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Abstract. A major challenge in global change ecology is to predict the trajectory and magnitude of

community change in response to global change drivers (GCDs). Here, we present a new framework that

not only increases the predictive power of individual studies, but also allows for synthesis across GCD

studies and ecosystems. First, we suggest that by quantifying community dissimilarity of replicates both

among and within treatments, we can infer both the magnitude and predictability of community change,

respectively. Second, we demonstrate the utility of integrating rank abundance curves with measures of

community dissimilarity to understand the species-level dynamics driving community changes and

propose a series of testable hypotheses linking changes in rank abundance curves with shifts in community

dissimilarity. Finally, we review six case studies that demonstrate how our new conceptual framework can

be applied. Overall, we present a new framework for holistically predicting community responses to GCDs

that has broad applicability in this era of unprecedented global change and novel environmental

conditions.
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INTRODUCTION

Ecologists are currently tasked with predicting

how communities will respond to a wide variety

of global changes including chronic resource

alterations (Smith et al. 2009) and shifting

biodiversity (Chapin et al. 2000). As such, the

field of experimental global change ecology is

rapidly expanding, with many experiments

aiming to understand how different global change
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drivers (GCDs) will impact communities (see Box
1 for definitions of italicized words). However,
many of these studies focus on univariate
responses only, such as summary measures of
community diversity (e.g., richness). As noted by
Collins et al. (2008), these univariate approaches
can obfuscate complex community changes.
Instead, a multivariate approach that considers
community composition in its entirety can be more
informative, if it can be done in a generalizable
manner. Indeed, changes in community compo-
sition can be systematically studied using dis-
tance-based dissimilarity metrics, recently
popularized as useful for measures of beta
diversity (Anderson et al. 2006, 2011).

Dissimilarity metrics enable the study of both
the magnitude and the predictability of com-
munity responses by comparing experimental
replicates both among treatments as well as within
treatments. Community dissimilarity of repli-
cates among treatments is informative for
understanding the magnitude of community
change corresponding with a change in envi-
ronmental conditions, while community dissim-
ilarity of replicates within treatments can
indicate the predictability of community change.
For example, Inouye and Tilman (1988, 1995)

found that replicate tallgrass prairie plant
communities receiving high-level nitrogen ad-
ditions diverged from one another, while those
receiving less nitrogen converged. Likewise,
Houseman and colleagues (2008) found patterns
of convergence among replicate grassland plant
communities with disturbance and divergence
with fertilization treatment. Finally, Koerner and
colleagues (unpublished manuscript) found in-
creasing levels of community divergence among
replicates with higher levels of nitrogen and
phosphorus additions. Thus, one might infer
from these three studies that depending on the
degree of fertilization, communities may be-
come more heterogeneous making it more
difficult to predict community responses. Study-
ing broad patterns enables generalizations and
comparison across studies, as well as enhancing
our ability to identify the mechanisms that lead
to patterns of convergence or divergence, as
characterized in previous succession and com-
munity assembly studies (Clements 1936, Leps
and Rejmanek 1991, Fukami 2010, Weiher et al.
2011).

Understanding patterns of community change
over time (Clements 1916, Gleason 1926) and
identifying mechanisms of change (Connell and

