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Robust high-dimensional data analysis has become an important and chal-

lenging task in complex Big Data analysis due to the high-dimensionality and data

contamination. One of the most popular procedures is the robust penalized regression.

In this dissertation, we address three typical robust ultra-high dimensional regression

problems via penalized regression approaches. The first problem is related to the

linear model with the existence of outliers, dealing with the outlier detection, variable

selection and parameter estimation simultaneously. The second problem is related

to robust high-dimensional mean regression with irregular settings such as the data

contamination, data asymmetry and heteroscedasticity. The third problem is related

to robust bi-level variable selection for the linear regression model with grouping

structures in covariates.

In Chapter 1, we introduce the background and challenges by overviews of

penalized least squares methods and robust regression techniques. In Chapter 2,

we propose a novel approach in a penalized weighted least squares framework to

perform simultaneous variable selection and outlier detection. We provide a unified

link between the proposed framework and a robust M-estimation in general settings.

We also establish the non-asymptotic oracle inequalities for the joint estimation of

both the regression coefficients and weight vectors. In Chapter 3, we establish a

framework of robust estimators in high-dimensional regression models using Penalized

Robust Approximated quadratic M estimation (PRAM). This framework allows general

settings such as random errors lack of symmetry and homogeneity, or covariates are

not sub-Gaussian. Theoretically, we show that, in the ultra-high dimension setting,
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the PRAM estimator has local estimation consistency at the minimax rate enjoyed

by the LS-Lasso and owns the local oracle property, under certain mild conditions.

In Chapter 4, we extend the study in Chapter 3 to robust high-dimensional data

analysis with structured sparsity. In particular, we propose a framework of high-

dimensional M-estimators for bi-level variable selection. This framework encourages

bi-level sparsity through a computationally efficient two-stage procedure. It produces

strong robust parameter estimators if some nonconvex redescending loss functions are

applied. In theory, we provide sufficient conditions under which our proposed two-stage

penalized M-estimator possesses simultaneous local estimation consistency and the

bi-level variable selection consistency, if a certain nonconvex penalty function is used

at the group level. The performances of the proposed estimators are demonstrated in

both simulation studies and real examples. In Chapter 5, we provide some discussions

and future work.
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CHAPTER I

INTRODUCTION

I.1. Background and Challenges

Due to the rapid development of advanced technologies over the last decades,

high-dimensional data arise in many scientific fields, with the trend towards radically

larger numbers of variables (p) but relatively small number of observations (n), i.e.

p � n. For example, in biomedical studies, huge numbers of magnetic resonance

images (MRI) and functional MRI data are collected for each subject with hundreds

of subjects involved. Satellite imagery has been used in natural resource discovery and

agriculture, collecting thousands of high resolution images. These kind of examples

are plentiful among fields of science, engineering and humanities and new knowledge

need to be discovered by using these massive high-throughput data [D+00,FL06].

The high-dimensionality of data has posted some challenges in data analysis.

One of them is the intensive computation inherent in these high-dimensional mathemat-

ical problems. Systematically searching through a high-dimensional space is usually

computational infeasible. At the same time, high-dimensionality has significantly

challenged traditional statistical theory. For instance, in term of asymptotic theory,

the traditional approximation assumes that n→∞ while p remain smaller order than

n or usually fixed. However, the high-dimensional scenario would imagine that p goes

to infinity faster than n [JT09]. Other challenges incurred by high-dimensionality also

include how to efficiently estimate model parameters in high-dimensional spaces and

how to obtain an interpretable model with a large number of variables.
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In recent decades, a great number of statistical methods, algorithms and

theories have been developed to perform high-dimensional data analysis (HDDA).

Among them, penalized least squares (PLS) methods have become very popular

in high-dimensional linear regression analysis since the introduction of the LASSO

[Tib96a]. A PLS approach is to minimize the penalized objective function combined

with both the `2 loss and a penalty on the coefficients vector. When the penalty is

designed to obtain exactly zeros for some coefficients, and nonzero for others, the

PLS can perform a simultaneous coefficient estimation and variable selection process,

which is attractive in HDDA.

However, the PLS approach may lose its efficiency in both estimation and

variable selection in presence of irregular settings such as data contamination. In fact,

high-dimensional data can be complex in general: (a) the data are contaminated in

both response and a large number of variables [RL05]; (b)the data are highly skewed

and heteroscedastic [ZFB14, FLW17]; (c) the covariates possess complex grouping

structures [YL06,HBM12]. Hence more sophisticated methods are needed to deal with

the high-dimensional complex data.

I.1.1. Data Contamination

In real applications, the data can be contaminated due to the existence of

outliers. An outlier is defined as an observation that is very different from other

observations based on certain measure. The presence of outliers can lead to biased

estimation of parameters, misspecification of the model and misleading predictions.

This phenomenon become even more common and challenging in high-dimensional

settings. For example, in gene expression analysis, outliers are often produced due to

the complicated data generation process. To perform robust variable selection and

parameter estimation in HDDA, extensive work on penalized robust M -estimators

2



has been investigated, such as Huber-Lasso [H+64,LLZ+11] and LAD-Lasso [GH10,

Wan13]. Besides, outliers detection also plays a fundamental role in dealing with data

contamination. It has important applications in the field of fraud detection, network

robustness analysis and intrusion detection. To detect outliers or influential points in

high-dimensional regression model, a few diagnosis measures, such as High-dimension

Influence Measure (HIM) [ZLL+13], have been proposed.

I.1.2. Data Asymmetry and Heteroscedasticity

Asymmetry along with heteroscedasticity or contamination often occurs with

the growth of data dimensionality. In high-dimensional settings, particularly when

random errors follow irregular distributions such as asymmetry and heteroscedasticity,

simultaneous mean estimation and variable selection are still of interest in many

applications. For example, in economics where asymmetric data is prevalent, it is

still of interest to study how mean GDP is affected by many features. Another

example can be found in RNA-seq data analysis, the highly skewed nature and mean-

variance dependency of RNA-Seq data may pose difficulties on building prognostic

gene signatures.

[H+64] implies that the location estimator generated by Huber’s method is

possibly biased for certain fixed asymmetric contamination. For M-estimation in linear

regression model, [Car79,CW88] indicate that data asymmetry does not affect the slope

estimation asymptotically when the error and covariates distributions are independent.

However, the case of asymmetric and heteroscedastic errors was not well addressed.

[FLW17] further points out that most of penalized robust M-estimators generate bias to

the conditional mean regression function when the error distribution is asymmetric and

heteroscedastic. Thus it remains a challenge to effectively reduce the bias generated

by asymmetric distribution under data contamination in high-dimensional settings.
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I.1.3. Grouping Structure in Covariates

Covariates often function group-wisely in many applications. For example,

in gene expression analysis, genes from the same biological pathways may exhibit

similar activities. In high-dimensional data analysis, bi-level sparsity is often assumed

when covariates function group-wisely and sparsity can appear either at the group

level or within certain groups. Penalized least squares approaches with penalties

incorporating grouping structures, such as the group Lasso [YL06], have become very

popular in recent decades. To avoid the all-in or all-out variable selection at the

group level, extensive methods such as the sparse group Lasso [FHT10,SFHT13] have

been investigated to perform bi-level variable selection. However, when the data are

contaminated or heavy-tailed in high-dimension settings, it remains a challenge to

perform robust bi-level variable selection and parameter estimation.

I.1.4. Real Data Example

We close this section by introducing a real data example. The NTC-60 data

is a gene expression data set collected from Affymetrix HG-U133A chip, which is

corresponding to a high-dimensional case (p > n). The dataset consists of data on 60

human cancer cell lines and can be downloaded via the web application CellMiner

(http://discover.nci.nih.gov/cellminer/). The study is to predict the protein expression

on the KRT18 antibody from other gene expression levels. The expression levels of the

protein keratin 18 is known to be persistently expressed in carcinomas [OBC96]. And

the response variable is chosen from variables with the largest MAD. After removing

the missing data, there are n = 59 samples with 21, 944 genes in the dataset. One can

refer [SRN+07] for more details.

[LLLP11] applies only non-robust regression methods to this data and obtains

models with hundreds of predictors that are thus difficult to interpret. In this thesis,
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considering the possible irregularity in the dataset, the robust high-dimensional data

analysis approaches are applied.

I.2. Penalized Least Squares Method

To enhance model interpretability and make statistical inference feasible in

high-dimensional regression models, the sparsity condition is proposed that among

a large set of variables only a few of them are relevant. In such cases, variable

selection techniques are crucial for identifying important variables and improving

estimation accuracy. For last decades perhaps the most popular approaches for sparse

high-dimensional models are the Penalized Least Squares (PLS) methods. The other

techniques include sequential approaches (e.g. LARS [EHJ+04], Forward Regression

[Wan09], Sequential Lasso [LC14]) and screening methods (e.g. Sure Independence

Screening [FL08], Sure Independent Ranking and Screening [ZLLZ11], nonparametric

independence screening [FFS11]).

Consider a high-dimensional linear regression model

yi = xTi βββ + εi, 1 ≤ i ≤ n, (I.1)

where yi and xi = (xi1, · · · , xip)T are the observed response variable and covariates

vector, ε1, . . . , ε are i.i.d. random variables with mean 0 and variance σ2. Note that

βββ∗ = (β∗1 , · · · , β∗p)T ∈ Rp is an s-sparse coefficient vector (only include s nonzero

elements) and p� n. A class of PLS estimators for βββ∗ takes the following form

β̂ββ = argmin
βββ∈Rp

{
n∑
i=1

(yi − xTi βββ)2 + ρλ(βββ)

}
, (I.2)

where ρλ is a penalty function and λ is a tuning parameter in the penalty. The form

of ρλ determines the flavor of penalized regression and λ controls the magnitude of

the penalty. Specially, when λ = 0, the penalty term goes away and we are left
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with the ordinary least squares estimator. In most scenarios, the penalty function is

coordinate-separable such that

ρλ(βββ) =

p∑
j=1

ρλ(βj),

for some scalar function ρλ : R 7→ R.

The work of AIC [Aka98] and BIC [S+78] suggests to choose a parameter βββ

that minimizes the penalized least squares in (I.2) with the `0-norm penalty

ρλ(βββ) = λ‖βββ‖0 =

p∑
j=1

I(βj 6= 0),

when the random error ε is normal. With the `0-norm penalty, the PLS method

can be viewed as a model selection approach that penalizes the number of variables

in the model. However, this penalized `0 regression is unstable with respect to

small perturbations in the data, since the `0 penalty is not continuous. It is also

computational infeasible in the high-dimensional space.

[FF93] generalizes the penalized `0 regression to the bridge regression by

considering

ρλ(βββ) = λ
P∑
j=1

|βj|γ for 0 < γ ≤ 2.

It bridges the penalized `0 regression (γ → 0) to the ridge regression [HK70] (γ = 2).

When γ ≤ 1, the component of βββ in (I.2) can be shrunk to zero if λ is sufficiently

large, thus achieving simultaneous coefficient estimation and variable selection. While

the bridge penalty with γ < 1 is continuous, its infinite derivative at the origin may

cause numerical problem.

The special case when γ = 1 is related to the least absolute shrinkage and

selection operator (Lasso) [Tib96a], which is a very popular shrinkage method for
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variable selection. The Lasso penalty (`1 penalty) can be viewed as a convex surrogate

of the `0 penalty. But it is more stable due to its continuity and computationally feasible

for high-dimensional data. From the Bayesian perspective, the Lasso estimator can be

interpreted as a Bayesian posterior mode estimate when the regression parameters

have independent Laplace (i.e., double-exponential) priors [PC08].

The statistical properties of the Lasso estimator have been extensively studied

(e.g. [KF00], [EHJ+04], [Zou06], [ZY06], [ZH06], [ZH+08],[MY+09] and [BRT09]).

[FL01] shows that the Lasso shrinkage produces biased estimates for the large coeffi-

cient. [BRT09] presents that the Lasso is asymptotically equivalent to the Dantzig

selector [CT07], with the `2 error rate of prediction or estimation being s/n log(p),

where the number of variable p can be much larger than the sample size n. [ZY06]

characterizes the model selection consistency of the Lasso by proposing the property

of sign consistency,

P
(
sgn(βββ∗) = sgn(β̂ββ)

)
→ 1 as n→∞,

where sgn(βββ) is a vector of signs of βjs and sgn(0) is defined as 0. They show that

the Lasso is sign consistent if the following irrepresentable condition is satisfied,

‖XT
2 X1(X

T
1 X1)

−1sgn(βββ1)‖∞ < 1,

where βββ1 is the subvector of βββ∗ on its support supp(βββ∗), and X1 and X2 are the

submatrices of the n× p design matrix X formed by its columns in supp(βββ∗) and its

complement, respectively. However, the irrepsentable condition is easily violated in

present of highly correlated variables and therefore very restricted in high dimensions.

This explains why the Lasso estimator tend to include many false positive in the

selected model [FL10].
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[FL01] introduces the oracle property for model selection. Let S = {j : β∗j 6= 0}

be the index set of important variable. We call the PLS method in (I.2) an oracle

procedure if β̂ββ satisfies (asymptotically) the following oracle properties:

(1) Consistency of variable selection, {j : β̂j 6= 0} = S and

(2) Asymptotic normality,
√
n(β̂ββS − βββ

∗
S)→d N(0,Σ∗),

where Σ∗ is the covariance matrix knowing the true subset model. [FL01] studies the

oracle properties of nonconcave penalized likelihood estimators in the finite-dimensional

setting. They propose the Smoothly Clipped Absolute Deviation (SCAD) penalty

given as follows:

ρλ(t) =


λ|t| for |t| ≤ λ,

− t2−2aλ|t|+λ2
2(a−1) for λ < |t| ≤ aλ,

(a+1)λ2

2
for |t| > aλ,

(I.3)

where a > 2 is a fixed parameter. They show that the local minimum in (I.2) with the

SCAD penalty satisfies the oracle properties under some regular conditions. [FP+04]

further extends this result to a high-dimensional setting with p = o(n1/5) or p = o(n1/3).

Due to the concavity of the SCAD penalty, it suffers from the multiple minima issue.

[KCO08] later shows that with high probability the oracle estimator β̂ββ
O
is actually a

local minimum of the PLS with SCAD penalty, allowing p to grow with n exponentially.

They also provide sufficient conditions to check when a local minimum becomes a

global minimum.
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[Zou06] shows that the Lasso estimator does not have the oracle properties in

general and proposes the adaptive lasso that uses the weighted `1 penalty,

ρλ(βββ) = λn

p∑
j=1

wj|βj|,

where wj = 1/|β̃j|γ and β̃ββ is an root-n consistent estimator of βββ∗ which serves as an

initial estimator for the adaptive Lasso procedure. Note that for any fixed λ, the

penalty for zero-initial estimation goes to infinity, while weights for nonzero initials

converge to a finite constant. Consequently, by allowing a relatively higher penalty

for zero-coefficients and lower penalty for nonzero coefficients, the adaptive lasso is

able to reduce the estimation bias and improve variable selection accuracy. Similar to

the Lasso, solving for the adaptive Lasso is also a convex optimization problem and

thus it does not have the issue of multiple local minima.

For fixed p, [Zou06] proves that the adaptive LASSO has the oracle property. In

high dimension setting, for p� n, [HMZ08] shows that under the partial orthogonality

and certain other conditions, the adaptive LASSO obtains variable selection consistency

and estimation efficiency, when the marginal regression estimators are used as the

initial estimators.

[Z+10] proposes the Minimax Concave Penalty (MCP) that shares a similar

spirit as the SCAD penalty. The MCP takes the form

ρλ(t) = sign(t)λ

∫ |t|
0

(
1− z

λb

)
+
dz,

with a fixed parameter b > 0. It minimizes the maximum concavity

κ(ρ) := sup
0<t1<t2

{ρ′λ(t1)− ρ′λ(t2)}/(t2 − t1)

9



subjects to the following unbiasedness and selection features

ρ′λ(t) = 0 for t ≥ bλ and ρ′λ(0+) = λ.

It has been proved that the local minima of the PLS in (I.2) with MCP have the oracle

properties under some regular conditions. Specially, [Z+10] proposes the Penalized

Linear Unbiased Selection (PLUS) algorithm with MCP to obtain local minimizers

that equal the oracle estimator β̂ββ
O
, with the probability converging to 1.

The above motioned folded-concave penalty, i.e. the SCAD penalty and the

MCP, can be viewed as interpolations between the `0 penalty and the `1 (Lasso)

penalty. One one hand, the folded-concave penalties possess smoothness over the `0

penalty to gain flexibility and stability in computations. On the other hand, they

can reduce the bias of the Lasso and thus improve model selection accuracy and

obtain oracle properties. [FL11] investigates the penalized likelihood approaches

using a general class of folded-concave penalty functions in the context of generalized

liner model. They demonstrates that such methods have oracle properties with the

dimensionality of non-polynomial order of the sample size.

Although these methods enjoy many attractive statistical properties, they do

not work well when the covariates are highly correlated or have certain grouping

structures. For example, in gene expression analysis, genes from the same biological

pathways may have strong correlations. [Tib96a] points out that when there are highly

correlated predictor in high-dimensional settings, the prediction performance of the

Lasso is dominated by the ridge regression. [ZH05] demonstrates that the Lasso tends

to select one variable among a group of highly correlated covariates.
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To address these issues, [ZH05] proposes to use the elastic net (Enet) penalty,

which is the linear combination of the `1 and `2 penalties

ρλ1,λ2(βββ) = λ1‖βββ‖1 + λ2‖βββ‖2,

where λ1, λ2 > 0 are the tuning parameters. The Enet penalty can encourage the

sparsity and grouping effects simultaneously. [YL07] and [JY10] investigate its selection

consistency in the settings when p is fixed and p� n, respectively. They show that the

Enet estimator is selection consistent under an irrepresentable condition and certain

other conditions.

[ZZ09] proposed the adaptive Enet estimator to reduce the asymptotically

biasedness caused by the `1 component, following the same rationale behind the

adaptive Lasso estimator. Their oracle results require that the singular values of

the design matrix is bounded away from zero and infinity, which excludes the case

of highly correlated covariates and only applicable when p < n. To overcome these

limitations, [HBMZ10] replaces the `1 component by the MCP and proposes the Mnet

approach. They show that the Mnet estimator is selection consistent and equalt to

the oracle estimator under some regular conditions, applicable to the situation when

p� n. Similarly, the SCAD-ridge penalty is also studied in [ZX14,DSA18]. The main

drawback of these methods is that they essentially treat each variable individually

and are not able to incorporate grouping structures among covariates to improve the

selection accuracy.

When the p covariates form J non-overlapping groups, the linear regression

model in (I.1) can be written as

yi =
J∑
j=1

xTijβββ
∗
j + εi, i = 1, · · · , n. (I.4)
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Here xijs are independent and identically distributed (i.i.d) dj-dimensional covariate

vectors corresponding to the jth group, βββ∗j is the dj-dimensional true regression

coefficient vector of the jth group. Then p =
∑J

j=1 dj. Let xi = (xTi1, · · · ,xTiJ)T and

βββ∗ = (βββ∗T1 , · · · ,βββ∗TJ )T . Since the highly-correlated predictors in the same group tend

to be in or out of the model together, the group sparsity condition is often assumed:

there exists S ⊆ {1, · · · , J} such that βββ∗j = 0 for all j /∈ S.

[B+99] first proposes to use the group Lasso (GLasso) and is later developed

by [YL06]. The GLasso estimator is defined as a minimizer of (I.2) with the penalty

ρλ(βββ) = λ
J∑
j=1

√
dj‖βββj‖2.

As a nature extension of the Lasso, the GLasso selects variables at group level by

applying the Lasso penalty on the `2 norm of coefficients associated with each group

of variables. [HZ+10] demonstrates that the GLasso is superior to the Lasso under the

strong group sparsity and certain other conditions. While the selection consistency is

established under a variant of the irrepresentable condition [Bac08,NR+08], [WH10]

shows that the GLasso is not group selection consistent in general and proposes the

adaptive GLasso following the same spirit of the standard adaptive Lasso. They show

that the adaptive GLasso enjoys the consistency in group selection under some regular

conditions, when the group Lasso is used as the initial estimator.

[WCL07] proposes to select groups of time-varying coefficients by the group

SCAD

ρλ(βββ) =
J∑
j=1

ρλ(‖βββj‖2),

where the scalar version of ρλ is the SCAD penalty in (I.3). They also establish the

oracle result in fixed dimensional settings. [GZWW15] studies the oracle property of
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the Group SCAD in the high-dimensional setting when the number of groups can grow

at a certain polynomial rate. Similarly, the computational and theoretical properties

of the group MCP estimator are also investigated in [MHW+11,YHZ14].

The above mentioned group penalties essentially penalize the `2 norm of

coefficients associated with each group of variables and thus can only perform variable

selection at the group level, not at the individual level. However, this is not appropriate

for some situations. For example, in genetic association study, while the variants

belong to the same gene form a group, it is not necessary that all variants in the same

group are associated with the decease. In such cases, the bi-level sparsity is often

assumed: the sparsity can appear either at the group level or within certain groups.

[HMXZ09] proposes the group bridge penalty to encourage the bi-level sparsity,

ρλ(βββ) = λ
J∑
j=1

cj‖βββj‖
γ
1 ,

where γ ∈ (0, 1) is the bridge index and cj are constants adjustable for the dimension

of the group, e.g. cj = dγj . The group bridge penalty applies the bridge penalty on the

`1 norm of the coefficients for each group and thus perform bi-level variable selection.

[HMXZ09] shows that the global solution of the group bridge enjoys consistency in

group selection in low dimensional settings. [HBM12] further proposes the concave `1

norm penalty

ρλ(βββ) =
J∑
j=1

ρ(‖βββj‖1,
√
djλ).

Here the ρ function is a folded concave penalty, such as the SCAD penalty and the

MCP. While the concave `1 norm penalty does indeed provide the bi-level selection,

[SMS20] shows that in general the concave `1-norm penalty can only perform consistent

group selection, not the individual variable-level selection.
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[BH09] proposes a framework of the composite penalty that applies an outer

penalty ρO to the sum of an inner penalty ρI , which can be written as

J∑
j=1

ρO

 dj∑
i=1

ρI(βij)

 ,

where βij is the ith component of the coefficients vector in jth group. It is easy to

verify that the GLasso penalty, the group bridge penalty, the concave `1-norm penalty

and the concave `2 norm penalty all fit into this framework. To perform bi-level

selection, the paper proposes the composite MCP where the penalty ρO and ρI are the

MCP penalty. They also point out that the corresponding composite SCAD penalty

displays less grouping effect than the composite MCP. However, no oracle results are

available for the composite penalty even under the fixed-dimensional setting.

For other approaches that achieve bi-level selection, see for examples the

composite absolute penalty (CAP) [ZRY+09], the hierarchical Lasso [ZZ10], the sparse

group Lasso (SGL) [FHT10,SFHT13] and the sparse adaptive group Lasso (adSGL)

[FWZ+15].

In this section we have introduced the PLS approaches in three differnt cate-

gories: the individual variable selection approaches, the group selection approaches

and the bi-level selection approaches. While some of the methods enjoy nice statistical

properties, such as estimation consistency and oracle properties, almost all of them

require the random error at least to be sub-Gaussian, since the quadratic loss in (I.2)

is very sensitive to outliers or heavy-tailed random errors. In addition, most of the

statistical results require certain forms of the restricted eigenvalue condition, which

may not hold when the predictors are not sub-Gaussian. In this thesis, we propose

three different high-dimensional M-estimation frameworks to deal with these issues.
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From both the theoretical and computational aspects, we will show that our methods

are robust to the irregular settings motioned in I.1.

I.3. Robust Penalized Regression Method

The need for robust methods in statistical inference is widely recognized.

Especially in high-dimensional settings, the data unusually suffers from irregularities,

such as data contamination or heavy-tailed errors. However, the Penalized Least

Squares (PLS) methods are very sensitive to outliers and thus not able to provide

robust variable selection and parameter estimation.

[Box53] and [BA55] first bring robustness into the statistical scene. Later

[H+64], [Ham68] and [Bic75] lay the comprehensive foundation of the theory of robust

statistics. In particular, Huber’s seminal work [H+64] establishes the asymptotic

property of the M -estimators and proposes a minimax approach for constructing

regression functions that are insensitive to deviations from normality. In addition to

the classical concept of efficiency, [Ham68] proposes the influential function to describe

the local stability of an estimator in the presence of a small proportion of outliers.

[DH83] introduces the breakdown point, which represents the smallest amount of

contamination that may cause an estimator to take on arbitrarily large aberrant values,

to measure the global robustness of an estimator. Since then, many significant steps

have been taken toward designing and analyzing robust statistical methods – notably

in the work of the Least median of squares (LMS) [Rou84], the Least-trimmed squares

(LTS) [Rou84], the S-Estimators [RY84], the MM estimator [Yoh87], among many

others.

While the classical robust regression techniques ignore variable selection out of

necessity, the advance of technologies on collecting and analyzing high-dimensional data

has driven statisticians to work on penalized robust regression approaches. Consider
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a high-dimensional regression model in (I.1), due to the sensitivity of the quadratic

loss to heavy-tailed errors or outliers, a robust penalized selection and estimation

procedure replaces the sum of squares loss in (I.2) by a certain robust loss function .

Hence, the corresponding robust estimator β̂ββ takes the following form

β̂ββ = argmin
βββ∈Rp

{Ln(βββ;Zn
1 ) + ρλ(βββ)} , (I.5)

where Ln(βββ;Zn
1 ) is the empirical loss function, Zn

1 = {Z1, Z2, · · · , Zn} denote a

collection of n samples and Zi = (xi, yi) for i = 1, · · · , n. Note that a penalized robust

procedure is characterized by its loss function Ln(βββ;Zn
1 ) and the penalty function

encourages a certain sparsity on the parameter vector βββ. Compared to the sum of

squares loss, a robust loss function is able to accommodate the data’s irregularity and

the model misspecification. For the rest of this section, we will review some widely

used penalized robust approaches.

I.3.1. Penalized Quantile Regression and Its Variants

Since its inception in [KBJ78], the quantile regression (QR) has become a

significant and broadly used technique to study the conditional quantiles of a response

variable. A penalized quantile regression estimator consider the loss function as follows

Ln(βββ;Zn
1 ) =

n∑
i=1

ρτ (yi − xTi βββ),

where ρτ (u) = u{τ − I(u < 0)} is the check function of [KBJ78] at a given quantile

level 0 < τ < 1 . Suppose the random error εi in (I.1) satisfies P (εi ≤ 0|xi) = τ and

we ignore the intercept for brevity here. Hence, xTβββ∗ becomes the 100τ% quantile of

the response y given x. In fact, βββ∗ is the population minimizer of the check function

βββ∗ = argmin
βββ∈Rp

Ey|x[ρτ (y − xTβββ)].
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Compared to the least squares procedures, robust procedures based on the QR is

more resistant to the outliers and the influential points in the response measurement.

Theirs unique advantages also lie in the capability to capture data heteroscedasticity

through estimates on different quantiles.

The penalized QR approaches have been extensively studied for the last decades.

[Koe04] applies the `1-norm quantile regression (`1-QR) for longitudinal data to

encourage sparsity in estimating the random effect. [LZ08] proposes an efficient

algorithm to compute the solution path of the `1-QR. [WL09] establishes oracle

properties of the SCAD and adaptive-Lasso penalized QR for fixed dimension p.

[BC+11] investigates the `1-QR in a high-dimensional setting. They show the estimator

is consistent at a near-oracle rate and provide sufficient conditions under which the

selected model includes the true model, uniformly over a compact set of quantile

indices. [WWL12] considers non-convex penalized QR in an ultra-high dimensional

sparse model and demonstrates that the oracle estimator is a local minimum of the

non-convex penalized QR, under certain mild assumptions on the error distribution.

[FFB14] proposes a weighted `1-QR estimator and constructs its oracle results and

asymptotic normality in an ultra-high dimensional setting.

To obtain a more comprehensive understanding of the response-predictors

relationship, [ZY08a] proposes the simultaneous multiple QR (SMQR) method to

estimate multiple conditional qunatiles jointly, of which the loss function is

K∑
k=1

n∑
i=1

ρτk(yi − xTi βββ
(k)).

Here βββ(k) = (βββ
(k)
1 ,βββ

(k)
2 , · · · ,βββ(k)

p )T be the coefficients vector from the τk conditional

quantile function of y given x for k = 1, 2, · · · , K. Note that the above loss function
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reduces to the check function when K = 1. [ZY08a] penalizes the above loss function

by a norm of the coefficient matrix that encourages the column-wise sparsity, of which

the penalty is defined as

ρλ(βββ) = λ

p∑
j=1

max
k
{|βββkj |}.

Note that the SMQR method is preferable only when it is reasonable to assume the

same subset of the predictors are associated with multiple conditional quantile of the

response.

[ZY+08b] proposes an adaptive-lasso-penalized composite quantile regression

(ACQR) procedure. In that paper the conditional 100τ% quantile of Y given x = xi

is assumed to be
p∑
j=1

xijβββ
∗
j + b∗τ ,

where b∗τ is the 100τ% quantile of ε and uniquely defined for any 0 < τ < 1. The loss

function for the ACQR method takes the form

K∑
k=1

n∑
i=1

ρτk(yi − bτk − xTi βββ). (I.6)

They show that the ACQR method works well for the data contaminated with outliers

or generated from infinite-variance errors for fixed-dimensional settings. A weighted

version of (I.6) is proposed by [BFW11] termed as the composite quasi-likelihood

approaches. Considering the high-dimensional linear model, the loss function of

[BFW11] is defined as
K∑
k=1

n∑
i=1

wkρk(yi − xTi βββ),

where ρ1, · · · , ρK are the convex functions and w1, · · · , wK are constant weights chosen

to minimize the asymptotic variance of the resulting estimator. From the perspective

of non-parametric statistics, the convex functions ρ1, · · · , ρK can be viewed as the
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basis functions used to approximate the unknown log-likelihood function of the error

distribution. With the weighted `1 penalty to alleviate the bias generated by the

`1 penalty, they show that the proposed estimator enjoys selection consistency and

estimation efficiency for the true non-zero parameters, under certain mild conditions.

It is worth noting that the QR regression becomes the least absolute deviation

(LAD) regression when we choose the quantile level τ = 0.5 in the check function.

The LAD loss function is defined as follows

n∑
i=1

|yi − xTi βββ|.

The LAD regression estimates the conditional median function and is well known for

its robustness to outliers in the response or heavy-tail errors.

Penalized LAD regression methods haven been studied to perform simultaneous

robust estimation and variable selection. [WLJ07] shows that in low-dimensional

setting, the LAD-Lasso estimator has the same asymptotic efficiency as the unpenalized

LAD estimator obtained under the true model. [GH10] provides sufficient conditions

under which the LAD-Lasso enjoys the estimation and selection consistency in a

sparse high-dimensional regression model. [Ars12] proposes the weighted LAD-Lasso

to address the problem that the LAD-Lasso is not resistant to outliers in covariates.

They apply the LAD-Lasso to the transformed data set (wiyi, wixi) for i = 1, · · · , n

where the weights wi are computed using a certain robust distant in covariates.

[Wan13] shows that the LAD-Lasso achieves the near-oracle risk performance with a

nearly universal penalty parameter and also establishes its sure screening property for

high-dimensional settings.

The penalized QR methods are attractive in that they are resistant to heavy-tail

errors or outliers while enjoying oracle results if an appropriate penalty function is
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used. They can also capture the data heterocedasticity by jointly estimating multiple

conditional quantiles. The main drawback is that they essentially provide the median

(quantile) regression instead of mean regression. Using quantile approaches may

generate bias respective to the mean estimation when the underlying error distribution

is not symmetric. Hence, the penalized QR methods are not applicable in robust

high-dimensional regression when the mean estimation is still of interest.

I.3.2. Penalized Robust M-estimator

Define ti = yi − xTi βββ as the residual for the ith observation. Recall the PLS

method considers the loss function
∑n

i=1 t
2
i , which produces an unstable result if

outliers occur in the data. To reduce the effect of outliers or heavy-tail errors, [H+64]

proposes to replace the squared loss by another function of residuals, yielding

n∑
i=1

l(ti), (I.7)

where l : R 7→ R is the residual function or the loss function. [God60] shows that

choosing a loss function l proportional to log fβββ(x, y) is the best choice, where fβββ(x, y)is

the density function of observations. [H+64] further derives the optimal minimax

function l when the model fβββ(x, y) is only approximately true and calls the solution

in minimizing (I.7) an M-estimator. The least squares method takes l(t) = t2 and

the LAD method takes l(t) = |t|, which are special cases of M-estimators. Note that

for some M-estimators, the residual function is applied to a scaled residual instead,

such as l(ti/ŝ), where the scale estimator ŝ can be obtained from a certain robust

procedure. We omit it in this introduction for the sake of brevity.
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The penalized robust M-estimation approaches have become very popular in

robust variable selection and estimation since the last decade. [LLZ+11] points out

that LAD approaches suffer a loss of efficiency for normally distributed data and

proposes the following loss function with concomitant scale parameter s

LH(βββ, s) =


ns+

∑n
i=1 lγ

(
yi−xTi βββ

s

)
s for s > 0,

2M
∑n

i=1 |yi − xTi βββ| for s = 0,

+∞ for s < 0,

(I.8)

where the residual function lγ with γ > 0 is the Huber loss function in [H+64]

lγ(t) =


t2 for |t| ≤ γ,

2γ|t| − γ2 for |t| > γ.

(I.9)

Note that γ controls the robustness of the Huber loss in that lγ applies the quadratic

function to smaller errors and the absolute function to larger errors. By combing

the adaptive Lasso penalty with the loss function in (I.8), [LLZ+11] shows that the

proposed estimator is resistant to the heavy-tailed errors or outliers in response and

enjoys oracle properties for fixed dimension p.

[WJHZ13] proposes a class of penalized regression estimators based on the

exponential squared loss, of which the residual function is defined as follows

lγ(t) = 1− exp
{
−t2/γ

}
,

Similarly, γ > 0 is a tuning parameter that controls the degree of robustness for

the estimators. In particular, when γ is large, the summand can be approximated

as the quadratic loss and thus the proposed estimator behaves similarly to the PLS
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estimator. For a small γ, the observation with large residual yields a bounded loss

and therefore has a limited effect on the estimator of βββ∗. [WJHZ13] establishes the

root-n consistency and oracle properties under defined regularity conditions for fixed

dimension p. They also demonstrate that the proposed estimators achieve the highest

breakdown point of 1/2 and bounded influence functions with respect to the outliers

in either the response or the covariates.

[CRW18] proposes a robust Lasso regression method using Tukey’s biweight

criterion, of which the residual function takes the form

lγ(t) =


γ2

6

{
1−

[
1−

(
t
γ

)2]3}
for |t| ≤ γ,

γ2

6
for |t| > γ.

Here γ > 0 controls the robustness of the estimator by truncating the residuals that

are larger than γ to the constant γ2

6
, and therefore the impact of the corresponding

observation is alleviated. [CRW18] proposes estimator is applied to high-dimensional

data where p > n but the corresponding statistical properties are not available.

