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ABSTRACT 

 

MOSQUITO CHRONOLOGICAL AGE DETERMINATION USING MID-INFRARED 

SPECTROSCOPY AND CHEMOMETRICS 

Bradley Guilliams, Masters of Science in Chemistry 

Western Carolina University (April 2020) 

Adviser: Dr. Scott Huffman 

 

Determining a mosquito population’s species composition and age is crucial for estimating the 

risk of pathogen transmission.  At present, age-grading methods are chiefly physiologic and 

classify the mosquitoes in terms of parity (e.g., nulliparous or parous).  Less commonly used 

chronologic methods (e.g., qPCR or near infrared spectroscopy [NIR]) have limited temporal 

resolution (NIR) or require consumable reagents and technological expertise with molecular 

methods.  The current lack of robust methods to rapidly evaluate a population’s chronologic age 

limits our ability to assess pathogen transmission risk in the context of vectorial capacity 

estimations (i.e., daily survivability).  Our current research seeks to develop methods of 

mosquito age determination utilizing mid-infrared spectroscopy and advanced numerical analysis 

(chemometrics). Infrared (IR) spectroscopy is a type of vibrational spectroscopy that is both 

sensitive and information rich.  Subtle changes in IR spectra correlate with changes in the 

biochemistry of mosquitoes as they age.  It has been shown that mosquito species can be 

identified using mid infrared spectroscopy and chemometrics.  Using mid-infrared spectroscopy 

and chemometrics, the chronologic age of Aedes triseriatus mosquitoes were predicted using 

PLSR and ANN models.  Aedes triseriatus were successfully reared into groups of different ages 
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with low uncertainty in the age.  Aedes triseriatus spectra were used to create a training dataset 

and fit models for prediction using PLSR and ANN.  PLSR and ANN models were used to 

predict the age of samples using a validation dataset with SEPsv of 4.3 and 3.3 days respectively.  

Mean spectra for each age group were used to try and discern a specific chemical underpinning 

for the performance of these models and to explain why mosquito age could be predicted using 

PLSR and ANN models.  Peaks between 1200 – 1000 cm-1 typically associated with chitin were 

investigated and the second derivative of mean absorbance by age at 1032 cm-1 increased linearly 

with age.  
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CHAPTER ONE: BACKGROUND 

 

1.1 Importance of Mosquito Surveillance 

Mosquito-borne diseases are responsible for significant morbidity and mortality at both an 

international and a domestic scale.1,2  Tremendous economic costs can be attributed to the 

burdens of malaria, dengue, and to the growing threat of arboviruses such as the West Nile, 

chikungunya, and Zika viruses.1,3  Many of these diseases do not have an effective vaccine, so 

mosquito control efforts such as source reduction, larvicides, and adulticides are used for 

arboviral disease prevention and control.  Integrated Mosquito Management (IMM) as described 

by the American Mosquito Control Association (AMCA) includes surveillance to first assess the 

threat and several control efforts to reduce the mosquito population.2,4  Mosquito identification 

has been a successful approach to understanding the mosquito population in a given area.5,6  

Frequent surveillance is paramount in determining the human health risk of a mosquito 

population.  Population surveillance is especially important for mosquito species such as certain 

Culex and Aedes species that are capable of transmitting Zika,7,8 dengue,9 West Nile,10 La 

Crosse,11 Chikungunya,12 or other arboviruses.  Furthermore, understanding the age of a 

mosquito population gives mosquito control districts a more thorough understanding of the threat 

to human health for these mosquito species of vectorial importance.  A glossary of biologically 

relevant terms can be found in Appendix A. 

1.2 Current Methods 

Surveillance is typically conducted by personnel trained in the morphological identification of 

mosquitoes.  Not only is it costly to train and employ these personnel, but entomologists are 

vulnerable to fatigue-based errors in the identification process.  For these reasons, mosquito 
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control districts often forego the surveillance step but still use pesticides (e.g., larvicides and 

adulticides) to reduce mosquito populations.13  Unnecessary or otherwise poorly applied 

insecticide application increases the risk of developing insecticide resistance in mosquito 

populations.14   

 Older female mosquitoes of pathogen vectoring species are more dangerous in terms of 

how likely they are to produce an infectious bite resulting in the transmission of an arbovirus to a 

susceptible human.  After acquiring an arbovirus from a blood meal, there is a period before the 

mosquito host can transmit the arbovirus to a susceptible human where the virus replicates within 

the mosquito host. The period between acquisition of the arbovirus and the point at which the 

mosquito host can transmit the arbovirus to a susceptible host is known as the extrinsic 

incubation period.15  Dengue, for example, has an extrinsic incubation period of between 8 and 

12 days.16  Determining the age of a mosquito population is important in understanding the risks 

to human health.  A mosquito population with mostly older female mosquitoes that have lived 

beyond the extrinsic incubation period of a pathogen they vector is clearly more dangerous than 

a mosquito population with mostly young female mosquitoes that have not lived long enough to 

be capable of transmitting a pathogen.  The rare exception to this general concept is when 

pathogens are vertically transmitted from the parental generation through transovarial 

transmission. 

 Presently, age-grading methods are primarily physiologic and classify female mosquitoes 

based on parity i.e., parous or nulliparous, where parous mosquitoes have laid eggs while 

nulliparous mosquitoes have not.17  This means that a trained entomologist can identify whether 

or not a mosquito has laid eggs and evaluate a population (or collection) in terms of physiologic 

age.  However, this method does not discriminate the number of gonotrophic cycles or determine 
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the chronologic age of the mosquito.  

1.3 Alternative Methods 

Whole cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS), was used as a molecular protein profiling tool for mosquito species closely 

related taxonomically.18  Mosquito heads and thoraces were homogenized into Eppendorf tubes 

containing formic acid in order to prepare samples.  Additionally, a matrix suspension was 

prepared with sinapic acid in a separate Eppendorf tube.18  While MALDI-TOF is effective for 

species identification of closely related mosquito species, the considerable labor coupled with the 

added expense of consumable reagents makes it unsuitable for use on a large scale.  While in 

theory, this technique could be used to develop methods for chronological age determination of 

mosquitoes, other techniques exist that are less time consuming and less costly. 

 A study with Anopheles gambiae, the primary malaria vector, used quantitative 

polymerase chain reaction (qPCR) predict mosquito age.  CPR59, which transcribes a cuticular 

protein, and G12_ANOGA, transcribing a protein G12 precursor, were among the genes 

involved in the age prediction model.19  Quantitative PCR is expensive and uses consumable 

reagents, which serve as barriers for implementation.20 

 With little to no sample preparation, NIR mosquito aging techniques are limited due to 

the broad spectral bands resulting from the compression and overlapping of many overtone and 

combination bands.21  Overtone and combination bands occur when IR light is absorbed and 

simultaneously excites two or more fundamental transitions.22  Combination bands are of two or 

more different fundamental transitions while overtone bands are of the same fundamental 

transition two or more times.22  NIR has much lower sensitivity than mid-infrared 

spectroscopy.21  This lower sensitivity means that differences in the spectra of different mosquito 
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samples will be very small and results in lower selectivity than mid-infrared spectroscopy.  NIR 

spectroscopic methods for chronologic age classification, as well as qPCR methods for 

chronologic age grading, have historically been limited in terms of temporal resolution. These 

methods of classification often do just that—classify samples into groups of young and old 

mosquitoes as opposed to predicting age with a linear or non-linear model. 19,23,24   

