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The study of reaction-diffusion equations involving nonlocal diffusion operators

has recently flourished. The fractional Laplacian is an example of a nonlocal diffusion

operator which allows long-range interactions in space, and it is therefore important

from the application point of view.

The fractional Laplacian operator plays a similar role in the study of nonlocal

diffusion operators as the Laplacian operator does in the local case. Therefore, the goal

of this dissertation is a systematic treatment of steady state reaction-diffusion problems

involving the fractional Laplacian as the diffusion operator on a bounded domain

and to investigate existence (and nonexistence) results with respect to a bifurcation

parameter. In particular, we establish existence results for positive solutions depending

on the behavior of a nonlinear reaction term near the origin and at infinity. We use

topological degree theory as well as the method of sub- and supersolutions to prove our

existence results. In addition, using a moving plane argument, we establish that, for a

class of steady state reaction-diffusion problems involving the fractional Laplacian,

any nonnegative nontrivial solution in a ball must be positive, and hence radially

symmetric and radially decreasing.

Finally, we provide numerical bifurcation diagrams and the profiles of numerical

positive solutions, corresponding to theoretical results, using finite element methods

in one and two dimensions.
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CHAPTER I

INTRODUCTION

In 2005, Physics World published a featured article with the headline An

increasing number of natural phenomena do not fit into the relatively simple description

of diffusion developed by Einstein a century ago, [KS05]. This sentiment has been

echoed in numerous articles that investigated models involving so called anomalous

diffusion - modeled by the fractional Laplacian defined below - a type of diffusion to

be investigated in this dissertation.

Definition 1.1 (Fractional Laplacian). ([Lan72, pp.45],[Poz16]) For s P p0, 1q and for

a function u : RN Ñ R, the fractional Laplacian is a linear operator defined pointwise

for x P RN by the singular integral

p´4qsupxq :“ CN,s P.V.

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy . (1.1)

Here P.V. stands for the Cauchy principal value of the singular integral, defined as

P.V.

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy :“ lim

εÑ0`

ż

RN zBεpxq

upxq ´ upyq

|x´ y|N`2s
dy

and

CN,s :“
s22sΓpN`2s

2
q

π
N
2 Γp1´ sq

1



is a positive normalizing constant, with Γ the usual gamma function. Recently

there has been widespread interest in the study of problems involving the fractional

Laplacian operator as a diffusion operator especially since the seminal paper of

Caffarelli and Silvestre [CS07]. They showed that the fractional Laplacian operator

as defined in (1.1) can be interpreted as a Dirichlet to Neumann map, effectively

relating the nonlocal operator in (1.1) to a local operator. This characterization

allowed them to prove several regularity results by using local techniques and provides

a framework for interested researchers to further the study of the still emerging

field of fractional Laplacian problems. Since then, the progress has been swift and

there are already several excellent survey papers and monographs available, see

[AV19,Buc17,BV16,Gar19,LPG`20,MBRS16,Poz16,RO16,V1́7] and references therein.

We contribute to these efforts in this dissertation with the theoretical and nu-

merical investigation of nonnegative solutions of reaction-diffusion problems, involving

the fractional Laplacian as the diffusion operator, of the form

#

p´∆qsu “ λfpx, upxqq in Ω;

u “ 0 in RNzΩ ,
(1.2)

with respect to the bifurcation parameter λ ą 0. We will assume Ω Ă RN to be a

bounded domain and f : Ω ˆ r0,`8q Ñ R, satisfies additional assumptions, to be

specified in later chapters. We discuss the organization of this dissertation at the end of

this chapter. The rest of this chapter is devoted to understanding the basic properties

of fractional Laplacian operator and discussing its importance in applications.

There are several equivalent definitions of the fractional Laplacian in addition

to the one we consider in this dissertation. The article [Kwa17] serves as an excellent

resource on various definitions of the fractional Laplacian and their equivalence.

2



1.1. Comparison of the Fractional Laplacian and Laplacian

In this section, we build some intuition about the fractional Laplacian operator,

discuss the notation used for the fractional Laplacian, and compare with the classical

Laplacian operator.

First, we show p´∆qs can be thought of as a second order difference operator

weighted over all of RN by showing that (1.1) can be expressed as

p´4qsupxq “ CN,s
2

P.V.

ż

RN

2upxq ´ upx` yq ´ upx´ yq

|y|N`2s
dy . (1.3)

Indeed, rewriting the integral in (1.1) as

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy “

1

2

¨

˝

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy `

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy

˛

‚ (1.4)

and letting z “ y ´ x and z1 “ x ´ y in the first and second integrals on the right

hand side of (1.4), respectively, we get

1

2

¨

˝

ż

RN

upxq ´ upx` zq

|z|N`2s
dz `

ż

RN

upxq ´ upx´ z1q

|z1|N`2s
dz1

˛

‚ .

Then, combining the above two integrals (using y “ z and y “ z1 in first and second

integral, respectively), we arrive at the equivalent definition of the fractional Laplacian

given by (1.3).

Next, we show that the fractional Laplacian operator as defined in (1.3), and

hence in (1.1), is well defined for u P C2
0pRNq (see [DNPV12, Remark 3.1, Lemma

3.2]).

3



For the purpose of illustration, we show the result only in one dimension. For

x P supppuq,

p´∆qsupxq “
C1,s

2

ż

R

2upxq ´ upx` yq ´ upx´ yq

|y|1`2s
dy

“
C1,s

2

ż

|y|ď1

2upxq ´ upx` yq ´ upx´ yq

|y|1`2s
dy `

C1,s

2

ż

|y|ą1

2upxq ´ upx` yq ´ upx´ yq

|y|1`2s
dy

“ I1 ` I2 .

It suffices to show that the integrals I1 and I2 are finite. For I1, since u P C2
0pRq, using

a second order Taylor expansion, the triangle inequality, and combining yields

|2upxq ´ upx` yq ´ upx´ yq|

|y|1`2s

ď
|2upxq ´ upxq ´ u1pxqy ´ 1

2
u2pxqy2 ´ upxq ` u1pxqy ´ 1

2
u2pxqy2|

|y|1`2s

ď
}u2}L8pRq|y|

2

|y|1`2s
“ }u2}L8pRq|y|

1´2s (1.5)

Therefore, using (1.5), it follows that I1 is finite since s P p0, 1q,

|I1| ď }u
2
}L8pRq

ż

|y|ď1

|y|1´2sdy ă 8 .

Similarly, for I2, since s ą 0 we get

|I2| ď 4}u}L8pRq

ż

|y|ą1

|y|´p1`2sqdy ă 8 .

4



Therefore, since I1 and I2 are both finite, we get that p´∆qsu is well defined for

u P C2
0pRq and s P p0, 1q.

Next, we motivate the choice of the symbol p´∆qs for the fractional Laplacian

and make a connection with the classical Laplacian. For u from a suitable class of

functions, one has (see [BHS18], [DNPV12,ST10])

lim
sÑ1´

p´∆qs u “ ´∆u and lim
sÑ0`

p´∆qs u “ I , (1.6)

where I is the identity operator. This connection can be seen by considering the

Fourier transform of the operator (see [Poz16,Val09] for more details). Recall that

the Fourier transform and the inverse Fourier transform in RN are given by

F ruspyq :“

ż

RN

upxqe2πixx,kydx , F´1
rwspxq :“

ż

RN

wpxqe´i2πxx,kydk , (1.7)

where x¨, ¨y denotes the scalar product in RN . Consider the Schwartz space of rapidly

decaying C8pRNq functions defined as

S :“ tu P C8pRN
q
ˇ

ˇ sup
xPRN

|x|αDβupxq ă `8 for all α, β P NN
u .

For a Schwartz function u : Rn ÝÑ R, p´∆qs acts as a Fourier multiplier in the sense

that

F rp´∆qsuspkq “ CN,s|k|
2sF ruspkq . (1.8)

Hence, with respect to the Fourier transform, the fractional Laplacian acts as the

multiplication by the symbol (multiplier) |k|2s.

5



Since |k|2s Ñ |k|2 as sÑ 1´, the Fourier multiplier of p´∆qs, approaches the

Fourier multiplier of p´∆q as sÑ 1´ in equation (1.8).

Remark 1.1. The normalizing constant CN,s is chosen to satisfy (1.8). We drop the

positive constant CN,s from the definition of fractional Laplacian in (1.1) in Chapters II

- VI for theoretical investigation. However, the constant is important for numerical

experiments, and we utilize the specific values depending on N “ 1, 2 and s P p0, 1q in

Chapter VII.

Despite the limiting relationship between p´∆q and p´∆qs, there are some

important differences. A list of differences can be found in [AV19]. We mention two

below.

(Local vs Nonlocal): The first difference is in noting that the classical Laplacian

p´∆q is a local operator and the fractional Laplacian p´∆qs is nonlocal. The classical

Laplacian of u at a point x depends only on values of u in a neighborhood of x making

it local. Whereas, it is evident from (1.1) that the fractional Laplacian is a nonlocal

operator due to the integration over all of RN .

To demonstrate this difference, we find a function for which p´∆q vanishes

but p´∆qs does not. Let Bi :“ tx P RN : |x| ă iu for i “ 1, 2. Suppose u P C2
0pB1q,

u ą 0 in B1, and u “ 0 in RNzB1. Then, ∆upxq “ 0 for x P RNzB2. But using the

fact u ą 0 in B1, for x P RNzB2, we get

p´∆qsupxq “ P.V.

ż

RN

upxq ´ upyq

|x´ y|N`2s
dy “ ´P.V.

ż

B1

upyq

|x´ y|N`2s
dy ă 0 .

6



Due to the nonlocal nature of p´∆qs, an analogue of a boundary value problem

for the Laplacian problem in a bounded domain Ω Ă RN is an exterior value problem,

where values must be prescribed on the unbounded set RNzΩ.

(Growth near boundary): The second important difference is in the behavior of

solutions near the boundary on a bounded domain. To illustrate, let u : B1 Ñ R be a

function in C2pB1q X C
1pB1q satisfying

#

´∆u “ fpxq in B1;

u “ 0 in BB1 ,
(1.9)

where f is continuous. Then, it is well known (see e.g. [Dip19, Appendix C]) that

|upxq|

δpxq
ď const. sup

B1

|f | , (1.10)

where δpxq :“ distpx, BΩq. In the fractional Laplacian case, we show an example where

the estimate (1.10) does not hold. Consider the function defined by

epxq :“ p1´ |x|2qs in B1 and epxq “ 0 in RN
zB1 ,

where e satisfies p´∆qse “ const. in B1 (see [ROS14a, eqn. (1.4)]). Therefore e does

not satisfy the estimate (1.10) since s P p0, 1q implies

lim
|x|Õ1

p1´ |x|2qs

1´ |x|
“ lim
|x|Õ1

p1´ |x|qsp1` |x|qs

1´ |x|
“ lim
|x|Õ1

p1` |x|qs

p1´ |x|q1´s
“ `8 .

7



1.2. Lévy Flights and the Fractional Laplacian

The fractional Laplacian is an example of a nonlocal operator which allows

for long-range interactions in space. Long jump random walks, often referred to as

Lévy Flights, are characterized by a probability distribution which selects the length of

jumps for the diffusing medium or particles. The singular integral (1.1) can be derived

as the continuous limit of discrete, long jump random walks (see [Buc17,Mar16,Val09]

for a detailed discussion of more general cases). Below we describe how the singular

integral (1.1) arises as the continuous limit of discrete random walks with jumps and

derive the fractional heat equation.

We assume that randomly jumping particles are equally likely to jump in any

direction and pick a distribution or kernel which determines the jump lengths. The

kernel is chosen so that jumps are forced to happen and long jumps occur with a small

probability. We first define the symmetric kernel. For s P p0, 1q, let K : RN Ñ r0,`8q

be defined by (up to a normalization constant)

Kpyq “
1

|y|N`2s
for y ‰ 0 and Kp0q “ 0 with

ÿ

yPZN
Kpyq “ 1 . (1.11)

The probability that a particle jumps from the point x to the point y is taken to

be Kpx ´ yq “ Kpy ´ xq. For a given step size h ą 0, consider a particle randomly

jumping on the lattice hZN with jump lengths defined by (1.11). Assume that at any

unit of time τ , a particle may jump from any point in hZN to any other. We further

assume for convenience that τ “ h2s.

8



Let upx, tq be the probability that a particle lies at x P hZN at time t P τZ`.

Then, since a particle may jump from any point in hZN to any other, we get

upx, t` τq “
ÿ

kPZN
|k|´pN`2squpx` hk, tq .

Using the normalization of K, we see

upx, t` τq ´ upx, tq “
ÿ

kPZN
|k|´pN`2sq

rupx` hk, tq ´ upx, tqs .

Dividing by τ “ h2s yields

upx, t` τq ´ upx, tq

τ
“

ÿ

kPZN

1

h2s
|k|´pN`2sq

rupx` hk, tq ´ upx, tqs

“
ÿ

kPZN

hN

hN`2s
|k|´pN`2sq

rupx` hk, tq ´ upx, tqs

“ hN
ÿ

kPZN
|hk|´pN`2sq

rupx` hk, tq ´ upx, tqs . (1.12)

Observe that the right hand side of (1.12) is the approximating Riemann sum of

p´∆qsupx, tq “

ż

RN

upy, tq ´ upx, tq

|x´ y|N`2s
dy

with y “ x` hk. Then, letting hÑ 0`, we arrive at the fractional heat equation

Bupx, tq

Bt
` p´∆qsupx, tq “ 0 .

9



1.3. The Fractional Laplacian and Random Movement

In this section, we begin with the fractional heat equation and derive a prob-

ability distribution which will be used in generating random walks related to the

fractional Laplacian with for N “ 2. The derivation for s “ 1
3
and N “ 2 was carried

out in [Mon55] without the use of the modern notation p´∆qs, see [Uch13] for more

details. Consider the initial value problem

Bu

Bt
` p´∆qsu “ 0 in R2

ˆ r0,8q with upx, 0q “ δx , (1.13)

where δx is the Dirac-delta function. By computing the Fourier transform of (1.13),

we get

Bpu

Bt
“ ´p2π|k|q2spupk, tq with pupk, 0q “ pδx “ eixk,0y “ 1 . (1.14)

Then, (1.14) defines an ordinary differential equation in the t variable with solution

pupk, tq “ e´p2π|k|q
2st .

Using the inverse Fourier transform, we get the solution of (1.13)

upx, tq “

ż

R2

e´i2πxk,xye´p2π|k|q
2stdk , (1.15)

which defines a Lévy distribution with stretching factor t. To simplify the expression

(1.15), we note that fpkq “ e´p2π|k|q
2s is a radial function.

10



The inverse Fourier transform of the radial function f is given by (see [Gar19,

Thm. 4.4])

F´1
rf spxq “ 2π

8
ż

0

fpρqJ0p2π|x|ρqdρ ,

where J0 is the Bessel function of order zero. Then, setting the stretching factor t “ 1,

(1.15) has the form

upx, 1q “

ż

R2

e´i2πxk,xye´p2π|k|q
2s

dk “ 2π

ż

R2

e´p2πρq
2s

J0p2π|x|ρqρdρ . (1.16)

Using the polar coordinates x “ pr cospθ1q, r sinpθ1qq, (1.16) becomes

upr, 1q “ 2π

8
ż

0

e´p2πρq
2s

J0p2πρrqρdρ . (1.17)

The expression (1.17) defines a Lévy distribution which is a type of heavy-tailed

probability distribution.

Figure 1.1. Comparison of Random Walks With s “ 3
8
and 7

8

11



Heavy-tailed distributions are probability distributions whose tails are not

bounded by an exponential distribution. We use the Lévy distribution (1.17) to

generate random walks for s “ 3
8
and s “ 7

8
associated with the fractional Laplacian in

Figure 1.1. We observe that the random movement for s “ 7
8
« 1 resembles Brownian

movement compared to s “ 3
8
which has occasional long jumps, a characteristic

associated with the fractional Laplacian. For more on Lévy distributions and their

connection to the fractional Laplacian see [LPG`20].

Remark 1.2. The derivation of (1.17) above gives a probability distribution only

when s P p0, 1q. Moreover, the fractional Laplacian operator defined by (1.1) is the

operator satisfying (1.8) only when s P p0, 1q, see [SZ97]. However, when s ą 1, the

operator satisfying (1.8) is a hypersingular integral, see [Sam02].

1.4. Applications

The nonlocal nature of the fractional Laplacian appears to be advantageous,

often suggested by empirical evidence, in modeling applications when the local coun-

terpart seems inadequate. Next, we first mention a study of turbulent diffusion and

its connection to fractional Laplacian. Then, we give a brief list of other applications

involving the fractional Laplacian.

The fractional Laplacian operator describes the long-range correlations in

particle displacements inherent to turbulent motion, see [DSU08,Uch13,US18] and the

references therein. In turbulent diffusion, particles disperse faster than predicted by

classical Brownian motion and is thus called superdiffusion. Indeed, it was observed

by Richardson [Ric26] in 1926 that the field data for the diffusion of particles in the

atmosphere does not obey Fick’s law related to Brownian motion. Monin [Mon55] in

1955 and Monin–Yaglom [MY07, Sec. 24.4] in 1965 proposed an integro–differential

12



equation modeling turbulent dispersal in two and three dimensions, respectively, based

on Richardson’s observations. The operator involved in these integro-differential

equations turns out to be the fractional Laplacian operator, p´∆qs, for s “ 1{3.

As mentioned in Section 1.3, the analysis was done by Monin [Mon55] for the case

N “ 2 and s “ 1
3
. More recent field observations, as compiled in the survey paper

by Gifford [Gif95] in 1994, indicate that the realistic values of s can be expected in

the range r1{3, 1s for long-range cloud spreading governed by atmospheric turbulence

processes (where s “ p2pq´1, with p taken from [Gif95, p. 1729]). The case s “ 1{3

corresponds to dispersal of particles driven by locally isotropic turbulent motion of

fluid at sufficiently high Reynolds number, and the case s “ 1 corresponds to the

diffusion driven by Brownian motion (classical Laplacian). For more on turbulent

dispersal and the fractional Laplacian, see [CR08,DSU08,EC18,US18,Uch13,YSF15]

and the references therein.

In addition to turbulent diffusion, there are numerous equations and models

involving the fractional Laplacian that have been proposed and studied. We list a

few here: mathematical models of superdiffusion of living organism while foraging

[CDV17,MV17,VdLRS11,AH90,LWS97], flame propagation and planar crack expansion

[CRS10], phase transitions [dMG09, SV09], quasi-geostrophic flow [BKM10,CV10,

CW99], mathematical finance [Sil07], water wave models [BV16], dislocation dynamics

in crystals [DPV15], acoustic wave propagation in heterogeneous attenuating media

[ZH14], modelling gases in porous media [Váz12], nonlinear porous medium equations

[CV11a,CV11b,CSV13, dPQRV12, dPQRV11,Váz12] absorption and dispersion in

viscoelastic solids [TC14], absorption and dispersion for acoustic propagation [TC10],

spatial epidemic spreading [BS09], compressional and shear wave equations [HS10],

linear and nonlinear lossy media [CH04], models of anomalous diffusion [Han02],
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generalized Fujita equation [BLMW05], and geophysical flows in the atmosphere

[CMT94]. This list is not exhaustive, and more applications can be found in [BH04,

MK00,MBRS16,Poz16,Uch13].

It was pointed out in [VNN13, p. 2] that in mathematical models involving

superdiffusive systems, where the diffusion is characterized by spatial non-locality

with no time memory effects (such as the fractional Laplacian), reaction terms can

be incorporated in the model as with the classical Laplacian case. Therefore, it is of

theoretical as well as practical interest to study reaction-diffusion equations involving

the fractional Laplacian operator for s P p0, 1q such as (1.2).

In Chapter II, we define relevant terminology and introduce several preliminary

results used to establish existence results. In Chapter III, we state and prove a

sub- and supersolution result Theorem 3.1. In Chapter IV, we state and prove an

existence result Theorem 4.1 for a class of superlinear problems. In Chapter V,

we state Theorems 5.1 - 5.6 and prove the existence results Theorems 5.3 - 5.6 for

sublinear, asymptotically linear, and logistic reaction terms, using Theorem 3.1. The

proof of Theorems 5.1 and 5.2 are given in Appendix B. In Chapter V, we also state

and prove the nonexistence result Theorem 5.7. In Chapter VI, we state and prove

Theorem 6.1 showing radial symmetry and monotonicity of nonnegative solutions

to fractional Laplacian problems. In Chapter VII, using the finite element method,

we give numerical bifurcation diagrams and the profile of solutions corresponding

existence results. In Chapter VIII, we discuss the conclusion of this dissertation and

future directions to pursue. In Appendix 8.2, we give proofs of some auxiliary results

for completeness. In Appendix B, we give proofs of some theorems from Chapter V.

The results in Chapter III, part of Chapter V (Theorem 5.1, Theorem 5.2, The-

orem 5.5, Theorem 5.6) and the corresponding numerical experiments in Chapter VII
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are joint work with M. Chhetri and P. Girg that resulted in the manuscript [CGHb]

(under review). Chapter IV is also a joint work with M. Chhetri and P. Girg that

resulted in the manuscript [CGHa] (under review).
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CHAPTER II

PRELIMINARIES

In this chapter, we first define the function spaces and types of solutions

considered. Then, we discuss linear problems to define a solution operator, the

maximum principles for the fractional Laplacian, and the degree theory as used in

this dissertation.

2.1. Function Spaces and Solutions

Let Ω Ă RNpN ě 1q be a bounded domain with smooth boundary BΩ if N ě 2

and a bounded open interval if N “ 1. We will specify the necessary boundary

smoothness in later chapters.

