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The focus of this thesis is to study long term solutions for classes of steady

state reaction diffusion equations. In particular, we study reaction diffusion models

arising in mathematical ecology. We study how the patch size affects the existence,

nonexistence, multiplicity, and uniqueness of the steady states. Our focus is also to

study how various forms of density dependent emigrations at the boundary, and the

effective matrix hostility, affect steady states. These considerations lead to the study

of various forms of nonlinear boundary conditions. Further, they lead to the study of

reaction diffusion models where a parameter (related to the patch size) gets involved

in the differential equation as well as the boundary conditions.

We establish analytical results in any dimension, namely, establish existence,

nonexistence, multiplicity, and uniqueness results. Our existence and multiplicity

results are achieved by a method of sub-supersolutions and uniqueness results via

comparison principles and a-priori estimates.

Via computational methods, we also obtain exact bifurcation diagrams de-

scribing the structure of the steady states. Namely, we obtain these bifurcation

diagrams via a modified quadrature method and Mathematica computations in the

one-dimensional case, and via the use of finite element methods and nonlinear solvers

in Matlab in the two-dimensional case.

This dissertation aims to significantly enrich the mathematical and computa-

tional analysis literature on reaction diffusion models arising in ecology.
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CHAPTER I

INTRODUCTION

Let Ω0 ⊂ RN (for N = 2, 3) be a bounded domain (see Figure 1) with a smooth

boundary ∂Ω0 or Ω0 = (0, l) for some l > 0.

Figure 1. The Domain Ω0.

We assume that the diffusion rate in the habitat Ω0 is D. In the matrix

(exterior to Ω0) ΩN := RN \ Ω0, we assume that the diffusion rate is D0 and the

death rate is S0. We further assume that the population exhibits density dependent

emigration (DDE) on the boundary ∂Ω0. We denote the probability of the population

staying in Ω0 when it reaches the boundary by α(u) (here u is the population density

of the species living in the habitat).
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Then the resulting time dependent model is (see [CFG+19], [CGS19], [GMPS19],

[GMRS18], and [LAW79]):


ut = D∆u+ rf(u); x ∈ Ω0, t > 0,

Dα(u)∂u
∂η

+
√
S0D0

k
[1− α(u)]u = 0; x ∈ ∂Ω0, t > 0,

u(0, x) = u0(x); x ∈ Ω0,

with the corresponding steady state equation:

 −∆u = r
D
f(u); x ∈ Ω0,

Dα(u)∂u
∂η

+
√
S0D0

k
[1− α(u)]u = 0; x ∈ ∂Ω0,

or equivalently


−∆u = rl2

D
f(u); x ∈ Ω,

∂u
∂η

+
√
S0D0l
kD

[
1−α(u)
α(u)

]
u = 0; x ∈ ∂Ω,

(1.1)

where ∆u := div(∇u) is the Laplacian operator of u, r > 0 is the patch intrinsic

growth rate, the reaction term f : [0,∞) → R is a continuous function representing

the product of u and the per-capita growth rate, ∂u
∂η

is the outward normal derivative

of u, Ω is a domain with unit measure such that Ω0 := {lx | x ∈ Ω}, and κ > 0

is a parameter related to the movement behavior of the species (see [CGS19] and

[GMRS18]). Let λ := rl2

D
and γ :=

√
S0D0

k
√
rD

. Then (1.1) reduces to

 −∆u = λf(u); x ∈ Ω,

∂u
∂η

+ γ
√
λg(u)u = 0; x ∈ ∂Ω,

(1.2)

2



where λ > 0 is a domain scaling parameter, γ > 0 is the effective matrix hostility,

and

g(s) :=
1− α(s)

α(s)
. (1.3)

Throughout this thesis, by a solution we mean a function u ∈ C2(Ω) ∩ C1(Ω)

that solves (1.2). We note that in the recent history there has been considerable

interest in elliptic boundary value problems where a parameter is involved in the

differential equation as well as the boundary conditions (see [CGS19], [CFG+19],

[FSSS19], [FMS20], [FGM+], [GMPS19], and [GMRS18]). In this thesis, we enrich

this study for problems with linear and nonlinear boundary conditions.

Recently, in [GMRS18], the authors established an exact bifurcation diagram

(see Figure 3) for positive solutions to the boundary value problem:

−∆u = λu(1− u); x ∈ Ω,

∂u
∂η

+ γ
√
λu = 0; x ∈ ∂Ω,

(1.4)

where, as noted earlier, γ > 0 is the effective matrix hostility and λ > 0 is a domain

scaling parameter. Such a steady state reaction diffusion equation arises in modeling

problems in ecology (see [CC06], [CGS19], [FSSS19], [GMRS18], and [LAW79]). Note

that when α(s) = 1
2
and f(s) = s(1 − s) in (1.2) we get the model in (1.4) with

linear boundary conditions. Corresponding emigration (1 − α(s)) is given in Figure

2. Here, f represents a scaled logistic growth, with the scaled per-capita growth rate

f̃(s) = f(s)
s

= 1− s being a linearly decreasing function.

3



Figure 2. Density Independent Emigration 1−α(s) and the Scaled Per-capita Growth

Rate f̃ .

Here, the authors established the following exact description of the bifurcation

diagram of positive steady states (see Figure 3):

Theorem 1.1. Let γ > 0 be given. Then,

(a) if λ > E1(γ, 1), then the trivial solution of (1.4) is unstable and there exists a

unique positive solution uλ to (1.4) which is globally asymptotically stable. Further-

more, ‖uλ‖∞ → 0+ as λ→ E1(γ, 1)+ and ‖uλ‖∞ → 1 as λ→∞,

(b) if λ ≤ E1(γ, 1), then the trivial solution of (1.4) is globally asymptotically stable

and there is no positive solution to (1.4).

Here, E1(γ,D) > 0 is the principal eigenvalue of the eigenvalue problem:

 −∆φ = Eφ; x ∈ Ω,

∂φ
∂η

+ γ
√
EDφ = 0; x ∈ ∂Ω.

(1.5)

Note that the existence of E1(γ, 1) > 0 was first established in [GMRS18]. For

convenience of the reader we give the details here again.
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Figure 3. Exact Bifurcation Diagram for (1.4).

In [RR19], the authors studied the eigenvalue problem:

−∆φ = Bφ; x ∈ Ω,

∂φ
∂η

= κφ; x ∈ ∂Ω,

for any κ ∈ R. They proved that for each κ, the principal eigenvalue B(κ) exists,

and the eigencurve B(κ) is Lipschitz continuous, strictly decreasing, and concave.

Further, B(0) = 0 and lim
κ→−∞

B(κ)→ A1, where A1 is the principal eigenvalue of

−∆φ = Aφ; x ∈ Ω,

φ = 0; x ∈ ∂Ω.
(1.6)

In the case of (1.5), treating κ = −γ
√
E (or E = κ2

γ2 ), we see that the principal

eigenvalue E1(γ, 1) of (1.5) is given by E1(γ, 1) = C where (−γ
√
C,C) with C > 0 is

the point of intersection of the curves B(κ) and κ2

γ2 as shown in Figure 4.
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Figure 4. Eigencurve B(κ) and Principal Eigenvalue of (1.5).

Next, in [GMPS19], the authors established existence, multiplicity, and unique-

ness results for positive solutions to the following steady state reaction diffusion equa-

tion with a scaled logistic reaction term and U-shaped density dependent emigration

on the boundary:

 −∆u = λu(1− u); x ∈ Ω,

∂u
∂η

+ γ
√
λ(A− u)2u = 0; x ∈ ∂Ω,

(1.7)

where A ∈ (0, 1) is a constant. Note that taking α(s) = 1
[1+(A−s)2]

and f(s) =

s(1 − s) in (1.2) gives the model in (1.7) with nonlinear boundary conditions. The

corresponding emigration (1− α(s)) is given in Figure 6 (we note here the minimum

emigration is zero). Namely, the authors in [GMPS19] established (see Figure 7):
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Theorem 1.2. Let γ > 0 and Γ := {v ∈ C2(Ω) ∩ C1(Ω) | v(x) ∈ [A, 1] ∀x ∈ Ω}. For

each λ > 0 (1.7) has a positive solution u1,λ ∈ Γ and this solution is unique. Further,

for λ ∈ (0, E1(γ,A2)), (1.7) has another positive solution u2,λ with u2,λ /∈ Γ, where

E1(γ,A2) > 0 is the principal eigenvalue of the eigenvalue problem:

 −∆φ = Eφ; Ω,

∂φ
∂η

+ γA2
√
Eφ = 0; ∂Ω.

Theorem 1.3. Let γ � 1. There exists δγ > E1(γ,A2) so that for λ = δγ, (1.7) has

at least two positive solutions ui,λ with ui,λ /∈ Γ for i = 2, 3.

Density dependent emigration on the boundary has been observed among sev-

eral species including the blue footed booby (see Figure 5).

Figure 5. Blue-footed Booby Which Exhibits Density Dependent Emigration. Source:

www.shutterstock.com
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Figure 6. U-shaped Density Dependent Emigration with a Zero Minimum Emigration.

Figure 7. Bifurcation Diagrams for (1.7).

Our focus in this thesis is to enrich this study for ecological models with linear

boundary conditions (α(u) constant) as well as with nonlinear boundary conditions

(emigration at the boundary dependent on density). First, we will focus on extending

the results in [GMRS18] for more general reaction terms and more general involvement

of the parameter λ on the boundary conditions. Further, we will discuss an application

of our results to a model where the reaction term is scaled logistic growth with

grazing. Our second focus will be to extend the study in [GMPS19] to a biologically

more relevant and challenging case when the minimum emigration in a U-shaped
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density dependent emigration is positive. In our third focus, we study a scaled weak

Allee growth model (the scaled per-capita growth rate is positive and increasing for

s ≈ 0 as represented in Figure 8) with a U-shaped density dependent emigration on

the boundary. Our fourth focus will be to study a scaled weak Allee growth model

arising in ecology in the one-dimensional setting. Here, we consider various forms of

density dependent emigration; namely, we consider density independent emigration

(DIE), positive density dependent emigration (+DDE), negative density dependent

emigration (-DDE), U-shaped density dependent emigration (UDDE), and hump-

shaped density dependent emigration (hDDE) (see Figure 9). See [CC07], [CCY20],

[CCY18], [CGS19], [FOP06], [HGSC20], [LMVL09], and [SB11] for studies on density

dependent emigration on the boundary. In focuses 1 - 4, we will also obtain exact

bifurcation diagrams of the steady states when N = 1. Finally, in our fifth focus, we

will numerically study and obtain exact bifurcation diagrams of the steady states for

certain models for the case when N = 2.

Figure 8. Scaled Per-capita Growth Rate of a Weak Allee Growth.
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Figure 9. Emigration Forms.

1.1 Focus 1

Motivated by the study in [GMRS18], we first consider boundary value prob-

lems of the form: 
−∆u = λf(u); x ∈ Ω,

∂u
∂η

+ µ(λ)u = 0; x ∈ ∂Ω,

(1.8)

where f ∈ C2([0, r0)) with 0 < r0 ≤ ∞. µ ∈ C([0,∞)) is strictly increasing such

that µ(0) ≥ 0. We establish nonexistence, existence, multiplicity, and uniqueness

of positive solutions of (1.8) for a class of reaction terms f satisfying f(0) = 0 and

f ′(0) = 1.

We first introduce hypotheses that we use to establish our results.
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(H1) if r0 < ∞, then f ∈ C2([0, r0]) with f(r0) = 0 and f(s) ≤ 0 for s ∈ (r0,∞),

while if r0 =∞, then lim
s→∞

f(s) > 0 and lim
s→∞

f(s)
s

= 0 (see Figure 11),

(H2) there exists κ0 ∈ −µ((0,∞)) such that (κ − κ0)(B(κ) − µ−1(−κ)) > 0 for

κ ∈ −µ((0,∞)) \ {κ0},

Figure 10. A Function µ Satisfying (H2).

Remark. Note that E1,µ = B(κ0) is the principal eigenvalue of

 −∆φ = Eφ; x ∈ Ω,

∂φ
∂η

+ µ(E)φ = 0; x ∈ ∂Ω,
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(H3) there exist a > 0 and b > 0 such that a < b < r0
CN

and a
f∗(a)

/ b
f(b)

>
2NCN‖vµb‖∞

R2 ,

where f ∗(s) := max
r∈[0,s]

f(r), CN := (N+1)N+1

2NN (> 1), µb := µ
(

2bNCN
R2f(b)

)
, R is the

radius of the largest inscribed ball on Ω, and vµb is the unique solution of

−∆v = 1; Ω, ∂v
∂η

+ µbv = 0; ∂Ω,

(H4) there exist r1 ∈ (0, b) and r2 ∈ (bCN , r0) such that f is nondecreasing on (r1, r2),

(H5) E1,µ <
2bNCN
R2f(b)

.

We discuss existence, multiplicity, and uniqueness of positive solutions uλ (uλ > 0;

Ω).

(a) r0 <∞ (b) r0 =∞

Figure 11. Graphs of f .
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We establish:

Theorem 1.4. Let (H1) − (H2) hold and f ′′ < 0 on [0, r0). Then (1.8) has no

positive solution uλ for λ < E1,µ and a unique positive solution uλ for λ > E1,µ

such that ‖uλ‖∞ → 0 as λ → E+
1,µ and ‖uλ‖∞ → r0 as λ → ∞ (See Figure 12 for

bifurcation diagrams).

(a) r0 <∞ (b) r0 =∞

Figure 12. Bifurcation Diagrams of (1.8) When f ′′ < 0.

Remark. An application of this theorem can be found in [GMRS18] where the authors

studied the case when f(s) = s(1− s) and µ(λ) = γ
√
λ.

Next we establish the occurrence of an S-shaped bifurcation curve (at least one solu-

tion for all λ > E1,µ and three solutions for a certain range of λ) for classes of f which

are not concave for all s ∈ [0, r0). Note when f ′′(s) < 0 on [0, r0), s
f(s)

is increasing

on (0, r0) and there can exist at most one positive solution. We consider f such that

there exist a > 0 and b > 0 such that a < b < r0 and a
f(a)

/ b
f(b)
� 1 (see Figure 13)

and establish:
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Figure 13. A Function s
f(s)

Satisfying a
f(a)

/ b
f(b)
� 1.

Theorem 1.5. Let (H1)−(H5) hold. Then (1.8) has at least one positive solution for

all λ > E1,µ and three positive solutions for λ ∈
(

2bNCN
R2f(b)

,min
{

a
f∗(a)‖vµb‖∞

, 2r2N
f(b)R2

})
(See Figure 14 for bifurcation diagrams).

