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ABSTRACT 

 

Analysis of Factors Affecting Peak to Average Ratio and Mean Power in a Slider Crank Wave 

Energy Converter using regular and irregular waves 

 

Connor McIntyre  

Western Carolina University (April 2020) 

Director: Dr. Bora Karayaka 

 

This thesis investigates the factors that affect the Peak to Average Ratio (PTAR) and 

Mean Power (MP) for the Slider Crank Wave Energy Converter (SCWEC). The goal of this 

thesis is to reduce the PTAR while maximizing the MP. The PTAR needs to be reduced, because 

the generator that converts wave energy to electricity for the grid would become more efficient 

and less costly. During the process of minimizing the PTAR, the impact on MP production 

should be minimized, since producing usable power is the main purpose of any generation 

mechanism.  In this thesis, a few system parameters affecting the PTAR and the MP are 

investigated and analyzed. In this analysis, these parameters are applied to multiple models of the 

system, and the results are recorded and compared. It is observed that the best combination of the 

PTAR and the MP can be determined under regular wave conditions as well as irregular wave 

conditions. Some of the factors that affect PTAR and MP include phase and time delay. Inertia 

additionally had an effect on both but was minimal.  
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CHAPTER 1: INTRODUCTION 

 

1.1  Key Terms 

Mean Power (MP):  Average Power produced by the WEC in the given time period 

Peak to Average Ratio (PTAR):  Ratio between the highest value of power produced and 

average power produced during steady state.   

Power Take Off System (PTOS): This refers to the mechanical front end of the WEC, the buoy 

and slider crank.    

Wave Energy Converter (WEC):  A wave energy converter is a device that converts the kinetic 

and potential energy associated with a moving wave into useful mechanical or electrical energy. 

1.2  Problem Statement 

Energy usage and consumption around the world is currently at an all-time high.  It is also 

expected to increase into the future.  This is due to many factors including new technologies, higher 

population and greater access to said technologies. In 2013 humans used 5.67 × 1020 joules of 

energy, equivalent to about 18.0 terawatt-hour (TWh)[1].   A majority of those joules that were 

used were produced via fossil fuels.  It is agreed upon by many that the worlds’ fossil fuels are 

being diminished at a rate that far exceeds the production of them.  In short, we are running out of 

fossil fuels.  The most common form of energy that is used worldwide is electrical energy. There 

are thankfully solutions to this growing problem.  

Renewable energy is a practical way to produce more energy for humans to use. There are 

many ways that power can be produced from natural phenomena. The general process is to take a 

force that occurs naturally then turn that force into rotational motion to turn a generator. Another 

way is to use solar energy to gather the sun’s rays and send that energy to the grid. A problem that 

occurs with both ways is that the power produced is very inconsistent.  You might have a lot of 
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sunlight and wind one day and none on the next.  That is just one of the challenges that must be 

overcome to better harvest energy from renewable sources.  A slightly more consistent method of 

renewably sourcing energy is with ocean wave power. This is because while waves do change over 

time, they, are generally not bound to follow a day and night cycle like wind and solar are.  

Waves occur naturally in our oceans and lakes and can form from the tides, currents, or 

even wind.  Depending upon the weather conditions around the Wave Energy Converter (WEC) 

power produced can be quite consistent.  “Presently, about 40% of the world’s population lives 

within 100 kilometers of the coast” [2]. Power is best produced where it is used because it saves 

on transmission loses.  WECs are found near coastlines because water is pushed up by the landmass 

and more energy can be extracted.  A common design for WECs is to have a buoy floating on top 

of the water and when a wave passes by the buoy is displaced and rotates a shaft in a generator.  

This method has been proven to work and is currently in use. This type of design is not without its 

problems.  

When the buoy is pushed up from its own buoyancy it causes a high torque on the generator 

shaft. This is good because higher torque means more energy output. The hydrodynamic forces 

acting on a wave energy capture device is geometry specific. For example, the forces when the 

buoy is pushed may not be the same when the buoy is sinking, which results in irregularity of 

forces that need to be dealt with in a specific WEC design. The generator, inverter and all the other 

components must be rated for the highest amount of power produced. Because of these components 

the costs of implementing a WEC system is increased even though it only produces that peak 

power for a short time every cycle. 

This thesis aims to answer the following questions, First; To what extent can PTAR be 

reduced without sacrificing Mean Power? Second; Is modification of inertia beneficial to the WEC 
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by Reducing PTAR and maintaining MP? Third; What parameters affect the PTAR and MP?  All 

of these questions must be investigated with both regular and irregular waves as to provide accurate 

real-world data.   

The outline of this thesis is organized as follows: Chapter 2 describes the literature review, 

research on related papers and topics for reducing the PTAR. Chapter 3 describes the methods that 

are used to develop the models of the systems as well as the models themselves. Chapter 4 shows 

the results of the models used in this analysis. Finally, conclusions and future works are described 

in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter describes some ways that Wave Energy Collectors ,WEC, extract their 

energy. This information was gathered from multiples sources in a literature review.  It also 

describes some of the issues with WECs and some potential solutions to the issues such as 

flywheels.  

2.1 Wave Energy Extraction Techniques 

Wave energy is a renewable energy source that has seen some rise in popularity in the last decade. 

The basic idea is to take energy from waves through the motion of the water.  This energy is later transferred 

to a generator and is send to the grid for common use. There are many different designs for wave energy 

generators, some simply move up and down capturing the vertical motion of the wave with a buoy, some 

hold water in a tank and release it through a turbine. There are even hybrid systems that use multiple forms 

of renewable energy together to provide more consistent power to the grid [3].  Waves acquire their motion 

through wind, ocean currents and even the shape of the ground beneath them.  Because waves add to other 

waves, each one is a unique summation of its components. This means that outside of a lab simulation no 

wave generator will be able to perfectly match the waves it simulated nor the energy extracted. To extract 

a general amount, different designs use different components of the wave’s total energy. For example, a 

slider crank system focuses on the vertical motion, the heave component of the wave set, to turn a shaft and 

generate power.   

2.2 Problems with Wave Energy       

  However, wave energy generation like most other renewable energy is very inconsistent.  It relies 

upon forces of nature which are inherently unpredictable. “Wind turbine provides highly variable power to 

the grid. To smooth this power, the storage device exchanges power with an external network in order to 

smooth the power flow.” [4].  When power is produced through these devices there are many peaks and 

valleys in the power curve.  This is not optimal for putting said power back onto the grid. Ideally power 
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sent to the grid should be a constant value, something easily achievable for a nuclear reactor and gas fed 

turbines but not so for a wave energy generator. Some designs of wave energy generators take this into 

account, somehow storing the energy. For example, there is a design that uses the height of the water in a 

tank as a way to regulate the energy output. The tanks’ intake of water is dependent upon the waves, but it 

constantly releases water through a turbine, so the power out is more consistent. [5]    

One of the most common problems with wave energy generators is the peak to average power ratio [6].   

Having a high ratio makes the PTOS components have to be rated for the highest peak amount produced. 

The system used was modeled with common sinusoidal waves of the same height.  While this is not exactly 

what goes on in nature it is close enough to experiment with another variable, positioning. The next 

simulation that was performed was using linear sets of seven life ring WECs organized in a way to funnel 

the waves to the last set of seven.  When the system was in sync with itself it reduced the peak to average 

ratio. Having the WECs in the type of configuration was found to reduce the peak to average from ten down 

to three.  They went on to further discuss the reduction down to two when they added more friction to the 

system. This made the system overall less efficient but had a better ratio. [6] 

Another way to regulate output power to be more consistent is to store the power in some way. This 

can be with batteries, capacitors or through physical means. One of the ways to store power is to use a 

Flywheel Energy Storage System (FESS).  A FESS uses the rotating kinetic energy to store the energy.  It 

can be reused multiple times and has been shown to work with similar renewable energy systems.  In one 

journal article, [3] a flywheel is used to manage a wind turbine and is proven to smooth the power output.  

A wind turbine is very similar electrically to a wave energy generator.  They both have varying natural 

conditions which lead to large fluctuations in the power output.  In the journal article the feedback loop that 

they use to control the angular speed is shown. Additionally, the authors explain that they keep the flywheel 

within a certain range of angular speed, by varying the torque applied. The wind power system was 

simulated using MATLAB Simulink to find the results of the feedback loop.  

It is very important to model the flywheel correctly accounting for losses, efficiency and state of 

charge.  There were several equations that help model it in this article [7]. The researchers in this article 
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also used a wind farm but with a wave energy system regulated through a flywheel energy storage system. 