The above mentioned robust residual function lγ all share the same charac-

teristics such that their derivative, denoted by ψγ, are bounded. It has been shown

that the influential function [Ham68] of M -estimators, which measures the influ-

ence of an observation on the value of estimated parameter, is proportional to its

derivative function ψγ. Hence, the bounded ψγ alleviates the impact of observations

with large residuals and achieves robustness with respect to outlier in the response

or heavy-tailed errors. Compared to other loss functions, the Huber loss function

is more advantageous in that its convexity yields unique minimization and more

stable computations. However, the non-convex loss function, e.g. the exponential loss
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function and Tukey’s biweight loss function, may achieve stronger robustness through

producing redescending M-estimators. In the robust regression literature, we call an

M -estimator redescending if the derivative function ψγ becomes 0 or decreases to 0

smoothly for all residual greater at some points. In that case, large residuals can be

downweighted or ignored completely. See [Mul04] and [SMS08] for more discussions.

[NRW+12] proposes a unified framework of penalized M-estimator for high-

dimensional data analysis. They provide sufficient conditions under which the penalized

M-estimator is consistent at a certain optimal rate. But they do not provide the

oracle properties and require the loss function to be convex. [Loh17] establishes the

local estimation consistency and oracle properties for a framework of high-dimensional

M-estimators, which allows both the loss function and the penalty function to be

non-convex. Although their results are applicable for the heavy-tailed distribution

and/or outliers in additive errors and covariates, they do not address the issue of

asymmetry and heteroscedasticity.

I.3.3. Outlier Detection for High-dimensional Data Analysis

The presence of outliers may result in biased estimation, model misspecification

and misleading predictions. While all the above mentioned approaches perform direct

robust estimation against outliers, it is also nature to detect and remove outliers

before fitting regression models. Typical approaches for outlier diagnostics are based

on refitting the regression model after deleting one case at a time [AS03], These

diagnostic methods are helpful in the discovery of outliers, including Cook’s distance

[Coo77], studentized residuals [Pop76] and jackknifed residuals [VR13], among many

others. For high-dimensional models, [ZLL+13] proposes a diagnosis measure called

High-dimension Influence Measure (HIM), that uses a marginal correlation to measure

observation’s influence. [WL17] uses outlier detection measures based on distance
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correlation. The work of [RRSY19] studies a few measures for gauging the influence

of an observation on Lasso model selection. However, these methods only focus on

single-case diagnostics. To deal with multiple influential observations that give rise to

the “masking" and “swamping" effects, [ZLNL19] studies two extreme statistics based

on a marginal-correlation-based influence measure. [WLCL18] proposed to obtain

a clean set using the sure independence screening method and the least trimmed

squares regression estimates, followed by the multiple outliers detection through testing

procedures.

Another line of research focuses on simultaneous outlier detection and robust

estimation via the penalized regression in high-dimensional regression models. Consider

the following mean-shift linear regression model

yi = xTi βββ + θi + εi, 1 ≤ i ≤ n,

where the mean-shift parameter θθθ = (θ1, · · · , θn)T is assumed to be sparse that θi is

non-zero only when the observation i is an outlier. [LMJ07] proposes the robust Lasso

estimator which takes the form

(β̂ββ, θ̂θθ) = argmin
βββ∈Rp,θθθ∈Rn

{
n∑
i=1

(yi − xTi βββ − θi) + λ1

p∑
j=1

|βj|+ λ2

n∑
i=1

|θi|

}
. (I.10)

The above Lasso penalties encourage the sparsity on both βββ and θθθ. Hence, the

proposed estimator performs simultaneous outlier detection and variable selection.

[SO12] consider a general penalty function on θθθ and propose the so-called Θ-IPOD

estimator

θ̂θθ = argmin
θθθ∈Rn

{
n∑
i=1

(yi − xTi βββ − θi) + λ2

n∑
i=1

ρ(θi)

}
,

24



where ρ : R 7→ R is a penalty function that encourages sparsity on θθθ and is allowed

to be non-convex. The authors established the connection between the Θ-IPOD

estimators and M-estimators. They also applied their estimator to high-dimensional

data by considering the sparsity on both βββ and θθθ. [XJ13] proposes the sparse robust

outlier shrinkage (SROS) estimator which applies the adaptive Lasso penalty and the

weighted ridge penalty on βββ and θθθ, respectively. They show that the SROS estimator

enjoys the selection consistency and preserves full asymptotic efficiency for normal

data in low-dimensional settings. [NT12] demonstrates that the estimator in (I.10)

can faithfully recover both the parameter vector βββ and θθθ under certain conditions.

[KBW18] modifies the estimator in (I.10) by applying the adaptive Lasso penalty on

the mean-shift parameter and developed nice theoretical properties for their approach.

I.3.4. Robust High-dimensional Asymmetric Data Analysis

Ever since [H+64] implies that the location estimation based on Huber’s method

is possibly biased for fixed asymmetric contamination, lots of effort have been made

in robust statistics that deal with asymmetric data. Consider a distribution function

that is governed by the standard normal density on the set [−d, d] and is otherwise

arbitrary, [Col76] studies a class of M-estimator with continuous skew-symmetric

ψ functions that vanish outside a certain set [−c, c] and establishes the estimation

consistency. For M-estimation in linear regression model, [Car79,CW88] address that

the data asymmetry does not affect the slope estimation asymptotically when the

error and covariates distributions are independent. However, the case of asymmetric

and heteroscedastic errors was not well addressed. While transformation methods

(e.g. [BC64]) are extensively used to obtain symmetric and homogeneous errors,

such transformations may not exist when both asymmetry and heteroscedasticity

are present. Moreover, transformations essentially modify the relationship between
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the response and covariates and thus alter the original problem. [Wil97] proposes a

regression method based on modeling the error distribution using the SU distribution

in [Joh49]. But the method is not appropriate for inferences on the slop parameters in

the presence of both data asymmetry and heteroscedasticity.

Recently, [XC18] proposes a modify Huber function (MHF) to deal with

asymmetric data as follows

lm1,m2(t) =


m1t− 1

2
m2

1 for t ≤ m1,

1
2
t2 for m1 < u < m2,

m2t− 1
2
m2

2 for t ≥ m2,

where m1 = − 2kγ
1+k

and m2 = 2γ
1+k

. Here γ > 0 controls the robustness of the estimator

and k > 0 is a data-adaptive parameter that accommodates the data asymmetry.

When k = 1, the proposed MHF is reduced to the Huber loss function. When k > 1,

the proposed MHF puts more weights to the longer tail one the left side and vice

versa. However, the method is only investigated in low-dimensional space.

In high-dimensional regression models, [FLW17] points out that most of penal-

ized robust M-estimators generate bias to the conditional mean regression function for

asymmetric data. They proposes the regularized approximate quadratic (RA-Lasso)

estimator which uses the Huber loss function in (I.9) but refer γ > 0 as a diverging

parameter that balances the bias and robustness. They establish nice asymptotic

properties of the RA-Lasso estimator, and prove its estimation consistency at the

minimax rate enjoyed by LS-Lasso. [SZF19] regards this method as a adaptive Huber

regression and investigates the theoretical framework that deals with heavy-tailed

error with bounded (1 + δ)-moment for any δ > 0.
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I.3.5. Robust High-dimensional Group Variable Selection

When there exists certain grouping structures in covariates, it is desirable to

select variables at both the group level and the within the group level. However,

the PLS methods for group variable selection are not robust to non-normal data

and/or data including outliers. To handle outliers in the response, [Lil15] proposes the

LAD-GLasso estimator that minimizes the combination between the LAD loss and the

group Lasso penalty. That paper also introduces a weighted version of LAD-GLasso

estimator to allow outliers in predictors. [WT16] investigates a general penalized

M-estimators framework using convex loss functions and concave `2-norm penalties

for the partially linear model with grouped covariates. Under regular conditions, they

show that the robust estimator enjoys the oracle property in a high-dimensional setting.

But those robust estimators only select variables at group levels. Considering the

linear model with grouping structures in (I.4), [WT16] studies the penalized quantile

regression estimator to perform robust bi-level selection, which takes the form as

follows

β̂ββ = argmin
βββ∈Rp

{
n∑
i=1

ρτ (yi −
J∑
j=1

xTijβββj) + λ
J∑
j=1

(
‖βββj‖1

) 1
2

}
,

where the check function ρτ (u) = u{τ − I(u < 0)} at a given quantile level 0 < τ < 1.

That paper also establishes the oracle property in low-dimensional settings. However,

as we discussed before, estimators based on quantile regression essentially perform

median (quantile) regression and thus may generate bias for mean regression.

I.4. Main Contributions

I.4.1. Penalized Weighted Least Squares Method

In Chapter 2, we propose to run sparse robust HDDA and outlier detection in

a weighted least squares framework. To be more specific, we relate each observation’s
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irregularity to a weight value: weights of regular observations being 1 and weights

of irregular observation being smaller than 1. In a penalized weighted least squares

framework, we introduce a shrinkage rule for the weight vector to perform simultaneous

outlier detection, variable selection and robust estimation. Here the term “irregularity”

represents a sample’s departure from the majority of the observation due to either

the heterogeneity or outlying phenomena. We call our model as the PAWLS method

in general since the weighted least squares model is considered and a penalization

approach is linked to the proposed weight shrinkage rule.

The contribution can be summarized as follows. First, we provide an efficient

robust approach for simultaneous outlier detection and variable selection in ultra

high-dimensional settings; Second, to our knowledge, this is the first work of obtaining

a data-adaptive weight vector estimation using penalization or shrinkage rule in high-

dimensional settings; Third, some non-asymptotic oracle properties for weight vector

estimation are studied under p� n settings; Fourth, we build a unified link between

the weight shrinkage rule and the robust M-estimation. This can facilitate the further

investigation of M-estimation in p� n settings.

I.4.2. Penalized Robust Approximated Quadratic M-estimators

In Chapter 3, We consider high-dimensional linear regression in more general

irregular settings: the data can be contaminated or include possible large outliers

in both random errors and covariates, the random errors may lack of symmetry

and homogeneity. In particular, we investigate both statistical and computational

properties of high-dimensional mean regression in the penalizedM -estimator framework

with diverging robustness parameters. This framework allows both the loss function

and the penalty to be non-convex. Our perspective is different from [Loh17] since all loss

functions considered in our study converge to a quadratic loss when the corresponding
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robustness parameter diverges. To be more specific, we proposed a class of Penalized

Robust Approximated quadraticM -estimators (PRAM) to address all irregular settings

in (a-c) mentioned above. Inspired by [FLW17], PRAM uses a family of loss functions

with a diverging parameter α to control the robustness as well as the discrepancy to

the quadratic loss. By controlling the divergent rate of α, PRAM estimators are able to

reduce the bias induced by asymmetric error distribution and meanwhile preserve the

robustness to approximate the mean estimators. Additionally, we extend the PRAM

to a more general setting by relaxing the sub-Gaussian assumption on covariates.

Our theoretical contributions in this chapter include the investigation of statis-

tical properties for a class of PRAM estimators with only weak assumptions on both

random errors and covariates. In particular, We first introduce sufficient conditions

under which a PRAM estimator has local estimation consistency at the same rate as

the minimax rate enjoyed by the LS-Lasso. We then show that the PRAM estimator

actually equals the local oracle solution with the correct support if an appropriate

non-convex penalty is used. Based on this oracle result we further establish the

asymptotic normality of the PRAM estimators. As we will see, with the devise of

diverging parameters in the loss functions, our theoretical result is applicable for a

wide class of PRAM estimators which are robust to general irregular settings, when

the dimensionality of data grows with the sample size at an almost exponential rate.

Computationally, we also implement the PRAM estimator through a two-step

optimization procedure and investigate the performance of six PRAM estimators

generated from three types of loss function approximation (the Huber loss, Tukey’s

biweight loss and Cauchy loss) combined with two types of penalty functions (the

Lasso and MCP penalties). While our numerical results demonstrate satisfactory

finite sample performance of the PRAM estimators under general irregular settings,

29



it suggests that in practice, when the data are heavy-tailed or contaminated, a well-

behaved PRAM estimator can be chosen by considering a redescending loss function

approximation and a concave penalty, using the RA-Lasso as an initial.

I.4.3. High-dimensional M-estimation for Bi-level Variable Selection

In Chapter 4, we consider high-dimensional linear regression with grouped

covariates, in irregular settings that the data (random errors and/or covariates) may be

contaminated or heavy-tailed. In particular, we propose a novel high-dimensional bi-

level variable selection method through a two-stage penalized M-estimator framework:

penalized M-estimation with a concave `2-norm penalty achieving the consistent

group selection at the first stage, and a post-hard-thresholding operator to achieve

the within-group sparsity at the second stage. Our perspective at the first stage is

different from [WT16] since we allow the loss function to be non-convex and thus it is

more general. In addition, our proposed two-stage framework is able to separate the

groups selection and the individual variables selection efficiently, since the post-hard-

thresholding operator at the second stage nearly poses no additional computational

burden to the first stage. More importantly, our framework includes a wide range

of M-estimators with strong robustness if a redescending loss function is adopted.

Furthermore, we extend our framework to a more general setting by relaxing the

sub-Gaussian assumption enforced on covariates.

Theoretically, we investigate statistical properties of our proposed two-stage

framework with weak assumptions on both random errors and covariates. We first

show that with certain mild conditions on the loss function, a penalized M-estimator

at the first stage has the local estimation consistency at the minimax rate enjoyed by

the LS-GLasso. We further establish that with an appropriate group concave `2-norm

penalty, the estimator from our first stage has a group-level oracle property. We
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then show that these nice statistical properties can be carried over directly to the

post-hard-thresholding estimators at the second stage and thus we establish its bi-level

variable selection consistency. As we will reveal later, those theoretical results are

applicable when the data are heavy-tailed or contaminated, allowing the dimensionality

of data grows with the sample size at an almost exponential rate.

Computationally, we propose to implement an efficient algorithm through a

two-step optimization procedure. We compare the performance of estimators generated

from different types of loss functions (e.g. the Huber loss and Cauchy loss) combined

with a concave penalty (e.g. MCP penalty). Our numerical results demonstrate

satisfactory finite sample performances of the proposed estimators under different

settings. Additionally, it also suggests that a well-behaved two-stage M-estimator

can be usually obtained by considering a redescending loss (e.g. Cauchy loss) with a

concave penalty, when the data are heavy-tailed or strongly contaminated.
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CHAPTER II

PENALIZED WEIGHTED LEAST SQUARES METHOD

II.1. Introduction

High-dimensional data arise in many scientific areas due to the rapid devel-

opment of advanced technologies. In recent decades, a great number of statistical

methods, algorithms and theories have been developed to perform high-dimensional

data analysis (HDDA). Among them, penalized least squares (PLS) methods have

become very popular in high-dimensional linear regression analysis since the intro-

duction of the Lasso [Tib96a]. However, a penalized least squares approach may lose

its efficiency and produce unstable result in both estimation and variable selection

due to the existence of either outliers or heteroscedasticity. Although many robust

analysis tools were proposed in low-dimensional data analysis and also extended in

high-dimensional data settings, most of them do not identify outliers in particular,

which themselves can provide important scientific findings. Most of existing out-

liers detection methods, such as visualizing tools or diagnosis statistics, can fail due

to the masking and swamping phenomena in presence of multiple outliers. For a

HDDA method with separate outliers detection and variable selection process, the

problem became more complicated since the damage of high-dimensionality and data

contamination can be intertwined.

In this chapter, we aim to introduce a shrinkage rule for the weight vector to

perform simultaneous outliers detection, variable selection and robust estimation in a

penalized weighted least squares framework. The rest of this chapter is organized as

follows. In Section II.2, we introduce the basic setup and define the PAWLS model,
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along with a brief discussion of its Bayesian understanding. We also establish a

unified link between the PAWLS and a regularized robust M-estimation in this section.

We discuss the PAWLS implementation, including both the Algorithm and tuning

parameter selection in Section II.3. Some non-asymptotic oracle inequalities of the

PAWLS estimation error for both the weights and coefficients vectors are discussed in

detail in Section II.4. In Section II.5, we conduct some numerical studies including

some simulation studies and real data analysis under both p < n and p� n settings.

II.2. Weight Shrinkage

Consider a weighted linear regression

yi = x′iβββ
∗ + ηi, 1 ≤ i ≤ n, (II.1)

where yi and xi = (1, xi1, · · · , xip)′ are the observed response variable and covariates

vector, βββ∗ = (β∗0 , β
∗
1 , · · · , β∗p)′ is the coefficients vector, ηi is the random error with

mean 0 and variance σ2
i . In particular, we let σi = σ/w∗i for 0 ≤ σ <∞. We make an

important assumption that the majority number of w∗i s are 1, except a few others.

Thus, the heteroscedasticity or irregularity only exists among a few observations. Such

a model assumption is defined as the irregularity sparsity in this Chapter.

If the weight vector w = (w1, · · · , wn)′ in (II.1) is given or represented as a

priori, then we can obtain a sparse estimation of βββ by minimizing a penalized weighted

least squares loss with a penalty on βββ (no penalty on intercept),

β̃ββ(λ1n,w) = argmin
βββ∈Rp

1

2n

n∑
i=1

w2
i (yi − x′iβββ)2 + Pλ1n(βββ). (II.2)

For example, an LAD-Lasso takes wi = |yi − x′iβββ|
−1/2 and Pλ1n(βββ) = λ1n

∑p
j=1 |βj|

[GH10], [WLJ07], [Wan13]. A sparse LTS [ACG+13] takes wi = 0 for some selected

outliers and wi = 1 for others. In some heterscedacity settings, wi is chosen to be
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smaller for clusters with larger variation and larger for clusters with smaller variation.

However, in general, w is unknown and needed be estimated data-adaptively

with βββ. In the PAWLS approach we develop here, we allow weights to be data-driven

and propose to obtain ŵ and β̂ββ simultaneously. In particular, a PAWLS method with

the Lasso penalty is to solve

(β̂ββ, ŵ)(λ1n, λ2n) = argmin
βββ∈Rp,0<wi≤1

{
1

2n

n∑
i=1

w2
i (yi − x′iβββ)2 + λ1n

p∑
j=1

|βj|+ λ2n

n∑
i=1

|1− wi|

}
,

(II.3)

where λ1n
∑p

j=1 |βj| is to encourage the model sparsity by shrinking all coefficients

to 0, while λ2n
∑n

i=1 |1− wi| is to encourage the irregularity sparsity by shrinking all

weights from some small amount to 1. Here λ1n ≥ 0 and λ2n ≥ 0 are two tuning

parameters controlling the size of a sparse model and the ratio of irregular observations,

respectively.

Remark 1: The non-differentiability of penalty |1−wi| over wi = 1 implies that

some of the components of ŵ may be exactly equal to one. Thus those observations

corresponding to ŵi = 1 survive the irregularity screening, while those corresponding to

ŵi 6= 1 are suspected to be irregular observations. Therefore, the PAWLS can perform

simultaneous robust variable selection and irregular or outlying observation detection.

There is a Bayesian understanding of the PAWLS model in (II.3). Suppose

we have independent prior distributions: β0 ∝ 1, π(βj) ∝ e−λ10|βj | for 1 ≤ j ≤ p, and

π(wi) ∝ (wi)
−1e−λ20|1−wi|I(0 < wi ≤ 1) for 1 ≤ i ≤ n, where I(·) is the indicator

function. The joint posterior distribution of the parameters,

π(βββ,w|y) ∝
n∏
i=1

exp
{
−w2

i (yi − x′iβββ)2 − λ20|1− wi|
} p∏
j=1

exp {−λ10|β|j} .
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Thus the PAWLS estimation (β̂ββ, ŵ) in (II.3) with λ1n = λ10/(2n) and λ2n = λ20/(2n)

is equivalent to a corresponding posterior mode of βββ and w. In the left panel of Figure

II.1, we plot three sample curves of π(wi) for λ20 = 4, 8, 15. It is observed that, wi = 1

with a large probability for a large λ20, and wi = 0 with a large probability for a small

λ20. The convexity of π(wi) between 0 and 1 justifies the outlier detection ability of

the PAWLS in (II.3) from a Bayesian perspective.

II.2.1. A General Threshold Rule and Its Link to Sparse M-estimation

In fact, the PAWLS with Lasso in (II.3) can be generalized to a series of weight

shrinkage estimation which enjoys strong robustness. To understand this property, we

first define a class of scale shrinkage rule as follows.

Definition II.1. (Scale Threshold Function) For any threshold parameter λ > 0, a

positive function Θλ(t), t ∈ R is defined to be a scale threshold function if it satisfies

(1) (Symmetric) Θλ(t) = Θλ(−t) ,

(2) (Non-increasing) Θλ(t) ≥ Θλ(t
′) for 0 ≤ t ≤ t′ and

(3) (Two extremes) lim
t→0

Θλ(t) = 1 and lim
t→∞

Θλ(t) = 0.

The scale threshold function in Definition II.1 shares the similar spirit as one

in [SO12], but these two types threshold functions have different features. Specifically,

Θλ(·) here is designed to shrink any small positive values (close to 0) to 1, while the

one in [SO12] is to shrink any large values to 0. Based upon the above scale shrinkage

rule, we can establish an interesting connection between the PAWLS estimation and

the sparse M-estimation. Such a connection explains strong robustness properties of

the proposed PAWLS in (II.3).
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Figure II.1. Display of Some Functions. Left: The Shape of πλ(wi) Function with
λ = 4, 8, 15; Middle: The ρλ Function with Tuning Parameter λ = 2, 3, 4; Right: The
ψλ Function with Tuning Parameter λ = 2, 3, 4

Theorem II.2. Suppose β̃ββ = β̃ββ(0, w̃) is a solution in (II.2) for λ1n = 0 and w̃2
i =

Θλ(yi − xiβ̃ββ), 1 ≤ i ≤ n. Here Θλ(·) for some λ > 0 is a threshold function defined in

Definition II.1. Then β̃ββ is also an M-estimator such that β̃ββ = argminβββ∈Rp
∑n

i=1 ρλ(yi−

x′iβββ). In particular, ψλ(t) = dρλ(t)
dt

satisfies,

ψλ(t) = tΘλ(t). (II.4)

The proof of Theorem II.2 is given in Appendix. Theorem II.2 tells us that a

weight generated from any given scale threshold rule can be linked to a corresponding

M-estimator. For example, the PAWLS with the Lasso in (II.3) indicates that ŵi =

{nλ2n/(yi − x′iβ̂ββ)2} ∧ 1. Thus, if we let λ = nλ2n, then the scale shrinkage rule for

(II.3) becomes

Θλ(t) =

{
λ2/t4 if t2 > λ,

1 if t2 ≤ λ.
(II.5)
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From Theorem II.2, the PAWLS estimation in (II.3) is linked to a corresponding

sparse M-estimator with ψ function with

ψλ(t) =

{
λ2/t3 if t2 > λ,

t if t2 ≤ λ,
(II.6)

and the corresponding ρ function,

ρλ(t) =

{
−λ2/(2t2) + λ, if t2 > λ,

t2/2, if t2 ≤ λ.
(II.7)

See the middle and right panels in Figure II.1 for three curves of ρλ(t) and ψλ(t) under

λ = 2, 3, 4. Notice that lim
t→∞

ψλ(t) = 0 and lim
t→∞

ρλ(t) = λ. Thus the ρ function in

(II.7) gives a weakly redescending M estimation with strong robustness. Naturally,

the PAWLS solution in (II.3) can be understand as a regularized robust M-estimator

with the Lasso penalty. From now on, our investigation is focused on this particular

PAWLS estimator. Without being addressed in particular, the Lasso penalty is used

in the PAWLS approach.

II.3. Implementation

II.3.1. Coordinate Decent Algorithm for PAWLS

We first notice that (II.3) is not a convex optimization problem. This is not

surprising due to the link to a regularized redescending M estimator and strong

robustness discussed in Section II.2.1. However, for a given w, the function of βββ is a

convex optimization problem, and the vice versa. Therefore, the objective function

(II.3) is a bi-convex function. This biconvexity guarantees that the algorithm has

promising convergence properties [GPK07]. We can compute a PAWLS estimate

efficiently in Algorithm 1 using coordinate decent algorithm [GPK07].

For each pair of (λ1n, λ2n), those initialization values βββ(1), w(1) play important

roles during alternative iterative process. We suggest to use a multiple iterative strategy
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as follows: (1) when updating βββ, we start from βββ(1) = 0 and w(1) = ŵ(λ1n, λ̃2n), where

λ̃2n is an ideal tuning parameter searched from the last tuning parameter selection

process to be represented in the next section; (2) when updating w, we start from

w(1) = 1 and βββ(1) = β̂ββ(λ̃1n, λ2n), where λ̃1n is an ideal tuning parameter from the last

tuning parameter selection process. Thus, initial values are improved for multiple

times, and βββ(k) and w(k) are alternatively updated until converge.

Algorithm 1 The PAWLS under fixed λ1n and λ2n
Given X ∈ Rn×p, y ∈ Rn and λ1n, λ2n in a fine grid,
let λ1j = λ1n for 1 ≤ j ≤ p, let λ2i = λ2n for 1 ≤ i ≤ n
let k = 1 and obtain an initial β(k), w(k), and r(k) = y −Xβββ

While not converged do
[update βββ]
cj = n−1X

′
jw

(k)′wXj, zj = n−1X
′
jw

(k)′wr + cjβ
(k)
j

β
(k+1)
j = S(zj, λ1j)

1/cj
r = r−X

′
j(β

(k+1) − β(k))
[update w]
if r2i > nλ2i, w

(k+1)
i ← nλ2i/r

2
i ; otherwise w

(k+1)
i ← 1

converged if ‖β(k+1) − β(k)‖∞ < ε and ‖w(k+1) −w(k)‖∞ < ε
k ← k + 1

end while
deliver β̂ββ = βββ(k) and ŵ = w(k)

II.3.2. Tuning Parameter Selection

Like many other penalized regression, the selection of tuning parameters plays

an important role in producing a well-behaved PAWLS estimate. Due to the high

computation efficiency of Bayesian Information Criterion (BIC) [S+78], we choose two

optimal tuning parameters λopt1n and λopt2n by modifying BIC as follows,

BIC(λ1n, λ2n) = n log

{
n∑
i=1

ŵ2
i (λ1n, λ2n)(yi − x′iβ̂ββ(λ1n, λ2n))2 +

p

n+ p

}
+ŝ(λ1n, λ2n) log(n),

(II.8)
1S(z, a) = z − a, 0 or z + a if z > a, |z| ≤ a or z < −a.
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where ŝ(λ1n, λ2n) = ŝ1 + ŝ2 with ŝ1 = 1 + #{1 ≤ j ≤ p : β̂j(λ1n, λ2n) 6= 0} and

ŝ2 = #{1 ≤ i ≤ n : ŵi(λ1n, λ2n) < 1}. Here ŝ1 and ŝ2 are the estimated number

of nonzero regression coefficients and and outliers, respectively. Different from the

classical BIC, we include a term p
n+p

in the first part in (II.8) dealing with the possible

blowup. This may happen if a very small λ1n is used such that all ŵis are close to 0.

The optimal tuning parameters are searched alternatively by minimizing BIC

in (II.8) from a fine grid of λ1n, λ2n. We first fix λ∗1n and find an “ideal” λ∗2n using

BIC; then this λ∗2n is fixed, and we continue to search an “ideal” λ∗1n by minimizing

the BIC. The same procedure is repeated iteratively until an optimal pair (λopt1n , λ
opt
2n )

is obtained. This alternative search has high computation efficiency and performs well

in our numerical studies.

Remark 2: We suggest to search for λ2n first since a well chosen λ∗2n (for

outlier screening) at the beginning can reduce the estimation damage caused by outliers

during the iteration process significantly. This is also verified by our limited numerical

experience.

Remark 3: We discard those (λ1n, λ2n) such that ŝ2/n ≥ r, where r can be

any value larger than 0.5. This is reasonable since any single linear regression model

will be invalid if a data has more than 50% outliers. In this case, subgroup analysis

should be applied. In our numerical studies, we takes r = 0.8. In fact, we have also

tried different values between r = 0.5 to 0.8. All worked very well and improved the

efficiency of the tuning parameter selection process significantly.
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II.3.3. Improve the PAWLS Using the Adaptive Penalty

Since the adaptive Lasso in general has better variable selection properties

than the Lasso [Zou06,HMZ08], we also consider the PAWLS with the adaptive Lasso

penalty by minimizing

1

2n

n∑
i=1

w2
i (yi − x′iβββ)2 + λ1n

p∑
j=1

|βj|/|β(0)
j |+ λ2n

n∑
i=1

|1− wi|/|1− w(0)
i |, (II.9)

where w(0)
i and β(0)

j are two initial estimates of wi and βj , respectively. The computation

of (II.9) is similar to Algorithm 1 by replacing λ1j by λ1n/|β(0)
j | for 1 ≤ j ≤ p and

λ2i by λ2n/|1 − w
(0)
i | for 1 ≤ i ≤ n. By convention, w(0)

i = min{w(0)
i , 0.999} and

β
(0)
j = min{β(0)

j , 0.001}. If all 0 ≤ w
(0)
i < 1 and β

(0)
j for 1 ≤ j ≤ p are the same,

respectively, then (II.9) becomes the PAWLS in (II.3).

As we know, a estimation consistent initials need to be applied in order to have

an variable selection consistent adaptive Lasso estimator [Zou06,HHM08]. From those

non-asymptotic properties investigated in Section II.4, the PAWLS-Lasso estimates

are reasonable choices for β(0)
j and w(0)

i in (II.9). From our empirical experiences, the

above procedure works very well in all our numerical studies in section II.5.

II.4. Non-asymptotic Properties

In this section, we will investigate the estimation properties of the PAWLS

in ultra high-dimensional settings when p = O (exp(nα)) for some 0 ≤ α < 1. To

simplify the presentation, we omit the intercept in model (II.1) in this section. All

proofs are given in Appendix.

For notation’s convenience, we replace νi = 1−wi for 1 ≤ i ≤ n in some scenarios

and assume all covariates to be standardized such that
∑n

i=1 x
2
ij = n, 1 ≤ j ≤ n in

this section. We put all weights and covariates coefficients together and denote a n+ p

dimensional unknown parameters vector θθθ = (θθθ′1, θθθ
′
2)
′, where θθθ1 = (β1, · · · , βp)′ with
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true values θθθ∗1 = βββ∗ and θθθ2 = (λ2n/λ1n)(ν1, · · · , νn)′ with true values θθθ∗2 = (λ2n/λ1n)w∗.

Here w∗ = (w∗1, · · · , w∗n)′. Let S10 = {1 ≤ j ≤ p : β∗j 6= 0} with the cardinal value

s1 = |S10|, S20 = {1 ≤ i ≤ n : w∗i < 1} with the cardinal value s2 = |S20|, and

J0 = {1 ≤ k ≤ n + p, θ∗k 6= 0} be the true active set for θθθ∗ with the cardinal value

|J0| = s1 + s2 = s. We also denote an = min
i∈S20

w∗i .

We consider the fixed design such that |xij| ≤ bn for all i and j and the following

assumptions.

(A1): εi = w∗i ηi are i.i.d. sub-Gaussian distribution with mean 0 and scale

factor σ > 0.

(A2): (i)
sbn
n1/2

= o(1); (ii)
s log(n)

na2n
= o(1).

(A3): there exists a constant M > 0 such that max
j∈S10

|β∗j | < M .

RE(s, c): For some integer s, such that 1 ≤ s ≤ p + n, and a positive c, the

following restricted eigenvalue condition holds:

κ(s, c) = min
d6=0

‖dJc0‖1≤c‖dJ0‖1
|J0|≤s

‖Ψ1/2d‖2
‖dJ0‖2

> 0, (II.10)

where ‖ · ‖q is the `q norm, d = (d′1,d
′
2)
′ and Ψ =

1

n

(
X′X 0

0 σ2Ω∗−2

)
with Ω∗ being

a diagonal matrix generated from w∗.

From (A1), the standard deviation of yi, σyi = σ/w∗i → ∞ if w∗i → 0 for

i ∈ S20. Thus (A1) relaxes the normal assumption on random error in PLS regression

dramatically. (A3) is a trivial condition on nonzero regression coefficients. A2(i-ii)

indicate that the total number of non-zero β∗j s and outliers cannot grow with n too

fast. It also means an can not decay to 0 too fast. If both an and bn are constants,

then (ii) is redundant.
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The RE(s, c) condition mimics the restricted eigenvalue condition (3.1) of

[BRT09]. Consider the following three events regarding the random error ε,

• A1 = {‖ε′X‖∞ < nλ1n/4};

• A2 = {max
1≤i≤n

ε2i /w
∗
i < nλ2n/4};

• A3 = {‖ε′Dν̃X‖∞ < nλ1n/4}, where Dν̃ is a diagonal matrix consists of any

estimation ν̃ = (ν̃1, · · · , ν̃n)′.

We have following results on those three events.

Lemma II.3. On event A1 ∩ A2 ∩ A3,

‖θ̂θθ − θθθ∗‖1 ≤ 4‖θ̂θθJ0 − θθθ
∗
J0
‖1 (II.11)

Lemma II.4. Under (A1), we have

P (Ac
1) ≤ 2p exp

{
− nλ21

32σ2

}
, (II.12a)

P (Ac
2) ≤ 2n exp

{
−nλ2na

2
n

8σ2

}
, (II.12b)

P (Ac
3) ≤ 2 exp

{
−M0 min

{
nλ41n

256K2σ4
,
nλ21n

16Kσ2

}}
, (II.12c)

where K = sup
q≥1

q−1
[
E
(
ε21/σ

2
)q]1/q and M1 > 0 is an absolute constant. In particular,

if we choose λ1n ≥ σ(c1)
1/2(ln(p)/n)1/2 for c1 > 32, then

P (Ac
1) ≤ 2p−c1/32 → 0 when p→∞.

If we choose λ2n ≥ σ2c2 log(n)/(na2n) for some c2 > 8, then

P (Ac
2) ≤ 2n1−c2/8 → 0 when n→∞.
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For the above λ1n,

P (Ac
3) ≤ O

(
exp

{
−c1M0 log(p)

16K
min

{
c1 log(p)

16Kn
, 1

}})
.

Thus if p = O(exp(nα)) for α > 0, then P (Ac
3)→ 0 for α ≥ 1/2.

Lemma II.3 provides an upper bound of the PAWLS estimator under three

events. Lemma II.4 investigates the lower probability bounds for the occurrence of

those events. We now develop the theoretical properties of the proposed PAWLS

estimator. In particular, we expect to obtain some non-asymptotic oracle inequalities

for both ŵ and β̂ββ.

Theorem II.5. Suppose A1 and RE(s,3) hold. Then with probability at least 1 −∑5
k=1 hi, we have

‖θ̂θθJ0 − θθθ
∗
J0
‖1 ≤

8λ1ns

κ(s, 3)2

and

‖θ̂θθJ0 − θθθ
∗
J0
‖2 ≤

8λ1ns
1/2

κ(s, 3)2
,

Here

h1 = 2pn exp

{
−nλ

2
1n

32σ2

}
,

h2 = 2n exp

{
−nλ2na

2
n

8σ2

}
,

h3 = 2 exp

{
−M0 min{ nλ41n

256K2σ4
,
nλ21n

16Kσ2
}
}
with K = sup

q≥1

1

q

[
E

(
ε21
σ2

)q]1/q

and M1 > 0 is an absolute constant,

h4 =
48σ

κ(s, 3)

λ1n(1 + log(2n))1/2

λ2n

s1/2

ann1/2
,
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h5 =
384σ

k2(s, 3)

λ1n(1 + log(2n))1/2

λ2n

sbn
nan

.