1.4 Mosquito Background 

Mosquitoes may serve as vectors, which means they have the ability to transmit viruses and 

protozoan parasites (e.g., malaria parasite: Plasmodium spp.) between different hosts.  While 

mosquitoes primarily feed on vertebrates, there are rare exceptions.  Unanotaenia sapphirine, a 

mosquito of little to no public health importance, is known to utilize annelids as hosts.25  

Pathogen vectoring is possible because many species of mosquito require blood feeding in order 

to gain the nutrients to produce eggs for reproduction.26  Not all mosquito species can transmit 

human pathogens, only about 200 of the approximately 3600 known species of mosquitoes are 

capable of this.27   

 Female mosquitoes typically become infected when they obtain blood from an infected 

host.  The pathogen must replicate successfully and ultimately replicate in the salivary glands in 

order for the mosquito to become infectious.  Contemporaneously, oogenesis—the development 

of egg cells into competent cells capable of further development when fertilized—is occurring 

and the female mosquito will eventually oviposit, or lay, her eggs.   

 These processes take time, so the gap between subsequent blood meals is often days to 

weeks.  This cycle repeats and eventually female mosquitoes will take a second or third blood 

meal where pathogen transmission is possible under the correct conditions—the female mosquito 

has acquired an arbovirus which has replicated over the extrinsic incubation period.  Therefore, it 
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is generally the older female mosquitoes, who have taken multiple blood meals and lived long 

enough to host an arbovirus through its extrinsic incubation period, that are the most dangerous.  

1.4.1 Vectorial Capacity Equation 

The vectorial capacity (𝑉) is the total number of potentially infectious bites arising from all the 

mosquitoes biting a single infectious human on a single day.  Vectorial capacity (𝑉) can be 

defined using the equation: 

 𝑉 =  
𝑚𝑎2𝑝𝑛

−ln (𝑝)
  (1) 

where the parasite or virus’s extrinsic incubation period is represented by 𝑛 days, 𝑚 represents 

the ratio of mosquitoes to humans, 𝑝 represents the mosquito survival through one day, and 𝑎 

represents the human biting rates.28  A human will be subject to the attention of 𝑚 mosquitoes 

and will receive bites at the rate of 𝑚𝑎2.  For a mosquito to become infectious, they must survive 

the extrinsic incubation period with the probability 𝑝𝑛 where adult mosquitoes live on average 

1/(− ln(𝑝)) days biting at a rate of 𝑎 per day.  Determining the age of mosquitoes within a 

population allows a better understanding of the survival rates (𝑝) and a better estimate of 

vectorial capacity can be made. 

1.4.2 Culex quinquefasciatus and Culex tarsalis background 

Culex quinquefasciatus, sometimes referred to as the southern house mosquito, is found in the 

tropics and warmer temperate regions across the globe.  Culex tarsalis, sometimes known as the 

Western encephalitis mosquito, is found across North America most commonly west of the 

Mississippi River.  Both Culex quinquefasciatus and Culex tarsalis are known vectors for several 

pathogens including West Nile virus, Western equine encephalitis, and St. Louis encephalitis.  

These mosquitoes lay their eggs in standing water (natural or man-made) in places such as 
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swamps or bird baths.  These Culex mosquitoes are of entomologic interest in the United States, 

primarily west of the Mississippi River, for their role in human and equine pathogen vectoring.29 

1.4.3 Aedes triseriatus Background 

Aedes triseriatus otherwise known as the Eastern tree hole mosquito is commonly found across 

the eastern half of the United States and Canada.11  Normally, Ae. triseriatus lays its eggs in 

pools of water that have accumulated such as in tree holes and discarded tires.  These mosquitoes 

generally live in woodland and forested environments and within suburban areas.  Eggs from Ae. 

triseriatus can overwinter, utilizing dried containers (natural or artificial) that get flooded with 

rain in the springtime.  While these mosquitoes feed on a variety of non-human vertebrates, they 

also take blood meals from humans.  Aedes triseriatus serves as the primary vector for La Crosse 

encephalitis which can be deadly or cause severe persistent health problems.11  Aedes triseriatus 

is commonly found in Western North Carolina and understanding more about entomologic risk 

factors (e.g., arthropod abundance, population dynamics, and infection rates) can greatly improve 

health measures taken against the spread of La Crosse encephalitis.30 

1.5 Theory of Infrared Spectroscopy 

Infrared spectroscopy uses the infrared region, 12500 cm-1 to 10 cm-1, of the electromagnetic 

spectrum.  Within the infrared region, three regions are often distinguished: near-infrared region 

12500-4000 cm−1), mid-infrared region (4000-400 cm−1), and far-infrared region (400-10 cm−1).  

Near-infrared radiation can excite combination and overtone vibrations within molecules, mid-

infrared radiation can be used to study fundamental structural vibrations of molecules, and far-

infrared radiation can be used to study vibrations of heavy atoms or large-scale vibrations.  Since 

most molecules have characteristic absorbances and primary molecular vibrations within the 

mid-infrared region, it is the most commonly used for analysis.31 
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 Spectroscopy is the study of the interaction between light and matter.  When infrared 

light interacts with different groups of atoms in molecules, photons of specific wavelengths are 

absorbed, which excites the groups to higher energy states.  A molecule must undergo a net 

change in dipole moment as it vibrates in order for infrared absorption to occur.  The maximum 

number of vibrations (n) or modes within a molecule can be calculated using the following 

equation for nonlinear molecules: 

 𝑛 = 3𝑁 − 6 (2) 

where N represents the number of atoms in a given molecular structure.  When absorption 

occurs, a vibrational transition from the ground state (v = 0) to the first excited state (v = 1) 

occurs, where the gap between the energy levels (∆E) corresponds to the frequency of light that 

excited the molecule and can be calculated with the equation: 

 ∆𝐸 = ℎ𝑐𝜈 (3) 

where ℎ is Planck’s constant, 𝑐 is the speed of light, and 𝜈 is the wavenumber of the light. 

 When a molecule vibrates, there is a change in the net dipole moment related to the 

orientation of the electrons in the molecular electric field.32  Each molecule will have a unique 

infrared spectrum where bands correspond to different vibrations or combinations of vibrations 

within the molecule.  The wavenumber for different vibrational modes can be described by the 

equation: 

 𝜈  =  
1

2𝜋𝑐
√

𝑘

𝜇
 (4) 

where 𝜇 is the reduced mass of the atoms involved in the vibration and 𝑘 is the spring constant 

that represents the strength of the bonds involved in the vibration.  Keeping in mind that 

wavenumber is directly proportional to energy, using equation 4, vibrations involving larger 
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atoms with weaker bonds such as single bonds between a carbon atom and a hydrogen atom, will 

have lower energy vibrational wavenumbers.  Conversely, smaller atoms with stronger bonds, 

such as double or triple bonds, will have higher energy vibrational frequencies.  Moreover, there 

are direct connections between the bands in an infrared spectrum and the structure of the 

molecule.32 

1.6 Infrared Spectroscopy Sampling Techniques 

Mid-infrared spectroscopy is a well-established and reliable technique for chemical 

fingerprinting that can obtain spectra from a wide variety of samples of solids, liquids, and gases.  