They placed the FESS after the wind and wave power and before it is sent to the grid. Having this 

configuration means that if they ever max out the capacity of the flywheel, then the power that is sent to 

the grid is back to being noisy. When the FESS is in a steady state it should adjust the amount of output 

power to meet the average rate coming from its source(s). In this paper an 80 MW wind turbine, a 40-MW 

wave energy collector were used in conjunction, and they were able to derive the stability of the simulated 

system. They concluded that the FESS was effective at raising the bus voltage and smoothing the active 

power fluctuations. They also derived the “complete dynamic equations of the studied system under three-

phase balanced loading conditions” [7] 

When designing/modeling the wave energy converter model, one should keep in mind the 

limitation of using regular waves. Along with that WEC simulation the flywheel energy storage system 

must have proper parameters to smooth the input power. A FESS works best within limited range but still 

achieving the stability. Using a FESS has already been proven to work with wind power smoothing.  Below 

in Fig. 2.1 shows the physical model of the slider crank WEC. 

 

 

Fig 2.1 Example of a Slider Crank WEC Side View   
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CHAPTER 3: METHODOLOGY and MODELS 

 This chapter describes the system models used to simulate the slider crank WEC. To quote the 

statistician George Box “All models are wrong but, some are useful”.  The models are only so accurate 

and verification with real world models still needs to be investigated. This section provides insight on 

how these models are formed and how they function.  

  

3.1  Overall System Models 

The model(s) of this system are designed in MATLAB™/Simulink™ environment. In this study, 

a couple of models were employed, the first at a relatively basic level and then with adding complexity. 

The results of the models can be compared to one another since the details of the basic model are inherent 

to the more complex one. 

In the first model (Fig 3.1), the topology is more focused on the back-end in comparison to the 

complete SC-WEC model in Fig. 3.2. Both models are initialized with a separate MATLAB script that 

determines the wave height and frequency. In these cases, the waves were all of the same height (1 meter) 

and with varying wave periods. Simulink is a block-based Graphical User Interface for MATLAB and, in 

theory everything that is shown in (Fig 3.1) and (Fig 3.2) can be recreated in a script. This was achieved 

for the model in Fig. 3.2, making it quite easy to modify the system variables so that the impact on the 

PTAR and MP analysis can be streamlined. Most of the graphs and figures in this study relied on 2D and 

3D plotting functionality of the programming environment. 

3.2  Simplistic Rotational WEC Back End  

The model in Fig. 3.1 represents the first order equation of motion for a rotational WEC system 

back-end. 

� ���� + �� = �	
� − �
�                          �1� 

�
� = �
��                                                  �2� 
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where J is system inertia constant in kg.m2, B is viscous damping constant in Nm.s/rad, TPTO and TEL  are 

WEC-PTO and electromechanical torque respectively, PEL is the electromechanical power produced and ω 

is the angular velocity in rad/s. 

In the second model shown in Fig. 3.2, the motion of the buoy is assumed to be riding centered at 

a tangent point of the wave and is assumed to be half submerged. The equation that resolves the forces of 

the wave into the forces on the crank shaft of the generator is shown in (3). 

 

  

Fig. 3.1 Model of a simple rotational WEC system back-end 

 

�� + �������� + � ������ − �� 
!� �"����� + #$���� 

= %&��� − %'���     �3� 

where M is the physical mass of the buoy, a∞ is the buoy-added mass at an infinite wave period, z is the 

buoy center of the gravity displacement in the heave direction, Hrad is the radiation impulse response 

function. Furthermore, Sb is the hydrostatic stiffness, Fe is the wave excitation force, and Fu is the PTOS’ 

reactionary force [8]. The reactionary forces are primarily caused by the generator functioning although 

there are other sources including friction and inertia. These reactionary forces take energy away from the 

PTOS. In the case of the generator it is purposeful, generating electricity, however with other reactionary 

forces the end outcome is losses. 
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3.3 Complex Rotational WEC with Resonance Control Strategy 

 

Fig. 3.2 Model of SC-WEC with wave resonance control system 

 

The blocks in the bottom right corner of Fig. 3.2 realizes the right side of (3). The wave excitation 

force Fe (the left most block) in Fig. 3 is preprocessed based on the specific wave pattern (characterized by 

period, height, regularity/irregularity) for semi-submerged spherical buoy geometry. Fe is used in the 

calculation of Fu which moves slider up and down in Fig. 2.1. Corresponding rotational torque produced 

by slider crank linkage is evaluated by “Crankshaft Torque” block in the left middle part of Fig. 3.2. This 

torque eventually rotates the synchronous machine (largest block in Fig. 3.2 located towards the middle) 

for power production. The machine’s speed is controlled by the resonance or phase-lock control algorithm, 

which is realized by the blocks in the upper left corner of Fig. 3.2.  
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This resonance control algorithm was effectively used by the WEC to control the motion of the 

buoy. This in turn helps regulate the power output of the generator. It achieves this by varying the 

electromagnetic torque of the generator itself. For example, imagine the waves powering the PTOS having 

a longer or shorter period then average. The control strategy will change the electromagnetic torque of the 

generator which will reduce or increase the reactionary force of the crankshaft. This then allows it, the 

WEC, to sync up with the PTOS which is directly based off the waves motion again.  

While the process itself is a simple idea, the resonance control strategy takes into account many of 

forces affecting the buoy. With any object there are 6 ways it can move axially, X, Y, Z, also known as 

surge, sway and heave, and rotatory, yaw, pitch and roll. Thankfully with this Slider-crank WEC (SCWEC) 

some of these movements aren’t possible, such as X and Y, because of the geometry of the SCWEC and 

the location of the buoy.  Fig 2.1 shows the motion and the general geometry of a SCWEC.  One of the 

prominent forces is the buoyancy force caused by the displacement of water by the buoy. This doesn’t mean 

that the other forces are not accounted for in the control algorithm. Some of the other forces include the 

radiation force, how much the wave is reflected off the buoy, the force required to accelerate the mass of 

the buoy and of course friction.  These forces are applied by the Resonance control strategy to better regulate 

the motion of the slider crank to be in sync with the wave forces it receives.  

The randomness of the waves simulated is regulated by equation (4) and (5). It generally follows 

approximately a normal distribution and then uses that normal distribution to determine a peak enhancement 

value. )*  is a nondimensional variable that is a function of the wind speed and fetch length, +, is 

the peak frequency of the irregular wave, + is the frequency of the wave components, and -. is the 

peak enhancement factor. [7] 

#�+� = /012
�34�5 +!6exp :− 6; <=>= ?;@ -.                                                         (4) 

A = exp B− C DD>!E
√3G H3I , K = L0.07    + ≤ +,0.09    + > +,                                            (5) 
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)* = STU2
EV W X∗�=��=ZU          (6) 

#∗�+� = 12
�34�5 +!6exp :− 6; <=>= ?;@ -.                 (7) 

�[\ = 2√2]       (8) 

In the above equation (6), �[\ is the significant wave height of the irregular wave (8), and according to the 

equal energy transport theorem significant waves heights (7) are determined. Where ] is the amplitude of 

the regular sinusoidal wave with equal energy. So that the irregular wave has the same amount of energy as 

the regular equivalent.  

 The model utilizing the resonance control algorithm did have some limits, however. Mainly that it 

was limited to some specific waves sets with regular waves. This also translated to irregular waves because 

of how the average wave set was determined. The sets that it was limited to are the 6,7,8,9,10 sec wave 

periods. There were wave sets that are needed to be included specifically the 5 and 11 sec wave sets. To 

have these sets in the code new cases were made for each. Then specific integral formulas were solved with 

Wolfram Alpha™ for the coefficients used in each case. Once these cases were added to the code it allowed 

for a broader set of waves to be studied.    
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CHAPTER 4:  ANALYSIS and RESULTS  

Chapter 4 is the bulk of the research of this thesis. In this section all of the different studies are 

performed along with some analysis of the data collected. Each study used a different model or different 

parameters some building from the conclusions of the previous study.  Both regular and the more real 

world-like irregular waves were used in this section.  

4.1 A Case Study of Changing Phase Angle and Bias of the Generator with Regular Waves 

This study was one of the first analyses investigated for this thesis. It used a basic model (as shown in 

Fig. 3.1) which served to give insight on how the more complicated models would look and behave with 

regular waves. There were six different phases and five biases for each of them. In Fig.4.1a/4.1b each of 

the different phases is represented by a different color, the biases in Nm is measured in the hundreds and 

the power is measured in watts. The phases were     ^ 6`  , ^ 3` , ^ 2` , 2^ 3` , 5^ 6` , ^    and the biases were 

100,200,300,400,500.  Each of these combinations as biases and phases gave a very similar graph seen in 

Fig 4.4. In that figure yellow is output power, blue angular speed of shaft and red required generator torque. 