In particular, if (A2) and (A3) hold and λ1n/λ2n ≤ O(1), then h4 = o(1) and h5 = o(1).

Theorem II.5 gives the oracle inequalities of joint estimators of θθθ. Those

properties are similar to ones for the PLS estimator (with the Lasso penalty) of βββ only

when w∗ is given in advance. When w is jointly estimated with βββ, the non-asymptotic

properties for both β̂ββ and ŵ can be obtained by letting two regularization parameters

λ1n and λ2n changes with n dependently such that λ1n/λ2n = O(1).

The following corollary provides an explicit, shared rate of λ1n and λ2n such

that both β̂ββ and ŵ are estimation consistent even though p grows with n at an almost

exponential rate. This is a direct result from Lemma II.4 and Theorem II.5.

Corollary II.6. Suppose p = O (exp(nα)) for 1/2 < α < 1 and all assumptions in

Theorem II.5 hold except that A2(ii) is replaced by s = o
(
n(1−α)/2). If we can choose

λ1n ≥ σ(c1)
1/2(ln(p)/n)1/2 for c1 > 32, and λ2n ≥ σ2c2 log(n)/(na2n) for some c2 > 8

such that λ1n = λ2n, then with probability at least 1− 2p1−c1/32 − 2n1−c2/8, we have

‖β̂ββS10
− βββ∗S10

‖1 + ‖ŵS20 −w∗S20
‖1 ≤

8λ1ns

κ(s, 3)2

and

‖β̂ββS10
− βββ∗S10

‖2 + ‖ŵS20 −w∗S20
‖2 ≤

8
√

2λ1ns
1/2

κ(s, 3)2
.

II.5. Numerical Result

In this section, we demonstrate the performance of the PAWLS using both

simulation studies and real data analysis under two settings: p < n and p� n.
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II.5.1. Simulation Studies

In all our simulation studies, the data are generated from the mean shift model

without an intercept:

yi = x′iβββ + γi + εi, i = 1, · · · , n,

where xis are simulated independently from a multivariate normal distribution with

mean 0 and variance C = (0.5|j−k|)p×p. All simulations are repeated for 100 times.

Apparently, the true mean shift model is a misspecified model for our weighted

regression model setting in (II.1). However, we will demonstrate that the advantage

of the PAWLS are still obvious compared with other methods from simulation studies.

Example II.1. (Low-dimensional case) We choose n = 50, p = 8, and set βββ∗ =

(3, 2, 1.5, 0, 0, 0, 0, 0)′. The random error εi and the mean shift parameter γi are

generated under the following four cases.

Case A: εi ∼ N(0, 22), and γi = 0 for i = 1, · · · , n ;

Case B: εi follows a t distribution with degrees of freedom of 2, and γi = 0 for

i = 1, · · · , n;

Case C: similar to Case A, except that γi = (−1)I(U1<1/2)(20 + 10U2) for 1 ≤

i ≤ n/10, where U1 and U2 are independent U [0, 1].

Case D: similar to Case C, except that 10 is added on all xijs for 1 ≤ i ≤ n/10

and 4 ≤ j ≤ 8.

Case A includes only normal data; Case B includes heavy tails errors; Case C

includes normal data with outliers in y direction; while Case D includes outliers in

both x and y directions.
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We compare the performance of the PAWLS with the adaptive Lasso in terms

of both variable selection and outlier detection with the PLS with the adaptive Lasso

(ALasso: [Zou06]) and several other sparse robust estimations including the SROS

[XJ13], MMNNG [GV15], and sparse LTS (sLTS) [ACG+13]. As a fair comparison,

the adaptive Lasso penalty are used in all methods except for MMNNG where a

nonnegative garrote method is used. The codes of both the MMNNG and sLTS are

public available. The code of the SROS is provided by authors. The computation of

the ALasso is the same as the PAWLS by fixing all wi = 1.

If a model is correctly fitted, then {1 ≤ j ≤ p : β̂j 6= 0} = {1 ≤ j ≤ p : β∗j 6= 0};

if a model is over-fitting, then {j : β̂j 6= 0} ⊃ {j : β∗j 6= 0}. Both ratios of correctly

fitting the model (CFR) and over-fitting the model (OFR) are computed. The average

model size (AN: mean of #{1 ≤ j ≤ p : β̂j 6= 0}) is also reported. All those results

are summarized in Table II.1. Our simulation results also show that the PAWLS

outperforms all other estimators in terms of variable selection in almost all cases. In

particular, we have those findings. (1) The ALasso performs the best as expected

when the data is normal in Case A; But the PAWLS is most comparable with the

ALasso, compared with all other robust estimation. (2) When the data is heavy tailed

in Case B, the ALasso behaves much worse than some of other sparse robust estimates.

Among them, the PAWLS performs the best, while both the sLTS and SROS perform

badly in this case. (3) When some normal data are contaminated in Case C, the

ALasso loses its efficiency completely, while the PAWLS still performs quite well and

beats all other robust methods. (4) When outliers exist in both x and y directions,

the PAWLS also performs the best.

We also evaluate the coefficients estimation using the mean squared error

(MSE), ‖β̂ββ − βββ‖2 out of all repetitions. Those results of MSE (after removing 10% of
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largest ones) from Case A, C and D are plotted in Figure II.2. The boxplot under

Case B shows the similar pattern as ones from C and D and is omitted here. It is

observed that PAWLS has the best estimation efficiency by providing the smallest

MSE results among all methods when the data are contaminated.

To evaluate the outlier detection performance, we compute the mean masking

probability (M: fraction of undetected true outliers), the mean swamping probability

(S: fraction of non-outliers labeled as outliers), and the joint outlier detection rate (JD:

fraction of repetitions with 0 masking) out of all repetitions. The higher JD is, the

better; the smaller M and S are, the better. Since the ALasso, MMNNG and SROS

are not designed to specify outliers, we only report the outlier detection results from

the PAWLS and sLTS in Table II.2. It is observed that the sLTS turns to produce a

very large swamping probability in most cases. Compared with the sLTS, the PAWLS

has a much better outlier detection performance.

In summary, the PAWLS is robust when the data is contaminated and does

not lose much efficiency as other robust methods in normal case. Besides the PAWLS,

the MMNNG performs the second best. However, compared with the PAWLS, the

MMNNG is much more expensive in computation. In addition, MMNNG does not

produce the outlier detection result.

Example II.2. (high-dimensional case) Similar to Example II.1, except that

n = 100, p = 500 and βββ = (2′10,0
′
p−10)

′, where ck is a k-dimensional vector consists of

all c.
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Table II.1. Variable Selection Results for Example II.1 (βββ = (3, 2, 1.5, 0, 0, 0, 0, 0)′)

Method CFR (%) OFR (%) AN CFR (%) OFR (%) AN
Case A Case B

ALasso 88 12 3.14 80 6 2.95
sLTS 8 91 4.75 30 70 4.00

MMNNG 73 24 3.27 89 11 3.18
SROS 24 75 4.28 35 65 4.00
PAWLS 87 12 3.13 94 6 3.06

Case C Case D
ALasso 2 1 1.59 0 19 2.49
sLTS 8 92 5.02 7 93 4.97

MMNNG 85 8 3.06 61 21 3.42
SROS 51 41 3.52 12 75 4.88
PAWLS 81 15 3.13 70 15 3.20

Table II.2. Outlier Detection Evaluation in Example II.1 and II.2

sLTS PAWLS
Model M (%) S (%) JD(%) M (%) S (%) JD(%)

Example II.1
Case A 0 5.30 100 0 1.22 100
Case B 0 9.92 100 0 4.22 100
Case C 0 1.87 100 0 0.67 100
Case D 0.4 1.89 99 0 0.44 100

Example II.2
Case A 0 20.8 100 0 0.07 100
Case B 0 18.5 100 0 1.15 100
Case C 0 12.9 100 0.8 0.18 98
Case D 0.1 13.0 99 27.8 0.08 100

In this example, we can only compare the PAWLS with the sLTS and ALasso

since all other methods are only designed for p < n. We tried to implement their

approaches in high-dimension where p > n, but failed.

All variable selection results are reported in Table II.3. Besides OFR, CFR and

AN reported in Example II.1, we also report the OFR+2, the ratio of correct-fitted

model and over-fitted model with at most two extra variables. Outlier detection results

are reported in Table II.2. Some of MSE results are reported in those Boxplots in

Figure II.2.
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Figure II.2. Boxplot of MSE in Example II.1. The first row: Example II.1 (Case A, C
and D from the left to right); The second row: Example II.2 (Case A, C and D from
the left to the right). ALasso results are omitted in Case C and D since the MSE
values are very large compared with others in those cases.

It is observed that the advantages of the PAWLS are even more obvious in

high-dimensional settings, regarding variable selection, outlier detection and robust

estimation. The PAWLS produces much higher CFR and CFR+2 than both the

ALasso and the sLTS in contaminated cases. In this setting, sLTS turns to generate

over-fitted model in most cases. When the data is normal, the PAWLS still works

very well by producing high CFR value.

II.5.2. Real Data Applications

Two datasets will be studied in this section: Air pollution data (p < n) and

NTC-60 data (p > n).
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Table II.3. Variable Selection Results for Example II.2(βββ′ = (2′10,0
′
p−10))

Method CFR CFR+2 OFR AN CFR CFR+2 OFR AN
(%) (%) (%) (%) (%) (%) (%)

Case A Case B
ALasso 55 90 45 11.0 48 74 45 13.1
sLTS 0 0 74 32.6 0 0 91 28.3
PAWLS 92 100 8 10.1 96 98 2 10.0

Case C Case D
ALasso 0 0 5 40.2 0 0 3 39.0
sLTS 0 0 93 32.3 0 0 92 31.9
PAWLS 84 97 13 10.0 44 71 43 11.1

II.5.2.1. Air pollution

The air pollution data include information on the social and economic condi-

tions in these areas. Their climates and some indices of air pollution potentials are

available at http://lib.stat.cmu.edu/DASL/Datafiles/SMSA.html. The study is

to investigate how the age-adjusted mortality is affected by all 14 covariates including

mean January temperature (JanTemp: in degrees Fahrenheit), mean July temperature

(JulyTemp: in degrees Fahrenheit), relative humidity (RelHum), annual rainfall (Rain:

in inches), median education (Education), population density (PopDensity), percent-

age of non-whites (NonWhite), percentage of white collar workers (X.WC), population

(Population), population per household (PopHouse), median income (Income), hydro-

carbon pollution potential (HCPot), nitrous oxide pollution potential (NOxPot) and

sulfur dioxide pollution potential (SO2Pot). Observation 21 had to be removed since

it contains two missing values, resulting in n = 59 and p = 14 in our study. [GV15]

analyzed the data with a QQ-plot and reveals the possible contamination of the data

set. Therefore a robust regression method is needed for the air pollution data.

We consider the logarithm transformation on the pollution variables, due to

their skewness. In addition, both the covariates and response variables are scaled to
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have median value of zero and MAD (median absolute deviation from the median)

value of one. This procedure keeps all variables within a comparable range level.

[GV15] analyzed the data with a QQ-plot and reveals the possible contamination

of the data set. The PAWLS estimates of βββ are compared with output from four

other methods in Table II.4. The PAWLS selects 7 variables from 14 of them. Among

them, Rain, PopDensity, NonWhite, and SO2Pot are positively correlated with the

log-value of the mortality rate, and JanTemp, Education, and HCPot have the negative

effect. It is worthwhile to point it out that JanTemp is selected by all four robust

methods, but not by ALasso. For this data, the PAWLS produces similar results

as ones from MMNNG and SROS. However, the last two does not produce outlier

detection results. This comparison is also consistent with the simulation studies, where

MMNNG performs the second best after the PAWLS.

The outlier detection results from the PAWLS are reported in Figure II.3,

where three suspected outliers detected by the PAWLS are highlighted by “*”. See the

studentized residual plot in the left panel Figure II.3. These three potential outliers

are observation 28 from Lancaster, PA, observation 37 from New Orleans, LA, and

observation 59 from York, PA. It is observed that the last two observations are masked

using studentized residuals with cutoff value 2.5.

We also plot the solution paths of β̂js along a sequence of λ1n. See the right

panel in Figure II.3. The solution paths of ŵis along a sequence of λ2n is also plotted in

middle panel. Instead of being removed from the regression analysis completely, those

two potential outliers are still used, but with some ŵi value being much smaller than 1,

for the final coefficients estimation and variable selection. In this data, the estimated

weights for observations 27, 36 and 58 are 0.071, 0.029, and 0.050, respectively.
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Table II.4. Estimation Regression Coefficients from Air Pollution Dataset

Variable PAWLS ALasso sLTS MMNNG SROS
JanTemp -0.097 0 -0.015 -0.051 -0.213
JulyTemp 0 0 0 0 0
RelHum 0 0 0 0 0
Rain 0.156 0 0.277 0.149 0.253
Education -0.213 -0.320 -0.113 0 -0.224
PopDensity 0.098 0 0.169 0 0.097
NonWhite 0.379 0.479 0.282 0.398 0.389
X.WC 0 0 -0.062 -0.137 0
Population 0 0 -0.005 0 0
PopHouse 0 0 0.025 0 0
Income 0 0 -0.017 0 0
HCPot -0.054 0 0 -0.108 0
NOxPot 0 0 0 0 0.253
SO2Pot 0.299 0.214 0.206 0.433 0.032

Figure II.3. Air Pollution Data Analysis. Left Panel: Studentized residuals plot
(normal observations and detected outliers are highlighted by grey ‘·’ and dark ‘*’,
separately); Middle Panel: Solution paths of ŵi (curves of detected outliers (normal)
observations are plotted using the dark (grey) color, the grey vertical line gives the
location of the optimal λ2n); Right panel: Solution paths of β̂j (curves of selected
(non-selected) variables, the grey vertical line gives the location of the optimal λ1n).
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II.5.2.2. NCI-60 cancer cell panel

As to the NCI-60 dataset introduced in I.1 , before the robust analysis, we

perform some pre-screening and kept only p1 genes with largest variations and then

choose p2 out of them which are most correlated with the response variable. Here the

final dataset is obtained by choosing p1 = 2000 and p2 = 500, yielding n = 59 and

p = 500. After applying the PAWLS, we select 10 genes: KRT8 (0.858), PPL(0.017),

GATA3 (0.040), and ATP2A3 (-0.046), where the value in each parenthesis is the

corresponding coefficient estimation. As a comparison, we also apply both the sLTS

and ALasso to analyze this data, where the former selects 27 genes including KRT8

and GATA3, and the latter selects only KRT8.

Figure II.4. NCI-60 Data Analysis. Left Panel: Studentized residuals plot (normal
observations and detected outliers are highlighted by grey ‘·’ and dark ‘*’, separately);
Middle Panel: Solution paths of ŵi (curves of detected outliers (normal) observations
are plotted using the dark (grey) color, the grey vertical line gives the location of
the optimal λ2n); Right panel: Solution paths of β̂j (curves of selected (non-selected)
variables, the grey vertical line gives the location of the optimal λ1n).
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In addition, the PAWLS also identifies 4 outliers out of 59 samples: observations

12 (0.049), 17 (0.050), 39 (0.076), and 51 (0.112), with corresponding weight estimation

given in each parenthesis. Those potential outliers are also highlighted in the studen-

tized residuals plot in the left panel in Figure II.4. Here the studentized residuals is

generated from post (Lasso) selection least squares regression. Both solution paths for

all wis and βjs are plotted in the middle and right panels, respectively. It is observed

that those the weight solution paths of those potential outliers are obviously separated

from ones from other observations.

The analyses are repeated for both p1 = 5000, p2 = 1000 and p1 = 3000,

p2 = 800, yielding the similar results as above.
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CHAPTER III

PENALIZED ROBUST APPROXIMATED QUADRATIC M-ESTIMATORS

III.1. Introduction

Asymmetry along with heteroscedasticity or contamination often occurs with

the growth of data dimensionality. In high-dimensional settings, particularly when

random errors follow irregular distributions such as asymmetry and heteroscedasticity,

simultaneous mean estimation and variable selection are still of interest in many

applications. In this chapter, we are interested in high-dimensional mean regression

that is robust to the following irregular settings: (a) the data are not symmetric

due to the skewness of random errors ([FLW17]); (b) the data are heteroscedastic

([DCL12], [WWL12]); and (c) the data are contaminated in both response and a large

number of variables ([RL05]). However, above irregular settings are often overlooked

for high-dimensional data analysis, especially for the theoretical development.

Despite the extensive work on penalized robust M-estimator in high-dimensional

regression (e.g. [H+64], [LLZ+11], [GH10], [Wan13], [Loh17]), most of them either do

not estimate the conditional mean regression function or require the error distribution

to be symmetric and/or homogeneous. To tackle this problem, [FLW17] proposed a

so-called RA-Lasso estimator, in which they waived the symmetry requirement by

using the Huber loss with a diverging parameter in order to reduce the bias when

the error distribution is asymmetric. [FLW17] obtained nice asymptotic properties of

the RA-Lasso estimator, and proved its estimation consistency at the minimax rate

enjoyed by LS-Lasso.
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However, the Huber loss approximation used in the RA-Lasso dose not down-

weight the very large residual due to its non-decreasing Ψ-function. [SMS08] showed

that M-estimators given by non-decreasing Ψ-function do not possess finite variance

sensitivity, meaning the asymptotic variance can be largely affected if the assume

model is only approximately true. In that paper, the authors proposed to consider re-

descending M-estimators with Ψ-function redescending to zero to address this problem.

They further showed that redescending M-estimator can be designed by maximizing

the minimum variance sensitivity under a global minimax criterion. For instance,

the Smith’s estimator and Tukey’s biweight estimator are the optimal M-estimator

with minimax variance sensitivity for a class of densities with a bounded variance

and a bounded fourth moment, respectively [SMS08]. Therefore it is tempting to also

include redescending M -estimator in the study of complex high-dimensional settings.

For decades both the theoretical and computational result in penalized re-

descending M-estimator in high-dimensional settings have been very limited, due

to the non-convexity of loss functions. Recently [Loh17] established a form of local

statistical consistency for the high-dimensional M -estimators allowing both the loss

and penalty functions to be non-convex. However, this study does not address the

problem of asymmetry and heteroscedasticity. Also, their numerical studies neglect

settings for asymmetric data and lack of comparisons among different M -estimations.

In this chapter, we consider high-dimensional linear regression in more general

irregular settings: the data can be contaminated or include possible large outliers

in both random errors and covariates, the random errors may lack of symmetry

and homogeneity. In particular, we investigate both statistical and computational

properties of high-dimensional mean regression in the penalizedM -estimator framework

with diverging robustness parameters.
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Related Works: we end this section by highlighting a few things on how our work

is different from some recent related work:

(1) As introduced earlier, the RA-Lasso proposed by [FLW17] waives the symmetry

requirement by allowing the parameter of Huber loss to diverge. The idea is

that by controlling the divergent rate of the parameter, while preserving certain

robustness, the Huber loss becomes ‘closer’ to the `2 loss and thus potentially

reduces the bias when the error distribution is asymmetric. Our work in this

chapter relax the convexity restriction of loss functions and answer the question

on how in general a loss function with strong robustness should converge to the `2

loss to achieve the estimation consistency at the minimax rate. While [FLW17]

focuses exclusively on the Lasso penalty, our framework also allows concave

penalties and therefore inherits certain oracle property under some conditions.

Furthermore, we relax the sub-Gaussian assumption on covariates in [FLW17]

by incorporating weight functions in the extension of PRAM estimators.

(2) [Loh17] also establishes a form of local statistical consistency for high-dimensional

non-convex M-estimators. However, we address the problem of asymmetry and

heteroscedasticity. In particular, our proposed framework is more general: we

consider the empirical loss function Lα,n satisfying limα→∞E[∇Lα,n(βββ∗)] = 0,

where βββ∗ is the true parameter vector and α is the diverging parameter. In

contrast, [Loh17] requires the condition E[∇Lα,n(βββ∗)] = 0 for each α > 0,

which may not hold with the lack of homogeneity and symmetry in general.

Additionally, [Loh17] does not suggest which estimators to be considered in real

applications. We further investigate this problem by comparing different PRAM

estimators in numerical studies.
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The remainder of this chapter is organized as follow. In Section III.2, we intro-

duce the basic setup regarding PRAM estimators and corresponding generalizations.

In Section III.3, we establish the local estimation consistency for the PRAM estimators

under sufficient conditions. For non-convex regularized PRAM estimators, we also

present our statistical theory concerning the selection consistency and the asymptotic

normality of PRAM estimators. We discuss the implementation of PRAM estimators

including both the computational algorithm and the tuning parameter selection in

Section III.4. In section III.5, we conduct some simulation studies to demonstrate the

performance of the PRAM estimators under different settings. We also apply those

PRAM estimators for NCI-60 data analysis and illustrates all results in Section III.6.

All technical proofs are relegated to the Appendix.

Notation: We use bold symbols to denote matrices or vectors. For a matrix or a

vector ννν, we write νννT to denote its transpose. We write ‖ · ‖1 and ‖ · ‖2 to denote the

L1 norm and the L2 norm of a vector, respectively. For a function g : Rp 7→ R, we

write ∇g to denote a gradient of the function. We write u+ to denote max(u, 0) for

any u ∈ R.

III.2. The PRAM Method

III.2.1. Model Settings

Consider an ultra high-dimensional linear regression model

yi = xTi βββ
∗ + εi, (III.1)

where xi = (xi1, · · · , xip)T for i = 1, · · · , n are independent and identically distributed

(i.i.d) p-dimensional covariate vectors such that E(xi) = 0, {εi}ni=1 are independent

errors such that E(εi | xi) = 0 and thus we allow the conditional heteroscedasticity.
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Note βββ∗ = (β∗1 , · · · , β∗p)T ∈ Rp is an s-sparse conditional mean coefficient vector (only

include s nonzero elements) and p� n.

Our model settings permit the existence of all the following irregular settings

on both εis and xis: (a) asymmetry of εi; (b) heteroscedasty of εi and εi may depend

on xi; (c) data contamination of εi and xi.

We are interested in penalized mean regression estimators such that

β̂ββ ∈ argmin
‖βββ‖1≤R

{Lα,n(βββ) + ρλ(βββ)} , (III.2)

where Lα,n is the empirical loss function and ρλ is a penalty function which encourages

the sparsity in the solution. Here α > 0 is a parameter controlling the robustness,

which is allowed to diverge. As mentioned in Section III.1, we consider the loss function

Lα,n satisfying

lim
α→∞

E[∇Lα,n(βββ∗)] = 0. (III.3)

This condition in (III.3) relaxes the condition, E[∇Lα,n(βββ∗)] = 0 for each α > 0,

required in [Loh17], which may be invalid with the lack of homogeneity and symmetry.

The condition (III.3) permits the random error to be heterogeneous and/or asymmetric,

as long as E[∇Lα,n(βββ∗)] converges to 0 with diverging α.

We also include the side condition ‖βββ‖1 ≤ R in the penalized optimization

problem in (III.2), in order to guarantee the existence of local/global optima, for the

case where the loss function or the regularizer may be non-convex. We also require

‖βββ∗‖1 ≤ R so that βββ∗ is feasible in (III.2). In real applications, we can choose R to be

a sufficiently large number.
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III.2.2. Penalty Functions

Since the coefficients vector βββ∗ is assumed to be s-sparse in the high-dimensional

linear regression model in (III.1), we only consider penalties which generate sparse

solutions. In particular, we require the penalty function ρλ in (III.2) to satisfy following

properties listed in Assumption III.1.

Assumption III.1 (Penalty Function Assumptions). The penalty function is coordinate-

separable such that ρλ(βββ) =
∑p

j=1 ρλ(βj) for some scalar function ρλ : R 7→ R. In

addition,

(i) the function t 7→ ρλ(t) is symmetric around zero and ρλ(0) = 0;

(ii) the function t 7→ ρλ(t) is non-decreasing on R+;

(iii) the function t 7→ ρλ(t)
t

is non-increasing on R+;

(iv) the function t 7→ ρλ(t) is differentiable for t 6= 0;

(v) limt→0+ ρ
′
λ(t) = λ;

(vi) there exists µ > 0 such that the function t 7→ ρλ(t) + µ
2
t2 is convex;

(vii) there exists δ ∈ (0,∞) such that ρ′λ(t) = 0 for all t ≥ δλ.

Those properties in Assumption III.1 are related to the penalty functions

studied in [LW13] and [Loh17], where ρλ is said to be µ-amenable if ρλ satisfies

conditions (i)-(vi) for µ defined in (vi). If ρλ also satisfies condition (vii), we say that

ρλ is (µ, δ)-amenable. Some popular choices of amenable penalty functions include

Lasso [Tib96b], SCAD [FL01], and MCP [Z+10] given as follows:
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• The Lasso penalty, ρλ(t) = λ|t|, is 0-amenable but not (0, δ)-amenable for any

δ <∞.

• The SCAD penalty,

ρλ(t) =


λ|t| for |t| ≤ λ,

− t2−2aλ|t|+λ2
2(a−1) for λ < |t| ≤ aλ,

(a+1)λ2

2
for |t| > aλ,

where a > 2 is a fixed parameter. The SCAD penalty is also (µ, δ)-amenable

with µ = 1
a−1 and δ = a.

• The MCP penalty,

ρλ(t) = sign(t)λ

∫ |t|
0

(
1− z

λb

)
+
dz,

where b > 0 is a fixed parameter. The MCP penalty is also (µ, δ)-amenable with

µ = 1
b
and δ = b.

It has been shown that the folded concave penalty, such as SCAD or MCP, possesses

better variable selection properties than the convex penalty like the Lasso.

III.2.3. Loss Functions

From the linear model setting in Section III.2.1, we know E(yi|xi) = xTi βββ
∗. We

are interested in finding a well-behaved mean-regression estimator of βββ∗. Since we

consider a general setting discussed in Section III.2.1, we wish to study the empirical

loss function Lα,n that are robust to outliers and/or heavy-tailed distribution. Let
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lα : R 7→ R denote a residual function, or a loss function, defined on each observation

pair (xi, yi). The corresponding empirical loss function for (III.2) is then given by

Lα,n(βββ) =
1

n

n∑
i=1

lα(yi − xTi βββ). (III.4)

With a well chosen non-quadratic function lα, the penalized mean regression estimators

from (III.2) can be robust to outliers or heavy-tailed distribution in the additive noise

term εi. However, it may generate bias to the conditional mean when the conditional

distribution of εi is not symmetric.

To reduce such bias induced by the non-quadratic loss, we consider a family

of loss function with flexible robustness and diverging parameters satisfying (III.3)

to approximate the traditional quadratic loss. In particular, we require the following

approximation:

Approximation Equation: lim
α→∞

lα(u) =
1

2
u2, ∀u ∈ R. (III.5)

The empirical loss function satisfy (III.5) is called a robust approximated quadratic

loss function. The following approximations take the Huber loss, Tukey’s biweight

loss and Cauchy loss to robustly approximate the quadratic loss functions:

• Huber Approximation

lα(u) =


u2

2
if |u| ≤ α,

α|u| − α2

2
if |u| ≥ α.

• Tukey’s biweight Approximation

lα(u) =


α2

6
(1− (1− u2

α2 )3) if |u| ≤ α,

α2

6
if |u| ≥ α.
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• Cauchy Approximation

lα(u) =
α2

2
log(1 +

u2

α2
).

It is straight forward to verify that all above three loss functions satisfy equation

(III.5). In addition, the Tukey’s biweight loss and Cauchy loss produce redescending

M -estimators. In the robust regression literature, we call anM -estimator redescending

if there exists u0 > 0 such that |l′α(u)| = 0 or decrease to 0 smoothly, for all |u| ≥ u0.

In that case, large residuals can be downweighted. See more discussions in [Mul04]

and [SMS08].

III.2.4. PRAM Estimators and the Extensions

A class of PRAM estimators takes the form:

β̂ββ ∈ argmin
‖βββ‖1≤R

{
1

n

n∑
i=1

lα(yi − xTi βββ) + ρλ(βββ)

}
, (III.6)

where the penalty function ρλ satisfies Assumption III.1, the loss function lα is a

scalar function satisfying equation (III.5) and α > 0 is a robustness parameter which

is allowed to diverge.

Whereas a PRAM estimator in equation (III.6) takes into account the con-

tamination or heavy-tailed distribution in asymmetric additive error, a single outlier

in xi may still cause the corresponding estimator to perform arbitrarily badly. We

downweight large values of xi and extend the class of PRAM estimators to

β̂ββ ∈ argmin
‖βββ‖1≤R

{
1

n

n∑
i=1

w(xi)

v(xi)
lα((yi − xTi βββ)v(xi)) + ρλ(βββ)

}
, (III.7)

where w, v are weight functions mapping from Rp to R+. When w ≡ v ≡ 1, (III.7) is

reduced to the PRAM class defined in (III.6). A few options for choosing the weight
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functions can be found in [Mal75], [Hil77], [MS71]. Such a downweighting strategy

was also adopted in [Loh17].

For the rest of the chapter, we specify the PRAM estimator with the Huber

approximation, Tukey’s biweight approximation and Cauchy approximation as the

HA-type, TA-type and CA-type PRAM estimator, respectively. In particular, we

also specify a PRAM estimator using a redescending loss function approximation (e.g.

Tukey’s biweight approximation and Cauchy approximation) a redescending PRAM

estimator. Additionally, we classify a PRAM estimator with the Lasso penalty and

MCP penalty as the Lasso-type and MCP-type PRAM estimator correspondingly.

III.3. Statistical Properties

III.3.1. Estimation Consistency

As in (III.7), we consider a class of PRAM estimators with the loss function in

a general setting,

Lα,n(βββ) =
1

n

n∑
i=1

w(xi)

v(xi)
lα((yi − xTi βββ)v(xi)). (III.8)

To obtain the estimation consistency, we make the following additional assumptions

on lα.

Assumption III.2 (Loss Function Assumptions). lα : R 7→ R is a scalar function for

α > 0 with the existence of the first derivative l′α everywhere and the second derivative

l′′α almost everywhere. In addition,

(i) there exists a constant 0 < k1 <∞ such that |l′α(u)| ≤ k1α for all u ∈ R;

(ii) for all α > 0, l′α(0) = 0 and l′α is Lipschitz such that |l′α(x)− l′α(y)| ≤ k2|x− y|

for all x, y ∈ R and some 0 < k2 <∞;
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(iii) for some k ≥ 2, there exists a constant d1 > 0 such that |1− l′′α(u)| ≤ d1|u|kα−k

for almost all |u| ≤ α.

Note that Assumption III.2(i) indicates that the magnitude of l′α is bounded

from above at the same rate of α so that the PRAM estimator can achieve robustness.

Assumption III.2(ii) implies |l′α(u)| ≤ k2|u| for all u ∈ R and |l′′α(u)| ≤ k2 for almost

every u ∈ R. In particular, the loss functions we study in this chapter actually satisfy

Assumption III.2(ii) with k2 = 1, showing that lα is bounded by the quadratic loss

function u2/2 for any α. Assumption III.2(iii) indicates that for almost all u ∈ R, l′′α

converges point-wisely to 1 with at least the order of α−k for k ≥ 2.

The above assumptions cover a wide range of loss functions, including the

Huber loss, Hampel loss, Tukey’s biweight loss and Cauchy loss.

Remark. By some simple math, we can show that limα→∞ l
′
α(u) = u for all u ∈ R

based on Assumption III.2. Suppose in addition that lα(0) = 0, we can further obtain

the approximation equation (III.5), indicating that Assumption 2 alone gives sufficient

conditions for lα to approximate the quadratic loss.

Remark. By dominated convergence theorem, we have

lim
α→∞

E[∇Lα,n(βββ∗)] = lim
α→∞

E[w(xi)xil
′
α(εiv(xi))]

= E[w(xi)xi(εiv(xi))] = E[w(xi)xiE(εi | xi)v(xi))] = 0.

So under Assumption III.2, we have limα→∞E[∇Lα,n(βββ∗)] = 0 and thus it allows the

random error to be heterogeneous and/or asymmetric.

We now make some weak assumptions on both random error ε and covariate

vector x for the investigation of the approximation error.
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Assumption III.3 (Error and Covariate Assumptions). For w(x) and v(x) given in

(III.7), the random error ε with E[ε | x] = 0 and covariate vector x with E[x] = 0

satisfy:

(i) E[E(|ε|k | x)v(x)k]2 ≤Mk <∞, for k ≥ 2 in Assumption 2(iii);

(ii) sup‖u‖2=1E[v(x)xTu]2k = qk <∞, for k ≥ 2 in Assumption 2(iii);

(iii) 0 < kl < λmin(E[w(x)v(x)xxT ]) and λmax(E[w(x)2xxT ]) < ku;

(iv) for any ννν ∈ Rp, w(x)xTννν is sub-Gaussian with parameter at most k20‖ννν‖22.

Note that condition (i) requires only the existence of second conditional moment

of ε, indicating that this condition is independent of the distribution of ε itself and can

hold for heavy-tailed or skewed distribution. If w(x) ≡ v(x) ≡ 1, the conditions (ii)

and (iv) hold when xTi ννν is sub-Gaussian for any ννν ∈ Rp. In this case, Assumption III.3

becomes conditions (C1-C3) in [FLW17]. If covariate x is contaminated or heavy-tailed

distributed, conditions (ii)-(iv) nonetheless holds with some proper choices of w(x)

and v(x) (e.g. w(x)xTννν is bounded for any ννν ∈ Rp), which potentially relaxes the

sub-Gaussian assumption on x.

Let βββ∗α be a local non-penalized population minimizer under the PRAM loss,

βββ∗α ∈ argmin
‖βββ−βββ∗‖2≤R0

{
E

[
w(x)

v(x)
lα((y − xTβββ)v(x))

]}
, (III.9)

for some 0 < R0 < ∞. Note that βββ∗α is a local minimizer of (III.9) within a

neighborhood of βββ∗. If the regularization parameter λ in equation (III.7) converges to

0 sufficiently fast, then β̂ββ is a natural unpenalized M -estimator of βββ∗α for any α > 0.

Whereas βββ∗α differs from βββ∗ in general, βββ∗α is expected to converge to βββ∗ when α→∞,
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due to the approximation equation (III.5) for PRAM. The rate of the approximation

error ‖βββ∗α − βββ
∗‖2 is established in Theorem 1.

Theorem III.1. Under the Assumption III.2 and III.3, there exists a universal

positive constant C1, such that ‖βββ∗α − βββ
∗‖2 ≤ 2kC1k

−1
l

√
ku(
√
Mk +Rk

0

√
qk)α

1−k. Here

k, kl, ku, Mk, qk appear in Assumption III.2, III.3 and R0 appears in (III.9).

