisher's exact test, two tail, all p > 0.1). 
Overall, treatments were just as likely to amplify (51% of cases) as antagonize the (49% of 
cases) ambient trends (Figure 5). We reran this test on each subset of the dataset described 
above. In no case did the direction of treatment effects depend on the direction of ambient 
change (Fisher's exact test, two tail, all p > 0.1). 
 
4 DISCUSSION 
 
4.1 Covariation of plant abundance change in ambient and treated plots 
 
The direction and consistency of change in plant species abundance in ambient plots was very 
closely related to that in treated plots. Strong covariation was apparent across the entire database. 
However, it was stronger for abundant species, suggesting that the abundance of key species 
under any treatment is more closely related to ambient trends than for rarer species, perhaps 
because of noisier data for rare species. Cases in which a treatment tended to change the 
trajectory of a plant that was consistently increasing or decreasing in ambient abundance were 
few. This finding challenges the notion that global change treatments select for “winner” and 
“loser” species (Langley & Hungate, 2014; Poorter & Navas, 2003). In other words, plant 
species are changing in abundance in global change experiments, but the change is most strongly 
driven by factors that affect both ambient and treatment plots. 
 
The level of covariation between ambient plant abundance and treated plant abundance depended 
on experiment and treatment. Species changes in elevated CO2 were more closely related 
ambient species changes than those under N and P addition (Table 2). This finding is consistent 
with results of experimental work showing that nutrient addition induces stronger effects on 
community composition than elevated CO2 (Isbell et al., 2013). The differences in covariation 
across experiments could arise partly from the strength of applied treatments (e.g., the N addition 
rate in fertilized plots). Experiments also vary in the importance of external factors that can drive 
strong covariation among ambient and treated plots. For instance, in the tidal marsh at SERC, 
patterns in plant species abundance are driven largely by flooding frequency. Variability in 
flooding frequency through time is largely determined by decadal‐scale oscillations in local sea 
level. Recently, an interval of high sea level has diminished the abundance of drought‐sensitive, 
high‐marsh grasses like Spartina patens (Supporting information Figure S1), overwhelming 
strong global change treatment effects observed during intervals with lower sea levels (Langley 
& Megonigal, 2010). At the other end of the spectrum, low covariance between rambient and 
rtreatment indicates that treatment levels are relatively strong compared to background drivers. For 
instance, Niwot is a site with low ambient resource supply coupled with strong selection for slow 
growth, and high microsite heterogeneity may result in low rates of change in response to current 



environmental change (Spasojevic, Bowman, Humphries, Seastedt, & Suding, 2013). There, 
relatively strong environmental treatments surpass thresholds in intensity and favor 
establishment and population growth of more responsive species (Suding, Farrer, King, 
Kueppers, & Spasojevic, 2015; Theodose & Bowman, 1997). 
 
4.2 The magnitude of ambient change 
 
That change in species abundance of plants in ambient plots is closely related to that in 
treatments argues that ambient change is an important force, so we compared ambient change to 
treatment effects quantitatively. The magnitude of ambient change was surprisingly large relative 
to the magnitude of treatment effects regardless of the approach for assessing treatment effects. 
The relative dynamic treatment effect was generally similar to, but smaller on average than, the 
magnitude to ambient change (Figure 4a). A second approach of assessing treatment effects, 
relative static treatment effects, showed similar results. By this estimate, treatment effects on the 
average species were equivalent to only 4.3 years of ambient change in species abundance. This 
amount of time is astonishingly short given that most global change experiments apply 
treatments at levels that target multiple decades or centuries into the future (Lin, Xia, & 
Wan, 2010). Both metrics agreed with the covariance analysis, such that the soil resource 
treatments (nitrogen, phosphorus, and water) tended to yield larger effects than elevated CO2 or 
warming (Figure 4a,b). We conclude that ambient change, whatever drives it, is of similar 
magnitude or even exceeds the magnitude of treatment effects for most species and that we may 
be underestimating the relative importance of inertia already present community trajectories. 
 