Bias in this study refers to the average torque required by the generator, the middle of the red sine wave in 

Fig. 4.2.  

 Some observations to note here are that as the bias increased the power fluctuations decreased. Another 

observation is that as the bias was increased the mean power increased and then later decreased. This implies 

that there is a peak point where a specific bias provides the maximum mean power. It should be noted that 

there wasn’t much difference between the different phases. While this wasn’t properly investigated this is 

most likely due to the simplicity of the analysis used. From Fig. 4.2 one can see that once the generator 

reaches steady state the power produced steadily increased.  
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Fig. 4.1a and 4.1b Initial study with phase and generator bias with basic model 

 

 

Fig. 4.2 Workspace graph with Output power, Shaft speed, Required torque   
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4.2  Study of Bias and Phase with Regular Waves in Simple Model   

In this study, the more basic model (Fig 3.1) is used along with the program script equivalent for solving 

the governing differential equation. Since the patterns of wave energy are nearly impossible to control, it is 

much easier to make adjustments to the generator. As a result, effective means of influencing the output 

and thus the PTAR/MP is to vary the parameters of the generator and controller. The parameters that were 

varied in this study were the Bias and the Phase.  

“Bias” is how much average TEL is required by the generator to function in a WEC environment. This is 

called the “fixed torque” in the model. There is also a “fluctuating torque” component in the model, or the 

variation in TEL required by the generator, but that remained constant for the different biases tested.  The 

range of torque tested for the bias in this study was 25 to 150 Nm. This system was simplified down to 

(Fig4.3) where there is both the fluctuating and the constant part of the torque. Assumed variation of TEL 

and TPTO are defined by (9) and (10). 

 

�
� = �
�_$c�d +  �
�_=e'f sin��j�k&� + l�           �9� 

�	
� = �	
�_$c�d +  �	
�_=e'f sin��j�k&��           �10� 

 

where TEL_bias is the bias or average value of TEL, TEL_fluct is the fluctuation amount in TEL, ωwave is the ocean 

wave’s angular frequency, θ is the phase angle for TEL variation in reference to TPTO, TPTO_bias is the bias or 

average value of TPTO and, TPTO_fluct is the fluctuation amount in TPTO.  

“Phase” is a representative of how well the generator torque and the WEC-PTO torque synchronized.  

The phase range in this study was 0 − 2π i.e. a full rotation around the unit circle. In Fig. 4.3, the transfer 

function  Ω�n�/��n� = 1/��n + �� and associated variables given in (9) and (10) are represented using the 

principle of superposition. The results based on the calculations with (Fig. 4.3) were then plotted to see the 

effect of the variables on the peak to average ratio and the average power. The calculations used 50 equally 
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spaced bias and phase values. The differential equation solver was run for 50×50 times to calculate 

corresponding the PTAR and the MP values. During these simulations, the variables that are kept constant 

are as follows: B = 0.875 Nm.s/rad, J = 30 kg/m2, TEL_fluct = TPTO_fluct = 250 Nm, TPTO_bias = 150 Nm, ωwave = 

1 rad/s. The results of these simulations are provided in Fig. 4.4.  

Additional investigation was conducted with increased inertia values. It was observed that the PTAR 

values were effectively reduced in larger bias differences while the MP values stayed relatively constant. 

From (Fig.4.4) a few observations can be more easily made. First, in the green surface of the MP, the 

closer the phase is to zero or 2π, the lower the average power is. This result is as expected where the more 

in sync the electromechanical torque is with the PTO torque, the less power is produced. The bias difference 

(TPTO_bias – TEL_bias) had a similar effect on the average amount of power produced. In (Fig.4.4) the green 

dome shaped surface is the MP and overlaid with the PTAR surface in red. It is important to note in (Fig.4.4) 

that while the PTAR is unitless and the MP is measured in kilowatts, the MP had to be scaled down so the 

comparison is more clear. One of the bigger challenges with wave energy generators is the peak to average 

power ratio [8]. While it is possible to reduce the PTAR even more as the red graph indicates, the average 

power that is produced decreases dramatically as well. Both the bias and the phase had drastic effects on 

the PTAR.  As phase decreased, the PTAR also increased. The more in phase TEL was with TPTO, the greater 

the PTAR. It was also observed that as the bias difference is at the extremes, the PTAR reached its extreme 

values as well. Therefore, these results show that there is a delicate balance between the MP and the PTAR. 

As the PTAR is reduced, sacrifices in the MP must be made. 

 

Fig.4.3 Model of rotational WEC with the torque components   
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In (Fig. 4.3), the symbols ω1, ω2 refer to the rotational speed of the shaft with fluctuating and average 

components. In Fig.4.4, the peak MP occurs at θ=2.17 rad and a bias difference of 43.36 Nm. The graph 

has been scaled down by a factor of 500 and the maximum value of MP is 8.18 kW. This peak point has a 

corresponding PTAR value of 3.91. A few other points on the surface have been investigated around this 

peak MP point and some comparisons are made. A 2.5% change in the PTAR has an associated 6% 

reduction in the MP. This trend becomes even more dramatic the farther from the peak MP one gets. As the 

3D surfaces clearly reveal, an attempt to reduce the PTAR has to be traded with a larger reduction in the 

MP. 

In this 3D surface plot of the MP and the PTAR, the x-axis represents the bias difference (TPTO_bias – 

TEL_bias) and the y-axis represents the phase (θ). 

 

Fig.4.4 3D surfaces of PTAR (red) and MP (green) in an elementary rotational WEC system 
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4.3  Study of Phase and Time delay in Complex WEC System with Regular Waves  

In this step of the investigation, the more complex WEC system (Fig.3.2) has been used. A 

similar study was conducted in the literature to maximize MP only [10]. In this study, the 

parameters modified for testing were phase difference and wave frequency. The phase difference 

identifies the phase difference between wave excitation force Fe(t) and the buoy velocity functions. 

Normally, these two functions are in-phase for reactive control methodology applied in this WEC 

system [10].  The reason for not modifying bias with this model is that increased TEL results in 

increased angular speed. Since a resonance control mechanism was utilized in this WEC model, 

angular speed needs to be kept at a value proportional to the wave frequency. Therefore, this 

prevents the user from modifying TEL bias unless the control algorithm is fundamentally modified. 

The simulation was run over 500 seconds and data points were collected for each wave 

frequency set. The wave frequency sets were regular waves with heights of 1 meter and frequencies 

of 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11 Hz. The phase difference (or time delay) range was from −1.5 

seconds to 1.5 seconds. This means that, in the simulation, the time it took for the wave to travel 

one cycle or peak to peak was 5, 6...11 seconds. With each of the different wave sets the same 

range of time delay was used, i.e. −1.5 s to 1.5 s.  This made different angle modifiers for each of 

the wave sets because they had different periods. This angle range was as wide as +/−108 degrees 

for the 1/5 Hz set and as narrow as +/−50 degrees for the 1/11 Hz set.   

Each of the different wave sets was run by modifying the time delay difference by 0.1 seconds 

for a total of 30 cases for each wave set. The results are shown in Fig. 4.5. At the end of each 

simulation, MP and PTAR values were first collected and then graphed. Only the data in the angle 

range of −50 to 50 degrees was used for consistency, since the values outside this range resulted 

in large deviations in PTAR and MP. Once the PTAR data points for each of the wave sets was 
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collected and graphed, a polyfit curve (in MS ExcelTM) was created for each to determine their 

lowest PTAR. Then the global minimum PTAR of all of the waves together was calculated by 

using the polyfit function again. That was determined to be a PTAR of about 2.5 and that occurred 

at around −14 degrees.  This means that the lowest PTAR happens when there is a varying time 

delay of −0.1 to −0.2 seconds depending on the wave sets of 1/5 Hz to 1/11 Hz.  It was also 

observed that overall PTAR values decreased with decreasing wave frequencies. 

There was another brief study done with the data and that compared the MP to the phase 

difference angle (Fig. 4.6). This study showed that the overall maximum MP was produced when 

there was an angle of zero (as expected from the linear potential flow theory). It was observed that 

the maximum power on average was produced when there was no angle difference or no time 

delay. 