Each molecule will have a unique pattern of peaks which serves as a chemical fingerprint. The 

way by which the sample is handled can have a large effect on the consistency of a measurement.  

Developing a method for sample handling is paramount in making consistent measurements 

while returning the best quality of spectra.  For infrared spectroscopy there are several sample 

handling techniques commonly used: transmission, attenuated total reflectance (ATR), specular 

reflectance, and diffuse reflectance. 

 In the transmission technique for infrared spectroscopy, the IR beam passes through the 

sample where some of the IR light interacts with the sample, the light that doesn’t interact with 

the sample reaches the detector, and a spectrum is generated based on the energy of the 

transmitted light.  This technique has a high signal to noise ratio and historical prevalence.  

However, transmission mid-infrared spectroscopy requires expertise in sample preparation which 

is both time consuming and difficult to reproduce.33 

 Attenuated total reflectance (ATR) is a surface sampling technique often combined with 

infrared spectroscopy for liquid and solid-state samples.  This technique requires little to no 

sample preparation.  The sample is loaded onto an optically dense crystal with a high refractive 
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index, such as a diamond, and the infrared light is directed onto the crystal at an angle.  ATR 

utilizes the optical phenomenon of total internal reflection which results in an evanescent wave 

that penetrates into a sample between 0.5 and 2 μm.  While ATR is extremely robust and requires 

little to no sample preparation, it is often destructive to the sample or leaves it otherwise 

unrecoverable.33,34  Any air between the sample and the crystal can affect spectral data so 

pressure must be applied to the sample to minimize this effect.33 

 Specular reflection is the mirror-like reflection of light on the surface of a sample where 

the incidence angle and angle of reflection are the same but are on opposite sides of the surface 

normal—perpendicular to the sample surface at the point of contact between the infrared source 

and the sample.  This technique is often used to provide qualitative data about a surface such as a 

thin layer polymer or a coating on a polished metal.33  For this technique to be effectively used, 

the sample must be large, flat, and have a reflective surface. 

 Diffuse reflectance or DRIFTS is a commonly used reflectance measurement technique 

where the incidence angle and reflected angle are not necessarily the same, such as on rough 

surfaces.  This sample preparation technique requires little to no sample preparation and occurs 

more frequently in everyday environments than specular reflection.33,35 

1.6.1 Infrared Microspectroscopy 

While many infrared spectroscopy sampling techniques can be used for chemical identification, 

combining them with microscopy (microspectroscopy) allows the deciphering of complex and 

spatially heterogeneous samples.  A reflectance microspectrometer will utilize the reflective 

properties of a shiny metal substrate upon which the sample is placed.  Infrared light travels to 

the sample and the reflective properties of the sample and the shiny metal substrate return that 

light to the detector.  With reflectance microspectroscopy both specular and diffuse reflection are 
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utilized to return information about the chemistry and the topography of the sample in the 

resulting spectrum.31  

1.6.2 Mid-Infrared Spectroscopy for Age Prediction 

Mid-infrared spectroscopy is a type of vibrational spectroscopy that is both sensitive and 

information rich.  This type of spectroscopy is capable of measuring a wide variety of molecular 

signals ranging from transmembrane protein-lipid interactions to subtle changes in protein 

secondary structure.36-40  Infrared spectra have spectral features that can be used to distinguish 

between or identify different biological samples.  The combination with numerical analysis or 

multivariate data analysis allows information relevant to classification to be extrapolated from 

high dimensional spectral data.  This broadens the capability of mid-infrared spectroscopy in 

addition to being fast.41 

 Mid-infrared spectroscopy has already been used to characterize and identify 

microorganisms, viruses, and types of cancers.42,43  Vibrational spectroscopy has been used to 

identify and classify different species of bacteria especially foodborne pathogens.38,42  As a bio-

analytical tool, vibrational spectroscopy has been used to differentiate between normal and 

pathological tissue including numerous types of cancers: breast, endometrial, cervical, prostatic 

and brain cancers.37 

 While mid-infrared spectroscopy is a well-established and information rich technique, its 

applications in the mosquito world for classification and identification are limited.  Mid-infrared 

based techniques were recently utilized to detect Wolbachia infection in Aedes aegypti 

mosquitoes in Australia.36  These techniques were also used to identify sex and distinguish 

between two age groups of Ae. aegypti (2 and 10 days).36  Additionally, mid-infrared 

microspectroscopy coupled with advanced numerical analysis was employed to classify four 
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species of Aedes mosquitoes.3  The use of mid-infrared microspectroscopy in chronologic age 

grading has not otherwise been well established. 

1.7 Data Processing Theory 

Data processing is broken into two steps: training and validation.  After sample preparation, 

spectral acquisition, and quality control steps, the data is randomly divided in half.  One half of 

the data (training) is used to develop a model to classify the other half (validation).  The 

validation set predictions are used to establish the accuracy and uncertainty in the model’s 

performance. 

 Within data analysis there is data pre-processing which bolsters the robustness and 

accuracy of the subsequent numerical analyses in addition to correcting for variance in the data 

acquisition step.  Due to the variation in the shape of biological samples and a constantly 

changing background due to the microspectrometer being open to the atmosphere, a number of 

inconsistencies arise when acquiring infrared spectrum of these samples.  Most commonly, the 

baselines of spectra can be slanted or oscillatory due to scattering, interference from the sample 

shape, interference from carbon dioxide and water vapor, and variation in sample thickness.   

1.7.1 Cropping 

The goal of cropping the data is to remove portions of the spectra where atmospheric 

contributions to the signal, such as water vapor or carbon dioxide, are prevalent.31  Concurrently, 

areas of the spectra that have little to no chemical information can be removed as well.  Cropping 

of the data can result in the loss of significant chemical information or in the creation of artifacts 

at the edges of the spectral data.  The data are cropped to an information rich region of the 

infrared spectrum where there is the greatest likelihood of interpretable differences in the spectra 

of different samples. 
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1.7.2 Normalization 

Normalization is intended to account for the variance of sample thickness.  There are many 

different ways to normalize the data, but normalization by height assigns the values for the 

spectra between 0 at the lowest band and 1 for the highest band. 

1.7.3 Savitzky-Golay Smoothing and Second Derivative Function 

Baseline interference is very common in spectra of biological samples due to scattering caused 

by the shape of the sample.  Additionally, low frequency instrument noise can influence the 

baseline of the spectra.  To correct for these issues, a Savitzky-Golay smoothing and second 

derivative function are applied to the spectra.44-46  This technique aims to minimize the 

differences in spectra caused by noise or baseline oscillation while amplifying the differences in 

the chemical information of the spectra.    

1.7.4 Mean-Centering 

Mean centering is employed to reduce redundancies and simplify the data which might help in 

classification.  This technique subtracts the average spectra from all the spectra.  Redundancies 

are subtracted out from the spectra while differences from the mean data remain and are 

enhanced comparatively.  Mean centering the data decreases the complexity of the data and 

reduces the number of factors required to model the data.47 

1.8 Data Analysis Tools 

1.8.1 Principal Components Analysis 

Principal components analysis (PCA) is an exploratory data analysis tool.  PCA does not make 

any assumptions about the data.  This tool results in loading vectors, or principal components, 

which contain composite spectral information.  Each loading vector is orthogonal to the next 

meaning that there is ideally no overlap of the information between the loading vectors.  Scores 
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are the weights of the loading vectors and the product of the scores and the loading vectors 

returns the original spectrum: 

 𝐴 = 𝑆 𝐿  (5) 

where 𝐴 is the original spectrum, 𝑆 represents the scores, and 𝐿 represents the loading vectors.  