(a) r0 <∞ (b) r0 =∞

Figure 14. Occurrence of an S-shaped Bifurcation Curve for 1.8.
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Now we provide an application of Theorem 1.4 and Theorem 1.5. Consider

the steady state scaled logistic growth model with grazing in a spatially homogeneous

ecosystem (see Figure 15):

−∆u = λf(u) = λ
(
u− u2

K
− Mu2

1+u2

)
; Ω,

∂u
∂η

+
√
λu = 0; ∂Ω,

(1.9)

where K > 0, 0 < M < 2, and Ω is a bounded domain in RN ; N ≥ 1 with smooth

boundary ∂Ω or Ω = (0, 1). We first note that when K � 1, f(s) = s− s2

K
− Ms2

1+s2
has

a unique zero r0 (see [LSS11]). Here, we note that µ(s) =
√
s.

Figure 15. Grazing. Source: https://www.shutterstock.com

We prove following two theorems for this model:

Theorem 1.6. Let KM < 4. Then (1.9) has no positive solution uλ for λ < E1,µ

and a unique positive solution uλ for λ > E1,µ such that ‖uλ‖∞ → 0 as λ→ E+
1,µ and

‖uλ‖∞ → r0 as λ→∞.
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Theorem 1.7. Let Ω := BR (ball centered at 0 with radius R) ⊂ RN ; N = 1, 2, 3. If

M ≈ 2 and K � 1, then (1.9) has at least one positive solution for all λ > E1,µ and

three positive solutions for a certain range of λ.

Finally, we consider the one-dimensional model:


−u′′ = λ

(
u− u2

K
− Mu2

1+u2

)
; x ∈ (0, 1),

−u′(0) +
√
λu(0) = 0,

u′(1) +
√
λu(1) = 0.

(1.10)

Here, for various values of K andM , we provide exact bifurcation diagrams for (1.10)

via Theorem 2.3, namely, equations (2.3) and (2.4) in Chapter II and Mathematica

computations. In particular, for certainK andM values, we show that the bifurcation

diagrams of (1.10) are in fact exactly s-shaped. See Figure 17 for the exact bifurcation

diagram for the case when K = 30 and M = 9
5
. For more bifurcation diagrams, see

Chapter III.

Remark. Via Theorem 1.19, we note that all positive solutions of (1.10) are symmetric

about x = 1
2
(see and Figure 16).

Figure 16. A Solution of (1.10).
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(a) f(s) = f2(s) = s− s2

30 −
9s2

5+5s2
(b) Exact Bifurcation Diagram for (1.10)

When f = f2

Figure 17. Graph of f = f2 and the Corresponding Exact Bifurcation Diagram for

(1.10) When µ(s) =
√
s.

1.2 Focus 2

Motivated by the study in [GMPS19], and to extend the study to a biologically

more relevant emigration (positive minimum emigration) on the boundary, here we

study the scaled logistic growth model:

 −∆u = λu(1− u); x ∈ Ω,

∂u
∂η

+ γ
√
λ[(A− u)2 + ε]u = 0; x ∈ ∂Ω,

(1.11)

with U-shaped density dependent emigration on the boundary (see Figure 18), where

ε > 0 and A ∈ (0, 1) are parameters. Note that when α(s) = 1
1+(A−s)2+ε

; s ∈ [0, 1]

and f(s) = s(1− s), (1.2) becomes (1.11).

Note that the minimum emigration is ε
1+ε

. In [GMPS19] the authors studied

the case when ε = 0. However, ecologists have noted that, in general, the minimum

emigration on the boundary is rarely zero (ε > 0). Here, we focus on the case when
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ε > 0, and establish nonexistence, existence, uniqueness, and multiplicity results for

(1.11).

Let E1(γ,D) be as described in (1.5). We establish the following results:

Theorem 1.8. Let γ > 0 and ε > 0. There is no positive solution of (1.11) for

λ ∈ (0, E1(γ, ε)].

Theorem 1.9. Let γ > 0 and ε > 0. Then (1.11) has a positive solution for λ >

E1(γ,A2 + ε).

Figure 18. U-shaped Density Dependent Emigration with a Positive Minimum Emi-

gration.

Next, we recall that for γ > 0 fixed, the boundary value problem:

 −∆w = λw(1− w); x ∈ Ω,

∂w
∂η

+ 2γ
√
λ(A− w)2w = 0; x ∈ ∂Ω,

(1.12)

has a positive solution wλ for λ > 0 such that A < wλ(x) ≤ 1 for x ∈ Ω, and this

solution is unique (see [GMPS19]). We also note that wλ is continuous with respect
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to λ and E1(γ,A2) < E1(γ,A2 + ε) < E1(γ, 2A2) for ε ∈ (0, A2) (see [GMRS18]). Let

w∗λ := min
x∈∂Ω

wλ(x) and δγ := min
λ∈[E1(γ,A2),E1(γ,2A2)]

(w∗λ − A)2.

We establish the following result and remark which ensures a patch-level Allee effect.

Theorem 1.10. Let γ > 0, ε∗γ := min{δγ, A2}, and Γ := {u ∈ C2(Ω)∩C1(Ω) | u(x) ∈

[A, 1] for x ∈ Ω}. For each ε ∈ (0, ε∗γ), there exists λ∗ > 0 such that, if λ ∈

(λ∗, E1(γ,A2 + ε)), then (1.11) has at least two positive solutions u∗ and u∗ such

that u∗ ∈ Γ and u∗ 6∈ Γ. In particular, in Γ, (1.11) has a unique solution and this

solution is u∗ (see Figure 19 for possible bifurcation diagrams).

Figure 19. Bifurcation Diagrams for (1.11).

Remark. Note that the time dependent problem related to (1.11) is of the form:


ut = 1

λ
∆u+ u(1− u); x ∈ Ω, t > 0,

∂u
∂η

+ γ
√
λ[(A− u)2 + ε]u = 0; x ∈ ∂Ω, t > 0,

u(0, x) = u0(x); x ∈ Ω.

(1.13)

A solution u of (1.11) is called stable if for every ε > 0 there exists δ > 0 such that

‖v(t, .) − u‖∞ < ε for t > 0 whenever ‖u0 − u‖∞ < δ, where v(t, x) is a solution of

(1.13).
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In addition, if there exists δ̃ > 0 such that when ‖u0 − u‖∞ < δ̃, ‖v(t, .) −

u‖∞ −→ 0 as t −→ ∞, then u is called asymptotically stable. The solution u is

called unstable if it is not stable. We note that the solution u∗ ∈ Γ in Theorem

1.10 is asymptotically stable (see Theorem 6.7 of Chapter 5 in [Pao92]). We also

note that the trivial solution of (1.11) is asymptotically stable for λ < E1(γ,A2 + ε)

and unstable for λ > E1(γ,A2 + ε) following the proof of Theorem 1.8 in [GS17].

In particular, when λ ∈ (λ∗, E1(γ,A2 + ε)), if ‖u0‖∞ ≈ 0, then ‖v(t, .)‖∞ −→ 0 as

t −→ ∞, while if ‖u0 − u∗‖∞ ≈ 0, then ‖v(t, .) − u∗‖∞ −→ 0 as t −→ ∞. Hence,

there is a patch-level Allee effect for λ ∈ (λ∗, E1(γ,A2 + ε)). See also [CC07] where

the authors show existence of a patch-level Allee effect in a logistic growth model

but with negative density dependent emigration. Note that with Dirichlet boundary

conditions, a patch-level Allee effect does not occur for a logistic growth model. For

more details on the discussion of a patch-level Allee effect, see [SS06].

Next we consider the case, when Ω = (0, 1). In this case, (1.11) reduces to the

two-point boundary value problem:


−u′′ = λu(1− u); x ∈ (0, 1),

−u′(0) + γ
√
λ[(A− u(0))2 + ε]u(0) = 0,

u′(1) + γ
√
λ[(A− u(1))2 + ε]u(1) = 0.

(1.14)

We establish conditions that ensure the symmetry of positive solutions of (1.14) (see

Figure 20). Namely, we prove:

Theorem 1.11. If ε > A2

3
then all positive solutions of (1.14) are symmetric about

x = 1
2
.

Theorem 1.12. If γ � 1 or γ ≈ 0 then all positive solutions of (1.14) are symmetric.
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Finally, via Theorem 2.3, namely, equations (2.3) and (2.4) in Chapter II, for

various values of A, ε, and γ, we obtain exact bifurcation diagrams for (1.14) via

Mathematica computations. We also provide the evolution of bifurcation diagrams

of (1.14) with respect to the effective matrix hostility parameter γ (see Figure 21),

and we demonstrate the occurrence of non-symmetric solutions. Further, when ε ≈ 0,

we note that the shapes of the bifurcation diagrams predicted in Theorem 1.10 are

in fact exact (see Figure 21). Here, we provide a sample of bifurcation diagrams for

(1.14) (see Figures 21 and 22). For more bifurcation diagrams, see Chapter IV.

Figure 20. An Asymmetric Positive Solution of (1.14) (left) and a Symmetric Positive

Solution of (1.14) (right).
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Figure 21. Evolution of Bifurcation Diagrams for (1.14) as γ Varies When ε = 0.1

and A = 0.5.

1.3 Focus 3

Here, we study the weak Allee growth model:

 −∆u = λf(u); x ∈ Ω,

∂u
∂η

+ γ
√
λ[(A− u)2 + ε]u = 0; x ∈ ∂Ω,

(1.15)

with U-shaped density dependent emigration on the boundary, where ε > 0 is a

parameter and f(s) := 1
a
s(s + a)(1 − s) represents a scaled weak Allee effect type

growth of the population with a ∈ (0, 1) a parameter measuring the strength of

the weak Allee effect (in the sense that per-capita growth rate is increasing for s ∈

[0, 1−a
2

)). See [CC07], [CBG08], [Gro98], [JBR07], [Ama98], and [SS06] for studies on

weak Allee models.
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(a) γ = 1 (b) γ = 3

(c) γ = 6 (d) γ = 10

(e) γ = 16 (f) γ = 23

(g) γ = 25 (h) γ =∞

Figure 22. Bifurcation Diagrams for (1.14) for Several Values of γ, When ε = 0.01

and A = 0.8. Symmetric Solutions are in Red and Non-symmetric Solutions are in

Green. 23



Let E1 := E1(γ,A2 + ε). Our first task is to determine whether our solution

set has Property A, by which we mean:

Property A

There exists λ(A, γ, ε) < E1 such that (1.15)

(1) has at least one positive solution uλ for λ ≥ λ such that ‖uλ‖∞ −→ 1 as

λ −→∞,

(2) has at least two positive solutions for λ ∈ [λ,E1), and

(3) has no positive solutions for λ ≈ 0 (see Figure 23).

Clearly when Property A is satisfied the solution set exhibits a patch-level

Allee effect for λ ∈ [λ,E1). We prove:

Figure 23. Bifurcation Diagram for the Solution Set of (1.15) Showing a Patch-level

Allee Effect for λ ∈ [λ,E1).
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Theorem 1.13. Let A ∈ (0, 1), ε > 0, and γ > 0. Then the solution set of (1.15)

has Property A.

Next we establish a multiplicity result for a range of λ to the right of E1. Let A1 be

as in (1.6). We prove:

Theorem 1.14. Let λ̃ > A1. Then there exists γ∗(λ̃) and, for γ > γ∗, ε∗(λ̃, γ) > 0

such that (1.15) has at least three positive solutions for λ ∈ [E1, λ̃] when ε < ε∗ (see

Figure 24).

Finally, we study the one-dimensional model:


−u′′ = λ 1

a
u(u+ a)(1− u); x ∈ (0, 1),

−u′(0) + γ
√
λ[(A− u(0))2 + ε]u(0) = 0,

u′(1) + γ
√
λ[(A− u(1))2 + ε]u(1) = 0,

(1.16)

using the quadrature method described in Theorem 2.3. We use equations (2.3) and

(2.4) in Chapter II to obtain exact bifurcation diagrams for (1.16) via Mathematica

computations. We also provide the evolution of bifurcation diagrams with respect to

the effective matrix hostility parameter γ.

Remark.

(1) We note that the Theorems 1.11 - 1.12 remain valid for (1.16), as well.

(2) When ε = 0.084, the hypothesis of Theorem 1.11 is satisfied and hence all

positive solutions are symmetric. In this case, we note that the exact bifurcation

diagram predicted via Theorem 1.13 occurs for each γ (see Figure 25).

(3) When ε = 0.01, the hypothesis of Theorem 1.11 is not satisfied. In this case,

we note that both symmetric and non-symmetric solutions occur for certain
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γ values and the bifurcation diagrams corresponding to all solutions are more

than that was predicted via Theorem 1.14 (see Figure 26).

Figure 24. Bifurcation Diagram for the Solution Set of (1.15) for γ � 1 and ε ≈ 0.

Here, we provide a sample of bifurcation diagrams for (1.16) (see Figures 25

and 26). For more bifurcation diagrams, see Chapter V.
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Figure 25. Evolution of the Bifurcation Diagrams for (1.16) as γ Varies, When ε =

0.084 and A = 0.5.

1.4 Focus 4

We study the one dimensional weak Allee growth model:


ut = 1

λ
uxx + f(u); t > 0, x ∈ Ω0,

∂u
∂η

+
√
λγg(u)u = 0; t > 0, x ∈ ∂Ω0,

u(0, x) = u0(x); x ∈ Ω0,

(1.17)

with corresponding steady state equation:


−u′′ = λf(u); x ∈ (0, 1),

−u′(0) +
√
λγg(u(0))u(0) = 0,

u′(1) +
√
λγg(u(1))u(1) = 0,

(1.18)
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(a) γ = 6 (b) γ = 20

(c) γ = 30 (d) γ = 40

(e) γ = 60 (f) γ = 70

(g) γ = 120 (h) γ =∞

Figure 26. Bifurcation Diagrams for (1.16) for Several Values of γ, When ε = 0.01

and A = 0.5. Symmetric Solutions are in Red and Non-symmetric Solutions are in

Green. 28



where Ω0 = (0, 1), g is as defined in (1.3), and f is as defined in (1.15). Here,

we treat five different forms of emigration. Namely, we study density independent

emigration (DIE), positive density dependent emigration (+DDE), negative density

dependent emigration (-DDE), U-shaped density dependent emigration (UDDE), and

hump-shaped density dependent emigration (hDDE).

We next choose prototypical functions for the five most common DDE forms

reported in the recent literature review in [HGSC20].