 

Fig.4.5 The PTAR of wave sets with varying period vs phase difference in degrees 
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Fig.4.6 Mean power of wave sets with varying periods vs phase difference in degrees 

 

4.4  Best Case Index  

These two facts resulted in conflicting outcomes. One that says the lowest/best PTAR needs a 

time delay of 0.1 s and another that says the greatest/best MP needs a zero time delay. One way to 

resolve this issue is via a best-case index. This allows for weights to be put on each of the variables 

and then the sum of each weighted variable is compared to one another. The idea of the best-case 

index is to minimize the value of PTAR and maximize the value of MP for the purpose of achieving 

most cost-effective operation corresponding to the largest value of best-case index. To create this 

best-case index (BCI), first the average PTAR and average MP for the entire range of values must 

be calculated. Then that value(s) is(are) divided by each of the respective PTAR or MP for the 

specific value that is being observed. For PTAR, the goal is to minimize, so the variable must be 

in the denominator or raised to the power of −1. For MP, the goal is to maximize, so the variable 

must be in the numerator. Each of the two variables is then divided by their respective overall 
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average value to arrive at normalized values. Next the normalized values are multiplied by their 

weights. Finally, the numbers are summed together to give a numerical value with which that set 

of data can be evaluated. This is expressed in (11) below. With this equation, the weights assigned 

to each variable are arbitrary as there is no specific metric or guideline to put more importance on 

PTAR or MP. However, a case study can be put forth for a specific range of weights. Therefore, 

using this weighted approach (11), one can maximize BCI for a specific range of W1 and W2. 

�pq = r1 ∗ s ��]t��]tuk1v!E + r2 ∗ s ����uk1v       �11� 

 

Table 4.1 lists the evaluated BCI values for different weights and wave periods. With this method 

the greater the number the better.  Highlighted green rows show the largest overall BCI for the 

specific group of weights. According to these results, identical weight values for PTAR and MP 

results in a best value at a time delay of −0.1 s. If the weight for PTAR is doubled while keeping 

the weight for MP the same, the result is still a best value at a time delay of −0.1 s. However, if 

the weight of MP is doubled while keeping the weight for PTAR at 1, the result is a best value at 

a time delay of 0 s. 
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TABLE 4.1  Best Case Index (BCI) for Different Weights and Wave Periods 

Parameters BCI for each wave period 

W1 W2 Time 

Delay (s) 

5s 6s 7s 8s 9s 10s 11s 

1 1 −0.2 2.02 1.47 1.30 1.26 1.24 1.29 1.28 

1 1 −0.1 2.06 1.50 1.32 1.28 1.27 1.31 1.31 

1 1 0 2.06 1.49 1.32 1.28 1.26 1.31 1.30 

1 1 0.1 2.01 1.46 1.29 1.25 1.24 1.28 1.27 

1 1 0.2 1.92 1.39 1.23 1.19 1.18 1.22 1.22 

2 1 -0.2 3.05 2.20 1.96 1.91 1.89 1.95 1.93 

2 1 -0.1 3.09 2.23 1.98 1.93 1.91 1.98 1.95 

2 1 0 3.07 2.22 1.97 1.92 1.90 1.97 1.94 

2 1 0.1 3.00 2.16 1.92 1.87 1.86 1.92 1.89 

2 1 0.2 2.86 2.06 1.84 1.79 1.77 1.83 1.81 

1 2 -0.2 3.02 2.20 1.94 1.86 1.84 1.91 1.91 

1 2 -0.1 3.09 2.26 1.99 1.91 1.89 1.96 1.96 

1 2 0 3.10 2.26 1.99 1.91 1.89 1.97 1.97 

1 2 0.1 3.03 2.21 1.95 1.87 1.85 1.92 1.93 

1 2 0.2 2.90 2.12 1.86 1.79 1.77 1.84 1.84 

 

 

4.5  Study of Inertia and Friction in Complex WEC  

 In this study there were several sets of waves studied. As previously mentioned, the wave sets 

with 5s and 11s peak periods had to be added as cases to the code. These sets were not included in the 

original code and required some additional integral solving. As with the previous studies the output 

parameters were PTAR and MP. The range of inertia studied was 10, 15, 20 kg.m2. The range of the 

friction parameter was 0, 0.005, 0.01, 0.015, 0.02. The friction had a unit of Nm.s/rad that is used very 

similar to damping in this model.  In this study the optimal time delay was used, -0.1 seconds, to 

potentially reduce PTAR as the previous study in section 4.4 revealed. When calculating the peak to 

average ratio the last 40 percent of the simulation data was used. This was to ensure that the WEC was at 

steady state. Below is the data for the 8 second waves set both regular and irregular cases.  

4.5.1     Regular Waves 
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With the regular waves a total simulation time was 120 seconds. The graph for wave set period 8 

seconds is shown in Fig 4.7. From the graph it shows that as friction increases, the overall MP decreases. 

This makes sense as more energy is lost due to friction the less electricity is produced. It can also be 

observed that when the inertia increases the MP stays almost the exactly the same.  In Fig. 4.8 the PTAR 

increased for friction values greater than 0.005. When more inertia was added the PTAR decreased but 

this additional amount was very minimal and it was less than 1% of the previous PTAR value. Also, it is 

important to note that when the friction is very low, the WEC control system was unstable. This study 

originally included an inertia value of 5 kg.m2 ,but the data from those simulations was extremely erratic, 

on a scale of 100 times the other PTAR values, and thus wasn’t included in the graphs.   

 

Fig. 4.7 Mean Power for 8 Second Period Regular Waves 
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Fig. 4.8 Peak to Average Ratio 8 Second Regular Waves 

4.5.2     Irregular Waves 

 When running the model in Simulink the time period of 500 seconds had to be used for the 

irregular waves. This particular WEC takes longer to yield approximately consistent results from one data 

set to another with irregular waves, which is the reason for the extended time. The PTAR and the MP can 

still be compared because PTAR and MP can be evaluated for any length of time. Once again irregular 

waves are more comparable to the real-world environment. In the MP graph of Fig 4.9 one can see that 

the general trend for friction is still the same. MP decreasing as the friction increases. With the inertia 

however, MP increased when more inertia was added. More power was produced over time when there 

was more inertia in the system.  From the PTAR graph of Fig 4.10 it makes a much more interesting V-

shape. With friction the PTAR follows the same trend as the 8 sec regular waves, as friction is increased 

the PTAR also increased. What is more interesting is that when the inertia is ran through its range, the 
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one is that this particular model, the complex with resonance control strategy, was initially optimized 

using that value for inertia. That way it would give the lowest PTAR with that inertia value and higher 

values of PTAR for any other inertia besides 15 kg.m2.  

 

Fig. 4.9 Mean Power for 8 Second Period Irregular Waves 
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Fig. 4.10 Peak to Average Ratio for 8 Second Period Irregular Waves 
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with the peak period being 8 seconds, but the control strategy is not aware of the peak period, so it is 

working very hard to keep the generator in resonance with the waves. These facts together give a reason 

that the MP is lower in the irregular waves. The MP extracted by the irregular waves is approximately 2/3 

the power extracted by the regular waves. The PTAR is also significantly higher in irregular then regular 

due to similar reasons.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK   

There are multiple factors that influence the Peak to Average Ratio and the Mean Power in the wave 

energy conversion process. However, many of these factors are not independent of each other. As a result, 

a positive effect on the PTAR might cause a negative effect on the MP and vice versa.  This conclusion 

can be drawn from the results discussed in Chapter 4. In the graph modifying bias and phase, there is a 

maximum mean power, i.e. the top of the dome shaped surface. This correlates to a PTAR that is not the 

lowest in the data set. One can reduce the PTAR, but at the expense of the MP. Since production of power 

is the main objective of a generator, it would be counterintuitive to do this.  

5.1  Research Questions   

To what extent can PTAR be reduced without sacrificing Mean Power?  

Another significant observation from this thesis is the fact that the PTAR can not only be modified to 

any value by a phase difference between wave excitation force and buoy velocity, but it can also be 

reduced to an extent by it. An interesting observation is that the wave frequency is not noticed to affect 

where the peak power is produced. Highest mean power is always produced at a 0 sec time delay or 0° 

phase difference. A compromise between the MP and the PTAR is finally defined with a best-case index 

(BCI). It has been shown that similar weights given to the MP and the PTAR would result in a specific 

phase difference setting in the resonance control algorithm. The phase difference is only eliminated with 

the MP weight values being twice the PTAR weight values.  

Is modification of inertia beneficial to the WEC by Reducing PTAR and maintaining MP?  