4.3 Drivers of ambient change 
 
The implications of strong ambient change depend on what factors are driving it. Changes in 
species abundance in ambient plots could result from (a) natural (non‐anthropogenic) 
phenomena, (b) anthropogenic drivers, or (c) experimental artifacts. First, plant communities 
change through time due to natural population cycles, such as those driven by non‐anthropogenic 
climactic variability, succession, recovery from disturbance, competitive dynamics, demographic 
stochasticity, mast seeding, or herbivore boom–bust cycles (Fuhlendorf & Smeins, 1997; Foster 
& Gross, 1998; Ostfeld & Keesing, 2000; De Mazancourt et al., 2013; Stouffer et al., 2018). The 
sites included herein are dominated by herbaceous plants, many of which have shorter‐term 
population cycles than woody species and would likely exhibit more rapid responses to climatic 
variability. The long duration of the studies should minimize the effect of short‐term (<5‐year) 
cycles on linear increases or decreases in plant abundance, though the effects of long‐term 
succession or recovery from disturbance may still be important at some sites (Foster & 
Gross, 1998). 
 
Alternatively, anthropogenic changes, related to climate, biogeochemistry, invasion, or 
disturbance, may have long‐term (>decades) directional influence on species abundance, given 
the long‐term trajectories of directional change in these drivers. Elevated CO2 is the most 
homogenous driver of environmental change globally. Climatic changes such as warming and 
altered precipitation can drive rapid changes in plant communities (Gottfried et al., 2012; Kelly 
& Goulden, 2008), and such effects are apparent in observational studies (Parmesan & 
Yohe, 2003). Chemical changes like nitrogen deposition are known to have strong influences on 



species abundances (De Schrijver et al., 2011; Pennings et al., 2005; Stevens, Dise, Mountford, 
& Gowing, 2004). Exotic species invasion has been changing plant abundance for a century 
(Hejda, Pyšek, & Jarošík, 2009). It may be the case that the most important drivers of ambient 
change are also some of the factors being manipulated in the global change experiments. 
 
These first two possibilities can be difficult to disentangle, as they may not be mutually 
exclusive. That is, the driver of ambient change could be a natural cycle that is intensifying. 
Revisiting the example from SERC, flooding frequency is the dominant driver of ambient change 
(Langley & Hungate, 2014; Langley, Mozdzer, Shepard, Hagerty, & Megonigal, 2013), and it 
varies with natural cycles. However, anthropogenic climatic change has likely contributed to 
increased flooding frequency at this site in recent decades. Similarly, droughts can reshape 
communities naturally. Many regions around the world, especially in grasslands, are expected to 
have, and may already be experiencing, increasing frequency of severe drought (Spinoni, 
Naumann, Carrao, Barbosa, & Vogt, 2014). Therefore, determining if the driver of ambient 
change is natural or anthropogenic depends on attribution of abiotic global changes themselves. 
 
Finally, experimental artifacts and observational error may also contribute to ambient change. 
Plot studies incur artifacts such as physical disturbance, chamber effects, and proximity among 
treatments. For instance, increasing growth of nitrophilic species in N‐fertilized plots could allow 
them to establish in nearby control plots. Any effects that influence all plots would increase rates 
of change in ambient plots as well as covariation among treatments, and may partly explain the 
correlations we observe across ambient and treatment plots (Figure 3) and relatively weak 
treatment effects (Figure 4). On the other hand, the timing, levels and combinations of global 
change treatments may engender artifacts that tend to cause overestimation of plant responses to 
global change treatments. Treatment application typically occurs more quickly than real 
perturbations. For instance, nearly all elevated CO2 experiments elevate CO2 abruptly, even 
though the CO2 rise simulated occurs over decades or centuries. Moreover, treatment 
applications may be more extreme than are likely to occur in real ecosystems. A recent 
catchment‐level fertilization experiment found no effects on plant communities despite large 
effects often reported in plot‐level studies. The authors attributed the disparity to unrealistically 
high levels of N addition in plot‐level studies (Johnson, Warren, Deegan, & Mozdzer, 2016). 
Additionally, if measurement methodology (such as misidentification of species) varied through 
time, it could result in spurious covariation in plant abundance change between ambient and 
treated plots in our study. Though perhaps present in some cases, experimental artifacts are 
unlikely to explain the consistent importance of ambient change across these diverse studies. 
 