Box 1 Glossary of terms

global change driver (GCD): A human-driven exogenous perturbation that changes abiotic
(e.g., resources, temperature, pollution) or biotic (e.g., invasive species) conditions typically
occurring as widespread chronic presses. Global change drivers can also change the magnitude
or frequency of episodic natural disturbance regimes (fire suppression, hurricanes).
community composition: The identity and abundance of all species in a given space and time.
among treatments: Comparing the community composition of treatment and control plots. This
concept is similar to turnover beta diversity (see Vellend 2001, Anderson et al. 2011), however,
instead of comparing how species composition of plots changes along a gradient, it is mean
dissimilarity of the treatment plots from the control plots.
within treatments: Comparing the community composition of plots within a treatment. This is
variation beta diversity (see Vellend 2001, Anderson et al. 2011).
convergence: Communities become more similar to one another in composition through time.
divergence: Communities become less similar to one another in composition through time.
parallel change: Communities that change compositionally through time, but do not converge
or diverge.
rank abundance curves (RAC): A display of species abundance distributions that presents each
species’ abundance on the vertical axis and its rank in abundance (ordered from highest to
lowest abundance) on the horizontal axis.
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Slatyer 1977) was an early and consistent focus
of ecological research. Prach and Walker (2011)
suggest re-visiting the successional literature to
increase our understanding of how GCDs alter
communities. GCDs are environmental pertur-
bations that typically result in chronic resource
alterations, but do not clear space (Smith et al.
2009) to initiate primary or secondary succes-
sional dynamics. However, the processes, mech-
anisms, and terminology of GCD induced
community change are the same as those used
to describe succession. As with succession, the
list of potential mechanisms for global change
driven community alterations is extensive (Con-
nell and Slatyer 1977, Walker and Chapin 1987,
Pickett and McDonnell 1989). While ultimately
it is desirable to know the mechanisms by which
a community changed, mechanisms can be case
specific and prevent generalizations. Across the
plethora of global change experiments, it might
be more informative to first determine whether
there are clear patterns of community change in
response to GCDs. After patterns of community
responses have been identified, specific mecha-
nisms may more easily be elucidated.

Here, we present a new framework for
studying GCD caused community changes by
simultaneously using multivariate community
dissimilarity metrics and rank abundance
curves (Fig. 1). We propose that comparing
dissimilarity of replicates both among and
within treatments will give insight into both
the magnitude and the predictability or repeat-
ability of community change. One drawback of
such an approach is that it is difficult to
understand what aspect of the community was
altered using dissimilarity metrics alone. To
overcome this potential limitation, we demon-
strate how integrating rank abundance curves
(RACs) with community dissimilarity metrics
can be used to identify concomitant changes in
community structure (Fig. 1). Towards this end,
we hypothesize how species changes reflected in
RACs might change community dissimilarity
metrics both among and within treatments, and
present examples of community studies that use
multivariate methods to highlight this new
framework. Lastly, we suggest future directions
for this framework and provide testable hypoth-
eses for the field.

DETECTING THE MAGNITUDE AND

PREDICTABILITY OF COMMUNITY CHANGE

USING DISSIMILARLY METRICS

There are two important measures of dissim-
ilarity among replicates (Houseman et al. 2008;
Figs. 1 and 2): (1) the mean dissimilarity of
replicates among treatments (i.e., do control and
treated replicates have similar communities?)
and (2) the mean dissimilarity of replicates within
treatments (i.e., do control or treated replicates
have different community variability?). The first
measure, mean dissimilarity of replicates among
treatments, is the separation between treatment
centroids in multivariate community space and is
similar to the concept of turnover beta diversity
(see Box 1; Vellend 2001, Anderson et al. 2011).
The second, mean dissimilarity of replicates
within treatments, is the dispersion of replicates
around the treatment centroid in multivariate
community space (Clarke 1993) and is the same
as variation beta diversity (see Box 1; Vellend
2001, Anderson et al. 2011). Both measures of
variability are affected by the species present and
their abundances (Clarke 1993).

Using multivariate measures to determine
changes in the composition of communities is a
way to quantify beta diversity (Legendre et al.
2005, Anderson 2006, Bacaro et al. 2012, Legen-
dre and De Cáceres 2013). More traditionally,
beta diversity has been calculated directly from
alpha and gamma diversity (Whittaker 1960,
Tuomisto 2010a). Beta diversity is highly influ-
enced by local alpha diversity and regional
gamma diversity (Anderson et al. 2011, Chase
et al. 2011, Kraft et al. 2011). However, because
our framework is for an experimental examina-
tion of GCDs on communities, we are less
concerned with how changes in alpha or gamma
diversity will affect beta diversity. We consider
gamma diversity to be the total species pool for
the experiment and thus static, and we consider
alpha diversity to be the number of species in a
treatment and therefore changeable over time.
While studies typically find that GCDs reduce
alpha diversity (Chalcraft et al. 2008, Powell et al.
2013), these reductions are often not drastic. For
example, across 40 grassland sites, three years of
NPK additions resulted on average a loss of two
species (Borer et al. 2014), and such minor losses
are commonly found (see Zavaleta et al. 2003,
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Avolio et al. 2014). However, if within an
experiment there are very large changes in alpha
diversity, null models may be a useful tool to
understand the true changes in beta diversity
that are not influenced by gamma or alpha
diversity (Chase et al. 2011, Chase and Myers
2011, Kraft et al. 2011). In this paper, because we
are interested in both aspects of beta diversity
simultaneously (turnover and variation), we are
moving away from the tortured beta diversity
language and simply discuss multivariate pat-
terns below.