With the last study one can easily conclude that there is a major difference in the effectiveness of this 

WEC when comparing regular and irregular waves. When comparing regular to irregular waves in this 

WEC model, PTAR is increased and MP is decreased in the irregular case. This is more indicative of a 

real-world situation where this WEC and control strategy is employed. There are indeed some trends that 

are independent of wave type. Increased friction decreases the MP and increases the PTAR regardless of 

wave type. The control strategy for the complex WEC model has the greatest effect on PTAR when the 
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inertia is set to be 15 kg.m2.  When the inertia is increased beyond 15 kg.m2 the MP increases and so does 

the PTAR. When the inertia was changed it did have an effect on the MP and PTAR but both effects were 

minimal in a controlled WEC environment.    

What parameters affect the PTAR and MP?  

 The phase delay had the largest impact in MP and PTAR. This was concluded in section 4.3. When 

the phase delay was +/- 50 degrees the PTAR was reduced substantially. The bias between the generator 

torque and PTO torque was an additional factor that reduced PTAR. However, this cannot be 

implemented with the complex resonance control WEC environment. The inertia also had an effect on the 

PTAR but it was less than 1% when increasing it by 5 kg.m2.  

5.2  Future Work 

The observations and findings from the models investigated in this study call for a need for more 

complex models of the slider crank WEC. Future research efforts should try and utilize models that 

employ other methods and strategies, such as flywheels, to help regulate the PTAR and the MP of the 

WEC. Additionally, working with a hardware in the loop system can possible help answer some questions 

that arose from this thesis. Namely, a cost analysis that would allow one to determine an estimated cost 

reduction from using less versatile electrical components. A study involving the energy savings a 

flywheel energy storage system would also be informative.  
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APPENDIX A: SOURCE CODE 

 

%% Irregular Wave Force Generation “Irregular_Wave_Force.m” 

 

clear;clc;close all; 
%========================================================================% 
% initial inertia: 10  
% initial viscous friction coefficient: 0.32 

  
%========================================================================% 
%Callback for the simulink model 
Ts=20e-6; % Sampling time 
Td=1e-3; % Discrete Sampling time 

  
%%% setting 1 %%% 
gr=110;    % Gear ratio 
%====================== 
aa=20e-6/(.5+20e-6); 

  
%========================================================================% 
%Slider-Crank initialization 
global r                    % Radius of crank. used again in the rk4sys_step 

function and slider crank function. 
global l                    % Length of rod, used again in the slider crank 

function. 
global dr_dsb                   % (Used to be r+A) Distance between the 

lowest edge of the crank and the reference water surface 
r=.5;                    % Radius of crank. used again in the rk4sys_step 

function and slider crank function. 
l=1;                      % Length of rod, used again in the slider crank 

function. 
lambda=r/l;               % used again in the slider crank function. 
B=0.01;                  % Viscous friction, used again in the slider crank 

function. 
J=10;                   % inertia of flywheel, used again in the slider crank 

function. 
dr_dsb=l;                   % (Used to be r+A) Distance between the lowest 

edge of the crank and the reference water surface 
mcrp=10;                % Total of mass of piston (or slider) and connecting 

rod respectively. 

  
%========================================================================% 
% Hydrodynamics initialization (frequency domain) 
delta_omega=0.01; 
omega=0.5:delta_omega:1.4; 
N=length(omega); 
fn=omega/2/pi;% frequencies of the wave components 
%%%========================================%%% 
%%% Settings for irregular wave parameters %%% 
% Equivalent energy transfer: Hm0=2*sqrt(2)*A  (A is the amplitude of the 

regular wave) 
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Hm0=sqrt(2); % significant wave height of the irregular wave. The same value 

is used as that in "Effect of..." 
Tp=6; % If this changes, int_S_star has to be recalculated. Peak period of 

the irregular wave. In "Effect of...", they used an average period of 6. We 

can use our own to make the spectrum fit our need. 
%%%========================================%%% 
fp=1/Tp; 
g=9.81; % gravity acceleration 
rho=1020;% water density 

  
%========================================================================% 
% Choose Spectrum for the System: 
flag = 1; % 0 for Breschneider model and 1 for JONSWAP Model 

  
switch flag 
    case 0 
% =====================  Bretschneider model  ============================% 
%         R=(Tp/1.057)^(-4); % These are calculated separately for the sake 

of the organing the formula 
%         Q=R*Hm0^2/4;% These are calculated separately for the sake of the 

organing the formula 
%         S=Q*fn.^(-5).*exp(-R*fn.^(-4)); % Bretschneider spectrum ("sea 

spectra revisited" or MIT OCW slides) 
        S=Hm0^2/4*(1.057*fp)^4*fn.^(-5).*exp(-5/4*(fp./fn).^4); %According to 

WEC_Sim_User_Manual_v1.0.pdf 
    case 1 
% =====================  JONSWAP Model ==================================% 
        m0=sqrt(Hm0/4); % wave field variance. See "On control ...". 
        %alpha=0.0081; % a given constant which is used in most references, 

see "sea spectra revisited". 
        gamma=6;% If this changes, int_S_star has to be recalculated. The 

average of gamma is 3.3 (see "sea spectra revisited"). enhancement factor by 

which the P_M peak energy is multiplied to get the peak energy value of the 

spectrum. 
        %Increasing gamma has the effect of reducing the spectral bandwidth, 
        %thereby increasing periodicity of the wave field. See "On control 

...". 
        for i2=1:N 
            if fn(i2)<=fp 
                sigma=0.07;%if f<fp  sigma is the width factor of the 

enhanced peak, see "sea spectra revisited". The numbers are given in "sea 

spectra revisited". 
            elseif fn(i2)>fp 
                sigma=0.09;%if f>fp 
            end 
            

%====================================================================% 
            % the following eqn is from On Control of a Pitching and Surging 

Wave Energy Converter-HYavuz.pdf 
            %     S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-

5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)/fp-1/(2*sigma^2))); 
            

%====================================================================% 
            % the following eqn is from sea_spectra_revisited.pdf and 

Measurements of wind-wave growth and swell decay during the Joint North Sea 

Wave Project (JONSWAP)_Jonswap-Hasselmann1973.pdf 
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            %     S(i2)=alpha*g^2*(2*pi)^(-4)*fn(i2)^(-5)*exp(-

5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)-fp)^2/(2*sigma^2*fp^2)); 
            

%====================================================================% 
            % The following eqn uses basic spectrum from "On control ..." and 

peak enhancement factor from "Sea_spectra_revisited". 
            S(i2)=5*m0/fp*((fp/fn(i2))^5)*exp(-

5/4*((fp/fn(i2))^4))*gamma^exp(-(fn(i2)-fp)^2/(2*sigma^2*fp^2)); 
            

%====================================================================% 
            % The following eqn is according to WEC_Sim_User_Manual_v1.0.pdf 
            % integral of 
            % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-

1)/(sqrt(2)*0.07))^2) 
            % from 0 to 0.125 = 37.61 calculated by Wolframalpha 
            % integral of 
            % 9.81^2/(2*pi)^4*x^(-5)*exp(-5/4*(0.125/x)^4)*6^exp(-((x/0.125-

1)/(sqrt(2)*0.09))^2) 
            % from 0.125 to infinity=65.8056 calculated by Wolframalpha 
            switch Tp 

                case 5  

                    int_S_star=5.7388+10.0411; 
                case 6 
                    int_S_star=11.9001+20.8213; 
                case 7 
                    int_S_star=22.0463+38.574; 
                case 8 
                    int_S_star=37.61+65.8056; 
                case 9 
                    int_S_star=60.244+105.408; 
                case 10 
                    int_S_star=91.8214+160.658; 

                case 11 

                    int_S_star=134.436+235.22 
            end 
            alpha=Hm0^2/(int_S_star*16); %int_S_star should be changed when 

Tp or gamma changes. 
            GAMMA=exp(-((fn(i2)/fp-1)/(sqrt(2)*sigma))^2); 
            S(i2)=alpha*g^2/(2*pi)^4*fn(i2)^(-5)*exp(-

5/4*(fp/fn(i2))^4)*gamma^GAMMA; 
        end 
end 
 plot(omega/(2*pi),S) 
 grid on 
 axis([0.08 0.26 0 3.5]) 
 xlabel('f (Hz)') 
 ylabel('Spectral Density (m^2s)') 
 title('JONSWAP Spectrum') 