Theorem III.1 gives an upper bound of the approximation error between the

true parameter vector and the non-penalized PRAM population minimizer. The

approximation error vanishes when α → ∞. It vanishes faster if a higher moment

of ε|x exists. In fact, Theorem 1 demonstrates that the approximation of the loss

function lα to the quadratic loss helps to reduce the bias induced by the asymmetry

on ε. If we let lα in equation (III.8) be the Huber loss and w(x) ≡ v(x) ≡ 1, Theorem

1 gives the upper bound of the approximation error studied in [FLW17].

In order to obtain the estimation consistency for the PRAM estimator in (III.7),

we also require the loss function Lα,n to satisfy the following uniform Restricted Strong

Convexity (RSC) condition.

Assumption III.4 (Uniform RSC condition). There exist γ, τ , α0 > 0 and a radius

r > 0 such that for all α ≥ α0, the loss function Lα,n in (III.7) satisfies

〈∇Lα,n(βββ1)−∇Lα,n(βββ2),βββ1 − βββ2〉 ≥ γ‖βββ1 − βββ2‖22 − τ
log p

n
‖βββ1 − βββ2‖21, (III.10)

where βββj ∈ Rp such that ‖βββj − βββ
∗‖2 ≤ r for j = 1, 2.

Note that the uniform RSC assumption is only imposed on Lα,n inside the ball

of radius r centered at βββ∗. Thus the loss function used for robust regression can be

wildly nonconvex while it is away from the origin. The radius r essentially specifies a
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local ball centered around βββ∗ in which stationary points of the PRAM estimator are

well-behaved.

Remark. In [LW13] and [Loh17], the RSC condition were imposed on a specific loss

function. Although Assumption III.4 requires that the RSC condition is satisfied

uniformly over a family of loss functions generated from a range of α, this assumption

is in fact not stronger: Assumption III.4 holds naturally if there exists α0 > 0 such

that Lα0,n satisfies Assumption 2 and inequality (III.10) for some γ, τ > 0. We further

establish the uniform RSC condition in Appendix.

We present our main estimation consistency result on the PRAM estimator in

the following Theorem III.2.

Theorem III.2. Suppose the random error and covariates satisfy Assumption III.3

and Lα,n in (III.7) satisfies Assumption III.2. Then we have the following results.

(i) If max{( 2d
R0

)
1

k−1 , C2(
n

log p
)

1
2(k−1)} ≤ α ≤ C3

√
n

log p
, then with probability greater

than 1− 2 exp(−C4 log p), Lα,n satisfies

‖∇Lα,n(βββ∗)‖∞ ≤ C5

√
log p

n
. (III.11)

(ii) Suppose Lα,n also meets the uniform RSC condition in Assumption III.4. Sup-

pose ρλ is µ-amenable with 3
4
µ < γ in Assumption III.1. Let β̂ββ be a local

PRAM estimator in the uniform RSC region. Then for R ≥ ‖βββ∗‖1, λ ≥

max{4‖∇Lα,n(βββ∗)‖∞, 8τR log p
n
} and n ≥ C0r

−2k log p, β̂ββ exists and satisfies the

bounds

‖β̂ββ − βββ∗‖2 ≤
24λ
√
s

4γ − 3µ
and ‖β̂ββ − βββ∗‖1 ≤

96λs

4γ − 3µ
.

The statistical consistency result of Theorem III.2 holds even when the random

errors lack of symmetry and homogeneity, and the regressors lack of sub-Gaussian

68



assumption. It shows that with high probability one can choose λ = O
(√

log p
n

)
such

that ‖β̂ββ−βββ∗‖2 = Op
(√

s log p
n

)
and ‖β̂ββ−βββ∗‖1 = Op

(√
s2 log p
n

)
. Hence, it guarantees

that when the parameter α diverges at a certain rate, a local PRAM estimator within

the local region of radius r is statistically consistent at the minimax rate enjoyed by

the LS-Lasso. The rate range of α stated in Theorem III.2 (i) in fact reveals that in

the presence of asymmetric and heavy-tailed/contaminated data, α should diverge

faster enough, for example, faster than O
(

( n
log p

)
1

2(k−1)

)
, to reduce the bias sufficiently

but meanwhile not too fast, for instance, slower than O
(

( n
log p

)
1
2

)
, in order to preserve

certain robustness of a PRAM estimator. The existence of a higher moment of ε|x (a

larger k) actually allows α to diverge at a lower rate.

Remark. The proof of Theorem III.2 in Appendix reveals that the estimation consis-

tency result also holds for the local stationary points in program (III.2). Here β̃ββ is a

stationary point of the optimization in (III.2) if

〈∇Lα,n(β̃ββ) +∇ρλ(β̃ββ),βββ − β̃ββ〉 ≥ 0,

for all feasible βββ in a neighbour of β̃ββ. Note that stationary points include both the

interior local maxima as well as all local and global minima. Hence Theorem III.2

guarantees that all stationary points within the ball of radius r centered at βββ∗ have

local statistical consistency at the minimax rate enjoyed by the LS-Lasso.

III.3.2. Oracle Properties

In this section, we establish the oracle properties for the PRAM estimators in

program (III.7). We first define the local oracle estimator as

β̂ββ
O
S = argmin

βββ∈RS :‖βββ−βββ∗‖2≤r
{Lα,n(βββ)} , (III.12)

69



where we set S = {j : β∗j 6= 0}. Let β∗min = minj∈S |β∗j | denote a minimum signal

strength on βββ∗. Our oracle result shows that when the penalty ρλ is (µ, δ)-amenable

and the assumptions stated earlier are satisfied, those stationary points of the PRAM

estimator in program (III.7) within the local neighborhood of βββ∗ are actually unique

and agree with the oracle estimator (III.12), as stated in the following theorem.

Theorem III.3. Suppose the penalty ρλ is (µ, δ)-amenable and conditions in Theorem

III.2 hold. Suppose in addition that v(x)xj is sub-Gaussian for all j = 1, · · · , p,

‖βββ∗‖1 ≤ R
2
for some R > 192λs

4γ−3µ , β
∗
min ≥ C6

√
log p
ns

+ δλ, and n ≥ C01s log p for a

sufficiently large constant C01. Suppose α satisfies C22

(
ns2

log p

) 1
2(k−1) ≤ α ≤ C3

√
n

log p
and

s2 = O
(

( n
log p

)k−2
)
. Let β̃ββ be a stationary point of program (III.7) in the uniform RSC

region. Then with probability at least 1− C8 exp(−C41
log p
s2

), β̃ββ satisfies supp(β̃ββ) ⊆ S

and β̃ββS = β̂ββ
O
S .

Two most often considered (µ, δ)-amenable penalties are SCAD and MCP, as

introduced in Section III.2.2. Since the Lasso penalty is not (µ, δ)-amenable, the

Lasso-type PRAM estimator does not have the oracle properties. In Theorem III.3, the

lower bound rate of α is higher than the one in Theorem III.2, with a ratio O
(
s

1
k−1

)
.

Thus to have the oracle properties, s cannot grow with n too fast. In particular,

s = O
(

( n
log p

)
k−2
2

)
for k ≥ 2. Note that the feasibility condition ‖βββ∗‖ ≤ R

2
instead of

R in Theorem 2, is for the technical proof. It means that (III.7) is optimized in a

larger neighborhood of βββ∗ in order to cover (β̂ββ
O
S ,0Sc) such that ‖β̂ββ

O
S − βββ

∗‖2 < r.

Remark. The condition s2 = O
(

( n
log p

)k−2
)
shows that, if the number of non-zero

parameters s is finite, Theorem III.3 requires only the existence of second moment

of ε|x (k = 2); if we also allow s to grow with sample size n, the oracle result holds

when at least the third moment of ε|x exists (k ≥ 3).
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Since β̂ββ
O
S is essentially an s-dimensional M-estimator, to analyze the asymptotic

behavior of β̃ββ and β̂ββS, Theorem III.3 allows us to apply previous results in the literature

concerning the asymptotic distribution of low-dimensional M-estimators. In particular,

[HS00] established the asymptotic normality for a fairly general class of convex M-

estimators where p is allowed to grow with n. Although the loss function we considered

may be highly nonconvex, the restricted program in (III.12) can still be convex under

the uniform RSC condition. Hence by applying our Theorem III.3 and the standard

results for M-estimators with a diverging number of parameters in [HS00], we can

obtain the following theorem concerning the asymptotic normality of any stationary

point of the program (III.7). For the sake of simplicity, we only provide the result

under w(x) ≡ v(x) ≡ 1. The result of a weighted PRAM can be derived accordingly.

Theorem III.4. Suppose conditions in Theorem III.3 hold and the loss function Lα,n

given in (III.8) is twice differentiable within the `2-ball of radius r around βββ∗. Suppose

for all α > 0, l′′α is Lipschitz such that |l′′α(x)− l′′α(y)| ≤ k3|x− y| for all x, y ∈ R and

some 0 < k3 <∞. Suppose in addition that α > (2C9/kl)
1/k and α1−k = o(n−1/2). Let

β̃ββ be a stationary point of program (III.7) in the uniform RSC region. If s log3 s
n
→ 0,

then ‖β̃ββ − βββ∗‖2 = Op
(√

s
n

)
. If s2 log s

n
→ 0, then for any ννν ∈ Rp, we have

√
n

σννν
· νννT (β̃ββ − βββ∗) d−→ N(0, 1),

where

σ2
ννν = νννTSE[(∇2Lα,n(βββ∗))SS]−1V ar(l′α(εi)(xi)S)E[(∇2Lα,n(βββ∗))SS]−1νννS.

The condition α1−k = o(n−1/2) indicates that α should diverge at least faster

than n
1

2(k−1) , in addition to the rate stated in Theorem III.3. Together with the result
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in Theorem III.1, it means that the approximation error ‖βββ∗α − βββ
∗‖2 should vanish

at a rate of o(n−1/2), in order to obtain the asymptotic normality properties. Note

that the condition α > (2C9/kl)
1/k is required to guarantee the invertibility of matrix

E[(∇2Lα,n(βββ∗))SS].

Remark. To further understand the condition α1−k = o(n−1/2), we take α = O
(√

n
log p

)
as an example, the fastest divergent rate indicated in Theorem III.3. Then the condi-

tion requires log p
n
· n

1
k−1 → 0. Thus 1

k−1 < 1 and then k > 2. Therefore the asymptotic

normality result holds only when at least the third moment of ε|x exists. In particular,

when k = 3, we obtain n−
1
2 log p→ 0.

III.4. Implementation of the PRAM Estimators

Note that the optimization in (III.2) may not be a convex optimization problem

since we allow both loss function Lα,n and ρλ to be non-convex. To obtain the

corresponding stationary point, we use the composite gradient descend algorithm

[Nes13]. Denoting qλ(βββ) = λ‖βββ‖1 − ρλ(βββ) and L̄α,n(βββ) = Lα,n(βββ) − qλ(βββ), we can

rewrite the program as

β̂ββ ∈ argmin
‖βββ‖1≤R

{
L̄α,n(βββ) + λ‖βββ‖

}
.

Then the composition gradient iteration is given by

βββt+1 ∈ argmin
‖βββ‖1≤R

{
1

2
‖βββ − (βββt − η∇L̄α,n(βββt))‖22 + ηλ‖βββ‖1

}
, (III.13)

where η > 0 is the step size for the update and can be determined by the backtracking

line search method described in [Nes13]. A simple calculation shows that the iteration

in (III.13) takes the form

βββt+1 = Sηλ
(
βββt − η∇L̄α,n(βββt)

)
,

72



where Sηλ(·) is the soft-thresholding operator defined as

[Sηλ(βββ)]j = sign(βj) (|βj| − ηλ)+ .

We further adopt the two-step procedure discussed in [Loh17] to guarantee the

convergence to a stationary point for the non-convex optimization problem:

Step 1: Run the composite gradient descent using the convex Huber loss function with

the convex Lasso penalty to get an initial PRAM estimator.

Step 2: Run the composite gradient descent on the desired high-dimensional PRAM

estimator using the initial PRAM estimator from Step 1.

For tuning parameters selection, the optimal values of α and λ are chosen by a

two-dimensional grid search using the cross-validation. In Particular, the searching grid

is formed by partitioning a rectangle uniformly in the scale of (α, log(λ)). The optimal

values are found by the combination that minimizes the cross-validated trimmed mean

squared prediction error.

III.5. Simulation Studies

In this section, we assess the performance of the PRAM estimators by con-

sidering different types of loss and penalty functions through various models. The

simulation setting is similar to the one in [FLW17]. The data is generated from the

following model

yi = xTi βββ
∗ + εi.

We choose the true regression coefficient vector as βββ∗ = (3T5 ,2
T
5 ,1.5

T
5 ,0

T
p−15)

T , where

the first 15 elements consist of 5 numbers of 3, 2, 1.5 receptively and the rest are 0.

In all simulation settings, we let n=100 and p=500.
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Example III.1. (Homogeneous case) The covariates vector xis are generated from

a multivariate normal distribution with mean 0 and covariance Ip independently. The

random errors εi = ei−E[ei], where ei are generated independently from the following

5 scenarios:

(a). N(0, 4): Normal with mean 0 and variance 4;

(b).
√

2t3:
√

2 times the t-distribution with degrees of freedom 3;

(c). MixN: Equal mixture of Normal distributions N(-1, 4) and N(8, 1);

(d). LogNormal: Log-normal distribution such that ei = exp(1.3zi), where zi ∼

N(0, 1).

(e). Weibull: Weibull distribution with the shape parameter 0.3 and the scale

parameter 0.15.

We consider three types of loss functions equipped with diverging parameters

(the Huber loss, Tukey’s biweight loss and Cauchy loss) and two types of penalty

functions (the Lasso and MCP penalties). Thus it produces 6 different PRAM

estimators: HA-Lasso, TA-Lasso, CA-Lasso, HA-MCP, TA-MCP and CA-MCP. Note

the HA-Lasso becomes the RA-Lasso estimator in [FLW17], where the HA-Lasso has

been demonstrated to perform better than the Lasso and R-Lasso, especially when

the errors were asymmetric and heavy-tailed (LogNormal and Weibull). Thus in

our simulation we skip those comparisons and only evaluate the performance of all

those 6 PRAM estimators. Their performances on both mean estimation and variable

selection under the five scenarios were reported by the following five measurements:

(1) L2 error, which is defined as ‖β̂ββ − βββ∗‖2.
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(2) L1 error, which is defined as ‖β̂ββ − βββ∗‖1.

(3) Model size (MS), the average number of selected covariates.

(4) False positives rate (FPR), the percent of selected but unimportant covariates:

FPR =
|Ŝ
⋂
Sc|

|Sc|
× 100%. (III.14)

(5) False negatives rate (FNR), the percent of non-selected but important covariates:

FNR =
|Ŝc
⋂
S|

|S|
× 100%. (III.15)

Here Ŝ = {j : β̂j 6= 0} and S = {j : β∗j 6= 0}. The model considered in Example III.1

is homogeneous, in which the error distribution is independent of covariate x. We also

assess the performance of PRAM estimators under heteroscedastic model in the next

example.

Example III.2. (Heteroscedastic case) We generate the data from

yi = xTi βββ
∗ + c−1(xTi βββ

∗)2εi,

where the constant c =
√

3‖βββ∗‖22 makes E[c−1(xTi βββ
∗)2]2 = 1. We also consider

xi ∼ N(0, Ip) and generate the random error ε from the same five scenarios described

in Example III.1.

Finally, we design a simulation setting to evaluate the performance of the

generalized PRAM estimators under weaker distribution assumptions on the covariates.

Example III.3. (Non-Gaussian x case) Similar to Example III.1, except that the

covariate x in 20% of observations are first generated from independent chi-square

variables with 10 degrees of freedom, and then recentered to have mean zero.
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For all three examples described above, we run 100 simulations for each scenario.

In Example III.3, we consider the generalized PRAM estimators with v(x) ≡ 1 and

w(x) = min
{

1, 4
‖x‖∞

}
. For all six PRAM estimators, tuning parameters λ and α are

chosen optimally by 10-fold cross-validation, with α ranges in (0.1
√

n
log p

, 10
√

n
log p

)

and λ ranges in (0.01
√

log p
n
, 2.5

√
log p
n

). These ranges are motivated from Theorem

III.2. The mean values out of 100 iterations (with standard errors in parentheses) are

reported in Table III.1, III.2, III.3, respectively.

We have two findings based on results in Table III.1 and III.2. Firstly, all

the MCP-type PRAM estimators largely outperform the Lasso-type estimators in all

the measurements, rendering satisfactory finite sample performances under different

settings. This is consistent with the oracle property of the PRAM estimators using

a proper non-convex penalty stated in Theorem III.3. Secondly, for estimators with

the same penalty, although all estimators perform comparably for light-tailed settings

(N(0, 4) and MixN), the TA-type and CA-type PRAM estimators outperform the

HA-type estimators using the same penalty in heavy-tailed settings (
√

2t3, LogNormal

and Weibull). This is actually not surprising due to the following two facts: (1)

redescending M-estimators can achieve the minimax variance sensitivity under certain

global minimax criterion [SMS08]; (2) the HA-Lasso estimation is used as the initial

in the optimization process of TA-type and CA-type PRAM estimators. Note that the

error terms c−1(xTi βββ
∗)2εi in the heteroscedastic model have the same variance as those

in the homogeneous model, however, their distribution possess heavier tails. Hence in

the heteroscedastic model, except for a few errors being far away on tail, most of the

others get even closer to the center. This fact explains why the performances in Table

III.2 are consistently better than those in Table III.1.
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Table III.1. Simulation Results under the Homogeneous Model with Standard Normal
Covariates in Example III.1. The mean L2 error, L1 error, MS, FPR (%) and FNR
(%) out of 100 iterations are displayed. Standard errors are listed in parentheses.

HA-Lasso TA-Lasso CA-Lasso HA-MCP TA-MCP CA-MCP

N(0,4)
L2 error 3.3 (0.9) 3.31 (0.94) 3.3 (0.9) 0.99 (0.47) 1.01 (0.53) 0.94 (0.27)
L1 error 17.75 (4.2) 17.79 (4.33) 17.72 (4.12) 3.29 (2.07) 3.34 (2.22) 3.06 (1.01)
MS 67.32 (9.11) 66.99 (10.15) 66.95 (10.13) 17.21 (2.47) 16.84 (2.46) 16.71 (2.36)
FPR, FNR 10.85, 2.13 10.8, 2.53 10.79, 2.4 0.46, 0.27 0.4, 0.53 0.35, 0.07

√
2t3

L2 error 3.59 (0.96) 3.62 (1) 3.56 (1) 1.18 (0.9) 1.13 (0.89) 1.14 (0.93)
L1 error 19.09 (5.03) 19.26 (5.14) 19.04 (5.12) 3.95 (3.65) 3.78 (3.56) 3.76 (3.65)
MS 63.72 (9.76) 64.07 (11.39) 65.13 (9.55) 16.85 (2.11) 16.7 (2.53) 16.2 (2.17)
FPR, FNR 10.14, 3 10.23, 3.53 10.43, 3.13 0.43, 1.6 0.4, 1.53 0.31, 1.87

MixN
L2 error 3.48 (0.78) 3.48 (0.79) 3.5 (0.8) 1.25 (0.71) 1.27 (0.73) 1.25 (0.69)
L1 error 18.99 (3.71) 18.99 (3.72) 19.05 (3.8) 4.2 (2.97) 4.17 (2.79) 4.11 (2.72)
MS 68.12 (8.85) 68.14 (9.06) 67.65 (9.4) 17.52 (3.57) 17.05 (3.8) 17.06 (5.43)
FPR, FNR 11, 1.6 11.01, 1.73 10.92, 2 0.55, 0.93 0.47, 1.47 0.46, 1.2

LogNormal
L2 error 4.66 (1.2) 4.56 (1.13) 4.5 (1.24) 2.13 (2.05) 1.74 (1.68) 2.12 (1.97)
L1 error 23.84 (6.2) 23.75 (5.63) 23.44 (6.15) 7.69 (8.52) 5.88 (6.61) 7.4 (7.88)
MS 57.16 (11.44) 60.68 (14.11) 60.64 (12.13) 16.7 (3.61) 16.03 (2.69) 16.29 (7.03)
FPR, FNR 8.97, 8.93 9.68, 8.53 9.68, 8.73 0.62, 8.73 0.41, 6.53 0.58, 10.13

Weibull
L2 error 3.91 (1.06) 3.63 (1.05) 3.46 (1.08) 1.35 (1.43) 0.94 (1.15) 1.03 (1.26)
L1 error 19.62 (5.38) 19.15 (5.36) 18.17 (5.65) 4.64 (5.73) 3.18 (4.5) 3.42 (4.69)
MS 55.37 (11.91) 64.12 (11.96) 63.5 (8.98) 16.15 (2.47) 15.65 (1.76) 15.44 (1.65)
FPR, FNR 8.51, 5.87 10.26, 4.13 10.09, 3.07 0.36, 4.07 0.2, 2.13 0.18, 2.87

Table III.2. Simulation Results under the Heteroscedastic Model with Standard
Normal Covariates in Example III.2. The mean L2 error, L1 error, MS, FPR (%) and
FNR (%) out of 100 iterations are displayed. Standard errors are listed in parentheses.

HA-Lasso TA-Lasso CA-Lasso HA-MCP TA-MCP CA-MCP

N(0,4)
L2 error 2.84 (0.81) 2.94 (0.91) 2.72 (0.84) 0.55 (0.35) 0.55 (0.19) 0.6 (0.21)
L1 error 14.74 (4.14) 15.45 (4.84) 14.13 (4.38) 1.78 (1.16) 1.73 (0.64) 1.91 (0.82)
MS 61.56 (9.65) 63.25 (11.03) 62.11 (8.42) 15.68 (1.27) 15.28 (0.87) 15.43 (1.71)
FPR, FNR 9.62, 0.67 9.98, 1.13 9.74, 0.73 0.14, 0.07 0.06, 0 0.09, 0

√
2t3

L2 error 2.88 (0.94) 2.89 (0.96) 2.67 (0.96) 0.48 (0.28) 0.51 (0.16) 0.54 (0.15)
L1 error 14.64 (4.78) 14.87 (4.77) 13.74 (5) 1.54 (0.93) 1.61 (0.53) 1.72 (0.49)
MS 59.54 (11.57) 61.11 (11.62) 61.39 (9.38) 15.69 (1.13) 15.34 (1.17) 15.54 (3.05)
FPR, FNR 9.22, 1.07 9.55, 1.47 9.59, 0.93 0.14, 0 0.07, 0 0.11, 0

MixN
L2 error 3.25 (0.87) 3.33 (0.94) 3.17 (0.93) 0.67 (0.35) 0.64 (0.22) 0.64 (0.2)
L1 error 16.86 (4.64) 17.53 (5.17) 16.58 (5.01) 2.16 (1.3) 2.02 (0.73) 2.04 (0.69)
MS 61.23 (10.51) 62.36 (10.93) 62.55 (8.76) 15.87 (1.91) 15.29 (1.01) 15.24 (0.67)
FPR, FNR 9.57, 1.27 9.82, 1.67 9.85, 1.33 0.18, 0 0.06, 0 0.05, 0

LogNormal
L2 error 3.68 (1.05) 3.64 (1) 3.4 (1.05) 0.9 (1.03) 0.64 (0.36) 0.74 (0.77)
L1 error 18.76 (5.16) 19.08 (4.87) 17.72 (5.37) 2.95 (3.68) 2.03 (1.19) 2.43 (3.05)
MS 58.63 (10.39) 63.13 (11.89) 62.99 (8.07) 15.62 (1.72) 15.26 (0.69) 15.18 (0.66)
FPR, FNR 9.12, 4.07 10.04, 3.73 9.98, 2.67 0.19, 1.93 0.06, 0.2 0.07, 1.07

Weibull
L2 error 3.01 (1.19) 2.83 (1.09) 2.66 (1.11) 0.75 (0.9) 0.59 (0.52) 0.64 (0.67)
L1 error 15.09 (6.07) 14.89 (5.68) 13.66 (5.63) 2.5 (3.48) 1.94 (2.1) 2.11 (2.67)
MS 57.28 (11.85) 65.07 (9.4) 61.77 (7.9) 15.71 (1.21) 15.39 (0.91) 15.3 (0.98)
FPR, FNR 8.78, 2.13 10.37, 1.53 9.69, 1.53 0.19, 1.27 0.09, 0.27 0.08, 0.67

In Example III.3, we only report results from the MCP-type PRAM estimators,

since they have been shown to perform better than the Lasso-type estimators. In the
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homogeneous model with non-Gaussian covariates, Table III.3 clearly indicates that

the PRAM estimators with well chosen w(x) perform better in all cases than those

PRAM with w(x) = 1. In addition, among those three weighted PRAM estimators, the

weighted TA-MCP (WTA-MCP) and the weighted CA-MCP (WCA-MCP) again show

advantages over the weighted HA-MCP (WHA-MCP) when the errors are heavy-tailed,

which is consistent with the findings obtained in Example III.1 and III.2.

In conclusion, the PRAM estimator with a folded concave penalty (e.g. MCP

penalty) render promising performances in different settings, which is consistent with

our theoretical results. Our simulation study also shed some lights on how to implement

robust high-dimensional M-estimators for real applications: when the data are strongly

heavy-tailed or contaminated, regardless of asymmetry and/or heteroscedasticity, a

redescending PRAM estimator with a concave penalty yields better performance than

a convex PRAM estimator in practice.

Table III.3. Simulation Results under the Homogeneous Model with Non-Gaussian
Covariates in Example III.3. The mean L2 error, L1 error, MS, FPR (%) and FNR
(%) out of 100 iterations are displayed. Standard errors are listed in parentheses.

HA-MCP WHA-MCP TA-MCP WTA-MCP CA-MCP WCA-MCP

N(0,4)
L2 error 0.87 (0.91) 0.69 (0.61) 1.19 (1.58) 0.75 (0.83) 0.93 (1.1) 0.69 (0.6)
L1 error 3.65 (4.29) 2.38 (2.71) 5.14 (7.6) 2.62 (3.77) 3.89 (5.17) 2.39 (2.7)
MS 36.92 (12.84) 17.7 (4.16) 36.88 (13.86) 17.69 (4.12) 36.07 (13.11) 17.89 (4.57)
FPR, FNR 4.53, 0.2 0.56, 0.27 4.58, 2.27 0.58, 0.73 4.36, 0.67 0.6, 0.27

√
2t3

L2 error 0.91 (0.72) 0.65 (0.28) 1.11 (1.55) 0.63 (0.34) 0.87 (0.85) 0.61 (0.26)
L1 error 3.75 (3.41) 2.12 (1.07) 4.8 (7.42) 2.07 (1.27) 3.56 (3.96) 1.98 (0.96)
MS 36.39 (11.54) 16.77 (2.78) 35.75 (11.68) 16.56 (2.63) 35.15 (11.86) 16.48 (2.71)
FPR, FNR 4.42, 0.27 0.36, 0 4.36, 2.67 0.32, 0 4.16, 0.33 0.31, 0

MixN
L2 error 0.95 (0.89) 0.82 (0.71) 1.29 (1.52) 0.83 (0.75) 0.98 (0.99) 0.82 (0.74)
L1 error 4.08 (4.25) 2.9 (3.31) 5.71 (7.33) 2.9 (3.4) 4.14 (4.69) 2.85 (3.4)
MS 38.22 (11.12) 18.5 (3.8) 39.42 (11.2) 17.9 (3.73) 37.65 (12.55) 17.88 (3.61)
FPR, FNR 4.8, 0.47 0.74, 0.53 5.09, 1.8 0.61, 0.47 4.69, 0.8 0.61, 0.4

LogNormal
L2 error 2.26 (2.19) 1.31 (1.5) 2.74 (2.44) 1.38 (1.71) 2.02 (1.94) 1.36 (1.73)
L1 error 10.24 (10.45) 4.8 (6.48) 12.51 (11.68) 5.19 (7.53) 9.07 (9.31) 4.85 (6.77)
MS 40.23 (11.37) 18.03 (4.55) 43.42 (12.09) 18.11 (4.35) 41.04 (12.25) 16.6 (3.6)
FPR, FNR 5.39, 6 0.74, 3.67 6.16, 9.67 0.79, 4.93 5.52, 4.87 0.5, 5.6

Weibull
L2 error 1.6 (1.98) 1.11 (1.75) 1.84 (2.26) 0.92 (1.55) 1.44 (1.9) 0.85 (1.36)
L1 error 7.11 (9.73) 4.34 (8.28) 8.04 (10.19) 3.34 (6.36) 6.17 (8.6) 3.03 (5.55)
MS 37.25 (11.37) 17.45 (5.57) 38.69 (13.33) 17.57 (4.88) 35.74 (10.84) 16.83 (3.61)
FPR, FNR 4.7, 3.6 0.62, 3.8 5.08, 6.4 0.62, 2.93 4.38, 3.4 0.44, 2.13
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III.6. Real Data Example

In this section, we use the NCI-60 data introducted in I.1. We perform some

pre-screenings and keep only p1 genes with largest variations and then choose p2

genes out of them which are most correlated with the response variable. Here the

final dataset is obtained by choosing p1 = 2000 and p2 = 500, yielding n = 59 and

p = 500 for PRAM data analysis. Similar to our simulation studies, we then apply 6

PRAM estimators to select important genes, with tuning parameters α and λ chosen

from the 10-fold cross validation. Since the TA-type and CA-type PRAM estimators

perform similarly, we will only report results from four methods: HA-Lasso, CA-Lasso,

HA-MCP and CA-MCP.

The number of selected genes from four PRAM methods are 27 (HA-Lasso),

31 (CA-Lasso), 12 (HA-MCP), 5 (CA-MCP), respectively. HA-Lasso and CA-Lasso

that selected 27 and 31 genes respectively could potentially result in over selection

since the total sample size is only 59. Figure III.1(a) and Figure III.1(b) show that

the residual distributions generated from HA-MCP and CA-MCP both had a longer

tail on the left side. It indicates that PRAM estimators with non-convex penalties

can be resistant to the data contamination or data’s irregularity due to the flexible

robustness and nice variable selection property.

Table III.4. Selected Genes and the Corresponding Coefficient Estimation by HA-MCP
and CA-MCP. Probe IDs are listed in parentheses.

HA-MCP
KRT8
(209008_x_at)
6.230

NRN1
(218625_at)
-1.505

GPX3
(201348_at)
0.031

CELF2
(202156_s_at)
-0.002

CELF2
(202157_s_at)
0.000

LEF1
(221558_s_at)
-0.003

MEST
(202016_at)
0.009

FAR2
(220615_s_at)
-0.037

PBX1
(212148_at)
0.035

CLEC11A
(205131_x_at)
-0.036

CLEC11A
(211709_s_at)
-0.017

ATP2A3
(213036_x_at)
-0.003

CA-MCP
KRT8
(209008_x_at)
6.122

NRN1
(218625_at)
-0.775

GPX3
(201348_at)
0.693

GPNMB
(201141_at)
-0.556

ATP2A3
(213036_x_at)
-0.763
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Figure III.1. (a) The QQ Plot of the Residuals from HA-MCP. (b) The QQ Plot of the
Residuals from CA-MCP. (c) The Boxplot of the Relative Mean Squared Prediction
Errors.

For the sake of simplicity, we only report those selected genes and corresponding

coefficient estimation by HA-MCP and CA-MCP in Table III.4. According to our

analysis, genes KRT8, NRN1 and GPX3 are selected by all four methods. It is not

surprising for gene KRT8 since it has the largest correlation with the response variable

and has a long history of being paired with KRT18 in cancer studies for cell death and

survival, cellular growth and proliferation, organismal injury and abnormalities, and

so on [LZ16,WHM+07]. Gene NRN1 was investigated to be involved in melanoma

migration, attachment independent growth, and vascular mimicry [BSE+17]. Recent

studies showed that gene GPX3 plays as a tumor suppressor in lung cancer cell line

[ACO+18] and its down-regulation is related to pathogenesis of melanoma [CZK+16].

Notice that gene ATP2A3 is also singled out by both HA-MCP and CA-MCP. This

gene encodes the enzyme involved in calcium sequestration associated with muscular

excitation and contraction, and was shown to act an important role in resveratrol

anticancer activity in breast cancer cells [ITRMMZH17]. In addition, Table III.4

indicates that gene GPNMB is only selected by CA-MCP. The GPNMB expression
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was found to be associated with reduction in disease-free and overall survival in breast

cancer and its over-expression had been identified in numerous cancers [MRAS13].

Therefore, both genes (ATP2A3 and GPNMB) deserve further study in genetics

research.

To further evaluate the prediction performance of those PRAM estimators, we

randomly choose 6 observations as the test set and applied four methods to the rest

patients to get the coefficients estimation, then compute the prediction error on the

test set. We repeat the random splitting 100 times and the boxplots of the Relative

Mean Squared Prediction Error (RPE) with respect to HA-Lasso are shown in Figure

III.1(c). A method with RPE < 1 indicates a better performance than HA-Lasso. It

is clearly seen from Figure III.1(c) that the MCP-type PRAM estimators have better

predictions than those from the Lasso-type estimators, even though they select much

smaller number of variables. In addition, Figure III.1(c) together with Table III.4

show that a redescending PRAM estimator with a non-convex penalty (e.g. CA-MCP)

is more likely to give a more parsimonious model with better prediction performance,

which is consistent with the findings from our simulation studies.
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CHAPTER IV

HIGH-DIMENSIONAL M-ESTIMATION FOR BI-LEVEL VARIABLE SELECTION

IV.1. Introduction

Covariates often function group-wisely in many applications. For example, in

gene expression analysis, genes from the same biological pathways may exhibit similar

activities. In high-dimensional linear regression, penalized least squares approaches

with penalties incorporating grouping structures have become very popular in recent

decades. [YL06] proposed the group Lasso, as a nature extension of the Lasso

[Tib96b], to select variables at the group level by applying the Lasso penalty on

the `2 norm of coefficients associated with each group of variables in penalized least

squares regression (LS-GLasso). To address the bias and inconsistency of the group

Lasso estimator in high-dimensional settings, several methods have been investigated,

including the adaptive group Lasso [WH10], the `2-norm MCP [HBM12], the `2-norm

SCAD [GZWW15], among others. However, above approaches encourage only “all-in"

or “all-out" variable selection at the group level. To further encourage the sparsity

within certain groups, extensive methods have been proposed to perform bi-level

variable selection. See for example the group Bridge [HMXZ09], the sparse group

Lasso [FHT10,SFHT13], the concave `1-norm group penalty [JH14], the composite

MCP [BH09], the group exponential Lasso [Bre15], among others. See [HBM12] for a

complete review.

When the data dimensionality grows much faster than the sample size, irregular

settings often appear, such as the response and a large number of variables are

contaminated or heavy-tailed. It has been shown that the LS-GLasso is estimation
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consistent when the random errors are sub-Gaussian [WH10]. However, the quadratic

loss in LS-GLasso is non-robust to outliers and the estimator is no longer consistent if

the random errors are wildly deviated from sub-Gaussian distribution. In addition,

the required restricted eigenvalue condition on design matrix may not hold if the

predictors are non-Gaussian.