Scores plots are how the data are explored.  The score values serve as coordinates on a Cartesian 

Plane where each axis e.g., x, y, z, is a different score. Groups of the points in the scores plot can 

be color coded to identify the groups.  Figure 1 shows an example of a scores plot where the 

values for score Y versus score X are plotted. Red points represent young (< 1 week old) 

mosquito spectra while blue points represent old (≥ 2 weeks old) mosquito spectra. 

 

Figure 1.  Principal components analysis scores plot example where score 3 values are on the 

y-axis while score 2 values are on the x-axis. Red points represent young (< 1 week old) 

mosquito spectra and blue points represent old (≥ 2 weeks old) mosquito spectra.  
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1.8.2 Principal Components Analysis Regression 

Principal components analysis regression or PCAR is a regression analysis technique based on 

PCA.  PCAR is used to estimate unknown regression coefficients by using the principal 

components of the explanatory variables as regressors instead of regressing the dependent 

variable on the explanatory variable directly.48  Only a subset of the principal components are 

used in this type of regression analysis.  It is important to select those principal components 

which are important for prediction.  PCAR is often used to overcome multicollinearity where 

two or more of the explanatory variables are close to being linear.  This is achieved by limiting 

the number of principal components and excluding some low-variance principal components in 

the regression step.  While only using a subset of the principal components, the number of 

parameters characterizing the model is reduced resulting in a dimensional reduction, limiting the 

number of random variables influencing the model.  If the principal components are selected 

appropriately, PCAR can be effectively used to predict outcomes based on a model dataset. 

1.8.3 Partial Least Squares Regression 

Partial least squares regression (PLSR) is a method for relating two data matrices by a linear or 

near linear multivariate model.  Partial least squares use latent variables, or variables not directly 

observed but inferred by other variables, to model the covariance of two matrices.49,50  Like 

PCA, PLSR uses principal components, or loading vectors, but they are calculated differently. In 

PCA principal components are found by maximizing the spectral variance while PLSR aims to 

maximize the covariance of the independent and dependent variables.  PLSR models work best 

when the predicting matrix has more variables than observations and when multicollinearity 

exists among the predictor matrix values.49,50  
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1.8.4 Artificial Neural Networks     

An artificial neural network (ANN) can be defined as sophisticated nonlinear computational 

tools, which are capable of modeling functions of extreme complexity.51  Using an appropriate 

ANN architecture can represent nearly any functional relation between a set of inputs and 

outputs.  A neuron serves as the fundamental unit where a single calculation takes place usually 

with multiple inputs and a single output.51  The simplest way to represent an ANN is with a black 

box that receives multiple inputs and produces multiple outputs.51  The black box scheme for 

ANN is represented in Figure 2 where x1, x2, x3, …, xm are the input variables (e.g., spectra or 

spectral information) and y1, y2, …, yn are the output variables (e.g., predictions of mosquito age) 

after processing in the black box.51   

 

Figure 2.  Black-box scheme of artificial neural network comprised of input variables (x1, x2, 

x3, …, xm), the black box, and output variables (y1, y2, …, yn). 

 Neurons are often organized in layers where neurons within the same layer are operating 

on inputs of the previous layer.  The input layer passes input information to the hidden layer as 

variables.51  Hidden layers perform computations on the input variables while the output layer 

performs the final calculation.51  Each neuron of the input layer passes information to each 

neuron of the hidden layer which passes information to each output neuron.  This type of ANN 
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architecture is called a multilayer perceptron, or multilayer feed-forward, neural network and is 

represented in Figure 3 with an input layer (x1, x2, …, x5), a hidden layer (h1, h2), an output layer 

(y1, y2, …, y4), and arrows connecting the neurons in the layers showing how information is 

passed.  Each calculation can have a different weight associated with it in order to achieve a 

different output.  By training an ANN model, different weights of calculations are used to best 

connect the input variables with the output variables.  This process is usually done with a subset 

of the data known as a training dataset.  Once the artificial neural network has ‘learned’ or 

developed a connection between the input and output variables using the training dataset, the 

model can be tested on new data to evaluate the model’s performance, usually the validation 

dataset where predicted values can be compared to true values.  

 

Figure 3.  Multilayer feed-forward artificial neural network where the input layer (x1, x2, …, x5) 

passes information to the hidden layer (h1, h2) where calculations are performed.  Information 

from the hidden layer is passed to the output layer (y1, y2, …, y4) where the final calculations are 

made.  The arrows represent the passing of information from one neuron to another. 
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1.9 Research AIMS and Hypotheses 

AIMS:  Discriminate categorical and quantitative differences in ages of Culex quinquefasciatus, 

Culex tarsalis, and Aedes triseriatus using mid-infrared spectroscopy and chemometrics.  Create 

a model using mid-infrared spectroscopy and chemometrics to predict the chronologic age of 

Aedes triseriatus.  Investigate the biochemical differences that change as a function of mosquito 

age.  

Hypotheses:  There are biochemical differences in mosquitoes of different ages that can be 

detected using mid-infrared spectroscopy and chemometrics and those biochemical differences 

can be used to build PLSR and ANN models for chronologic age prediction of Aedes triseriatus 

in a time series study.   
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CHAPTER TWO: EXPERIMENTAL 

 

2.1 Materials & Methods 

2.1.1 Rearing Materials & Methods 

Culex quinquefasciatus strain JHB, were obtained from MR4/BEI resources.  The colony was 

initially established from field collected samples collected at a pond north of Johannesburg, 

South Africa (Coordinates 26° 66’S 27° 50’E).  The colony was contributed to MR4/BEI by A.J. 

Cornel.  Culex tarsalis (strain YOLO) were obtained through BEI Resources, (NIAID, NIH: 

Culex tarsalis YOLO, NR-43026).  The specimens were originally sourced from a dry ice bait 

trap, Fazio Wildlife Refuge, Yolo County, CA in 2003.  Aedes triseriatus (strain MSU) were 

obtained from Michael Kaufman at Michigan State University in 2018.  The MSU strain is kept 

in continuous colony at WCU (WCU Mosquito and Vector-borne Infectious Disease Laboratory) 

and has an unknown generation history.   

 A 5% yeast solution in water (v/v) was used to initiate hatching while a solution of 5% 

liver powder in water (v/v) was used to feed the larvae as they transitioned through different 

instar or developmental stages.  Once mosquito larvae pupate, i.e., transition from larvae to 

pupae, they no longer feed as they use the nutrients acquired as larvae to develop into adult 

mosquitoes.  Both the 5% yeast solution and 5% liver powder solution were added to trays filled 

with water and unhatched mosquito eggs.  Liver powder solution was added every few days such 

that there were visible food particles on the bottom of the tray.  Mosquitoes transition through 4 

different instar stages where they molt (shed) their exoskeleton on each occasion growing in size 

until they metamorphose into pupae after the fourth molt.52  Mosquitoes will remain at this stage 

for only a few days, so the pupa were manually transferred using a plastic transfer pipet to pupal 
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rearing chambers.  Pupal rearing chambers are bi-sectional enclosed structures which allow 

eclosion (i.e. the transition from pupae to adult) and for feeding and sustaining adult mosquitoes.  

