
COMPARISON OF SEARCH ALGORITHMS IN TWO-STAGE NEURAL
NETWORK TRAINING FOR OPTICAL CHARACTER RECOGNITION

OF HANDWRITTEN DIGITS

A thesis presented to the faculty of the Graduate School of
Western Carolina University in partial fulfillment of the

requirements for the degree of Master of Science in Technology.

By

Patrik Wayne Gilley

Director: Dr. Yanjun Yan
Associate Professor

School of Engineering and Technology

Committee Members: Dr. Paul Yanik, School of Engineering and
Technology

Dr. Bora Karayaka, School of Engineering and Technology
Dr. Peter Tay, School of Engineering and Technology

April 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of North Carolina at Greensboro

https://core.ac.uk/display/345094476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is dedicated to:

My parents for their unending support and love.

Joshua Turnbull, for being my intellectual sparring partner and closest friend.

My sister, for inspiring me to chase my creativity wherever it takes me.

ii

ACKNOWLEDGEMENTS

I would like to acknowledge my thesis advisor Dr. Yanjun Yan for her constant guidance

and assistance. I will never forget her dedication to working with me on my thesis in the

face of great personal loss. I wish to express my gratitude to her for all of the invaluable

help she gave me in publishing my first paper.

I also wish to thank Dr. Paul Yanik for all of the help he has given me during my

time at Western Carolina University. Convincing me to attend graduate school has helped

me grow in ways that I could not have imagined, and the advice that you have given me

both academic and professional has helped me more times than I can remember.

I would like to acknowledge my parents for constantly supporting in life no matter how

large or small my problems are. The time you spent fostering my curiosity and challenging

me to grow beyond my limits has taught me some very valuable lessons. I can honestly say

that I would not be where I am today without you.

Finally, I would like to acknowledge the other graduate students I worked with while

completing my degree for their constant companionship and advice. In particular, I would

like to acknowledge Jeremy Howell, Connor McIntyre, Eric Meyers, Prem Kumar, Anik

Tahabilder, and especially my longtime friend Joshua Turnbull. They made these past few

years much easier and more enjoyable.