To tackle the problem of heavy-tailed random errors in high-dimensional

settings, a few robust penalized approaches have been recently studied. [Lil15]

proposed the penalized least absolute deviation (LAD) estimator with the group Lasso

penalty to relieve the model’s sensitivity due to the existence of outliers in random

errors. This method was also extended to the weighted LAD group Lasso when some

predictors are contaminated or heavy-tailed. [WT16] investigated a general penalized

M-estimators framework using convex loss functions and concave `2-norm penalties

for the partially linear model with grouped covariates. However, those above robust

methods can only select variables at group level and thus do not perform bi-level

variable selection. In the examples of gene expression study, while the data may be

heavy-tailed or contaminated due to the complex data generation procedures, we may

be still interested in selecting important genes as well as important groups.

Additionally, the above robust methods all require the loss function to be

convex. It is well known that the convex loss functions such as Huber loss and LAD

loss do not downweight the very large residuals due to their convexity. [SMS08] showed

that redescending M-estimators with non-convex loss function possess certain optimal

robustness properties. In fact, there still lacks a systematic study of high-dimensional

M-estimators that perform robust bi-level variable selection, allowing both loss and

group penalty functions to be non-convex.
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In this chapter, we consider high-dimensional linear regression with grouped

covariates, in irregular settings that the data (random errors and/or covariates) may be

contaminated or heavy-tailed. In particular, we propose a novel high-dimensional bi-

level variable selection method through a two-stage penalized M-estimator framework:

penalized M-estimation with a concave `2-norm penalty achieving the consistent group

selection at the first stage, and a post-hard-thresholding operator to achieve the

within-group sparsity at the second stage.

The remainder of this chapter is organized as follows. In Section IV.2, we

introduce a basic setup for our two-stage penalized M-estimator framework. In Section

IV.3, we present statistical properties of our proposed bi-level M-estimators under some

sufficient conditions. We discuss the implementation of the two-stage M-estimators in

Section IV.4. In Section IV.5, we conduct some simulation studies to demonstrate the

performance of the proposed estimators under different settings. We also apply the

proposed estimators for NCI-60 data analysis and illustrate all results in Section IV.6.

All technical proofs are relegated to Appendix.

IV.2. The Two-stage M-estimator Framework

Let’s consider a high-dimensional data with p covariates from J non-overlapping

groups. A linear regression model can be written as

yi =
J∑
j=1

xTijβββ
∗
j + εi, i = 1, · · · , n, (IV.1)

where εis are i.i.d random errors, xijs are independent and identically distributed

(i.i.d) dj-dimensional covariate vectors corresponding to the jth group, βββ∗j is the

dj-dimensional true regression coefficient vector of the jth group. Then p =
∑J

j=1 dj.

Let xi = (xTi1, · · · ,xTiJ)T and βββ∗ = (βββ∗T1 , · · · ,βββ∗TJ )T . We assume the independence

between covariates xi and random errors εi for the sake of simplicity. We also assume
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the group sparsity condition of the model: there exists S ⊆ {1, · · · , J} such that

βββ∗j = 0 for all j /∈ S. Note that we allow the within-group sparsity on some βββ∗j 6= 0

and thus there exists bi-level sparsity on the coefficient vector βββ∗.

Some More Notations. We use bold symbols to denote matrices or vectors. Let

βm be the mth element of βββ ∈ Rp. For any A ⊆ {1, 2, · · · , p}, we denote βββA =

(βm, m ∈ A)T a coefficient sub-vector with indexes in A. Define da := max1≤j≤J dj,

db := min1≤j≤J dj , d :=
√

da
db
. Let Ij ⊆ {1, 2, · · · , p} denote the index set of coefficients

in group j. Then IS :=
⋃
j∈S Ij includes all indexes of coefficients in those important

groups. Let I0 = {m : β∗m 6= 0, 1 ≤ m ≤ p} and thus I0 ⊆ IS. Define βββ∗Gmin :=

minj∈S ‖βββ∗j‖2 as the minimum group strength on βββ∗, where ‖ ·‖2 is the `2 norm. Define

βββ∗Imin := minm∈I0 |β∗m| as the minimum individual signal strength on βββ∗. Let s = |S|

and k = |IS| be the number of important groups and number of variables among all

important groups, respectively. We denote u+ = max(u, 0) for any u ∈ R.

Our Proposed M-estimator Framework for Bi-level Variable Selection. To

perform an efficient bi-level variable selection with potential robustness for the existence

of possible data contamination or heavy-tailed distribution between εi and xi, we

propose the following two-stage penalized M-estimator framework:

• Group Penalization (GP) Stage. First we perform penalized M-estimation with

a group concave penalty achieving the between-group sparsity:

β̂ββ ∈ argmin
βββ∈Rp,‖βββ‖1≤R

{
Ln(βββ) +

J∑
j=1

ρ(‖βββj‖2,
√
djλ)

}
.
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• Hard-thresholding (HT) Stage. Then we apply a post-hard-thresholding operator

on β̂ββ:

β̂ββ
h
(θ) = β̂ββ · I(|β̂ββ| ≥ θ) (IV.2)

where “·” and “≥” in (IV.2) are elementary-wise.

Note that Ln is an empirical loss function may encourage a robust solution and ρ is a

penalty function, which encourages the group sparsity in the solution. Here λ and θ

are two tuning parameters controlling the between-group and within-group sparsity,

respectively. We include the side condition ‖βββ‖1 ≤ R in the Group Penalization Stage

in order to guarantee the existence of local/global optima, for the case where the

loss or regularizer may be non-convex. In real applications, we can choose R to be a

sufficiently large number such that ‖βββ∗‖1 ≤ R.

Let l : R 7→ R denote a residual function, or a loss function, defined on each

observation pair (xi, yi). Then the above Group Penalization Stage becomes

β̂ββ ∈ argmin
βββ∈Rp,‖βββ‖1≤R

{
1

n

n∑
i=1

l(yi − xTi βββ) +
J∑
j=1

ρ(‖βββj‖2,
√
djλ)

}
. (IV.3)

With a well chosen l, the penalized M-estimator from (IV.3) can be robust to heavy-

tailed random error εi. Some typical robust loss functions l include:

• Huber Loss

l(u) =


u2

2
if |u| ≤ α,

α|u| − α2

2
if |u| ≥ α.

• Tukey’s biweight Loss

l(u) =


α2

6
(1− (1− u2

α2 )3) if |u| ≤ α,

α2

6
if |u| ≥ α.
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• Cauchy Loss

l(u) =
α2

2
log

(
1 +

u2

α2

)
.

The derivatives of above three loss functions are bounded and thus they can

mitigate the effect of larger residuals. In particular, the Tukey’s biweight loss and

Cauchy loss produce redescendingM -estimators. From the robust regression literature,

we call an M -estimator redescending if there exists u0 > 0 such that |l′(u)| = 0 or

decrease to 0 smoothly, for all |u| ≥ u0. In that case, strong robustness is obtained by

ignoring the large outliers completely. See more discussions in [Mul04] and [SMS08].

Whereas the robust loss function in (IV.3) takes into account the contamination

or heavy-tailed distribution in error εi, a single outlier in xi may still cause the

corresponding estimator to perform arbitrarily badly. To downweight large values of

xi, we extend the Group Penalization Stage in (IV.3) to

β̂ββ ∈ argmin
βββ∈Rp,‖βββ‖1≤R

{
1

n

n∑
i=1

w(xi)

v(xi)
l((yi − xTi βββ)v(xi)) +

J∑
j=1

ρ(‖βββj‖2,
√
djλ)

}
, (IV.4)

where w, v are weight functions such that w, v > 0. A few options for choosing those

weight functions can be found in [Mal75], [Hil77], [MS71] and [Loh17].

Since βββ∗j = 0 for j /∈ S, we need the Group Penalization Stage to generate

sparse solutions between groups. In particular, we require the penalty function ρ in

(IV.4) to satisfy amendable properties listed in Assumption IV.1.

Assumption IV.1 (Penalty Function Assumptions). ρ : R × R 7→ R is a scalar

function that satisfies the following conditions:

(i) For any fixed t ∈ R+, the function λ 7→ ρ(t, λ) is non-decreasing on R+.

(ii) There exists a scalar function g : R+ 7→ R+ such that for any r ∈ [1,∞),
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ρ(t,rλ)
ρ(t,λ)

≤ g(r) for all t, λ ∈ R+.

(iii) The function t 7→ ρ(t, λ) is symmetric around zero and ρ(0, λ) = 0, given any

fixed λ ∈ R.

(iv) The function t 7→ ρ(t, λ) is non-decreasing on R+, given any fixed λ ∈ R.

(v) The function t 7→ ρ(t,λ)
t

is non-increasing on R+, given any fixed λ ∈ R.

(vi) The function t 7→ ρ(t, λ) is differentiable for t 6= 0, given any fixed λ ∈ R.

(vii) limt→0+
∂ρ(t,λ)
∂t

= λ, given any fixed λ ∈ R.

(viii) There exists µ > 0 such that the function t 7→ ρ(t, λ) + µ
2
t2is convex, given any

fixed λ ∈ R.

(ix) There exists δ ∈ (0,∞) such that ∂ρ(t,λ)
∂t

= 0 for all t ≥ δλ, given any fixed

λ ∈ R.

The properties (iii-ix) in Assumption 1 are related to the penalty functions

studied in [Loh17] and [LW13]. Adopting the notation from [Loh17], we consider ρ to

be µ-amenable if ρ satisfies conditions (i)-(viii). If ρ also satisfies condition (ix), we say

that ρ is (µ, δ)-amenable. In particular, if ρ is µ-amenable, then q(t, λ) := λ|t|−ρ(t, λ)

is everywhere differentiable. Define the vector version qλ(βββ) :=
∑J

j=1 q(‖βββj‖2,
√
djλ)

accordingly. It is easy to see that there exists µ > 0 such that µ
2
‖βββ‖22− qλ(βββ) is convex.

This property is important for both computational implementation and theoretical

investigation of the group selection properties.

Some popular choices of amenable penalty functions include Lasso [Tib96b],

SCAD [FL01], and MCP [Z+10] given as follows:
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• The Lasso penalty ρ(t, λ) = λ|t| is 0-amenable but not (0, δ)-amenable for any

δ <∞.

• This SCAD penalty takes the form

ρ(t, λ) =


λ|t| for |t| ≤ λ,

− t2−2aλ|t|+λ2
2(a−1) for λ < |t| ≤ aλ,

(a+1)λ2

2
for |t| > aλ,

where a > 2 is fixed. The SCAD penalty is (µ, δ)-amenable with µ = 1
a−1 and

δ = a.

• The MCP penalty takes the form

ρ(t, λ) = sign(t)λ

∫ |t|
0

(
1− z

λb

)
+
dz,

where b > 0 is fixed. The MCP penalty is (µ, δ)-amenable with µ = 1
b
and δ = b.

It has been shown that a folded concave penalty, such as the SCAD or MCP, often

has better variable selection properties than the convex penalty including the Lasso.

IV.3. Statistical Properties

In this section, we present our theoretical results for the proposed two-stage

penalized M-estimator framework. We begin with statistical properties of the estimator

β̂ββ in program (IV.4) generated from the Group Penalization Stage. On the one hand,

we show a general non-asymptotic bound of the estimation error and establish the

local estimation consistency of β̂ββ at the minimax rate enjoyed by the LS-GLasso, under

certain mild conditions. On the other hand, we show that the estimator β̂ββ in fact

equals the local oracle solution with the correct group support and thus obtain the

group-level oracle properties. Finally, we show that those nice statistical properties of
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β̂ββ can be carried over during the hard-thresholding stage and we establish the bi-level

variable selection consistency of β̂ββ
h
. All proofs are given in Appendix.

As introduced in (IV.4), the loss function in the two-stage penalized M-estimator

framework takes the following form,

Ln(βββ) =
1

n

n∑
i=1

w(xi)

v(xi)
l((yi − xTi βββ)v(xi)). (IV.5)

To obtain the estimation consistency, we make the following assumptions on the

residual function l.

Assumption IV.2 (Loss Function Assumptions). l : R 7→ R is a scalar function with

the existence of the first derivative l′ everywhere and the second derivative l′′ almost

everywhere. In addition,

(i) there exists a constant 0 < k1 <∞ such that |l′(u)| ≤ k1 for all u ∈ R.

(ii) l′ is Lipschitz such that |l′(x) − l′(y)| ≤ k2|x − y|, for all x, y ∈ R and some

0 < k2 <∞.

Note that Assumption IV.2(i) requires bounded derivative of the loss function,

which can limit the effect of large residuals and thus achieve certain robustness.

Assumption IV.2(ii) indicates that |l′′(u)| < k2 for all u ∈ R where l′′(u) exists. The

above assumptions actually cover a wide range of loss functions, including Huber loss,

Hampel loss, Tukey’s biweight and Cauchy loss.

We now make some assumptions on both random error ε and covariate vector

x.

Assumption IV.3 (Error and Covariate Assumptions). For w(x) and v(x) given in

(III.8), the random error ε with E[ε] = 0 and covariate vector x with E[x] = 0 satisfy:
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(i) for any ννν ∈ Rp, w(x)xTννν is sub-Gaussian with parameter at most k20‖ννν‖22.

(ii) either (a) v(x) = 1 and E[w(x)x] = 0, or (b) E[l′(v(x)ε)|x] = 0.

Note that Assumption IV.3(i) and (ii)(a) hold when xTi ννν is sub-Gaussian for

any ννν ∈ R and w(x) = 1. If covariate x is contaminated or heavy-tailed, Assump-

tion IV.3(i) nonetheless holds with some proper choices of w(x) (e.g. w(x)xTννν is

bounded for any ννν ∈ R), which potentially relaxes the sub-Gaussian assumption on x.

Assumption IV.3(ii)(b) holds when l′ is an odd function and ε follows a symmetric

distribution. Despite the possible mild condition of symmetry, those assumptions

above are independent of the distribution of ε, allowing the additive error ε to be

heavy-tailed or contaminated.

In order to obtain the estimation consistency for β̂ββ in (IV.4), we also require

the loss function Ln to satisfy the following local Restricted Strong Convexity (RSC)

condition. This RSC condition was also investigated in [LW13] and [Loh17].

Assumption IV.4 (RSC condition). There exist γ, τ > 0 and a radius r > 0 such

that the loss function Ln in (III.8) satisfies

〈∇Ln(βββ1)−∇Ln(βββ2),βββ1 − βββ2〉 ≥ γ‖βββ1 − βββ2‖22 − τ
log p

n
‖βββ1 − βββ2‖21, (IV.6)

where βββj ∈ Rp such that ‖βββj − βββ
∗‖2 ≤ r for j = 1, 2.

Note that the RSC assumption is only imposed on Ln inside the ball of radius

r centered at βββ∗. Thus the loss function used for robust regression can be wildly

nonconvex while it is away from the origin. The ball of radius r essentially specifies a

local region around βββ∗ in which stationary points of program (IV.4) are well-behaved.

We call such region as the RSC region.
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We present the estimation consistency result concerning estimator β̂ββ in the

following Theorem IV.1.

Theorem IV.1. Suppose the random error and covariates satisfy Assumption IV.3

and Ln in (III.8) satisfies Assumption IV.2. Then we have the following results.

(i) It holds with probability at least 1− C1 exp(−C2 log p) that Ln satisfies

‖∇Ln(βββ∗)‖∞ ≤ C0k0k1

√
log p

n
. (IV.7)

(ii) Suppose Ln satisfies the RSC condition in Assumption IV.4 with βββ2 = βββ∗ and

ρ is µ-amenable with 3
4
µ < γ in Assumption IV.1. Let β̂ββ be a local estimator

in (IV.4) in the RSC region. Then for n ≥ Cr−2das log p, R ≥ ‖βββ∗‖1 and

λ ≥ max{4‖∇Ln(βββ∗)‖∞, 8τR log p
n
}, β̂ββ exists and satisfies the bounds

‖β̂ββ − βββ∗‖2 ≤
6
√
daλ
√
s

4γ − 3µ
and ‖β̂ββ − βββ∗‖1 ≤

6(1 + 3g(d))daλs

4γ − 3µ
.

The statistical consistency result of Theorem IV.1 holds even though the random

errors are heavy-tailed and contaminated, and the regressors lack of the sub-Gaussian

assumption. Theorem IV.1(ii) essentially gives general deterministic bounds of the

estimation error, provided that the loss function Ln satisfies the RSC condition and the

penalty function ρ is µ-amenable. In particular, Theorem IV.1 shows that with high

probability one can choose λ = O
(√

log p
n

)
such that ‖β̂ββ − βββ∗‖2 = Op

(√
das log p

n

)
and ‖β̂ββ − βββ∗‖1 = Op

(
g(d)das

√
log p
n

)
. Hence if da is finite, the estimator β̂ββ at the

Group Penalization Stage is statistically consistent at the minimax rate enjoyed by

the LS-GLasso under the sub-Gaussian assumption.
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Remark. Recall that β̃ββ is a stationary point of the optimization in (IV.4) if

〈∇Ln(β̃ββ) +∇ρλ(β̃ββ),βββ − β̃ββ〉 ≥ 0,

for all feasible βββ in a neighbour of β̃ββ, where ρλ(βββ) =
∑J

j=1 ρ(‖βββj‖2,
√
djλ). The

stationary points include the interior local maxima as well as all local and global

minima. The proof in Appendix reveals that the estimation consistency result also

holds for the stationary points in program (IV.4). Hence Theorem IV.1 guarantees

that all stationary points within the ball of radius r centered at βββ∗ have local statistical

consistency at the minimax rate enjoyed by the LS-GLasso. To simplify the notation,

β̂ββ also denotes the stationary points of program (IV.4).

Next we establish the group-level oracle properties of estimator β̂ββ in (IV.4).

Suppose IS is given in advance,we define the group-level local oracle estimator as

β̂ββ
O
IS

:= argmin
βββ∈RIS :‖βββ−βββ∗‖2≤r

{Ln(βββ)} . (IV.8)

Let β̂ββ
O

:= (β̂ββ
O
IS
,0IcS). The next theorem shows that when the penalty ρ is (µ, δ)-

amenable and conditions in Theorem IV.1 are satisfied, the stationary point from

(IV.4) within the local neighborhood of βββ∗ is actually unique and agree with the group

oracle estimator in (IV.8).

Theorem IV.2. Suppose the penalty ρ is (µ, δ)-amenable and conditions in Theorem

IV.1 hold. Suppose in addition that v(x)xj is sub-Gaussian for all j = 1, · · · , p,

‖βββ∗‖1 ≤ R
2
for some R > 12(1+3g(d))daλs

4γ−3µ , βββ∗Gmin ≥ C3

√
k log k
n

+
√
daδλ, n ≥ C0k log p

and k2 log k = O(log p). Let β̂ββ be a stationary point of the program in the RSC region.

Then with probability at least 1 − C5 exp(−C2 log k), β̂ββ satisfies supp(β̂ββ) ⊆ IS and

β̂ββIS = β̂ββ
O
IS
.
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Theorem IV.2 guarantees that the Group Penalization Stage in our proposed

framework can recover the true group support with high probability, when the condition

of minimum group signal strength is satisfied. Two most common (µ, δ)-amenable

penalties are SCAD and MCP, as introduced in Section IV.2.

It has been shown that the GP Stage can select important covariates groups

and provides consistent estimation for parameter βββ∗. We are now ready to establish

statistical properties of β̂ββ
h
after the HT stage in our proposed framework. We reveal in

the following theorem that when the condition of minimum individual signal strength

is satisfied, the estimate of the zero elements and the non-zero elements of βββ∗ after

the GP Stage can then be well separated. Hence, there exists some thresholds that

are able to filter out those non-important covariates within the selected important

groups, and thus the HT Stage can perform bi-level variable selection consistently.

Theorem IV.3. Suppose conditions of Theorem IV.2 hold and in addition that βββ∗Imin ≥

C3

√
k log k
n

+ θ and θ > C3

√
k log k
n

. With probability at least 1 − C5 exp(−C2 log k),

the hard-thresholding estimator β̂ββ
h
(θ) given in (IV.2) satisfies β̂ββ

h
= (β̂ββ

O
I0
,000Ic0) and

‖β̂ββ
h
− βββ∗‖2 ≤ C3

√
k log k
n

.

Theorem IV.3 guarantees that the estimator β̂ββ
h
in our proposed two-stage

framework possesses estimation consistency and bi-level variable selection consistency,

when conditions of Theorem IV.2 hold and the condition of minimum individual signal

strength is satisfied. Note that such signal strength condition is fairly mild and the

bound can decrease arbitrarily closed to 0 as the growth of sample size n.
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IV.4. Implementation

We discuss the implementation of the proposed two-stage M-estimator frame-

work in this section, including finding a stationary point in program (IV.4) for a fixed

λ and the tuning parameters selection for both λ and θ.

Note that the optimization in (IV.4) may not be a convex optimization problem

since we allow both loss function Ln and ρ to be non-convex. To obtain the correspond-

ing stationary point, we use composite gradient descend algorithm [Nes13]. Recall

qλ(βββ) =
∑J

j=1

√
djλ‖βββj‖2 −

∑J
j=1 ρ(‖βββj‖2,

√
djλ) and L̄α,n(βββ) = Lα,n(βββ)− qλ(βββ), we

can rewrite the program as

β̂ββ ∈ argmin
‖βββ‖1≤R

{
L̄n(βββ) +

J∑
j=1

√
djλ‖βββj‖2

}
.

Then the composition gradient iteration is given by

βββt+1 ∈ argmin
‖βββ‖1≤R

{
1

2
‖βββ − (βββt − ∇L̄n(βββt)

η
)‖22 +

J∑
j=1

λη
√
dj‖βββj‖2

}
, (IV.9)

where η > 0 is the step size for the update and can be determined by the backtracking

line search method described in [Nes13]. A simple calculation shows that the iteration

in (IV.9) takes the form

βββt+1
j = S

λη
√
dj

((
βββt − η∇L̄n(βββt)

)
j

)
,

where S√
djλη

(·) is the group soft-thresholding operator defined as

Sδ(zzz) :=

(
1− δ

‖zzz‖2

)
+

zzz.

We adopt the following two-step procedure discussed in [Loh17] to guarantee the

convergence to a stationary point for the non-convex optimization problem in (IV.4).
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Step 1: Run the composite gradient descent using a Huber loss function with

convex group Lasso penalty to get an initial estimator.

Step 2: Run the composite gradient descent on the program (IV.4) at the Group

Penalization Stage using the initial estimator from Step 1.

As to the tuning parameters selection, the optimal values of tuning parameters

λ and θ are chosen from a two-dimensional grid search using the cross-validation.

In particular, the searching grid is formed by partitioning a rectangle uniformly in

the scale of (θ, log(λ)). Motivated by conditions of Theorem IV.1 and Theorem

IV.3, the range of the rectangle can be chosen as C11

√
log p
n
≤ λ ≤ C12

√
log p
n

and

C21

√
k log k
n

< θ ≤ C22. The optimal values are then found by the combination that

minimizes the cross-validated trimmed mean squared prediction error.

IV.5. Simulation Studies

In this section, we assess the performance of our two-stage M-estimator frame-

work by considering different types of loss functions and penalty functions through

various models. The data is generated from the following model

yi = xTi βββ
∗ + εi, 1 ≤ i ≤ n.

The covariates vector xis are generated from a multivariate normal distribution with

mean 0 and covariance Σ independently. For covariance Σ = (σij)p×p, we choose

σij =


1 if i = j,

(−1)i+ja if i 6= j and i, j are in the same group,

(−1)i+jab if i 6= j and i, j are in different groups,
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where a = 0.8 or 0.5 and b = 0.8 or 0.5. Let βββ∗ = φφφ · |βββ∗|, where φφφ is a p-dimensional

vector with the jth element being (−1)j+1.

Example IV.1. (Group-level Sparsity) The number of observations n = 100 and

the number of variables p = 500 with J = 100 unequal-size groups. We choose a = 0.8

and b = 0.5. The model includes only between-group sparsity with five relevant groups,

|βββ∗1| = |βββ
∗
2| = (3, · · · , 3︸ ︷︷ ︸

4

)T = 3T
4 , |βββ∗3| = |βββ

∗
4| = 26, |βββ∗5| = 1.55,

βββ∗6 = · · · = βββ∗100 = 05.

We generate random error εi from the following 3 scenarios: (a) N(0, 1), (b) t1,

(c) Mix Cauchy (70% are from N(0, 1) and 30% are from standard Cauchy).

We consider bi-level penalized M-estimators with different types of loss functions

(the `2 loss, Huber loss, Cauchy loss) and two types of penalty functions (the Lasso and

MCP penalties). In particular, we evaluate the performance of non-group estimators,

one-stage estimators and two-stage estimators. Without causing any confusion, let

β̂ββ be any estimator of βββ∗. Its performances on both parameter estimation and

group/variable selection were evaluated by the following eight measurements:

(1) `2 error, which is defined as ‖β̂ββ − βββ∗‖2.

(2) `1 error, which is defined as ‖β̂ββ − βββ∗‖1.

(3) Model size (MS), the average number of selected covariates.

(4) Group size (GS), the average number of selected groups.

(5) False positives rate for individual variable selection (FPR), the percent of selected

covariates which are actually unimportant variables.
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(6) False negatives rate for individual variable selection (FNR), the percent of

non-selected covariates which are actually important variables.

(7) False positives rate for group variable selection (GFPR), the percent of selected

groups which are actually unimportant groups.

(8) False negatives rate for group variable selection (GFNR), the percent of non-

selected groups which are actually important groups.

Note that FPR =
|Î

⋂
Ic0 |

|Ic0 |
× 100%, FNR = |Îc

⋂
I0|

|I0| × 100%, GFPR = |Ŝ
⋂
Sc|

|Sc| × 100%

and GFNR = |Ŝc
⋂
S|

|S| × 100%, where Î = {m : β̂m 6= 0, 1 ≤ m ≤ p}, I0 = {m : β∗m 6=

0, 1 ≤ m ≤ p}, Ŝ = {j : β̂ββj 6= 0, 1 ≤ j ≤ J} and S = {j : βββ∗j 6= 0, 1 ≤ j ≤ J}.

The model considered in Example IV.1 contains only the between-group sparsity.

We also assess the performance of the two-stage M-estimator framework under models

with bi-level sparsity in the following example.

Example IV.2. (Bi-level Sparsity) The number of observations n = 100 and we

generate the random error ε following the same three scenarios described in Example

IV.1.

(i) The number of variables p = 500 with J = 100 unequal-size groups. We choose

a = 0.8 and b = 0.5. The model includes within-group sparsity among six

relevant groups,

|βββ∗1| = (1.5, 2, 0, 2.5)T , |βββ∗2| = (3, 2, 0, 0, 2)T , |βββ∗3| = (1.5, 0, 2.5, 3, 0, 0)T ,

|βββ∗4| = (2, 1.5, 0, · · · , 0︸ ︷︷ ︸
4

)T , |βββ∗5| = (2.5, 0, 0, 0)T , |βββ∗6| = (3, 2.5, 2.5, 2, 1.5)T ,

βββ∗7 = · · · = βββ∗100 = (0, · · · , 0︸ ︷︷ ︸
5

)T .

(ii) Similar to (i) except that we choose a = 0.5 and b = 0.8.
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(iii) The number of variables p = 1000 with J = 100 unequal-size groups. We choose

a = 0.8 and b = 0.5. The model includes within-group sparsity in among four

relevant groups,

|βββ∗1| = (3, 2, 0, 0, 0)T , |βββ∗2| = (1.5, 2, 2.5, 2.5, 3, 0, · · · , 0︸ ︷︷ ︸
5

)T ,

|βββ∗3| = (1.5, 0, 2.5, 3, 0, 3, 2, 1.5, 0, · · · , 0︸ ︷︷ ︸
7

)T ,

|βββ∗4| = (3, 3, 2.5, 2.5, 2, 2, 1.5, 1.5, 1.5, 1.5),

|βββ∗4| = · · · = βββ∗100 = (0, · · · , 0︸ ︷︷ ︸
10

)T .

Finally, we design a simulation setting to evaluate the performance of the two-

stage M-estimator framework when covariates are contaminated or not sub-Gaussian.

Example IV.3. (Contamination on x) All the settings are similar to example

IV.2(i), except that we let n = 120 and covariates be partially contaminated after

the data generation. In particular, 20% of the observations in x are replaced by data

generated from χ2(10) first, and then recentered to have mean zero.

We ran 100 simulations for each scenario described in Example IV.1-IV.3. While

fixing v(x) ≡ w(x) ≡ 1 for Example IV.1 and IV.2, we consider the general two-stage

M-estimator framework with v(x) ≡ 1 and w(x) = min
{

1, 4
‖x‖∞

}
in Example IV.3.

As introduced in Section IV.4, we choose two tuning parameters λ and θ optimally

with 10-fold cross-validation, with λ ranging in (0.01
√

log p
n
, 10
√

log p
n

) and θ ranging

in (0.01
√

k log k
n

, 0.5). The results from Example IV.1 to IV.3 are reported in Table

IV.1 to IV.3, respectively. Note that we consider the one-stage estimators with the

Lasso penalty as the GLasso-type estimators. For the MCP penalty, we call the

corresponding non-group estimators, one-stage estimators and two-stage estimators

the MCP-type, GMCP-type and GMCP-HT-type estimators, respectively.
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Table IV.1. Simulation Results under the Model with Only Between-group Sparsity
in Example IV.1. The mean `2 error, `1 error, MS, GS, FPR (%), FNR(%), GFPR
(%) and GFNR (%) out of 100 iterations are displayed. Standard errors are listed in
parentheses.

Group Lasso Group MCP
LS Huber Cauchy LS Huber Cauchy

N(0,1)
`2 error 1.27 (0.4) 1.29 (0.93) 1.39 (1.48) 0.92 (0.21) 0.93 (0.21) 0.95 (0.2)
`1 error 6.3 (2.5) 6.59 (5.58) 6.93 (7.32) 3.75 (0.84) 3.77 (0.85) 3.85 (0.83)
MS 55.9 (24.31) 66.21 (27.31) 66.01 (35.64) 31.43 (11.75) 33.23 (13.72) 33.09 (16.05)
GS 11.18 (4.86) 13.24 (5.46) 13.2 (7.13) 6.29 (2.36) 6.65 (2.75) 6.62 (3.22)
FP, FN 6.51, 0 8.69, 0.36 8.73, 1.76 1.35, 0 1.73, 0 1.7, 0
GFP, GFN 6.51, 0 8.69, 0.4 8.73, 1.8 1.36, 0 1.74, 0 1.71, 0

t1

`2 error 13.77 (42.15) 2.02 (1.65) 1.82 (1.47) 24.96 (53.14) 2.72 (0.85) 2.46 (2.2)
`1 error 166.82 (711.19) 11.04 (9.68) 9.59 (7.25) 243.53 (838.07) 10.88 (3.43) 10.22 (11.69)
MS 114.89 (78.82) 71.75 (17.21) 70.12 (19.47) 65.64 (72.87) 27.9 (9.95) 29.15 (10.18)
GS 23 (15.78) 14.35 (3.44) 14.03 (3.89) 13.16 (14.6) 5.58 (1.99) 5.83 (2.04)
FP, FN 19.26, 6.32 9.94, 1.8 9.59, 1.68 9.11, 10.6 0.61, 0 0.87, 0
GFP, GFN 19.26, 6 9.94, 1.8 9.59, 1.6 9.12, 10 0.61, 0 0.87, 0

Mix Cauchy
`2 error 12.84 (64.77) 1.42 (0.87) 1.36 (1.08) 16.92 (70.15) 1.46 (0.34) 1.36 (0.34)
`1 error 178.11 (1045.4) 7.44 (5.31) 6.92 (5.73) 225.05 (1227.29) 5.82 (1.41) 5.48 (1.44)
MS 94.6 (84.99) 72.11 (20.8) 71.25 (27.59) 51.99 (86.46) 27.2 (8.66) 29.45 (10.32)
GS 18.92 (16.99) 14.42 (4.16) 14.26 (5.53) 10.4 (17.29) 5.44 (1.73) 5.89 (2.06)
FP, FN 14.75, 1.8 9.94, 0.36 9.79, 1 5.84, 3.04 0.46, 0 0.94, 0
GFP, GFN 14.75, 1.8 9.94, 0.4 9.8, 1 5.84, 3 0.46, 0 0.94, 0

We mainly evaluate the performance of one-stage estimators in Example IV.1

since there only exists the between-group sparsity. Table IV.1 shows that with the

same loss function, while the GMCP-type estimators perform comparably to the

GLasso-type estimators in estimation, the former have better group/variable selection

accuracy than the latter. This is consistent with the group oracle property stated

in Theorem IV.2. As expected, for the estimators with the same penalty, while they

behave similarly in the light-tail setting (N(0, 1)), estimators using Huber loss and

Cauchy loss largely outperform the least squares estimator for the heavy-tailed settings

(t1 and Mix Cauchy).

We compare the results of non-group estimators, one-stage estimators and

two-stage estimators for Example IV.2. Note that here we only consider the MCP

penalty since it has been shown to perform better than the Lasso penalty. For Example

IV.2(i), Table IV.2 shows that the GMCP-type estimators outperform the MCP-type

estimators in all measurements, since the former incorporates the grouping structure in
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x. By comparing the results of GMCP-type estimators and GMCP-HT-type estimators,

we see that the extra hard-thresholding step in the two-stage estimators can effectively

improve the estimation and group/variable selection performance. Similar to Example

IV.1, the robust estimators given by the Huber loss and the Cauchy loss have more

advantageous than the least squares estimators in heavy-tailed settings. In addition,

estimators using the Cauchy loss further outperform the one with Huber Loss for the

heavy-tailed settings, showing that the redescending estimators are more robust to

outliers and more efficient for irregular settings. We observe similar patterns in the

results of Example IV.2(ii)-(iii) and thus we omit those results in this chapter.

Table IV.2. Simulation Results under the Model with Bi-level Sparsity in Example
IV.2.1. The mean `2 error, `1 error, MS, GS, FPR (%), FNR(%), GFPR (%) and GFNR
(%) out of 100 iterations are displayed. Standard errors are listed in parentheses.