First, we define the space of Hölder continuous functions. For 0 ă α ď 1, define

C0,α
pΩq :“ tw : Ω Ñ R

ˇ

ˇ }w}C0,αpΩq ă 8u

where }w}C0,αpΩq :“ }w}C0pΩq ` rwsC0,αpΩq with }w}C0pΩq :“ sup
xPΩ

|wpxq| and

rwsC0,αpΩq :“ sup
x,yPΩ
x‰y

|wpxq ´ wpyq|

|x´ y|α
.

For D Ď RN and 1 ď p ď `8, LppDq denotes the usual Lebesgue space with

norms denoted by } ¨ }LppDq for 1 ď p ă `8 and } ¨ }8 for p “ `8.
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Next, we define fractional Sobolev spaces (see [MBRS16,DNPV12] for more on

these spaces). For a fixed s P p0, 1q, let

Hs
pRN

q :“
 

w P L2
pRN

q
ˇ

ˇ }w}HspRN q ă `8
(

,

where }w}HspRN q :“
´

}w}2L2pRN q ` rws
2
HspRN q

¯
1
2 and

rwsHspRN q :“

ˆ
ż

RN

ż

RN

|wpxq ´ wpyq|2

|x´ y|N`2s
dxdy

˙
1
2

is the Gagliardo seminorm of w. Then, the fractional Sobolev space HspRNq is a

Hilbert space with respect to the inner product

xv, wyHspRN q :“

ż

RN
vwdx`

ż

RN

ż

RN

rvpxq ´ vpyqsrwpxq ´ wpyqs

|x´ y|N`2s
dxdy . (2.1)

Further, the fractional Sobolev space Hs
0pΩq :“

 

w P HspRNq : w ” 0 a.e. RNzΩ
(

is

also a Hilbert space with respect to the inner product

xv, wyHs
0pΩq

:“

ż

RN

ż

RN

rvpxq ´ vpyqs rwpxq ´ wpyqs

|x´ y|N`2s
dxdy . (2.2)

We will use the following equivalence of the inner product x¨, ¨yHs
0pΩq

and the fractional

Laplacian defined by (1.1).
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Proposition 2.1. ([Kwa17, Sec. 2.5]) Let ψ, φ P HspRNq. Then, the following

equiavalence holds

ż

RN

ż

RN

rψpxq ´ ψpyqsrφpxq ´ φpyqs

|x´ y|N`2s
dxdy “

ż

RN

p´∆qsψpxqφpxqdx .

We also use the fact that the norms generated by x¨ , ¨yHs
0pΩq

and x¨ , ¨yHspRN q

are equivalent in Hs
0pΩq, see [MBRS16, Lemma 1.28 & Lemma 1.29] for N ą 2s. This

equivalence holds also in dimension N “ 1, say for Ω “ p0, 1q Ă R. The assumption

N ą 2s leads to the restriction s P p0, 1{2q. However, by carefully examining their

proofs and taking advantage of computations in one dimension, we can show that the

above equivalence of norms holds for all s P p0, 1q when N “ 1, in the lemma below.

The proof is given in the Appendix 8.2.

Lemma 2.1. The norms generated by x¨ , ¨yHs
0p0,1q

and x¨ , ¨yHspRq are equivalent in

Hs
0p0, 1q for s P p0, 1q.

Next, we consider the following linear fractional Laplacian problem

#

p´∆qsw “ `pxq in Ω;

w “ 0 in RNzΩ .
(2.3)

Here we discuss the types of solutions to problem (2.3) considered in this dissertation.

These definitions will be applied to all linear and nonlinear problems considered.
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Definition 2.1. We say that a function u P Hs
0pΩq is a weak solution of (2.3) if for

all φ P Hs
0pΩq, it satisfies the integral identity

ż

RN

ż

RN

rupxq ´ upyqs rφpxq ´ φpyqs

|x´ y|N`2s
dxdy “

ż

Ω

`pxqφpxqdx . (2.4)

Letting

Epu, φq :“

ż

RN

ż

RN

rupxq ´ upyqs rφpxq ´ φpyqs

|x´ y|N`2s
dxdy ,

(2.4) can be simply expressed as

Epu, φq “
ż

Ω

`pxqφpxqdx . (2.5)

Definition 2.2. We say that a function u : RN Ñ R is a classical solution to (2.3) if

the fractional Laplacian of u is defined at all points in Ω, according to definition (1.1),

and if u satisfies equation (2.3) and the external condition in a pointwise sense.

2.2. Linear Problems and Solution Operators

Let Ω be a bounded C1,1 domain and consider the following linear fractional

Laplacian problem
#

p´∆qsw “ `pxq in Ω;

w “ 0 in RNzΩ .
(2.6)

For each ` P H´spΩq (the dual of Hs
0pΩq), there exists a unique weak solution

w P Hs
0pΩq of (2.6), see [LPPS15, Thm. 12] for N ě 2 and [BHS18, Prop. 2.1] for

N “ 1. Moreover, if ` P L8pΩq, then there exists C ą 0 such that

}w}C0,spΩq ď C}`}8 , (2.7)
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see [RO16, Prop. 7.2] and [ROS14a, Prop. 1.1]. Then, the solution operator p´∆q´s : L8pΩq Ñ

L8pΩq given by ` ÞÑ w is well defined, continuous, and compact since the following

holds for some s1 P p0, sq

L8pΩq
p´∆q´s

ÝÑ C0,s
pΩq ãÑãÑ C0,s1

pΩq ãÑ L8pΩq . (2.8)

Finally, consider the following fractional linear problem

#

p´∆qse “ 1 in Ω;

e “ 0 in RNzΩ .
(2.9)

Then, there exists a unique weak solution e P Hs
0pΩq of (2.9) such that e ą 0

a.e. in Ω, see [LPPS15, Thm. 12] for N ě 2, and for N “ 1 the explicit formula of the

solution is given in [ROS14a, eqn. (1.4)]. Moreover, it follows from [RO16, Lem. 7.3]

and [ROS14a, Thm. 1.2] that there exist c1 , c2 ą 0 such that

c1δ
s
pxq ď epxq ď c2δ

s
pxq a.e. in Ω, (2.10)

where δpxq is the distance function to the boundary BΩ. Solutions of (2.6) can have

at most CspΩq regularity in the bounded domain. Indeed, in the unit ball, the explicit

solution of (2.9) is given by a positive constant multiple of w0 :“ p1 ´ |x|2qs, see

[ROS14a]. Hence w0 R C
s`εpB1q for any ε ą 0, see [RO16]. On the other hand,

according to [RO16], if ` P C0,α, then solutions to (2.6) are C0,2s`α inside Ω whenever

α and 2s` α are not integers.
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2.3. Eigenvalue Problems

Let Ω be a bounded C1,1 domain and consider the fractional Laplacian eigen-

value problem
#

p´∆qsϕ “ λϕ in Ω;

ϕ “ 0 in RNzΩ .
(2.11)

It is known that (2.11) has a simple eigenvalue λ1 ą 0 and a corresponding positive

eigenfunction ϕ1 P H
s
0pΩq, see [MBRS16, Prop 3.1 & Cor. 4.8]. Moreover, it follows

from [RO16, Lem. 7.3] and [ROS14a, Thm. 1.2] that there exist d1 , d2 ą 0 such that

d1δ
s
pxq ď ϕ1pxq ď d2δ

s
pxq a.e. in Ω . (2.12)

Next, we will consider the following weighted fractional Laplacian eigenvalue problems

of the form
#

p´∆qsϕ “ λqpxqϕ in Ω;

ϕ “ 0 in RNzΩ ,
(2.13)

where q P L8pΩq is such that q ě 0 a.e. in Ω and positive on a set of positive measure.

Using arguments similar to the case q ” 1, cf. [MBRS16, Prop 3.1 & Cor. 4.8], we

obtain the following result. We outline the proof in Appendix 8.2 for completeness.

Proposition 2.2. Let s P p0, 1q be fixed and Ω Ă RNpN ě 1q be an open, bounded

set. Then the following holds:

(a) (2.13) has an eigenvalue λ1,q ą 0 that can be characterized as

λ1,q “ inf
φPHs

0pΩqzt0u

Epφ, φq
ż

Ω

qpxq|φpxq|2dx
. (2.14)
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(b) There exists a nonnegative function ϕ1,q P Hs
0pΩq that is an eigenfunction

corresponding to λ1,q, attaining the minimum in (2.14); that is,

λ1,q “
Epϕ1,q, ϕ1,qq

ż

Ω

qpxq|ϕ1,qpxq|
2dx

. (2.15)

Moreover, it follows that ϕ1,q satisfies (2.13) according to definition (2.4); that

is, for every φ P Hs
0pΩq

Epϕ1,q, φq “ λ1,q

ż

Ω

qpxqϕ1,qpxqφpxqdx .

(c) λ1,q is simple; that is, if ψ P Hs
0pΩq is a solution of the equation

Epψ, φq “ λ1,q

ż

Ω

qpxqψpxqφpxqdx

for every φ P Hs
0pΩq, then ψ “ kϕ1,q for some k P R.

(d) If Ω is C1,1 for N ě 2 (or bounded open interval if N “ 1), then there exist

positive constants c̃1pqq, c̃2pqq such that

0 ă c̃1pqqδ
s
pxq ď ϕ1,qpxq ď c̃2pqqδ

s
pxq a.e. in Ω . (2.16)

(e) If Ω is C1,1 for N ě 2 (or bounded open interval if N “ 1), then

λ1,q “ inf
φPHs0pΩq

φěδs a.e. in Ω

Epφ, φq
ż

Ω

qpxq|φpxq|2dx
. (2.17)

22



Finally, we consider another class of weighted eigenvalue problems related to

(2.13) and state and prove a result needed in Chapter V. For each k “ 2, 3, . . ., consider

the weighted fractional eigenvalue problem

#

p´∆qsϕ “ λ γkpxqϕ in Ω;

ϕ “ 0 in RNzΩ ,
(2.18)

where

γkpxq :“

$

’

’

&

’

’

%

0 if 0 ď qpxq ă 1{k,

qpxq if qpxq ě 1{k ,

(2.19)

for q P L8pΩq with 0 ď q ď 1 a.e. in Ω and qpxq ą 1{2 on a set of positive measure.

Then the weighted fractional eigenvalue problem (2.18) has a principal eigenvalue

λ1,γk and a corresponding eigenfunction ϕ1,γk satisfying (a)-(d) of Proposition 2.2.

Then we establish the following useful relationship between λ1,q and λ1,γk that

will be utilized in the investigation of the weighted logistic problem.

Proposition 2.3. Let q P L8pΩq with 0 ď q ď 1 a.e. in Ω, qpxq ą 1{2 on a set of

positive measure, and γk be as given in (2.19). Then, λ1,γk Œ λ1,q as k Ñ `8.

Proof. The properties of q and γk imply that the inequalities

ż

Ω

qpxq|φpxq|2dx ě

ż

Ω

γk`1pxq|φpxq|
2dx ě

ż

Ω

γkpxq|φpxq|
2dx ą 0 (2.20)
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hold for every k ě 2 for all φ P Hs
0pΩq, φ ě δs a.e. in Ω. First we show λ1,q ď λ1,γk`1

ď

λ1,γk for each k ě 2. Indeed, it follows from (2.20) that the inequalities

Epφ, φq
ż

Ω

qpxq|φpxq|2dx
ď

Epφ, φq
ż

Ω

γk`1pxq|φpxq|
2dx

ď
Epφ, φq

ż

Ω

γkpxq|φpxq|
2dx

(2.21)

holds for all φ P Hs
0pΩq, φ ě δs a.e. in Ω. By taking the infimum over all such φ,

inequalities (2.21) imply λ1,q ď λ1,γk`1
ď λ1,γk , using (2.17), as desired. Now we show

λ1,γk Ñ λ1,q as k Ñ `8. By (2.17) with k ě 2, we see

λ1,γk “ inf
φPHs0pΩq

φěδs a.e. in Ω

Epφ, φq
ż

Ω

γkpxq|φpxq|
2dx

.

Let ϕ1,q be the principal eigenfunction scaled such that ϕ1,q ě δs a.e. in Ω. Then

using the same argument as in the proof of Proposition 2.2 (e), we get

λ1,q “ inf

#

Epφ, φq
ż

Ω

qpxq|φpxq|2dx

ˇ

ˇ

ˇ

ˇ

φ P Hs
0pΩq , φ ě δs a.e. Ω , }φ}Hs

0pΩq
ď }ϕ1,q}Hs

0pΩq

+

.
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By the definition of the infimum, for each k P IN, we can find φk P Hs
0pΩq, φk ě δs a.e.

in Ω and }φk}Hs
0pΩq

ď }ϕ1,q}Hs
0pΩq

such that

λ1,q ě
Epφk, φkq

ż

Ω

qpxq|φkpxq|
2dx

´ 2´k .

Thus, for k ě 2, we have

λ1,q ě
Epφk, φkq

ż

Ω

qpxq|φkpxq|
2dx

´ 2´k

“
Epφk, φkq

ż

Ω

γkpxq|φkpxq|
2dx

¨

ż

Ω

γkpxq|φkpxq|
2dx

ż

Ω

qpxq|φkpxq|
2dx

´ 2´k

ě

¨

˚

˚

˝

inf
φPHs0pΩq

φěδs a.e. in Ω

Epφ, φq
ż

Ω

γkpxq|φpxq|
2dx

˛

‹

‹

‚

ż

Ω

γkpxq|φkpxq|
2dx

ż

Ω

qpxq|φkpxq|
2dx

´ 2´k

ě λ1,γk

ż

Ω

γkpxq|φkpxq|
2dx

ż

Ω

qpxq|φkpxq|
2dx

´ 2´k .

This yields

λ1,q ď λ1,γk ď
`

λ1,q ` 2´k
˘

ż

Ω

qpxq|φkpxq|
2dx

ż

Ω

γkpxq|φkpxq|
2dx

. (2.22)

By the compact embedding of Hs
0pΩq into L2pΩq and }φk}Hs

0pΩq
ď }ϕ1,q}Hs

0pΩq
,

we can find a subsequence φkj Ñ ψ in L2pΩq, where ψ is some element of L2pΩq. Then

φ2
kj
Ñ ψ2 in L1pΩq.
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Since q P L8pΩq, it follows that
ş

Ω
qpxq|φkjpxq|

2dxÑ
ş

Ω
qpxq|ψpxq|2dx. Next, we will

show that

ż

Ω

γkjpxq|φkjpxq|
2dxÑ

ż

Ω

qpxq|ψpxq|2dx

as well. Indeed,

ż

Ω

γkjpxq|φkjpxq|
2dx “

ż

Ω

pγkjpxq ´ qpxqq|φkjpxq|
2dx`

ż

Ω

qpxq|φkjpxq|
2dx .

By (2.19), qpxq ´ γkjpxq ď 1{kj, thus

ˇ

ˇ

ˇ

ˇ

ż

Ω

pγkjpxq ´ qpxqq|φkjpxq|
2dx

ˇ

ˇ

ˇ

ˇ

ď 1{kj

ż

Ω

|φkj |
2dx ď

C

kj
}ϕ1,q}

2
Hs

0pΩq
Ñ 0

as kj Ñ `8, where C is the constant of the embedding of Hs
0pΩq into L2pΩq. Observe

that ψ ě δs ą 0 a.e. in Ω since φkj ě δs a.e. in Ω, and hence

ż

Ω

qpxq|φkpxq|
2dx

ż

Ω

γkpxq|φkpxq|
2dx

ÝÑ

ż

Ω

qpxq|ψpxq|2dx
ż

Ω

qpxq|ψpxq|2dx
“ 1

as kj Ñ `8. Thus, we established from (2.22) that λ1,γkj
Ñ λ1,q. Since λ1,γk is a

monotone sequence, it must hold for the entire sequence λ1,γk Œ λ1,q.
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2.4. Maximum Principles

Here we state maximum principles for the fractional Laplacian.

Proposition 2.4. ([Sil07, Prop. 2.2.8.]) Let Ω Ă RN be a bounded domain and u a

lower semi-continuous function in Ω such that p´∆qsu ě 0 in Ω and u ě 0 in RNzΩ.

Then, u ě 0 in RN . Moreover, if upxq “ 0 for some point x in Ω, then u ” 0 in RN .

Proposition 2.5. ([RO16, Lem. 7.3]) Let Ω be a bounded domain with C1,1 boundary

and u be any weak solution to (2.6), with 0 ď ` P L8pΩq. Then, either

u ě cδs in Ω for some c ą 0

or u ” 0 in Ω.

We will utilize the following strong maximum principle in a unit ball B1 Ă RN .

Proposition 2.6. ([Buc17, Thm. 2.1.8.]) If p´∆qsu ě 0 in B1 and u ě 0 in RNzB1,

then u ą 0 in B1, unless u vanishes identically.

We will also use the following maximum principle for thin domains.

Proposition 2.7. ([FW14, Prop. 2.2]) Let Ω be a bounded, connected open subset of

RN . Suppose that ϕ : Ω Ñ R is in L8pRNq and w is a classical solution of
$

’

’

&

’

’

%

p´∆qswpxq ě ϕpxqwpxq in Ω;

wpxq ě 0 in RNzΩ.

Then, there exists ξ ą 0 such that w ě 0 in Ω whenever |Ω´| ă ξ, where Ω´ :“ tx P

Ω
ˇ

ˇ wpxq ă 0u.
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2.5. Degree Theory

Here we briefly discuss topological degree which we use to prove an existence

result in Chapter IV. First, we discuss topological degree and its properties in finite

dimensional spaces. Then, we discuss topological degree in infinite dimensional spaces

(Leray-Schauder degree). For more on topological degree theory, see [Llo78].

Degree Theory in Finite Dimensional Spaces: Let D Ă RN be a bounded open

domain and T P C1pDq. Define JT pxq as the as the determinant of the Jacobian of

T at x. We say that x is a critical point of T if JT pxq “ 0. Define the set of critical

points by ZT :“ tx P D
ˇ

ˇ JT pxq “ 0u and the set of critical values by T pZT q. It follows

that if T P C1pDq and p R T pZT q, then T´1ppq is finite.

Now we can define the degree of T at p when T is a C1 function and p R T pZT q.

Definition 2.3. Suppose T P C1pDq, p R T pZT q, and p R T pBDq. The degree of T at

p with respect to D is defined as

degpT,D, pq :“
ÿ

xPT´1ppq

sign JT pxq .

For p R T pBDq but p P T pZT q, the degree of T at p with respect to Ω is defined to be

degpT,D, pq :“ degpT,D, qq , where q is any point such that q R T pBDq, q R T pZT q,

and |p´ q| ă δpp, T pBDqq. Here, δ is the distance function from p to T pBDq.
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For a continuous function G and p R GpDq, the degree of G at p with respect

to D is defined to be

degpG, p,Dq :“ degpT, p,Dq ,

where T is a C1 function such that |Gpxq ´ T pxq| ă δpp,GpBDqq for all x P D. Then

the following properties are satisfied:

1. Normalization: If I is the identity operator and p P D, then degpI,D, pq “ 1.

If p R D, then degpI,D, pq “ 0.

2. Solution: If degpT,D, pq is defined and non-zero, then there exists x P D such

that T pxq “ p.

3. Excision: If D1 Ă D and D2 Ă D are disjoint open subsets such that p R

T pDzpD1 YD2qq, then degpT,D, pq “ degpT,D1, pq ` degpT,D2, pq.

4. Homotopy Invariance: A homotopy between elements T,G of CpDq is a

function h : r0, 1s ˆD Ñ RN such that, if ht “ Hpt, xq, then h0 “ G, h1 “ T ,

ht P CpDq for 0 ď t ď 1, and hs Ñ ht in CpDq as s Ñ t. If p R htpBDq for

0 ď t ď 1, then degpht, D, pq is independent of t P r0, 1s and

degpG,D, pq :“ degpT,D, pq .

Degree Theory in Infinite Dimensional Spaces: Here we consider maps of the

form I ´ T where I is the identity operator and T is compact. Let pX, } ¨ }q be a

normed linear space and D Ă X be open and bounded. The map T : X Ñ X is

compact if T is continuous and T pAq is compact for every bounded subset A Ă X.

Let p P XzT pBDq. Since T is compact, there is a continuous map pT : D Ñ X whose
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range pT pDq is finite dimensional and }T pxq ´ pT pxq} ă δpp, T pBDqq for x P D. Let

pD :“ D X spantpT pDq, pu.

Now we can define the degree of I ´ T at p when T is compact and p R T pBDq.

Definition 2.4. Suppose T : D Ñ X is compact and p R T pBΩq. The degree of T at

p with respect to D is defined as

degpI ´ T,D, pq :“ degpI ´ pT , pD, pq .

Topological degree in infinite dimensional spaces satisfies all the above properties 1´4.
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CHAPTER III

SUB- AND SUPERSOLUTION THEOREM

3.1. Introduction and Statement of Result

Here we state and prove a sub- and supersolution theorem, without monotone

iteration, which we use to prove the existence of a positive weak solution for classes of

sublinear, asymptotically linear, and logistic type nonlinearities.

Sub- and supersolution methods for the fractional Laplacian were discussed

in [Aba15, Bah18, FT18]. However, in [Aba15] and [FT18], the authors consider

L1-very weak solutions thereby requiring a rather complicated structure of the space

of test functions. In [Bah18], the author considers weak solutions for a fractional

ppxq-Laplacian which requires a complicated functional framework necessary for the

fractional ppxq-Laplacian operator. Therefore, we present a sub- and supersolution

result, Theorem 3.1, with functional framework analogous with the weak formulation

that is standard for the Laplacian case. The distinct advantage of our approach

is in the possibility of employing the principal eigenfunction corresponding to the

variational principal eigenvalue of p´∆qs in the construction of positive sub- and

supersolutions. We consider the following problem

#

p´∆qsu “ gpx, uq in Ω;

u “ 0 in RNzΩ,
(3.1)

where Ω is a bounded domain with C1,1 boundary and g : ΩˆRÑ R is a Carathéodory

function.

31



We say g : Ω ˆ R Ñ R is a Carathéodory function if gp¨, σq : Ω Ñ R is

measurable for all σ P R, and gpx, ¨q is continuous for a.e x P Ω.