iii

TABLE OF CONTENTS

Acknowledgements . iii

List of Tables . vi

List of Figures . vii

Abstract . ix

CHAPTER 1. Introduction . 1

1.1 Background . 1

1.2 Study Objectives . 3

CHAPTER 2. Literature Survey . 4

2.1 Artificial Neural Networks . 4

2.2 Backpropagation . 6

2.3 Particle Swarm Optimization . 7

2.4 Cooperative Particle Swarm Optimization 8

2.5 Bare Bones Fireworks Algorithm . 11

CHAPTER 3. Design Procedure . 15

3.1 Data Pre-Processing . 15

3.2 Artificial Neural Network Configuration . 18

3.3 Simulation Setup . 20

3.3.1 Search Algorithm Implementation . 20

3.3.2 Search Algorithm Parameters . 21

CHAPTER 4. Results . 24

4.1 Standard MNIST Database Results . 24

4.2 PCA MNIST Database Results . 28

4.3 Overall Results Discussion . 32

CHAPTER 5. Conclusion and Future Work . 39

5.1 Conclusions . 39

5.2 Future Work . 42

Bibliography . 44

Appendices . 47

APPENDIX A. Collected Data . 47

A.1 Search Algorithm Error Bar Fitness Curves 47

A.1.1 Standard MNIST Database Fitness Curves 47

A.1.2 PCA MNIST Database Fitness Curves 50

A.2 Search Algorithm Confusion Matrices . 52

A.2.1 Standard MNIST Database Confusion Matrices 52

A.2.2 PCA MNIST Database Confusion Matrices 56

iv

APPENDIX B. Source Code . 60

B.1 Simulation Framework Code . 60

B.2 Backpropagation Algorithm Code . 69

B.3 Search Algorithm Code . 79

B.3.1 Bare Bones Fireworks Algorithm . 79

B.3.2 Particle Swarm Optimization . 84

B.3.3 Cooperative Particle Swarm Optimization 91

B.4 Sub-Function Code . 101

B.4.1 Fitness Functions . 101

B.4.2 Nodal Activation Functions . 103

B.5 Utility Function Code . 104

v

LIST OF TABLES

4.1 Mean and Standard Deviation of Standard MNIST ANN Classification Ac-
curacies . 25

4.2 Mean and Standard Deviation of PCA MNIST ANN Classification Accuracies 29

vi

LIST OF FIGURES

2.1 A Feedforward MLP Artificial Neural Network 5

3.1 PCA Cumulative Data Variance by Principal Component 16

4.1 BBFWA Set 1 Standard MNIST Error Bar Fitness Curve Plot 26

4.2 BBFWA Set 2 Standard MNIST Error Bar Fitness Curve Plot 26

4.3 PSO Standard MNIST Error Bar Fitness Curve Plot 27

4.4 CPSO Standard MNIST Error Bar Fitness Curve Plot 28

4.5 BBFWA Set 1 PCA MNIST Error Bar Fitness Curve Plot 29

4.6 BBFWA Set 2 PCA MNIST Error Bar Fitness Curve Plot 29

4.7 PSO PCA MNIST Error Bar Fitness Curve Plot 30

4.8 CPSO PCA MNIST Error Bar Fitness Curve Plot 31

4.9 BBFWA Set 2 Standard MNIST Best Training Trial Confusion Matrix . . . 36

4.10 BBFWA Set 2 Standard MNIST Worst Training Trial Confusion Matrix . . 36

4.11 BBFWA Set 2 PCA MNIST Best Training Trial Confusion Matrix 36

4.12 BBFWA Set 2 PCA MNIST Worst Training Trial Confusion Matrix 36

A.1 BBFWA Set 1 Standard MNIST Error Bar Fitness Curve Plot 47

A.2 BBFWA Set 2 Standard MNIST Error Bar Fitness Curve Plot 48

A.3 PSO Standard MNIST Error Bar Fitness Curve Plot 48

A.4 CPSO Standard MNIST Error Bar Fitness Curve Plot 49

A.5 BBFWA Set 1 PCA MNIST Error Bar Fitness Curve Plot 50

A.6 BBFWA Set 2 PCA MNIST Error Bar Fitness Curve Plot 50

A.7 PSO PCA MNIST Error Bar Fitness Curve Plot 51

A.8 CPSO PCA MNIST Error Bar Fitness Curve Plot 51

A.9 BBFWA Set 1 Standard MNIST Best Training Trial Confusion Matrix . . . 52

A.10 BBFWA Set 1 Standard MNIST Worst Training Trial Confusion Matrix . . 52

A.11 BBFWA Set 2 Standard MNIST Best Training Trial Confusion Matrix . . . 53

A.12 BBFWA Set 2 Standard MNIST Worst Training Trial Confusion Matrix . . 53

A.13 PSO Standard MNIST Best Training Trial Confusion Matrix 54

A.14 PSO Standard MNIST Worst Training Trial Confusion Matrix 54

A.15 CPSO Standard MNIST Best Training Trial Confusion Matrix 55

A.16 CPSO Standard MNIST Worst Training Trial Confusion Matrix 55

A.17 BBFWA Set 1 PCA MNIST Best Training Trial Confusion Matrix 56

A.18 BBFWA Set 1 PCA MNIST Worst Training Trial Confusion Matrix 56

A.19 BBFWA Set 2 PCA MNIST Best Training Trial Confusion Matrix 57

vii

A.20 BBFWA Set 2 PCA MNIST Worst Training Trial Confusion Matrix 57

A.21 PSO PCA MNIST Best Training Trial Confusion Matrix 58

A.22 PSO PCA MNIST Worst Training Trial Confusion Matrix 58

A.23 CPSO PCA MNIST Best Training Trial Confusion Matrix 59

A.24 CPSO PCA MNIST Worst Training Trial Confusion Matrix 59

viii

ABSTRACT

COMPARISON OF SEARCH ALGORITHMS IN TWO-STAGE NEURAL NETWORK
TRAINING FOR OPTICAL CHARACTER RECOGNITION OF HANDWRITTEN DIG-
ITS

Patrik Wayne Gilley, M.S.T.