MCP GMCP GMCP-HT
LS Huber Cauchy LS Huber Cauchy LS Huber Cauchy

N(0,1)

`2 error 7.2 (2.34) 6.98 (2.42) 7.45 (2.36) 1.68 (0.35) 1.67 (0.34) 1.66 (0.32) 1.59 (0.36) 1.57 (0.36) 1.6 (0.35)
`1 error 29.95 (11.26) 29.3 (11.74) 31.52 (11.9) 7.52 (1.59) 7.5 (1.57) 7.49 (1.5) 6.91 (1.99) 6.79 (2) 6.9 (2.03)
MS 25.29 (15.92) 28.77 (19.08) 27.56 (22.65) 52.53 (14.73) 53.89 (15.05) 53.55 (15.78) 30.49 (13.87) 30.49 (14.99) 30.54 (15.26)
GS 16.72 (8.7) 18.75 (10.22) 18 (11.01) 10.51 (2.95) 10.79 (3.03) 10.71 (3.16) 8.11 (3.83) 8.27 (3.99) 8.21 (4.37)
FP, FN 2.88, 32.94 3.54, 31.41 3.37, 33.53 7.36, 0 7.64, 0 7.57, 0 2.79, 0 2.79, 0 2.8, 0
GFP, GFN 11.51, 1.67 13.66, 1.5 12.8, 0.5 4.8, 0 5.1, 0 5.01, 0 2.24, 0 2.41, 0 2.35, 0

t1

`2 error 33.42 (50.3) 11.31 (1.92) 11.5 (1.68) 25.2 (51.17) 4.37 (0.83) 3.75 (1.04) 25.07 (51.45) 4.34 (0.89) 3.68 (1.02)
`1 error 262.31 (807.06) 46.5 (6.98) 47.37 (6.96) 244.67 (831.39) 19.45 (3.69) 16.68 (4.87) 243.1 (832.36) 19.28 (4.34) 16.08 (5.28)
MS 24.74 (53.71) 12.61 (10.39) 9.85 (4.62) 79.86 (75.4) 52.57 (16.04) 47.53 (12.6) 65.81 (68.74) 34.7 (12.97) 31.44 (12.39)
GS 17.31 (19.54) 9.99 (6.17) 8.51 (3.42) 15.93 (15.09) 10.51 (3.21) 9.5 (2.52) 14.04 (14.66) 8.28 (3.2) 7.74 (3)
FP, FN 4.34, 77.82 1.28, 62.29 0.83, 65.53 13.81, 22.53 7.37, 0.18 6.33, 0.18 10.98, 24.82 3.72, 1.59 3.03, 1.12
GFP, GFN 14.2, 34 4.94, 10.83 3.4, 11.5 12.37, 28.33 4.83, 0.5 3.76, 0.5 10.49, 30.33 2.51, 1.33 1.9, 0.83

Mix Cauchy

`2 error 25.18 (69.7) 8.9 (2.12) 8.91 (2.08) 18.6 (70.35) 2.47 (0.61) 2.11 (0.52) 18.18 (70.17) 2.39 (0.61) 2.03 (0.5)
`1 error 248.19 (1192.94) 37.94 (10.19) 38.24 (10.52) 234.97 (1234.62) 11.14 (2.81) 9.42 (2.3) 231.01 (1233.91) 10.29 (3.24) 8.62 (2.67)
MS 26.93 (53.54) 18.87 (9.61) 18.91 (12.08) 71.1 (78.13) 47.4 (14.24) 48.94 (15.85) 52.56 (74.75) 29.24 (13.63) 29.06 (12.7)
GS 16.87 (18.63) 13.84 (6.5) 13.97 (7.42) 14.2 (15.61) 9.48 (2.85) 9.79 (3.17) 11.88 (15.54) 7.24 (2.92) 7.42 (2.8)
FP, FN 4.08, 57.59 2.03, 46.65 2.08, 48 11.44, 6.71 6.29, 0 6.61, 0 7.63, 7.65 2.54, 0.06 2.5, 0
GFP, GFN 12.37, 12.67 8.48, 2.17 8.59, 1.67 9.29, 8.83 3.7, 0 4.03, 0 6.83, 9 1.32, 0 1.51, 0

In Example IV.3 we only compare the performance of two-stage estimators

with their weighted version. Table IV.3 indicates that the two-stage estimators with

well chosen w(x) perform better in all cases than the two-stage estimators with

w(x) = 1. Again when the errors are heavy-tailed (t1 and Mix Cauchy), the least
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squares estimator lose its efficiency and the redescending estimators produced by

Cauchy loss perform the best for all scenarios.

Table IV.3. Simulation Results under the Model with 20% Contamination on X in
Example IV.3. The mean `2 error, `1 error, MS, GS, FPR (%), FNR(%), GFPR
(%) and GFNR (%) out of 100 iterations are displayed. Standard errors are listed in
parentheses.

GMCP - HT WGMCP - HT
LS Huber Cauchy LS Huber Cauchy

N(0,1)

`2 error 7.49 (0.77) 7.52 (0.87) 7.54 (1.01) 6.74 (0.83) 6 (1.1) 4.97 (1.4)
`1 error 43.56 (6.15) 42.78 (6.51) 40.76 (8.13) 35.75 (5.95) 28.81 (7.41) 22.42 (7.18)
MS 71.76 (24.18) 66.93 (24.61) 54.81 (23.15) 60.82 (20.98) 38.22 (16.6) 32.53 (17.64)
GS 17.34 (4.65) 16.26 (4.78) 13.74 (5.72) 14.02 (4.72) 9.38 (4.63) 9.72 (8.52)
FP, FN 11.64, 8.59 10.63, 8.35 8.15, 9.06 9.28, 5.82 4.6, 5.88 3.38, 4.76
GFP, GFN 12.72, 10.33 11.59, 10.5 8.9, 10.5 9.04, 8 3.98, 6 4.33, 5.83

t1

`2 error 125.26 (992.64) 8.46 (1.16) 8.54 (1.36) 126.92 (998.84) 6.96 (1.54) 6.43 (1.35)
`1 error 2081.98 (17983.9) 47.63 (7.94) 46.78 (10.86) 2099.27 (18099.01) 33.87 (10.92) 30.84 (10.21)
MS 96.16 (87.48) 61.26 (25.54) 52.46 (24.03) 86.38 (88.52) 37.42 (14.34) 35 (16.84)
GS 22.76 (17.48) 15.2 (5.56) 14.12 (7.74) 19.26 (18.01) 9.07 (4.3) 9.56 (7.71)
FP, FN 17.39, 28.29 9.71, 15.65 7.91, 16.12 15.35, 27.94 4.57, 9.71 4.05, 9.18
GFP, GFN 19.76, 30.17 10.93, 17.83 9.77, 17.67 16.06, 30.67 4.02, 11.83 4.56, 12.17

Mix Cauchy

`2 error 18.52 (81.12) 7.72 (1.13) 7.66 (1.39) 18.48 (83.42) 5.97 (1.47) 5.22 (1.56)
`1 error 211.8 (1454.22) 43.23 (6.98) 39.92 (9.08) 210.62 (1492.36) 28.68 (8.54) 24.67 (9.68)
MS 75.62 (51.22) 64.31 (25.1) 48.28 (21.8) 63.31 (48.76) 37.8 (15.33) 35.46 (20.97)
GS 18.17 (10.38) 15.69 (5.45) 12.39 (5.7) 13.98 (9.68) 9.41 (4.95) 10.16 (8.39)
FP, FN 12.69, 15.76 10.19, 11.18 6.87, 11.29 10.02, 12.29 4.52, 6 4, 4.94
GFP, GFN 14.09, 17.83 11.16, 13.33 7.59, 12.33 9.41, 14.5 4.09, 7.17 4.74, 5

In summary, our simulation studies show that in the proposed two-stage M-

estimator framework, (1) the GP Stage can utilize the grouping structure to yield

satisfactory parameter estimation and group variable selection results for irregular

settings, if a robust loss function (e.g. Huber loss and Cauchy loss) is used; (2) the

HT Stage further improve the performance by filtering out the non-important selected

variable from the first stage; (3) the two-stage M-estimators with redescending loss

functions (e.g. Cauchy loss) and concave penalties consistently render more satisfactory

results when data are heavy-tailed or strongly contaminated (t1 and Mix Cauchy).
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IV.6. Real Data Example

In this section, we consider the NCI-60 data introduced in Section I.1. We first

perform some pre-screenings by keeping only 2000 genes with largest variations and

choosing 500 genes out of which are most correlated with the response variable. Then

for each gene, we use B-spline with 5 bases to form a group with 5 variables. Thus

our final data set has n = 59 samples, p = 2500 variables and J = 500 groups. Similar

to our simulation studies, we apply the non-group estimators, one-stage estimators

and two-stage estimators to select important genes, with tuning parameter λ and θ

chosen from the 10-folded cross validation with λ ranging in (0.01
√

log p
n
, 10
√

log p
n

) and

θ ranging in (0.01, 1). In particular, we report results from six methods: Huber-MCP,

Cauchy-MCP, Huber-GMCP, Cauchy-GMCP, Huber-GMCP-HT, Cauchy-GMCP-HT.

The QQ-plots of the residuals generated from those six methods are shown

in Figure IV.1. It shows that each residual distribution has a longer tail on the left

side, meaning that the data may be contaminated or heavy-tailed. Table IV.4 displays

the important genes selected by those six methods. It shows that the number of

selected genes from those methods are 5 (Huber-MCP), 8 (Huber-GMCP), 8 (Huber-

GMCP-HT), 5 (Cauchy-MCP), 11 (Cauchy-GMCP) and 14 (Cauchy-GMCP-HT),

respectively. It implies that the methods incorporating grouping information can

potentially select more genes. Notice that the Huber-MCP and Cauchy-MCP both

select the same genes, which indicates that the contamination in the data may not be

strong enough to cause different selection results between these two loss functions. In

addition, it is reasonable to observe that the Huber-GMCP and Huber-GMCP-HT

also select exactly the same genes, since there is no sparsity within each group in

the data. However, the genes found by the Cauchy-GMCP are somewhat different

from those selected by the Cauchy-GMCP-HT. Such difference is possibly due to
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unstable solutions induced by the concavity of Cauchy loss. For further investigation,

we randomly choose 6 observations as the test set and applied those six methods to

the rest patients to get the coefficients estimation, then compute the prediction error

on the test set. We repeat the random splitting 100 times and the boxplots of the

Mean Absolute Error of predictions are shown in Figure IV.2. It is clearly observed

from Figure IV.2 that the Huber-GMCP and Cauchy-GMCP perform better than the

other methods. This is not surprising since there is only between-group sparsity in

the dataset. In addition, Figure IV.2 also shows that Cauchy-type estimators perform

similarly to the corresponding Huber-type estimators, which indicates that when there

exist only moderate contamination in the data, it may be sufficient to consider the

convex Huber loss in our framework.

Table IV.4. Selected Genes by Huber-MCP, Cauchy-MCP, Huber-GMCP, Cauchy-
GMCP, Huber-GMCP-HT, Cauchy-GMCP-HT

Huber-MCP KRT8 NRN1 GAS7 EPS8L2 GPX3
Huber-GMCP KRT8 ANXA3 KRT19 DSP GPX3 LEF1 TDRD7 SRPX
Huber-GMCP-HT KRT8 ANXA3 KRT19 DSP GPX3 LEF1 TDRD7 SRPX
Cauchy-MCP KRT8 NRN1 GAS7 EPS8L2 GPX3
Cauchy-GMCP KRT8 ANXA3 KRT19 GPX3 LEF1 TDRD7 MITF NOTCH3

FAR2 INHBB SIRPA
Cauchy-GMCP-HT KRT8 NRN1 AP1M2 ANXA3 GAS7 KRT19 EPS8L2 GPX3

SNAI2 SPINT2 EPCAM SFN SLC29A2 NMU
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Figure IV.1. QQ Plots of the Residuals from Huber-MCP, Cauchy-MCP, Huber-GMCP,
Cauchy-GMCP, Huber-GMCP-HT, Cauchy-GMCP-HT.

Figure IV.2. Boxplot of the Mean Absolute Error of Predictions
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CHAPTER V

DISCUSSION AND FUTURE WORK

V.1. On the Penalized Weighted Least Squares Method

This thesis studies the simultaneous variable selection, outlier detection and

robust estimation using an efficient weight shrinkage rule in a penalized weighted least

squares framework. This approach is attractive in terms of its computation efficiency

in high-dimensional settings, its Bayesian understanding, and most importantly, its

united link to a regularized robust M-estimation. The Bayesian understanding justifies

the rationality of the proposed PAWLS method for both outlier detection and variable

selection. The joint estimation of weight and coefficient vectors and its link to M-

estimation justify both of the strong robustness and estimation efficiency of this

PAWLS approach under a fixed design.

[BBEKY13] studied the choice of ρ function in high-dimensional M-estimation

with p < n when the error distribution is assumed to be known and the ρ function

is convex. The link between a weight shrinkage rule and the M-estimation studied

in this thesis provides another direction on how to choose a sparse M-estimation.

In particular, we can choose some sparse M-estimation with strong robustness, for

example, a redescending M estimate such that ρ is not convex. If prior information or a

distribution on the individual weight is provided, we can build a weight shrinkage rule

based upon the priori. This weight shrinkage rule will be used to find the corresponding

M-estimation.

Another important contribution of this thesis is the theoretical investigation of

this approach when p� n. The non-asymptotic inequalities of the joint estimation
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for the regression coefficients and weight parameters has been investigated in this

thesis. Such a theoretical understanding advocates the use of the PAWLS for robust

estimation and outlier detection. This result may also be extended to the study

of regularized M-estimation in high-dimensional settings. For example, [NYWR09]

establishes consistency and convergence rates for regularized M-estimators under

high-dimensional settings when the ρ function satisfies a restricted strong convexity

(RSC) condition. Unfortunately, the RSC condition rules out a class of redescending

M-estimation in high-dimensional data analysis. The study in this thesis provides a

direction of theoretic investigation of any regularized M-estimation by linking it to a

specific penalized weight least squares regression model.

Currently, I am also working on the theoretical properties of the adaptive

PAWLS approach. In particular, I want to provide some conditions under which the

adaptive PAWLS has some nice variable selection and outlier detection properties.

There are several other relevant research questions not fully addressed in this thesis. For

example, the robustness of regression can also be measured by the influence function.

There have been some interests concerning influence functions for high-dimensional

estimators [AM14,ÖCA15]. It would be interesting to investigate the influence function

of the PAWLS in high-dimensional settings. Another important issue is appropriate

choices for regularization parameters with respect to both the variable selection and

outlier detection. Although the thesis provides a modified BIC for tuning parameter

selection in our numerical studies, there is still lack of theoretical investigations on

whether this approach provides us optimal tuning parameters generating well-behaved

PAWLS estimators.

In this thesis the proposed penalized weighted approach is investigated only in

high-dimensional linear regression models. However, the proposed penalized weight
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shrinkage rule can be generalized to deal with different types of data, such as the count

data, survival data and categorical data. On the other hand, to address the problem of

high colinearities among covariates, a few methods such as elastic net [ZH05] and post

selection shrinkage estimation [GAF17] are proposed in high-dimensional settings. It

will also be interesting to achieve the outlier detection in those methods by extending

these methods to our proposed penalized weight shrinkage framework.

V.2. On the Penalized Robust Approximated Quadratic M-estimators

The irregular settings including data asymmetry, heteroscedasticity and data

contamination often exist due to the data high-dimensionality. It is very important to

address these irregular settings both theoretically and numerically in high-dimensional

data analysis. In this thesis we have proposed a class of PRAM estimators for

robust high-dimensional mean regression. The key feature of the PRAM estimators is

using a family of loss functions with flexible robustness and diverging parameters to

approximate the mean function produced from the traditional quadratic loss. This

approximation process can reduce the bias generated by data’s irregularity in high-

dimensional mean regression. The proposed framework is very general and it covers

a wide range of loss functions and penalty functions, allowing both functions to be

non-convex.

Theoretically, we established statistical properties of PRAM in ultra high-

dimensional settings when p grows with n at an almost exponential rate. Specifically,

we showed its local estimation consistency at the minimax rate enjoyed by the LS-Lasso

and established the oracle properties of the PRAM estimators, including both selection

consistency and asymptotic normality. The theoretical result is applicable for irregular

settings, including the data are contaminated by outliers, random errors and/or

covariates are heavy-tailed, and random errors lack of symmetry and/or homogeneity.
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One fundamental difference between our proposed PRAM estimator and the

common penalized M-estimator is that we require limα→∞E[∇Lα,n(βββ∗)] = 0 instead

of E[∇Lα,n(βββ∗)] = 0 for every α > 0. To establish the estimation consistency and

the oracle properties, the divergent rate of α plays a crucial role. In the presence of

asymmetric and heavy-tailed/contaminated data, the PRAM estimators can reduce

the bias efficiently (when α diverges) and enjoy robustness (when α diverges not too

fast). The divergent rate of α stated in Theorem III.2 and Theorem III.3 actually show

us how α should diverge with n, in order to obtain a robust sparse PRAM estimator

in high-dimensional mean regression under general irregular settings.

Additionally, our numerical studies show satisfactory finite sample performances

of the PRAM estimators under irregular settings, which is consistent with our theo-

retical findings. Among all the possible choices of PRAM estimators, our numerical

results also suggest to implement a redescending PRAM estimator with a concave

penalty such as the TA-MCP and the CA-MCP, using the HA-Lasso as an initial

estimator, when the data are strongly heavy-tailed or contaminated.

Our research in this thesis provides a systematic study of penalized M-estimation

in high-dimensional linear regression model. However, we may not have linearity

between the response and predictors in practice. Next we plan to explore the PRAM

estimator with certain nonparametric regression models (e.g. an additive model).

Other possible future directions of research may include devising similar theoretical

guarantees for estimators with grouping structures in the covariates, or study of high-

dimensional models with varying coefficients (e.g. [FMD14]) under general irregular

settings.
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V.3. On the High-dimensionalM-estimation for Bi-level Variable Selection

Bi-level variable selection and parameter estimation are crucial when covari-

ates function group-wisely in high dimensional settings. It has become even more

challenging when data are contaminated or heavy-tailed. In this thesis, we proposed

a two-stage penalized M-estimator framework for high-dimensional bi-level variable

selection. This framework consists of two stages: penalized M-estimation with a

concave `2-norm penalty achieving the consistent group selection at the first stage, and

a post-hard-thresholding operator to achieve the within-group sparsity at the second

stage. The proposed framework is very general that it covers a wide range of loss

functions and penalty functions, allowing both functions to be non-convex. Thus, if

the data are strongly contaminated, either in covariates or random errors, we are still

able to perform bi-level variable selection efficiently through the proposed framework.

Theoretically, we established statistical properties of the proposed two-stage

penalized M-estimator in ultra high-dimensional settings when p grows with n at an

almost exponential rate. In particular, for the estimator at the Group Penalization

Stage, we showed its local estimation consistency at the minimax rate enjoyed by

LS-GLasso and established the local group selection consistency. For the the post-

hard-thresholding estimator at the second stage, we showed that it naturally inherits

all those nice statistical properties from the first stage and further possesses bi-level

variable selection consistency. These theoretical results require weak assumptions on

model settings and are applicable even though the random error and covariates are

heavy-tailed or the data set is contaminated by outliers.

Our framework is computationally efficient, and is able to find a well-behaved

local stationary point if a consistent initial such as Huber group Lasso is used. Our

numerical studies showed satisfactory finite sample performances of the two-stage

110



penalized M-estimator under different irregular settings, which is consistent with our

theoretical findings. In particular at the first stage, among some of the possible choices

of loss and penalty functions that fit in the proposed framework, our numerical studies

suggested to consider a redescending loss function, such as Cauchy loss or Tukey’s

biweight loss, with a group concave folded penalty, such as group MCP penalty, when

the data are strongly contaminated.

Since the proposed framework relies on prior group information, it may not

be reliable when the incorrect group information is used. To tackle this problem,

[Gao18] proposes a class of penalized regression estimators by controlling group k-

largest norm (GKAN), which is resistant to the fussy group information. However,

the GKAN estimator is not robust to outliers or heavy-tailed errors. Hence, it will

also be interesting to generalize the GKAN to a certain robust method by following

the similar spirit of the proposed framework.
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APPENDIX A

PROOF

A.1. Proof in Chapter 2

Proof of Theorem II.2

Let ψ(t) = (ψ(t1), · · · , ψ(tn))′ and Θ(t) = (Θ(t1), · · · ,Θ(tn))′. If W̃ is obtained at a

fixed point, then

W̃2 = diag{Θ(y −Xβ̃ββ)}

and

β̃ββ = (X′W̃2X)−1X′W̃2y.

Thus

r = y −Xβ̃ββ = y −X(X′W̃2X)−1X′W̃2y = W̃−1(I−HW̃X)W̃y, (A.1)

and

W̃2 = diag{Θ(y −X(X′W̃2X)−1X′W̃2y)} = diag{Θ(W̃−1(I−HW̃X)W̃y)},

where HW̃X = W̃X(X′W̃2X)−1X′W̃. Let ψ and Θ satisfy (II.4). Then from (A.1),

X′ψ(y −Xβ̃ββ) = X′ψ(W̃−1(I−HW̃X)W̃y)

= X′diag{Θ(W̃−1(I−HW̃X)W̃y)}W−1(I−HW̃X)W̃y

= X′W̃2(W̃−1(I−HW̃X)W̃y = 0.

�

A.1.1. Proof in Section II.4

To prove those lemmas and Theorem II.5 in Section II.4, we need to reformulate

the model as follows. In particular, we define ri,βββ = yi − x′iβββ and a n × n matrix
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Rβββ = diag{r1,βββ, · · · , rn,βββ}. Let ri,βββ be the ith column vector of Rβββ. Recall the notation

νi = 1−wi and θθθ = (θθθ′1, θθθ
′
2)
′, where θθθ1 = (β1, · · · , βp)′ and θθθ2 = (λ2n/λ1n)(ν1, · · · , νn)′.

Define zzz′i,βββ =
(
x′i, (λ1n/λ2n)r′i,βββ

)
and Zβββ =

zzz
′
1,βββ

· · ·
zzz′n,βββ

 =
(
X (λ1n/λ2n)Rβββ

)
. Then

model (II.1) with true parameter values becomes

yi = r′i,βββ∗ννν
∗ + x′iβββ

∗ + εi = zzz′i,βββ∗θθθ
∗ + εi. (A.2)

Recall that the penalized likelihood of PAWLS in (II.3),

L(βββ,w) =
1

2n
‖Ω(y −Xβββ)‖2 + λ1‖βββ‖1 + λ2‖1−w‖1,

where Ω = diag{w1, · · · , wn} and 1 is n-dimensional vector with all elements being 1.

Notice that λ1‖θθθ‖1 = λ1‖βββ‖1 + λ2‖ννν‖1. Then the above penalized likelihood

becomes

L(θθθ) =
1

2n
‖y − Zβββθθθ‖2 + λ1‖θθθ‖1.

Proof of Lemma II.3

Using the definition,

1

2n
‖y − Zβ̂ββθ̂θθ‖

2 + λ1n‖θ̂θθ‖1 ≤
1

2n
‖y − Zβββ∗θθθ

∗‖2 + λ1n‖θθθ∗‖1.

Then

1

2n
‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖2 ≤ 1

n
ε′(Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗) + λ1n[‖θθθ∗‖1 − ‖θ̂θθ‖1]

≤ 1

n
|ε′Zβββ∗(θ̂θθ − θθθ∗)|+

1

n
|ε′(Zβββ∗ − Zβ̂ββ)θ̂θθ|+ λ1n[‖θθθ∗‖1 − ‖θ̂θθ‖1]

(A.3)

Notice that

Zβββ∗(θ̂θθ − θθθ∗) = X(θ̂θθ1 − θθθ∗1) + (λ1n/λ2n)Rβββ∗(θ̂θθ2 − θθθ∗2)
= X(θ̂θθ1 − θθθ∗1) + (λ1n/λ2n)Ω∗−1Dε(θ̂θθ2 − θθθ∗2),
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where Dε = diag(ε1, · · · , εn) is diagonal matrix consisting of ε. Similar notations are

applied for other diagonal matrices, such as Dννν . Then on event A1 ∩ A2, we have

1

n
|ε′Z∗βββ(θ̂θθ − θθθ∗)| ≤ 1

n
‖ε′X‖∞‖θ̂θθ1 − θθθ∗1‖1 +

λ1n
nλ2n

max1≤i≤n
ε2i
w∗i
‖θ̂θθ2 − θθθ∗2‖1

≤ λ1n
4
‖θ̂θθ1 − θθθ∗1‖1 +

λ1n
4
‖θ̂θθ2 − θθθ∗2‖1

≤ λ1n
4
‖θ̂θθ − θθθ∗‖1.

(A.4)

Notice that on event A3,

(Zβββ∗ − Zβ̂ββ)θ̂θθ = (λ1n/λ2n)diag(x′1(β̂ββ − βββ
∗), · · · ,x′n(β̂ββ − βββ∗))θ̂θθ2 = Dν̃X(β̂ββ − βββ∗).

Then
1

n
|ε′(Zβββ∗ − Zβ̂ββ)θ̂θθ| =

1

n
|ε′Dν̃X(β̂ββ − βββ∗)|

≤ 1

n
‖ε′Dν̃X‖∞‖β̂ββ − βββ∗‖1

≤ (λ1n/4)‖β̂ββ − βββ∗‖1,

(A.5)

where the last “≤” holds on events A3.

From (A.4-A.5), we obtain

1

2n
‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖2 ≤ λ1n
4
‖θ̂θθ − θθθ∗‖1 +

λ1n
4
‖β̂ββ − βββ∗‖1 + λ1n[‖θθθ∗‖1 − ‖θ̂θθ‖1]

=
λ1n
2
‖β̂ββ − βββ∗‖1 + λ1n[‖βββ∗‖1 − ‖β̂ββ‖1]

+
λ2n
4
‖ν̃ − ννν∗‖1 + λ2n[‖ννν∗‖1 − ‖ν̃‖1].

(A.6)

Adding
λ1n
2
‖β̂ββ − βββ∗‖1 +

λ2n
2
‖ν̃ − ννν∗‖1 on two sides,

1

2n
‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖2 +
λ1n
2
‖β̂ββ − βββ∗‖1 +

λ2n
2
‖ν̃ − ννν∗‖1

≤ λ1n(‖β̂ββ − βββ∗‖1 + [‖βββ∗‖1 − ‖β̂ββ‖1])
+λ2n(‖ν̃ − ννν∗‖1 + [‖ννν∗‖1 − ‖ν̃‖1])
≤ 2λ1n‖β̂ββJ10 − βββ

∗
J10
‖1 + 2λ2n‖ν̃J20 − ννν∗J20‖1.

(A.7)

The last “≤” holds since ‖β̂ββJc10 − βββ
∗
Jc10
‖1 + ‖βββ∗Jc10‖1 − ‖β̂ββJc10‖1 = 0 and ‖ν̃Jc20 − ννν

∗
Jc20
‖1 +
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‖ννν∗Jc20‖1 − ‖ν̃Jc20‖1 = 0. Thus we have

‖β̂ββ − βββ∗‖1 + (λ2n/λ1n)‖ν̃ − ννν∗‖1 ≤ 4‖β̂ββJ10 − βββ
∗
J10
‖1 + 4(λ2n/λ1n)‖ν̃J20 − ννν∗J20‖1.

Thus (II.11) holds.

‖θ̂θθ − θθθ∗‖1 ≤ 4‖θ̂θθJ0 − θθθ
∗
J0
‖1

and

‖θ̂θθJc0 − θθθ
∗
Jc0
‖1 ≤ 3‖θ̂θθJ0 − θθθ

∗
J0
‖1.

�

Proof of Lemma II.4

P (Ac
1) = P (‖X′ε‖∞ > nλ1n/4)

= P

(
max
1≤j≤p

|
n∑
i=1

xijεi| > nλ1n/4

)
= P

(
max
1≤j≤p

|τj| >
√
nλ1n/(4σ)

)
≤ pP (|τj| >

√
nλ1n/(4σ))

≤ 2p exp

{
− nλ21

32σ2

}
.

where τj = n−1/2
∑n

i=1 xijεi/σ is sub-Gaussian distribution with mean with parameter

1 if
∑n

i=1 x
2
ij = n. If we let λ1n = σ(c1)

1/2(ln p/n)1/2 for c1 > 32, then

P (Ac
1) ≤ 2p1−c1/32 → 0.
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We now check event A2. Since

P (Ac
2) ≤ P

(
max
1≤i≤n

ε2i >
nλ2nan

4

)
≤ nP

(
|εi| >

√
nλ2nan

2

)
≤ 2n exp

{
−nλ2na

2
n

8σ2

}
.

The last “≤” is due to the sub-Gaussian property of εi. If we let λ2n = c2σ
2 log(n)/(na2n)

for some c2 > 8, then P (Ac
2) = 2n1−c2/8 → 0.

We now check event A3. For any estimation ν̃, we have

P (Ac
3) ≤ P

(∑
1≤i≤n

ε2i

)1/2(
max
1≤j≤p

∑
1≤i≤n

ν̃2i xij

)1/2

> nλ1n/4


≤ P

(∑
1≤i≤n

ε2i

)1/2

n1/2 > nλ1n/4


≤ P

( ∑
1≤i≤n

1

n

ε2i
σ2

>
λ21n

16σ2

)
≤ 2 exp

{
−M0 min

{
nλ41n

256K2σ4
,
nλ21n

16Kσ2

}}
,

(A.8)

where K = sup
q≥1

q−1
[
E
(
ε21/σ

2
)q]1/q and M1 > 0 is an absolute constant. This last “≤”

is from Bernstein-type inequality for sub-exponential random variables [Ver10]. Notice

that ε2i /σ2 is centered sub-exponential if εi/σ is subGaussian with mean 0 and scale

parameter σ. If εi is normal, then K = 1. The rest of the proof is straightforward by

plugging in the above λ1n = σ(c1)
1/2(ln p/n)1/2 for c1 > 32 in (A.8). �

Proof of Theorem II.5

Define Σ̂∗ =
1

n
Z′βββ∗Zβββ∗ and Σ = E[Σ̂∗]. The “̂·” on Σ̂∗ is used to address its

130



stochastic property, not the estimating behavior. From the definition, we have

nΣ̂∗ =
∑
i=1

zzzi,βββ∗zzz
′
i,βββ∗ =

( ∑
1≤i≤n xix

′
i (λ1n/λ2n)

∑
1≤i≤n xir

′
i,βββ∗

(λ1n/λ2n)
∑

1≤i≤n ri,βββ∗x
′
i (λ1n/λ2n)2

∑
1≤i≤n ri,βββ∗r

′
i,βββ∗

)

and

Σ =
1

n

(
X′X 0p×n

0n×p σ2(λ1n/λ2n)2Ω∗−2

)

since E
[∑n

i=1 ri,βββ∗r
′
i,βββ∗

]
= σ2Ω∗−2 = diag{σ2/w∗21 , · · · , σ2/w∗2n }. Let δn = ‖Σ̂∗ −

Σ‖∞, the supremum of all absolute values. For a n+ p dimensional vector such that

‖dJc0‖1 ≤ 3‖dJ0‖1, we have

|(d′Σ̂∗d)− (d′Σd)| ≤ δn(‖d‖1)2 ≤ 16δn(‖dJ0‖1)2 ≤ 16sδn(‖dJ0‖)2. (A.9)

The last “≤” is from the Cauchy-Schwartz inequality. From the condition RE(s, 3) in

(II.10) and (A.9), we have

κ(s, 3)‖dJ0‖ ≤ (d′Σd)1/2

≤ (d′Σ̂∗d)1/2 + (|d′(Σ̂∗ −Σ)d|)1/2

≤ (1/
√
n)‖Zβββ∗d‖+ 4

√
sδn‖dJ0‖.

Plugging in d = θ̂θθ − θθθ∗, we obtain

κ(s, 3)‖θ̂θθJ0 − θθθ
∗
J0
‖

≤ (1/
√
n)‖Zβββ∗(θ̂θθ − θθθ∗)‖+ 4

√
sδ‖θ̂θθJ0 − θθθ

∗
J0
‖

≤ (1/
√
n)‖(Zβββ∗ − Zβ̂ββ)θ̂θθ‖+ (1/

√
n)‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖+ 4
√
sδn‖θ̂θθJ0 − θθθ

∗
J0
‖.

(A.10)

We will check (1/
√
n)‖(Zβββ∗ − Zβ̂ββ)θ̂θθ‖ and (1/

√
n)‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖ separately.

First, from the proof in Lemma II.3, we know

(1/2n)‖Zβ̂ββθ̂θθ − Zβββ∗θθθ
∗‖2 ≤ (λ1n/2)‖θ̂θθ − θθθ∗‖1 + λ1n[‖θθθ∗‖1 − ‖θ̂θθ‖1]

≤ λ1n‖θ̂θθJ0 − θθθ
∗
J0
‖1

≤ λ1n
√
s‖θθθ∗J0 − θ̂θθJ0‖.
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Then

(1/
√
n)‖Zβ̂ββθ̂θθ − Zβββ∗θθθ

∗‖ ≤ (2λ1n)1/2s1/4‖θθθ∗J0 − θ̂θθJ0‖
1/2. (A.11)

On the other hand,

(1/n)‖(Zβββ∗ − Zβ̂ββ)θ̂θθ‖2 = (1/n)
∑n

i=1

[
ν̂ix
′
i(βββ
∗ − β̂ββ)

]2
≤ (1/n)

∑n
i=1

[
ν̂2i max1≤j≤p x

2
ij(‖βββ

∗ − β̂ββ‖1)2
]

≤ (ŝ2n/n)b2n(‖βββ∗ − β̂ββ‖1)2

≤ (ŝ2n/n)b2n4(‖θθθ∗J0 − θ̂θθJ0‖1)
2

≤ (ŝ2n/n)b2n4s(‖θθθ∗J0 − θ̂θθJ0‖)
2,

where ŝ2n =
∑n

i=1 ν̂i. Then

(1/
√
n)‖(Zβββ∗ − Zβ̂ββ)θ̂θθ‖ ≤ 2s1/2(ŝ2n/n)1/2bn‖θθθ∗J0 − θ̂θθJ0‖. (A.12)

In fact, as what we will verify in Lemma A.1 and A.2, if λ1n/λ2n ≤ O(1), then

for any ζ > 0, we have

P
(
(sδn)1/2 > κ(s, 3)/16

)
→ 0

and

P
(
bn(sŝ2n/n)1/2 > κ(s, 3)/8

)
→ 0.

Thus from (A.10-A.12), we have

κ(s, 3)‖θ̂θθJ0 − θθθ
∗
J0
‖ ≤ 2s1/2(ŝ2n/n)1/2bn‖θθθ∗J0 − θ̂θθJ0‖

+(2λ1n)1/2s1/4‖θθθ∗J0 − θ̂θθJ0‖
1/2 + 4(sδn)1/2‖θ̂θθJ0 − θθθ

∗
J0
‖.

Then

‖θ̂θθJ0 − θθθ
∗
J0
‖ ≤ 2λ1ns

1/2

[κ(s, 3)− (2s1/2(ŝ2n/n)1/2bn + 4(sδn)1/2)]2
≤ 8λ1ns

1/2

κ2(s, 3)
.

Thus

‖θ̂θθJ0 − θθθ
∗
J0
‖1 ≤ s1/2‖θ̂θθJ0 − θθθ

∗
J0
‖ ≤ 8λ1ns

κ2(s, 3)
.
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Lemma A.1. Suppose (A1) and (A2) hold. Then under λ1n/λ2n ≤ O(1), sδn = oP (1).

Specifically, for any ξ > 0, we have

P (sδn > ζ) ≤ 3σ√
ζ

λ1n
√
s√

nλ2nan

√
1 + log(2n) +

3σ√
2ζ

sλ1nbn
nλ2nan

√
1 + log(2n)→ 0. (A.13)

Proof of Lemma A.1

Notice that E[Rβββ∗ ] = 0 and E[R2
βββ∗ ] = σ2Ω∗−2. Then

Σ̂∗ −Σ = (1/n)

(
0p×p (λ1n/λ2n)X′Rβββ∗

(λ1n/λ2n)XR′βββ∗ (λ1n/λ2n)2(R2
βββ∗ − σ2Ω∗−2)

)
.