Definition 3.1. A function u P HspRNq is called a weak supersolution of (3.1) if, for

all φ P Hs
0pΩq with 0 ď φ in Ω, the following inequalities hold:

Epu, φq ě
ż

Ω

gpx, upxqqφpxqdx (3.2)

and

u ě 0 a.e. in RN
zΩ . (3.3)

A function u P HspRNq is called a weak subsolution of (3.1) if the inequalities are

reversed in (3.2) and (3.3).

Then, we prove:

Theorem 3.1. Suppose

(H1) for all r ą 0, there is ar P L8pΩq such that |gpx, σq| ď arpxq for all |σ| ď r a.e.

x P Ω;

(H2) for all r ą 0, there is a continuous nondecreasing function br with brp0q “ 0

such that |gpx, σ1q ´ gpx, σ2q| ď brp|σ1 ´ σ2|q for all |σ1|, |σ2| ď r a.e. x P Ω.

Let u and u P HspRNqXL8pΩq be a weak subsolution and weak a supersolution,

respectively, of (3.1) satisfying u ď u a.e. in Ω. Then, there exists a weak solution u

to (3.1) satisfying u ď u ď u a.e. in Ω.

Remark 3.1. The hypotheses of Theorem 3.1 are satisfied by a function of the form

gpx, σq “ kpxqg̃pσq, where k P L8pΩq and g̃ : R Ñ R is Hölder continuous. Indeed,
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clearly gpx, σq is a Carathéodory function. For any r ą 0 and for all |σ| ď r, we have

|gpx, σq| ď }k}8 max
|σ|ďr

|g̃pσq| and hence (H1) is satisfied. By the Hölder continuity of

g̃, |gpx, σ1q ´ gpx, σ2q| ď A}k}8|σ1 ´ σ2|
η for all |σ1|, |σ2| ď r for some η P p0, 1q and

A ą 0. Then, (H2) is satisfied with brp|σ1 ´ σ2|q :“ A}k}8|σ1 ´ σ2|
η.

3.2. Proof of Theorem 3.1

We follow the idea of the proof from Clement-Sweers [CS87], where a similar

result was proven for the Laplacian case (s “ 1) using the Schauder fixed point

theorem.

Consider the modified function g˚ : Ωˆ RÑ R defined by

g˚px, σq :“

$

’

&

’

%

gpx, upxqq if σ ă upxq ,

gpx, σq if upxq ď σ ď upxq ,

gpx, upxqq if σ ą upxq ,

and note that since g is clearly a Carathéodory function so is g˚. We observe that any

weak solution u of (3.1) satisfying u ď u ď u a.e. in Ω is also a weak solution of the

modified problem

#

p´∆qsu “ g˚px, uq in Ω;

u “ 0 in RNzΩ .
(3.4)

Moreover, using the definition of g˚, it follows from the claim below that a weak

solution of (3.4) is a weak solution of (3.1). Next, we claim that If u is a weak solution

of (3.4), then u ď u ď u a.e. in Ω.

First we establish u ď u a.e. in Ω by showing that measpAq “ 0, where

A :“
 

x P RN
ˇ

ˇ upxq ă upxq
(

. Clearly A is measurable (in the sense of Lebesgue)

since u P Hs
0pΩq and u P HspRNq. Assume to the contrary that measpAq ą 0. We note
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that meas
`

AX pRNzΩq
˘

“ 0 since u ě 0 “ u a.e. in RNzΩ. Hence, measpAXΩq ą 0.

Setting z` :“ maxt0, zu ě 0, we see that ru´ us` P Hs
0pΩq since ru´ us

`
P HspRNq

and it vanishes almost everywhere outside A Ă Ω. Taking φ :“ ru´ us` as a test

function in (2.5) and (3.2), and using the definitions of g˚ and A, we obtain

Epu, ru´ us`q “
ż

Ω

g˚px, upxqq ru´ us` pxq dx

“

ż

A

g˚px, upxqq ru´ us` pxq dx

“

ż

A

gpx, upxqq ru´ us` pxq dx

“

ż

Ω

gpx, upxqq ru´ us` pxq dx

ď Epu, ru´ us`q . (3.5)

On one hand, subtracting the right-hand side from the left-hand side in (3.5) and

rearranging the terms yields the following inequality

Epu´ u, ru´ us`q ď 0 . (3.6)

On the other hand, by taking v “ u´ u, it follows from [MBRS16, Lem. 3.3] that

rvpxq ´ vpyqsrv`pxq ´ v`pyqs ě rv`pxq ´ v`pyqs2 for a.e. x, y P RN .

Since the measure of A is positive, v ą 0 in A, and } ¨ }Hs
0pΩq

is a norm on Hs
0pΩq, it

follows that

Epu´ u, ru´ us`q ě }ru´ us`}2Hs
0pΩq

ą 0 ,

a contradiction to (3.6). Hence measpAq “ 0, that is, upxq ď upxq for a.e. x P Ω.

Similarly, by letting φ :“ ru´us` as a test function, and repeating the argument above
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we can show measpBq “ 0, where B :“ tx P RN : upxq ą upxqu . Hence upxq ě upxq

a.e. x P Ω. This proves the claim. Therefore, it suffices to show the existence of a

solution of (3.4) using the Schauder fixed point theorem.

The Nemytskii operator ĝ : L8pΩq Ñ L8pΩq defined by ĝpuqpxq :“ g˚px, upxqq

is continuous (see [AZ90, Thm. 3.17, p. 110]) since g˚ satisfies (H1) and (H2). Since

the solution operator p´∆q´s : L8pΩq Ñ L8pΩq, as defined in (2.8), is continuous

and compact, it follows that p´∆q´s ˝ ĝ : L8pΩq Ñ L8pΩq is continuous and compact.

Clearly fixed points of p´∆qs ˝ ĝ are solutions of (3.4).

Next, we find a nonempty, closed, convex subset of L8pΩq to apply the Schauder

fixed point theorem. Since u, u P L8pΩq, r˚ :“ maxt}u}8, }u}8u ą 0. Then, it follows

from (H1), applied to g˚, that there exists ar˚ P L8pΩq such that |g˚px, tq| ď ar˚pxq

for all |t| ď r˚. Therefore, for any u P L8pΩq, we have

}p´∆q´s ˝ ĝpuq}8 ď }p´∆q´s}}ĝpuq}8 ď }p´∆q´s}}ar˚}8 ,

and hence the operator p´∆q´s ˝ ĝ maps BRp0q to itself where R :“ }p´∆q´s}}ar˚}8

and } ¨ } is the operator norm. Thus, by the Schauder fixed point theorem, p´∆q´s ˝ ĝ

has a fixed point u P BRp0q Ă L8pΩq. This implies that the modified problem (3.4)

and hence the original problem (3.1) has a weak solution u P L8pΩq. By the definition

of p´∆q´s, it follows that u P Hs
0pΩq as well. Hence the proof is complete.
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CHAPTER IV

SUPERLINEAR PROBLEMS

4.1. Introduction and Statement of Result

In this chapter, we study a nonlocal problem of the form

#

p´∆qsu “ λfpuq in Ω ;

u “ 0 in RNzΩ ,
(4.1)

where Ω Ă RNpN ě 2q is a bounded domain with C2 boundary BΩ, s P p0, 1q is fixed,

and λ ą 0 is a bifurcation parameter. The nonlinearity f : r0,8q Ñ R is continuous

and subcritical and superlinear at infinity, that is; there exists a constant b ą 0 such

that

(G1) lim
σÑ`8

fpσq

σp
“ b with 1 ă p ă 2˚s ´ 1 “

N ` 2s

N ´ 2s
,

where 2˚s :“ 2N
N´2s

is the fractional critical exponent (see e.g. [DNPV12]). The

assumption (G1) implies that f is positive for σ large. The goal of this chapter is to

discuss the existence of a positive weak solution of (4.1) with respect to λ without

assuming any additional sign condition on the reaction term f including near the

origin.

The authors in [ROS14b, Prop. 1.2] established the existence of a minimal

positive solution of (4.1) for λ small and discussed the existence and regularity

of an extremal (positive) solution when fpσq ą 0 for σ ě 0 and f superlinear.

Theorem 4.1 complements the results of [ROS14b, Prop. 1.2] by capturing the branch
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of positive solutions bifurcating from infinity at λ “ 0 for 1 ă p ă 2˚s ´ 1. See also

[BJK19, Thm. 2.4], where existence of solutions for λ small is established. When

λ “ 1 and fp0q “ 0, existence of a positive viscosity solution of (4.1) was obtained

in [BDPGMQ18, Thm. 1.1] for continuous f satisfying (G1). For the existence of

nonnegative and positive solutions for superlinear problems using variational methods,

see [ADM19, DI18, MBMS17, SV12, SV13,WZ19, ZF15]. For existence results for

superlinear problems concerning the spectral fractional Laplacian operator, see [Amb17,

CT10,Cap11] and the references therein.

In order to define some terminologies necessary to state our result, we first

state the following lemma that establishes the L8 regularity of weak solutions of

general superlinear, subcritical problems. We give the proof in Section 4.3.

Lemma 4.1. Let g : Ωˆ RÑ R be a Carathéodory function satisfying

(G2) |gpx, σq| ď Ap1` |σ|pq for a.e. x P Ω and all σ P R

for some p P p1, 2˚s ´ 1q and for some constant A ą 0. If u is a weak solution of

#

p´∆qsu “ gpx, uq in Ω ;

u “ 0 in RNzΩ ,
(4.2)

then u P L8pΩq.

Since f satisfies (G1), it also satisfies (G2). Then Lemma 4.1 implies that

any weak solution of (4.1) belongs to L8pΩq making it possible to take L8pΩq as our

underlying space. Therefore, we can define

Σ :“
 

pλ, uq P r0,`8q ˆ L8pΩq
ˇ

ˇ pλ, uq is a weak solution of (4.1)
(

.
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We say that λ8 P R is a bifurcation point from infinity for (4.1) if there exists

a sequence pλn, unq P Σ such that λn Ñ λ8 and }un}8 Ñ `8 as n Ñ `8. By a

continuum of weak solutions of (4.1), we mean a subset C Ă Σ which is closed and

connected. We say that a continuum C Ă Σ bifurcates from infinity at λ8 P r0,`8q if

there exists a sequence pλn, unq P C such that λn Ñ λ8 and }un}8 Ñ `8 as nÑ `8.

Then, we prove the following.

Figure 4.1. Nonlinearities and Bifurcation Diagrams for Theorem 4.1

Theorem 4.1. Let f satisfy (G1). Then there exists λ0 ą 0 such that for all λ P p0, λ0s,

(4.1) has a positive weak solution u such that }u}8 Ñ 8 as λÑ 0`. Moreover, there

exists a continuum C Ă Σ, bifurcating from infinity at λ “ 0, such that λ takes all

values in p0, λ0s along C and u ą 0 whenever pλ, uq P C and λ P p0, λ0s.

The shapes of the nonlinearity f and the expected bifurcation diagrams corre-

sponding to Theorem 4.1 are given in Figure 4.1. Theorem 4.1 establishes the existence

of the continuum bifurcating from infinity at λ “ 0. The complete bifurcation dia-
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grams, as shown in Figure 4.1, require additional hypotheses to (G1), and such results

are not yet known. However, if there exists a2 ą 0 such that fpσq ě a2 σ for σ ě 0,

then Theorem 5.7 (ii) implies that (4.1) has no nonnegative nontrivial solution for

λ ą λ1

a2
. A similar nonexistence result was established in [ROS14b, Prop 1.2] for C1

non-decreasing f satisfying fp0q ą 0 and f superlinear at infinity.

Examples of nonlinearities satisfying the hypotheses of Theorem 4.1 are fpσq “

σp, fpσq “ 3p1 ` σq
1
3 ` σp, fpσq “ σ ` σp, and fpσq “ σ ` σp ´ 1 for σ ě 0 with

1 ă p ă 2˚s ´ 1.

In the Laplacian case (s “ 1), similar existence results for superlinear problems

were discussed in [Lio82, Section 1.1 & 2.1] for the case fp0q ě 0, and in [ANZ92,AAB94,

Uns88] for the case fp0q ă 0. In the Laplacian case, C1,η regularity of solutions were

crucial in establishing the positivity of solutions obtained using variational methods or

degree theory, especially when fpσq ă 0 for some σ ě 0. However, for the fractional

Laplacian case one cannot expect better than C0,spΩq regularity for any solution of

(4.1), see [RO16, Sec. 7.1]. Therefore, we carefully analyze the behavior of solutions

near the boundary to achieve the positivity of weak solutions for λ small.

The main tool in the proof of Theorem 4.1 is degree theory. The following L8

a priori bound result is crucial in applying degree theory.

Proposition 4.1. ([BDPGMQ18, Thm. 3.1 ]) Let Ω Ă RN be a C2 bounded domain.

Let gpx, σq :“ σp`hpx, σq with 1 ă p ă 2˚s ´ 1, where h satisfies |hpx, σq| ď cp1`|σ|rq

for a.e. x P Ω, for all σ P R, for some 0 ă r ă p, and for some c ą 0. Then, there

exists a constant M ą 0 such that every positive viscosity solution u of (4.2) satisfies

}u}8 ďM .

39



Remark 4.1. Let g be as in Proposition 4.1. Then, Lemma 4.1 implies that every

weak solution u of (4.2) belongs to L8pΩq. This in turn implies that u is a viscosity

solution of (4.2) (see [SV14, Thm. 1]). Hence, Proposition 4.1 holds for every positive

weak solution of (4.2).

The proofs of Theorem 4.1 and Lemma 4.1 rely on the following regularity

result.

Proposition 4.2. [BWZ17, Lem 2.5] Let ` P LqpΩq for some q ě 2N
N`2s

. Then the

linear problem (2.6) has a unique weak solution v. In addition, the following assertions

hold:

(a) If q ą N
2s
, then v P L8pΩq and there exists a positive constant C1 “ C1pN, s, qq

such that }v}8 ď C1}`}LqpΩq .

(b) If 2N
N`2s

ď q ď N
2s
, then v P Lq̃pΩq for every q̃ satisfying q ď q̃ ă Nq

N´2sq
and there

exists a positive constant C2 such that }v}Lq̃pΩq ď C2}`}LqpΩq .

In Section 4.2, we prove Theorem 4.1 in the spirit of [ANZ92,AAB94]. More

precisely, we use degree theory to establish the existence of a weak solution for

a corresponding re-scaled problem. Positivity of the solution is then achieved by

carefully analyzing solutions near the boundary. Then, using the Leray-Schauder

continuation theorem, we conclude that there exists a continuum of positive weak

solutions bifurcating from infinity at λ “ 0. In Section 4.3, we prove Lemma 4.1 using

a bootstrap argument.
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4.2. Proof of Theorem 4.1

We first extend f to all of R by setting fpσq “ fp|σ|q for any σ P R and

consider the modified problem

#

p´∆qsu “ λfp|u|q in Ω ;

u “ 0 in RNzΩ .
(4.3)

Then, for λ ą 0, u satisfies (4.3) if and only if the re-scaled function w :“ λ
1
p´1u

satisfies

p´∆qsw “ λ
1
p´1 p´∆qsu “ λ

p
p´1fpλ

1
1´p |w|q.

Since p ą 1, using the continuity of f for σ0 “ 0 and (G1) for σ0 ‰ 0, for any σ0 P R,

there holds

lim
λÑ0`
σÑσ0

λ
p
p´1fpλ

1
1´p |σ|q “ b|σ0|

p .

Therefore, the argument above shows that the modified nonlinearity F : r0,`8q ˆ

R ÝÑ R defined by

F pλ, σq :“ λ
p
p´1fpλ

1
1´p |σ|q “ λ

p
p´1 pfpλ

1
1´p |σ|q ´ bλ

p
1´p |σ|pq ` b|σ|p

is continuous by setting F p0, σq :“ b|σ|p for σ P R. For λ ě 0, we study the following

problem
#

p´∆qsw “ F pλ,wq in Ω ;

w “ 0 in RNzΩ .
(4.4)
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We note that, for λ “ 0, equation (4.4) reduces to the following limiting

problem
#

p´∆qsw “ b|w|p in Ω ;

w “ 0 in RNzΩ .
(4.5)

To define an operator equation corresponding to (4.4), we note that the solution

operator p´∆q´s : L8pΩq Ñ L8pΩq given by ` ÞÑ v is well-defined, continuous, and

compact as discussed in Section 2.2.

Then, for any γ ą pN
2s

fixed, p´∆q´s : Lγ{ppΩq Ñ L8pΩq is continuous by

Proposition 4.2(a).

Since L8pΩq ãÑ LγpΩq, the Nemytskii operator F̃ pλ,wqpxq :“ F pλ,wpxqq is

continuous as a mapping from r0,`8q ˆ L8pΩqpãÑ r0,`8q ˆ LγpΩqq Ñ Lγ{ppΩq, see

[Vai64, Sec. 19]. Therefore, it follows that the map S : r0,`8q ˆ L8pΩq ÝÑ L8pΩq,

defined by

Spλ,wq :“
´

p´∆q´s ˝ F̃
¯

pλ,wq

is continuous. We note that for any K ą 0, the value

max
 

|F pλ, σq|
ˇ

ˇ λ P r0, Ks, σ P r´K,Ks
(

is achieved since the function F is continuous. Hence, the Nemytskii operator F̃ takes

bounded sets in r0,`8qˆL8pΩq into bounded sets in L8pΩq. Then, the compactness

of p´∆q´s implies that S is compact. Clearly w is a solution of the operator equation

w “ Spλ,wq if and only if w is a weak solution of (4.4) for λ ě 0.

The following lemma, concerning the limiting problem (4.5), was established

in [BDPGMQ18, proof of Thm. 1.2] for a more general right hand side than that of
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(4.5) for viscosity solutions within a different functional framework using the cone of

nonnegative functions. Since we do not assume any sign condition on f , we cannot

work with the cone of nonnegative solutions. However, thanks to Remark 4.1, the

result still holds within our functional framework for weak solutions using Proposition

4.1. In fact, we give a more simple proof since the existence of the principal eigenvalue

of p´∆qs is now known, see [SV13, Prop. 9].

Lemma 4.2. There exist 0 ă r ă R and ψ P L8pΩq with ψ ě 0 in Ω such that

paq w ‰ θSp0, wq for all θ P r0, 1s and all w P L8pΩq with }w}8 “ r, and

degpI ´ Sp0, ¨q, Br, 0q “ 1.

pbq w ‰ Sp0, wq ` tψ for all t ě 0 and all w P L8pΩq with }w}8 “ R, and

degpI ´ Sp0, ¨q, BR, 0q “ 0.

Proof of Lemma 4.2. Suppose by contradiction that for any r ą 0, there exist θ P

r0, 1s and w P L8pΩq such that }w}8 “ r and w “ θSp0, wq. That is, w satisfies (4.5)

with θb ě 0 in place of b ą 0. If θ “ 0, then w :” 0 contradicts }w}8 “ r ą 0. If

θ P p0, 1s and }w}8 “ r, then we have θb|wpxq|p ď b|wpxq|p ď b}w}p8 “ brp a.e. in Ω

and thus }θb|w|p}8 ď brp. By (2.7) applied to (2.6) with ` “ θb|w|p, we get

}w}8 ď }w}C0,spΩq ď Cbrp “ Cbrp´1
}w}8 . (4.6)

We get a contradiction to (4.6) by choosing r ą 0 sufficiently small such that Cbrp´1 ă 1

since p ą 1. Therefore, there exists r ą 0 such that w ‰ θSp0, wq for all θ P r0, 1s

satisfying }w}8 “ r. Using the homotopy invariance of degree with θ as the homotopy

parameter and the fact that degpI, Br, 0q “ 1, we conclude degpI ´ Sp0, ¨q, Br, 0q “

degpI ´ θSp0, ¨q, Br, 0q “ degpI, Br, 0q “ 1. Hence paq holds.
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Now we prove part pbq. Let e P Hs
0pΩq be the positive weak solution of (2.9). It

follows from (2.7) that e P L8pΩq. Moreover, for t ě 0, solutions of w “ Sp0, wq ` te

satisfy
#

p´∆qsw “ b|w|p ` t in Ω ;

w “ 0 in RNzΩ .
(4.7)

Note, since b|σ|p ` t ě 0 for t ě 0, any weak solution of (4.7) is nonnegative

for t ě 0. In fact, any nontrivial weak solution of (4.7) is positive by Proposition 2.5.

First, we show that (4.7) has no weak solution for t large. For this, let λ1 ą 0 be the

principal eigenvalue and 0 ă ϕ1 be the corresponding eigenfunction of the fractional

eigenvalue problem (2.15).

Let µ ą λ1 be fixed. Then, since p ą 1 and t ě 0, there exists a constant C̃ ą 0

such that bσp ` t ě µσ ` t´ C̃. Suppose w is a nonnegative nontrivial weak solution

of (4.7) with t ą C̃. Then, using 0 ă ϕ1 as a test function in the weak formulation of

(4.7), we arrive at a contradiction to µ ą λ1:

λ1

ż

Ω

wϕ1dx “ Epw,ϕ1q

“

ż

Ω

rbwp ` tsϕ1dx ě

ż

Ω

rµw ` t´ C̃sϕ1dx ě µ

ż

Ω

wϕ1dx . (4.8)

Hence, (4.7) has no weak solution for t ą C̃, and in particular, for t “ C̃ ` 1.

Therefore,

degpI ´ Sp0, ¨q ` pC̃ ` 1qe, B%, 0q “ 0 for any % ą 0 .