Western Carolina University (April 2020)

Director: Dr. Yanjun Yan

Neural networks are a powerful machine learning technique that give a system the ability to

develop multiple levels of abstraction to interpret data. Such networks require training to

develop the neural layers and neuron weights in order to form reasonable conclusions from

the data being interpreted. The conventional training method is to use backpropagation to

feed the error between a neural network’s actual output and desired output back through

the neural network to adjust the neural synapses’ weights to minimize such errors on subse-

quent training data. However, backpropagation has several limitations to its effectiveness in

training neural networks. The most relevant limitation of backpropagation is that it tends to

become trapped in local optimum solutions. This research studied the effectiveness in using

search algorithms to improve upon a feed-forward Multi-Layer Perceptron artificial neural

network trained by backpropagation in classifying handwritten digits. The search algorithms

used for this research were the Bare Bones Fireworks Algorithm (BBFWA), Canonical Par-

ticle Swarm Optimization (PSO), and Cooperative Particle Swarm Optimization (CPSO)

algorithms. Two sets of parameters for the BBFWA were tested in this study in order to

examine the effects of parameters on the algorithm. The handwritten digit classification data

was carried out on the MNIST handwritten character database, a common benchmark for

handwritten character recognition. A neural network was trained with backpropagation, and

then the search algorithms were seeded with its weights so that they could search for better

ix

neural network weight configurations. The complexity of using images of handwritten char-

acters with a feed-forward Multi-Layer Perceptron resulted in a high degree of dimensionality

in the problem, which negatively impacted the Particle Swarm Optimization algorithms. To

analyze the impact of the problem dimensionality, the neural network was also tested with

a PCA compressed MNIST database. It was found that the BBFWA performed the best

out of the three algorithms on both datasets, as it was able to consistently improve upon

the performance of the original neural networks. Between the two sets of BBFWA param-

eters, the simulation results indicated that the second parameter set outperformed the first

parameter set in terms of both classification accuracy and fitness trends.

x

CHAPTER 1: INTRODUCTION

1.1 Background

Optical Character Recognition (OCR) is a specialization of image processing that

concerns character reading and recognition by computers. Artificial neural networks (ANN)

are one of the most commonly used techniques in implementing OCR systems, as they can

simplify systems and maintain the ability to perform well on unseen character sets [1]. An

ANN is modelled after the structure and behavior of neurons in the human brain, and is

capable of learning complex patterns from data sets to perform tasks such as classifying

images of handwritten digits. As such, an ANN is capable of learning a large amount of

complex non-linear equations within an organized framework that can theoretically learn

any behavior desired of it by its designers [2].

Artificial neural networks learn using a training algorithm, which encourages the ANN

to match a desired behavior. The conventional training algorithm for most ANN applications

is the Backpropagation (BP) algorithm [2]. There are several algorithms that fall under the

category of BP, but they all share a few common traits. The BP algorithm is a gradient

descent algorithm that can identify what neurons of an ANN are most responsible for wrong

behavior during a single evaluation of all training data, or epoch, of the training process. By

adjusting the weights of the ANN neurons based on how responsible each neuron is for the

wrong behavior, a BP algorithm produces ordered, steady improvement in ANN performance

on a task. This encourages the ANN to extract fundamental patterns about the data that it

trains on. In turn, the model the ANN learns can better generalize to unseen data samples.

However, the BP algorithm has several drawbacks to it. Due to the gradient descent nature

of BP algorithms, the training process can get stuck in local optimal solutions. Additionally,

as the data samples the ANN trains on increase in complexity, the computational costs of

running modern BP algorithms can significantly increase.

1

Search algorithms are evolutionary algorithms that use meta-heuristic rules to search

a solution space consisting of all possible solutions to an optimization problem [3]. These

algorithms have been successfully applied to training ANN across a variety of applications,

such as camera OCR of vehicle VIN numbers, medical data mining and diagnosis, and

handwritten digit OCR [1,4–7]. This research utilizes several search algorithms: the Particle

Swarm Optimization (PSO) algorithm [8], the Cooperative Particle Swarm Optimization

(CPSO) algorithm [4], and the Bare Bones Fireworks Algorithm (BBFWA) [9]. The PSO

algorithm has been successfully applied in ANN training since it was proposed by Eberhart

and Kennedy in 1995 [8]. The PSO algorithm uses a swarm of particles to ”fly” around a

solution space, allowing it to test multiple variations of an ANN nodal weight configuration

simultaneously. This allows for a more robust search of ANN configurations that allows

the PSO algorithm to see possibilities outside of the current training path. The Fireworks

Algorithm is modelled after firework explosions. It searches a solution space by setting off

fireworks and generating sparks within the explosion range of each firework. By evaluating

each spark as a solution and altering both the position and explosion radius of fireworks,

the Fireworks Algorithm can efficiently explore a solution space and find an effective global

optimum solution [9].