Then s‖Σ̂∗−Σ‖∞ = max{(1/n)(λ1n/λ2n)2s‖R2
βββ∗−σ2Ω∗−2‖∞, (1/n)(λ1n/λ2n)s‖X′Rβββ∗‖∞}.

We will check
sλ21n
nλ22n

‖R2
βββ∗ − σ2Ω∗−2‖∞ → 0 and (1/n)(sλ1n/λ2n)‖X′Rβββ∗‖∞ → 0 with

probability separately. For any ζ > 0,

P
(

(1/n)(λ1n/λ2n)2s‖R2
βββ∗ − σ2Ω∗−2‖∞ > ζ

)
≤ P (max1≤i≤n |ε2i /σ2 − 1| > (nζλ22na

2
n)/(sλ21nσ

2))

≤ P (max1≤i≤n ε
2
i /σ

2 > (nζλ22na
2
n)/(sλ21nσ

2)− 1)

≤ P (max1≤i≤n ε
2
i /σ

2 > (nζλ22na
2
n)/(4sλ21nσ

2))

≤ P
(
max1≤i≤n |εi/σ| > (

√
ζ/(2σ))(

√
nλ2nan/(

√
sλ1n))

)
≤ (2σ)/(

√
ζ)(λ1n

√
s/(
√
nλ2nan))E [max1≤i≤n |εi/σ|]

≤ (3σ)/(
√
ζ)(λ1n

√
s/(
√
nλ2nan))

√
1 + log(2n).

(A.14)

The third “≤” holds from A2(ii) and λ1n/λ2n = O(1). In fact, if λ1n/λ2n = O(1) and

A2(ii) hold, we also have

(λ1n/λ2n)
(√

s log(n)/(
√
nan)

)
≤
(√

s log(n)/(
√
nan)

)
→ 0.
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Thus sλ21n/(nλ22n)‖R2
βββ∗ − σ2Ω∗−2‖∞ → 0. Similarly for ∀ζ > 0,

P ((1/n)(sλ1n/λ2n)‖X′Rβββ∗‖∞ > ζ)

≤ P (max1≤i≤n |xijri,βββ∗| > ζnλ2n/(sλ1n))

≤ P (max1≤i≤n |εi| > ζnλ2nan/(sλ1nbn))

≤ (sλ1nbn)/(ζnλ2nan)E [max1≤i≤n |εi|]
≤ (3σsλ1nbn

√
1 + log(2n))/(2ζnλ2nan).

(A.15)

Notice that sλ1nbn
√

log(n))/(nλ2nan) = (λ1n/λ2n)(sbn/
√
n)(log(n)/(a2nn))1/2 →

0 from (A2) (i-ii) and λ1n/λ2n = O(1). The expression of h4 and h5 in Theorem II.5

are obtained by replacing ζ by (κ(s, 3)/16)2 in (A.14) and (A.15). �

Lemma A.2. Suppose (A1), (A2-i) and (A3) hold. Then under λ1n/λ2n ≤ O(1),

P
(
bn(sŝ2n/n)1/2 > κ(s, 3)/8

)
→ 0. (A.16)

Proof of Lemma A.2

From (A.7),

λ2n
2
‖ν̂νν − ννν∗‖1 ≤ λ1n‖βββ∗‖1 + λ2n‖ν̂ννJ20 − ννν∗J20‖1

≤ s1‖βββ∗‖∞λ1n + λ2n‖ν̂ννJ20 − ννν∗J20‖1
≤Ms1 + 2s2λ2n,

(A.17)

where s1 = |J10| and s2 = |J20|. The last “≤” is from (A3). Thus,∑n
i=1 ν̂i ≤ ‖ννν∗‖1 + ‖ν̂νν − ννν∗‖1

≤ s2 + ‖ν̂νν − ννν∗‖1
≤ 5s2 + 2Ms1(λ1n/λ2n).

If we λ1n/λ2n ≤ O(1), under (A2-i), we have

√
s‖ν̂νν‖1b2n/n ≤ O

(
(sb2n/n)1/2(5s2 + 2Ms1)

1/2
)
≤ O

(
sbn/n

1/2
)
→ 0.
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Proof of Corollary II.6

We only need to verify that A2(ii) holds when λ1n = λ2n and s = o
(
n(1−α)/2).

If p = O (exp(nα)) for 1/2 < α < 1, then a2nn(α+1)/2 = (c2σ/c
1/2
1 ) log(n) for λ1n = λ2n.

Thus
s log(n)

na2n
=
c
1/2
1

c2σ

s

n(1−α)/2 → 0.

Then from Theorem II.5, we get

‖β̂ββS10
− βββ∗S10

‖1 + ‖ŵS20 −w∗S20
‖1 ≤

8λ1ns

κ2(s, 3)
.

and

‖β̂ββS10
− βββ∗S10

‖22 + ‖ŵS20 −w∗S20
‖22 ≤

(
8λ1ns

1/2

κ2(s, 3)

)2

.

Thus using the Cauchy-Schwarz inequality again,

‖β̂ββS10
− βββ∗S10

‖2 + ‖ŵS20 −w∗S20
‖2 ≤

√
2

8λ1ns
1/2

κ2(s, 3)

�

A.2. Proof in Chapter 3

Establishing the uniform RSC condition

Let εT = E
[
P
(
|εi| ≥ T

2
|x
)]

be the expected tail probability. Below we establish

some sufficient conditions where an unweighted Lα,n (w(x) ≡ v(x) ≡ 1) satisfies the

uniform RSC condition in Assumptions III.4 with high probability. The uniform RSC

condition for weighted loss can be established accordingly.

Theorem A.3. Suppose Lα,n satisfies Assumption III.2 and the covariate x satisfies
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Assumption III.3. If n ≥ C10s log p, then with probability at least 1−C11 exp(−C12 log p),

the loss function Lα,n satisfies the Uniform RSC condition in Assumption III.4 with

γ =
kl
32
, τ =

C13(3 + 2k2)
2k20T

2
0

2r2
and α0 = max{(2d1)

1
k , 1} · T0,

where T0 > 0 is a sufficiently large constant that satisfies

C14k
2
0

(
√
εT0 + exp

(
−C15T

2
0

k20r
2

))
<

kl
2 + 4k2

. (A.18)

Theorem A.3 guarantees that the loss function Lα,n satisfies the uniform RSC

condition with probability converging to 1. Note that the left hand side of inequality

(A.18) is monotonically decreasing on T0, meaning that inequality (A.18) is always

satisfied for a sufficiently large T0. In addition, while keeping inequality (A.18) satisfied,

a larger T0 (thus larger α0) actually allows a larger radius r of local ball around βββ∗

and a more contaminated distribution of ε. Theorem A.3 implies that the Huber loss,

Hampel loss, Tukey’s biweight loss and Cauchy loss satisfy Assumption III.4 with high

probability.

Proof of Theorem III.1

Let l(x) = 1
2
x2. Observe that

E[∇w(x)

v(x)
l((y − xTβββ∗)v(x))] = E[w(x)v(x)(y − xTβββ∗)(−x)]

= E[w(x)v(x)ε(−x)]

= E[E[ε|x]w(x)v(x)(−x)]

= 0,

where the last equality follows from E[ε|x] = 0. Hence βββ∗ is the minimizer of
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E[w(x)
v(x)

l((y − xTβββ)v(x))]. Then it follows from Assumption III.3(iii) that

E[
w(x)

v(x)
l((y − xTβββ∗α)v(x))− w(x)

v(x)
l((y − xTβββ∗)v(x))]

= E{w(x)v(x)[l(y − xTβββ∗α)− l(y − xTβββ∗)]}

=
1

2
(βββ∗α − βββ

∗)TE[w(x)v(x)xxT ](βββ∗α − βββ
∗) ≥ 1

2
kl‖βββ∗α − βββ

∗‖22

(A.19)

Let gα(x) = l(x)− lα(x). Since βββ∗α is the minimizer of E[w(x)
v(x)

lα((y−xTβββ)v(x))] within

a neighbour of βββ∗, we have

E[
w(x)

v(x)
l((y − xTβββ∗α)v(x))− w(x)

v(x)
l((y − xTβββ∗)v(x))]

=E{w(x)

v(x)
[l((y − xTβββ∗α)v(x))− lα((y − xTβββ∗α)v(x))]}+

E{w(x)

v(x)
[lα((y − xTβββ∗α)v(x))− lα((y − xTβββ∗)v(x))]}+

E{w(x)

v(x)
[lα((y − xTβββ∗)v(x))− l((y − xTβββ∗)v(x))]

≤E[
w(x)

v(x)
gα((y − xTβββ∗α)v(x))]− E[

w(x)

v(x)
gα((y − xTβββ∗)v(x))]

(A.20)

It follows from mean value theorem that

E[
w(x)

v(x)
gα((y − xTβββ∗α)v(x))− w(x)

v(x)
gα((y − xTβββ∗)v(x))]

=E[w(x)xT (βββ∗α − βββ
∗)(z − l′α(z))]

≤E[|w(x)xT (βββ∗α − βββ
∗)||z − l′α(z)|]

(A.21)

where z = (y − xT β̃ββ)v(x) and β̃ββ is a vector lying between βββ∗ and βββ∗α. Notice l′α(0) = 0

in Assumption III.2(ii). By taking integral on each side of inequality in Assumption

III.2(iii), we have

|u− l′α(u)| ≤ d1
k + 1

|u|k+1α−k, (A.22)
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for all |u| ≤ α. Observe that

E[|z − l′α(z)||x] =E[|z − l′α(z)|1(|z| ≤ α)|x] + E[|z − l′α(z)|1(|z| > α)|x]

=I1 + I2.

(A.23)

From (A.22) we have

I1 =E[|z − l′α(z)|1(|z| ≤ α)|x]

≤d1α
−k

k + 1
E[|z|k+11(|z| ≤ α)|x]

≤d1α
−k

k + 1
E[

α

|z|
|z|k+1|x]

=
d1α

1−k

k + 1
E[|z|k|x].

(A.24)

Also observe that

I2 =E[|z − l′α(z)|1(|z| > α)|x]

≤E[|z|1(|z| > α)|x] + E[|l′α(z)|1(|z| > α)|x]

<
1

αk−1
E[|z|k|x] + k1αE[1(|z| > α)|x]

=α1−kE[|z|k|x] + k1α
1−kE[|z|k|x]

=(1 + k1)α
1−kE[|z|k|x],

(A.25)

where the second inequality follows from Assumption III.2(i). Combining (A.23),

(A.24) and (A.25), we obtain

E[|z − l′α(z)||x] ≤ (
d1

k + 1
+ 1 + k1)α

1−kE[|z|k|x] = C1α
1−kE[|z|k|x] (A.26)

where C1 = d1
k+1

+ 1 + k1 and k is the constant that stated in Assumption III.2(iii),

Assumption III.3(i) and 3(ii).
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Combining inequalities (A.20), (A.21) and (A.26), we obtain

E[
w(x)

v(x)
l((y − xTβββ∗α)v(x))− w(x)

v(x)
l((y − xTβββ∗)v(x))]

≤C1α
1−kE{|y − xT β̃ββ|kv(x)k|w(x)xT (βββ∗α − βββ

∗)|}

=C1α
1−kE{|ε+ xT (βββ∗ − β̃ββ)|kv(x)k|w(x)xT (βββ∗α − βββ

∗)|}

≤C1(2/α)k−1{E[|ε|kv(x)k|w(x)xT (βββ∗α − βββ
∗)|]+

E[|xT (βββ∗ − β̃ββ)|kv(x)k|w(x)xT (βββ∗α − βββ
∗)|]},

(A.27)

where the last inequality follows from Minkowski inequality. Note that

E[|ε|kv(x)k|w(x)xT (βββ∗α − βββ
∗)|] =E[E(|ε|k|x)v(x)k|w(x)xT (βββ∗α − βββ

∗)|]

≤{E[E(|ε|k|x)v(x)k]2}
1
2{E[w(x)xT (βββ∗α − βββ

∗)]2}
1
2

≤
√
Mkku‖βββ∗α − βββ

∗‖2,

(A.28)

where the first inequality follows from Hölder inequality and the last inequality follows

from Assumption III.3(i) and (iii). Observe that,

E[|xT (βββ∗ − β̃ββ)|kv(x)k|w(x)xT (βββ∗α − βββ
∗)|] ≤{E[v(x)xT (βββ∗ − β̃ββ)]2k}

1
2{E[w(x)xT (βββ∗α − βββ

∗)]2}
1
2

≤Rk
0

√
qkku‖βββ∗α − βββ

∗‖2,

(A.29)

where R0 is defined in (III.9) and the last inequality follows from Assumption III.3(ii)

and III.3(iii). By inequalities (A.19), (A.27), (A.28), (A.29) we have

‖βββ∗α − βββ
∗‖2 ≤ 2kC1k

−1
l

√
ku(
√
Mk +Rk

0

√
qk)α

1−k.

�
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Proof of Theorem III.2

The gradient of Lα,n is

∇Lα,n(βββ∗) =− 1

n

n∑
i=1

w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xi. (A.30)

Recall βββ∗α is the minimizer of E[w(x)
v(x)

lα((y − xTβββ)v(x))] within a neighbour of βββ∗

defined in (III.9). When α ≥ ( 2d
R0

)
1

k−1 where d = 2kC1k
−1
l

√
ku(
√
Mk + Rk

0

√
qk), we

have ‖βββ∗α−βββ
∗‖2 ≤ R0

2
< R0 under the result of Theorem III.1. Hence βββ∗α is an interior

point of program (III.9). Then we have E[w(x)l′α((y − xTβββ∗α)v(x))x] = 0. Observe

that

E[w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xij] =E[w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xij]−

E[w(xi)l
′
α((yi − xTi βββ

∗
α)v(x))xij]

≤k2E[|v(xi)x
T
i (βββ∗α − βββ

∗)||w(xi)xij|]

≤k2{E|v(xi)x
T
i (βββ∗α − βββ

∗)|2}
1
2{E|w(xi)xij|2}

1
2

≤k2
√
q1‖βββ∗α − βββ

∗‖2
√
k20 + d22

≤d3α1−k,

(A.31)

where max1≤j≤p |E[w(xi)xij]| < d2 < ∞ and d3 = 2kk2
√
q1(k20 + d22)kuC1k

−1
l (
√
Mk +

2kRk
0

√
qk). Note that the first inequality is from Assumption III.2(ii) and the third

inequality follows from Assumption III.3(ii) and (iv). And the last inequality is from

Theorem III.1.
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Let µj = E[w(xi)xij], j = 1, 2, . . . , p. Then we have

E|w(xi)xij|m =E|w(xi)xij − µj + µj|m

≤E[2m−1(|w(xi)xij − µj|m + |µj|m)]

≤2m−1[E|w(xi)xij − µj|m + dm2 ]

≤2m−1[m(
√

2)mkm0 Γ(
m

2
) + dm2 ],

(A.32)

where the last inequality follows from Assumption III.3(iv), by which w(xi)xij is

sub-Gaussian hence for m > 0([Riv12])

E|w(xi)xij − µj|m ≤ m(
√

2)mkm0 Γ(
m

2
).

Next we bound the E[w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xij]
m from the above. For m ≥ 2, by

Assumption III.2 and III.3(i) we have

E|w(xi)l
′
α(εiv(xi))xij|m ≤E[(k1α)m−2(k2εiv(xi))

2|w(xi)xij|m]

≤km−21 αm−2k22E[(εiv(xi))
2|w(xi)xij|m]

≤km−21 αm−2k22{E[E(ε2i |xi)v(xi)
2]2}1/2{E[(w(xi)xij)

m]2}1/2

≤km−21 αm−2k22
√
M2{E[(w(xi)xij)

m]2}1/2.

(A.33)

By taking m = 2 in (A.33), we have

E[w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xij]
2 ≤k22

√
M2{E[(w(xi)xij)

2]2}1/2

≤k22
√
M2(128k40 + 8d42)

1
2

≤d4,

(A.34)

where d4 =
√

2k22
√
M2(8k

2
0 + 2d22) and the second inequality follows from (A.32).
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For m ≥ 3, by replacing m by 2m in (A.32), we obtain

{E|w(xi)xij|2m}
1
2 ≤{22m−1(2m)2mk2m0 Γ(m) + 22m−1d2m2 }

1
2

≤2
3m
2 km0
√
m! + 2m−

1
2dm2

=(2
3m
2 km0

2√
m!

+
2m+ 1

2dm2
m!

)
m!

2

≤(2
3m
2 km0 + 2m−1dm2 )

m!

2

=[(2
3
2k0)

m−2 · (2
3
2k0)

2 + (2d2)
m−2 · 2d22]

m!

2

≤m!

2
(2

3
2k0 + 2d2)

m−2(8k20 + 2d22).

(A.35)

Combining inequality (A.33) and (A.35), we have

E|w(xi)l
′
α(εiv(xi))xij|m ≤km−21 αm−2k22

√
M2[

m!

2
(2

3
2k0 + 2d2)

m−2(8k20 + 2d22)]

<
m!

2
(4(k0 + d2)k1α)m−2(k22

√
M2(8k

2
0 + 2d22))

<
m!

2
(4(k0 + d2)k1α)m−2d4,

By Bernstein inequality (Proposition 2.9 of [Mas07]) we have

P
(
| 1
n

∑n
i=1w(xi)l

′
α((yi − xTi βββ

∗)v(xi))xij − 1
n

∑n
i=1E[w(xi)l

′
α((yi − xTi βββ

∗)v(xi))xij]|
≥
√

2d4t
n

+ 4(k0+d2)k1αt
n

)
≤ 2 exp(−t).

It implies that

P
(
(| 1
n

∑n
i=1w(xi)l

′
α((yi − xTi βββ

∗)v(xi))xij|
≥
√

2d4t
n

+ 4(k0+d2)k1αt
n

+ | 1
n

∑n
i=1E[w(xi)l

′
α((yi − xTi βββ

∗)v(xi))xij]|
)

≤ 2 exp(−t).
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By the bound in (A.31),

P (| 1
n

∑n
i=1w(xi)l

′
α((yi − xTi βββ

∗)v(xi))xij| ≥
√

2d4t
n

+ 4(k0+d2)k1αt
n

+ d3α
1−k) ≤ 2 exp(−t).

(A.36)

Let kλ be a constant such that 2C2d4 < k2λ and k
k−2
k−1

λ ≤ C(C−8)d4
16(8d3d

k−2
5 )

1
k−1 (k0+d2)k1

,

C is a sufficiently large constant to guarantee such kλ exists and d5 be an universal

constant such that
√

log p
n
≤ d5. Let λn = kλ

√
log p
n

and t = λ2nn
2C2d4

. Then√
2d4t

n
=
λn
C
. (A.37)

Consider α that satisfies (
8d3
λn

) 1
k−1

≤ α ≤ C(C − 8)d4
16(k0 + d2)k1λn

. (A.38)

Note that together with λn = kλ

√
log p
n

we obtain C2(
n

log p
)

1
2(k−1) ≤ α ≤ C3

√
n

log p
, where

C2 = (8d3
kλ

)
1

k−1 and C3 = C(C−8)d4
16(k0+d2)k1kλ

. By α ≥
(

8d3
λn

) 1
k−1 we have

d3α
1−k ≤ λn

8
. (A.39)

By α ≤ C(C−8)d4
16(k0+d2)k1λn

we have

4(k0 + d2)k1αt

n
≤ C(C − 8)d4t

4nλn
=
C(C − 8)d4

4nλn
· λ2nn

2C2d4
=
λn(C − 8)

8C

Together with (A.37) and (A.39), we obtain√
2d4t

n
+

4(k0 + d2)k1αt

n
+ d3α

1−k ≤ λn
4
.

Hence by (A.36), it gives

P

(
| 1
n

n∑
i=1

w(xi)l
′
α((yi − xTi βββ

∗)v(xi))xij| ≥
λn
4

)
≤ 2 exp

(
− nλ2n

2C2d4

)
. (A.40)
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It then follows from union inequality that

P

(
‖∇Lα,n(βββ∗)‖∞ ≥ C5

√
log p

n

)
≤ 2 exp

(
− nλ2n

2C2d4
+ log p

)
≤ 2 exp(−C4 log p),

(A.41)

where C4 =
k2λ

2C2d4
− 1 and C5 = kλ

4
. Note that C4 > 0 by 2C2d4 < k2λ. This complete

the proof for equation (III.11). And the rest of the result follows immediately from

the Theorem 1 in Loh(2017).

Remark. By side conditions ‖βββ∗‖1 ≤ R and ‖β̂ββ‖1 ≤ R introduced in (III.7), we have

‖β̂ββ − βββ∗‖2 ≤ 2R. Thus if Lα,n satisfies the uniform RSC condition with some r ≥ 2R,

which by Theorem A.3 is achievable with high probability for a sufficiently large α,

then β̂ββ satisfies ‖β̂ββ−βββ∗‖2 ≤ r and thus a well-behaved PRAM estimator β̂ββ in Theorem

III.2(ii) is attainable.

�

To prove Theorem III.3, we need the following result adopted directly from the

Lemma 1 in [Loh17].

Lemma A.4. Suppose Lα,n satisfies the local RSC condition (III.4) and n ≥ 2τ
γ
s log p.

Then Lα,n is strongly convex over the region Sr = {βββ ∈ Rp : supp(βββ) ⊆ S, ‖βββ−βββ∗‖2 ≤

r}.

Proof. The proof is similar to the proof of Lemma 1 in [Loh17]. �

Proof of Theorem III.3

The proof is an adaptation of the arguments of Theorem 2 in the paper [Loh17]. We

follow the three steps of the primal-dual witness (PDW) construction described in

that paper:
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(i) Optimize the restricted program

β̂ββS ∈ argmin
βββ∈βββS :‖βββ‖1≤R

{Lα,n(βββ) + ρλ(βββ)} , (A.42)

and establish that ‖β̂ββS‖1 < R.

(ii) Recall qλ(βββ) = λ‖βββ‖1 − ρλ(βββ) defined in Section III.4. Define ẑzzS ∈ ∂‖β̂ββS‖1, and

choose ẑzz = (ẑzzS, ẑzzSc) to satisfy the zero-subgradient condition

∇Lα,n(β̂ββ)−∇qλ(β̂ββ) + λẑzz = 0, (A.43)

where β̂ββ = (β̂ββS,000Sc). Show that β̂ββS = β̂ββ
O
S and establish strict dual feasibility:

‖ẑzzSc‖∞ < 1.

(iii) Verify via second order conditions that β̂ββ is a local minimum of the program

(III.7) and conclude that all stationary points β̃ββ satisfying ‖β̃ββ − βββ∗‖2 ≤ r are

supported on S and agree with β̂ββ
O
.

Proof of Step (i) : By applying Theorem III.2 to the restricted program

(A.91), we have

‖β̂ββS − βββ
∗
S‖1 ≤

96λs

4γ − 3µ
,

and thus

‖β̂ββS‖1 ≤ ‖βββ
∗‖1 + ‖β̂ββS − βββ

∗
S‖1 ≤

R

2
+

96λs

4γ − 3µ
< R,

under the assumption of the theorem. This complete step (i) of the PDW construction.

�
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To prove step (ii), we need the following Lemma A.10 and A.11:

Lemma A.5. Under the conditions of Theorem III.3, we have the bound

‖β̂ββ
O
S − βββ

∗
S‖2 ≤ C6

√
log p

ns

and β̂ββS = β̂ββ
O
S with probability at least 1− 2 exp(−C41

log p
s2

).

Proof. Recall β̂ββ
O

= (β̂ββ
O
S ,000Sc). By the optimality of the oracle estimator in

(III.12), we have

Lα,n(β̂ββ
O

) ≤ Lα,n(βββ∗). (A.44)

When n ≥ 2τ
γ
s log p, by Lemma A.9, Lα,n(βββ) is strongly convex over restricted region

Sr = {‖βββ − βββ∗‖2 ≤ r} . Hence,

Lα,n(βββ∗) + 〈∇Lα,n(βββ∗), β̂ββ
O
− βββ∗〉+

γ

4
‖β̂ββ
O
− βββ∗‖22 ≤ Lα,n(β̂ββ

O
). (A.45)

Together with inequality (A.93) we obtain

γ
4
‖β̂ββ
O
− βββ∗‖22 ≤ 〈∇Lα,n(βββ∗),βββ∗ − β̂ββ

O
〉 ≤ ‖∇(Lα,n(βββ∗))S‖∞ · ‖β̂ββ

O
− βββ∗‖1

≤
√
s‖∇(Lα,n(βββ∗))S‖∞ · ‖β̂ββ

O
− βββ∗‖2,

implying that

‖β̂ββ
O
− βββ∗‖2 ≤

4
√
s

γ
‖∇(Lα,n(βββ∗))S‖∞. (A.46)

Following the similar argument of equations (A.38) , (A.40) and (A.41) in Theorem 2,

we have

P (‖∇(Lα,n(βββ∗S))‖∞) ≥ λn
4

) ≤ 2 exp(− nλ2n
2C2d4

+ log s),

for C21λ
− 1
k−1

n ≤ α ≤ C31λ
−1
n . Let λn = C51

√
log p
ns2

, we obtain

‖(∇Lα,n(βββ∗))S‖∞ = ‖∇(Lα,n(βββ∗S))‖∞ ≤
1

4
C51

√
log p

ns2
(A.47)
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with probability at least 1 − 2 exp(−C41
log p
s2

), where we require s2 log s = O(log p).

Then α satisifies

C22(
ns2

log p
)

1
2(k−1) ≤ α ≤ C32

√
ns2

log p
. (A.48)

Combining inequality (A.95) and (A.96), we obtain

‖β̂ββ
O
− βββ∗‖2 ≤ C6

√
log p

ns
(A.49)

as desired, where C6 = C51/γ.

Next we show β̂ββS = β̂ββ
O
S . When n > C2

6

r2
log p
s
, we have ‖β̂ββ

O
S − βββ

∗
S‖2 < r and thus

β̂ββ
O
S is an interior point of the oracle program in (III.12), implying

∇Lα,n(β̂ββ
O
S ) = 0. (A.50)

By assumption that β∗min ≥ C6

√
log p
ns

+ δλ and inequality (A.97), we have

|β̂Oj | ≥ |β∗j | − |β̂Oj − β∗j | ≥ β∗min − ‖β̂ββ
O
S − βββ

∗
S‖∞

≥ (C6

√
log p
ns

+ δλ)− C6

√
log p
ns

= δλ.

for all j ∈ S. Together with the assumption that ρλ is (µ, δ)-amenable, that is,

Assumption III.2(vii), we have

∇qλ(β̂ββ
O
S ) = λsign(β̂ββ

O
S ) = λẑzzOS , (A.51)

where ẑzzOS ∈ ∂‖β̂ββ
O
S ‖1. Combining equation (A.98) and (A.99), we obtain

∇Lα,n(β̂ββ
O
S )−∇qλ(β̂ββ

O
S ) + λẑzzOS = 0. (A.52)

Hence β̂ββ
O
S satisifes the zero-subgradient condition on the restricted program (A.91).

By step (i) β̂ββS is an interior point of the program (A.91), then it must also satisfy the
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zero-subgradient condition on the restricted program. Using the strict convexity from

Lemma A.11, we obtain β̂ββS = β̂ββ
O
S . �

The following lemma guarantees that the program in (A.91) is strictly convex:

Lemma A.6. Suppose Lα,n satisfies the uniform RSC condition (III.4) and ρλ is

µ-amenable. Suppose in addition the sampel size satisifies n > 2τ
γ−µs log p, then the

restricted program in (A.91) is strictly convex.

We omit the proof since it is similar to the proof of Lemma 2 in [LW+17]. �

Proof of step (ii) : We rewrite the zero-subgradient condition (A.92) as

(
∇Lα,n(β̂ββ)−∇Lα,n(βββ∗)

)
+
(
∇Lα,n(βββ∗)−∇qλ(β̂ββ)

)
+ λẑzz = 0.

Let Q̂ be a p× p matrix Q̂ =
∫ 1

0
∇2Lα,n

(
βββ∗ + t(β̂ββ − βββ∗)

)
dt. By the zero-subgradient

condition and the fundamental theorem of calculus, we have

Q̂(β̂ββ − βββ∗) +
(
∇Lα,n(βββ∗)−∇qλ(β̂ββ)

)
+ λẑzz = 0.

And its block form is[
Q̂SS Q̂SSc

Q̂ScS Q̂ScSc

][
β̂ββS − βββ

∗
S

0

]
+

[
∇Lα,n(βββ∗)S −∇qλ(β̂ββS)

∇Lα,n(βββ∗)Sc −∇qλ(β̂ββSc)

]
+ λ

[
ẑzzS

ẑzzSc

]
= 0.

(A.53)

The selection property implies ∇qλ(β̂ββSc) = 0. Plugging this result into equation

(A.101) and performing some algebra, we conclude that

ẑzzSc =
1

λ

{
Q̂ScS(βββ∗S − β̂ββS)− (∇Lα,n(βββ∗))Sc

}
. (A.54)
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Therefore,

‖ẑzzSc‖∞ ≤ 1
λ
‖Q̂ScS(β̂ββS − βββ

∗
S)‖∞ + 1

λ
‖∇Lα,n(βββ∗))Sc‖∞

≤ 1
λ

{
maxj∈Sc ‖eTj Q̂ScS(β̂ββS − βββ

∗
S)‖2

}
+ 1

λ
‖∇Lα,n(βββ∗))Sc‖∞

≤ 1
λ

{
maxj∈Sc ‖eTj Q̂ScS‖2

}
‖(β̂ββS − βββ

∗
S)‖2 + 1

λ
‖∇Lα,n(βββ∗))Sc‖∞.

(A.55)

Observe that

[(eTj Q̂ScS)m]2 ≤ [ 1
n

∑n
i=1w(xi)xijv(xi)xim

∫ 1

0
l′′((yi − xTi βββ

∗ − t(xiβ̂ββ − xiβββ
∗))v(xi)) dt]2

≤ k22[ 1
n

∑n
i=1w(xi)xij · v(xi)xim]2,

for all j ∈ Sc and m ∈ S, where the second inequality follows from Assumption

III.2(ii). By condition of Theorem III.3, the variables w(xi)xij and v(xi)xim are both

sub-Gaussian. Using standard concentration results for i.i.d sums of products of

sub-Gaussian variables, we have

P ([(eTj Q̂ScS)m]2 ≤ c1) ≥ 1− c2 exp(−c3n).

It then follows from union inequality that

P (max
j∈Sc
‖eTj Q̂ScS‖2 ≤

√
c1s) ≥ 1− c2 exp(−c3n+ log(s(p− s))) ≥ 1− c2 exp(−c3

2
n),

(A.56)

where n ≥ 2
c3

log (s(p− s)). By Lemma A.10 we obtain

‖β̂ββS − βββ
∗
S‖2 ≤ C6

√
log p

ns
. (A.57)

Furthermore, Theorem III.2 gives

‖∇Lα,n(βββ∗))Sc‖∞ ≤ ‖∇Lα,n(βββ∗))‖∞ ≤ C5

√
log p

n
, (A.58)
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Combining inequality (A.103), (A.104), (A.105) and (A.106), we have

‖ẑzzSc‖∞ ≤
1

λ
C7

√
log p

n
.

with probability at least 1−C8 exp(−C41
log p
s2

). Note that α is required to satisfy both

ranges in Theorem III.2 and (A.48). Combing these two ranges we have

C22(
ns2

log p
)

1
2(k−1) ≤ α ≤ C3

√
n

log p
,

where s2 = O
(

( n
log p

)k−2
)
. In paticular, for λ > C7

√
log p
n

, we conclude at last that the

strict dual feasibility condition ‖ẑzzSc‖∞ < 1 holds, completing step (ii) of the PDW

construction.

Proof of step (iii) : Since the proof for this step is almost identical to the

proof in Step (iii) of Theorem 2 in [Loh17], except for the slightly different notation,

we refer the reader to the arguments provided in that paper. �

To prove Theorem III.4, we need to generalized the asymptotic normality

results for lower dimensional non-penalized M-estimator from [HS00] to the following

Lemma:

Lemma A.7. Suppose zzz1, zzz2, . . . , zzzn ∈ Rp are independent observations from proba-

bility distribution Fi,βββ, i = 1, 2, . . . , n, with a common parameter βββ ∈ Rs. And s may

increase with the sample size n. Suppose Ln(βββ) = 1
n

∑n
i=1 ρ(zzzi,βββ) is convex in βββ in a

neighborhood of βββ∗ and has a unique local minimizer β̂ββ. Define ψ(zzzi,βββ) = ∂
∂βββ
ρ(zzzi,βββ)

and ηi(β̃ββ,βββ) = ψ(zzzi, β̃ββ)−ψ(zzzi,βββ)−Eψ(zzzi, β̃ββ)+Eψ(zzzi,βββ) and Bs = {ννν ∈ Rs : ‖ννν‖2 = 1}.
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Suppose βββ∗ ∈ Rs such that

‖
n∑
i=1

ψ(zzzi,βββ
∗)‖2 = Op((ns)1/2). (A.59)

Assume the following conditions are satisfied:

(i) ‖
∑n

i=1 ψ(zzzi, β̂ββ)‖2 = op(n
1/2).

(ii) There exist C and r ∈ (0, 2] such that maxi≤nEβββ supβ̃ββ:‖β̃ββ−βββ‖2≤d ‖ηi(β̃ββ,βββ)‖22 ≤

nCdr, for 0 < d ≤ 1.

(iii) There exists a sequence of s by s matrices Dn with lim infn→∞ λmin(Dn) > 0

such that for any K > 0 and uniformly in ννν ∈ Bs,

sup
‖βββ−βββ∗‖2≤K(s/n)1/2

|νννT
n∑
i=1

Eβββ∗(ψ(zzzi,βββ)−ψ(zzzi,βββ
∗))−nνννTDn(βββ−βββ∗)| = o((ns)1/2).

(iv) supβ̃ββ:‖β̃ββ−βββ‖2≤K(s/n)1/2

∑n
i=1Eβββ|νννTηi(β̃ββ,βββ)|2 = O(A(n, s)) for any βββ ∈ Rs, ννν ∈ Bs

and K > 0.

(v) supννν∈Ss supβ̃ββ:‖β̃ββ−βββ‖2≤K(s/n)1/2

∑n
i=1(ννν

Tηi(β̃ββ,βββ))2 = Op(A(n, s)) for any βββ ∈ Rs

and K > 0.

If A(n, s) = o(n/ log n), we have

‖β̂ββ − βββ∗‖22 = Op(s/n).

Furthermore, if A(n, s) = o(n/(s log n)), then for any unit vector ννν ∈ Rs, we have

β̂ββ − βββ∗ = −n−1
n∑
i=1

D−1n ψ(zzzi,βββ
∗) + rn,

with ‖rn‖2 = op(n
−1/2).
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Proof. Our proof is similar to the proof of Theorem 1 and 2 in [HS00]. Note

that in that paper, βββ∗ is defined to be the solution of
∑n

i=1Eβββψ(xi,βββ) = 0, in addition

to the condition in equation (A.59). However, a careful inspection of the proofs in

that paper reveals that the results still holds if we only require βββ∗ to satisfied equation

(A.59). �

Proof of Theorem III.4

We then apply the result to the oracle estimator β̂ββ
O
S defined in equation (III.12) with

w(x) ≡ v(x) ≡ 1. Although Lemma A.7 requires Ln to be convex, a throughout

examination of the proofs in [HS00] shows that the results still hold if we restrict

our attention to a subset of Rp on which Ln is convex and β̂ββ is the unique minimizer.