In order to remain consistent in choosing these forms, we employ a single α(u)

template and it’s mirror image, namely

α1(u) :=
M1

2M1 +m(u)
,

α2(u) := 1− α1(u) =
M1 +m(u)

2M1 +m(u)
, (1.19)

where M1 > 0 and m(u) ≥ 0 with m(0) = 0 are appropriately chosen to model a

given DDE form. Note that the emigration rate at zero will be the same across all

forms, i.e. 1 − αi(0) = 0.5, i = 1, 2. Table 1 lists the exact m(u)’s that were chosen

to model the five DDE forms (also, see Figure 27).

We state and prove several mathematical results that will aid in the study of

the model (1.17). First, we consider the stability of the trivial steady state, u(x) ≡ 0,

of (1.17). Let E1(γ, 1) be the principal eigenvalue of the boundary value problem:


−φ′′ = Eφ; x ∈ (0, 1),

−φ′(0) + γ
√
Eg(0)φ(0) = 0,

φ′(1) + γ
√
Eg(0)φ(1) = 0.

(1.20)
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Figure 27. Graph of Density vs Emigration Probability for DIE, +DDE, -DDE,

UDDE, and hDDE.

Table 1. Listing of the Five DDE Forms. The Parameter Combination M1M2 > 0

Controls the Shape of the DDE Form by Affecting the Concavity/convexity of the

Form, Whereas, M3 ∈ (0, 1) is the Location of the Minimal and Maximal Emigration

Probabilities for UDDE and hDDE, Respectively.

DDE Form m(u) α(u) g(u) Restrictions
DIE m(u) ≡ 0 0.5 1 none

+DDE m(u) = u2

M2

M1M2

2M1M2+u2
M1M2+u2

M1M2
none

-DDE m(u) = u2

M2

M1M2+u2

2M1M2+u2
M1M2

M1M2+u2 none

UDDE m(u) = u2−2M3u
M2

M1M2

2M1M2+u2−2M3u
M1M2+u2−2M3u

M1M2
M1M2 > M2

3

hDDE m(u) = u2−2M3u
M2

M1M2+u2−2M3u
2M1M2+u2−2M3u

M1M2

M1M2+u2−2M3u
M1M2 > M2

3
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We now state the following theorem which connects E1(γ, 1) to the stability of u(x) ≡

0. Namely, we prove:

Theorem 1.15. The trivial solution of (1.18) is asymptotically stable if λ < E1(γ, 1),

and it is unstable if λ > E1(γ, 1).

We recall the following results from [GMPS19] and [GS17]:

Lemma 1.16. [GS17] Let σ1 be the principal eigenvalue of the linearized equation

associated with (1.18), namely


−φ′′ − λfu(u)φ = σφ; x ∈ (0, 1),

−φ′(0) + γ
√
λ[gu(u(0))u(0) + g(u(0))]φ(0) = σφ(0),

φ′(1) + γ
√
λ[gu(u(1))u(1) + g(u(1))]φ(1) = σφ(1),

(1.21)

where u is any solution of (1.18). Then the following hold.

a) If σ1 > 0, then u is stable. Furthermore, if u is isolated then it is asymptoti-

cally stable.

b) If σ1 < 0, then u is unstable.

Lemma 1.17. [GMPS19] Let u be a solution of (1.18) and σ∗1 be the principal eigen-

value of the following boundary value problem


−φ′′ − λfu(u)φ = σφ; x ∈ (0, 1),

−φ′(0) + γ
√
λ[gu(u(0))u(0) + g(u(0))]φ(0) = 0,

φ′(1) + γ
√
λ[gu(u(1))u(1) + g(u(1))]φ(1) = 0.

(1.22)

Then, sign(σ∗1) = sign(σ1) for σ∗1, σ1 6= 0.
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In the light of Lemma 1.17, it suffices to study the relationship between σ∗1 and λ in

order to prove Theorem 1.15.

The next result gives a sufficient condition for the model (1.17) to exhibit a

patch-level Allee effect which only requires knowledge of the existence of a positive

steady state of (1.17) and not its stability properties.

Theorem 1.18. Let γ > 0 and a ∈ (0, 1) be given. If (1.17) has at least one positive

steady state for λ < E1(γ, 1), then the model (1.17) will exhibit a patch-level Allee

effect if the patch size is ` =
√

λD
r
.

We now establish sufficient conditions for all positive steady states of the model (1.17)

to be symmetric (see Figure 28). Namely, we establish:

Figure 28. Density Profile of an Asymmetric Positive Steady State of (1.17) (left)

and Symmetric Positive Steady State of (1.17) (right).

Theorem 1.19. If h(s) := g(s)s is increasing for all s > 0 then every positive

solution of (1.18) is symmetric about x = 1
2
.

Theorem 1.20. Let m(s) ≥ 0 for s ≥ 0.

(a) If α(u) = α1(u) = M1

2M1+m(u)
, then
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(i) if m(s) ≡ 0 (DIE) then all positive solutions of (1.18) are symmetric.

(ii) if m′(s) ≥ 0 (+DDE) then all positive solutions of (1.18) are symmetric.

(iii) if m(s) = s2−2M3s
M2

(UDDE) and M1M2 >
4M2

3

3
then all positive solutions of

(1.18) are symmetric.

(b) If α(u) = α2(u) = M1+m(u)
2M1+m(u)

, then

(i) if m(s) = s2

M2
(-DDE) and M1M2 > 1 then all positive solutions of (1.18)

are symmetric.

(ii) if m(s) = s2−2M3s
M2

(hDDE) and M1M2 > 1 then all positive solutions of

(1.18) are symmetric.

Finally, we use the quadrature method described in Theorem 2.3 in Chapter

II to obtain exact bifurcation diagrams for (1.18) via Mathematica computations.

We provide an evolution of the structure of positive steady states of (1.17) as γ is

varied. We also provide an analysis of the Allee effect region (AER) by which we

mean the range of λ for which a Patch-Level Allee Effect will occur (λm, E1(γ, 1)),

where λm is the minimum patch size needed for the population to survive (see Figure

29). Namely, we study the variation of the AER length, E1(γ, 1)− λm, with respect

to the effective matrix hostility parameter for the five emigration types. Then, we

numerically show that a +DDE can counteract a patch-level Allee effect. Here, we

provide several numerical results obtained. Namely, we provide the variation of AER

length with respect to γ for five emigration types, the region where a patch-level Allee

effect is present on the γ −M1M2 plane, and some bifurcation diagrams (see Figures

30, 31, and 32). More details will be provided in Chapter VI.
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Figure 29. Bifurcation-stability Curves of Population Persistence with λ Proportional

to Patch Size Squared. In These Diagrams, the Population Shows a Patch-level Allee

effect (left) and No Patch-level Allee Effect (right). Solid Curves Correspond to Stable

Steady States and Dashed Curves Correspond to Unstable Steady States. Note that

the Trivial Steady State is Stable to the Left of E1(γ, 1) and Unstable to the Right

of E1(γ, 1).
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Figure 30. Graph of u vs Emigration Probability (left) and γ vs AER Length (right)

for M1M2 = 0.1,M3 = 0.25, and a = 0.5.
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Figure 31. The Model Predicts a Patch-level Allee Effect for Parameters in Region

I and No Patch-level Allee Effect in Region II. Note that a = 0.9 Indicating a Mild

Weak Allee Effect in Per-capita Growth Rate, whereas, Small Values of M1M2 Cause

a Very Rapid Ascent for the Emigration Probability from 0.5 to Close to 1.
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Figure 32. Bifurcation Curves of Positive Solutions of (1.18) for All Five DDE Forms

When a = 0.5, M1M2 = 0.08, and M3 = 0.25 for Various γ-values. This Choice

of M1,M2, and M3 Yield DDE Forms That are Quite Different in Shape From the

DIE Form, and anM3-value of 0.25 Causes the Minimum Emigration Probability and

Maximum Emigration Probability of UDDE and hDDE, Respectively, to Both Occur

at u = 0.25.

36



1.5 Focus 5

Here, our focus is to numerically study, the following models when N = 2:

−∆u = λu(1− u); x ∈ Ω,

∂u
∂η

+ γ
√
λu = 0; x ∈ ∂Ω,

(1.23)

 −∆u = λu(1− u); x ∈ Ω,

∂u
∂η

+ γ
√
λ[(A− u)2 + ε]u = 0; x ∈ ∂Ω,

(1.24)

where ε, A are as defined in (1.11) and Ω := (0, 1) × (0, 1). Note that we treat

both the cases ε = 0 and ε > 0 for (1.24). We numerically obtain the bifurcation

diagrams for (1.23) and (1.24) and study the evolution of bifurcation curves with

respect to the effective matrix hostility parameter γ. In the higher dimensional case,

there are no explicit methods to completely characterize solutions, as in the one

dimensional case When using a quadrature method. These results are obtained via

finite element methods and Matlab computations. We also note that the bifurcation

diagrams predicted in [FGM+] and [GMPS19] are exact in this case. Figures 33 and

34 provide a sample of bifurcation diagrams obtained. For more bifurcation diagrams,

see Chapter VII.
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Figure 33. Evolution of Bifurcation Diagrams of (1.23) with Respect to γ.

Figure 34. Evolution of Bifurcation Diagrams of (1.24) with Respect to γ When

A = 0.5 and ε = 0.
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CHAPTER II

PRELIMINARIES

2.1 Method of Sub-Super Solutions

Consider the boundary value problem:

 −∆u = λf(u); x ∈ Ω,

∂u
∂η

+ µ(λ)g(u)u = 0; x ∈ ∂Ω,
(2.1)

where f , g are continuous functions, and µ ∈ C([0,∞)) is an increasing function

such that µ(0) ≥ 0. We first introduce definitions of a (strict) subsolution and a

(strict) supersolution of (2.1), and state a sub-supersolution theorem and a three

solution theorem that are used to prove existence and multiplicity results for positive

solutions. By a subsolution of (2.1) we mean ψ ∈ C2(Ω) ∩ C1(Ω) that satisfies

 −∆ψ ≤ λf(ψ); x ∈ Ω,

∂ψ
∂η

+ µ(λ)g(ψ)ψ ≤ 0; x ∈ ∂Ω.

By a supersolution of (2.1) we mean Z ∈ C2(Ω) ∩ C1(Ω) that satisfies

 −∆Z ≥ λf(Z); x ∈ Ω,

∂Z
∂η

+ µ(λ)g(Z)Z ≥ 0; x ∈ ∂Ω.
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By a strict subsolution of (2.1) we mean a subsolution which is not a solution. By a

strict supersolution of (2.1) we mean a supersolution which is not a solution. Then

the following results hold (see [Ama76], [Ink82], and [Shi87]):

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (2.1) respectively

such that ψ ≤ Z. Then (2.1) has a solution u such that u ∈ [ψ, z].

Lemma 2.2. Let u1 and u2 be a subsolution and a supersolution of (2.1) respec-

tively such that u1 ≤ u2; x ∈ Ω. Let u2 and u1 be a strict subsolution and a strict

supersolution of (2.1) respectively such that u1, u2 ∈ [u1, u2] and u2 � u1;x ∈ Ω.

Then (2.1) has at least three solutions u1, u2 and u3 where ui ∈ [ui, ui]; i = 1, 2 and

u3 ∈ [u1, u2]\([u1, u1] ∪ [u2, u2]).

2.2 Quadrature Method and the Proof of Theorem 2.3

Adapting the quadrature method discussed in [Lae71], we first briefly explain

a method to analyze the structure of the positive solutions to:


−u′′ = λf(u); x ∈ (0, 1),

−u′(0) +
√
λγg(u(0))u(0) = 0,

u′(1) +
√
λγg(u(1))u(1) = 0.

(2.2)

Namely, the following result will allow us to study the structure of positive solutions

of (2.2) as the parameters λ and γ vary.

Theorem 2.3. A positive solution, u(x), of (2.2) with u(x0) = ||u||∞ = ρ, q1 = u(0),

and q2 = u(1) exists if and only if λ > 0, ρ ∈ (0, 1), and q1, q2 ∈ [0, ρ) satisfy:

λ = 1
2

( ∫ ρ
q1

ds√
F (ρ)−F (s)

+
∫ ρ
q2

ds√
F (ρ)−F (s)

)2

, (2.3)
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and

2[F (ρ)− F (q1)] = γ2q2
1[g(q1)]2,

2[F (ρ)− F (q2)] = γ2q2
2[g(q2)]2,

(2.4)

where F (s) =
∫ s

0
f(t)dt. Further, x0 is given by

x0 =

∫ ρ
q1

ds√
F (ρ)−F (s)∫ ρ

q1

ds√
F (ρ)−F (s)

+
∫ ρ
q2

ds√
F (ρ)−F (s)

.

Remark. For ρ ∈ (0, 1), since f(ρ) > 0, it can be shown that the improper integral in

(2.3) is convergent.

See Figure 35 for an illustration of a prototypical positive solution of (2.2). We now

provide a proof of Theorem 2.3.