The heuristic nature of search algorithms minimizes the risk of getting trapped in local

optima. This gives search algorithms an advantage over BP, as they can explore solutions

that BP algorithms typically would not. However, PSO and PSO-based algorithms can

struggle to converge to an effective ANN configuration in problems with high dimensionality

such as image classification in feedforward Multi-Layer Perceptron (MLP) networks [7].

2

1.2 Study Objectives

This study explores the applicability of search algorithms to the problem of ANN

training for pattern recognition applications. Pattern recognition applications vary widely

in terms of both data pattern and source data types, from medical data with a small number

of discrete features per data sample [5] to image classification with many features representing

image pixels [7]. The dimensionality of pattern recognition data samples is an important

consideration in any ANN design, and it has a significant impact on the performance of

search algorithms such as the PSO search algorithm [4].

The purpose of the study is to compare the properties of the BBFWA, PSO, and

CPSO algorithms in ANN pattern recognition applications with a huge dimensionality. The

pattern recognition application that will be used as a test bed for this paper is handwrit-

ten OCR, as handwritten OCR provides a sufficiently large dimensionality to challenge the

search algorithms. In order to provide a common ground for the comparison, this paper will

employ a two-stage ANN training system with BP and search optimization algorithms. The

two-stage training system will first train a feedforward MLP to classify the MNIST hand-

written character database using conjugate-gradient BP. The BBFWA, PSO, and CPSO

search algorithms will then be applied to improve upon the BP trained MLP. This two-stage

training system uses transfer learning to allow the search algorithms to utilize what the BP

trained MLP ANN learned. According to Pan and Yang, transfer learning is a process of

transfering knowledge from a machine learning model to a different model. This process is

useful in reducing the expense of collecting and labelling new data, or training an entirely

new model from scratch. In ANN, this process can manifest as taking a very general ANN

and adjusting it for a more specific application [10]. Utilizing transfer learning to start all of

the search algorithms at the same pre-trained ANN allows for a common baseline to compare

the performance of each algorithm against the rest of them. The algorithms will be judged

on classification accuracy and the overall fitness that they achieve.

3

CHAPTER 2: LITERATURE SURVEY

2.1 Artificial Neural Networks

Artificial neural networks are a machine learning technique that mimics how a human

brain processes information. Negnevitsky gives a general overview of ANN in his book on

artificial intelligence [2]. Neurons in the human brain have a large amount of input signals,

with each input signal having a different weight or importance to that neuron. Perceptrons,

one of the basic nodal structures of ANN, are very similar to human neurons in how they

operate. In theory a neural network has multiple layers of nodes, with every node in one

layer connected to every node in the succeeding layer. At a minimum, a neural network

has an input and output layer, with additional layers between the two being referred to as

hidden layers. These hidden layers are optional design choices and can be added to the

neural network at the discretion of the designer. Hidden layers allow for a greater range of

nodal functions and features to be learned by a neural network, although the operations of

the hidden layers are not necessarily apparent to humans [2].

Every layer in a neural network consists of a collection of nodes. Each individual

node passes all the inputs from the previous network layer through an activation function

to determine its output value. Each layer in an ANN applies the same activation function

to all of the nodes within that layer, although each ANN layer can use a different activation

function from what the other layers use. The only layer that does not use an activation

function is the input layer, as the nodes in the input layer simply take on the value of the

data sample given to them. Each input connection to a node has a weighted coefficient that is

multiplied with the numerical input of the node, referred to as a nodal weight. Nodal weights

in an ANN represent the importance of an input to a node’s output. By varying the values

of these nodal weights, it becomes possible to adjust the behavior of each node. This nodal

weight adjustment process is the core problem of training an ANN, as this often requires

adjusting thousands of nodal weights across several layers to achieve a desired behavior.

4

...
...

...

1

x1

x2

xk

1

A1

A2

Ah

y0

y9

ω
01,1

ω11,1

ωkh,1

ω
00,2

ωh9,2

Input
Layer

Hidden
Layer

Ouput
Layer

Variables

Bias

Figure 2.1: A Feedforward MLP Artificial Neural Network

The neural network architecture used in this study is the feedforward MLP architec-

ture. An MLP network is composed of multiple layers of perceptron nodes, with information

entering the input layer and sequentially proceeding to the output layer with no data feeding

back to previous layers. Fig. 2.1 shows an example of the feedforward MLP neural network

architecture. Each layer with the exception of the output layer has a bias node that con-

stantly outputs a value of 1. The ω values represent individual nodal weights. These can be

grouped together into nodal weight matrices that represent the entirety of the connections

between two layers.