We envision eight ways that individual
replicates can differ from one another in their
dissimilarity both among and within treatments
and demonstrate these patterns in a hypothet-
ical multivariate community space (Bray and
Curtis 1957) for easy visualization (Fig. 2).
While investigating community changes using

dissimilarity metrics and visualizing differences
is a method commonly used in community

ecology (see Houseman et al. 2008), here we
suggest that looking at changes in dissimilarity
of replicates among and within treatments
simultaneity can be particularly informative for

GCD experiments. As shown in Fig. 2A, control
and treated replicates can have the same mean
and variance, representing the null hypothesis

that a GCD had no affect community composi-
tion. Treated replicates can also have the same
mean, but with greater variance among repli-

cates (divergence) with no evidence for multiple
new community states (Fig. 2B1) or where some
replicates are more similar to each other than

other sets of replicates, possibly indicating
multiple new community states (Fig. 2B2). A
third scenario occurs when there are equal
means and a reduction in variance among

Fig. 1. Conceptual diagram illustrating a new approach to studying community responses. Global change

drivers alter abiotic or biotic conditions that influence a wide range of potential mechanisms that change

communities. Using rank abundance curves in conjunction with community dissimilarity measures provides

insight into the magnitude and predictability of community change. Within the community response gray box,

black arrows indicate our hypotheses about how changes in rank abundance curves result in changes in

community dissimilarity patterns (see Table 1 for details). ‘‘¼ Mean’’ indicates low dissimilarity between

treatment and control replicates and high overlap in multivariate community space. ‘‘D Mean’’ indicates high

dissimilarity of replicates among treatments and decreased overlap in multivariate community space. ‘‘¼
Variance’’ indicates similar dissimilarity of replicates within treatments and similar dispersion of replicates

around the centroid in multivariate community space. Lastly, ‘‘D Variance’’ indicates changes in the dissimilarity

of replicates within treatments and a different degree of dispersion in multivariate community space.

v www.esajournals.org 4 December 2015 v Volume 6(12) v Article 280

SYNTHESIS & INTEGRATION AVOLIO ET AL.



replicates (convergence; Fig.2C). These four
variance responses could also be accompanied
by a change in mean (Fig. 2D–F). Regardless of
the pattern in variability among treated repli-
cates, both stochastic and deterministic process-
es can cause either community convergence or
divergence (Chase and Myers 2011). Thus, it is
important to note that the observed pattern
among replicates does not necessarily indicate
the nature of the mechanism that brought about
the community change, but it does provide
important quantification of the pattern that may
be generalizable across studies.

By investigating the variability of the commu-
nity response among replicates (Fraterrigo and
Rusak 2008, Murphy and Romanuk 2012),
patterns can be identified that give insight into
the repeatability and predictability of community
change. An observed pattern of parallel change or
convergence among replicates would suggest
that all treated replicates respond the same way
and community changes may be predictable.
Conversely, if all replicates diverged from one
another in their community composition, then
the community response may be difficult or
impossible to predict.

MEASURING AND ANALYZING PATTERNS OF

COMMUNITY DISSIMILARITY

There have been many influential papers on
multivariate community analyses. Here we brief-
ly review the steps necessary for such analyses,
from creating a dissimilarity matrix to perform-
ing statistical tests. The first step is to carefully
select an appropriate dissimilarity metric and
create a dissimilarity matrix of all replicates to
one another (Anderson et al. 2006, Anderson et
al. 2011). We suggest using abundance data and
an associated dissimilarity metric (e.g., Bray-
Curtis dissimilarity) over presence/absence data
for three reasons. First, abundance data also
allows for the subsequent examination of rank
abundance curves (see below for details). Second,
abundance data is more sensitive to detecting
deterministic changes in community composition
compared with presence/absence data (Segre et
al. 2014). Third, calculating dissimilarity from
presence/absence data is highly dependent dif-
ferences in on alpha diversity (Chase et al. 2011).
Next, it is helpful to visualize differences in
community composition of replicates via non-
metric multidimensional scaling (NMDS) or