Figure 35. Shape of a Positive Solution of (2.2) When q1 6= q2.
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Proof of Theorem 2.3: Assume that u(x) is a positive solution to (2.2) with

ρ := ||u||∞, q1 := u(0), and q2 := u(1). Since (2.2) is an autonomous differential

equation, if there exists an x0 ∈ (0, 1) such that u′(x0) = 0 then v(x) := u(x0 + x)

and w(x) := u(x0 − x) will both satisfy the initial value problem:


−z′′ = λf(z),

z(0) = u(x0),

z′(0) = 0,

(2.5)

for all x ∈ [0, d) with d = min{x0, 1−x0}. Picard’s existence and uniqueness theorem

asserts that u(x0 + x) ≡ u(x0 − x). Hence, u(x) must be symmetric about x0,

u′(x) ≥ 0; [0, x0], and u′(x) ≤ 0; [x0, 1]. Multiplying both sides of (2.2) by u′ we

obtain

−u′′u′ = λf(u)u′. (2.6)

Integrating both sides gives

− [u′(x)]2

2
= λF (u(x)) + C; x ∈ [0, 1]. (2.7)

Substituting x = x0, x = 0, and x = 1 into (2.7) gives

C = −λF (ρ), (2.8)

C = −λF (q1)− λγ
2g2(q1)q2

1

2
, (2.9)

C = −λF (q2)− λγ
2g2(q2)q2

2

2
. (2.10)
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Combining (2.8) with (2.9) and (2.10) we have

F (ρ) = F (q1) +
γ2g2(q1)q2

1

2
, (2.11)

F (ρ) = F (q2) +
γ2g2(q2)q2

2

2
. (2.12)

Now substitution of (2.8) into (2.7) yields

[u′(x)]2

2
= λ [F (ρ)− F (u(x))] ; x ∈ [0, 1]. (2.13)

Solving for u′(x) in (2.13) and using the fact that u′(x) > 0; [0, x0) and u′(x) <

0; (x0, 1] we have

u′(x) =
√

2λ
√
F (ρ)− F (u(x)); x ∈ [0, x0], (2.14)

u′(x) = −
√

2λ
√
F (ρ)− F (u(x)); x ∈ [x0, 1]. (2.15)

Integration of (2.14) from 0 to x and (2.15) from x0 to x yields

∫ x

0

u′(s)ds√
F (ρ)− F (u(s))

=
√

2λx; x ∈ [0, x0], (2.16)∫ x

x0

u′(s)ds√
F (ρ)− F (u(s))

= −
√

2λ(x− x0); x ∈ [x0, 1]. (2.17)

Through a change of variables and using the fact that u(0) = q1 and u(x0) = ρ we

have

∫ u(x)

q1

dt√
F (ρ)− F (t)

=
√

2λx; x ∈ [0, x0], (2.18)

43



∫ u(x)

ρ

dt√
F (ρ)− F (t)

= −
√

2λ(x− x0); x ∈ [x0, 1]. (2.19)

Substituting x = x0 into (2.18) and x = 1 into (2.19) gives

∫ ρ

q1

dt√
F (ρ)− F (t)

=
√

2λx0, (2.20)∫ q2

ρ

dt√
F (ρ)− F (t)

= −
√

2λ(1− x0). (2.21)

Now subtraction of (2.21) from (2.20) yields

λ =
1

2

(∫ ρ

q1

ds√
F (ρ)− F (s)

+

∫ ρ

q2

ds√
F (ρ)− F (s)

)2

.
(2.22)

From (2.20) and (2.22), it is clear that

x0 =

∫ ρ
q1

ds√
F (ρ)−F (s)∫ ρ

q1

ds√
F (ρ)−F (s)

+
∫ ρ
q2

ds√
F (ρ)−F (s)

.

Next assume λ > 0, ρ ∈ (0, 1), and q1, q2 ∈ [0, ρ) satisfy (2.3) and (2.4). Define

u(x) : [0, 1]→ R by

∫ u(x)

q1

dt√
F (ρ)− F (t)

=
√

2λx; x ∈ [0, x0], (2.23)∫ u(x)

ρ

dt√
F (ρ)− F (t)

= −
√

2λ(x− x0); x ∈ [x0, 1]. (2.24)

We will now show that u(x) is a positive solution to (2.2). It is easy to see that the

turning point given by x0 = 1√
2λ

∫ ρ
q1

dt√
F (ρ)−F (t)

is unique for fixed λ, q1, and ρ values.
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The function

1√
2λ

∫ u

q1

dt√
F (ρ)− F (t)

,

is a differentiable function of u which is strictly increasing from 0 to x0 as u increases

from q1 to ρ. Thus, for each x ∈ [0, x0], there is a unique u(x) such that

∫ u(x)

q1

dt√
F (ρ)− F (t)

=
√

2λx. (2.25)

Moreover, by the Implicit Function theorem, u(x) is differentiable with respect to x.

Differentiating (2.25) gives

u′(x) =
√

2[F (ρ)− F (u(x))]; x ∈ (0, x0]. (2.26)

Through a similar argument, u(x) is a differentiable, decreasing function of x for

x ∈ (x0, 1) with

u′(x) = −
√

2[F (ρ)− F (u(x))]; x ∈ [x0, 1). (2.27)

This implies that we have

− [u′(x)]2

2
= F (ρ)− F (u(x)); x ∈ (0, 1).

Differentiating again, we have

−u′′(x) = f(u(x)); x ∈ (0, 1).

45



Thus, u(x) satisfies the differential equation in (2.2). It only remains to be seen that

u(x) satisfies the boundary conditions in (2.2). However, from (2.23) and (2.24) it is

clear that u(0) = q1 and u(1) = q2. Since q1 is a solution of (2.11), we have

F (ρ)− F (q1) =
γ2g2(q1)q2

1

2
. (2.28)

Substituting x = 0 into (2.26) gives

u′(0) =
√

2λ
√
F (ρ)− F (q1). (2.29)

Combining (2.28) and (2.29) we have

u′(0) =
√
λγg(q1)q1.

A similar argument shows that

u′(1) = −
√
λγg(q2)q2.

Hence, u(x) satisfies (2.2) and the proof is complete.

2.3 Finite Element Method for Computing the Numerical Solutions

Here, we provide the variational formulation and a finite element method (see

[BS02] and [Cia78]) that we will be using to obtain the numerical solution of (2.1).

We restrict our numerical study to the case when µ(s) :=
√
s.
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2.3.1 Variational Formulation

Let V := H1(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω)}, where Ω := (0, 1)× (0, 1) ⊂ R2.

Then we take any v ∈ V and multiply both sides of (2.1) by v to obtain

(−∆u)v = λf(u)v.

Then by integration by parts we obtain

∫
Ω

∇u · ∇vdx−
∫
∂Ω

∂u

∂η
vds = λ

∫
Ω

f(u)vdx.

Now the boundary conditions implies that

∫
Ω

∇u · ∇vdx+ γ
√
λ
∫
∂Ω

ug(u)vds = λ
∫
Ω

f(u)vdx ∀v ∈ V. (2.30)

The solution u of (2.30) is generally unknown and thus the numerical solution becomes

important. In our study, we take our domain Ω to be the unit square in R2. Given a

triangulation of Ω (see Figure 36), we look for a finite dimensional approximation for

u by the finite element method. We will choose the standard Lagrange basis functions

as the basis for the set of continuous piecewise linear functions on the unit square

based on the triangulation.

2.3.2 Finite Element Method Formulation

Let Vh := {v ∈ C0(Ω) : v|K ∈ P1(K) ∀ K ∈ Kh}, where Kh is a shape-regular

triangulation of Ω. Note that Vh is conforming in the sense that Vh ⊂ V .
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The finite element method is to find uh ∈ Vh such that

∫
Ω

∇uh.∇vdx+ γ
√
λ

∫
∂Ω

uhg(uh)vds = λ

∫
Ω

f(uh)vdx ∀v ∈ Vh.

Figure 36. Triangulation (Kh) of the Domain.

Since Vh = Span{φi}nhi=1, where nh := dim(Vh), equation is equivalent to

finding uh ∈ Vh such that

∫
Ω

∇uh.∇φidx+ γ
√
λ

∫
∂Ω

uhg(uh)φidx = λ

∫
Ω

f(uh)φids,

for all i = 1, 2, ...., nh. Let uh :=
∑nh

j=1 ujφj. Then we obtain

∑nh
j=1 ui

∫
Ω

∇φi.∇φjdx+ γ
√
λ
∫
∂Ω

(
∑nh

j=1 ujφj)g(
∑nh

j=1 ujφj)φidx = λ
∫
Ω

f(
∑nh

j=1 ujφj)φids

(2.31)

for all i = 1, 2, ...., nh, which leads to a system of nonlinear equations of the form

G(u) = 0, where G is a nonlinear function and u is the solution vector representing
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the coefficients of the expansion of uh in terms of the basis functions {φi}. The

nonlinear system G(u) = 0 can be solved by Newton’s method.
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CHAPTER III

PROOFS OF THEOREMS 1.4 - 1.7 STATED IN FOCUS 1 AND

COMPUTATIONAL RESULTS

3.1 Proof of Theorem 1.4

We first show that (1.8) has no positive solution uλ for λ < E1,µ. Assume

to the contrary that uλ is a positive solution for λ < E1,µ. Let σλ be the principal

eigenvalue and θλ > 0 be the corresponding normalized eigenfunction of:

−∆θ = (σ + λ)θ; Ω,

∂θ
∂η

+ µ(λ)θ = 0; ∂Ω.
(3.1)

Then we have

∫
Ω

[θλ∆uλ − uλ∆θλ]dx =

∫
∂Ω

[
θλ
∂uλ
∂η
− uλ

∂θλ
∂η

]
dx = 0.

Noting σλ > 0 for λ < E1,µ by (H2), and since f(s) ≤ s for s ∈ [0, r0), we also have

∫
Ω

[θλ∆uλ − uλ∆θλ]dx =

∫
Ω

[−λf(uλ) + (λ+ σλ)uλ]θλdx ≥
∫
Ω

σλuλθλdx > 0.

This is a contradiction. Hence, there exists no positive solution for λ < E1,µ.

We also show that (1.8) has a positive solution uλ for λ > E1,µ. Let ψλ := mλθλ

and H(s) := (σλ + λ)s − λf(s). We note that σλ < 0 for λ > E1,µ by (H2). Thus

we have H ′(0) = σλ + λ − λf ′(0) < 0. This implies that −∆ψλ = mλ(σλ + λ)θλ ≤
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λf(mλθλ) in Ω for mλ ≈ 0. Thus ψλ is a subsolution of (1.8). We construct a

supersolution Zλ. If 0 < r0 < ∞, it is easy to see that Zλ ≡ r0 is a supersolution.

Taking mλ ≈ 0 so that ψλ ≤ r0, it easily follows that (1.8) has a solution uλ ∈ [ψλ, r0].

If r0 = ∞, let f ∗(s) := max
r∈[0,s]

f(r) and eλ be the unique positive solution of the

following boundary value problem:

 −∆e = 1; Ω,

∂e
∂η

+ µ(λ)e = 0; ∂Ω.
(3.2)

We note that f ∗ is nondecreasing and sublinear at ∞. Then for each λ > 0 there

exists Mλ > 0 such that 1
λ‖eλ‖∞

≥ f∗(Mλ‖eλ‖∞)
Mλ‖eλ‖∞

. Let Zλ := Mλeλ. Then we have

−∆Zλ = Mλ ≥ λf ∗(Mλ‖eλ‖∞) ≥ λf ∗(Mλeλ) ≥ λf(Zλ).

Further, Zλ satisfies ∂Zλ
∂η

+ µ(λ)Zλ = Mλ[
∂eλ
∂η

+ µ(λ)eλ] = 0 on ∂Ω. Therefore Zλ is a

supersolution of (1.8). We can also choose Mλ � 1 such that ψλ ≤ Zλ. By Lemma

2.1, there exists a positive solution uλ ∈ [ψλ, Zλ].

Next we show the uniqueness of a positive solution uλ for λ > E1,µ. Assume

to the contrary that there exist two distinct positive solutions u1 and u2. By the

Green’s second identity, we obtain

∫
Ω

[u2∆u1 − u1∆u2]dx =

∫
∂Ω

[
u2
∂u1

∂η
− u1

∂u2

∂η

]
dx = 0.
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But
∫
Ω

[u2∆u1 − u1∆u2]dx =
∫
Ω

−λu1u2

[
f(u1)
u1
− f(u2)

u2

]
dx < 0. Here, without loss of

generality, we can assume u1 ≤ u2 since ψλ is a subsolution for mλ ≈ 0. This is a

contradiction and the proof is complete.

Now we show that there exists a positive solution uλ for λ > E1,µ and λ ≈ E1,µ

such that ‖uλ‖∞ → 0 as λ → E+
1,µ. Since f ′′ < 0 on [0, r0), there exists A∗ > 0 such

that f ′′(s) ≤ −A∗ for s ≈ 0. Let Ẑλ := δλθλ, where δλ = − 2σλ
λA∗min

x∈Ω
θλ
. We note that

δλ > 0 and δλ → 0 as λ → E+
1,µ since σλ < 0, σλ → 0 as λ → E+

1,µ and min
x∈Ω

θλ 6→ 0

as λ→ E+
1,µ. We also note that f(Ẑλ) = f(0) + f ′(0)Ẑλ + f ′′(ζ)

2
Ẑ2
λ = Ẑλ + f ′′(ζ)

2
Ẑ2
λ for

some ζ ∈ [0, Ẑλ] by Taylor’s Theorem. Then we have

−∆Ẑλ − λf(Ẑλ) = δλ(σλ + λ)θλ − λ
[
δλθλ +

f ′′(ζ)

2
(δλθλ)

2
]

≥ δλθλ

[
σλ +

λA∗

2
δλ min

x∈Ω
θλ

]
= 0,

by our choice of δλ. Thus Ẑλ is a supersolution of (1.8) for λ > E1,µ and λ ≈ E1,µ

such that ‖Ẑλ‖∞ → 0 as λ → E+
1,µ. Choosing mλ ≈ 0, we also have ψλ ≤ Ẑλ. By

Lemma 2.1, there exists a positive solution uλ ∈ [ψλ, Ẑλ] for λ > E1,µ and λ ≈ E1,µ

such that ‖uλ‖∞ → 0 as λ→ E+
1,µ.

Finally, we show that there exists a positive solution uλ for λ � 1 such that

‖uλ‖∞ → r0 as λ → ∞. We first consider the case 0 < r0 < ∞. We note that the

boundary value problem:

−∆w = λf(w); Ω,

w = 0; ∂Ω,
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has a solution wλ for λ � 1 such that 0 ≤ wλ ≤ r0 and ‖wλ‖∞ → r0 as λ → ∞

(see [CS87]). Further, wλ satisfies ∂wλ
∂η

+ µ(λ)wλ < 0 on ∂Ω since ∂wλ
∂η

< 0 on ∂Ω.

Therefore wλ is a subsolution of (1.8) for λ� 1. Clearly Zλ ≡ r0 is a supersolution.

By Lemma 2.1, there exists a solution uλ ∈ [wλ, r0] of (1.8) for λ � 1. By the

maximum principle, we can easily show that uλ > 0 on Ω. Hence, (1.8) has a positive

solution uλ ∈ [wλ, r0] for λ� 1 such that ‖uλ‖∞ → r0 as λ→∞ (since ‖wλ‖∞ → r0

as λ→∞).

Next we assume r0 = ∞. Define g ∈ C2([0,∞)) such that g(0) < 0, g(s) ≤

f(s) for s ∈ (0,∞) and lim
s→∞

g(s) > 0. Then the boundary value problem:

−∆w = λg(w); Ω,

w = 0; ∂Ω,

has a solution wλ ≥ 0 for λ � 1 such that ‖wλ‖∞ → ∞ as λ → ∞ (see [CGS93]).

It is easy to show that wλ is a subsolution of (1.8) for λ � 1. We can also choose

Mλ � 1 such that Zλ = Mλeλ (≥ wλ) is a supersolution. By Lemma 2.1 and the

maximum principle, (1.8) has a positive solution uλ ∈ [wλ, Zλ] for λ � 1 such that

‖uλ‖∞ →∞ as λ→∞. Hence, Theorem 1.4 is proven.