The sections are separated by a funnel such that mosquitoes can fly into the upper chamber, but it 

is difficult to fly back into the lower chamber.  In the upper chamber, the mosquitoes can feed on 

cotton ball soaked in a sucrose solution through mesh at the top end of the container made with 

5% (v/v) Karo® Light Corn Syrup in water.  Figure 4 shows an example of a pupal rearing 

chamber.  Pupae are able to swim in the water at the bottom of the lower chamber while adults 

live in the space above the water and feed through mesh at the top of the chamber. 

 Once these mosquitoes reached adulthood, the adults were generally held in a Percival 

i41vl incubator (Perry, Iowa) at 27°C and 70% RH.  During one experiment (Ae. triseriatus time-

series), WCU was at reduced operations due to the COVID-19 pandemic.53  In anticipation of 

limited access to the laboratory, the Ae. triseriatus cohorts were moved to a private residence 

where the cage environmental conditions differed from the laboratory: temperature range: 19°C-

22°C, and RH range: 50-65%.  Overall, for this particular experiment, the temperature range was 

19°C-27°C and 50-75% RH. Mosquito samples were killed by freezing at different ages in order 

to produce cohorts (age bins) of mosquitoes at different ages. 
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Figure 4.  Pupal rearing chamber where pupae are able to metamorphose in the water in the 

bottom chamber and adults can fly around in the remaining air in the chamber.  Adult mosquitoes 

feed through mesh at the top of the pupal rearing chamber. 

2.1.2 Mosquito Samples 

A total of 280 male and female Culex quinquefasciatus samples were acquired and stored in a 

freezer (-80 °C) before and after measurement to preserve the biochemistry of the samples.  

These samples were divided into two bins: young mosquitoes < 1 week old (n = 105), and old 

mosquitoes ≥ 2-weeks old (n = 156) based on initial holding times.   

 Approximately 80 total male and female Culex tarsalis samples were measured and 

stored in a freezer (-80 °C).  Culex tarsalis samples were divided into 5-day age bins where the 

ages of the mosquitoes in each bin were ±2 days (e.g., 5-day bin mosquito ages ranged from 3-7 

days old).  A total of 279 female Aedes triseriatus samples were acquired and stored in a freezer 

(-80 °C) of which 210 were measured.  Aedes triseriatus samples were divided into age bins (n = 

30) of 1 day (20-24 hrs), 2 days (>24 hrs, < 30 hrs), 7 days, 14 days, 21 days, 28 days, and 35 



21 

 

days.  The mosquito species, age bins, and the uncertainty in age used in this study can be found 

in Table 1. 

Table 1. Mosquito sample age distribution. 

Species Bins Uncertainty in Age 

Culex quinquefasciatus < 1 week (n = 105)  

≥ 2 weeks (n = 156) 
∆t ≥ 7 days 

Culex tarsalis 5 days (n = 11) 

10 days (n = 11) 

15 days (n = 18) 

20 days (n = 17) 

25 days (n = 12) 

30 days (n = 8) 

40 days (n = 4) 

∆t ≤ 2 days; e.g., 5 

days ±2 days 

Aedes triseriatus 1 day (20-24 hrs) (n = 30) 

2 days (>24 hrs, < 30 hrs) (n = 30) 

7 days (n = 30) 

14 days (n = 30) 

21 days (n = 30) 

28 days (n = 30) 

35 days (n = 30) 

∆t = ±1 day 

   

2.1.3 Instrumentation 

Specimens were measured using a ThermoNicoletTM model Centaurus IR microscope with a 

liquid nitrogen cooled mercury cadmium telluride (MCT/A) detector attached to a 

ThermoNicoletTM iS10 bench, a photo of which can be found in Figure 5 (WCU, Cullowhee, 

NC, USA).  The OMNICTM version 9.8.372 software was used to collect all spectroscopic data.  

Backgrounds were collected roughly every 10 minutes to 15 minutes.  The interval for 

background collection is dependent upon the subjective judgment of the user.  The obvious 

presence of water vapor between 2000 cm-1 and 1800 cm-1 was one of such indicators.  All 

spectra were acquired from the sample at room temperature (20-23 °C).  Samples were stored in 

a freezer (-80 °C).  A full list of instrumentation parameters is listed in Table 2. 



22 

 

 

Figure 5.  Photo of ThermoNicoletTM model Centaurus IR microscope used to make all 

spectroscopic measurements. 

Table 2.  Instrumentation parameters for ThermoNicoletTM model Centaurus IR microscope used 

to make all spectroscopic measurements. 

Parameter Value 

Microscope Make & Model ThermoNicoletTM model Centaurus 

Bench Make & Model ThermoNicoletTM IS10 

Software OMNICTM version 9.8.372 

Wavelength Range 4000 cm-1 – 650 cm-1 

Detector MCT/A, Liquid Nitrogen Cooled 

Beamsplitter KBr 

Scans 64 

Blank Gold Microscope Slide in Air 
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2.1.4 Measurement Procedure 

Samples were prepared by using a Lecia L2 stereomicroscope (which uses series of lenses to 

magnify the sample and lights which reflect off of a mirror to illuminate the sample) to remove 

one of the hind legs, or to identify sample sex if necessary.  A photo of the Lecia L2 

stereomicroscope can be found in Figure 6 (WCU, Cullowhee, NC, USA).  The 

ThermoNicoletTM model Centaurus infrared microspectrometer was used to measure all 

mosquito samples.  In an infrared microspectrometer, the IR radiation passes through the upper 

objective and projects IR radiation onto the sample.  Infrared radiation will penetrate the leg in 

addition to reflecting off of the surface in the form of specular and diffuse radiation before 

returning to the objective and the detector.  Within the infrared microscope is a camera that 

allowed easier focusing of the IR radiation onto the sample leading to better reproducibility.  A 

clean gold-coated microscope slide was measured as the background, and samples were placed 

on a shiny metal plate on the microscope stage when measuring.  The middle of the tibia of the 

hind leg was measured for each sample.  An internal standard was used for the Ae. triseriatus 

where a black sharpie mark directly on the gold-coated microscope slide was measured at the 

beginning and end of measuring and roughly once an hour between.  Once sample collection was 

complete, files were saved as SPA and JDX file formats.  The SPA file format is used by the 

OMNICTM software and allows spectra to be viewed and compared at the instrument.  The JDX 

files were compiled into an HDF or hierarchical data format file which allows for easy transfer of 

large data sets.54  This HDF file was transferred to a personal computer where data processing 

was completed. 
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Figure 6.  Leica L2 Stereomicroscope used for sample preparation and sex identification. Under 

the stage is a mirror that reflects the light to the bottom of the sample. 