Then, by Proposition 4.1 combined with Remark 4.1 with hpx, σq “ t for 0 ď t ď C̃`1,

there exists M ą 0 (depending only on Ω, N , s and C̃) such that }w}8 ďM for any
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positive weak solution w of (4.7). Setting R ą maxtM, ru, we conclude that (4.7)

has no solution for 0 ď t ď C̃ ` 1 satisfying }w}8 “ R. Using 0 ď t ď C̃ ` 1 as the

homotopy parameter, we conclude that

degpI ´ Sp0, ¨q, BR, 0q “ degpI ´ Sp0, ¨q ` te, BR, 0q

“ degpI ´ Sp0, ¨q ` pC̃ ` 1qe, BR, 0q “ 0 .

This establishes part (b), completing the proof of Lemma 4.2.

It is clear from the construction of r ą 0 and R ą 0 above that 0 ă r ă R

holds. Then, using the excision property of Leray-Schauder degree, it follows from

Lemma 4.2 that

degpI ´ Sp0, ¨q, BRzBr, 0q “ ´1 ‰ 0 .

Therefore, there exists a solution w0 of (4.5) (not necessarily unique). Moreover, since

p´∆qsw0 ě 0 in Ω and }w0}8 ą r ą 0, it follows from Proposition 2.5 that w0 ą 0 in

Ω. Now using λ ě 0 as a homotopy parameter and Lemma 4.2, we prove the existence

of a positive weak solution of the re-scaled problem (4.4) for λ small.

Lemma 4.3. There exists λ0 ą 0 such that

(i) degpI ´ Spλ, ¨q, BRzBr, 0q “ ´1 for all 0 ď λ ď λ0.

(ii) If wλ “ Spλ,wλq with 0 ď λ ď λ0 and r ă }wλ}8 ă R, then it follows that

wλ ą 0 in Ω.

Proof of Lemma 4.3. To prove (i) using the homotopy invariance of Leray-Schauder

degree, it suffices to show that there exists λ0 ą 0 such that Spλ,wλq ‰ wλ for all

}wλ}8 P tr, Ru and all 0 ď λ ď λ0. If not, there exists a sequence pλn, wλnq in
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r0,`8q ˆ L8pΩq with λn Ñ 0`, }wλn}8 P tr, Ru, and Spλn, wλnq “ wλn . Since

S is compact and continuous, pλn, wλnq Ñ p0, w0q (up to a subsequence) for some

w0 P L
8pΩq, }w0}8 P tr, Ru, and Sp0, w0q “ w0, a contradiction with Lemma 4.2.

Hence, piq holds.

Now we prove piiq. If fpσq ě 0 for all σ ě 0, then F pλ, σq ě 0 for all

σ P R. Then, using }wλ}8 ą r ą 0, it follows from Proposition 2.5 that wλ ą 0

in Ω. On the other hand, if fpσq ă 0 for some σ ě 0, then Proposition 2.5 does

not apply. In this case, we proceed by contradiction. Suppose there exist sequences

pλn, wλnq P r0,`8q ˆ L8pΩq and xn P Ω satisfying λn Ñ 0`, wλnpxnq ď 0 such that

r ă }wλn}8 ă R and Spλn, wλnq “ wλn . First we show that wλn is bounded in C0,spΩq.

Since λn Ñ 0`, we may assume that 0 ď λn ď R. Letting `n :“ F pλn, wλnq and

using the facts that F is continuous, and wλn is measurable, we conclude that `n is

measurable for each n. Moreover,

|`npxq| “ |F pλn, wλnpxqq| ď maxt|F pλ, σq|
ˇ

ˇ 0 ď λ ď R, 0 ď σ ď Ru

:“ const. ă `8 a.e. in Ω .

This gives }`n}8 ď const., independent of n. It then follows from (2.7) that }wλn}C0,spΩq ď

C}`n}8 ď const., again independent of n, as desired. Then, using the compactness

of the embedding C0,spΩq ãÑ C0,s1pΩq with 0 ă s1 ă s, we conclude that wλn Ñ w0

in C0,s1pΩq (up to a subsequence) for some w0 P C
0,s1pΩq, and Sp0, w0q “ w0 by the

continuity argument as above. Now since w0 ą 0 in Ω with p´∆qsw0pxq ě 0 in Ω, by

Proposition 2.5 there exists c ą 0, such that

w0pxq ě c δspxq for all x P Ω .
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Since xn P Ω and Ω is bounded, xn Ñ x0 P Ω (up to a subsequence). Using

the facts that wλn Ñ w0 in C0,s1pΩq, wλnpxnq ď 0, and w0 ą 0 in Ω, it follows that

x0 P BΩ. Let xbdd
n P BΩ be the point on BΩ nearest to the point xn P Ω. Since BΩ P C2,

this point is unique for each n sufficiently large (see [GT15, App. 14.6]) and clearly

xn ‰ xbdd
n . Therefore, for 0 ă ε ă c fixed, there exists n sufficiently large such that

ε ą rw0 ´ wλnsC0,s1 pΩq ě
|w0pxnq ´ wλnpxnq ´ pw0px

bdd
n q ´ wλnpx

bdd
n qq|

|xn ´ xbdd
n |s

1

ě
w0pxnq

|xn ´ xbdd
n |s

1

ą
w0pxnq

|xn ´ xbdd
n |s

since w0pxnq ą 0 and wλnpxnq ď 0 in Ω, wλnpxbdd
n q “ 0 “ w0px

bdd
n q, and 0 ă s1 ă s.

This yields

ε ą
w0pxnq

|xn ´ xbdd
n |s

“
w0pxnq

rdistpxn, BΩqss
ě c ,

a contradiction to ε ă c. Therefore, wλ ą 0 for all 0 ď λ ď λ0 with r ă }wλ}8 ă R

(with λ0 possibly smaller). This concludes the proof of Lemma 4.3.

Now we complete the proof of Theorem 4.1. By Lemma 4.3, for each 0 ď λ ď λ0,

there exists a positive weak solution wλ of (4.4) with r ă }wλ}8 ă R. This in turn

implies that (4.1) has a positive weak solution u “ λ
1

1´pwλ for 0 ă λ ď λ0. Owing to

the facts that p ą 1 and }wλ}8 ą r ą 0, we can infer that }u}8 Ñ `8 as λÑ 0`.

Finally, we use the following Leray-Schauder continuation theorem to prove

the existence of a connected branch of positive solutions for λ small.

47



Proposition 4.3. ([Maw99, Thm. 2.2]) Let X be a Banach space and Y Ă X a

bounded open set and ra, bs Ă R. Suppose T : ra, bs ˆ Y Ñ X is continuous and

compact. Define S :“ tpµ, zq P ra, bs ˆ Y : z “ T pµ, zqu and assume the following

conditions hold:

(a) S X pra, bs ˆ BY q “ H, and

(b) degpI ´ T pa, ¨q, Y, 0q ‰ 0.

Then S contains a continuum C along which µ takes all values in ra, bs.

Indeed, S satisfies the hypotheses of Proposition 4.3 via Lemma 4.3 with

ra, bs “ r0, λ0s, X “ L8pΩq, and Y “ BRzBr. Therefore, there exists a continuum D

of positive weak solutions wλ of (4.4) along which λ takes all values in r0, λ0s. This in

turn implies, using the relation, u “ λ
1

1´pwλ for 0 ă λ ď λ0, there exists a continuum

C of positive weak solutions of (4.1) bifurcating from infinity at λ8 “ 0. Moreover,

λ takes all values in p0, λ0s along C and u ą 0 in Ω whenever u P C and λ P p0, λ0s.

This completes the proof of Theorem 4.1.

4.3. Regularity of Weak Solutions

Here we give the proof of Lemma 4.1 by using Proposition 4.2 and a bootstrap

argument.

Proof of Lemma 4.1. Let u be a weak solution of (4.2). Then u P Hs
0pΩq ãÑ L2˚s pΩq,

see [DNPV12, Thm. 6.7].

The Nemytskii operator, defined as

g̃puqpxq :“ gpx, upxqq ,
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is continuous as a mapping from L2˚s pΩq to L
2˚s
p pΩq, see [Vai64, Sec. 19]. Keeping

in mind that N ě 2, we distinguish three cases:

(i) N ă 6s and 1 ă p ă 4s
N´2s

.

(ii) N ă 6s and 4s
N´2s

ď p ă 2˚s ´ 1.

(iii) 6s ď N and 1 ă p ă 2˚s ´ 1.

In case (i), 2˚s
p
“ 2N

N´2s
¨ 1
p
ą N

2s
holds since N ă 6s yields 4s

N´2s
ą 1. Then we

are done by Proposition 4.2(a).

For cases (ii) and (iii), we use a bootstrap argument by employing Proposi-

tion 4.2(b). We observe that 2N
N`2s

ď 2N
N´2s

¨ 1
p
ď N

2s
for both (ii) and (iii). Indeed, the

left inequality 2N
N´2s

¨ 1
p
ą 2N

N`2s
holds since p ă 2˚s ´ 1. The right inequality holds for

(ii) and for (iii) since p ě 4s
N´2s

and N ě 6s, respectively.

Define q0 :“ 2N
N´2s

¨1
p
and q1 :“ 1

p

´

αq0 ` β
Nq0

N´2q0s

¯

, where α :“ Np´Np2`2ps`2p2s
8s

P

p0, 1q and β :“ 1´ α. Then,

q1 ´ q0 “
NpN ´Np` 2p1` pqsq

ppN ´ 2sqpNp´ 2p2` pqsq
ą 0 .

If q1 ą
N
2s
, we are done. Otherwise, we continue with the bootstrap argument as

follows.
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For each k P IN, let α, β P p0, 1q be as above and 2N
ppN´2sq

ď qk ď
N
2s
. Define

qk`1 :“ 1
p

´

αqk ` β
Nqk

N´2qks

¯

. Then,

qk`1 ´ qk “
qk pNpp´ 1q ppqk ´ 4q ´ 2pp´ 3qpsqkq

4p pN ´ 2sqkq

ě
NpN ´Np` 2pp` 1qsq

ppN ´ 2sqpNp´ 2pp` 2qsq
ą 0

is independent of k P IN. Hence, qk`1 ą
N
2s

can be achieved in finitely many steps.

Then, by Proposition 4.2(a), }u}8 ď C1}g̃puq}
L

2˚s
p pΩq

ă `8, and we are done.
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CHAPTER V

SUBLINEAR, ASYMPTOTICALLY LINEAR, AND LOGISTIC PROBLEMS

5.1. Introduction and Statement of Results

We consider a nonlinear problem of the form

#

p´∆qsu “ λfpuq in Ω;

u “ 0 in RNzΩ ,
(5.1)

where λ ą 0 is a bifurcation parameter and Ω Ă RN is a bounded C1,1 domain if N ě 2

and a bounded open interval if N “ 1. Throughout this chapter, f : r0,`8q Ñ R is a

Hölder continuous function, unless stated otherwise.

It is well known that the the existence as well as nonexistence of positive

solutions of problems like (5.1), with local operators such as the classical Laplacian

instead of p´∆qs, with respect to the parameter λ, depends heavily on the behavior of

the nonlinearity f near the origin as well as at infinity. For the Laplacian case (s “ 1),

see [Lio82] for an excellent review for the case fp0q ě 0, and see [CMS00] for the case

fp0q ă 0 (semipositone).

Here we discuss several existence results and a simple nonexistence result of

(5.1) depending both on the behavior of the nonlinearity near the origin and at infinity.

Existence results in this chapter are established using the sub- and supersolution

theorem, Theorem 3.1, established in Chapter III.
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First, we consider classes of nonlinearity f that satisfy the sublinear at infinity

condition

(F1) lim
σÑ`8

fpσq

σ
“ 0 .

For the local case, based on the Laplacian or p-Laplacian, existence results for

sublinear problems are well studied. The paper [LSY09] provides a nice review of the

development from the point of view of the sub- and supersolution method.

Our first result deals with the positone case pf ą 0q.

Figure 5.1. Nonlinearity and Bifurcation Diagram for Theorem 5.1

Theorem 5.1. Suppose fpσq ą 0 for σ ě 0 and satisfies (F1). Then, (5.1) has a

positive weak solution for each λ ą 0.

Figure 5.1 gives a typical example of the nonlinearity f and the expected

bifurcation diagram (}u}8 vs. λ diagram). An example satisfying the hypotheses of

Theorem 5.1 is the reaction term fpσq “ e
κσ
κ`σ for σ ě 0 with κ ą 0, referred to in

the literature as the perturbed Gelfand problem when considered with the Laplacian

operator, see [BE89, Chap. 2]. For a nonlinearity like fpσq “ e
5σ

5`σ {σq, q P p0, 1q, it

was shown in [GMS19] that there is a range of λ for which there exists three positive
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solutions and a unique positive solution for λ large. Their result suggests the existence

of an S-shaped bifurcation diagram with an additional assumption on the shape of

the nonlinearity. In fact, our numerical experiments in Chapter VII show that for

fpσq “ e
5σ

5`σ , the numerical bifurcation diagram is S-shaped. For an existence result

and bifurcation diagram for the Laplacian case (s “ 1), see [Lio82, Sec. 2.2].

Our next result deals with the case fp0q “ 0. Let λ1 be the principle eigenvalue

of the fractional eigenvalue problem (2.11).

Figure 5.2. Nonlinearity and Bifurcation Diagram for Theorem 5.2

Theorem 5.2. Suppose f : r0,8q Ñ r0,8q is a C1 function such that fp0q “ 0,

f 1p0q ą 0 with fpσq ą 0 for all σ ą 0, and (F1) is satisfied. Then, (5.1) has a positive

weak solution for any λ ą λ1

f 1p0q
.

Figure 5.2 gives the typical example of the nonlinearity f and the expected bifur-

cation diagram corresponding to Theorem 5.2. An example satisfying the hypotheses

of Theorem 5.2 is the reaction term fpσq “ 3p1` σq1{3 ´ 3 for σ ě 0.

To the best of our knowledge, this simple existence result is not known for the

fractional Laplacian case. The Laplacian case was discussed in [Lio82, Sec. 2.2].
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Next, we consider a nonlinearity f which includes semipositone behavior near

the origin (fp0q ă 0) and establish the following existence result.

Figure 5.3. Nonlinearity and Bifurcation Diagram for Theorem 5.3

Theorem 5.3. Let f : r0,8q Ñ R satisfy (F1). If

(F2) lim
σÑ8

fpσq “ 8 ,

then (5.1) has a positive weak solution for λ large.

Figure 5.3 gives the typical shape of the nonlinearity f and the expected

bifurcation diagram corresponding to Theorem 5.3. An example satisfying the hy-

potheses of Theorem 5.3 is the reaction term fpσq “ lnp1 ` σq ´ 0.5 for σ ě 0. A

multi-parameter, sublinear semipositone problem was considered with pure powers in

[DT19] to establish the existence of a positive solution. Theorem 5.3 extends their

result to general semipositone nonlinearities satisfying (F1). For the Laplacian case,

see [LSY09]. The proof of Theorem 5.3 combines the ideas from [LSY09] and [DT19]

to construct a positive weak subsolution.
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Next, we consider classes of nonlinearities f that are asymptotically linear at

infinity

(F3) lim
σÑ`8

fpσq

σ
“ m8 ą 0 for some 0 ă m8 ă 8 ,

and establish the following existence result.

Figure 5.4. Nonlinearity and Bifurcation Diagram for Theorem 5.4

Theorem 5.4. Let f : r0,8q Ñ R be a function satisfying (F3). Then, there exists

λ ą 0 with λ ă λ1

m8
such that (5.1) has a positive weak solution for λ P rλ, λ1

m8
q.

Figure 5.4 gives an example of the shape of the nonlinearity f and the expected

bifurcation diagram corresponding to Theorem 5.4. A simple example satisfying the

hypothesis of Theorem 5.4 is the reaction term fpσq “ 1
2
σ` 3p1`σq

1
3 ´ 4 with m1 “ 1

and m8 “
1
2
. It is clear from the hypothesis (5.13) that the result above is independent

of the sign of f near the origin. The exact shape of the bifurcation diagram will

further depend on the precise information of the nonlinearity f near the origin.

Using bifurcation theory, the authors in [CG20] discussed an existence result

for the fractional Laplacian in the left neighborhood of λ1

m8
. Our result, Theorem 5.4,
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extends the range of λ for existence of a positive solution farther to the left of λ1

m8
.

Existence results for such problems for the local case were discussed in [AAB94] using

bifurcation theory and in [Hai12,HSS12,KS20] using sub- and supersolution methods.

Next, we consider several classes of logistic problems. For a derivation of the

time dependent fractional logistic model ut ` p´∆qsu “ λup1 ´ uq with u “ upx, tq

and px, tq P R2 for a simple two particle reaction scheme, see [BH04]. The authors in

[CDV17] study logistic problems involving the fractional Laplacian and it serves as an

excellent resource in this topic. They argue that under certain conditions, a nonlocal

diffusion strategy (s P p0, 1q with s « 0) may be advantageous for species in a confined

environment with a hostile surrounding area which corresponds to the homogeneous

Dirichlet external condition assumed here. In [MV17], the authors show that the

the nonlocal strategy is advantageous for a diffusing population, and in [CDV17] the

authors show that nonlocal populations may better adapt to sparse resources and

small environments with hostile surrounding area.

First, we consider a weighted logistic problem and establish the following

existence result.

Figure 5.5. Bifurcation Diagram for Theorem 5.5
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Theorem 5.5. Let q P L8pΩq be such that 0 ď q ď 1 a.e. in Ω and qpxq ą 1
2
on a

set of positive measure, and λ1,q is the principle eigenvalue of the weighted eigenvalue

problem (2.13). The fractional logistic problem

#

p´∆qsu “ λupqpxq ´ uq in Ω;

u “ 0 in RNzΩ,
(5.2)

has a positive weak solution for any λ ą λ1,q.

Figure 5.5 gives the expected bifurcation diagram corresponding to Theorem 5.5.

In [CDV17], authors prove existence results that generalizes Theorem 5.5 using an

energy minimization existence result. Therefore, our contribution is in the different

approach of establishing this result using sub- and supersolution methods. See [SS03]

for a precise bifurcation diagram for the logistic equation in the Laplacian case.

Next, we prove the following existence results for logistic problems with constant

yield harvesting:

Figure 5.6. Nonlinearity and Bifurcation Diagram for Theorem 5.6
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Theorem 5.6. For any λ ą λ1, there exists a˚ “ a˚pλq ą 0 such that the fractional

logistic problem with constant yield harvesting

#

p´∆qsu “ λ rup1´ uq ´ a s in Ω;

u “ 0 in RNzΩ,
(5.3)

has a positive weak solution for a P p0, a˚q.

Figure 5.6 gives the shape of the nonlinearity fpσq “ σp1 ´ σq ´ a and the

expected bifurcation diagram corresponding to Theorem 5.6.

We conclude this section with the following nonexistence result that applies to

several classes of the nonlinearity f considered in this chapter and Chapter IV.

Theorem 5.7.

(i) If there exist a1 ą 0 and b1 ě 0 such that fpσq ď a1 σ ´ b1 for all σ ě 0, then

there is no nonnegative nontrivial weak solution of (5.1) for λ ă λ1

a1
.

(ii) If there exist a2 ą 0 and b2 ě 0 such that fpσq ě a2 σ ` b2 for all σ ě 0, then

there is no nonnegative nontrivial weak solution of (5.1) for λ ą λ1

a2
.

It follows from Theorem 5.7 piq that if the nonlinear reaction term f satisfies

the hypotheses of Theorem 5.2, Theorem 5.3, Theorem 5.5, or Theorem 5.6, then, in

each case, the considered fractional Laplacian problem has no nonnegative nontrivial

solution for λ small. Similarly, if in addition to (G1), f satisfies the hypothesis of

Theorem 5.7 piiq, then (4.1) has no nonnegative nontrivial solution for λ large.

In the rest of this chapter, we prove Theorem 5.3, Theorem 5.4, Theorem 5.5

and Theorem 5.6 by constructing a suitable ordered pair of weak sub- and superso-

lutions of (5.1) and employing Theorem 3.1. Constructions are motivated by what
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is known for the local cases (both Laplacian and p-Laplacian) and adapted to the

fractional Laplacian case. To prove Theorem 5.7, we utilize the principal eigenvalue,

corresponding positive eigenfunction, and weak formulation of problem (2.11).

The proofs of Theorem 5.1 and Theorem 5.2 are rather simple and turn out to

be similar to the proofs of local cases. Therefore, we give these proofs in Appendix B

for completeness.

5.2. Proof of Theorem 5.3

As in the local case ([LSY09]), we will construct a positive weak subsolution

as a multiple of ϕ2
1, where 0 ă ϕ1 P H

s
0pΩq is the eigenfunction corresponding to

the principle eigenvalue λ1 of the eigenvalue problem (2.11). However, unlike local

cases, estimates of the gradient near the boundary are not available. Instead, the

following estimate, established in [DT19], is crucial in the construction of a positive

weak subsolution. We provide the proof in Appendix 8.2 for completeness.

Proposition 5.1 ([DT19]). Let ϕ1 ą 0 be the eigenfunction corresponding to the

principle eigenvalue λ1 of the eigenvalue problem (2.11). There exists γ ą 0 such that

γ ă hpxq ă `8 for all x P Ω where

hpxq :“

ż

RN

|ϕ1pxq ´ ϕ1pyq|
2

|x´ y|N`2s
dy . (5.4)
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Now we recall the computation of p´∆qsϕ2
1 by using definition (1.1) (see [DT19])

as follows:

p´∆qsϕ2
1pxq “ P.V.

ż

RN

ϕ2
1pxq ´ ϕ

2
1pyq

|x´ y|N`2s
dy

“ P.V.

ż

RN

rϕ1pxq ` ϕ1pyqsrϕ1pxq ´ ϕ1pyqs

|x´ y|N`2s
dy

“ 2ϕ1pxqP.V.

ż

RN

ϕ1pxq ´ ϕ1pyq

|x´ y|N`2s
dy ´ P.V.

ż

RN

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy

“ 2ϕ1pxqp´∆qsϕ1pxq ´ P.V.hpxq .