  
%========================================================================% 
% Wave elevation and excitation force (time domain) 
Start_Time=0;             % time start 
End_Time=500;             % final time 
Interval=0.01;            % sampling time interval 
t=Start_Time:Interval:End_Time; 
M=length(t); 
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%%% setting 2 %%% 
a=5; % buoy radius 
%====================== 
c=rho*g*pi*a^2; % a coefficient that is used later 
%%% setting 3 %%% 
A=sqrt(2*S*delta_omega/2/pi); % calculate amplitude for each wave component 
%====================== 
%%% setting 5 %%% 
Phase=2*pi*rand(1,N); % randomly generate the initial phase of each wave 

component 
%====================== 

  
Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0]'; 
Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 0.4698 

0.4464 0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 0.4471 

0.4574 0.4647 0.4700 0.4740 0.4771]'; 
Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 

0.2691 0.2484 0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 

0.0066 0.0040 0.0026 0.0017 0.0012]'; 
len=length(Ka); 
kappa=zeros(1,len); 
imkap=zeros(1,len); 
rekap=zeros(1,len); 
mm=rho*(2*pi/3)*a^3; 
Sb=rho*g*pi*a^2;%785890; 
kappa(1)=1; 
imkap(1)= 2*Damping(1)*Ka(1)/3; 
rekap(1)= sqrt(kappa(1)^2-imkap(1)^2); 
for j=2:len 
    kappa(j)= sqrt(4*Damping(j)/(3*pi*Ka(j))); 
    imkap(j)= 2*Damping(j)*Ka(j)/3; 
    rekap(j)= sqrt(kappa(j)^2-imkap(j)^2); 
end 

  
Kaq=omega.^2/g*a; 
kappa_im=zeros(1,N); 
kappa_re=zeros(1,N); 
kappa_angle=zeros(1,N); 
kappa_abs=zeros(1,N); 
for i1=1:N 
    kappa_abs(i1)=interp1(Ka,kappa,Kaq(i1),'cubic'); 
    kappa_im(i1)=interp1(Ka,imkap,Kaq(i1),'cubic'); 
    kappa_re(i1)=interp1(Ka,rekap,Kaq(i1),'cubic'); 
    kappa_angle(i1)=atan(kappa_im(i1)/kappa_re(i1)); 
end 
%%% 
% kap=0.502764572022028; 
%%% 
% eta=zeros(1,M); 
% Fe=zeros(1,M); % initialization for wave force at each time point 
Fe=@(t)0; 
eta_total=@(t)0; 
%%% setting 5 %%% 
% omega=2*pi/6*ones(1,N); 
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% kappa_angle=0; 
%====================== 
for i=1:N 
    eta{i}=@(t)A(i)*sin(omega(i)*t+Phase(i)+kappa_angle(i)); 
    Fe_components{i}=@(t)c*kappa_abs(i)*eta{i}(t); 
    Fe=@(t)Fe(t)+Fe_components{i}(t); 
    eta_total=@(t)eta_total(t)+eta{i}(t); 
end 
% 

Fe=@(t)kap*rho*g*pi*a^2*(eta{1}(t)+eta{2}(t)+eta{3}(t)+eta{4}(t)+eta{5}(t)+et

a{6}(t)+eta{7}(t)+eta{8}(t)+eta{9}(t)+eta{10}(t));%zw(t); 

  
% for i=1:M 
%     eta(i)=sum(A.*sin(omega*t(i)+Phase)); 
%     Fe(i)=sum(c*kappa_abs.*A.*sin(omega*t(i)+Phase+kappa_angle)); 
% end 
figure; 
% subplot(2,1,1) 
% plot(t,eta); 
% grid 
% title('wave elevation') 

  
% subplot(2,1,2) 
plot(t,Fe(t)); 
grid 
%title('excitation force') 
xlabel('Time(s)') 
ylabel('Excitation Force') 
% hold on; 
figure; 
plot(t,eta_total(t)); 
grid 
title('wave elevation') 
Ocean_Wave_AccP.signals.values=Fe(t)'; 
Ocean_Wave_AccP.time=t'; 
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%% Regular Wave Force Generation “mechanical_energy.m” 

 
% clear;clc;close all; 
%========================================================================% 
% initial inertia: 10  
% initial viscous friction coefficient: 0.32 

  
%========================================================================% 
%Callback for the simulink model 
Ts=20e-6; % Sampling time 
T_d=1e-3; % Discrete Sampling time 

  
%%% setting 1 %%% 
gr=110;    % Gear ratio 
%====================== 
aa=20e-6/(.5+20e-6); 

  
%========================================================================% 
%===========================Initialization===============================% 

  
% global Interval A r l lambda B J L_af V_f r_f I_f L_aa r_a kv dr m R Sb 

  
% %Hydrodynamics initialization 
% Start_Time=0;             % time start 
% End_Time=500;              % final time 
% Interval=0.01;            % simpling time interval 
rho=1020;                 % the density of water 
g=9.81;                   % acceleration of gravity 
a=5;%0.9533;                 % buoy radius 
% Rv=10;                 % Viscous force coefficient 
% Rf=0;                     % Friction force coefficient 
%  
% %omega=1;                  % The angular velocity of water wave  
% A=0.5;                    % The maximum amplitude of water wave, 

initialized again in the slider crank function. 
% f=1/10;                     % The frequency of water wave  
% omega=2*pi*f;             % The angular velocity of water wave  
% k=omega^2/g;              % Wave number for infinite water depth 
% Kaq=k*a;                  % ka 
%  
% zw=@(t)A*sin(omega*t+288*pi/180);    % the function of water wave 

  
%Slider-Crank initialization 
global r                    % Radius of crank. used again in the rk4sys_step 

function and slider crank function. 
global l                    % Length of rod, used again in the slider crank 

function. 
global dr_dsb                   % (Used to be r+A) Distance between the 

lowest edge of the crank and the reference water surface 
r=0.5;                    % Radius of crank. used again in the rk4sys_step 

function and slider crank function. 
l=1;                      % Length of rod, used again in the slider crank 

function. 
lambda=r/l;               % used again in the slider crank function. 
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B=0.01;                  % Viscous friction, used again in the slider crank 

function. 
J=10;                   % inertia of flywheel, used again in the slider crank 

function. 
dr_dsb=l;                % sqrt(l^2-r^2);                 % Distance between 

the lowest edge of the crank and the reference water surface 
mcrp=10;                % Total of mass of piston (or slider) and connecting 

rod respectively. 

  
%Fu=zeros(1,(End_Time-Start_Time)/Interval+1); 

  
% %Generator initialization 
% L_af = 1.234; % Mutual inductance between the field and the rotating 

armature coils. 
% V_f = 220; % Field voltage.  
% r_f = 150; % Resistance of field windings 
% I_f = V_f/r_f; % Current of field windings  
% L_aa = 0.016; % Self-inductance of the field and armature windings. 
% r_a = 0.78;  % Resistance of the armature coils. 
% kv = L_af*I_f; % Stator constant 

  
%========================================================================% 
% %===Calculating mu, epsilon and kappa through graphical observation======% 
%  
% Ka=[0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0]'; 
% Amass=[0.8310 0.8764 0.8627 0.7938 0.7157 0.6452 0.5861 0.5381 0.4999 

0.4698 0.4464 0.4284 0.4047 0.3924 0.3871 0.3864 0.3884 0.3988 0.4111 0.4322 

0.4471 0.4574 0.4647 0.4700 0.4740 0.4771]'; 
% Damping=[0 0.1036 0.1816 0.2793 0.3254 0.3410 0.3391 0.3271 0.3098 0.2899 

0.2691 0.2484 0.2096 0.1756 0.1469 0.1229 0.1031 0.0674 0.0452 0.0219 0.0116 

0.0066 0.0040 0.0026 0.0017 0.0012]'; 
%  
% kappa(1)=1; 
% for i=2:length(Ka) 
%     kappa(i)=sqrt(4*Damping(i)/(3*pi*Ka(i))); 
% end 
%  
% Mu = interp1(Ka,Amass,Kaq','cubic'); 
% Ep = interp1(Ka,Damping,Kaq','cubic'); 
% kap= interp1(Ka,kappa,Kaq','cubic'); 

  
%========================================================================% 
%Calculating Coefficients of the Differential Equation of Buoy Displacement 
dr_dsb=1; 
Sb=rho*g*pi*a^2;%785890; 
mm=rho*(2*pi/3)*a^3; 
% m=mm*(1+Mu);%267040+156940; 
% R=Rv+Rf+Ep*omega*mm;%91520; 
% Fe=@(t)kap*rho*g*pi*a^2*zw(t); 
% t = Start_Time:Interval:End_Time; 