Because of the adaptability and ability to model complex non-linear relationships,

ANN are applicable in a wide variety of fields. Shah et al. used an ANN to implement an

OCR system for reading vehicle VIN numbers from digital photographs [1]. The ANN trained

for this system proved to be very effective in identifying VIN numbers from processed sample

images. By implementing a system to perform the image pre-processing done in [1], the

trained OCR ANN would be capable of effective real-world performance. Dutta, Karmakar,

and Si conducted a study that utilized different methods of training an ANN to diagnose

patients based on their medical data with the end goal of creating an effective medical

data mining tool [6]. The results of the study showed that the trained ANN managed an

effective and balanced classification rate of the sampled medical data, demonstrating that

5

the approach used in [6] created a useful analysis tool for medical professionals.

2.2 Backpropagation

According to Negnevitsky, the conventional method for training feedforward MLP

networks is the BP algorithm [2]. Many variants of BP have been devised since its inception,

and include algorithms such as Levenberg-Marquardt, Bayesian regularization, and classical

gradient descent [5]. BP works by calculating the error of the actual and desired outputs

and propagating that error back through the network to adjust the ANN nodal weights. In

general, many BP-based algorithms rely on an iterative machine learning technique called

gradient descent [5]. The basic idea of gradient descent is that if the error function of a

machine learning model is graphed, then all that needs to be done to optimize the model is

to move along the graph to its lowest point. This approach is known as the steepest descent

approach, and is the classical approach to most BP algorithms. The approach used in this

study is the conjugate gradient approach. Nocedal and Wright give a comprehensive overview

of the conjugate gradient approach in their book on numerical optimization approaches [11].

The conjugate gradient approach relies on the properties of conjugate vectors to find an

optimal solution. It selects search vectors that are orthogonal to each other that move the

search from the initial starting point to the optimal solution. Each move effectively moves

from an initial point to the solution in one dimension. Thus, the conjugate gradient approach

is guarenteed to converge in at most n steps, where n is equal to the number of dimensions

of the optimization problem [11].

BP is relatively simple to implement in an artificial neural network given that it simply

reverses the normal operation of a feedforward ANN. However, many BP algorithms have

been consistently demonstrated to have several problems in terms of computational resources,

time spent training, and a tendency to get stuck in local optima instead of finding global

optima. BP is one of the oldest algorithms used for training artificial neural networks and is

still used today due to how simple it is to implement. Many studies involving artificial neural

6

networks use BP as a comparison standard. Gudise and Venayagamoorthy conducted a study

of BP and PSO in training an ANN to mimic a simple equation [5], and Dutta, Karmakar,

and Si conducted a study of the Fireworks Algorithm, PSO, and BP with training an ANN

to handle medical data [6]. Both of these studies found that BP algorithms underperformed

when compared to search algorithms.

2.3 Particle Swarm Optimization

The PSO algorithm was first proposed by Kennedy and Eberhart in 1995 as a method

of optimizing non-linear functions such as the weights of an artificial neural network [8].

The PSO algorithm is based off of the social behaviors of flocking birds and schools of

fish, simulating their behavior with a swarm of particles. The PSO algorithm operates by

randomly initializing a swarm of particles within a solution space bounded by the range

of the optimization problem’s dimensions. Each particle has its own position and velocity

associated with it, and flies around the solution space looking for an optimal solution. The

particles remember both their personal best position and the group’s best position, and use

those solutions to guide their movements. The two main equations that govern the particle

movements are shown below:

vp(i+ 1) = ω ∗ vp(i) + c1 ∗ rand() ∗ (pbestp − xp(i)) + c2 ∗ rand() ∗ (gbest − xp(i)) (2.1)

xp(i+ 1) = xp(i) + vp(i+ 1) (2.2)

where vp is the velocity of the particle being updated, xp is the particle position, c1 and c2

are both positive constants, gbest is the global best particle position, pbest is the best position

of the particle being updated, ω is the inertial decay constant, and rand() is a number

randomly drawn from a uniform distribution in the range of [0, 1].