Fig. 2. Plots for the eight possible ways community dissimilarity of replicates among and within treatments

could change in response to global change drivers (mean in rows, variance in columns). Here we utilize a

hypothetical experiment with two treatments, control (white triangles) and treated (black circles), shown in

multivariate space. (A) No change in mean or variance of replicates both among and within treatments. (B) No

change in mean but increased variance (divergence), with no pattern (B1) or with several distinct new community

types (B2). (C) No change in mean but reduced variance (convergence). (D) Change in mean with no change in

variance (parallel change). (E) Change in mean and increased variance (divergence), with no distinct pattern (E1)

or several new community states (E2). (F) Change in mean and reduced variance (convergence).
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Fig. 3. There are four ways the rank abundance curves (RAC) could change in response to the community

changes identified in Fig. 2. Panels A–H should be compared with the control plot on top of the Fig. First, species

reordering occurs when all the same species remain in the community but their order changes (A, B). Both a gain

(C, D) and a loss of species (E, F) from the community occurs when species immigrate into or go extinct from the

community. Note that both of these changes necessitate species re-ordering unless they happen in the tail of the

RAC. Lastly, there can be a change in evenness only (G, H). Note that the scale of the x-axis changes. Depending

on the nature and degree of the change to the RAC, these four basic changes a community can lead to changes in

community dissimilarity both among and within treatments (see Table 1).
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principal coordinates analysis (PCO or PCoA;
Legendre and Legendre 2012). Both analyses will
produce a plot showing symbols representing
replicates appearing close together if their local
communities are similar (based on the dissimi-
larity metric chosen) or far apart if their
communities are dissimilar (see Fig. 4 for
examples). After the patterns have been dis-
cerned, it is desirable to test whether differences
among treatments in both their mean (among
treatment differences) and dispersion of repli-
cates (within treatment differences) are statisti-
cally significant. To test for differences of
replicates among treatments (difference of cen-
troids), permutational multivariate analysis of
variance (PERMANOVA) is perhaps the most
popular method. Anderson and Walsh (2013)
recently demonstrated that with balanced exper-
imental designs, PERMANOVA is relatively
insensitive to changes in variance among groups.
There are a multitude of different approaches to
test for differences in dispersion of replicates
within treatments (Tuomisto 2010b, Anderson et
al. 2011); however, many do not allow statistical
tests because they produce only one estimate of
variation (Anderson 2006). Two approaches that
do allow statistical testing are permutational tests
for homogeneity of variance (Anderson 2001,
2006) or general linear model-based approaches
(Wang et al. 2012). Because of their widespread
use and known capabilities for detecting patterns
of convergence and divergence, overall we
advocate use of PERMANOVA to test for
changes in mean among treatments and permu-
tational tests for homogeneity of variance to test
for changes in dispersion.

INTEGRATING RANK ABUNDANCE CURVES

WITH COMMUNITY DISSIMILARITY METRICS

We argue that measuring community dissim-
ilarity among replicates in response to GCDs
offers insight into the magnitude and predict-
ability of community change. However, it is
possible to lose valuable information when using
community dissimilarity metrics alone (Collins et
al. 2008), because it is unclear how the commu-
nity changed. One way to understand these
community-level changes is to examine changes
in specific species that drive the community
response (e.g., Houseman et al. 2008), but this

approach has limited application across systems.
A second more generalizable approach is to pair
community dissimilarity analyses with examina-
tion of changes in the community’s species
abundance distribution, which describe the rela-
tive abundances of all constituent species within
a community. Species abundance distributions
are useful as visualization tools to help ecologists
understand how communities are structured and
are relatively easy to create using commonly
collected species abundance data (McGill et al.
2007, Ulrich et al. 2010). Rank abundance curves
(RACs; e.g., Fig. 3), are a type of species
abundance distribution first introduced in the
mid-20th century (MacArthur 1957, Whittaker
1965). Here, we suggest using RACs to isolate
specific aspects of community change in response
to GCDs (McGill et al. 2007, Collins et al. 2008;
Fig. 1). Once the patterns of change in the RAC
have been identified and classified (see below;
Fig. 1), mechanisms responsible for that change
can be more easily explored. Further, by identi-
fying changes in RAC, the findings from studies
are more generalizable, facilitating comparisons
across systems, GCDs, and experiments.