By Proposition 5.1, P.V. hpxq “ hpxq in Ω. Hence

p´∆qsϕ2
1pxq “ 2λ1ϕ

2
1pxq ´ hpxq in Ω . (5.5)

Without loss of generality, assume }ϕ1}8 “ 1. Then it follows from Proposition 5.1,

using ϕ1 “ 0 in RNzΩ, that there exist η,m, µ ą 0 such that

m ă hpxq ´ 2λ1ϕ
2
1pxq in Ωη , (5.6)

and

µ ď ϕ1 ď 1 in ΩzΩη , (5.7)

where Ωη :“ tx P Ω : δpxq ă ηu. Since f is continuous on r0,`8q and satisfies (F2),

there exists b0 ą 0 such that

fpσq ě ´b0 for all σ ě 0. (5.8)
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Let u :“ b0λ
m
ϕ2

1 P H
s
0pΩq. Therefore, by Proposition 2.1, for every φ P Hs

0pΩq, there

holds

Epu, φq “ b0λ

m
Epϕ2

1, φq

“
b0λ

m

ż

Ω

 

2λ1ϕ
2
1pxq ´ hpxq

(

φpxqdx .

Thus, u is a weak subsolution of (5.1) if

b0λ

m

ż

Ω

 

2λ1ϕ
2
1pxq ´ hpxq

(

φpxqdx ď λ

ż

Ω

f

ˆ

b0λ

m
ϕ2

1pxq

˙

φpxqdx (5.9)

for all φ P Hs
0pΩq with 0 ď φ in Ω. We split the analysis into two cases: x P Ωη and

x P ΩzΩη. If x P Ωη, by (5.8) and (5.6), there holds

b0λ

m

ż

Ωη

 

2λ1ϕ
2
1pxq ´ hpxq

(

φpxqdx

“ ´
b0λ

m

ż

Ωη

 

hpxq ´ 2λ1ϕ
2
1pxq

(

φpxqdx

ă λ

ż

Ωη

´b0φpxqdx

ď λ

ż

Ωη

f

ˆ

b0λ

m
ϕ2

1pxq

˙

φpxqdx

“ λ

ż

Ωη

fpupxqqφpxqdx (5.10)
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for all φ P Hs
0pΩq with 0 ď φ in Ω. Now let x P ΩzΩη. Then, using (5.7), it follows

from the hypothesis (F2) that for λ ąą 1, we have

2b0λ1

m
ď f

ˆ

b0λ

m
µ2

˙

.

Therefore, using the fact that hpxq ą γ ą 0, it follows that

b0λ

m

ż

ΩzΩη

 

2λ1ϕ
2
1pxq ´ hpxq

(

φpxqdx

ď
2b0λλ1

m

ż

ΩzΩη

ϕ2
1pxqφpxqdx

ď λ

ż

ΩzΩη

f

ˆ

b0λ

m
ϕ2

1pxq

˙

φpxqdx

“ λ

ż

ΩzΩη

fpupxqqφpxqdx (5.11)

for all φ P Hs
0pΩq with 0 ď φ in Ω. Combining (5.10) and (5.11), it follows that (5.9)

holds. Therefore, u “ b0λ
m
ϕ2

1 is a positive weak subsolution of (5.1).

We show that there existsMλ ą 0 such that u :“Me is a weak supersolution of

(5.1) for all M ěMλ, where 0 ă e P Hs
0pΩq is the weak solution of (2.9). We observe

that while f is not assumed to be nondecreasing, fptq :“ max
σPr0,ts

fpσq is nondecreasing.

Moreover, fptq ď fptq for all t ě 0, and f satisfies the sublinear condition at infinity

lim
tÑ`8

fptq

t
“ 0 . (5.12)
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Therefore, since f satisfies (5.12), there exists Mλ ą 0 sufficiently large such that for

all M ěMλ

fpM}e}8q

M}e}8
ď

1

λ}e}8
or equivalently λfpM}e}8q ďM .

Therefore, with M ěMλ, we get u “Me P Hs
0pΩq satisfies

Epu, φq “MEpe, φq

“M

ż

Ω

φpxqdx

ě λ

ż

Ω

fpM}e}8qφpxqdx

ě λ

ż

Ω

fpMepxqqφpxqdx

ě λ

ż

Ω

fpMepxqqφpxqdx

“ λ

ż

Ω

fpuqφpxqdx ,

for all φ P Hs
0pΩq with 0 ď φ in Ω. Hence, u :“ Me is a weak supersolution of (5.1)

for M ěMλ.

Finally, using the right estimate in (2.12), the left estimate in (2.10), and

taking M larger, if necessary, we get

u “
b0λ

m
ϕ2

1 ďMe “ u a.e. in Ω .

Hence, by Theorem 3.1, (5.1) has a positive weak solution u such that u ď u ď u a.e.

in Ω for λ sufficiently large. This completes the proof of Theorem 5.3.
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5.3. Proof of Theorem 5.4

Let λ1 ą 0 be the principal eigenvalue of (2.11) and 0 ă ϕ1 P H
s
0pΩq its

corresponding eigenfunction. As in the proof of Theorem 5.3, a suitable positive

constant multiple of ϕ2
1 serves as a positive weak subsolution of (5.1). Recall

p´∆qsϕ2
1pxq “ 2λ1ϕ

2
1pxq ´ hpxq ,

where

hpxq :“

ż

RN

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy

satisfies 0 ă γ ă hpxq ă `8 in Ω (by Proposition 5.1). Since f is continuous on

r0,8q and satisfies (F3), there exist σ0, b1 ą 0 and m1 ą 2m8 such that

fpσq ě m1σ ´ b1 for all 0 ď σ ď σ0. (5.13)

Let u “ k0ϕ
2
1, where k0 satisfies

k0 ą
λ1b1

m8γ
. (5.14)

Then, u satisfies

p´∆qsk0ϕ
2
1pxq “ 2λ1k0ϕ

2
1pxq ´ k0 hpxq . (5.15)
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Therefore, by using (5.15) and Proposition 2.1, it follows that for all φ P Hs
0pΩq u

satisfies

Epu, φq “ k0Epϕ2
1, φq

“

ż

Ω

 

2λ1 k0 ϕ
2
1pxq ´ k0 hpxq

(

φpxqdx

Setting σ0 :“ k0}ϕ
2
1}8, it follows from (5.13) that u “ k0ϕ

2
1 is a weak subsolution if

ż

Ω

t2λ1 k0 ϕ
2
1pxq ´ k0 hpxquφpxqdx ď λ

ż

Ω

 

m1k0ϕ
2
1pxq ´ b1

(

φpxqdx (5.16)

for all φ P Hs
0pΩq with 0 ď φ in Ω. If λ ě 2λ1

m1
:“ λ, then

2λ1k0ϕ
2
1pxq ď λm1k0ϕ

2
1pxq for a.e. x P Ω . (5.17)

On the other hand, for λ ă λ1

m8
, it follows from the choice of k0 in (5.14) that

λb1 ă
λ1b1

m8

ă k0γ ă k0hpxq for a.e. x P Ω . (5.18)

Clearly 2λ1

m1
ă λ1

m8
since m1 ą 2m8. Then, it follows from (5.17) and (5.18) that

inequality (5.16) holds for λ P r2λ1

m1
, λ1

m8
q. Hence u “ k0ϕ

2
1 is a positive weak subsolution

for λ P r2λ1

m1
, λ1

m8
q.

We construct a supersolution for λ ă λ1

m8
. Let ε ą 0 be such that λ1 ą λpm8`εq.

Since f is continuous on r0,`8q and satisfies (5.13), there exists L ą 0 such that

fpσq ď pm8 ` εqσ ` L for all σ ě 0. (5.19)
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Since e and ϕ1 satisfy the estimates (2.10) and (2.12), respectively, there exists c ą 0

such that e ď cϕ1 in Ω. Let u :“Mϕ1 ` λLe, where M ěMλ :“ λ2cLpm8`εq
λ1´λpm8`εq

. Then,

Epu, φq “MEpϕ1, φq ` λLEpe, φq

“

ż

Ω

rMλ1ϕ1pxq ` λLsφpxqdx (5.20)

for all φ P Hs
0pΩq. Then by (5.19) and the choices of M and c,

λ

ż

Ω

fpupxqqφpxqdx ď λ

ż

Ω

rL` pm8 ` εqupxqsφpxqdx

“ λ

ż

Ω

rL` pm8 ` εqpMϕ1pxq ` λLepxqqsφpxqdx

ď λ

ż

Ω

rL` pm8 ` εqpMϕ1pxq ` λLcϕ1pxqqsφpxqdx

“

ż

Ω

“

λL`Mλpm8 ` εq ` λ
2Lcpm8 ` εq

‰

ϕ1pxqφpxqdx

ď

ż

Ω

rλL`Mλ1ϕ1pxqsφpxqdx (5.21)

for all φ P Hs
0pΩq with 0 ď φ in Ω. Hence, u is a weak supersolution for λ ă λ1

m8
.

Finally, using the right estimate in (2.12), the left estimate in (2.10), and taking M

larger, if necessary, we get

u “ k0ϕ
2
1 ďMϕ1 ` Le “ u a.e. in Ω .

Hence, by Theorem 3.1, (5.1) has a positive weak solution u such that u ď u ď u a.e.

in Ω for λ P r2λ1

m1
, λ1

m8
q. This completes the proof of Theorem 5.4.
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5.4. Proof of Theorem 5.5

First, we construct a positive weak subsolution of (5.2). Let λ ą λ1,q be fixed.

Then, by Proposition 2.3, there exists l P IN such that λ1,q ď λ1,γl ă λ, where λ1,γl is

the principal eigenvalue of (2.18) with γlpxq defined by (2.19). Let ϕ1,γl P H
s
0pΩq be

the positive eigenfunction corresponding to λ1,γl , and let e P Hs
0pΩq be the positive

weak solution of (2.9).

We show there exist mλ ą 0 and ε ą 0 such that for all m P p0,mλq, u :“

m pϕ1,γl ´ ε eq P H
s
0pΩq is a positive weak subsolution of (5.2). Set α :“

b

λ1,γl

λ
P

p0, 1q . Then, with q “ γl, we see that ϕ1,γl satisfies (2.16), and e satisfies (2.10). Hence,

there exists ε ą 0 such that

ϕ1,γl ´ ε e ą αϕ1,γl ą 0 a.e. in Ω . (5.22)

Next, define mλ :“ min

"

ε

λα}ϕ1,γlpϕ1,γl ´ ε eq}8
,

1´ α

l}ϕ1,γl ´ εe}8

*

, and let m P

p0,mλq.

Using the weak formulation of e and ϕ1,γl , we see that u “ m pϕ1,γl ´ ε eq P

Hs
0pΩq satisfies

Epu, φq “ m

ż

Ω

pλ1,γl γlpxqϕ1,γlpxq ´ εqφpxqdx

for all φ P Hs
0pΩq. Therefore, u is a weak subsolution of (5.2) if

m

ż

Ω

pλ1,γl γlpxqϕ1,γlpxq ´ εqφpxqdx

ď λm

ż

Ω

pϕ1,γlpxq ´ ε epxqq
“

qpxq ´mpϕ1,γlpxq ´ ε epxqq
‰

φpxqdx (5.23)
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for all φ P Hs
0pΩq with 0 ď φ in Ω. The definition of γl and (5.22) yields

λmαϕ1,γlpxq
“

γlpxq ´m pϕ1,γlpxq ´ ε epxqq
‰

ď λm pϕ1,γlpxq ´ ε epxqq
“

qpxq ´m pϕ1,γlpxq ´ εepxqq
‰

a.e. in Ω .

Therefore, (5.23) holds if

λ1,γl γlpxqϕ1,γlpxq ´ ε ď λαϕ1,γl

“

γlpxq ´m pϕ1,γlpxq ´ ε epxqq
‰

a.e. in Ω . (5.24)

Define Ωl :“ tx P Ω : qpxq ă 1{lu. If x P Ωl, then γl “ 0. In this case, (5.24) holds

since

m ă mλ ď
ε

λα}ϕ1,γlpϕ1,γl ´ ε eq}8
.

If x P ΩzΩl, then γlpxq “ qpxq ě 1{l. In this case, (5.24) is satisfied since the inequality

λ1,γl γlpxqϕ1,γl ď λαϕ1,γl

“

γlpxq ´m pϕ1,γl ´ ε eq
‰

holds by choosing

m ă mλ ď
1´ α

l}ϕ1,γl ´ εe}8
.

Hence, u “ m pϕ1,γlpxq ´ ε epxqq is a positive weak subsolution of (5.2) for any

m P p0,mλq.

Next, we construct a positive weak supersolution. We show a constant multiple

of e is a supersolution for (5.2), where 0 ă e P Hs
0pΩq is the solution of (2.9). Since

q P L8pΩq with 0 ď qpxq ď 1 a.e. in Ω, Mepxqp1´Mepxqq ěMepxq
`

qpxq ´Mepxq
˘

holds a.e. in Ω.
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Then, noting that max
σě0

σp1´ σq “ 1
4
, define u :“Me for M ěMλ :“ λ

4
. Thus,

u satisfies

Epu, φq “MEpe, φq

“

ż

Ω

Mφpxqdx

ě
λ

4

ż

Ω

φpxqdx

ě λ

ż

Ω

upxqpqpxq ´ upxqqφpxqdx

for all φ P Hs
0pΩq with 0 ď φ in Ω. Therefore, u “Me is a positive weak supersolution

for all M ěMλ.

Finally, using the left estimate of (2.10), and the right estimate of (2.16), we

can choose either M ě Mλ sufficiently large or 0 ă m ă mλ sufficiently small, so

that u “ m pϕ1,γl ´ ε eq ď mϕ1,γl ďMe “ u a.e. in Ω. Hence, by Theorem 3.1, (5.2)

has a positive weak solution u satisfying u ď u ď u a.e. in Ω for any λ ą λ1,q. This

completes the proof of Theorem 5.5.

5.5. Proof of Theorem 5.6

First, we construct a positive weak subsolution for (5.3). Let λ ą λ1 be fixed,

and define β :“
b

λ1

λ
P p0, 1q. Then, it follows from (2.10) and (2.12) that there exists

ε ą 0 such that ϕ1 ´ εe ą βϕ1 ą 0. Define u :“ m˚pϕ1 ´ εeq P Hs
0pΩq with fixed

m˚ :“ 1´β
2}ϕ1´εe}8

ą 0.
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We show that u is a positive weak subsolution of (5.3) for any 0 ă a ă a˚ :“

εm˚

λ
. Since u satisfies

Epu, φq “ m˚

ż

Ω

pλ1 ϕ1pxq ´ εqφpxqdx

for all φ P Hs
0pΩq, it is a weak subsolution of (5.3) if

m˚
pλ1 ϕ1pxq ´ εq ď λm˚

pϕ1pxq ´ ε epxqq
“

1´m˚
pϕ1pxq ´ ε epxqq

‰

´ λa . (5.25)

Since ϕ1 ´ εe ą βϕ1 ą 0, (5.25) is satisfied if

λ1 ϕ1pxq ď λ βϕ1pxqq
“

1´m˚
pϕ1pxq ´ ε epxqq

‰

` εm˚
´ λa . (5.26)

Note, εm˚´ λa ě 0 since εm˚´ λa˚ “ 0 by the choice of a˚, and a ă a˚. Then, using

ϕ1 ą ϕ1 ´ εe ą 0 a.e. in Ω and m˚ “
1´β

2}ϕ1´ε e}8
, (5.26) follows from the inequality

λ1 ϕ1pxq ď λβϕ1pxq
“

1´m˚
}ϕ1 ´ ε e}8

‰

.

Hence u “ m˚pϕ1 ´ εeq is a subsolution of (5.3) for a ă a˚.

As in the proof of Theorem 5.5, u “ M e P Hs
0pΩq is a supersolution of (5.3)

for any M ěMλ “
λ
4
since 1

4
ěM epxq

`

1´M epxq
˘

´ a for a.e. x P Ω .

Using the estimates (2.10) and (2.16), we can further refine the choice of

M ě Mλ to be sufficiently large such that u “ m˚pϕ1 ´ εeq ď M e “ u a.e. in Ω.

Therefore, by Theorem 3.1, for any λ ą λ1, (5.3) has a positive weak solution u

satisfying m˚ pϕ1 ´ ε eq ď u ďMe a.e. in Ω for 0 ă a ă a˚. This completes the proof

of Theorem 5.6.
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5.6. Proof of Theorem 5.7

Let u P Hs
0pΩq be a nonnegative weak solution of (5.1) and ϕ1 P H

s
0pΩq be the

principal eigenfunction of (2.11). Taking 0 ă ϕ1 as a test function in (2.5), we get

λ1

ż

Ω

uϕ1dx “ Epu, ϕ1q “ λ

ż

Ω

fpuqϕ1dx . (5.27)

In case (i), since fpσq ď a1σ ´ b1 for all σ ě 0, (5.27) yields

λ1

ż

Ω

uϕ1dx ď λ

ż

Ω

pa1u´ b1qϕ1dx ď λa1

ż

Ω

uϕ1dx ,

a contradiction if λ ă λ1

a1
.

In case (ii), since fpσq ě a2σ ` b2 for all σ ě 0, (5.27) yields

λ1

ż

Ω

uϕ1dx ě λ

ż

Ω

pa2u` b2qϕ1dx ě λa2

ż

Ω

uϕ1dx ,

a contradiction if λ ą λ1

a2
. This completes the proof.

Remark 5.1. The simple approach in the proof of Theorem 5.7 above does not apply

to the case fpσq ě aσ ´ b for all σ ě 0 with a and b positive. This case appears to be

more challenging as it was in the Laplacian case (see [ANZ92]).
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CHAPTER VI

RADIAL SYMMETRY

6.1. Introduction and Statement of Result

In this chapter, we study nonnegative classical solutions of a fractional Laplacian

problem of the form
#

p´∆qsu “ fpuq in B1 ;

u “ 0 in RNzB1 ,
(6.1)

where B1 :“ tx P RN : |x| ă 1u with N ě 2 and the nonlinearity f : r0,8q Ñ R

satisfies

f is locally Lipschitz,(G1)

fp0q ă 0.(G2)

The following symmetry result was established for positive solutions of (6.1).

Proposition 6.1. ([FW14, Thm. 1.1]) If f satisfies (G1) and u P CpRNq is a positive

classical solution to (6.1), then u must be radially symmetric and radially decreasing

in r “ |x| P p0, 1q.

The goal of this chapter is to extend the above symmetry result to nonnegative

nontrivial classical solutions of (6.1). If f ě 0, then by Proposition 2.6 any nonnegative

nontrivial solution u of (6.1) is positive in B1, hence Proposition 6.1 applies. However,

if f satisfies (G2), then Proposition 2.6 does not apply.
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Our goal is to show that if f satisfies (G2), then any nonnegative nontrivial

solution of (6.1) is positive and hence Proposition 6.1 applies.

For the Laplacian case, a result analogous to Proposition 6.1 is contained in the

celebrated paper of Gidas-Ni-Nirenberg [GNN79, Theorem 1]. Using an example in one

dimension, it was conjectured in [GNN79] that if fp0q ă 0, then u ą 0 in B1 cannot

be replaced by u ě 0 with u ı 0 in [GNN79, Theorem 1]. In [CS89], the authors made

a key observation that the boundary of a ball B1 is not connected in one dimension

but connected when N ě 2. Using this information, they proved that the conjecture is

false by showing that if the nonlinearity f is smooth and satisfies fp0q ă 0, then every

nonnegative, nontrivial solution is positive, hence radially symmetric and radially

decreasing (by [GNN79, Theorem 1]).

By combining the ideas from [FW14] and [CS89], we prove:

Theorem 6.1. If f satisfies (G1)´ (G2) and u P CpRNq is a nonnegative nontrivial

classical solution to (6.1), then u is positive in B1 and hence radially symmetric and

radially decreasing in B1.

To prove Theorem 6.1, we use the moving plane method developed for the

fractional Laplacian in [FW14]. The main tools are the maximum principle in a ball

Proposition 2.6, and the maximum principle for thin domains (see Proposition 2.7).

In the Laplacian case, the smoothness of solutions played a crucial role in the analysis

which is not available in the fractional Laplacian case.
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6.2. Proof of Theorem 6.1

We begin with notations and terminologies that will be used throughout this

chapter. Let x “ px1, x
1q P RN and λ P p0, 1q. Then, define

Σλ :“ tx “ px1, x
1
q P B1 : x1 ą λu,

Aλ :“ tx “ px1, x
1
q P RN : x1 ą λu,

Tλ :“ tx “ px1, x
1
q P B1 : x1 “ λu .

For x P RN , let xλ “ p2λ´ x1, x
1q denote the reflection of x across the hyperplane Tλ.

Define uλpxq :“ upxλq and wλpxq :“ uλpxq ´ upxq . Then uλpxλq “ upxq, and wλ is

an antisymmetric function; that is,

wλpxλq “ uλpxλq ´ upxλq “ ´puλpxq ´ upxqq “ ´wλpxq for all x P RN . (6.2)

We establish several lemmas to prove our result.

The following lemma was proved in [FW14] for positive solutions of (6.1). We

observe that the result holds for nonnegative nontrivial solutions. We give the proof

below for completeness.

Lemma 6.1. ([FW14, Step 1]) If u P CpRNq is a nonnegative nontrivial classical

solution of (6.1) and λ P p0, 1q with λ « 1, then wλ ě 0 in Σλ.