The c1 and c2 constants respectively represent the cognitive and social weights, and

control how much the individual best solution and the group best solution influence how the

7

particles move through the search space. As the particle velocities are iteratively updated,

they will fly towards the pbest and gbest values already recorded. The random coefficients in

the velocity equation will allow more thorough exploration of the solution space by causing

particles to “overshoot” these best values, investigating the solution space around the best

positions. In the context of neural network training, each particle will represent an artificial

neural network nodal weight configuration. Essentially, the PSO algorithm will train as

many artificial neural networks as there are particles in the swarm.

PSO has been used to train artificial neural networks ever since it was proposed

because it can efficiently optimize non-linear problems. In fact, one of the applications

that Kennedy and Eberhart tested the PSO algorithm on in their original PSO paper was

training simpler ANN [8]. A paper written by Gudise and Venayagamoorthy demonstrates

how well PSO can train an ANN in comparison with BP algorithms [5]. The study found that

PSO generally required less computations than BP did in training an ANN on a non-linear

function, and that PSO converged on better solutions than BP. The study shows that PSO

is well suited for artificial neural networks, but that an optimal setup for training artificial

neural networks is required. Another study by Suresh, Harish, and Radhika compared PSO

to BP in training an ANN to predict a patient’s length of stay in a hospital [12]. In the ANN

training trials conducted in [12], the PSO algorithm generally converged to better solutions

than the BP algorithm that was used. Not only that, but the PSO algorithm generally

converged faster than the BP algorithm. According to Suresh, Harish, and Radhika, the

heuristic nature of PSO gives the algorithm an advantage over BP algorithms in optimization

problems with a high number of local minima [12], a situation that tends to be common in

training complex ANN.

2.4 Cooperative Particle Swarm Optimization

The CPSO algorithm was proposed by Van den Bergh and Engelbrecht in 2000 as

an alternative to the PSO algorithm in training large artificial neural networks [4]. This

8

algorithm implemented cooperative learning strategies into the PSO algorithm, splitting the

overall optimization task into a grouping of smaller particle swarms. The main advantage

that the CPSO algorithm has over the original PSO algorithm is outlined in [7], which demon-

strated that a neural network with a structure of 784 input nodes, 100 hidden nodes, and 10

output nodes forces the training algorithm to optimize about 79,510 different nodal weights.

The PSO algorithm struggles to separate patterns in both source data and classification

performance for effectively training an ANN when working in such high dimensions.

The CPSO algorithm works by optimizing a single vector of dimensions referred to

as the context vector. This context vector is broken up into K parts, with each part getting

a sub-swarm assigned to it. Each sub-swarm runs the PSO algorithm for one iteration. At

the end of this iteration, the gbest solution of the sub-swarm particles are combined with the

gbest solution(s) of the other sub-swarm(s) to reform the context vector for evaluation. This

is repeated for each sub-swarm in the algorithm until all sub-swarms have been updated,

completing one training iteration of the CPSO algorithm. By focusing particle swarms on

sections of the context vector, each swarm has the advantage of working in less dimensions.

If the context vector formed by the new sub-swarm gbest solutions is found to be a better

solution than the current best context vector, the fitness value of every sub-swarm gbest

particle is updated with the context vector’s fitness value. The CPSO algorithm does this

as a credit sharing approach to its cooperative learning nature. Since each sub-swarm gbest

particle was a part of this better solution, they receive equal credit. This credit sharing

mechanism guides the sub-swarms learning by allowing each sub-swarm to communicate

with the other sub-swarm(s), allowing them to coordinate their search.

There are a variety of dimension splitting schemes for the CPSO algorithm [4,7], but

of interest to this study are the Lsplit and Esplit architectures [4]. The Lsplit architecture

splits the context vector into sub-swarms based on the layers of the ANN. The weight

matrix for the first layer to the second layer has a sub-swarm, the second layer to the third

layer has a sub-swarm, and so on. The performance of the CPSO algorithm suffers when

9

correlated variables are split between the different sub-swarms that it uses, as each sub-

swarm loses out on valuable information that would otherwise help them effectively optimize

a problem [4]. When the CPSO algorithm is used to train an ANN, it becomes extremely

difficult to ascertain if any specific nodal weights are interdependent on other nodal weights,

let alone determining the actual interdependent nodal weights. The Lsplit architecture was

created for training ANN to avoid this problem by splitting the context vector into sub-

swarms based on the ANN layers. The nodal weights between layers are already grouped

together in ANN theory, which implies a certain amount of interdependence between them.