There are four ways that GCDs can modify
RACs (Fig. 3) within a replicate following a
perturbation: (1) RACs can be altered due to
species re-ordering; that is, the rank of species
can change because one or more species have
either decreased or increased in abundance.
Additionally, RACs can be modified by the (2)
loss and/or (3) gain of species. While re-ordering
alone can occur without a gain or loss of species,
it is important to recognize that the loss or gain of
any species that is not the lowest rank must co-
occur with species reordering. Lastly, RACs can
be changed by (4) shifts in species evenness; that
is, the shape of the curve can become steeper
(greater dominance) or flatter (greater evenness).
We hypothesize that for each of the eight possible
patterns of community change (Fig. 2), there are
a limited number of ways the RAC can change,
and present a table of testable hypotheses
integrating changes in community dissimilarity
and RACs (Table 1), by comparing a control with
a GCD treatment. For example, we hypothesize
that the re-ordering, gain or loss of only rare
species in the treated replicates will change the
variability among replicates within treatments
but not the mean (Table 1), while for common
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species, all three processes could result in shifts
in mean and changes in dispersion (Table 1).
Many of these scenarios are not mutually
exclusive and all four modifications to the RAC
can occur simultaneously.

Overall, there is great interest in determining
the mechanisms underlying community respons-
es to GCDs. However, without a clear under-
standing of how communities shift in response to
GCDs (e.g., loss of dominance, turnover of
functional types), these mechanisms will likely
be difficult to determine. Key to understanding
patterns of community responses to global
change is correctly measuring the species pool.
Indeed, recent studies have shown that patterns
of diversity responses to GCDs can be altered by
the area sampled alone (Chase and Knight 2013,
Powell et al. 2013). As suggested by Chase and
Knight (2013) collecting abundance data is
potentially key to obtaining unbiased effect sizes
of GCDs on communities, and may make
researchers less prone to draw conclusions from
probabilistic sampling effects. Further, RACs
necessitate collecting abundance data. Addition-
ally, with a thorough understanding of the
patterns of change in RACs in response to GCDs,
future experiments can be designed to test
potential mechanisms underlying any observed
response, either deterministic or stochastic.

CASE STUDIES

We present six examples of the changes in

multivariate community space illustrating the
application of our conceptual framework. For
each case study, we describe observed changes in
community dissimilarity mean and variance
among replicates between control and treatments
and graph the non-metric multi-dimensional
scaling plots for each case study comparing the
control plots to those altered by a treatment (Fig.
4). Where possible, we also detail how changes in
the RACs led to the observed changes. Lastly, we
explore how understanding these changes in
RACs can lead to hypothesized mechanisms
determining community responses. Where pos-
sible we use examples where the treatment is a
GCD, however as GCD studies examining
multivariate community shifts are relatively rare,
this was not possible for all scenarios.

No change in mean, no change in variance (Fig.
4A)

We hypothesized that no change in mean or
variance would occur when there is no change in
the RAC (Table 1). Johnson and Fleeger (2009)
examined the responses of salt marsh benthic
annelids to nutrient additions and large predator
removals in two pairs of tidal creeks in Plum
Island Estuary, Massachusetts, USA. They found
no consistent changes in the abundance of any
species and also observed no change in the
community composition among treatments, as
measured by shifts in NMDS plots and analyzed
using ANOSIM.

Table 1. Hypothesized relationships between rank abundance curves and the multivariate community similarity

of control and treated replicates (means and variances). For each multivariate community pattern (change in

mean and variance) we hypothesize whether a change in one aspect of the rank abundance curve alone could

give rise to that pattern, and our unit of consideration is each replicate. Please note that these changes are not

mutually exclusive. Community abundance data, not presence/absence data, are necessary for these types of

analyses.