3.2 Proof of Theorem 1.5

Let ψ1 := ψλ and Z1 := Zλ be as in the proof of Theorem 1.4. Then ψ1 is

a subsolution of (1.8) and Z1 is a supersolution of (1.8). Now we construct a strict

subsolution of (1.8).
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Let ĝ ∈ C1([0,∞)) be such that ĝ is nondecreasing on [0, r2), 0 ≤ ĝ(s) ≤ f(s)

on (0, r1) and ĝ(s) = f(s) on [r1, r0). Then the following boundary value problem:

−∆w = λĝ(w); Ω,

w = 0; ∂Ω,

has a solution ŵλ ≥ 0 such that ‖ŵλ‖∞ ≥ b for λ ∈
(

2bNCN
R2f(b)

, 2r2N
f(b)R2

)
provided (H4)

is satisfied (see [LSS11]). Let ψ2 := ŵλ. Since ĝ(s) ≤ f(s) on [0, r0) and ∂ŵλ
∂η

< 0 on

∂Ω, it easily follows that ψ2 is a strict subsolution for λ ∈
(

2bNCN
R2f(b)

, 2r2N
f(b)R2

)
.

Next we construct a strict supersolution Z2 of (1.8) for λ ∈
(

2bNCN
R2f(b)

, a
f∗(a)‖vµb‖∞

)
.

Let Z2 :=
avµb
‖vµb‖∞

. Then we have

−∆Z2 =
a

‖vµb‖∞
> λf ∗(a) ≥ λf(Z2).

Further, Z2 satisfies ∂Z2

∂η
+ µ(λ)Z2 > a

‖vµb‖∞
[
∂vµb
∂η

+ µbvµb ] = 0 on ∂Ω since µ is a

strictly increasing function and λ > 2bNCN
R2f(b)

. Thus Z2 is a strict supersolution of (1.8)

for λ ∈
(

2bNCN
R2f(b)

, a
f∗(a)‖vµb‖∞

)
.

We note that ‖ψ2‖∞ ≥ b > a = ‖Z2‖∞ and we can choose ψ1 and Z1 such

that ψ1 ≤ ψ2 ≤ Z1 and ψ1 ≤ Z2 ≤ Z1. By Lemma 2.2 and the maximum principle,

there exist at least three positive solutions for λ ∈
(

2bNCN
R2f(b)

,min
{

a
f∗(a)‖vµb‖∞

, 2r2N
f(b)R2

})
.

Hence, Theorem 1.5 is proven.

3.3 Proof of Theorem 1.6

Clearly 0 < r0 <∞. If KM < 4, then f ′′ < 0. It follows that (H1) is satisfied.

Further, we can show that (H2) is satisfied when µ(s) =
√
s. Hence, Theorem 1.6 is

proven.
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3.4 Proof of Theorem 1.7

Let CN := (N+1)N+1

2NN . For M ∈
(

8
3
√

3
, 2
)
and K � 1, there exist b > 0, c > 0,

r0 > 0, r1 > 0 and r2 > 0 such that c < r1 < b < r2
CN

< r0
CN

< ∞, b ≤
√
KM ,

r2 > K
4
, f(s) > 0 for s ∈ (0, r0), f(s) < 0 for s ∈ (r0,∞), f is increasing on

(0, c) ∪ (r1, r2) and f is decreasing on (c, r1) ∪ (r2,∞). Further, lim
K→∞

f(b) = ∞

and lim
K→∞

b
f(b)

= 1. See [LSS11] for details. Thus (H1) is satisfied. Next we choose

a ∈ (r1, b) such that f(a) = f ∗(a) = f(c). Then a ≈ 1.5437 and a
f∗(a)

≈ 11.4445

for M ≈ 2 and K � 1. Noting vµb(x) = R2−|x|2
2N

+ R
N

√
f(b)
m0b

, where m0 = 2NCN
R2 , we

obtain m0‖vµb‖∞ ≤ R2m0

2N
+ R

N

√
m0f(b)

b
< R2m0

2N
+

2R
√
m0

N
for K � 1. This implies

m0‖vµb‖∞ < 6 for N = 1, m0‖vµb‖∞ < 8 for N = 2 and m0‖vµb‖∞ < 9 for N = 3.

Thus a
f∗(a)

/ b
f(b)

> m0‖vµb‖∞ =
2NCN‖vµb‖∞

R2 for K � 1. Therefore (H3) − (H4) are

satisfied. We also note that m0 = 4
R2 >

8A1

5
for N = 1, m0 = 27

2R2 >
8A1

5
for N = 2

and m0 = 256
9R2 >

8A1

5
for N = 3, where A1 is the principal eigenvalue of (1.6). This

implies 2bNCN
R2f(b)

= m0b
f(b)

> 5m0

8
> A1 > E1(1, 1) for M ∈

(
8

3
√

3
, 2
)
and K � 1. Thus

(H5) is satisfied. Further, we can easily show that (H2) is satisfied when µ(s) =
√
s.

Hence, Theorem 1.7 is proven (by Theorem 1.5).

3.5 Computational Results

Finally, we provide some bifurcation diagrams that we have obtained for vari-

ous values of K andM . Here, we briefly explain how we obtain numerical bifurcation

diagrams. Let γ > 0 be fixed and let xi = ir0
n+1

; i = 1, ..., n for some n ≥ 1. We note

that in this case q1 = q2. Letting ρ = x1, we numerically solve the equation (2.4) for q

using the FindRoot command in Mathematica. The values of q and ρ are substituted

into (2.3) to find the corresponding value of λ. Repeating this procedure for ρ = xi,

i = 2, ......, n, we obtain (λ, ρ) points for the bifurcation diagram.
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(a) f(s) = f1(s) = s− s2

3 −
s2

1+s2
(b) Exact Bifurcation Diagram for (1.10)

When f = f1

Figure 37. f = f1 and the Corresponding Bifurcation Diagram for (1.10) When

µ(s) =
√
s.

(a) f(s) = f2(s) = s− s2

30 −
9s2

5+5s2
(b) Exact Bifurcation Diagram for (1.10)

When f = f2

Figure 38. Graph of f = f2 and the Corresponding Exact Bifurcation Diagram for

(1.10) When µ(s) =
√
s.
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(a) f(s) = f3(s) = s− s2

30 −
s2

2+2s2
(b) Exact Bifurcation Diagram for (1.10)

When f = f3

Figure 39. f = f3 and the Corresponding Bifurcation Diagram for (1.10) When

µ(s) =
√
s.

Here, we observe that the exact bifurcation diagram described in Theorem

1.6 occurs when K = 3 and M = 1 (see Figure 37). We further observe that the

bifurcation diagrams of (1.10) are in fact exactly s-shaped for certain values of K and

M . See Figure 38 for the exact bifurcation diagram for the case when K = 30 and

M = 9
5
and Figure 39 for the exact bifurcation diagram for the case when K = 30

and M = 1
2
.
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CHAPTER IV

PROOFS OF THEOREMS 1.8 - 1.12 STATED IN FOCUS 2 AND

COMPUTATIONAL RESULTS

4.1 Proof of Theorem 1.8

Let λ ≤ E1(γ, ε). Assume to the contrary that (1.11) has a positive solution

u. Then there exist a unique ελ ≤ ε such that λ is the principal eigenvalue of the

boundary value problem:

 −∆e = Ee; x ∈ Ω,

∂e
∂η

+ γελ
√
Ee = 0; x ∈ ∂Ω,

(4.1)

and equality holds if and only if λ = E1(γ, ε). This easily follows from the behavior

of κ2

γ2ε2
as ε varies (see Figure 40). See also [GMRS18].

Let e > 0 be the corresponding normalized eigenfunction for the principal

eigenvalue λ in (4.1). Then we have

∫
Ω

[(−∆u)e+ (∆e)u] dx =

∫
Ω

λu(1− u)e− λeu dx = −
∫

Ω

λeu2 dx < 0.
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Figure 40. Plot that Illustrates the Existence of ελ.

However, by the Green’s second identity we have

∫
Ω

[(−∆u)e+ (∆e)u] dx =

∫
∂Ω

[
− ∂u

∂η
e+

∂e

∂η
u
]
ds

=

∫
∂Ω

[
γ
√
λ[(A− u)2 + ε]ue− γελ

√
λeu
]
ds

≥
∫
∂Ω

γ(ε− ελ)
√
λue ds

≥ 0.

This is a contradiction since ελ ≤ ε. Hence, Theorem 1.8 is proven.

4.2 Proof of Theorem 1.9

Let λ > E1(γ,A2 + ε). It is easy to see that φ ≡ 1 is a supersolution for (1.11).

Next we construct a subsolution for (1.11).
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Let µλ be the principal eigenvalue and z > 0 be the corresponding normalized

eigenfunction for the boundary value problem:

 −∆z = (λ+ µ)z; x ∈ Ω,

∂z
∂η

+ [γ
√
λ(A2 + ε)− µ]z = 0; x ∈ ∂Ω.

(4.2)

We note that µλ < 0 for λ > E1(γ,A2 + ε) (see [GMPS19]) and minx∈Ω z(x) > 0. Let

ψ := αλz where αλ > 0 will be chosen later. Then ψ satisfies

−∆ψ = αλ(λ+ µλ)z ≤ λαλz(1− αλz) = λψ(1− ψ),

for x ∈ Ω provided µλ + λαλz ≤ 0. Further, ψ satisfies

∂ψ

∂η
= αλ[−γ

√
λ(A2 + ε) +µλ]z ≤ −αλγ

√
λ[(A−αλz)2 + ε]z = −γ

√
λ[(A−ψ)2 + ε]ψ,

for all x ∈ ∂Ω provided γ
√
λ[(A − αλz)2 − A2] + µλ ≤ 0. Since µλ < 0, choosing

αλ ≈ 0, it follows that ψ is a subsolution for (1.11) and ψ ≤ φ in Ω. Hence, for

λ > E1(γ,A2 + ε), (1.11) has a positive solution u such that ψ ≤ u ≤ φ, and Theorem

1.9 is proven.

4.3 Proof of Theorem 1.10

Let λ < E1(γ,A2+ε). It is easy to see that φ1 ≡ 1 is a supersolution and ψ1 ≡ 0

is a subsolution for (1.11). We now construct a strict supersolution for (1.11). Let µλ

be the principal eigenvalue and z > 0 be the corresponding normalized eigenfunction

for (4.2).
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We note that µλ > 0 for λ < E1(γ,A2 + ε) (see [GMPS19]). Let φ2 := βλz for

βλ ∈ (0, A). Then φ2 satisfies

−∆φ2 = βλ(λ+ µλ)z ≥ λβλz(1− βλz) = λφ2(1− φ2),

for x ∈ Ω. Further, φ2 satisfies

∂φ2

∂η
= βλ[−γ

√
λ(A2 +ε)+µλ]z > −βλγ

√
λ[(A−βλz)2 +ε]z = −γ

√
λ[(A−φ2)2 +ε]φ2,

for x ∈ ∂Ω provided γ
√
λ[(A− βλz)2 −A2] + µλ > 0. Since µλ > 0, choosing βλ ≈ 0,

it follows that φ2 is a strict supersolution for (1.11).

We next construct a strict subsolution for (1.11). For each ε ∈ (0, ε∗γ), there

exists λ∗ < E1(γ,A2) such that (w∗λ −A)2 > ε for λ ∈ (λ∗, E1(γ, 2A2)). We note that

E1(γ,A2 +ε) < E1(γ, 2A2) since ε < ε∗γ ≤ A2. Let ψ2 := wλ for λ ∈ (λ∗, E1(γ,A2 +ε)).

Then ∂wλ
∂η

= −2γ
√
λ(A − wλ)

2wλ < −γ
√
λ[(A − wλ)

2 + ε]wλ on ∂Ω, and hence ψ2

is a strict subsolution. We note that ‖ψ2‖∞ > A and ‖φ2‖∞ < A. By Lemma

2.2, we obtain solutions u, u∗ and u∗ such that u ∈ [ψ1, φ2], u∗ ∈ [ψ2, φ1] and u∗ ∈

[ψ1, φ1]\ ([ψ1, φ2]∪ [ψ2, φ1]). Clearly u∗ and u∗ are positive solutions. Further, u∗ ∈ Γ

since u∗ ≥ ψ2 > A on Ω.

Next in Γ, we show that (1.11) has a unique positive solution. Assume to the

contrary that in Γ there exist two distinct positive solutions u and v. Without loss

of generality, we assume u ≤ v since φ1 ≡ 1 is a global supersolution. Therefore we

have

∫
Ω

[(−∆v)u+ (∆u)v] dx =

∫
Ω

λuv(u− v) dx < 0.
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However, by the Green’s second identity we have

∫
Ω

[(−∆v)u+ (∆u)v] dx =

∫
∂Ω

[
− ∂v

∂η
u+

∂u

∂η
v
]
ds

=

∫
∂Ω

γ
√
λuv[(A− v)2 − (A− u)2] ds

=

∫
∂Ω

γ
√
λuv(u− v)(2A− u− v) ds ≥ 0,

which is a contradiction. Thus, in Γ, there exists a unique positive solution, which is

u∗, and u∗ is a positive solution which does not belong to Γ. Hence, Theorem 1.10 is

proven.

4.4 Proof of Theorem 1.11

Let u be a positive solution such that u(0) = q1 and u(1) = q2. Assume x0 <
1
2
.

Since u is symmetric about x0 and u is concave, q1 > q2, and hence |u′(0)| < |u′(1)|.

By the boundary conditions we have γ
√
λ[(A − q1)2 + ε]q1 < γ

√
λ[(A − q2)2 + ε]q2.

Let G(q) := γ
√
λ[(A − q)2 + ε]q. It is easy to show that if ε > A2

3
then G′(q) > 0.

This implies γ
√
λ[(A− q1)2 + ε]q1 > γ

√
λ[(A− q2)2 + ε]q2. This is a contradiction. A

similar contradiction can be obtained when x0 >
1
2
. Hence, the solution is symmetric

if ε > A2

3
, and Theorem 1.11 is proven.

4.5 Proof of Theorem 1.12

Let u be a positive solution such that u(0) = q1 and u(1) = q2. To show that

the solution is symmetric, we need to show q1 = q2. By Theorem 2.3, this follows by

showing that for any fixed ρ ∈ (0, 1),

√
F (ρ)− F (q)

q[(A− q)2 + ε]
=

γ√
2

(4.3)
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has only one solution q ∈ (0, ρ). Let H(q) :=

√
F (ρ)−F (q)

q[(A−q)2+ε]
. It is easy to see that

lim
q→0+

H(q) =∞ and H(ρ) = 0. Further, we have

H ′(q) =
−qf(q)[(A− q)2 + ε]− 2[F (ρ)− F (q)][(A− q)(A− 3q) + ε]

2q2[(A− q)2 + ε]2
√
F (ρ)− F (q)

.