2.1.5 Exploratory Data Analysis 

Exploratory analysis was conducted in order to remove outliers resulting from spectral 

acquisition.  Spectra with excessive oscillation in the baseline were noted as the intensities of 

some bands containing chemical information would likely be skewed higher or lower.  Excessive 

oscillation of the baseline contributions usually resulted from samples not sitting flat on the shiny 

metal plate during the measurement.  When a sample was not sitting flat on the metal plate, it 

could sometimes be corrected, and the measurement repeated for that sample.  Other times, 

baseline oscillation was likely due to a twist in the mosquito leg that could not easily be 

corrected.  Moreover, exploratory data analysis mitigated some of the non-chemical differences 

between samples in order to produce a better predictive model. 
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2.2 Data Processing 

2.2.1 Data Pre-Processing 

A number of data pre-processing steps were taken in order to minimize variance from the 

spectral acquisition process and to enhance the differences between samples that might be used 

for age prediction. 

 Spectra were cropped to an information rich region between 1800 and 650 cm-1 or 1800 

and 1000 cm-1 depending on the experiment. Spectra were normalized by band height where the 

highest peak for each spectrum was set to a height of 1 and the remaining band heights were 

between 0 and 1 relative to the highest peak.  A second derivative Savitzky-Golay algorithm with 

a 25 cm-1 window size and a second-degree polynomial were applied to the spectra.  For the 

PLSR model, data were mean centered by subtracting the mean spectra from each of the spectra 

in order to mitigate redundancies and emphasize differences in the spectra. 

 After data pre-processing steps, spectra look much different and are no longer directly 

interpretable in terms of the chemical information corresponding to each band.  Figure 7 shows 

Aedes triseriatus spectra following pre-processing with cropping to 1800 – 1000 cm-1, 

normalizing by band height, applying a Savitzky-Golay smoothing algorithm, and applying a 

second derivative function with the second derivative of absorbance on the y-axis and 

wavenumber on the x-axis.  
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Figure 7.  Overlay of female Ae. triseriatus spectra after cropping to 1800 –1000 cm-1, 

normalizing by band height, applying Savitzky-Golay smoothing & 2nd derivative function, and 

mean-centering. 

2.2.2 Principal Components Analysis 

Principal components analysis was used primarily for qualitative analysis to visualize the 

grouping of mosquito samples of different ages.  After pre-processing, data were loaded into ten 

loading vectors.  Score plots were used to visualize groups of old and young mosquitoes with 

different colors for the different groups.  Separation between groups was optimized by hand 

using qualitative analysis of the grouping with different scores.  For Cx. quinquefasciatus scores 

2 and 3 were used to visualize the separation between ‘young’ mosquitoes and ‘old’ mosquitoes. 

For Cx. tarsalis scores 4 and 3 were used to visualize the separation between age bins 5 & 10 and 

15, 20, 25, 30, & 40. 

2.2.3 Principal Components Analysis Regression 

Principal components analysis regression was used to help find outliers in the Ae. triseriatus data 
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after spectral acquisition and data pre-processing.  Data were randomly split into training and 

validation data sets where 4 loading vectors were used to fit the mean training data with age.  

The true age values were extracted, and residuals of true age and predicted age were calculated. 

These residuals were plotted and spectra with large differences between predicted and actual 

ages were inspected and dropped from the dataset if deemed low in quality.  Low quality spectra 

dropped from the dataset primarily had issues with an oscillatory or slanted baseline or had 

issues with water vapor interference or peak shape. 

2.2.4 Model Evaluation 

To evaluate the performance for a model, the standard error of prediction (SEPsv) was calculated 

using the following equation: 

 SEPsv =  √
∑(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠2)

𝑛
 (6) 

where the difference between the predicted and actual ages, or 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠, were squared for each 

sample predicted.  The sum of the square of the 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 was divided by the number of spectra 

(𝑛).  Finally, the square root was taken to give the standard error of prediction.  A separate 

validation scheme was chosen (i.e., training and validation sets) because the number of 

independent variables (age) was not much less than the number of dependent variables (spectra). 

2.2.5 Model Optimization 

Training was used to further optimize the predictive performance of the models.  The training 

dataset was further split into training and validation datasets where parameters were optimized 

for predicting with this subset of the training data.  The optimized model was used to predict the 

validation dataset where the SEPsv was calculated.  

2.2.6 Partial Least Squares Regression 

Partial least squares regression was used to create a model for predicting the age of mosquitoes 
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based on their spectra.  Data were optimized as described above and 5 loading vectors were used 

in this model for prediction. 

2.2.7 Artificial Neural Networks 

A multilayer perceptron neural network was used to create a model for predicting the age of 

mosquitoes based on their spectra.  Data were sorted into training and validation datasets as 

described above.  This model was optimized by hand and four hidden layers of sized 100, 75, 50, 

and 25 were used. 

2.2.8 Age Prediction Workflow 

Figure 8 describes the workflow used for age prediction starting with sample preparation and 

acquisition followed by data pre-processing and splitting of the dataset.  The data were split into 

training and validation datasets where the training dataset was used to develop the predictive 

model.  In order to optimize the predictive model, the training dataset was broken into a further 

training and validation dataset.  After an optimized set of parameters was found for the predictive 

model, the model was used to predict the ages of the mosquitoes in the validation dataset where 

the performance of the models were evaluated using the standard error of prediction.  

 

Figure 8. Workflow for age prediction with separate training and validation datasets. 
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CHAPTER THREE: RESULTS AND DISCUSSION 

3.1 Study 1: Age-grading Culex quinquefasciatus (old vs. young) 

Culex quinquefasciatus were killed off by freezing when they were <1 week in age (young).  The 

second population was killed off by freezing when they were >2 weeks of age (old).  A total of 

280 Cx. quinquefasciatus samples were measured.  Of the 280 samples measured, only spectra 

from female samples were used to calculate principal components and scores for PCA (n = 132) 

as female mosquitoes are relevant to epidemiology whereas male mosquitoes are less so.  All 

samples were prepared and measured as described in section 2.1.4.  In Figure 9 the average 

spectra for young and old mosquitoes is shown with young mosquitoes, less than one week of 

age, represented in orange and old mosquitoes, at least two weeks of age, represented in blue.  

The difference in relative heights of bands indicates a spectral, and therefore chemical, difference 

between young and old mosquitoes.  Principal components analysis was performed on the pre-

processed data and the scores plot of score 3 versus score 2 is shown in Figure 10 where red 

points represent spectra of young mosquitoes and blue points represent spectra of old 

mosquitoes.  Scores 3 and 2 were chosen for the scores plot as this combination offered the best 

separation between groups of young and old Cx. quinquefasciatus mosquitoes. 

 This experiment served primarily as a proof of concept—that mid-infrared spectroscopy 

and chemometrics could be used to differentiate between two different age groups of mosquitoes. 

While pre-processing steps helped to mitigate the differences in mosquito spectra that occurred 

during spectral acquisition, greater separation between the groups of young and old mosquitoes 

could likely have been achieved by investigating potential outliers and dropping them from the 

dataset such as the point in the upper left corner of Figure 10. 
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Figure 9.  Average mid-IR spectra of Cx. quinquefasciatus < 1 week old (orange) & ≥ 2 weeks 

old (blue). 