4.4 Implications 
 
Like studies that monitor unmanipulated plots (Verheyen et al., 2017), long‐term global change 
experiments can provide important information on background plant community change, and 
have the advantage of comparing it to the change caused by treatments. We found that changes 
in plant species abundance through time in ambient plots were stronger on average than the 
changes attributed to experimental treatment effects. These unexpectedly large changes in plant 
species abundances in unmanipulated plots merit further exploration. The implications of these 
findings for ecological communities and ecosystem processes depend on what is driving ambient 
change, though we did not directly address attribution in this analysis. Ambient changes detected 



in these experiments could be driven by (a) natural phenomena, (b) anthropogenic factors, or (3) 
experimental artifacts. 
 
A preponderance of evidence suggests that ongoing climate change is dramatically altering 
terrestrial plant communities (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Parmesan & 
Hanley, 2015; Parmesan & Yohe, 2003; Rosenzweig et al., 2008). If, for instance, an 
experimental site were already experiencing warming, might additional, experimentally imposed 
warming only marginally increase the already existing rate of change in species abundances? Or, 
alternatively, would this cause an even greater treatment effect? Here we found that ambient 
changes in plant abundance often exceed treatment effects. The most important drivers of this 
strong ambient change are likely some of the same factors that global change experiments 
manipulate. For example, ambient [CO2] is now roughly 50% higher than it was in preindustrial 
times. Rising atmospheric CO2 could alter plant abundance in ambient plots. Over long intervals, 
ambient change driven by CO2 may ultimately reduce the measured difference between ambient 
and elevated CO2 plots (Drake, 2014) given that the treatment difference is consistent 
CO2 responsiveness saturates at higher [CO2]. That treatment effect direction was unrelated to 
ambient change direction (Figure 5) argues that the primary drivers of ambient change frequently 
differ from the manipulated factors. The unmanipulated drivers of change may interact with 
manipulated factors in unpredictable ways. 
 
Because we did not herein attribute ambient change to particular drivers, it remains to be more 
fully explored how plant species changes under a particular ongoing global change compare to 
responses under those same manipulated factors. Such comparisons would be complicated for 
several reasons. More than one driver may contribute to ambient change at most sites. In the 
present study, we did not have the replication across experiments necessary to include analysis of 
multifactor treatments. The most important driver(s) would have to be mimicked at realistic 
levels, and there would need to be sufficient time for experimental effects to manifest. 
Experiments involving antecedent conditions (e.g., preindustrial [CO2]) could be useful in 
linking ongoing ambient change to experimentally manipulated drivers (Concilio, Nippert, 
Ehrenfeucht, Cherwin, & Seastedt, 2016). 
 
Despite uncertainty in attribution of plant abundance changes, we suggest that our findings have 
implications for the design and interpretation of global change experiments. Ongoing global 
change studies should assess and report the change in ambient plots. Strict focus on treatment 
effect sizes may overlook background changes, which are often stronger than treatment effects. 
Long‐term studies, especially those that measure community composition frequently, are best 
able to assess ambient change. Global change studies may have a variety of different goals. To 
directly address the importance of global change relative to dynamic plant communities, some 
new global change experiments should locate treatments along invasion fronts, in pollution 
hotspots, and near thresholds of abiotic change such as rising seas, for it is in these places, where 
rapid community shifts are already occurring, that the influence of additional global change 
drivers will be most important to capture. 
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Supplemental 

Table S1. Metadata from each experiment. 

Site Experiment Latitude Longitude Treatments 
Duration 

(yr) 
MAP 

 (mm yr-1) 
MAT 
(°C) 

Gamma 
Diversity 

Ambient 
ANPP 
(g m-2) 

ANG watering 39.7 -123.6 Water 13 1526 10 43 176 
ARC MAT2 68.6 -149.6 N 14 229 -12 33 185 
ARC MNT 68.6 -149.6 N 11 229 -12 91 150 
BUX PQ 53.2 -1.9 WaterTemp. 16 1146 8 57 380 
CDR BioCON 45.4 -93.2 N*CO2 14 750 6 15 397 
JSP GCE 37.4 -122.2 N*CO2*Water*Temp. 13 675 13 48 400 
KBS T7 42.4 -85.4 N*Tilling 24 912 8 123 438 
KLU BFFert 61.1 -138.4 N 10 369 -4 39 145 
KNZ IRG 39.1 -96.6 Water 19 866 12 64 498 
KNZ pplots 39.1 -96.6 N*P 12 866 12 72 472 