Thus we obtain lim
q→0+

H ′(q) = lim
q→ρ

H ′(q) = −∞. This implies (4.3) has only one

solution q ∈ (0, ρ) for γ � 1 or γ ≈ 0 (see Figure 41 for an illustration). Hence,

Theorem 1.12 is proven.

Figure 41. The Graph of H(q).

4.6 Computational Results

Finally, we present some bifurcation curves for a couple of parameter selections.

Here, we briefly explain how we obtain numerical bifurcation diagrams. Let γ > 0 be

fixed and let xi = i
n+1

; i = 1, ..., n for some n ≥ 1. Letting ρ = x1, we numerically

solve the equation (2.4) for q1 and q2 using the FindRoot command in Mathematica.
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The values of q1, q2, and ρ are substituted into (2.3) to find the corresponding value

of λ. Repeating this procedure for ρ = xi, i = 2, ......, n, we obtain (λ, ρ) points for

the bifurcation diagram.

Example 4.1. Let ε = 0.1 and A = 0.5. We note that by Theorem 1.11, every

positive solution of (1.14) is symmetric. Here, we provide bifurcation curves numer-

ically generated via Mathematica for various γ values. See Figure 42 consisting of 6

bifurcation curves. The first five are in the ascending order of γ from left to right,

and the last one is the bifurcation curve with Dirichlet boundary conditions.

Figure 42. Evolution of Bifurcation Diagrams for (1.14) as γ Varies When ε = 0.1

and A = 0.5.

Example 4.2. Here, we present an example where we get both symmetric and non-

symmetric solutions of (1.14) for certain values of γ when ε = 0.01 and A = 0.8

(see Figure 43). We observe that solutions are symmetric for γ = 1, γ = 23 and

γ = 25 (see (a), (f) and (g) in Figure 43). We also find that for some γ values,

(4.3) has three distinct q-values, say q1, q2 and q3, for a certain range of ρ values.
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This implies that there exist three symmetric solutions such that ‖u‖∞ = ρ and

u(0) = u(1) = qi for i = 1, 2, 3 and six nonsymmetric solutions such that ‖u‖∞ = ρ,

u(0) = qi and u(1) = qj for i, j = 1, 2, 3 and i 6= j (Note: In general, if (4.3) has n

q−value solutions then there are n2 total solutions). See (c), (d) and (e) in Figure

43 for bifurcation diagrams when γ = 6, γ = 10 and γ = 16, respectively. Here,

the bifurcation curves for symmetric solutions are in red and the bifurcation curves

for non-symmetric solutions are in green (Note: green points represent two solutions

each while red represents only one solution each). Note that (h) in Figure 43 is the

bifurcation curve with Dirichlet boundary conditions i.e., the boundary conditions

is u(0) = 0 = u(1). We observe that bifurcation curves of (1.14) approach the

bifurcation curve with Dirichlet boundary conditions when γ −→∞. However, for a

fixed γ > 3, we observe that there always exists a range of λ in which there exists at

least three solutions. A similar scenario can be observed for the case when ε = 0.01

and A = 0.5 (see Figure 44).
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(a) γ = 1 (b) γ = 3

(c) γ = 6 (d) γ = 10

(e) γ = 16 (f) γ = 23

(g) γ = 25 (h) γ =∞

Figure 43. Bifurcation Diagrams for (1.14) for Several Values of γ, When ε = 0.01

and A = 0.8. Symmetric Solutions are in Red and Non-symmetric Solutions are in

Green. 66



(a) γ = 5 (b) γ = 10

(c) γ = 20 (d) γ = 30

(e) γ = 40 (f) γ = 65

(g) γ = 75 (h) γ =∞

Figure 44. Bifurcation Diagrams for (1.14) for Several Values of γ, When ε = 0.01

and A = 0.5. Symmetric Solutions are in Red and Non-symmetric Solutions are in

Green. 67



When ε = 0.1 and A = 0.5 (in this case ε > A2

3
and we have all solutions are

symmetric by Theorem 1.11), we note that the shapes of the bifurcation diagrams

predicted in Theorem 1.10 are in fact exact and as γ increases the bifurcation diagrams

shift to right. In particular, the patch-level Allee effect is lost when γ > 6.7 (see Figure

42). When ε = 0.01 and A = 0.8 (in this case ε < A2

3
), we observe both symmetric

and non-symmetric solutions depending on the value of γ.
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CHAPTER V

PROOFS OF THEOREMS 1.13 - 1.14 STATED IN FOCUS 3 AND

COMPUTATIONAL RESULTS

5.1 Proof of Theorem 1.13

First let 0 < λ < E1. Consider the eigenvalue problem (see [GMRS18]):

 −∆θ − λθ = σθ; Ω,

∂θ
∂η

+ γ
√
λKθ = 0; ∂Ω,

(5.1)

where K > 0 is a constant. Let σλ be the principal eigenvalue and θλ be the normal-

ized eigenfunction such that θλ > 0; Ω. Let K := A2 + ε and δλ := 2σλ
λA∗min

Ω
θλ
, where

A∗ > 0 is such that f ′′(s) > A∗ for s ≈ 0. Note that δλ > 0 (since σλ > 0) for λ < E1

and δλ −→ 0 (since σλ −→ 0 and min
Ω
θλ 6→ 0) as λ −→ E1. Let ψ := δλθλ. Clearly

‖ψ‖∞ −→ 0 when λ −→ E1. Further, by Taylor’s Theorem, in Ω, we obtain (for

some ζ ∈ [0, ψ]):

−∆ψ − λf(ψ) = (σλ + λ)ψ − λ
[
ψ +

f ′′(ζ)

2
ψ2
]
< ψ

[
σλ −

λA∗

2
δλ min

Ω
θλ

]
= 0,

for λ < E1 and λ ≈ E1. Also, on ∂Ω, we obtain (assuming λ ≈ E1 so that ‖ψ‖∞ <

2A):

∂ψ

∂η
+ γ
√
λ[(A− ψ)2 + ε]ψ <

∂ψ

∂η
+ γ
√
λ[A2 + ε]ψ = 0.

69



Thus ψ is a strict subsolution of (1.15) for λ < E1 and λ ≈ E1. It is easy to

verify that Z ≡ 1 is a supersolution for any λ, and hence by Lemma 2.1 there exists

λ = λ(A, γ, ε) < E1 such that (1.15) has a positive solution for λ ∈ [λ,E1). Next let

λ ≥ E1. Consider the eigenvalue problem (see [GMRS18]):

 −∆φ− λφ = µφ; Ω,

∂φ
∂η

+ γ
√
λ(A2 + ε)φ = µφ; ∂Ω.

(5.2)

Let µλ be the principal eigenvalue and φλ be the normalized eigenfunction such that

φλ > 0; Ω. Then µλ ≤ 0 for λ ≥ E1. Let ψ̃ := βφλ for β ∈ (0, 1). Recall that

f(0) = 0, f ′(0) = 1 and f ′′(0) > 0. Hence, for β ≈ 0, in Ω, we have:

−∆ψ̃ − λf(ψ̃) = (λ+ µλ)ψ̃ − λf(ψ̃) ≤ 0,

since H(s) := (λ + µλ)s − λf(s) satisfies H(0) = 0, H ′(0) = µλ ≤ 0 and H ′′(0) =

−λf ′′(0) < 0. Also, on ∂Ω, assuming β ≈ 0 so that ‖ψ̃‖∞ < 2A, we have:

∂ψ̃

∂η
+ γ
√
λ[(A− ψ̃)2 + ε]ψ̃ ≤ ∂ψ̃

∂η
+ γ
√
λ[A2 + ε]ψ̃ = µλψ̃ ≤ 0.

Hence, for β ≈ 0, ψ̃ is a subsolution for λ ≥ E1. Again using the supersolution Z ≡ 1

and Lemma 2.1, there exists a positive solution for (1.15) when λ ≥ E1. Combining

the above two cases, we conclude that (1.15) has a positive solution for all λ ≥ λ.
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Now we will show that there exists a positive solution uλ of (1.15) for λ � 1

such that ‖uλ‖∞ −→ 1 as λ −→∞. Consider the boundary value problem:

−∆w = λf(w); Ω,

w = 0; ∂Ω.
(5.3)

In [SS06], it was established that there exists λ∗ ∈ (0, A1) such that (5.3) has a

positive solution wλ ∈ [0, 1] for λ ≥ λ∗, and ‖wλ‖∞ −→ 1 as λ −→ ∞. Now by the

Hopf’s maximum principle ∂wλ
∂η

< 0 on ∂Ω, and hence wλ is a strict subsolution for

(1.15). Again using the supersolution Z ≡ 1 and Lemma 2.1, (1.15) has a positive

solution uλ ∈ [wλ, 1] for λ ≥ λ∗, and since ‖wλ‖∞ −→ 1 as λ −→ ∞, we obtain

‖uλ‖∞ −→ 1 as λ −→∞.

Next we will show that there exists at least two positive solutions for λ ∈

[λ,E1). Consider the eigenvalue problem (5.2) with µλ and φλ > 0; Ω as before.

Then µλ > 0 for λ < E1 (see [GMRS18]). Let Z1 := β1φλ with β1 > 0. For β1 ≈ 0,

in Ω, we have

−∆Z1 − λf(Z1) = (λ+ µλ)Z1 − λf(Z1) > 0,

since H1(s) := (λ + µλ)s − λf(s) satisfies H1(0) = 0 and H ′1(0) = µλ > 0. Also, on

∂Ω, choosing β1 ≈ 0 so that |γ
√
λ[(A− Z1)2 − A2]| < µλ, we have:

∂Z1

∂η
+ γ
√
λ[(A− Z1)2 + ε]Z1 =

∂Z1

∂η
+ γ
√
λ[A2 + ε]Z1 + γ

√
λ[(A− Z1)2 − A2]Z1

=
{
µλ + γ

√
λ
[
(A− Z1)2 − A2

]}
Z1 > 0.
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Hence, for β1 ≈ 0, Z1 is a strict supersolution for λ < E1. Now for λ ∈ [λ,E1) we

have the solution ψ0 ≡ 0 (hence a subsolution), strict subsolution ψ = δλθλ (≤ 1),

strict supersolution Z1 = β1φλ (with β1 ≈ 0 so that ψ � Z1 and Z1 ≤ 1), and the

supersolution Z ≡ 1. Hence, by Lemma 2.2, for λ ∈ [λ,E1) there exists at least two

positive solutions u1, u2 with u1 ∈ [ψ,Z] and u2 ∈ [0, Z]\{[0, Z1] ∪ [ψ,Z]}.

Finally, we will show that for λ ≈ 0, (1.15) has no positive solutions. Recall

σλ, θλ in (5.1) with K = ε. Suppose u is a positive solution of (1.15), By Green’s

second identity we obtain:

L =

∫
Ω

[(∆u)θλ − (∆θλ)u]dx =

∫
∂Ω

−γ
√
λ(A− u)2uθλds ≤ 0.

However, L =
∫
Ω

[−λf(u) + (λ + σλ)u]θλdx ≥
∫
Ω

[σλ − (M − 1)λ]uθλdx, where M > 0

is such that f(s) ≤ Ms for s ∈ [0,∞). But σλ
λ
−→ ∞ as λ −→ 0 (see [FMSS]), and

hence L > 0 for λ ≈ 0, which is a contradiction. Thus (1.15) has no positive solutions

for λ ≈ 0. Hence, Theorem 1.13 is proven.

5.2 Proof of Theorem 1.14

We first recall that (see [GMRS18]) E1(γ,D) is increasing both in γ and D,

and lim
γ→∞

E1(γ,D) = lim
D→∞

E1(γ,D) = A1. Let λ̃ > A1. Here, we will discuss the

existence of three positive solutions when λ ∈ [E1, λ̃]. Let Γ ⊃ Ω, Γ ≈ Ω be such that

the boundary value problem (see [SS06]):

−∆w = λ̃f(w); Γ,

w = 0; ∂Γ,
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has a positive solution wλ̃ = Z1 (say) such that Z1 ∈ (0, A
2
); ∂Ω. This is possible since

(5.3) has a positive solution for λ ≥ λ∗ ∈ (0, A1). Let C := min
∂Ω

Z1. Choose γ∗(λ̃) > 0

such that for γ > γ∗

E1(γ,A2) > A1

2
, (5.4)

(⇒ E1(γ,A2 + ε) > A1

2
) and

∂Z1

∂η
+ γ
√

A1

2
A2

4
C > 0; ∂Ω, (5.5)

(⇒ ∂Z1

∂η
+ γ
√

A1

2
(A

2

4
+ ε)C > 0; ∂Ω) hold. Now for λ ∈ [A1

2
, λ̃] we have:

−∆Z1 = λ̃f(Z1) ≥ λf(Z1); Ω,

and

∂Z1

∂η
+ γ
√
λ[(Z1 − A)2 + ε]Z1 ≥

∂Z1

∂η
+ γ

√
A1

2

(A2

4
+ ε
)
C > 0; ∂Ω.

Thus Z1 is a strict supersolution for (1.15) when λ ∈ [A1

2
, λ̃]. Next consider the

boundary value problem:

 −∆v = λv(1− v); Ω,

∂v
∂η

+ 2γ
√
λ(A− v)2v = 0; ∂Ω.

(5.6)

For each λ > 0, (5.6) has a unique solution vλ ∈ [A, 1]; Ω (see [GMPS19]). Further,

by the Hopf’s maximum principle vλ > A; ∂Ω.
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Let cλ := min
∂Ω

vλ and ε∗(λ̃, γ) := min
λ∈[E1,λ̃]

(cλ − A)2. Let ψ2 := vλ. Then for

ε < ε∗, ψ2 satisfies (for λ ∈ [E1, λ̃]):

−∆ψ2 = λψ2(1− ψ2) ≤ λf(ψ2); Ω,

(since a+ψ2

a
> 1), and

∂ψ2

∂η
+ γ
√
λ[(ψ2 − A)2 + ε]ψ2 = γ

√
λ[ε− (ψ2 − A)2] < γ

√
λ[ε− ε∗] < 0; ∂Ω,

(since ∂ψ2

∂η
+2γ
√
λ(ψ2−A)2ψ2 = 0; ∂Ω). Thus ψ2 is a strict subsolution for λ ∈ [E1, λ̃].