 

Figure 10.  Principal components analysis score plot of female Cx. quinquefasciatus where the 

red points are young (< 1 week old) samples and the blue points are old (≥ 2 weeks old) samples. 
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3.2 Study 2: Age-grading Culex tarsalis (old vs. young: 5-day age bins) 

Following the success of separating Cx. quinquefasciatus into groups based on age, a new 

experiment was designed in order to obtain samples of mosquitoes at numerous ages—age bins 

of mosquitoes.  Adult mosquitoes were killed off via freezing at ages of 5, 10, 15, 20, 25, 30, and 

40 days (Table 1).  A total of 81 male and female Cx. tarsalis were measured of which 31 were 

female. As discussed in Section 1.4, female mosquitoes are of more epidemiologic significance 

than males, so the analysis of those spectra were prioritized and discussed below.  Principal 

components analysis was performed on the pre-processed data and the scores plot of score 3 

versus score 4 is shown in Figure 11 where red points represent spectra of mosquitoes in the 5 & 

10 day age bins and blue points represent spectra of mosquitoes in the 15, 20, 25, 30, & 40 day 

age bins.  Scores 3 and 4 were chosen because this combination of scores showed the most 

separation between the 5 & 10 day age bins from the 15, 20, 25, 30, & 40 day age bins. 

 While primarily designed to serve as a practice time series analysis to produce mosquito 

samples of varying ages, this experiment also reaffirmed that mosquitoes could be separated by 

age using mid-infrared spectroscopy and chemometrics.  The time series study served to identify 

potential variables and such as the insemination of female mosquitoes by male mosquitoes in the 

same colony space, the uncertainty in mosquito age within each group, and groups sizes for each 

age bin.  Additionally, since female mosquitoes are those most relevant for epidemiology, it did 

not make sense to continue measuring male mosquitoes.  While the true distribution of age for 

mosquitoes in a time course study is continuous, the grouping into age bins turns age into 

categorical data.  By decreasing the uncertainty, each category is truer to the age it represents and 

might be more likely to result in a better predictive model.  Moreover, increasing group size 

would encompass more variability within a mosquito population for a given age and also help to 
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strengthen a predictive model. 

 

Figure 11.  Score plot of female Cx. tarsalis samples for 5 & 10 day bins in (red) and 15, 20, 25, 

30, & 40 day bins (blue). 

3.3 Study 3: Age-grading Aedes triseriatus (1 week age bins) 

Aedes triseriatus were reared and separated into age bins in a manner similar to as described in 

section 3.2 with less uncertainty in age.  Due to circumstances related to the COVID-19 

pandemic, the last four groups (ages 14, 21, 28, & 35) were maintained at a broader relative 

humidity and temperature range (see section 2.1.1).53   

 A total of 210 female Ae. triseriatus were measured using the sample acquisition 

procedure described in section 2.1.4.  After dropping outliers, remaining spectra (n = 162) were 

cropped to the region of 1800 – 650 cm-1 to inspect for any highly variable regions in the data as 

shown in Figure 12.  Another method for looking at the spectra plotted each spectra by age group 

shown in Figure 13.  Spectra were pre-processed by cropping to 1800 – 1000 cm-1, normalizing 
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by band height, applying a Savitzky-Golay smoothing algorithm, and applying a second 

derivative function. The data were mean centered for the PLSR model but were not for the ANN 

model. 

 

Figure 12.  Overlay of 162 female Ae. triseriatus spectra cropped to the region of 1800 to 650 

cm-1. 

 The optimized partial least squares regression model resulted in a standard error of 

prediction (SEPsv) of 4.3 for the validation set of mosquitoes.  A plot of the predicted age versus 

known age is shown in Figure 14.  Performance of the PLSR model can be qualitatively assessed 

by looking at the vertical distribution of points for each age group; the smaller the vertical 

distribution, the higher the performance.  A positive linear trend of points can be observed except 

for between groups 1 & 2 where the trend is reversed. 

 The optimized artificial neural network model resulted in an SEPsv of 3.3 for the 

validation set of mosquitoes was also used to create a model for predicting the age of mosquitoes 
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using a training dataset.  Predicted age by the ANN model versus actual age was plotted and is 

shown in Figure 14.  A linear trend can be observed that predicted the ages of 1 & 2 days much 

better than the other days.  The performance of the ANN model can be qualitatively assessed 

using the vertical distribution of points at each known age; the smaller the vertical distribution, 

the better the performance.  Overlaid, it is easy to compare the performance of both models and 

see that ANN predicted the ages of groups 1, 2, and 7 better when compared to the PLSR model. 

These models had similar performance when predicting the ages of groups 14, 21, 28, and 35 

days.  

 

Figure 13.  Overlay of raw female Ae. triseriatus spectra separated by age where ages are 

distinguished by color as indicated in the legend and offset by an integer constant  

 When validating the performance of the PLSR and ANN models, autocorrelation was not 

taken into account.  In a time series, autocorrelation refers to earlier observations having effects 

on later observations in the time series (e.g., removing mosquitoes at day 7 adding stress to 
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mosquitoes left in the colony which is measurable in later groups in the time series).  The 

mosquitoes were treated as separate entities within the colony such that one mosquito had no 

effect on the other mosquitoes.  Assuming no autocorrelation is consistent with prior studies 

using PLSR for mosquito age prediction.55  Therefore, our calculations for SEPsv are likely 

optimistic compared to the true predictive performance of these models.  Additional validation 

should be conducted to investigate the impact of autocorrelation on the predictive model. 

  

Figure 14.  Model performance of PLS and artificial neural networks (ANN) in a scatter plot 

with PLS represented by blue points and ANN represented by orange points.  Models are 

staggered by 1/3 day on the x-axis. 

 A line of best fit with 95% confidence intervals for predicted age by the PLSR model 

versus known age is shown in Figure 15.  Meaning that there is a 95% probability that the true 

linear regression line modeling predicted age versus known age for the PLSR model is within the 

confidence interval represented by lines above and below the line of best fit.  This line of best fit 

has a slope of 0.8721 and y-intercept of 1.068.  The coefficient of determination or R2 value is 



36 

 

0.8682 meaning that the line of best fit explains 86.82% of the variation in age predicted by the 

PLSR model. An R2 value of 1 would mean that all of the variance in predicted age is explained 

by the line of best fit whereas an R2 value of 0 would mean the none of the variance in predicted 

age is explained by the line of best fit.  A line of best fit with 95% confidence intervals for 

predicted age by the ANN model versus known age is shown in Figure 16. The slope of the line 

of best fit is 0.9412 with a y-intercept of 0.1352 and R2 value of 0.9231.  Looking at the slopes of 

the regression line, or line of best fit, for the PLSR and ANN models, a slope closer to 1 indicates 

a higher performance for the ANN model because predicted age and known age should increase 

at the same rate.  Additionally, a y-intercept closer to 0 indicates better performance for the ANN 

model because if the known age is 0 days, there should be no age to predict. 

 

Figure 15.  Line of best fit with 95% confidence intervals for age predicted by the PLSR model 

versus known age.  The slope of the line of best fit is 0.8721 with a y-intercept of 1.068 and an 

R2 value of 0.8682. 
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Figure 16.  Line of best fit with 95% confidence intervals for age predicted by the PLSR model 

versus known age.  The slope of the line of best fit is 0.9412 with a y-intercept of 0.1352 and an 

R2 value of 0.9231. 