KUFS E6 39.1 -95.2 N*P 11 965 12 94 301 
NZ FACE -40.2 175.3 CO2*Grazing 10 887 13 25 790 

NWT 246Nfert 40.1 -105.6 N 11 705 -1 58 126 
NWT bowman 40.1 -105.6 N*P 11 705 -1 67 152 
SERC CXN 38.9 -76.5 N*CO2 10 1072 13 3 637 
TAS FACE -42.7 147.3 CO2*Temp. 8 647 11 73 285 



2

Fig. S1. Examples of estimation of r from plot-level absolute abundances. Each point 

represents plant species abundance in a replicate plot (n=5) for each year. For the 

experiment shown (SERC), rambient was significantly positive for S. americanus (rambient= 

0.43, P=0.0005), significantly negative for S. patens (rambient = -0.46, P=0.0002) and 

nonsignificant for D. spicata (rambient = 0.02, P= 0.8593). In order to compare patterns 

across the entire dataset, r was estimated for each experiment-species-treatment (N=2116 , 

Fig. 3).  

Distichlis spicata 
rambient  =  0.02 
rCO2     = -0.25 
rnitrogen =  0.03 

Schoenoplectus 
americanus 
rambient  =  0.43 
rCO2     =  0.63 
rnitrogen =  0.49 

Spartina patens 
rambient  = -0.46 
rCO2     = -0.39 
rnitrogen = -0.38 

Bi
om

as
s 

(g
 m

-2
) 



3 

Fig. S2. Average R2 of linear relationship between of rtreatment with rambient among species 

(top), relative dynamic treatment effect (middle) and relative static dynamic treatment 

effect (bottom) by experiment.  
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Fig. S3. Relationships of mambinet with mtreatment across species in each experiment. Each 

point represents a species. The legend indicates the treatment(s). Axes and relationship 

information is provided in the accompanying table below.  
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Table S2. Descriptive data from Figure S3. 

Panel in 
Fig. S2 Site-project Treatment method 

Axes 
units Slope Intercept 

P- value
Slope

P-value
Intercept

a ANG-watering Water pin	counts % 0.402 0.083 0.005 0.289 

b ARC-MAT Nitrogen cover % 1.452 0.001 0.001 0.542 

c ARC-MNT Nitrogen cover % 0.943 0.000 <.0001 0.785 

d BUX-PQ Water pin	counts % 0.925 -0.065 <.0001 0.279

d BUX-PQ Warming pin	counts % 0.893 -0.047 <.0001 0.271

e CDR-BioCON CO2 biomass g	m-2 0.840 -0.299 <.0001 0.550

e CDR-BioCON Nitrogen biomass g	m-2 1.033 -0.649 <.0001 0.239

f JSP-GCE CO2 pin	counts % 0.853 0.009 <.0001 0.717 

f JSP-GCE Water pin	counts % 0.945 0.012 <.0001 0.750 

f JSP-GCE Nitrogen pin	counts % 0.937 -0.010 <.0001 0.709

f JSP-GCE Warming pin	counts % 0.895 -0.004 <.0001 0.844

g KBS-T7 Nitrogen biomass g	m-2 0.674 0.093 <.0001 0.512 

h KLU-BFfert Nitrogen cover	 %	 0.622 0.000 <.0001 0.516 

i KNZ-IRG Water cover % 0.921 0.114 0.006 0.180 

j KNZ-pplots Nitrogen cover % 1.848 0.000 <.0001 0.996 

j KNZ-pplots Phosphorus cover % 1.178 0.040 <.0001 0.403 

k KUFS-E6 Phosphorus cover % 0.759 -0.025 <.0001 0.608

l NWT-246Nfert Nitrogen cover % 1.216 0.015 0.013 0.828 

m NWT-bowman Nitrogen pin	counts % 2.585 0.001 <.0001 0.379 

m NWT-bowman Phosphorus pin	counts % 2.060 0.000 <.0001 0.795 

n NZ-FACE CO2 biomass	 	g	m-2	 0.862 0.398 <.0001 0.034 

o SERC-CXN CO2 biomass g	m-2 1.681 -2.032 0.009 0.116 

o SERC-CXN Nitrogen biomass g	m-2 1.625 -9.990 0.235 0.491 

p TAS CO2 individual % 0.796 -0.339 <.0001 0.440

p TAS Warming counts % 0.569 0.180 <.0001 0.610 
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