Now let ψ1 = ψ̃(= βφ) where ψ̃ is as in the proof of Theorem 1.13. Note

that when β ≈ 0, ψ is a subsolution for λ ≥ E1. Finally, take Z2 ≡ 1 which is a

supersolution for λ > 0. Now choosing β ≈ 0, we can make sure Z1, ψ2 ∈ [ψ1, Z2].

Further, note that ‖ψ2‖∞ ≥ A while ‖Z1‖∞ ≤ A
2
. Hence, by Lemma 2.2, (1.15) has

at least three positive solutions when λ ∈ [E1, λ̃], and Theorem 1.14 is proven.
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5.3 Computational Results

Finally, we present some bifurcation diagrams that we have obtained for (1.16).

We employ a similar procedure as described in Chapter IV to compute numerical

bifurcation diagrams.

Figure 45. Evolution of the Bifurcation Diagrams for (1.16) as γ Varies, Using ε =

0.084 and A = 0.5.

Figure 46. Evolution of the Bifurcation Diagrams for (1.16) as γ Varies, Using ε = 0.01

and A = 0.5.
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When ε = 0.084, the hypothesis of Theorem 1.11 is satisfied, and hence all

positive solutions of (1.16) are symmetric. In this case we note that the exact bifur-

cation diagram predicted via Theorem 1.13 occurs for certain γ values (see Figure

45). We also observe that the solution is unique for λ > E1(γ,A2 + ε).

When ε = 0.01, the hypothesis of Theorem 1.11 is not satisfied. In this case,

we note that both symmetric and non-symmetric solutions occur for certain γ values

and the bifurcation diagrams corresponding to all solutions are more than that was

predicted via Theorem 1.14 (see Figure 47).
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(a) γ = 6 (b) γ = 20

(c) γ = 30 (d) γ = 40

(e) γ = 60 (f) γ = 70

(g) γ = 120 (h) γ =∞

Figure 47. Bifurcation Diagrams for (1.16) for Several Values of γ, When ε = 0.01

and A = 0.5. Symmetric Solutions are in Red and Non-symmetric Solutions are in

Green. 77



CHAPTER VI

PROOFS OF THEOREMS 1.15, 1.18 - 1.20 STATED IN FOCUS 4 AND

COMPUTATIONAL RESULTS

6.1 Proof of Theorem 1.15

Let λ < E1(γ, 1). By Lemma 1.17, we see that the zero solution is asymptoti-

cally stable if the principal eigenvalue σ∗1 of (1.22) with u ≡ 0 is positive. Note that,

for λ < E1(γ, 1), the zero solution is isolated since λ is not a bifurcation point on the

solution curve (µ, 0). Let µ1 = µ1(β) be the principal eigenvalue of:


−φ′′ = µφ; x ∈ (0, 1),

−φ′(0) = −βφ(0),

φ′(1) = −βφ(1),

where β ≥ 0. Then µ1(β) is a strictly increasing concave function which passes through

the origin and is bounded above by A1 (see [RR19] and [CGS19]).

Let β := γ
√
λg(0). Since µ1(β) is a strictly increasing concave function of

β and β2

γ2g(0)2 is a strictly increasing convex function of β which passes through the

origin, they intersect at exactly two points, namely at (0, 0), and at (β∗, µ1(β∗)) for

some β∗ > 0 (see Figure 48). From (1.20), we can easily see that µ1(β∗) = E1(γ, 1)

and β∗ = γ
√
E1(γ, 1)g(0). Further, λ+ σ∗1 = µ1(γ

√
λg(0)), where σ∗1 is the principle

eigenvalue of (1.22). Thus, if λ < E1(γ, 1), then γ
√
λg(0) < β∗ and µ1(γ

√
λg(0)) >

λ, implying σ∗1 > 0. By Lemma 1.17 the zero solution is asymptotically stable if

λ < E1(γ, 1).
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Next, let λ > E1(γ, 1). By Lemma 1.17, the zero solution is unstable if the

principle eigenvalue σ∗1 of (1.22) is negative. But when λ > E1(γ, 1), γ
√
λg(0) > β∗

and µ1(γ
√
λg(0)) < λ implying σ∗1 < 0 (see Figure 48). Hence, Theorem 1.15 is

proven.

Figure 48. Graphs of β vs µ1(β) and β2

γ2(g(0))2 .

6.2 Proof of Theorem 1.18

Assume that γ > 0, a ∈ (0, 1), and λ < E1(γ, 1), are given and u1(x) is a

positive solution of (1.18). By Theorem 1.15, the trivial steady state, u(x) ≡ 0, of

(1.17) is asymptotically stable. Since f(s) < 0 for all s > 1, any constant M ≥ 1 is

a supersolution for (1.18) and a strict supersolution if M > 1 (see Definition 4.1 of

[Pao92]). Thus, any positive solution, u(x), of (1.18) must satisfy 0 < u(x) < 1 for

x ∈ [0, 1]. Now, since u1(x) is a positive solution of (1.18), it is also a subsolution and

satisfies u1(x) ≤ 1. For any u0(x) such that u1(x) ≤ u0(x) ≤ 1 for x ∈ (0, 1), Theorem
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6.6 of [Pao92] guarantees that the solution of (1.17), u(t, x), with u(0, x) = u0(x) for

x ∈ (0, 1) must satisfy 0 < u1(x) < u(t, x) < 1 for all x ∈ [0, 1], t ≥ 0. It is now clear

that the model (1.17) will predict extinction for initial population densities, u0(x),

with ‖u0‖∞ ≈ 0, whereas the model will predict persistence for u0(x) satisfying

u1(x) ≤ u0(x) ≤ 1 for x ∈ (0, 1). This establishes a patch-level Allee effect. Hence,

Theorem 1.18 is proven.

6.3 Proof of Theorem 1.19

Let u(x) be a positive solution of (1.18) such that q1 = u(0) and q2 = u(1).

From Theorem 2.3, q1, q2 must satisfy 2[F (ρ) − F (q1)] = γ2g(q1)2q2
1 and 2[F (ρ) −

F (q2)] = γ2g(q2)2q2
2. Hence, g(q1)2q2

1[F (ρ) − F (q2)] = g(q2)2q2
2[F (ρ) − F (q1)], or

equivalently,

h(q1)2

h(q2)2
=
g(q1)2q2

1

g(q2)2q2
2

=
[F (ρ)− F (q1)]

[F (ρ)− F (q2)]
. (6.1)

Since F (s) is increasing for s ∈ (0, 1), (6.1) can hold only if q1 = q2. Hence, Theorem

1.19 is proven.

6.4 Proof of Theorem 1.20

To prove (a), we first note that:

h′(s) = g(s) + sg′(s) = M1+m(s)+sm′(s)
M1

. (6.2)
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Thus, if m′(s) ≥ 0, then we must have h′(s) > 0 for s ∈ (0, 1), and (i) and (ii) hold

by Theorem 1.19. To show (iii), we again calculate h′(s) as

h′(s) = 3s2−4M3s+M1M2

M1M2
. (6.3)

It is easy to see that if 4M2
3 − 3M1M2 < 0, or equivalently, M1M2 >

4M2
3

3
, then we

must have that h′(s) > 0 for s ∈ (0, 1), and hence (iii) holds by Theorem 1.19.

To show (b), we calculate h′(s) when m(s) = s2−2M3s
M2

for M3 ≥ 0:

h′(s) = M1M2(M1M2−s2)
(s2−2M3s+M1M2)2 . (6.4)

Hence, if M1M2 > 1, then h′(s) > 0 for s ∈ (0, 1), and hence (b) holds by Theorem

1.19. Hence, Theorem 1.20 is proven.

6.5 Computational Results

Finally, we present our numerical results including bifurcation diagrams that

we have obtained for (1.18). We use a similar procedure as described in Chapter IV

to compute numerical bifurcation diagrams.

6.5.1 Structure of Positive Steady States of (1.15) as the effective matrix hostility

parameter Varies

Recall from Theorem 1.18 that if there exists a range of λ < E1(γ, 1) for which

a positive solution of (1.18) exists then the model will predict an Allee effect at the

patch-level for patch sizes corresponding to these λ−values. In this Allee effect case,

the population density must surpass a certain threshold in order for persistence to be

predicted. Since our growth rate f(u) is taken to be of a weak Allee effect form, we
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would expect model predictions of an Allee effect at the patch-level in the case of a

DIE. We are particularly interested in model predictions of bi-stability scenarios other

than a patch-level Allee effect in the case of density dependent emigration. We will

present an evolution of the bifurcation curves for all five DDE forms as γ increases

for the cases 1) where the forms of DDE are relatively weak and parameter values

are a = 0.5, M1M2 = 1.1 and M3 = 0.5 (see Figure 49), where the forms of DDE are

relatively strong and pronounced with parameter values a = 0.5, M1M2 = 0.08 and

M3 = 0.25 (see Figure 50). In both cases, an a-value of 0.5 gives a substantial weak

Allee effect, i.e. the per-capita growth rate will increase for u-values in [0, 0.25). Note

that the presentation of an exploration of the entire parameter space would be quite

challenging and is outside of the scope of this work.
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Figure 49. Bifurcation Curves of Positive Solutions of (1.18) for all Five DDE Forms

When a = 0.5, M1M2 = 1.1, and M3 = 0.5 for Various γ-values. This Choice

of M1,M2, and M3 Yield DDE Forms That are Weakly Related to Density and

Somewhat Similar in Shape to DIE, and an M3-value of 0.5 Causes the Minimum

Emigration Probability and Maximum Emigration Probability of UDDE and hDDE,

Respectively, to Both Occur at u = 0.5.

As shown in both Figures 49 and 50, the bifurcation curves’ starting value,

E1(γ, 1), satisfies E1(0, 1) = 0, E1(γ, 1) is strictly increasing in γ, and E1(γ, 1)→ π2

as γ →∞ (see [RR19] or [GMRS18], for example).
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Figure 50. Bifurcation Curves of Positive Solutions of (1.18) for All Five DDE Forms

When a = 0.5, M1M2 = 0.08, and M3 = 0.25 for Various γ-values. This Choice

of M1,M2, and M3 Yield DDE Forms That are Quite Different in Shape From the

DIE Form, and anM3-value of 0.25 Causes the Minimum Emigration Probability and

Maximum Emigration Probability of UDDE and hDDE, Respectively, to Both Occur

at u = 0.25.

The positive relationship between density and emigration probability in +DDE

and initially in hDDE cause the maximum steady state values of these two forms to

be much less than the DIE case, whereas the negative relationship in -DDE and

initially in UDDE cause an increase in maximum steady state values as compared
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with the DIE form. The difference in maximum steady state values appears to be

greatest for intermediate values of γ and the least when γ is large. Notice that

as γ → ∞, i.e. when the matrix is completely hostile, the +DDE, -DDE, UDDE,

and hDDE curves all converge to the DIE form as illustrated in Figures 49(c) and

50(c). A patch-level Allee effect is present in all values of γ for Figure 49, but the

initial positive relationship between density and emigration probability of hDDE is

able to completely counteract the patch-level Allee effect in 50(a), even though the

+DDE case does not. This discrepancy is due to the positive relationship being much

stronger (at least initially) in the hDDE case versus the +DDE case, as shown in

Figure 50(d). In Figure 49, the only bi-stability of steady states predicted by the

model is the aforementioned patch-level Allee effect. In contrast, Figure 50 shows

examples of other types of bi-stability in the case of hDDE in (a) and -DDE in

(b). Though not shown here, a similar non-Allee effect bi-stability also appeared in

the UDDE case for the same parameter values in Figure 50. In fact, any S-shaped

bifurcation curve (or even a more complicated shape) occurring for λ > E1(γ, 1) will

not qualify as a patch-level Allee effect since by Theorem 1.15, the trivial steady

state, u(x) ≡ 0, is unstable. In both cases, model predictions of persistence vary over

a wide range as the effective matrix hostility, as measured in the composite parameter

γ, varied.

6.5.2 Allee Effect Region Length

In this section, we explore the relationship between DDE form and the strength

of the patch-level Allee effect predicted by the model (1.17). In order to accomplish

this, we study the length of the AER, defined as E1(γ, 1)− λm(γ), for fixed values of

M1,M2,M3, and a (see Figure 51). We calculate λm(γ) by employing Theorem 2.3
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and Mathematica (Wolfram Inc., ver. 12.0) to numerically generate the bifurcation

curve of positive solutions of (1.18). The smallest λ-value on the curve is then λm.

Using the Mathematica command NDEigensystem, we numerically estimate the value

of E1(γ, 1). If λm(γ) < E1(γ, 1), then for λ ∈ (λm(γ), E1(γ, 1)), there is at least one

positive solution, and by Theorem 1.18 the model predicts a patch-level Allee effect.

However, if λm(γ) ≥ E1(γ, 1), then no such patch-level Allee effect can exist, since by

Theorem 1.15, the trivial steady state is unstable for λ ≥ E1(γ, 1). In what follows,

we will first compare the length of the AER for all the DDE forms given in Table 1

and then explore the possibility of the +DDE form counteracting a patch-level Allee

effect.

Figure 51. Bifurcation-stability Curves of Population Persistence with λ Proportional

to Patch Size Squared. In These Diagrams, the Population Shows a Patch-level Allee

effect (left) and No Patch-level Allee Effect (right). Solid Curves Correspond to Stable

Steady States and Dashed Curves Correspond to Unstable Steady States. Note that

the Trivial Steady State is Stable to the Left of E1(γ, 1) and Unstable to the Right

of E1(γ, 1).
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6.5.2.1 Qualitative Connection Between AER Length and DDE Form

Choosing M3 = 0.25 and a = 0.5, we computed the AER length for different

γ-values for each of the five DDE forms. This choice of a will ensure a substantial

weak Allee effect, i.e. the per-capita growth rate will increase for u-values in [0, 0.25),

whereas, M3 = 0.25 will cause the minimum and maximum emigration probabili-

ties to occur at u = 0.25 for UDDE and hDDE, respectively. We evaluated many

other parameter values for M3 and a but obtained similar results. Although a full

exploration of the entire parameter space is outside the scope of this work, we aim to

provide a qualitative connection between the form of DDE and length of AER as the

effective matrix hostility is varied via γ. Figures 52 - 54 illustrate this connection for

M1M2 = 0.1, 0.5, and 1. These M1M2-values produce DDE forms that are somewhat

different from DIE when M1M2 ≈ 0 to almost identical to DIE when M1M2 is large.
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Figure 52. Graph of u vs Emigration Probability (left) and γ vs AER Length (right)

for M1M2 = 0.1,M3 = 0.25, and a = 0.5.