  
% figure; 
% % subplot(2,1,1) 
% % plot(t,eta); 
% % grid 
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% % title('wave elevation') 
%  
% % subplot(2,1,2) 
% plot(t,Fe(t)); 
% grid 
% title('excitation force') 
% % hold on; 
% figure; 
% plot(t,zw(t)); 
% grid 
% title('wave elevation') 
% Ocean_Wave_AccP.signals.values=Fe(t)'; 
% Ocean_Wave_AccP.time=t'; 

  
%Call to find initial angle 
Theta_Initial=Initial_Angle_Solver(); 
[bs,as]=RadiationKomega(a,T_d); 
% load az 
% load bz 
Wave_Analysis; 

  
%Calculate initial position in case of complex conjugate control 
% init_z=-max((Fe(t)/(4*R*pi*f))) 

 

 

 

 

 

 

%% Peak to average Ratio script %% 

 

 

 

format short  

format compact 

starti=round(0.4*length(Power.time)); % Last 40% of data 

Average_Power=max(Energy)/End_time    %Evaluated for end time 

Max_p = max(Power.Data(start:end)) 

Mean_p = mean(Power.Data(starti:end)) 

PTARC = Max_p/Mean_p              % Named PTARC b/c matlab naming convention 
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%% Initial angel solver function “Initial_Angle_Solver.m” 

 
function Theta_Initial=Initial_Angle_Solver() 
format long; 
%========================================================================% 
%Slider-Crank initialization 

  
global r                    % Radius of crank. used again in the rk4sys_step 

function and slider crank function. 
global l                    % Length of rod, used again in the slider crank 

function. 
global dr_dsb                   % (Used to be r+A) Distance between the 

lowest edge of the crank and the reference water surface 
%========================================================================% 

  
f1=@(u)(dr_dsb-sqrt(l^2-(r*sin(u))^2))/r; 
f2=@(u)cos(u); 
Theta_Initial=pi/2; 
err=1; 
while err>1e-12 
    f1n=f1(Theta_Initial); 
    f2n=f2(Theta_Initial); 
    Theta_Initial=acos(f1n); 
    err=abs(f1n-f2n); 
end 
disp('The Initial Angle is (in radian): '); 
disp(Theta_Initial); 
disp('In degrees: '); 
disp(Theta_Initial/pi*180); 
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APPENDIX B: DATA TABLES 

Data from Study 4. Regular and Irregular waves. The sets with the inertia being 5 were not used 

in the above graphs and as one can see from the tables below those data entries are quite erratic.  

 

Regular Waves 
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Regular 

Wave (Period) J B Time (120s) MP PTAR

5 5 0 1.0395E+07 506.82

5 5 0.005 1.16E+07 903.88

5 5 0.01 1.0704E+07 499.35

5 5 0.015 1.16E+07 1547

5 5 0.02 1.15E+07 452

5 10 0 2.82E+04 3.977

5 10 0.005 2.82E+04 3.9877

5 10 0.01 2.81E+04 3.9979

5 10 0.015 2.80E+04 4.008

5 10 0.02 2.79E+04 4.0183

5 15 0 2.82E+04 3.999

5 15 0.005 2.82E+04 4.0092

5 15 0.01 2.81E+04 4.0194

5 15 0.015 2.80E+04 4.0297

5 15 0.02 2.79E+04 4.04

5 20 0 2.82E+04 4.0183

5 20 0.005 2.82E+04 4.0285

5 20 0.01 2.81E+04 4.0388

5 20 0.015 2.80E+04 4.0491

5 20 0.02 2.79E+04 4.0595

Wave (Period) J B MP PTAR

6 5 0 1.16E+07 961.91

6 5 0.005 1.15E+07 446.51

6 5 0.01 1.14E+07 1.93E+03

6 5 0.015 1.17E+07 1.55E+03

6 5 0.02 1.14E+07 431.7

6 10 0 3.82E+04 2.7991

6 10 0.005 3.82E+04 2.8022

6 10 0.01 3.81E+04 2.8053

6 10 0.015 3.80E+04 2.8084

6 10 0.02 3.80E+04 2.8116

6 15 0 3.82E+04 2.108

6 15 0.005 3.82E+04 2.8139  
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Wave (Period) J B MP PTAR

7 5 0 11782000 443.78

7 5 0.005 11818000 633.23

7 5 0.01 11581000 2512

7 5 0.015 11706000 538.46

7 5 0.02 11689000 353.58

7 10 0 43217 2.6754

7 10 0.005 43168 2.677

7 10 0.01 43180 2.679

7 10 0.015 43071 2.681

7 10 0.02 43022 2.6829

7 15 0 43240 2.6862

7 15 0.005 43156 2.6881

7 15 0.01 43107 2.69

7 15 0.015 43058 2.6919

7 15 0.02 43009 2.6937

7 20 0 43192 2.6973

7 20 0.005 43143 2.6992

7 20 0.01 43094 2.7011

7 20 0.015 43045 2.703

7 20 0.02 42997 2.7049

Wave (Period) J B MP PTAR

8 5 0 11756000 426

8 5 0.005 11809000 1243.1

8 5 0.01 11614000 389.46

8 5 0.015 11757000 506

8 5 0.02 11692000 1636.9

8 10 0 45760 2.611

8 10 0.005 45722 2.6123

8 10 0.01 45685 2.6136

8 10 0.015 45648 2.6149

8 10 0.02 45610 2.6162

8 15 0 45759 2.603

8 15 0.005 45722 2.6216

8 15 0.01 45684 2.6229

8 15 0.015 45647 2.6242

8 15 0.02 45610 2.6255

8 20 0 45758 2.6297

8 20 0.005 45721 2.631

8 20 0.01 45684 2.6324  
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Wave (Period) J B MP PTAR

9 5 0 11614000 570.95

9 5 0.005 11401000 1694.7

9 5 0.01 11487000 2021.1

9 5 0.015 11735000 540.6

9 5 0.02 11700000 1070.9

9 10 0 45835 2.5947

9 10 0.005 45805 2.5957

9 10 0.01 45776 2.5967

9 10 0.015 45746 2.5977

9 10 0.02 45717 2.5987

9 15 0 45836 2.6034

9 15 0.005 45807 2.6044

9 15 0.01 45777 2.6055

9 15 0.015 45748 2.6065

9 15 0.02 45718 2.6075

9 20 0 45838 2.6121

9 20 0.005 45808 2.6131

9 20 0.01 45779 2.6142

9 20 0.015 45749 2.6152

9 20 0.02 45720 2.6162

Wave (Period) J B MP PTAR

10 5 0 11411700 1823.8

10 5 0.005 11519000 9094.9

10 5 0.01 11519000 9094.9

10 5 0.015 1.1702 404.36

10 5 0.02 11749000 376.28

10 10 0 43816 2.6638

10 10 0.005 43792 2.6647

10 10 0.01 43768 2.6656

10 10 0.015 43744 2.6665

10 10 0.02 43720 2.6674

10 15 0 43813 2.6724

10 15 0.005 43789 2.6733

10 15 0.01 43765 2.6742

10 15 0.015 43741 2.6751

10 15 0.02 43717 2.676

10 20 0 43810 2.6811  
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Wave (Period) J B MP PTAR

11 5 0 11763000 377.91

11 5 0.005 11704000 1946.1

11 5 0.01 11685000 1893.5

11 5 0.015 11724000 440.4

11 5 0.02 11803000 456.76

11 10 0 43109 2.6136

11 10 0.005 43089 2.6144

11 10 0.01 43070 2.6151

11 10 0.015 43050 2.6158

11 10 0.02 43030 2.6165

11 15 0 43108 2.6177

11 15 0.005 43088 2.619

11 15 0.01 43069 2.6203

11 15 0.015 43049 2.6215

11 15 0.02 43029 2.6225

11 20 0 43107 2.6198

11 20 0.005 43088 2.6211

11 20 0.01 43068 2.6224

11 20 0.015 43048 2.6236

11 20 0.02 43028 2.6247
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Irregular Wave Data