Proof of Lemma 6.1. Let Σ´λ :“ tx P Σλ : wλpxq ă 0u, and suppose to the contrary

that Σ´λ ‰ H for λ P p0, 1q with λ « 1. Define

w`λ pxq :“

$

’

’

&

’

’

%

wλpxq; x P Σ´λ ,

0; RNzΣ´λ ,

w´λ pxq :“

$

’

’

&

’

’

%

0; x P Σ´λ ,

wλpxq; RNzΣ´λ .
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Then, we have that w`λ pxq “ wλpxq ´ w
´
λ pxq for all x P RN . The plan is to first show

that

p´∆qsw´λ ď 0 for all x P Σ´λ (6.3)

for all λ P p0, 1q, and then apply Proposition 2.7 in Σ´λ for λ « 1. Let x P Σ´λ . Using

w´λ pxq “ 0, we get

p´∆qsw´λ pxq “

ż

RN

w´λ pxq ´ w
´
λ pzq

|x´ z|N`2s
dz “ ´

ż

RN zΣ´λ

w´λ pzq

|x´ z|N`2s
dz .

Since u “ 0 in RNzB1, wλpxq “ 0 in RNzpB1 Y pB1qλq which gives

p´∆qsw´λ pxq “ ´

ż

pB1YpB1qλqzΣ
´
λ

w´λ pzq

|x´ z|N`2s
dz .

To analyze the integral on the right hand side above, we partition pB1 Y pB1qλqzΣ
´
λ

into the disjoint union S1 Y S2 Y S3 (see Figure 6.1), where

S1 :“ pB1zpB1qλq Y ppB1qλzB1q, S2 :“ pΣλzΣ
´
λ q Y pΣλzΣ

´
λ qλ, S3 :“ pΣ´λ qλ.

Then,

p´∆qsw´λ pxq “ ´

ż

S1

wλpzq

|x´ z|N`2s
dz ´

ż

S2

wλpzq

|x´ z|N`2s
dz ´

ż

S3

wλpzq

|x´ z|N`2s
dz

“ ´I1 ´ I2 ´ I3. (6.4)
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Figure 6.1. Disjoint Sets S1, S2, S3

To establish (6.3), it suffices to show that I1, I2, I3 ě 0. First, we consider the integral

I1. Observe that u “ 0 in pB1qλzB1 since u “ 0 in RNzB1. Further, z P B1zpB1qλ

implies zλ P RNzB1, and hence uλpzq “ upzλq “ 0 in B1zpB1qλ. Therefore,

I1 “

ż

S1

wλpzq

|x´ z|N`2s
dz

“

ż

pB1qλzB1

uλpzq ´ upzq

|x´ z|N`2s
dz `

ż

B1zpB1qλ

uλpzq ´ upzq

|x´ z|N`2s
dz

“

ż

pB1qλzB1

uλpzq

|x´ z|N`2s
dz ´

ż

B1zpB1qλ

upzq

|x´ z|N`2s
dz

“

ż

pB1qλzB1

uλpzq

|x´ z|N`2s
dz ´

ż

pB1qλzB1

upzλq

|x´ zλ|N`2s
dz (6.5)

“

ż

pB1qλzB1

uλpzq

„

1

|x´ z|N`2s
´

1

|x´ zλ|N`2s



dz

ě 0 . (6.6)
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The equality (6.5) holds by relabelling since, by symmetry, integrating upzq over

pB1qzpB1qλ with respect to z is the same as integrating upzλq over pB1qλzpB1q with

respect to z. Inequality (6.6) follows since |x ´ zλ| ą |x ´ z| as x and z fall on the

same side of Tλ for z P pB1qλzB1, and uλ ě 0 with uλ ı 0.

Now we consider I2. In this case, we have

I2 “

ż

S2

wλpzq

|x´ z|N`2s
dz

“

ż

ΣλzΣ
´
λ

wλpzq

|x´ z|N`2s
dz `

ż

pΣλzΣ
´
λ qλ

wλpzq

|x´ z|N`2s
dz

“

ż

ΣλzΣ
´
λ

wλpzq

|x´ z|N`2s
dz `

ż

ΣλzΣ
´
λ

wλpzλq

|x´ zλ|N`2s
dz (6.7)

“

ż

ΣλzΣ
´
λ

wλpzq

|x´ z|N`2s
dz ´

ż

ΣλzΣ
´
λ

wλpzq

|x´ zλ|N`2s
dz (6.8)

“

ż

ΣλzΣ
´
λ

wλpzq

„

1

|x´ z|N`2s
´

1

|x´ zλ|N`2s



dz

ě 0 . (6.9)

As in the computation of I1, (6.7) holds by symmetry. The antisymmetric property

(6.2) of wλ yields (6.8). Finally, since x P Σ´λ and z P ΣλzΣ
´
λ , x and z fall on the same

side of Tλ and thus |x ´ zλ| ą |x ´ z|. Then, using the fact that wλ ě 0 in ΣλzΣ
´
λ ,

inequality (6.9) follows.
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Finally, we consider I3. In this case, using the symmetry of the integral and

the antisymmetric property of wλpzq (as used in I2) and wλ ă 0 in Σ´λ , we get

I3 “

ż

S3

wλpzq

|x´ z|N`2s
dz “

ż

pΣ´λ qλ

wλpzq

|x´ z|N`2s
dz “ ´

ż

Σ´λ

wλpzq

|x´ zλ|N`2s
dz ą 0 . (6.10)

Then, using (6.6), (6.9), and (6.10) in (6.4), it follows that p´∆qsw´λ pxq ď 0 for all

x P Σ´λ , as claimed. Therefore, using (6.3), we get

p´∆qsw`λ pxq “ p´∆qswλpxq ´ p´∆qsw´λ pxq

ě p´∆qswλpxq

“ p´∆qsuλpxq ´ p´∆qsupxq

“ fpuλpxqq ´ fpupxqq

“
fpuλpxqq ´ fpupxqq

uλpxq ´ upxq
w`λ pxq for x P Σ´λ .

The last expression is well-defined since x P Σ´λ yields w`λ pxq “ wλpxq “ uλpxq´upxq ă

0. Then, for x P Σ´λ , w
`
λ satisfies

#

p´∆qsw`λ pxq ě ϕpxqw`λ pxq in Σ´λ ;

w`λ pxq “ 0 in RNzΣ´λ ,

where ϕpxq :“ rfpuλpxqq ´ fpupxqqs{ruλpxq ´ upxqs P L8pΣ´λ q since f is Lipschitz

continuous by (G1). Now, by taking λ P p0, 1q, λ « 1, it is guaranteed that there

exists ξ ą 0 such that |Σ´λ | ă ξ. Then, it follows from Proposition 2.7 that wλpxq “

w`λ pxq ě 0 in Σ´λ , a contradiction to the definition of Σ´λ . Therefore, Σ´λ “ H and,

hence, wλ ě 0 in Σλ for λ P p0, 1q with λ « 1.
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For positive solutions, it suffices to show wλ ě 0 and wλ ı 0 in Σλ (see

[FW14]) in the lemma below. The proof is contained in their paper, but we give for

completeness.

Lemma 6.2. (cf. [FW14]) Let u P CpRNq be a nonnegative nontrivial classical solution

to (6.1). For any λ P p0, 1q, if wλ ě 0 and wλ ı 0 in Aλ, then wλ ą 0 in Σλ.

Proof of Lemma 6.2. We prove by contradiction. Suppose there exists x0 P Σλ such

that wλpx0q “ 0, that is, uλpx0q “ upx0q. Then,

p´∆qswλpx0q “ p´∆qsuλpx0q ´ p´∆qsupx0q “ fpuλpx0qq ´ fpupx0qq “ 0 . (6.11)

On the other hand, using (6.2) and wλpx0q “ 0, by calculating p´∆qswλpx0q according

to definition (1.1) we get

p´∆qswλpx0q “

ż

RN

wλpx0q ´ wλpzq

|x0 ´ z|N`2s
dz

“ ´

ż

Aλ

wλpzq

|x0 ´ z|N`2s
dz ´

ż

RN zAλ

wλpzq

|x0 ´ z|N`2s
dz

“ ´

ż

Aλ

wλpzq

|x0 ´ z|N`2s
dz ´

ż

Aλ

wλpzλq

|x0 ´ zλ|N`2s
dz

“ ´

ż

Aλ

wλpzq

|x0 ´ z|N`2s
dz `

ż

Aλ

wλpzq

|x0 ´ zλ|N`2s
dz

“ ´

ż

Aλ

wλpzq

„

1

|x0 ´ z|N`2s
´

1

|x0 ´ zλ|N`2s



dz .

For z P Aλ and x0 P Σλ Ă Aλ, it follows that x0 and z fall on the same side of the

hyperplane Tλ and hence |x0 ´ zλ| ą |x0 ´ z|.
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Then, using the fact that wλpzq ě 0, wλpzq ı 0 in Aλ, and wλ is continuous,

we get p´∆qswλpx0q ă 0, a contradiction to (6.11). Therefore wλ ą 0 in Σλ.

Lemma 6.3. If u P CpRNq is a nonnegative nontrivial classical solution to (6.1) and

λ P p0, 1q with λ « 1, then wλ ą 0 in Σλ.

Proof of Lemma 6.3. By Lemma 6.1, wλ ě 0 for λ « 1. Therefore, to apply Lemma

6.2, it suffices to show wλ ı 0 in Aλ. Since fp0q ă 0 and u ě 0 is a solution to

(6.1), it follows that u ı 0. Hence, there exists x0 P B1 such that upx0q ą 0. By the

continuity of u, there exists δ0 ą 0 such that u ą 0 in Bδ0px0q Ă B1. Then, either

BBδ0px0q XB1 “ H or BBδ0px0q XB1 ‰ H (see Figure 6.2).

Figure 6.2. paq BBδ0px0q XB1 “ H pbq BBδ0px0q XB1 ‰ H

In either case, by taking λ « 1, there exists z P AλzB1 such that zλ P Bδ0px0q.

Then upzq “ 0 and uλpzq “ upzλq ą 0, that is, wλpzq “ upzλq ´ upzq ą 0 yielding

wλ ı 0 in Aλ. Then, by Lemma 6.2, wλ ą 0 in Σλ for λ « 1.
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Lemma 6.4. Let u P CpRNq be a nonnegative nontrivial classical solution of (6.1).

If there exists λ̃ P p0, 1q such that wλ ą 0 in Σλ for all λ P pλ̃, 1q, then u ą 0 in

Σλ Y pΣλqλ for all λ P pλ̃, 1q.

Proof of Lemma 6.4. We proceed by contradiction. Suppose wλ ą 0 in Σλ for all

λ P pλ̃, 1q but there exists λ1 P pλ̃, 1q and x P Σλ1 Y pΣλ1qλ1 such that upxq “ 0.

If x P pΣλ1qλ1 , then there exists z P Σλ1 such that x “ zλ1 , the reflection of

z P Σλ1 about the hyperplane Tλ1 . Then, using upzq ě 0, we get the contradiction

0 ă wλ1pzq “ upzλ1q ´ upzq “ upxq ´ upzq “ ´upzq ď 0 .

On the other hand, if x P Σλ1 , then there exists λ2 P pλ1, 1q such that x P pΣλ2qλ2 and

wλ2 ą 0 in Σλ2 . This leads to a similar contradiction for λ2 as in the previous case for

λ1. Hence, u ą 0 in Σλ Y pΣλqλ for all λ P pλ̃, 1q.

For the Laplacian case, the following lemma was established in [CS89].

Lemma 6.5. There exists η ą 0 such that u ą 0 in Kη :“ tx P B1

ˇ

ˇ distpx, BB1q ă ηu.

Proof of Lemma 6.5. Let z P BB1. Then z defines a radial direction from the origin.

Since p´∆qs is rotationally invariant (see [Šil20]), without loss of generality, we assume

that z “ p1, 0 . . . , 0q. By Lemma 6.3, there exists λz P p0, 1q with λz « 1 such that

wλ ą 0 in Σλ for all λ P pλz, 1q.
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By Lemma 6.4, u ą 0 in B1 XBrzpzq Ă Σλz Y pΣλzqλz (see Figure 6.3), where

0 ă rz ă 1´ λz.

Figure 6.3. Construction of rz

Since
Ť

zPBB1

Brzpzq is an open cover of the compact set BB1, there exist z1, . . . , zm P BB1

and corresponding radii, rzi ą 0, such that W :“ Brz1
pz1q Y . . . Y Brzm pzmq Ą BB1.

SinceW is open and BB1 is closed, there exists η ą 0 such that tx P RN
ˇ

ˇ distpx, BB1q ă

ηu Ă W . Therefore, if x P Kη :“ tx P B1

ˇ

ˇ distpx, BB1q ă ηu, then x P B1 X Brzi
pziq

for some i “ 1, . . . ,m, and hence u ą 0 in Kη.

The following lemma was proved in [FW14]. We give the proof below for

completeness.

Lemma 6.6. ([FW14]) If λ P p0, 1q and wλ ą 0 in Σλ, then there exists ε P p0, λq

such that wλε ě 0 in Σλε, where λε :“ λ´ ε.
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Proof of Lemma 6.6. Let Dµ :“ tx P Σλ | distpx, BΣλq ě µu for µ ą 0. Then,

Dµ Ă B1 Ă Rn is closed and bounded and hence compact. Since wλ ą 0 is continuous

on the compact set Dµ, there exists µ0 ą 0 such that wλ ě µ0 ą 0 in Dµ.

We claim that there exists ε ą 0 sufficiently small so that wλε ě 0 in Dµ, where

λε :“ λ´ ε. Indeed, suppose to the contrary that there exists a sequence εn Ñ 0` and

corresponding sequence xn P Dµ such that wλεn pxnq ă 0. By the compactness of Dµ,

xn Ñ x0 P Dµ (up to a subsequence). Then, by the continuity of wλ, we arrive at the

contradiction

0 ą lim
nÑ8

wλεn pxnq “ wλpxq ě µ0 ą 0 .

Hence wλε ě 0 in Dµ for ε « 0. Therefore, Σ´λε Ă ΣλεzDµ, where Σ´λε :“ tx P

Σλε | wλεpxq ă 0u. Using the notation used in the proof of Lemma 6.1, it follows from

(6.3) that for all x P Σ´λε , we get

p´∆qsw`λεpxq “ p´∆qswλεpxq ´ p´∆qsw´λεpxq

ě p´∆qswλεpxq

“ p´∆qsuλεpxq ´ p´∆qsupxq

“ ϕpxqw`λεpxq ,

where the Lipschitz continuity of f gives ϕpxq :“ rfpuλεpxqq´fpupxqqs{ruλεpxq´upxqs P

L8pΣ´λεq . By taking ε ą 0 and µ ą 0 small, we have that |Σ´λε | is small. Moreover,

w`λε “ 0 in RNzΣ´λε , and hence it follows from Proposition 2.7 that wλε ě 0 in Σλε , as

desired.
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Proof of Theorem 6.1. Let u P CpRNq be a nonnegative nontrivial classical solution

to (6.1). Define

λ0 :“ inftλ P p0, 1q | wt ą 0 in Σt for all t P pλ, 1qu .

Clearly wλ0 ě 0 in Σλ0 . By Lemma 6.3, wλ ą 0 in Σλ for λ « 1. Therefore, 0 ď λ0 ă 1.

We show λ0 “ 0. Assume to the contrary that λ0 ą 0. To show wλ0 ą 0 in Σλ0

using Lemma 6.2, we must show that wλ0 ı 0 in Aλ0 . By Lemma 6.5, there exists

η ą 0 such that u ą 0 in Kη.

(A) (B)

Figure 6.4. (A) Existence of zλ0 and (B) Existence of zλε

Then, there exists zλ0 P Kη with upzλ0q ą 0 and a corresponding z P Aλ0zB1 Ă

RNzB1 (see Figure 6.4 (A)) such that wλ0pzq “ upzλ0q´upzq “ upzλ0q ą 0. Therefore,

since λ0 P p0, 1q, wλ0 ě 0 in Σλ0 , and wλ0 ı 0 in Aλ0 , Lemma 6.2 yields wλ0 ą 0 in

Σλ0 . Then, by Lemma 6.6, there exists ε ą 0 such that 0 ă λε :“ λ0 ´ ε ă λ0 ă 1 and

wλε ě 0 in Σλε . Repeating the previous argument for λε, there exists z P AλεzB1 with
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corresponding zλε P Kη such that uλεpzλεq ą 0 (see Figure 6.4 (B)). Hence wλε ı 0 in

Aλε .

Then, by Lemma 6.2, wλε ą 0 in Σλε . This contradicts the definition of λ0.

Hence, λ0 “ 0 and wλ ą 0 in Σλ for all λ P p0, 1q. Then, by Lemma 6.4 u ą 0 in

Σλ Y pΣλqλ for every λ P p0, 1q. If x P B1, then there exists λ P p0, 1q such that

x P Σλ Y pΣλqλ. Therefore, u ą 0 in B1. Then, by Proposition 6.1, u is radially

symmetric and radially decreasing in B1. This completes the proof of Theorem 6.1.
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CHAPTER VII

NUMERICAL EXPERIMENTS

The finite element approximation of the linear fractional Laplacian problem

#

p´∆qsu “ `pxq in Ω;

u “ 0 in RNzΩ ,
(7.1)

for s P p0, 1q with Ω Ă RNpN “ 1, 2q has been investigated, including convergence

results with ` in appropriate function spaces (see [BDP16] for N “ 1 and [ABB17]

for N “ 2). For a complete N -dimensional finite element analysis for the fractional

Laplacian, including regularity of solutions of (7.1) and the convergence for piece-wise

linear elements, see [AB17]. This motivates the investigation of numerical positive

weak solutions for nonlinear fractional Laplacian problems

#

p´∆qsu “ λfpx, uq in Ω;

u “ 0 in RzΩ ,
(7.2)

where λ ą 0 and f : Ω ˆ r0,`8q Ñ R is a Carathéodory function. For numerical

experiments, we further assume that ftpx, tq :“ Bf
Bt
px, tq is continuous a.e. in Ω, and f

satisfies certain Hölder type conditions with respect to x P Ω, as specified below. We

consider examples of nonlinearities f satisfying respective hypotheses of Theorem 4.1

and Theorems 5.1 - 5.6.

We use the finite element method (FEM) developed for linear fractional Lapla-

cian problems of the form (7.1) in [BDP16] and [ABB17] to construct numerical
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solutions u (often positive) with λ ą 0 of the nonlinear problem (7.2) in dimensions

N “ 1, 2. Moreover, using the branch following technique of [NSS06], we construct

bifurcation diagrams }u}8 vs. λ.

As in [BDP16] and [ABB17], we use the weak formulation of (7.2) to seek

solution u P Hs
0pΩq such that

CN,s
2
Epu, φq “ λ

ż

Ω

fpx, upxqqφpxqdx for all φ P Hs
0pΩq .

Remark 7.1. In addition to the fact that p´∆qs Ñ ´∆ as sÑ 1´, it was shown in

[BHS18] that the weak solution of the Poisson’s equation for p´∆qs with homogeneous

Dirichlet condition on RNzΩ approaches the weak solution of Poisson’s equation

for ´∆ with homogeneous Dirichlet condition on BΩ as s Ñ 1´. We utilize this

limiting behavior as a hint for the correctness of our numerical scheme. In particular,

throughout this chapter, we use a finite difference or quadrature method to generate

the bifurcation diagram for the Laplacian case (s “ 1) and then compare to the

fractional Laplacian case (s “ 0.99) using the finite element method before proceeding

with any s P p0, 1q.

Remark 7.2. Let S be a closed, connected set of pλ, uq P Rˆ L8pΩq such that u is

a positive weak solution of (7.2) corresponding to λ ą 0. In each example below, we

discuss the shape of S via the bifurcation diagram obtained numerically in the }u}8 vs.

λ plane. These bifurcation diagrams verify the results obtained in previous sections

and motivate future directions. Observe that for each choice of nonlinear reaction

term the bifurcation diagrams are qualitatively similar for all values of s P p0, 1s.

87



For each of the bifurcation diagrams, we also give numerical positive solution(s)

for a specific value of λ for which existence is guaranteed by the results of previous

chapters. We emphasize the fact that the influence of s P p0, 1s on the behavior of

positive solutions near the boundary BΩ becomes more pronounced as s P p0, 1q gets

small.

We first describe the approximation method when Ω :“ p0, 1q Ă R. Fix a

uniform partition 0 “ x0 ă x1 ă x2 . . . ă xn`1 “ 1 of r0, 1s with step size h “ xi´xi´1

for i “ 1, . . . , n ` 1. Let Vh be an n - dimensional subset of Hs
0p0, 1q spanned by

tφ1, . . . , φnu, where

φipxq :“

$

’

’

&

’

’

%

1´ |x´ xi|{h if x P rxi´1, xi`1s ,

0 if x P Rzrxi´1, xi`1s

(7.3)

for i “ 1, . . . , n . The finite element approximation uh P Vh for a weak solution

u P Hs
0p0, 1q of (7.2) is expressed as

uhpxq :“
n
ÿ

i“1

uiφipxq ,

where ui P R are unknowns and uh satisfies system of n equations

C1,s

2
Epuh, φq “ λ

1
ż

0

f px, uhpxqqφjpxqdx (7.4)

for all j “ 1, ¨ ¨ ¨ , n. In order to implement the finite element scheme, we express (7.4)

in matrix notation.
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For a column vector u :“ ru1, ¨ ¨ ¨ , uns
T , the left hand side of (7.4) can be

expressed as Au, where A is the nˆ n stiffness matrix corresponding to the left hand

side of (7.4) derived in [BDP16].

To numerically compute the integral on the right hand side of (7.4), we assume

that there exists L ą 0 such that for any y1, y2 P p0, 1q and any t1, t2 ě 0,

|fpy2, t2q ´ fpy1, t1q| ď L p|y2 ´ y1|
s
` |t2 ´ t1|q . (7.5)

Then, the expectation that }uh}C0,spr0,1sq ď K 1 holds (independent of h), yields

|fpx, uhpxqq ´ fpxj, uhpxjqq| ď L p|x´ xj|
s
` |uhpxq ´ uhpxjq|q ď Lp1`K 1

qhs .