In all three cases of M1M2-values, the model always exhibited a patch-level

Allee effect in the DIE, +DDE, -DDE, and UDDE cases.
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Figure 53. Graph of u vs Emigration Probability (left) and γ vs AER Length (right)

for M1M2 = 0.5,M3 = 0.25, and a = 0.5.
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Figure 54. Graph of u vs Emigration Probability (left) and γ vs AER Length (right)

for M1M2 = 1,M3 = 0.25, and a = 0.5.

Also, when γ is large, the length of the AER is virtually identical to DIE

across all DDE forms. The AER length approached zero in all DDE forms and in all

parameter choices as γ approached zero. The +DDE form partially counteracted the

patch-level Allee effect by slightly lowering the AER length for all γ-values, though

for these parameter choices, the +DDE relationship was not strong enough to fully

counteract the patch-level Allee effect. In contrast, the hDDE form, which is initially

a positive relationship between density and emigration rate, was able to completely
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counteract the patch-level Allee effect for γ approximately in [1.5, 2.5] in Figure 52

and in (0, 0.5] in Figure 53. This discrepancy between the +DDE and hDDE forms

is due to the positive relationship in the hDDE being clearly stronger than the one

in +DDE in both Figures 52 and 53. Due to switching from a positive relationship

to a strong negative one, a patch-level Allee effect reappeared for γ < 1.5 for hDDE

in Figure 52. However, this switch in the relationship in hDDE was not sufficient to

allow the patch-level Allee effect to reappear in Figure 53.

In all three Figures, both -DDE and UDDE forms caused an increase in length

of the AER as compared to the DIE case. In fact, in Figures 52 and 53, the AER

length initially increased as γ decreased but then began to decrease as γ became

small for both -DDE and UDDE, even boasting a peak value of almost four-times the

DIE AER length in Figure 52. In Figure 54, all DDE forms had strictly decreasing

AER length as γ decreased. Interestingly, in Figure 52, the AER length for -DDE

exhibited a steep increase from around one for γ ≈ 4 to around four for γ ≈ 2.5. A

positive relationship between density and emigration rate at least partially counter-

acted the patch-level Allee effect for +DDE and hDDE forms, whereas the negative

relationship enhanced the patch-level Allee effect for -DDE and UDDE forms. Also,

this counteraction and enhancement of the patch-level Allee effect is dependent upon

the effective matrix hostility of the surrounding patch matrix, as measured by the

parameter γ.

6.5.2.2 Counteracting a Patch-Level Allee Effect with +DDE

Our analysis of the structure of positive steady states for the model indicates

that DDE forms containing a negative slope can increase the strength of the patch-
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level Allee effect as measured by the AER length, whereas, a positive slope can

counteract the patch-level Allee effect. Even though both +DDE and hDDE have

the potential to completely counteract a patch-level Allee effect for small patch sizes,

the hDDE form’s negative slope for u > M3 will allow the patch-level Allee effect

to reappear as the patch size approaches zero (see Figure 52). Thus, we chose to

focus on +DDE in an attempt to quantify when a patch-level Allee effect will be

completely counteracted by a DDE relationship containing a positive slope. To that

end, we again employed Theorem 2.3 and Mathematica (Wolfram Inc., ver. 12.0) to

numerically generate bifurcation curves of positive solutions for (1.18) for fixed sets

of parameter values. To establish the existence of a patch-level Allee effect in the

+DDE case, it suffices to show that the slope of the bifurcation curve is negative for

ρ ≈ 0, i.e. we consider λ = λ(ρ) (ρ denotes the maximum steady state value) and

numerically calculate λ′(0). Figure 55 illustrates the parts of the parameter space for

which a patch-level Allee effect is predicted by the model, i.e λ′(0) < 0, (Region I)

and parts where a patch-level Allee effect is not predicted, λ′(0) > 0, (Region II) for

the case of a = 9. Notice that the boundary between Regions I and II is comprised

of the M1M2- and γ-values such that λ′(0) = 0.

There is clearly a maximal M1M2-value, such that for M1M2 larger than this

value the model will predict a patch-level Allee effect for all γ > 0. In contrast, it

appears that for any γ > 0, there is always a small range of M1M2-values such that

no patch-level Allee effect is present.

Figure 56 compares the boundary curve separating parameter space into Re-

gion I and II for a = 0.5, 0.75, and 0.9. Recall that a ∈ (0, 1) measures the strength

of the demographic weak Allee effect in the model via the per-capita growth rate.
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Figure 55. The Model Predicts a Patch-level Allee Effect for Parameters in Region

I and No Patch-level Allee Effect in Region II. Note That a = 0.9 Indicates a Mild

Weak Allee Effect in Per-capita Growth Rate, Whereas, Small Values ofM1M2 Cause

a Very Rapid Ascent for the Emigration Probability From 0.5 to Close to 1.
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Figure 56. Graph of u vs Per-capita Growth Rate (left) and the Boundary Between

a Model Prediction of a Patch-level Allee Effect and No Patch-level Allee Effect for γ

vs M1M2 (right). Note That the Area of Parameter Space Lying Above the Curves

in the (right) is a Patch-level Allee Effect Region, Whereas the Area Below is Not.

Thus, the demographic Allee effect varies from almost not present for a ≈ 1 to

substantial for a ≈ 0 (see Figure 56 (left)). Figure 56 shows that for smaller a-values,
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the +DDE response must become correspondingly stronger as indicated in the smaller

M1M2-values. Figure 57 illustrates this point for fixed γ = 0.59275 and a = 0.75, in

which we compare the +DDE forms from Regions I and II.

Notice that forM1M2-values that are sufficiently small (corresponding to solid

curves in Figure 57) the positive relationship between density and emigration proba-

bility is strong enough to completely counteract the demographic Allee effect in the

per-capita growth rate to produce no patch-level Allee effect. In contrast, the remain-

ing dashed curves in Figure 57 represent +DDE forms that only partially counteract

the patch-level Allee effect. Figure 58 further illustrates this point by comparing

the actual bifurcation curves for +DDE forms belonging to Region I (dashed) and

Region II (solid). Notice that, initially, the Region I +DDE form bifurcation curves

all decrease in λ (i.e. λ′(0) < 0), while the Region II +DDE form bifurcation curves

increase in λ (i.e. λ′(0) > 0), both as the maximum steady state value increases.
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Figure 57. Comparison of +DDE Forms (u vs emigration probability) That Produce

a Patch-level Allee Effect (dashed curves) and Forms That Counteract a Patch-level

Allee Effect (solid curves) for a = 0.75 and γ = 0.59275.

Figure 58. Comparison of Bifurcation Curves of Positive Solutions to (1.18) for the

+DDE Forms Shown in Figure 57 (right) and the Same Graph but with Smaller

Graphing Window. Note That a = 0.75 and γ = 0.59275.
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CHAPTER VII

COMPUTATIONALLY GENERATED BIFURCATION CURVES IN DIMENSION

N=2 FOR MODELS STATED IN FOCUS 5

For a fixed γ > 0 we will compute the numerical solution uh (described in

2.31) for a sequence of λ values in order to depict a discrete bifurcation diagram. To

achieve this, we will use the continuation method (see [Mei00] and [Sey10]), that is,

starting from one numerical solution uh,λ1 , we generate uh,λ2 , uh,λ3 , .... based on the

increment of ∆λ. For an appropriate choice of ∆λ, the previous numerical solution

uh,λk serves as a good initial guess for the next numerical solution uh,λk+1
.

The main difficulty we are facing in solving the nonlinear system is that our

solution does not converge near the turning points in the bifurcation curve since the

sup-norm of the solution varies so rapidly near turning points making the Jacobian

singular. To overcome this difficulty, we employ a Pseudo-Arclength method. Namely,

we parameterize a branch of the bifurcation curve using arc length (see [Sey10]). In

this method, we treat the parameter λ also as an unknown parametrized by the

arc length, and we solve a nonlinear system of the form (treating λ in 2.31 as an

unknown):

G(u, λ) = 0. (7.1)
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Let u = (u1, u2, ....., un, λ) be the unknown solution which is to be found. We note

that the arc length satisfies the following equation:

(du1

ds

)2

+
(du2

ds

)2

+ ......+
(dun
ds

)2

+
(dλ
ds

)2

= 1.

From the above equation we obtain

n∑
n=1

(ui − ui(sj))2 + (λ− λ(sj))
2 − (s− sj)2 = 0.

Let (uj, λj) = (u(sj), λ(sj)) is the solution previously calculated during continuation.

In [Kel77] “pseudo arclength” was proposed, that is, for 0 < ζ < 1,

ζ
n∑
n=1

(ui − ui(sj))2 + (1− ζ)(λ− λ(sj))
2 − (s− sj)2 = 0. (7.2)

Equation (7.1) together with (7.2) will provide us a system of nh+1 equations

with nh + 1 unknowns which we will solve to find the numerical solution. Whenever

we find a solution, we track down the lambda value and the maximum of the solution

as a pair to generate our bifurcation diagram.

Now we provide the evolution of bifurcation diagrams of (1.23) with respect

to γ.
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Figure 59. Evolution of Bifurcation Diagrams of (1.23) with Respect to γ.

Next we provide the evolution of bifurcation diagrams of (1.24) with respect

to γ for the case when ε = 0.

Figure 60. Evolution of Bifurcation Diagrams of (1.24) with Respect to γ When

A = 0.5 and ε = 0.
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Finally, we provide the evolution of bifurcation diagrams of (1.24) with respect

to γ for the case when ε > 0.

Figure 61. Evolution of Bifurcation Diagrams of (1.24) with Respect to γ When

A = 0.5 and ε = 0.01.

We observe that the exact bifurcation diagram of (1.23) described in Theorem

1.1 occurs for each fixed γ, and the bifurcation curve shifts to the right as γ increases

(see Figure 59). Further, our study shows that when ε = 0, the bifurcation diagrams of

(1.24) are as predicted in Theorem 1.2 for γ ≈ 0, and when γ is large, the bifurcation

diagrams of (1.24) are as predicted in Theorem 1.3 (see Figure 60). When ε > 0 is

small, the bifurcation diagrams of (1.24) are as predicted in Theorem 1.10 for certain

γ values (see Figure 61 and 62).
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Figure 62. Evolution of Bifurcation Diagrams of (1.24) with Respect to γ When

A = 0.5 and ε = 0.1.
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CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

In this dissertation, we analyzed positive solutions to steady state reaction

diffusion equations, where a parameter influences the differential equation as well as

the boundary conditions. We are motivated to perform this study to answer questions

related to the effects of habitat size on the steady states in ecological models. Here,

in these ecological models, a parameter related to the habitat size occurs both in the

differential equation as well as on the boundary conditions. We are also interested in

understanding the effects of the effective matrix hostility on the steady states, and

this leads to including a second parameter (measuring this effective matrix hostility)

on our boundary conditions. Finally, we are also interested in understanding the ef-

fects of density dependent emigration of the population across the habitat boundary,

and this leads to dealing with nonlinear boundary conditions. The ecological models

we focused on this thesis are those where the growth rate of the population was either

scaled logistic or scaled weak Allee. We also studied the effect of grazing. In terms

of the density dependent emigration across the habitat boundary, we considered sev-

eral types, namely, density independent emigration (DIE), positive density dependent

emigration (+DDE), negative density dependent emigration (-DDE), U-shaped den-

sity dependent emigration (UDDE), and hump-shaped density dependent emigration

(hDDE).
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We established analytical results on the existence, multiplicity, nonexistence,

and uniqueness of steady states, and predicted the corresponding bifurcation diagrams

in terms of the patch size parameter versus the number of solutions. We also studied

the effects on these bifurcation diagrams as the effective matrix hostility parameter

changed. The sub-super solution methods played a central role in establishing our an-

alytical results. In the case of dimension one, we obtained exact bifurcation diagrams

of the positive steady states via a modified quadrature method and Mathematica

computations. We also obtained exact bifurcation diagrams for certain models in

dimension two using the finite element method.

8.2 Future Directions

8.2.1 Uniqueness

We plan to study the model:

 −∆u = λf(u); x ∈ Ω,

∂u
∂η

+ µ(λ)u = 0; x ∈ ∂Ω.
(8.1)

Namely, we aim to prove the uniqueness of positive solutions of (8.1) for λ large

when s
f(s)

is not increasing, which allows a possibility for multiple solutions for a

certain finite range of λ (S-shaped bifurcation curve - see Figure 14). Further, we

plan to establish such uniqueness results for ecological models with density dependent

emigration on the boundary (which leads to nonlinear boundary conditions).
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8.2.1.1 More Numerical Computations of Bifurcation Diagrams when N = 2

Here, we will aim to study the model:

 −∆u = λf(u); x ∈ Ω,

α(u)∂u
∂η

+ γ
√
λ[1− α(u)]u = 0; x ∈ ∂Ω,

where Ω = (0, 1) × (0, 1). In Focus 5, we studied this model when f(s) = s(1 − s).

We studied the cases when α(s) = 1
2
(density independent emigration) and α(s) =

1
1+(A−s)2+ε

(U-shaped density dependent emigration). We will aim to extend this

numerical study for other types of emigration (1 − α(s)) on the boundary. Further,

we will also extend our study to scaled weak Allee growth models.

8.2.2 Ecological Models with a Hump-Shaped Density Dependent Emigration

Here, we will aim to study the model:

 −∆u = λf(u); x ∈ Ω,

∂u
∂η

+ γ
√
λ u

(u−A)2+ε
= 0; x ∈ ∂Ω,

which exhibits a humped-shaped density dependent emigration (see Figure 63) on the

boundary, where ε is a positive parameter and A ∈ (0, 1). We plan to consider the

following reaction terms:

a) f(s) = s(1− s)

b) f(s) = 1
a
s(s+ a)(1− s)

c) f(s) = s− s2

K
− Ms2

1+s2
.
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Figure 63. Hump-shaped Density Dependent Emigration on the Boundary.

8.2.3 Existence, Nonexistence, Multiplicity, and Uniqueness of Positive Solutions

to Reaction Diffusion Systems which Describe the Interaction between Two

Species

We will aim to extend the results established in [FSSS19] to reaction diffusion

systems of the form:



−∆u = λf(v); x ∈ Ω,

−∆v = λg(u); x ∈ Ω,

∂u
∂η

+ µ(λ)u = 0; x ∈ ∂Ω,

∂v
∂η

+ µ(λ)v = 0; x ∈ ∂Ω,

where u and v are population densities of two species living in the same habitat.
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