Irregular

Wave (Period) J B Time (500s)MP PTAR

5 10 0 4854 31.9263

5 10 0.005 4761.7 32.5374

5 10 0.01 4670.7 33.1643

5 10 0.015 4578 33.83

5 10 0.02 4487 34.5091

5 15 0 4912.6 31.6107

5 15 0.005 4822.3 32.1948

5 15 0.01 4730.3 32.8159

5 15 0.015 4638 33.4658

5 15 0.02 4547.4 34.1251

5 20 0 4964.1 31.3407

5 20 0.005 4872.1 31.925

5 20 0.01 4781.4 32.5263

5 20 0.015 4689.6 33.1564

5 20 0.02 4598.6 33.8053

Wave (Period) J B Time (500s)MP PTAR

6 10 0 20881 7.3002

6 10 0.005 20812 7.3231

6 10 0.01 20742 7.3461

6 10 0.015 20673 7.3693

6 10 0.02 20604 7.3927

6 15 0 20931 7.2059

6 15 0.005 20862 7.2286

6 15 0.01 20793 7.2516

6 15 0.015 20724 7.207

6 15 0.02 20650 7.297

6 20 0 20983 7.138

6 20 0.005 20914 7.1607

6 20 0.01 20844 7.1835

6 20 0.015 20962 7.1448

6 20 0.02

Wave (Period) J B Time (500s)MP PTAR  
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7 10 0 2.28E+04 7.201

7 10 0.005 2.27E+04 7.2148

7 10 0.01 2.27E+04 7.2296

7 10 0.015 2.26E+04 7.2446

7 10 0.02 2.26E+04 7.2595

7 15 0 2.29E+04 6.8694

7 15 0.005 2.28E+04 6.8836

7 15 0.01 2.28E+04 6.8978

7 15 0.015 2.27E+04 6.9122

7 15 0.02 2.27E+04 6.9267

7 20 0 2.30E+04 6.635

7 20 0.005 2.29E+04 6.6488

7 20 0.01 2.29E+04 6.6626

7 20 0.015 2.28E+04 6.6766

7 20 0.02 2.28E+04 6.6906

Wave (Period) J B Time (500s)MP PTAR

8 10 0 2.86E+04 4.4533

8 10 0.005 2.86E+04 4.4595

8 10 0.01 2.85E+04 4.4707

8 10 0.015 2.84E+04 4.4726

8 10 0.02 2.84E+04 4.4726

8 15 0 2.87E+04 4.267

8 15 0.005 2.86E+04 4.2734

8 15 0.01 2.86E+04 4.2786

8 15 0.015 2.85E+04 4.2848

8 15 0.02 2.85E+04 4.2937

8 20 0 2.87E+04 4.5054

8 20 0.005 2.87E+04 4.51

8 20 0.01 2.86E+04 4.5125

8 20 0.015 2.86E+04 4.5168

8 20 0.02 2.85E+04 4.5242
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9 10 0 31335 4.9591

9 10 0.005 31309 4.9898

9 10 0.01 31283 4.9911

9 10 0.015 31257 4.9917

9 10 0.02 31231 4.9837

9 15 0 32084 4.4878

9 15 0.005 32057 4.4917

9 15 0.01 32030 4.4965

9 15 0.015 32004 4.4994

9 15 0.02 31977 4.5033

9 20 0 32723 4.3043

9 20 0.005 32696 4.308

9 20 0.01 32668 4.3117

9 20 0.015 32641 4.3154

9 20 0.02 32614 4.319

Wave (Period) J B Time (500s)MP PTAR

10 10 0 28500 4.6805

10 10 0.005 28478 4.6542

10 10 0.01 28455 4.6873

10 10 0.015 28432 4.6902

10 10 0.02 28409 4.6962

10 15 0 29219 4.4071

10 15 0.005 29196 4.4115

10 15 0.01 29173 4.4091

10 15 0.015 29150 4.415

10 15 0.02 29126 4.4153

10 20 0 29725 4.2072

10 20 0.005 29702 4.2083

10 20 0.01 29678 4.2128

10 20 0.015 29655 4.2146

10 20 0.02 29631 4.216
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Wave (Period) J B Time (500s)MP PTAR

11 10 0 15187 18.9829

11 10 0.005 15179 18.9088

11 10 0.01 15163 18.9085

11 10 0.015 15148 18.8544

11 10 0.02 15133 18.9049

11 15 0 19940 14.8057

11 15 0.005 19921 14.8029

11 15 0.01 19909 15.1674

11 15 0.015 20039 14.4873

11 15 0.02 20027 14.6671

11 20 0 176520 13.1063

11 20 0.005 17633 13.1151

11 20 0.01 17609 13.105

11 20 0.015 17590 13.0989

11 20 0.02 1756800 13.0822
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Data from Excel Polyfit for Waves 5,6,7,8,9,10,11 

(1/11) (1/10) (1/9) (1/8)

55 4.78255 4.638222 5.153929 5.485891

52.5 4.498268 4.39231 4.86017 5.17266

50 4.2596 4.1846 4.61115 4.90325

47.5 4.058375 4.008527 4.398637 4.669721

45 3.887613 3.858428 4.215616 4.465329

42.5 3.741412 3.729459 4.056172 4.284412

40 3.61484 3.61752 3.91538 4.12228

37.5 3.503832 3.519181 3.789204 3.975112

35 3.405093 3.431612 3.674395 3.839857

32.5 3.316005 3.35252 3.568399 3.714139

30 3.23454 3.28008 3.46927 3.59617

27.5 3.15918 3.212883 3.375584 3.484668

25 3.088838 3.149873 3.286365 3.378777

22.5 3.022788 3.090304 3.201009 3.277999

20 2.9606 3.03368 3.11922 3.18212

17.5 2.902076 2.97972 3.040947 3.091155

15 2.8472 2.928312 2.966326 3.005289

12.5 2.796083 2.879474 2.895632 2.924822

10 2.74892 2.83332 2.82923 2.85013

7.5 2.705952 2.790032 2.767535 2.781619

5 2.667428 2.749828 2.710979 2.719691

2.5 2.633581 2.712942 2.659975 2.664715

0 2.6046 2.6796 2.6149 2.617

-2.5 2.580612 2.650005 2.576069 2.576777

-5 2.561673 2.624322 2.543722 2.544185

-7.5 2.547753 2.602672 2.518019 2.519259

-10 2.53874 2.58512 2.49903 2.50193

-12.5 2.53444 2.571676 2.486741 2.492024

-15 2.534583 2.562293 2.481057 2.48927

-17.5 2.538841 2.556875 2.48182 2.49331

-20 2.54684 2.55528 2.48882 2.50372

-22.5 2.55819 2.557333 2.50182 2.520028

-25 2.57251 2.562842 2.520584 2.541746

-27.5 2.589464 2.571615 2.54491 2.5684

-30 2.6088 2.58348 2.57467 2.59957

-32.5 2.630394 2.598314 2.60985 2.634933

-35 2.654303 2.616068 2.650601 2.674314

-37.5 2.680817 2.636803 2.697295 2.717735

-40 2.71052 2.66072 2.75058 2.76548

-42.5 2.744359 2.688206 2.81145 2.818158

-45 2.783713 2.719872 2.88131 2.876772

-47.5 2.830467 2.756602 2.962055 2.942795

-50 2.8871 2.7996 3.05615 3.01825

R² = 0.9997 R² = 0.9993 R² = 0.9997 R² = 0.9999  
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(1/7) (1/6) (1/5)

5.96977 8.794964 5.12192

5.554537 8.077016 5.482938

5.2247 7.3965 5.76995

4.959843 6.762929 5.986186

4.74307 6.182908 6.135838

4.560636 5.660487 6.22389

4.4016 5.1975 6.25596

4.257494 4.79388 6.238149

4.122008 4.447964 6.176894

3.990697 4.156778 6.07884

3.8607 3.9163 5.95071

3.73048 3.721713 5.799192

3.599583 3.567633 5.630829

3.468407 3.448325 5.451922

3.338 3.3579 5.26844

3.209867 3.29049 5.085937

3.085795 3.240414 4.909483

2.967704 3.202317 4.743595

2.8575 3.1713 4.59219

2.756964 3.143025 4.458531

2.667645 3.113808 4.345195

2.590774 3.080691 4.254043

2.5272 3.0415 4.1862

2.477337 2.994879 4.142044

2.441133 2.940314 4.121206

2.418057 2.878135 4.122574

2.4071 2.8095 4.14431

2.406795 2.736365 4.183874

2.415258 2.661433 4.238056

2.430239 2.588085 4.303023

2.4492 2.5203 4.37436

2.469403 2.462546 4.44714

2.48802 2.419664 4.515985

2.502257 2.396731 4.575147

2.5095 2.3989 4.61859

2.507473 2.431233 4.64009

2.49442 2.498508 4.633333

2.4693 2.605008 4.59203

2.432 2.7543 4.51004

2.383567 2.948991 4.381494

2.326458 3.190464 4.200939

2.264805 3.478604 3.963482

2.2047 3.8115 3.66495  
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APPENDIX C: SC-WEC RESONANCE CONTROL ALGORITHM WITHOUT OVERLAY 

 

 