Splitting the context vector by the ANN layers not only minimizes the risk of splitting

correlated variables between sub-swarms, but allows the nodal weights of layers to have

separate ranges [4]. For example, the Lsplit architecture allows for the input to hidden layer

nodal weights to have a different range than the hidden to output nodal weights.

The Esplit architecture evenly splits the context vector into two sub-swarms. The

Esplit architecture was created to compensate for the Lsplit architecture splitting the context

vector into a significantly skewed split of the context vector dimensions. An example of such

a skewed split of dimensions is in a two swarm CPSO algorithm, where one sub-swarm is

responsible for 90% of the context vector dimensions, and the other sub-swarm is responsible

for the remaining 10%. This kind of imbalance is fairly common with ANN that have

large input layer sizes, as most of the context vector is concentrated in the input layer to

hidden layer connections. If the Lsplit architecture is used in this situation, it sabotages

the sub-swarm that is optimizing the majority of the dimensions by restricting its freedom

to maneuver [4]. The ANN used in this study is designed for image classification, which

requires a very large input layer to account for all of the pixels in the images. This ANN

design necessity results in the variable imbalance that the Esplit architecture was created

to handle, so it was decided that this study would use the Esplit CPSO architecture in

simulations.

The CPSO algorithm is an augmentation of the PSO algorithm, giving the CPSO

algorithm many of the strengths of the PSO algorithm while attempting to minimize its

10

weaknesses regarding high solution space dimensionality. Bergh and Engelbrecht tested the

PSO algorithm against a variety of CPSO architectures in training an ANN to classify the

Iris, Glass, and Ionosphere machine learning data sets [4]. In each test, a CPSO architecture

was able to achieve a better performance than the classical PSO algorithm did. The CPSO

algorithm adds additional complexity to the PSO algorithm, but that complexity can easily

boost the performance of the CPSO algorithm given an intelligently designed dimension

splitting scheme and credit sharing strategy. Rakitianskaia and Engelbrecht examined the

properties of the CPSO algorithm in training an ANN for classifying MNIST database [7].

They examined the effects of different activation functions and search space boundaries on

fitness values and particle swarm diversity. The ANN trained by CPSO in [7] did not classify

the MNIST database very well; however, the study clarified some of the major hurdles that

the PSO algorithm faced in training a larger ANN. In particular, PSO has problems with

saturating the ANN nodal weights during the training process. Nodal weight saturation is a

situation that can occur during ANN training, where the nodal weights of a node can get large

enough where the training algorithm cannot tell the difference between their output values.

For example, the output of a sigmoid activation function is very similar for nodal weights

of 40 and 400. Rakitianskaia and Engelbrecht showed that careful selection of activation

functions and ANN structures is important to the ability of the PSO and CPSO algorithms

to converge to a solution [7].

2.5 Bare Bones Fireworks Algorithm

The BBFWA was proposed by Tan and Li in 2017 as a simpler form of the Fireworks

Algorithm [9]. The BBFWA mimics the explosion of a firework to explore a solution space.

A firework is set in the solution space and then “explodes”, scattering sparks within a

predetermined explosion radius. The position of each spark is evaluated by the algorithm,

and the best solution becomes the firework for the next iteration regardless if that solution

is a spark or firework. The BBFWA relies on a single firework, and generates the same

11

amount of sparks at each iteration. The algorithm searches the solution space by varying

the explosion radius of the firework, increasing or decreasing the firework explosion radius

for better exploration or exploitation of the solution space, respectively.

The BBFWA starts by randomly initializing a firework within the solution space. In

this study, the firework was initialized with values randomly drawn from a uniform distri-

bution in the range of [−0.12, 0.12] of the starting position. The limits of this range were

set to balance the need to keep the ANN weights small, but still allow for variability in the

simulation trials. The value of 0.12 was used as a common ANN initialization value that

satisfied both of these concerns. The BBFWA then sets the explosion amplitude of this ini-

tial firework to the limits of the solution space. The equation for setting the initial firework

explosion radius is shown below:

ACF =
Ub− Lb

2
(2.3)

where ACF is the explosion amplitude of the core firework, Ub is the upper boundary of

the solution space, and Lb is the lower boundary of the solution space. The original ACF

equation used in [9] is shown below:

ACF = Ub− Lb (2.4)

Note that the ACF calculated in Equation (2.4) represents the diameter of the explosion

amplitude along any dimension. The radius of the core firework’s explosion amplitude is

more useful for generating the initial firework explosion, as it sets the maximum location of

a spark along any dimension to the bounds of the search space. Equation (2.3) represents the

maximum possible explosion amplitude radius, based on the solution space boundaries. This

is used to set the initial firework explosion amplitude to the optimum range for exploration

of the solution space at the start of the BBFWA execution in this study.