Since β̂ββ
O
S is s-dimensional vector without sparsity, we denote xi, βββ and βββ∗ all as

s-dimensional vectors for the rest of our proof. We also denote βββ∗α as (βββ∗α)S. Let

zzzi = (xi, yi) and we rewrite ρ(zzzi,βββ) as lα(yi − xTi βββ), with Lα,n taking the place of Ln.

Then ψ(zzzi,βββ) = −l′α(yi − xTi βββ)xi.

We start with verifying equation (A.59), which can be rewrited as

‖
n∑
i=1

l′α(εi)xi‖2 = Op((ns)1/2). (A.60)

Observe that for any ννν ∈ Bs,

P (|
∑n

i=1 ννν
T l′α(εi)xi −

∑n
i=1E[νννT l′α(εi)xi]| > t) ≤ nV ar(νννT l′α(εi)xi)t

−2

≤ nE|νννT l′α(εi)xi|2t−2

≤ nE‖l′α(εi)xi‖22t−2

≤ nsd4t
−2,

(A.61)
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where the last inequality follows from inequality (A.34). We then have

P (|
n∑
i=1

νννT l′α(εi)xi| > t+
n∑
i=1

|E[νννT l′α(εi)xi]|) ≤ nsd4t
−2. (A.62)

Observe that

|E[νννT l′α(εi)xi]| = |E[l′α(yi − xTi βββ
∗)νννTxi]|

= |E[l′α(yi − xTi βββ
∗)νννTxi]− E[l′α(yi − xTi βββ

∗
α)νννTxi]|

≤ k2E[|xTi (βββ∗α − βββ
∗)||νννTxi|]

≤ k2{E|xTi (βββ∗α − βββ
∗)|2} 1

2{E|νννTxi|2}
1
2

≤ k20k2‖βββ
∗
α − βββ

∗‖2,

(A.63)

where the first and last inequalities follow from Assumption III.2(ii) and Assumption

III.3(iv) respectively. Together with the results in Theorem III.1 and condition

α1−k = o(n−1/2), we obtain

E[νννT l′α(εi)xi] = o(n−1/2). (A.64)

Thus by inequality (A.62) and (A.64) we have
∑n

i=1 ννν
T l′α(εi)xi = Op((ns)1/2) for any

ννν ∈ Bs. It then implies equation (A.60).

Next we verify the conditions (i)-(v). Since the Lα,n is differentiable, the left

hand side of condition (i) is 0 and thus it is satisfied. By definition of ηi, we have

ηi(β̃ββ,βββ) = l′α(yi − xTi βββ)xi − l′α(yi − xTi β̃ββ)xi − El′α(yi − xTi βββ)xi + El′α(yi − xTi β̃ββ)xi.

Observe that

‖ηi(β̃ββ,βββ)‖2 ≤ ‖l′α(yi − xTi β̃ββ)xi − l′α(yi − xTi βββ)xi‖2 + ‖El′α(yi − xTi β̃ββ)xi − El′α(yi − xTi βββ)xi‖2
≤ k2|xTi (β̃ββ − βββ)| · ‖xi‖2 + k2‖ExTi (β̃ββ − βββ)xi‖2
≤ k2‖β̃ββ − βββ‖2‖xi‖22 + k2E‖xTi (β̃ββ − βββ)xi‖2
≤ k2‖β̃ββ − βββ‖2‖xi‖22 + k2‖β̃ββ − βββ‖2E‖xi‖22,
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where the second and third inequality follow from Assumption III.2(ii) and Jensen’s

inequality, respectively. We then obtain

max
i≤n

Eβββ sup
β̃ββ:‖β̃ββ−βββ‖2≤d

‖ηi(β̃ββ,βββ)‖22 ≤ max
i≤n

4k22d
2E‖xi‖42.

Since Assumption III.3(iv) implies E‖xi‖42 = O(s2) for i = 1, · · · , n, condition(ii)

holds with r = 2 and if s = O(nr1) for r1 > 0.

Similarly, for any ννν ∈ Bs, we have

νννTηi(β̃ββ,βββ) ≤ |l′α(yi − xTi β̃ββ)− l′α(yi − xTi βββ)||νννTxi|+ E[|l′α(yi − xTi β̃ββ)− l′α(yi − xTi βββ)||νννTxi|]
≤ k2|xTi (β̃ββ − βββ)||νννTxi|+ k2E[|xTi (β̃ββ − βββ)||νννTxi|]
≤ k2‖β̃ββ − βββ‖2|ν̃ννTxi||νννTxi|+ k2‖β̃ββ − βββ‖2{E|ν̃ννTxi|2}1/2E{|νννTxi|2}1/2

≤ k2‖β̃ββ − βββ‖2(|ν̃ννTxi||νννTxi|+ k20),

where ν̃νν = (β̃ββ−βββ)/‖β̃ββ−βββ‖2. The second and last inequalities follow from Assumption

III.2(ii) and Assumption III.3(iv) respectively. It then gives

|νννTηi(β̃ββ,βββ)|2 ≤ k22‖β̃ββ − βββ‖22(|ν̃ννTxi|2|νννTxi|2 + 2k20|ν̃ννTxi||νννTxi|+ k40).

Together with Assumption III.3(iv), we obtain

E|νννTηi(β̃ββ,βββ)|2 = O(‖β̃ββ − βββ‖22) (A.65)

and

|νννTηi(β̃ββ,βββ)|2 = Op(‖β̃ββ − βββ‖22). (A.66)

Hence condition (iv) and (v) hold with A(n, s) = s.
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Finally we show condition (iii). Let Dα,n = E[∇2Lα,n(βββ∗)] and thus it is an s

by s matrix. Observe that

E[l′′α(εi)|xi] = E[l′′α(εi)1(|εi| ≤ α)|xi] + E[l′′α(εi)1(|εi| > α)|xi]
≥ E[(1− d1|εi|kα−k)1(|εi| ≤ α)|xi] + E[l′′α(εi)1(|εi| > α)|xi]
≥ P (|εi| ≤ α|xi)− d1α−kE[|εi|k|xi]− k2α−kE[|εi|k|xi]
≥ 1− α−kE[|εi|k|xi]− d1α−kE[|εi|k|xi]− k2α−kE[|εi|k|xi]
= 1− (d1 + k2 + 1)α−kE[|εi|k|xi],

where the first and second inequalities follow from Assumption III.2(iii) and (ii),

respectively. Thus for any ννν ∈ Bs, we have

νννTDα,nννν = E[l′′α(εi)ννν
Txix

T
i ννν]

≥ E[(1− (d1 + k2 + 1)α−kE[|εi|k|xi])νννTxix
T
i ννν]

= νννTE[xix
T
i ]ννν − (d1 + k2 + 1)α−kE[E(|εi|k|xi)(νννxi)2]

≥ kl − (d1 + k2 + 1)α−k{E[E(|εi|k|xi)]2}1/2{E[(νννxi)
4]}1/2

≥ kl − C9α
−k,

where second inequality follows from Assumption III.3(i) and C9 is a constant that

only depends on k0, k2, d1, Mk. Hence if α > (2C9/kl)
1/k, we have λmin(Dα,n) > kl/2.

It then implies lim infn→∞ λmin(Dα,n) > 0. Observe that

|νννT
∑n

i=1Eβββ∗(ψ(xi,βββ)− ψ(xi,βββ
∗))− nνννTDα,n(βββ − βββ∗)|

= |νννT
∑n

i=1Eβββ∗{(l′α(yi − xTi βββ
∗)xi − l′α(yi − xTi βββ)xi − l′′α(yi − xTi βββ

∗)xix
T
i (βββ − βββ∗)}|

= |νννT
∑n

i=1Eβββ∗{(l′′α(yi − xTi β̃ββ)xTi (βββ − βββ∗)xi − l′′α(yi − xTi βββ
∗)xix

T
i (βββ − βββ∗)}|

≤ |νννT
∑n

i=1Eβββ∗{(k3|xTi (β̃ββ − βββ∗)||xTi (βββ − βββ∗)xi|}|
≤ k3‖βββ − βββ∗‖22

∑n
i=1Eβββ∗{|xTi ν̃νν|2|xTi ννν|},

where β̃ββ is a vector lying between βββ and βββ∗ and ν̃νν = (β̃ββ − βββ)/‖β̃ββ − βββ‖2. Note

that the second equation follows from mean value theorem and the first inequality

follows from the condition that l′′α is Lipschitz. By Assumption III.3 (iv) we have∑n
i=1Eβββ∗{|xTi ν̃νν|2xTi ννν|} = O(n). Hence condition (iii) holds if s/n→ 0.
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We conclude that the desired results hold for the oracle estimator β̂ββ
O
S . In

particular, we have

β̂ββ
O
S − βββ

∗ =n−1
n∑
i=1

D−1α,nl
′
α(εi)xi + rn

=n−1
n∑
i=1

{D−1α,nl′α(εi)xi − E[D−1α,nl
′
α(εi)xi]}+ E[D−1α,nl

′
α(εi)xi] + rn,

(A.67)

with ‖rn‖2 = op(n
−1/2). Observe that

‖E[D−1α,nl
′
α(εi)xi]‖2 = ‖D−1α,nE[l′α(εi)xi]‖2

= ‖D−1α,nν̃νν‖2‖E[l′α(εi)xi]‖2
≤ [λmin(Dα,n)]−1‖E[l′α(εi)xi]‖2
= o(n−1/2),

(A.68)

where the last equality follows from equation (A.64). By equations (A.67) and (A.68),

we obtain √
n

σννν
· νννT (β̂ββ

O
S − βββ

∗)
d−→ N(0, 1), (A.69)

where σ2
ννν = νννTD−1α,nV ar(l

′
α(εi)xi)D

−1
α,nννν. By Theorem III.3, the asymptotic result in

(A.69) is also applicable for the stationary point β̃ββ. �

To prove Theorem A.3, we need the following result:

Lemma A.8. Suppose covariate x satisfies Assumption III.3(iv) and l′′α(u) satisfies As-

sumption III.2(ii). For any fixed α > 0, suppose the bound C14k
2
0

(√
εT + exp

(
−C15T 2

k20r
2

))
<

γα,T
γα,T+k2

· kl
2
holds, where γα,T = min|u|≤T l

′′
α(u) > 0. Suppose in addition that the sample

size satisfies n ≥ C10s log p. With probability at least 1− C11 exp(−C12 log p), the loss

function Lα,n satisfies

〈∇Lα,n(βββ1)−∇Lα,n(βββ2),βββ1 − βββ2〉 ≥ γα‖βββ1 − βββ2‖22 − τα
log p

n
‖βββ1 − βββ2‖21, (A.70)
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where βββj ∈ Rp such that ‖βββj − βββ
∗‖2 ≤ r for j = 1, 2 with

γα =
γα,Tkl

16
and τα =

C13(γα,T + k2)
2k20T

2

r2
. (A.71)

Here the constants C10, C11, C12, C13, C14, C15 do not depend on α.

Proof. The proof is similar to the proof of Proposition 2 in [Loh17]. Note that

in that paper, it assumes xi ⊥⊥ εi. However, a careful inspection of the proofs reveals

that the result stills holds if we allow εi to depend on xi. We refer the reader to the

arguments provided in that paper. �

Proof of Theorem A.3

Recall γα,T = min|u|≤T l
′′
α(u). By Assumption III.2(iii) , α ≥ α0 and α0 = max{(2d1)

1
k , 1}·

T0 we have

γα,T0 = min
|u|≤T0

lα(u) ≥ min
|u|≤T0

(1− d1|u|kα−k) ≥ 1− d1|T0|kα−k0 ≥
1

2
. (A.72)

And

γα,T0 = min
|u|≤T0

lα(u) ≤ min
|u|≤T0

(1 + d1|u|kα−k) ≤ 1 + d1|T0|kα−k0 ≤
3

2
. (A.73)

By equation (A.72), we obtain

γα,T0
γα,T0 + k2

· kl
2
≥

1
2

1
2

+ k2
· kl

2
≥ kl

2 + 4k2
.

Together with condition C14k
2
0

(√
εT0 + exp

(
−C15T 2

0

k20r
2

))
< kl

2+4k2
, we have

c14k
2
0

(
√
εT0 + exp

(
−c15T

2
0

k20r
2

))
<

γα,T0
γα,T0 + k2

· kl
2
. (A.74)
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By equation (A.72), (A.73), (A.74) and Lemma A.8 we complete the proof. �

A.3. Proof in Chapter 4

Proof of Theorem IV.1

Since the proof of Theorem IV.1(i) is similar to the proof of Proposition 1 in [Loh17],

we refer the reader to the arguments provided in that paper. Here we focus on the

proof of (ii). We first suppose the existence of stationary points in the local RSC

region and will establish this fact at the end of the proof. Suppose β̂ββ is a stationary

point of program (IV.4) such that ‖β̂ββ − βββ∗‖2 ≤ r. Since β̂ββ is a stationary point and β̂ββ

is feasible, we have the inequality

〈∇Ln(β̂ββ)−∇qλ(β̂ββ) + λDz̃zz,βββ∗ − β̂ββ〉 ≥ 0, (A.75)

where D := diag((
√
d11

T
d1
, · · · ,

√
dJ1

T
dJ

)T ) denotes a p × p diagonal matrix, z̃zz =

(z̃zzT1 , · · · , z̃zzTJ )T and z̃zzj ∈ ∂‖β̂ββj‖2. Recall

∂‖β̂ββj‖2 =


β̂ββj

‖β̂ββj‖2
if ‖β̂ββj‖2 6= 0,

{zzz : ‖zzz‖2 ≤ 1, zzz ∈ Rdj} if ‖β̂ββj‖2 = 0,

for j = 1, 2, · · · , J . By the convexity of µ
2
‖βββ‖22 − qλ(βββ), we have

〈∇qλ(β̂ββ),βββ∗ − β̂ββ〉 ≥ qλ(βββ
∗)− qλ(β̂ββ)− µ

2
‖β̂ββ − βββ∗‖22. (A.76)

So together with inequality (A.75) we obtain

〈∇Ln(β̂ββ) + λDz̃zz,βββ∗ − β̂ββ〉 ≥ qλ(βββ
∗)− qλ(β̂ββ)− µ

2
‖β̂ββ − βββ∗‖22.
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Since 〈λDz̃zz,βββ∗ − β̂ββ〉 ≤
∑J

j=1

√
djλ‖βββ∗j‖2 −

∑J
j=1

√
djλ‖β̂ββj‖2, this means

〈∇Ln(β̂ββ),βββ∗ − β̂ββ〉 ≥ ρλ(β̂ββ)− ρλ(βββ∗)−
µ

2
‖β̂ββ − βββ∗‖22. (A.77)

Let ν̃νν := β̂ββ − βββ∗. From the RSC inequality (IV.6), we have

〈∇Ln(β̂ββ)−∇Ln(βββ∗), β̂ββ − βββ∗〉 ≥ γ‖ν̃νν‖22 − τ
log p

n
‖ν̃νν‖21. (A.78)

Combining inequality (A.78) with inequality (A.77), we then have

(γ − µ

2
)‖ν̃νν‖22 − τ

log p

n
‖ν̃νν‖21 + (ρλ(β̂ββ)− ρλ(βββ∗)) ≤ 〈∇Ln(βββ∗),βββ∗ − β̂ββ〉. (A.79)

So by Holder’s inequality, we conclude that

(γ − µ

2
)‖ν̃νν‖22 − τ

log p

n
‖ν̃νν‖21 + (ρλ(β̂ββ)− ρλ(βββ∗)) ≤ ‖∇Ln(βββ∗)‖∞‖ν̃νν‖1. (A.80)

Assume λ ≥ 4‖∇Ln(βββ∗)‖∞ and λ ≥ 8τR log p
n

, we have

(γ − µ

2
)‖ν̃νν‖22 ≤ (ρλ(βββ

∗)− ρλ(β̂ββ)) + (2Rτ
log p

n
+ ‖Ln(βββ∗)‖∞)‖ν̃νν‖1

≤ (ρλ(βββ
∗)− ρλ(β̂ββ)) +

J∑
j=1

√
dj(2Rτ

log p

n
+ ‖Ln(βββ∗)‖∞)‖ν̃ννj‖2

≤ (ρλ(βββ
∗)− ρλ(β̂ββ)) +

1

2

J∑
j=1

√
djλ‖ν̃ννj‖2

≤ (ρλ(βββ
∗)− ρλ(β̂ββ)) +

1

2
(ρλ(ν̃νν) +

µ

2
‖ν̃νν‖22),

implying that

0 ≤ (γ − 3µ

4
)‖ν̃νν‖22 ≤ ρλ(βββ

∗)− ρλ(β̂ββ) +
1

2
ρλ(ν̃νν). (A.81)
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Recall S ⊆ {1, · · · , J} includes all indexes of important groups and |S| = s. By the

assumption IV.1 for ρ, we have

ρλ(ν̃ννS) = ρλ(βββ
∗ − β̂ββS) ≥ ρλ(βββ

∗)− ρλ(β̂ββS),

where β̂ββS denotes the zero-padded vector in Rp with zeros on groups in Sc. Then

starting from inequality (A.81), we have

0 ≤ (γ − 3µ

4
)‖ν̃νν‖22

≤ ρλ(βββ
∗)− ρλ(β̂ββ) +

1

2
ρλ(ν̃νν)

= ρλ(βββ
∗)− ρλ(β̂ββS)− ρλ(β̂ββSc) +

1

2
ρλ(ν̃νν)

≤ ρλ(ν̃ννS)− ρλ(β̂ββSc) +
1

2
ρλ(ν̃νν)

=
3

2
ρλ(ν̃ννS)− ρλ(ν̃ννSc) +

1

2
ρλ(ν̃ννSc)

=
3

2
ρλ(ν̃ννS)− 1

2
ρλ(ν̃ννSc).

(A.82)

Let A denote the group index set of the first s groups of ννν with largest `2 norm.

Recall da = max1≤j≤J dj, db = min1≤j≤J dj, d =
√

da
db
. By assumption IV.1(i) and (iv)

we have

0 ≤ 3ρλ(ν̃ννS)− ρλ(ν̃ννSc) ≤ 3
∑
j∈S

ρ(‖ν̃ννj‖2,
√
daλ)−

∑
j∈Sc

ρ(‖ν̃ννj‖2,
√
dbλ)

≤ 3
∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ)−

∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ).

(A.83)
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Let c := maxj∈Ac ‖ν̃ννj‖2 and define f(t, λ) := tλ
ρ(t,λ)

for t, λ > 0. By assumption on ρ,

for any fixed λ ∈ R+, function t 7→ f(t, λ) is non-decreasing on R+. Thus∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ) · f(c,

√
daλ) ≤

∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ) · f(‖ν̃ννj‖2,

√
daλ)

≤
∑
j∈A

√
daλ‖ν̃ννj‖2.

(A.84)

Similarly we also obtain∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ) · f(c,

√
dbλ) ≥

∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ) · f(‖ν̃ννj‖2,

√
dbλ)

≥
∑
j∈Ac

√
dbλ‖ν̃ννj‖2.

(A.85)

Combining inequality (A.83) with (A.84) and (A.85) we have

0 ≤ 3ρλ(ν̃ννS)− ρλ(ν̃ννSc)

≤ 1

f(c,
√
daλ)

(3
∑
j∈A

√
daλ‖ν̃ννj‖2 −

f(c,
√
daλ)

f(c,
√
dbλ)

∑
j∈Ac

√
dbλ‖ν̃ννj‖2)

≤ 3
∑
j∈A

√
daλ‖ν̃ννj‖2 −

f(c,
√
daλ)

f(c,
√
dbλ)

∑
j∈Ac

√
dbλ‖ν̃ννj‖2

=
√
daλ(3

∑
j∈A

‖ν̃ννj‖2 −
ρ(c,
√
dbλ)

ρ(c,
√
daλ)

∑
j∈Ac
‖ν̃ννj‖2)

≤
√
daλ(3

∑
j∈A

‖ν̃ννj‖2 − g(d)−1
∑
j∈Ac
‖ν̃ννj‖2),

(A.86)

where the third inequality follows from

f(c,
√
daλ) ≥ lim

r→0+
f(r,

√
daλ) = lim

r→0+

(r − 0)
√
daλ

ρ(r,
√
daλ)− ρ(0,

√
daλ)

= 1,

and the last inequality follows from assumption IV.1(ii). Hence,

3g(d)
∑
j∈A

‖ν̃ννj‖2 ≥
∑
j∈Ac
‖ν̃ννj‖2,

161



Implying that

‖ν̃νν‖1 ≤
∑
j∈A

‖ν̃ννj‖1 +
∑
j∈Ac
‖ν̃ννj‖1

≤
∑
j∈A

√
da‖ν̃ννj‖2 +

∑
j∈Ac

√
da‖ν̃ννj‖2

≤
√
da(1 + 3g(d))

∑
j∈A

‖ν̃ννj‖2

≤
√
das(1 + 3g(d))‖ν̃νν‖2.

(A.87)

Combing inequalities (A.82) and (A.86) then gives

(γ−3µ

4
)‖ν̃νν‖22 ≤

1

2

√
daλ(3

∑
j∈A

‖ν̃ννj‖2−g(d)−1
∑
j∈Ac
‖ν̃ννj‖2) ≤

3

2

√
daλ

∑
j∈A

‖ν̃ννj‖2 ≤
3

2

√
dasλ‖ν̃νν‖2,

from which we conclude that

‖ν̃νν‖2 ≤
6
√
daλ
√
s

4γ − 3µ
(A.88)

as wanted. Combining the `2-bound with inequality (A.87) then yields the `1 bound

‖ν̃νν‖1 ≤
6(1 + 3g(d))daλs

4γ − 3µ
. (A.89)

Finally, in order to establish the existence of local stationary points, we simply define

β̂ββ ∈ Rp such that

β̂ββ ∈ argmin
‖βββ−βββ∗‖2≤r,‖βββ‖1<R

{Ln(βββ) + ρλ(βββ)} . (A.90)

Then β̂ββ is a stationary point of program (A.90). So by the argument just provided,

we have

‖β̂ββ − βββ∗‖2 ≤ C

√
das log p

n
.

Provided n > Cr−2das log p, the point β̂ββ will lie in the interior of the sphere of radius

r around βββ∗. Hence, β̂ββ is also a stationary point of the original program (IV.4) ,
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guaranteeing the existence of such local stationary points. �

To prove Theorem IV.2, we need the following result adopted directly from the

Lemma 1 in [Loh17].

Lemma A.9. Suppose Ln satisfies the local RSC condition (IV.4) and n ≥ 2τ
γ
k log p.

Then Ln is strongly convex over the region Sr := {βββ ∈ Rp : supp(βββ) ⊆ IS, ‖βββ −βββ∗‖2 ≤

r}.

Proof. The proof is similar to the proof of Lemma 1 in [Loh17]. �

Proof of Theorem IV.2

The proof is an adaptation of the arguments of Theorem 2 in the paper [Loh17]. We

use the following three steps of the primal-dual witness (PDW) construction:

(i) Optimize the restricted program

β̂ββIS ∈ argmin
βββ∈βββIS :‖βββ‖1≤R

{
Ln(βββ) +

∑
j∈S

ρ(‖βββj‖2,
√
djλ)

}
, (A.91)

and establish that ‖β̂ββIS‖1 < R.

(ii) Recall qλ(βββ) =
∑J

j=1

√
djλ‖βββj‖2 −

∑J
j=1 ρ(‖βββj‖2

√
djλ) defined in Section IV.2.

Define ẑzzj ∈ ∂‖β̂ββj‖2 and let ẑzzIS = (ẑzzTj , j ∈ S)T , and choose ẑzz = (ẑzzTIS , ẑzz
T
IcS

)T to

satisfy the zero-subgradient condition

∇Ln(β̂ββ)−∇qλ(β̂ββ) + λDẑzz = 0, (A.92)

where β̂ββ := (β̂ββIS ,000IcS) and D = diag((
√
d11

T
d1
, · · · ,

√
dJ1

T
dJ

)T ). Show that β̂ββIS =

β̂ββ
O
IS

and establish strict dual feasibility: maxj∈Sc ‖ẑzzj‖2 < 1.
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(iii) Verify via second order conditions that β̂ββ is a local minimum of the program

(IV.4) and conclude that all stationary points β̂ββ satisfying ‖β̂ββ − βββ∗‖2 ≤ r are

supported on IS and agree with β̂ββ
O
.

Proof of Step (i) : By applying Theorem IV.1 to the restricted program

(A.91), we have

‖β̂ββIS − βββ
∗
IS
‖1 ≤

6(1 + 3g(d))daλs

4γ − 3µ
,

and thus

‖β̂ββIS‖1 ≤ ‖βββ
∗‖1 + ‖β̂ββIS − βββ

∗
IS
‖1 ≤

R

2
+ ‖β̂ββIS − βββ

∗
IS
‖1 ≤

R

2
+

6(1 + 3g(d))daλs

4γ − 3µ
< R,

under the assumption of the theorem. This complete step (i) of the PDW construction.

�

To prove step (ii), we need the following Lemma A.10 and A.11:

Lemma A.10. Under the conditions of Theorem IV.2, we have the bound

‖β̂ββ
O
IS
− βββ∗IS‖2 ≤ C3

√
k log k

n

and β̂ββIS = β̂ββ
O
IS

with probability at least 1− C1 exp(−C2 log k).

Proof. Recall β̂ββ
O

= (β̂ββ
O
IS
,0IcS). By the optimality of the oracle estimator, we

have

Ln(β̂ββ
O

) ≤ Ln(βββ∗). (A.93)

Recall n ≥ 2τ
γ
k log p. By Lemma A.9 Ln(βββ) is strongly convex over restricted region

Sr. Hence,

Ln(βββ∗) + 〈∇Ln(βββ∗), β̂ββ
O
− βββ∗〉+

γ

4
‖β̂ββ
O
− βββ∗‖22 ≤ Ln(β̂ββ

O
). (A.94)
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Together with inequality (A.93) we obtain

γ
4
‖β̂ββ
O
− βββ∗‖22 ≤ 〈∇Ln(βββ∗),βββ∗ − β̂ββ

O
〉 ≤ ‖∇(Ln(βββ∗))IS‖∞ · ‖β̂ββ

O
− βββ∗‖1

≤
√
k‖∇(Ln(βββ∗))IS‖∞ · ‖β̂ββ

O
− βββ∗‖2,

implying that

‖β̂ββ
O
− βββ∗‖2 ≤

4
√
k

γ
‖∇(Ln(βββ∗))IS‖∞. (A.95)

By applying Theorem IV.1 to the restricted program (A.91), we have

‖∇Ln(βββ∗)IS‖∞ = ‖∇(Ln(βββ∗IS))‖∞ ≤ C0k0k1

√
log k

n
(A.96)

with probability at least 1 − C1 exp(−C2 log k). Combining inequality (A.95) and

(A.96), we obtain

‖β̂ββ
O
− βββ∗‖2 ≤ C3

√
k log k

n
(A.97)

as desired, where C3 = 4C0k0k1/r.

Next we show β̂ββIS = β̂ββ
O
IS
. When n > C2

3k log k/r2, we have ‖β̂ββ
O
IS
− βββ∗IS‖2 < r

and thus β̂ββ
O
IS

is an interior point of the oracle program in (III.12), implying

∇Ln(β̂ββ
O
IS

) = 0. (A.98)

By assumption that βββ∗Gmin ≥ C3

√
k log k
n

+
√
daδλ and inequality (A.97), we have

‖β̂ββ
O
j ‖2 ≥ ‖βββ

∗
j‖2 − ‖β̂ββ

O
j − βββ

∗
j‖2 ≥ βββ

∗G
min − ‖β̂ββ

O
− βββ∗‖2

≥ (C3

√
k log k
n

+
√
daδλ)− C3

√
k log k
n

=
√
daδλ.

for all j ∈ S. Together with the assumption that ρ is (µ, δ)-amenable, we have

∇qλ(β̂ββ
O
IS

) = λDISISẑzz
O
IS
, (A.99)

where ẑzzOIS = ((ẑzzOj )T , j ∈ S)T and ẑzzOj ∈ ∂‖β̂ββ
O
j ‖2.
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Combining equation (A.98) and (A.99), we obtain

∇Ln(β̂ββ
O
IS

)−∇qλ(β̂ββ
O
IS

) + λDISISẑzz
O
IS

= 0. (A.100)

Hence β̂ββ
O
IS

satisfies the zero-subgradient condition on the restricted program (A.91).

By step (i) β̂ββIS is an interior point of the program (A.91), then it must also satisfy

the zero-subgradient condition on the restricted program. Using the strict convexity

from Lemma A.11, we obtain β̂ββIS = β̂ββ
O
IS
. �

The following lemma guarantees that the program in (A.91) is strictly convex:

Lemma A.11. Suppose Ln satisfies the local RSC condition (IV.4) and ρ is µ-

amenable with γ > µ. Suppose in addition the sample size satisfies n > 2τ
γ−µk log p,

then the restricted program in (A.91) is strictly convex.

Proof. This is almost identical to the proof of Lemma 2 in [LW+17]. We refer

the reader to the arguments provided in that paper. �

Proof of step (ii) : We rewrite the zero-subgradient condition (A.92) as

(
∇Ln(β̂ββ)−∇Ln(βββ∗)

)
+
(
∇Ln(βββ∗)−∇qλ(β̂ββ)

)
+ λDẑzz = 0.

Let Q̂ be a p× p matrix Q̂ =
∫ 1

0
∇2Ln

(
βββ∗ + t(β̂ββ − βββ∗)

)
dt. By the zero-subgradient

condition and the fundamental theorem of calculas, we have

Q̂(β̂ββ − βββ∗) +
(
∇Ln(βββ∗)−∇qλ(β̂ββ)

)
+ λDẑzz = 0,
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And its block form is[
Q̂ISIS Q̂ISI

c
S

Q̂IcSIS
Q̂IcSI

c
S

][
β̂ββIS − βββ

∗
IS

0

]
+

[
∇Ln(βββ∗)IS −∇qλ(β̂ββIS)

∇Ln(βββ∗)IcS −∇qλ(β̂ββIcS)

]
+λ

[
DISIS 0

0 DIcSI
c
S

][
ẑzzIS
ẑzzIcS

]
= 0.

(A.101)

The selection property implies ∇qλ(β̂ββIcS) = 0. Plugging this result into equation

(A.101) and performing some algebra, we conclude that

ẑzzIcS =
1

λ
D−1IcSIcS

{
Q̂IcSIS

(βββ∗IS − β̂ββIS)−∇Ln(βββ∗)IcS

}
. (A.102)

Therefore,

maxj∈Sc ‖ẑzzj‖2 ≤ maxj∈Sc
√
dj‖ẑzzj‖∞

= ‖DIcSIS
ẑzzIcS‖∞

= 1
λ
‖Q̂IcSIS

(β̂ββIS − βββ
∗
IS

)−∇Ln(βββ∗)IcS‖∞
≤ 1

λ
‖Q̂IcSIS

(β̂ββIS − βββ
∗
IS

)‖∞ + 1
λ
‖∇Ln(βββ∗)IcS‖∞

≤ 1
λ

{
maxj∈IcS ‖e

T
j Q̂IcSIS

‖2
}
‖(β̂ββIS − βββ

∗
IS

)‖2 + 1
λ
‖∇Ln(βββ∗)IcS‖∞,

(A.103)

where ej is a standard unit vector with jth element being 1. Observe that

[(eTj Q̂IcSIS
)m]2 ≤ [ 1

n

∑n
i=1w(xi)xijv(xi)xim

∫ 1

0
l′′((yi − xTi βββ

∗ − t(xiβ̂ββ − xiβββ
∗))v(xi))dt]

2

≤ k22[ 1
n

∑n
i=1w(xi)xij · v(xi)xim]2,

for all j ∈ IcS and m ∈ IS, where the last inequality follows from assumption III.2(ii).

By conditions of Theorem IV.2, the variables w(xi)xij and v(xi)xim are both sub-

Gaussian. Using standard concentration results for i.i.d sums of products of sub-

Gaussian variables, we have

P ([(eTj Q̂IcSIS
)m]2 ≤ C ′3) ≥ 1− C ′2 exp(−C ′3n).
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It then follows from union inequality that

P (max
j∈IcS
‖eTj Q̂IcSIS

‖2 ≤
√
C ′3k) ≥ 1−C ′2 exp(−C ′3n+log(k(p−k))) ≥ 1−C ′2 exp(−C

′
3

2
n),

(A.104)

where n ≥ 2
C′3

log(k(p− k)). By Lemma A.10 we obtain

‖β̂ββIS − βββ
∗
IS
‖2 ≤ C3

√
k log k

n
. (A.105)

Furthermore, Theorem IV.1 gives

‖∇Ln(βββ∗)IcS‖∞ ≤ ‖∇Ln(βββ∗))‖∞ ≤ C1

√
log p

n
. (A.106)

Combining inequality (A.103), (A.104), (A.105) and (A.106), we have

max
j∈Sc
‖ẑzzj‖2 ≤

1

λ
C4

√
log p

n
,

with probability at least 1− C5 exp(−C2 log k), under the assumption that k2 log k =

O(log p). In particular, for λ > C4

√
log p
n

, we conclude at last that the strict dual

feasibility condition maxj∈Sc ‖ẑzzj‖2 < 1 holds, completing step (ii) of the PDW con-

struction.

Step (iii) : Since the proof for this step is almost identical to the proof in

Step (iii) of Theorem 2 in [Loh17], except for the slightly different notations. We refer

the reader to the arguments provided in that paper. �
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Proof of Theorem IV.3

By the condition that βββ∗Imin ≥ C3

√
s log s
n

+ θ, we have

|β̂Oj | ≥ |β∗j | − |β̂Oj − β∗j | ≥ βββ
∗I
min − ‖β̂ββ

O
IS
− βββ∗IS‖∞

≥ (C3

√
k log k
n

+ θ)− C3

√
k log k
n

= θ.

(A.107)

for all j ∈ I0, where the second inequality follows from Lemma A.10. For j ∈ IS − I0,

|β̂Oj | ≤ ‖β̂ββ
O
IS
− βββ∗IS‖∞ ≤ C3

√
k log k

n
< θ, (A.108)

where the second inequality follows from Lemma A.10 and the last inequality follows

from the condition in Theorem IV.3. Recall β̂ββ
O

= (β̂ββ
O
IS
,0IcS). By Theorem IV.2 we

have β̂ββ = β̂ββ
O
with probability at least 1− C5 exp(−C2 log k). Together with (A.107)

and (A.108), we have

β̂ββ
h
(θ) = β̂ββ · I(|β̂ββ| ≥ θ) = β̂ββ

O
· I(|β̂ββ

O
| ≥ θ) = (β̂ββ

O
I0
,000Ic0),

as desired. It then gives the result

‖β̂ββ
h
(θ)− βββ∗‖2 ≤ ‖β̂ββ

O
IS
− βββ∗IS‖2 ≤ C3

√
k log k

n
,

where the last inequality follows from Lemma A.10. �
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