Multivariate communitypattern

Rank abundance curve responses

Altered evenness Sp. gains Sp. losses Sp. re-ordering

¼ mean, ¼ variance (Fig. 2A) No No No No
¼ mean, " variance (Fig. 2B) Yes Yes� Yes� Yes�
¼ mean, # variance (Fig. 2C) Yes Yes� Yes� Yes�
D mean, ¼ variance (Fig. 2D) No Yes� Yes� Yes�
D mean, " variance (Fig. 2E) No Yes} Yes} Yes§
D mean, # variance (Fig. 2F) No Yes} Yes Yes

� Will occur only if the response is limited to rare species.
� Will occur only if the same species respond similarly in all replicates.
§ Will only occur if different rare species become dominant across replicates.
} This type of change necessitates species re-ordering.
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No change in mean, increase in variance (Fig. 4B)
We hypothesized that no change in mean with

an increase in variance should be observed with
species reordering, loss, or gain, but only when
these changes occur for rare species, or with
changes in species evenness (Table 1). Terlizzi et
al. (2009) examined changes in the composition
of marine benthic mollusk communities that
were either located adjacent to or far from gas
drilling platforms in the Ionian Sea off of the
coast of Italy. They observed no change in mean
(as measured by PERMANOVA), but an increase
in variance (as measured by PERMDISP, a
permutational test for homogeneity of variance)
of mollusk communities located adjacent to the
gas platforms. This increase in variance was
likely caused by greater environmental hetero-
geneity due to fouling from the drilling platforms
onto the sea floor. The increased environmental
heterogeneity caused species gains or losses from

individual sampling locations (Bevilacqua, per-
sonal communication).

No change in mean, decrease in variance (Fig. 4C)
We hypothesized that no change in mean with

a decrease in variance should be observed with
species reordering, loss, or gain, but only when
these changes occur for rare species, or with
changes in species evenness (Table 1). Houseman
et al. (2008) examined changes in species com-
position in response to a one-time removal of
biomass following solarization and herbicide
application in grasslands in southwest Michigan,
USA. In response to the one-time disturbance,
there was no change in the centroid in multivar-
iate community space (as measured by PERMA-
NOVA) with a decrease in the variance (as
measured by PERMDISP). This pattern appeared
to have been driven by a decrease in species
evenness in the disturbed plots.

Fig. 4. Non-metric multi-dimensional scaling plots for each of the case studies comparing the control plots

(white triangles) to those altered by a treatment (black circles). (A) Community responses to large predator

removals in tidal creeks (triangles¼ ambient fish; circles¼ fish removals); (B) marine benthic mollusk community

responses to the presence of a gas platform (triangles¼ far from platform; circles¼ near platform); (C) grassland

plant community responses to a one-time, high intensity disturbance (triangles ¼ undisturbed; circles ¼
disturbed); (D) Silver Fir forest tree community responses to recovery from 10 years of heavy exploitation in the

mid-1900s (triangles¼ light management; circles¼ complete abandonment); (E) native ant community responses

to Argentine ant invasions (triangles ¼ never invaded; circles ¼ invaded); (F) grassland arthropod community

responses to addition of invasive grass litter (triangles ¼ no litter added; circles ¼ litter added).
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Change in mean, no change in variance (Fig. 4D)
We hypothesized that a change in mean with

no change in variance should be observed with
species reordering, loss, or gain, but only when
these processes occur to the same extent in all
replicates (Table 1). Sitzia et al. (2012) examined
changes in the richness and composition of tree
species in two Silver Fir forests in Italy that were
either abandoned or lightly managed after a
common history of heavy exploitation. Sitzia et
al. (2012) observed changes in species number
and a similar reordering of species with aban-
donment as compared to plots that were lightly
managed, which corresponded with a change in
the centroid in multivariate community space (as
measured by PERMANOVA) but no change in
the variance (as measured by PERMDISP).

Change in mean, increase in variance (Fig. 4E)
We hypothesized that community divergence

accompanied by a change in the mean in
multivariate community space can be observed
with species reordering when a different species
becomes dominant in each plot or by differential
species gain or loss, which must necessarily be
accompanied by species reordering (Table 1).
Cooling et al. (2012) examined the effects of the
invasive Argentine ant on native ant communi-
ties across New Zealand. In ant communities that
never had Argentine ants, the native ant com-
munity showed little variability between sites
(Cooling et al. 2012). However, when Argentine
ants invaded an area, the native ant community
drastically altered the mean in multivariate
community space and increased the variability,
as measured by PERMDISP. Cooling et al. (2012)
found a decrease in ant species richness with
Argentine ant invasions, indicating species loss.
The species that were lost due to Argentine ant
invasion varied among the plots, resulting in
differential species loss and specific species
reordering for each plot.