Therefore, for all j “ 1, . . . , n, using the definition (7.3) of φj one has

1
ż

0

f px, uhpxqqφjpxqdx “

xj`1
ż

xj´1

f px, uhpxqqφjpxqdx

“

xj`1
ż

xj´1

“

f pxj, uhpxjqqφjpxq ` f px, uhpxqqφjpxq ´ f pxj, uhpxjqqφjpxq
‰

dx

“ fpxj, ujq

xj`1
ż

xj´1

φjpxqdx`

xj`1
ż

xj´1

“

f px, uhpxqqφjpxq ´ f pxj, uhpxjqqφjpxq
‰

dx

“ hfpxj, ujq `Oph
1`s
q ,
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where (more precisely) 0 ď |Oph1`sq| ď Lp1 `K 1qh1`s . Then, defining the column

vector F by

Fpuq :“ hrfpx1, u1q , fpx2, u2q , ¨ ¨ ¨ , fpxn, unqs
T ,

we rewrite (7.4) as a matrix equation

Au “ λFpuq . (7.6)

We solve the system (7.6) for a given nonlinearity f and λ ą 0 with Newton’s method,

provided a suitable initial guess for the iteration. A multiple of the solution of the

linear problem p´∆qse “ 1 in p0, 1q with u “ 0 in Rzp0, 1q is a good candidate for an

initial guess in many cases.
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7.1. Finite Element Algortithm

Now we describe the pseudo-code for constructing numerical solutions and

numerical bifurcation diagrams.

Input: s P p0, 1q (real parameter in p´∆qs)

0 ď λmin ă λmax (range of values of λ in the bifurcation diagram)

m P IN (number of partition of interval rλmin, λmaxs)

n P IN (number of interior nodes in partition of interval [0,1])

6 ă r ă 15 (10´r is the tolerance in the Newton iteration)

Output: S (list of points of the form pλ, |u|8q)

Begin % Initialization

01 Create interior nodes of the uniform partition P of r0, 1s

by setting xj Ð j{pn` 1q, j “ 1, . . . , n

02 C1,s Ð
22s sΓp1{2`sq
?
πΓp1´sq

03 Assemble nˆ n stiffness matrix A for the partition P and parameter s

using the algorithm described in [BDP16, page 12]

04 Create a partition Λ of rλmin, λmaxs

by setting µi Ð λmin `
λmax´λmin

m
i, i “ 0, . . . ,m

05 uinit Ð Solution of A e “ 1 % Here 1 stands for nˆ 1 column vector of 1s

06 S Ð Empty list % End of Initialization
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07 For i :“ 0 : m do % Main Loop

% Apply Newton iterations to: Au “ µiFpuq

08 uÐ uinit

% Compute Fpuq componentwise (represented by column vector b)

09 rbsj Ð hfpxj, ujq for j “ 1, . . . , n

10 resÐ Au´ µib

11 While |res|8 ą 10´r do % Newton loop

% Compute JF, the Jacobian matrix of Fpuq componentwise

12 rJFsj,j Ð hftpxj, ujq, and rJFsi,j Ð 0 for i ­“ j, i, j “ 1, . . . n

% Compute J, the Jacobian matrix of the system (7.6)

13 JÐ A´ µiJF

14 uÐ u´ J´1res % Newton’s update of u

% Update of Fpuq componentwise

15 rbsj Ð hfpxj, ujq for j “ 1, . . . , n

16 resÐ Au´ µib % Update of res

17 EndWhile % End of Newton Loop

18 S Ð AppendpS, pµi, |~u|8qq

19 EndFor % End of Main Loop

20 Return S

End

92



7.2. Numerical Experiments Corresponding to Theorem 4.1: N=1

Here we focus on examples of f satisfying the hypothesis of Theorem 4.1

independent of the sign of f at 0. The shape of the bifurcation diagram and nodal

properties of solutions beyond λ ą 0 small depends on the behavior of f away from

infinity. Specifically, we explore the cases, fp0q “ 0 with f 1p0q “ 0 (Example 1),

fp0q “ 0 with f 1p0q ą 0 (Example 2), fpσq ą 0 (Example 3), and fp0q ă 0 (Example

4), and demonstrate that positive weak solutions indeed bifurcate from infinity at

λ “ 0. Observe, for each of the examples, there is a bifurcation diagram with the

property }u}8 Ñ `8, as λÑ 0` confirming the result of Theorem 4.1.

Example 1: Consider fpσq “ σ2 for σ ě 0.

In Figure 7.1, bifurcation diagrams for the cases (A) s “ 1, (B) s “ 0.99,

(C) s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3 are given. In each case, the

corresponding inset gives the numerical positive solution for λ “ 1. In this case, since

fp0q “ 0, u ” 0 is a solution for all λ ą 0. In addition, we find a numerical positive

solution for each λ ą 0 satisfying }u}8 Ñ `8 as λÑ 0` and }u}8 Ñ 0 as λÑ `8.

Example 2: Consider fpσq “ σ ` σ2 for σ ě 0.

In Figure 7.2, bifurcation diagrams for the cases (A) s “ 1, (B) s “ 0.99,

(C) s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3 are given. In each case, the

corresponding inset gives the numerical positive solution for λ “ 1. As proved, positive

solutions bifurcate from infinity at λ “ 0. In addition, the solution set also bifurcates

from the trivial branch at λ1 defined by (2.11). Since fpσq ě 0, all nontrivial solutions

on the bifurcation diagram are positive.
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Example 3: Let fpσq “ 3p1` σq
1
3 ` σ2 ą 0 for σ ě 0.

In Figure 7.3, bifurcation diagrams for the cases (A) s “ 1, (B) s “ 0.99, (C)

s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3 are given and two numerical positive

solutions for λ “ 0.25 are shown in (G) - (K). In the bifurcation diagram, we see

that positive solutions bifurcate from infinity at λ “ 0, turns, and connects to the

origin. The existence of the minimal solution, the lower branch on the bifurcation

diagram, and the extremal solution corresponding to the turning point was established

in [ROS14b]. Theorem 4.1 guarantees the existence of the upper branch bifurcating

from infinity at λ “ 0.

Example 4: Let fpσq “ σ ` σ2 ´ 1 for σ ě 0.

In Figure 7.4, bifurcation diagrams for the cases (A) s “ 1, (B) s “ 0.99, (C)

s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3 are given. In the bifurcation diagrams,

the solid part corresponds to positive solutions and the dashed part corresponds to

the sign changing solutions. The markers, 4 and ˚, mark two locations of λ on

the bifurcation diagrams for which a positive numerical solution exist. The solution

corresponding to λ to the right of © on the bifurcation diagram are sign changing.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.1. Bifurcation Diagrams for fpσq “ σ2 and Positive Solutions for λ “ 1
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.2. Bifurcation Diagrams for fpσq “ σ ` σ2 and Positive Solutions for λ “ 1
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(A) s “ 1 (B) s “ 0.99 (C) s “ 0.9

(D) s “ 0.7 (E) s “ 0.5 (F) s “ 0.3

(G) u for s “ 1, λ “ 0.25 (H) u for s “ 0.99, λ “ 0.25 (I) u for s “ 0.9, λ “ 0.25

(J) u for s “ 0.7, λ “ 0.25 (K) u for s “ 0.5, λ “ 0.25 (L) u for s “ 0.3, λ “ 0.25

Figure 7.3. Bifurcation Diagrams for fpσq “ 3p1`σq
1
3 `σ2 and Two Positive Solutions

for λ “ 0.25

97



(A) s “ 1 (B) s “ 0.99 (C) s “ 0.9

(D) s “ 0.7 (E) s “ 0.5 (F) s “ 0.3

(G) s “ 1 (H) s “ 0.99 (I) s “ 0.9

(J) s “ 0.7 (K) s “ 0.5 (L) s “ 0.3

Figure 7.4. Bifurcation Diagrams for fpσq “ σ ` σ2 ´ 1, Two Positive Solutions for λ
Corresponding to 4, ˚, and a Sign Changing Solution Corresponding to ©
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7.3. Numerical Experiments Corresponding to Theorem 5.1: N=1

Here we consider two examples satisfying the hypotheses of Theorem 5.1. First,

fpσq “ e
σ

1`σ for σ ě 0 and then fpσq “ e
5σ

5`σ for σ ě 0. By Theorem 5.1, (7.2) has

a positive weak solution for each λ ą 0, and u ” 0 is a solution of (7.2) for λ “ 0.

Figure 7.5 shows the bifurcation diagrams for (A) s “ 1 (B) s “ 0.99 (C) s “ 0.9 (D)

s “ 0.7 (E) s “ 0.5 and (F) s “ 0.3. The inset in each bifurcation diagram shows the

profile of a numerical positive solution corresponding to λ “ 55 and the influence of s

on the behavior of the positive solution near the boundary points x “ 0 and x “ 1.

Notice in the bifurcation diagrams in Figure 7.5 that the solution set S emanates

from the origin and increases with respect to λ (hence a unique positive solution exists

for each λ ą 0). Moreover, }u}8 Ñ 0 as λ Ñ 0` and }u}8 Ñ `8 as λ Ñ `8. In

[LPPS15], the authors prove uniqueness of a positive solution if fpσq
σ

is decreasing in σ.

Note, this condition is satisfied by fpσq “ e
σ

1`σ and the bifurcation diagram confirms

the uniqueness result in [LPPS15, Thm. 20].
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.5. Bifurcations Diagrams for fpσq “ e
σ

1`σ and Positive Solutions for λ “ 55
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Now consider fpσq “ e
5σ

5`σ for σ ě 0. Investigation of the bifurcation diagram

for the perturbed Gelfand problem fpσq “ e
κσ
κ`σ for κ ą 0 and σ ě 0 has been of

interest since the paper of Keller and Cohen [KC67]. It was shown in [BIS81] that the

sufficient condition for the bifurcation diagram to be S-shaped is satisfied if κ ě 4.07

for the Laplacian case (s “ 1). Indeed, we see in Figure 7.6 that the numerical

bifurcation diagram is S-shaped for both s “ 1 (obtained using quadrature method)

and s “ 0.99.

(A) s “ 1 (B) s “ 0.99

Figure 7.6. Comparison of Bifurcation Diagrams for fpσq “ e
5σ

5`σ with (A) s “ 1 and
(B) s “ 0.99

As in the case of fpσq “ e
σ

1`σ , }u}8 Ñ 0 as λ Ñ 0` and }u}8 Ñ `8 as

λÑ `8. However, the solution set S is not monotone with respect to λ. Additionally,

there is a range of λ for which we see three numerical positive solutions.
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(A) s “ 0.9 (B) 3 solns for s “ 0.9

(C) s “ 0.7 (D) 3 solns for s “ 0.7

(E) s “ 0.5 (F) 3 solns for s “ 0.5

(G) s “ 0.3 (H) 3 solns for s “ 0.3

Figure 7.7. Bifurcation Diagrams for fpσq “ e
5σ

5`σ and Three Positive Solutions for
the λ Specified
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7.4. Numerical Experiments Corresponding to Theorem 5.2: N=1

Consider fpσq “ 3p1`σq
1
3´3 for σ ě 0 satisfying the hypotheses of Theorem 5.2.

The bifurcation diagram for the Laplacian case (s “ 1) was discussed in detail in

[Lio82, Sec. 1.2]. In particular, if fp0q “ 0 and f 1p0q ą 0, then the positive solution

bifurcates from the line of trivial solutions at λ “ λ1

f 1p0q
. Here f 1p0q “ 1, so bifurcation

occurs at λ “ λ1 “ π2 for s “ 1, see Figure 7.8 (A). The inset of Figure 7.8 (A) shows

a numerical positive solutions for λ “ 55.

Figure 7.8, (B) - (F) shows bifurcation diagrams and the insets give the

numerical positive solutions corresponding to λ “ 55 for (B) s “ 0.99, (C) s “ 0.9,

(D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3. Observe that bifurcation diagrams for any

s P p0, 1q are qualitatively similar to those for s “ 1. For s “ 0.99, the bifurcation

of positive solutions from the line of trivial solutions occurs near π2 « 9.8696, see

Figure 7.8 (B). The influence of s P p0, 1q is noticeable in the location of the point

of bifurcation from the line of trivial solutions. This can be justified by the estimate

of the principal eigenvalue of p´∆qs on p0, 1q, see [Kwa12]. Also, the profile of the

numerical positive solutions corresponding to λ “ 55 for values of s P p0, 1s exhibit

the boundary behavior similar to δs.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.8. Bifurcation Diagrams for fpσq “ 3p1` σq
1
3 ´ 3 and Positive Solutions for

λ “ 55
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7.5. Numerical Experiments Corresponding to Theorem 5.3: N=1

Consider fpσq “ lnp1 ` σq ´ 0.5 for σ ě 0 satisfying the hypotheses of The-

orem 5.3. The bifurcation diagram for the case s “ 1 was obtained in [CS88,

Thm. 1.1(B)] using the quadrature method. For a comparison of the bifurcation

diagrams for the cases s “ 1 and s “ 0.99, see Figure 7.9 pAq and pBq. Theorem 5.3

guarantees a positive solution for λ sufficiently large. However, the solution set S is

not monotone with respect to λ. Additionally, in Figure 7.9, there is a range of λ,

depending on s, for which two positive solutions exist. The inset of Figure 7.9 (A)

and (B) show the profile of two numerical positive solutions for λ “ 35 for both of

the cases s “ 1 and s “ 0.99. Figure 7.9 pCq ´ pF q shows the bifurcation diagram for

the cases pCq s “ 0.9, pDq s “ 0.7, pEq s “ 0.5, pF q s “ 0.3, and the inset shows the

profiles of two numerical positive solutions for pCq λ “ 25, pDq λ “ 15, pEq λ “ 9,

and pF q λ “ 5.5, respectively.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.9. Bifurcation Diagram for fpσq “ lnp1`σq´ 0.5 and Two Positive Solutions
for the λ Specified
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7.6. Numerical Experiments Corresponding to Theorem 5.4: N=1

Consider fpσq “ 0.5σ ` 3p1 ` σq
1
3 ´ 4 for σ ě 0. Here m8 “ 0.5 and m1 “

1.5 ą 1 “ 2m8. Theorem 5.4 guarantees a positive weak solution for λ P r2λ1

m1
, λ1

m8
q.

See Figure 7.10 (A) and (B) for the comparison of bifurcation diagrams for s “ 1 to

s “ 0.99. In each case, the inset is a plot of the positive numerical solution for the

specified λ ą 0.

We see that there exists a positive numerical solution on an interval bounded

away from zero and to the left of λ1

m8
« 2π2. However, for this example with s “ 1 and

s “ 0.99, we find numerical positive solutions further to the left of 2λ1

m1
“ 4π2

3
« 13.1595.

This suggests that the choice of m1 is not optimal in Theorem 5.4. Figure 7.10 shows

bifurcation diagrams for the cases (A) s “ 0.9, (B) s “ 0.7, (C) s “ 0.5, and

(D) s “ 0.3. In each case, the inset is a plot of the positive numerical solution for the

specified λ ą 0.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.10. Bifurcation Diagrams for fpσq “ 0.5σ ` 3p1 ` σq
1
3 ´ 4 and Positive

Solutions for the λ specified
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7.7. Numerical Experiments Corresponding to Theorem 5.5: N=1

First we consider the logistic reaction term fpσq “ σp1´ σq for σ ě 0 (corre-

sponding to q ” 1) considered here essentially behaves like a sublinear nonlinearity at

infinity with fp0q “ 0 and f 1p0q “ 1. Hence, the bifurcation diagrams in Figure 7.11

resemble those obtained in Figure 7.8 above. Here the L8 norm of solutions }u}8

are bounded above by 1 for any s P p0, 1s. Therefore, to understand the influence of

s P p0, 1q on positive solutions, we compute L1 norm }u}L1p0,1q “ }u}1 of numerical

positive solutions u for λ “ 55. We observe that }u}1 increases as s decreases. It

appears, numerically, that }u}1 Õ 1 as sÑ 0`.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 1 0.99 0.9 0.7 0.5 0.3

}u}1 0.652287 0.660978 0.725085 0.842018 0.921431 0.960814

Figure 7.11. Bifurcation Diagrams for fpσq “ σp1 ´ σq, Positive Solution, and L1

Norm of the Solutions with λ “ 55
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Next we consider the weighted logistic problem fpx, σq “ σpqpxq´σq for σ ě 0

and x P p0, 1q, where 0 ď q ď 1 is as in Theorem 5.5. For the numerical experiment

we consider five specific examples of q. Namely, let qi : r0, 1s Ñ t0, 1u for i “ 1, 2, 3 be

given by the following:

1. q1pxq “ 1 for x P r3{9, 8{9q and q1pxq “ 0 otherwise,

2. q2pxq “ 1 for x P r0, 1{5q Y r2{5, 4{5q and q2pxq “ 0 otherwise,

3. q3pxq “ 1 for x P r1{5, 2{5q Y r3{5, 4{5q and q3pxq “ 0 otherwise,

In Figures 7.12 - 7.14, (A) gives the graph of qipi “ 1, 2, 3q, and (B)-(F) show

numerical bifurcation diagrams for s “ 0.99, s “ 0.9, s “ 0.7, s “ 0.5, and s “ 0.3,

respectively. Each inset in (B)-(F) gives a numerical positive solution for a fixed

specified λ.

Our numerical experiments appear to agree with the findings of [CDV17] that

the nonlocal diffusion strategy may be advantageous to adapt to sparse resources. In

particular, we see that the L1 norm, }u}L1 , increases as s Ñ 0` for each of the qi

considered. The table at the end of each figure provides a comparison of the }u}L1

norm for positive solutions when s “ 0.99, s “ 0.9, s “ 0.7, s “ 0.5, and s “ 0.3,

respectively.

Here the nonlinearity fpx, σq has discontinuity at finitely many points. In this

case, we partition the interval r0, 1s in such a way that the points of discontinuity

occur at xj with j P t1, ¨ ¨ ¨ , nu.
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In order to compute the integral on the right hand side of (7.4), we modify the

Hölder type assumption (7.5) for any σ1, σ2 ě 0 to a local type assumption as follows:

for all j “ 1, . . . , n.

|fpy2, σ2q ´ fpy1, σ1q| ď L p|y2 ´ y1|
s
` |σ2 ´ σ1|q for any y1, y2 P pxj´1, xjq (7.7)

Then, assuming f satisfies (7.7), we compute the integral on the right hand side of

(7.4) as

1
ż

0

f px, uhpxqqφjpxqdx “

¨

˚

˝

xj
ż

xj´1

`

xj`1
ż

xj

˛

‹

‚

f px, uhpxqqφjpxqdx

“
h

2

¨

˚

˝

f
´xj´1 ` xj

2
, uj

¯

` f
´xj ` xj`1

2
, uj

¯

˛

‹

‚

`

xj
ż

xj´1

”

f px, uhpxqq ´ f
´xj´1 ` xj

2
, uhpxjq

¯ı

φjpxqdx

`

xj`1
ż

xj

”

f px, uhpxqq ´ f
´xj ` xj`1

2
, uhpxjq

¯ı

φjpxqdx

“
h

2

¨

˚

˝

f
´xj´1 ` xj

2
, uj

¯

` f
´xj ` xj`1

2
, uj

¯

˛

‹

‚

`Oph1`s
q .
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(A) graph of q1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 0.99 0.9 0.7 0.5 0.3

}u}L1 0.118602 0.183006 0.257141 0.274889 0.275915

Figure 7.12. Bifurcation Diagrams for fpx, σq “ σpq1pxq ´ σq, Positive Solution, and
L1 Norm of the Solutions with λ “ 25
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(A) graph of q2 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 0.99 0.9 0.7 0.5 0.3

}u}L1 0.416029 0.463028 0.562381 0.617061 0.627710

Figure 7.13. Bifurcation Diagrams for fpx, σq “ σpq2pxq ´ σq, Positive Solutions, and
L1 Norm of the Solutions When λ “ 55
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(A) graph of q3 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 0.99 0.9 0.7 0.5 0.3

}u}L1 0.122209 0.211938 0.357183 0.433505 0.449811

Figure 7.14. Bifurcation Diagrams for fpx, σq “ σpq3pxq ´ σq, Positive Solutions, and
L1 Norm of the Solutions With λ “ 25
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7.8. Numerical Experiments Corresponding to Theorem 5.6: N=1

Consider the logistic reaction with constant effort harvesting fpσq “ σp1 ´

σq ´ 0.05 for σ ě 0 (satisfying hypotheses of Theorem 5.6).

The bifurcation diagrams are given in Figure 7.15 for (A) s “ 1, (B) s “ 0.99,

(C) s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F) s “ 0.3 which all retain the qualitative

behavior observed for s “ 1. The solid part of the solution set S contains positive

solutions, and dashed part contains sign changing solutions. On the solution set S,

the markers 4, ©, and ˚ indicate the locations of a positive solution, the last positive

solution in the positive λ direction on the lower branch of S, and a sign changing

solution in p0, 1q, respectively. The locations of 4 and ˚ are chosen so that } ¨ }8 of

solutions corresponding to these locations are approximately the same but greater

than the one for the solution corresponding to ©.

Figure 7.15 (G) - (L) shows the three numerical solutions corresponding to

the location of 4, © and ˚ on S for a given s P p0, 1q. The numerical solution

corresponding to 4 is plotted with a solid line, the solution corresponding to © is

plotted with a long dashed line, and the solution corresponding to ˚ is plotted with a

short dashed line.
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(A) s “ 1 (B) s “ 0.99 (C) s “ 0.9

(D) s “ 0.7 (E) s “ 0.5 (F) s “ 0.3

(G) Solns for s “ 1 (H) Solns for s “ 0.99 (I) Solns for s “ 0.9

(J) Solns for s “ 0.7 (K) Solns for s “ 0.5 (L) Solns for s “ 0.3

Figure 7.15. Bifurcation Diagrams for fpσq “ σp1´ σq ´ 0.05 and Three Solutions for
λ Corresponding to 4, ©, and ˚
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Here we let Ω :“ p´1, 1q ˆ p´1, 1q Ă R2 and use the two dimensional finite

element method (FEM) developed for linear fractional Laplacian problems of the form

(7.1) in [ABB17] for N “ 2 to construct numerical solutions u (often positive) with

λ ą 0 of the nonlinear problem (7.2). As with the case N “ 1, we use the branch

following technique of [NSS06] to construct bifurcation diagrams }u}8 vs. λ, where

}u}8 “ }u}L8pΩq.