 To better understand the chemical differences of these mosquitoes, the mean normalized 

spectra for each age group was plotted and shown in Figure 17.  The greatest difference in 

absorbance is between 1150 cm-1 and 1000 cm-1. The series of peaks in this region are typically 

associated with chitin—a polymer comprised of polysaccharides which serves as a primary 

component in the exoskeleton of mosquitoes or other arthropods shown in Figure 18.56  The 

chitin bands are prominent in the infrared spectra and therefore play an important role when 

being fit by the models.  A zoomed view of this region is shown in Figure 19 and the band at 

1032 cm-1 is indicated by the vertical line.  The band absorbances increase as a function of age 

with the exception of ages 1 and 2 days which are out of order.  This trend can be more easily 

observed in a plot of band height at 1032 cm-1 versus age in Figure 20.  Since data were pre-

processed with a second derivative function, the second derivative of absorbance at 1032 cm-1 
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was plotted versus known age in days shown in Figure 21 with a more clear linear relationship. 

 

Figure 17.  Plot of normalized mean spectra for each age group cropped to the region of 1800 – 

1000 cm-1 where normalized absorbance is on the y-axis and wavenumber (cm-1) is on the x-axis. 

 

Figure 18.  Structure of monomeric unit that makes up the polysaccharide chitin. 
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Figure 19.  Plot of normalized mean spectra for each age group cropped to 1200 – 1000 cm-1 of 

normalized absorbance versus wavenumber. The vertical black line is at 1032 cm-1 where the 

peak height generally increases as the age group increases, except for age groups 1 & 2.  

 

Figure 20.  Scatter plot of mean absorbance at 1032 cm-1 for each age group versus time in days. 
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 The ANN model had a lower SEPsv than the PLSR model.  PLSR works best with linear 

or near linear relationships, so it makes sense that it would have trouble modeling this trend we 

see with the peak height at 1032 cm-1.  From Figure 14 and Figure 16 it is evident that the PLSR 

model does much better at predicting age after the first two age groups.  ANN is a much more 

sophisticated model and excels at modelling non-linear complex data.  From Figures 15 and 16, 

it appears as though the ANN model was able to overcome the trend reversal in peak height at 

1032 cm-1 as the predictions for age groups 1 and 2 are much better when compared with the age 

predictions made by PLSR.  The ANN model’s performance decreases after the first three groups 

and performs similar to the PLSR model. 

 The observation of the trend at band 1032 cm-1 provides information about the 

biochemistry in the mosquitoes as they age.  In order to metamorphose into adult mosquitoes 

from pupae, the pupae have to molt.57  Once mosquito pupae shed their skin and metamorphose 

into adults, they are very fragile and when handling.  It was very easy to damage their limbs 

when transferring mosquitoes to a separate container to kill via freezing or when removing their 

legs for IR measurement.  After a few days, mosquitoes have seemingly strengthened their 

exoskeleton and are much more resistant to limb damage.  Since there is a linear relationship 

between concentration of a chemical and absorbance in spectroscopy via Beer’s Law, more chitin 

in the exoskeleton would result in higher absorbance.58  The nonlinearity of this trend in days 1 

and 2 could be explained by excess chitin expressed during the pupal phase of development.  

Generally, chitin expression increases through different life stages in order to build up a 

protective exoskeleton.  There may be a change in where chitin is being expressed in different 

parts of the mosquito as it tries to develop its exoskeleton after molting.57 
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Figure 21.  Scatter plot of second derivative of average absorbance at 1032 cm-1 for each age 

group versus time in days (Aedes triseriatus). 

 It may be possible to use chitin as a biomarker for age prediction.  The expression of 

chitin as a function of age in adult female mosquitoes has been investigated using qPCR.57  It 

may be possible to develop a method using infrared spectroscopy that focuses only on chitin 

absorbance bands.  For this, a surface technique such as ATR might be more appropriate.  

Furthermore, it has been shown that cuticular protein expression can be used to determine the 

age of mosquitoes.19  

 The PLSR and ANN predictive models were used to try and predict the ages of Culex 

tarsalis mosquitoes used in Study 2 without making any modifications to the methods.  Neither 

model was able to predict the age of Cx. tarsalis mosquitoes.  The second derivative of mean 

absorbance for each age bin at 1032 cm-1 was plotted versus known age in days shown in Figure 

22 and shows a linear relationship between the second derivative of absorbance and known age 

in days.  Results from this investigation of Culex tarsalis further suggest the possibility of 
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modeling mosquito age while focusing on the region between 1200 and 1000 cm-1 where chitin 

is prominent in the mid-infrared region of the electromagnetic spectrum. 

 

Figure 22.  Scatter plot of second derivative of average absorbance at 1032 cm-1 for each age 

group versus time in days (Culex tarsalis). 
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CHAPTER FOUR: CONCLUSIONS & FUTURE DIRECTIONS 

Using mid-infrared spectroscopy and chemometrics, the chronologic age of Ae. triseriatus 

mosquitoes were predicted using a PLSR and ANN model.  Aedes triseriatus were successfully 

reared into groups of different ages with low uncertainty in the age.  Aedes triseriatus spectra 

were used create a training dataset to fit models for prediction using PLSR and ANN.  PLSR and 

ANN models were used to predict the age of samples using a validation dataset with SEPsv of 

4.3 and 3.3 days respectively.  Mean spectra for each age group were used to try and discern a 

specific chemical underpinning for the performance of these models and to explain why 

mosquito age could be predicted using PLSR and ANN models.  Peaks between 1200 – 

1000 cm-1 typically associated with chitin were investigated and the second derivative of mean 

absorbance by age at 1032 cm-1 increased linearly with age for both Aedes triseriatus and Culex 

tarsalis. 

 Future experiments should be conducted to (1) further validate the performance of these 

PLSR and ANN models used for mosquito age prediction, (2) better understand how mosquitoes’ 

biochemistries change as a function of age, and (3) investigate the correlation between chitin and 

mosquito age.  The Ae. triseriatus time series study should be repeated and the PLSR and ANN 

models should attempt to predict the ages of these mosquitoes.  Moreover, the PLSR and ANN 

models can be improved by expanding the size of the training datasets to encompass greater 

variation of samples at each age.  These models could also be improved by conducting additional 

time course studies with different age bins to make the known ages data more continuous and 

less categorical.  Similar time series experiments should be conducted using a different species of 

mosquito—ideally one within the same genus, Aedes, and one with a different genus, such as 

Culex, in order to test the universality of using IR spectroscopy and chemometrics.  Depending 
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on the performance of the PLSR and ANN models when predicting the ages of species other than 

Ae. triseriatus, new models should be developed for the different species or new training datasets 

should be developed that includes multiple species.  Lastly, investigating the correlation between 

chitin and mosquito age should be conducted using an infrared surface technique such as ATR.  A 

model that focuses on changes in chitin as a function of age may serve as an alternative method 

for predicting the chronologic age of mosquitoes. 
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APPENDIX 

Glossary of Biologically Relevant Terms 

arbovirus – viruses transmitted by things like mosquitoes, ticks, or arthropods 

eclosion – when pupae metamorphose or transition to adult mosquitoes 

epidemiology – branch of medicine related to disease control 

extrinsic incubation period – time between acquisition of a pathogen and when the pathogen can 

be passed onto a susceptible host 

instar stages – different development stages of mosquito larvae 

larvae – first stage of development for mosquitoes after hatching, small and aquatic 

nulliparous – hasn’t laid eggs yet 

oogenesis – the development of egg cells into competent cells capable of further development 

when fertilized 

oviposit – to lay (eggs) 

parous – has laid eggs 

pupae – second stage of development after larvae, still aquatic, but bigger 

 