Change in mean, decrease in variance (Fig. 4F)
We hypothesized that community convergence

accompanied by a change in the mean in
multivariate community space can be observed
with species reordering when the same species
becomes dominant in each plot or by similar
species gains or losses, which must necessarily be
accompanied by species reordering (Table 1).

Wolkovich (2010) examined changes in the
composition of scrubland arthropod communi-
ties in response to invasive grass litter additions
in southern California, USA, which resulted in a
shift in the centroid in multivariate community
space (as measured by PERMANOVA) and a
decrease in the variance (as measured by
PERMDISP). With this last example, we show
how changes in RACs link to changes in
community dissimilarity (Fig. 5). The shifts in
multivariate space were driven by the systematic
loss of less common morphospecies, gain of new
morphospecies, and increased abundances of the
same morphospecies (i.e., reordering) across all
treatment replicates (Fig. 5).

CONCLUSIONS AND FUTURE DIRECTIONS

We are in a new age of experimental ecology,
where a multitude of studies are being conducted
around the world to understand how GCDs are
altering communities and ecosystem function.
The number of meta-analyses synthesizing the
effects of precipitation manipulations (Wu et al.
2010), nutrient additions (Suding et al. 2005, Elser
et al. 2007), temperature changes (Rustad et al.
2001, Wu et al. 2010), invasion (Liao et al. 2008),
and carbon dioxide increases (Curtis and Wang
1998) on communities are indicative of the
plethora of experiments. Many studies focus on
measures of ecosystem function, and we suggest
that community composition of replicates should
also always be recorded, as it is relatively
inexpensive and can be very informative. We
contend that future community analyses in GCD
experiments should assess multivariate patterns
of replicates among and within treatments. Our
framework presents a generalizable approach to
studying the magnitude, predictability and tra-
jectory of community change in response to
global change by integrating measures of com-
munity dissimilarity with rank abundance
curves. Additionally, enhancing our understand-
ing of the predictability of community responses
to GCDs might lead to a more predictive
framework for ecosystem responses to GCDs,
because ecosystem responses are typically driven
by changes in community structure (Smith et al.
2009, Isbell et al. 2013, Avolio et al. 2014).
Because many global change studies collect both
community and ecosystem data, we can begin to
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synthesize across GCD studies and link patterns

of community convergence or divergence with

alterations in ecosystem functioning using our

framework.

Many global change studies only manipulate a

single GCD, and seldom compare observed

community changes to different GCDs (e.g.,

comparing N addition to drought). However,

such comparisons are informative (Winfree et al.

2009, Murphy and Romanuk 2012, Tilman et al.

2012, Murphy and Romanuk 2014) and experi-

ments are increasingly studying multiple global

change drivers in single experiments (Shaw et al.

2002). Future studies should focus on what

Fig. 5. RAC changes for the eight control and treated replicates in the Wolkovich (2010) paper. Each graph is a

replicate. The top eight gray line-graphs are the control replicates, and the bottom eight black line-graphs are the

treated replicates. Each morphospecies was numbered (39 total species) and its relative abundance was plotted

according to its rank in each replicate. A blue number is a morphospecies that was only present in the control

replicates, and red number is morphospecies that was only found in the treated replicates.
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conditions result in divergence, convergence or
parallel change of communities. For instance,
does alteration of only one GCD commonly
result in patterns of convergence while simulta-
neous alteration of two or more GCDs commonly
results in patterns of divergence? Do particular
GCDs (e.g., nitrogen or drought) lead to conver-
gence, divergence or parallel change? Are eco-
systems that have greater gamma diversity more
prone to change compared with species poor
communities? Our framework will facilitate more
comparisons and greater synthesis across studies
and drivers, because we are less focused on the
mechanisms, which can be specific to study
systems, organism type, and GCD manipulated.
Instead we are interested in patterns of commu-
nity change, and the generality of these patterns.
Ultimately, our new framework will advance the
field of community ecology global change studies
in two ways: (1) by helping ecologist identify the
trajectory, magnitude and predictability of com-
munity change and (2) providing a framework to
synthesize community responses across ecosys-
tems and GCDs.
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