For the sake of brevity and the importance of logistic problems in modelling

population dynamics, we will only consider the logistic problem and weighted logistic

problems in this section. In particular, we show that the size of the population grows

monotonically as s P p0, 1q decreases for the cases considered by computing the L1

norm of numerical solutions.

To accommodate the exterior condition on RNzΩ, as in [ABB17], it is useful

to consider a ball B Ą Ω. Consider a triangulation T of B Ą Ω consisting of NT

elements with interior nodes tx1, . . . , xnu. Given a triangle (element) T P T , denote

by hT and ρT it’s longest edge length and radius of the largest inscribed circle in T ,

respectively. Let h :“ max
TPT

hT . Further, we assume T to be shape-regular, that is,

there exists β ą 0 such that hT ď βρT for all T P T . See Figure 7.16 for examples of

the triangulation for h “ 0.4 and h “ 0.2.
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Let Vh be an n - dimensional subset of Hs
0pΩq spanned by the piecewise linear

basis functions tφ1, . . . , φnu, where (see Figure 7.16 (C))

φipxjq :“

$

’

’

&

’

’

%

1 if i “ j ,

0 if i ‰ j .

(A) h “ 0.4 (B) h “ 0.2

(C) Basis function φj

Figure 7.16. Triangulation of B Ą Ω and Finite Element Basis Functions
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The finite element approximation uh P Vh of a weak solution u P Hs
0pΩq of (7.2) is

expressed as

uhpxq :“
n
ÿ

i“1

uiφipxq ,

where ui P R are unknowns and uh satisfies the system of n equations

C2,s

2
Epuh, φq “ λ

ż

Ω

f px, uhpxqqφjpxqdx (7.8)

for all j “ 1, ¨ ¨ ¨ , n. In order to implement the finite element scheme, we express (7.8)

in matrix notation. For a column vector, u :“ ru1, ¨ ¨ ¨ , uns
T , the left hand side of

(7.8) can be expressed as Au, where A is the nˆ n stiffness matrix corresponding to

the left hand side of (7.8) derived in [ABB17]. To compute the right hand side of

(7.8), we use the linear interpolation of f defined by Πfpx,uq :“
NT
ř

j“1

fpxj, ujqφipxq,

where Π is the projection. Then define the column vector F with components

Fi :“

ż

Ω

f px, uhpxqqφjpxqdx «

ż

Ω

Πf px, uhpxjqqφipxqdx

“

ż

Ω

n
ÿ

i“1

fpxi, uhpxjqqφipxqφjpxqdx

“

n
ÿ

i“1

fpuhpxjqq

ż

Ω

φipxqφjpxqdx .
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Therefore F “ M~f , where ~f is the vector with components defined by r~f sj :“

fpxj, uhpxjqq, and M is the standard finite element mass matrix with components

defined by

rMsi,j :“

ż

Ω

φipxqφjpxqdx .

The corresponding Jacobian matrix J of F is defined componentwise by rJsi,j “MFt,

where Ft is the diagonal matrix defined by rFtsi,j “ ftpxj, ujq for i “ j and rFtsi,j “ 0

otherwise. We rewrite (7.8) as a matrix equation

Au “ λFpuq . (7.9)

Then, with A, F, and JF defined as above, we solve (7.9) using Algorithm 7.1,

adjusted for N “ 2.

7.9. Numerical Experiments Corresponding to Theorem 5.5: N=2

Here we consider the logistic reaction term fpx, σq “ σpqpxq ´ σq with x P Ω

and σ ě 0 for several examples of q : Ω Ñ t0, 1u. We consider the case q ” 1 in Ω as

well as cases where q ” 1 on a subset of Ω with positive measure, and q “ 0 otherwise.

We note that for each fixed q, λ1 :“ λ1ps, qq decreases as s P p0, 1s decreases, where

λ1,q is the principal eigenvalue of the weighted eigenvalue problem (2.13). Recall that

when s “ 1 and q ” 1, λ1 “
π2

2
.

The bifurcation diagrams in this section are qualitatively similar to the one

dimensional case. In particular, positive solutions bifurcate from the trivial branch of

solutions at λ1 “ λ1ps, q,Ωq. In Figure 7.17 (for q ” 1), we see bifurcation diagrams

for the cases (A) s “ 1, (B) s “ 0.99, (C) s “ 0.9, (D) s “ 0.7, (E) s “ 0.5, and (F)

s “ 0.3.
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In each of Figure 7.19 (for q “ q1), Figure 7.21 (for q “ q2) and Figure 7.23 (for

q “ q3), (A) shows graph of qipi “ 1, 2, 3q and (B) s “ 0.99, (C) s “ 0.9, (D) s “ 0.7,

(E) s “ 0.5, and (F) s “ 0.3 give bifurcation diagrams. We observe that }u}8 Ñ 0`

as λÑ λ`1 and }u}8 Ñ 1´ as λÑ `8.

In each of the Figures 7.18, 7.20, 7.22, 7.24 we plot a numerical positive solution

for λ “ 11, λ “ 20, λ “ 12, and λ “ 8 corresponding to each of the bifurcation

diagrams in Figures 7.17, 7.19, 7.21, and 7.23, respectively.

To further investigate the impact of s P p0, 1q, we compute the L1 norm of

the numerical positive solutions. We observe that the L1 norm increases as s P p0, 1q

decreases in all cases considered.
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

Figure 7.17. Bifurcations Diagrams for fpσq “ σp1´ σq
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 1 0.99 0.9 0.7 0.5 0.3

}u}L1 1.339337 1.344952 1.635926 2.219306 2.685930 2.969384

Figure 7.18. Positive Solutions for fpσq “ σp1´ σq with λ “ 11 and Their L1 norms
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(A) Graph of q1pxq

(B) s “ 1 (C) s “ 0.99

(D) s “ 0.9 (E) s “ 0.7

(F) s “ 0.5 (G) s “ 0.3

Figure 7.19. q1pxq and Bifurcation Diagrams for fpx, σq “ σpq1pxq ´ σq
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 1 0.99 0.9 0.7 0.5 0.3

}u}L1 0.225890 0.228942 0.354075 0.510228 0.569967 0.574716

Figure 7.20. Positive Solutions for fpx, σq “ σpq1pxq ´ σq With λ “ 20 and Their L1

Norms
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(A) Graph of q2pxq

(B) s “ 1 (C) s “ 0.99

(D) s “ 0.9 (E) s “ 0.7

(F) s “ 0.5 (G) s “ 0.3

Figure 7.21. q2pxq and Bifurcation Diagrams for fpx, σq “ σpq2pxq ´ σq
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 1 0.99 0.9 0.7 0.5 0.3

}u}L1 0.820375 0.835800 1.034661 1.328953 1.464519 1.470581

Figure 7.22. Positive Solutions for fpx, σq “ σpq2pxq ´ σq With λ “ 25 and Their L1

Norms
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(A) Graph of q3pxq

(B) s “ 1 (C) s “ 0.99

(D) s “ 0.9 (E) s “ 0.7

(F) s “ 0.5 (G) s “ 0.3

Figure 7.23. q3pxq and Bifurcation Diagrams for fpx, σq “ σpq3pxq ´ σq
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(A) s “ 1 (B) s “ 0.99

(C) s “ 0.9 (D) s “ 0.7

(E) s “ 0.5 (F) s “ 0.3

s 1 0.99 0.9 0.7 0.5 0.3

}u}L1 0.714398 1.040305 1.317497 1.849060 2.193005 2.328553

Figure 7.24. Positive Solutions for fpx, σq “ σpq3pxq ´ σq with λ “ 15 and Their L1

Norms
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CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

8.1. Conclusions

In this dissertation, we studied nonnegative solutions of reaction-diffusion

equations involving the fractional Laplacian as the diffusion operator, with respect

to a bifurcation parameter. In particular, we focused on the combined impact of the

nonlocal diffusion operator and the behavior of the reaction terms near the origin

as well as at infinity, with regards to existence and nonexistence results. To prove

our existence results, we used the sub- and supersolution theorem (established in

Chapter III) as well as degree theory. We verified all theoretical results obtained in

Chapter IV and Chapter V with numerical experiments in Chapter VII that used the

finite element method. We gave numerical bifurcation diagrams and showed the profile

of numerical positive solutions. The effect of the nonlocal nature of the fractional

Laplacian operator p´∆qs, in particular the effect of s P p0, 1q, is apparent in the

numerical bifurcation diagrams and profiles of numerical solutions as s Ñ 0`. In

Chapter VI, we employed the moving plane method to show that every nonnega-

tive solution in a ball is positive, and hence is radially symmetric and radially decreasing
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8.2. Future Directions

Based on the theoretical results and numerical experiments discussed in this

dissertation and available literature, the following problems are of interest for future

work.

1. Extend Theorem 5.3 to bounded nonlinearities.

2. Study the nonexistence of positive solutions for superlinear semipositone prob-

lems, as observed in numerical experiments.

3. Investigate the uniqueness of positive solutions for sublinear problems for λ

large, as observed in numerical experiments.

4. Investigate the exact global bifurcation diagrams for sublinear, logistic, and

superlinear problems as observed in numerical experiments.

5. Study the stability and instability of positive solutions.

6. Investigate the monotonicity of the fractional Laplacian with respect to s P p0, 1s.

7. Extend the results established in Chapter III, Chapter IV and Chapter V to the

fractional p-Laplacian, and to the coupled systems of equations.
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APPENDIX A

PROOFS OF LEMMA 2.1 AND PROPOSITIONS 2.2, 5.1

Proof of Lemma 2.1: Let s P p0, 1q and v P Hs
0p0, 1q. Then

Epv, vq “ }v}2Hs
0p0,1q

ď }v}2HspRq

“

ż 1

0

|vpxq|2dx` Epv, vq . (A.1)

To establish the reverse inequality, we compute the integral below using v “ 0 in

Rzp0, 1q

Epv, vq “
ż

R

ż 1

0

|vpxq ´ vpyq|2

|x´ y|1`2s
dxdy `

ż

R

ż

Rzp0,1q

|vpxq ´ vpyq|2

|x´ y|1`2s
dxdy

“

„
ż 1

0

ż 1

0

`

ż

Rzp0,1q

ż 1

0

`

ż

Rzp0,1q

ż

Rzp0,1q
`

ż 1

0

ż

Rzp0,1q



|vpxq ´ vpyq|2

|x´ y|1`2s
dxdy

“

ż 1

0

ż 1

0

|vpxq ´ vpyq|2

|x´ y|1`2s
dxdy ` 2

ż 1

0

|vpyq|2
y´2s ` p1´ yq´2s

2s
dy

ě

ż 1

0

|vpyq|2ωpyqdy ,

where ωpyq :“ y´2s`p1´yq´2s

s
. Letting B :“

ˆ

min
yPp0,1q

ωpyq

˙´1

ą 0, we obtain

ż 1

0

|vpyq|2dy ď B Epv, vq . (A.2)
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Then, combining (A.1) and (A.2), we get }v}HspRq ď p1 ` Bq1{2}v}Hs
0p0,1q

as

desired. Hence, the two norms are equivalent in Hs
0p0, 1q.

Proof of Proposition 2.2: For N ě 2, parts (a)-(c) can be obtained by repeating

the argument of [MBRS16, Prop 3.1] with the L2pΩq norm replaced with the weighted

L2 norm
ş

Ω
qpxq|φpxq|2dx in constructing the eigenvalue λ1,q as the Rayleigh quotient

given by (2.14). For N “ 1, these follow from the fact that our definition of Hs
0pΩq,

via HspRNq, allows us to prove the compact embedding Hs
0pΩq ãÑ L2pΩq without

considering an extension domain (cf. proof of [DNPV12, Thm. 7.1]). Then q P L8pΩq

gives continuous embedding L2pΩq ãÑ L2ppΩq; qq, and hence the principal eigenvalue

can be constructed as the Rayleigh quotient given in (2.14).

For part (d), the C1,1 assumption on Ω is used to establish the inequalities

of (2.16). In particular, the arguments used in establishing the left inequality in

[RO16, Lem 7.3] and the right inequality in [ROS14a, Thm. 1.2] apply in this case as

well, which are independent of the dimension N .

For part (e), clearly, ď holds in (2.17). Using the definition of the infimum

and using the fact that ϕ1,q ě δs a.e. in Ω (after a suitable scaling of ϕ1,q) due to

(2.16), we find

inf
φPHs0pΩq

φěδs a.e. in Ω

Epφ, φq
ż

Ω

qpxq|φpxq|2dx

ď
Epϕ1,q, ϕ1,qq

ż

Ω

qpxq|ϕ1,qpxq|
2dx

“ λ1,q ,

which establishes ě in (2.17), completing part (e).
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Proof of Proposition 5.1 First we show 0 ă hpxq ă 8. Note that ϕ1 ą 0 in Ω and

ϕ1 ı const. Then,

hpxq “

ż

RN

pϕ1pxq ´ ϕ1pyqq
2

|x´ y|N`2s
dy

“

ż

Ω

pϕ1pxq ´ ϕ1pyqq
2

|x´ y|N`2s
dy `

ż

RN zΩ

pϕ1pxq ´ ϕ1pyqq
2

|x´ y|N`2s
dy .

If x P Ω, then ϕ1pxq ą 0, and hence

hpxq ě

ż

RN zΩ

pϕ1pxq ´ ϕ1pyqq
2

|x´ y|N`2s
dy “

ż

RN zΩ

ϕ2
1pxq

|x´ y|N`2s
dy ą 0 .

On the other hand, if x P BΩ, then ϕ1pxq “ 0, and hence

hpxq ě

ż

Ω

pϕ1pxq ´ ϕ1pyqq
2

|x´ y|N`2s
dy “

ż

Ω

ϕ2
1pyq

|x´ y|N`2s
dy ą 0 .

Therefore h ą 0 in Ω.

Next, we show h ă 8. If 0 ă s ă 1
2
, then pick α ą 0 such that 2s ` α ă 1.

Then, ϕ1 P C
2s`αpBρpxqq (see [ROS14a, Prop. 2.2],[RO16, Sec. 8]) for ρ ą 0 such that

Bρpxq ĂĂ Ω. Let x P Bρpxq.
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Then, there exists a C ą 0 such that |ϕ1pxq ´ ϕ1pyq| ď C|x ´ y|2s`α for all

y P Bρpxq. Therefore,

hpxq “

ż

RN

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy

“

ż

Bρpxq

rϕ1pxq ´ ϕ1pyqsrϕ1pxq ´ ϕ1pyqs

|x´ y|N`2s
dy `

ż

RN zBρpxq

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy

ď

ż

Bρpxq

C|x´ y|2s`αr}ϕ1}8 ` }ϕ1}8s

|x´ y|N`2s
dy `

ż

RN zBρpxq

r}ϕ1}8 ` }ϕ1}8s
2

|x´ y|N`2s
dy

“ 2C}ϕ1}8

ż

Bρpxq

1

|x´ y|N´α
dy ` 4}ϕ}28

ż

RN zBρpxq

1

|x´ y|N`2s
dy

“ 2C}ϕ1}8

ż

Bρp0q

1

|z|N´α
dz ` 4}ϕ1}

2
8

ż

RN zBρp0q

1

|z|N`2s
dz ,

where the last equality holds by the change of variable z “ y ´ x. Converting to polar

coordinates, the first integral is finite since 1´ α ă 1 implies

ρ
ż

0

1

rN´α
rN´1dr “

ρ
ż

0

1

r1´α
dr ă 8 .

Similarly, the second integral is finite since 1` 2s ą 1 implies

8
ż

ρ

1

rN`2s
rN´1dr “

8
ż

ρ

1

r1`2s
dr ă 8 .

Therefore, hpxq ă 8 for all x P Ω and 0 ă s ă 1
2
. Now let 1

2
ď s ă 1. We first show

that ϕ1 is Lipschitz continuous in Bρ ĂĂ Ω.

147



Without loss of generality, we assume that 0 ă ρ ď 1. Then, for x, y P Bρ with

x ‰ y,

|ϕ1pxq ´ ϕ1pyq| “
|ϕ1pxq ´ ϕ1pyq|

|x´ y|s
|x´ y|s

ď max
x,yPΩ
x‰y

"

|ϕ1pxq ´ ϕ1pyq|

|x´ y|s

*

|x´ y|s

ď L|x´ y| ,

where L :“ max
x,yPΩ
x‰y

!

|ϕ1pxq´ϕ1pyq|
|x´y|s

)

ă 8 since ϕ1 P C
spΩq. Thus, ϕ1 is Lipshitz continuous

in Bρ. Now we show hpxq ă 8 for 1
2
ď s ă 1. Using the discussion above, for x P Ω,

we have

hpxq “

ż

Bρpxq

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy `

ż

RN zBρpxq

rϕ1pxq ´ ϕ1pyqs
2

|x´ y|N`2s
dy

ď L

ż

Bρpxq

|x´ y|2

|x´ y|N`2s
dy `

ż

RN zBρpxq

r}ϕ1}8 ` }ϕ1}8s
2

|x´ y|N`2s
dy

ď L

ż

Bρpxq

1

|x´ y|N`2s´2
dy ` 4}ϕ1}

2
8

ż

RN zBρpxq

1

|x´ y|N`2s
dy . (A.3)

Letting z “ y ´ x and using polar coordinates, the first integral in (A.3) is

finite since 1
2
ď s ă 1 implies 1´ 2s ě 0, and hence,

ρ
ż

0

1

rN`2s´2
rN´1dr “

ρ
ż

0

r1´2sdr ă 8 .

148



Similarly, the second integral in the right hand side of (A.3) is finite since 1` 2s ą 1

implies

8
ż

ρ

1

rN`2s
rN´1dr “

8
ż

ρ

1

r1`2s
dr ă 8 .

Therefore, hpxq ă 8 for all x P Ω and s P p0, 1q. Finally, we show that there exists

γ ą 0 such that hpxq ą γ in Ω. Suppose not. Then there exists xn Ă Ω such that

xn Ñ x0 P Ω with hpxnq Ñ 0. Letting

zn :“
rϕ1pxnq ´ ϕ1pyqs

2

|xn ´ y|N`2s

be a sequence of nonnegative measurable functions, we get hpxnq “
ş

RN
zn dy . By

Fatou’s lemma, lim inf zn is measurable and hpx0q ď lim inf
ş

RN
zn dy “ lim inf hpxnq “

0 , a contradiction to the fact that hpxq ą 0 on Ω. Therefore, there exists γ ą 0 such

that γ ă hpxq ă `8 in Ω. This completes the proof of Proposition 5.1.
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APPENDIX B

PROOFS OF THEOREMS 5.1 - 5.2

Proof of Theorem 5.1 Since fp0q ą 0, it follows that u ” 0 P Hs
0pΩq is a weak

subsolution of (5.1). Now let λ ą 0 be fixed and e P Hs
0pΩq be the positive weak

solution of (2.9). Then as in the proof of Theorem 5.3, there exists Mλ ą 0 such that

u :“Me is a weak supersolution of (5.1) for all M ěMλ.

Clearly u “ Me ě 0 “ u a.e. in Ω. Hence, by Theorem 3.1, there exists a

positive weak solution u of (5.1) such that 0 ď u ď u a.e. in Ω for all λ ą 0. Moreover,

u ı 0 since f ą 0. Thus 0 ă u in Ω by Proposition 2.5. This completes the proof of

Theorem 5.1.

Proof of Theorem 5.2 Let λ ą λ1

f 1p0q
be fixed, where λ1 ą 0 is the principal eigenvalue

of (2.11) and 0 ă ϕ1 P H
s
0pΩq is the corresponding eigenfunction. Since fp0q “ 0,

u ” 0 is a solution and hence a subsolution of (5.1). So, to complete the proof, we

must construct a positive weak subsolution. We show that an appropriate constant

multiple of ϕ1 is a weak subsolution of (5.1). We find this constant by analyzing the

function Θpσq :“ λ1σ ´ λfpσq for σ ě 0. Clearly Θp0q “ 0 and Θ1pσq “ λ1 ´ λf
1pσq.

Therefore, Θ1p0q ă 0, since λ ą λ1

f 1p0q
, and hence, there exists θpλq ą 0 such that

Θpσq ă 0 for any σ P p0, θpλqq.

We show that u :“ mϕ1 P H
s
0pΩq is a positive weak subsolution of (5.1) for

any m P p0,mλq, where mλ :“ θpλq
}ϕ1}8

.
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Indeed, by using the weak formulation of the eigenvalue problem (2.11) and

the discussion above, u satisfies

Epu, φq “ mEpϕ1, φq

“ λ1

ż

Ω

mϕ1pxqφpxqdx

ď λ

ż

Ω

fpmϕ1qφpxqdx

“ λ

ż

Ω

fpuqφpxqdx

for all φ P Hs
0pΩq with φ ě 0 in Ω. Hence for any λ ą λ1

f 1p0q
and any m P p0,mλq,

u “ mϕ1 is a positive weak subsolution of (5.1).

As in the proof of Theorem 5.3, for any λ ą λ1

f 1p0q
, there exists Mλ ą 0 such that

for M ě Mλ, the function u “ Me P Hs
0pΩq is a weak supersolution of (5.1). Using

the left estimate of e in (2.10) and the right estimate of ϕ1 in (2.12), and by choosing

either M sufficiently large or m sufficiently small, we get u “ mϕ1 ďMe “ u a.e. in

Ω. Hence, by Theorem 3.1, (5.1) has a positive weak solution u for any λ ą λ1

f 1p0q
such

that u ď u ď u a.e. in Ω. This completes the proof of Theorem 5.2.
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