Sparks are randomly generated from a uniform distribution in the range of (x −

ACF , x + ACF). Any sparks that exceed the solution space boundaries are replaced with

12

new sparks randomly generated within the solution space. Each spark is evaluated using the

search algorithm’s fitness function. If one of the sparks has a better fitness than the firework,

it takes the place of the firework for the next firework explosion. The explosion amplitude

of the firework is adjusted based on the quality of the solutions found by its sparks. If the

generated sparks find a better solution than the firework, the explosion amplitude will be

multiplied by a reduction coefficient Cr < 1 to concentrate the sparks on the better solution.

Otherwise, the firework location remains the same and the explosion amplitude is multiplied

by an amplification coefficient Ca > 1 in order to find a better region in the search space.

While this study’s testing and simulations make use of the BBFWA, the BBFWA

was invented only a few years old ago, and thus there was a lack of concrete studies and

related literature that apply the BBFWA to ANN research. It may be more beneficial to

focus on the original Fireworks Algorithm, as the BBFWA preserves the essential functions

and advantages of the original algorithm. Additionally, the BBFWA was demonstrated to

be superior to the original algorithm and many of its variants in the original proposal paper

for the BBFWA [9]. The original Fireworks Algorithm was proposed by Tan and Zhu in

2010 [9], making the Fireworks Algorithm a relatively new search algorithm. However, the

applicability of the Fireworks Algorithm and its variants to ANN training problems has been

thoroughly explored.

There is some experimental evidence to show that the Fireworks Algorithm could

perform better than PSO or BP in training an ANN to classify real-world data. Dutta,

Karmakar, and Si studied how well the Fireworks Algorithm, PSO, and BP did in training

an ANN to diagnose patients using well-known medical databases [6]. The study showed

that the Fireworks Algorithm was able to outperform both the PSO and BP algorithms

in terms of overall artificial neural network performance. While the data sets used in [6]

were less complex than the data sets used in this study, the results reported in [6] show

the potential that PSO and the Fireworks Algorithm have for providing better performance

and accuracy over BP. Another study conducted by Bolaji, Ahmad, and Shola compared

the performance of the Fireworks Algorithm against several other metaheuristic algorithms

13

in training an ANN to classify several well-known UCI machine learning databases [13].

The Fireworks Algorithm either outperformed or matched the performance of the other

metaheuristic algorithms used in [13] across some very challenging classification data sets,

such as the Glass and Diabetes data sets. This study demonstrates the Firework Algorithm is

just as effective as other metaheuristic algorithms in ANN training, and can work effectively

in very challenging ANN training conditions.

14

CHAPTER 3: DESIGN PROCEDURE

3.1 Data Pre-Processing

The MNIST handwritten character database was selected as the ANN training data

set for this study. The MNIST database was first published by LeCun et al. in 1998 [14],

and it has been a benchmark for image classification that is still widely used today [7]. It is

composed of 70,000 labelled images, with 60,000 of those images reserved as training data

and the remaining 10,000 images reserved for testing. Each picture is a 28 × 28 greyscale

image, with the pixel values represented as integers in the range of [0, 255]. Each digit image

is matched with an integer label encoding the digits from 0 to 9. Due to the limitations of

the programming language used in this study, the digit 0 has been changed to use a label of

10 instead of its original label of 0. All of the images have been normalized to values between

0 and 1 by dividing each pixel value by 255, which approximates the standard practice of

normalizing the training data to a mean of 0 and a standard deviation of 1.

Two sets of data were used in this study based on the MNIST database: the origi-

nal, unaltered MNIST database and an MNIST database that was compressed via Principal

Component Analysis (PCA) dimension reduction. According to Clemmensen et al., PCA

is a well-known dimension reduction technique commonly used in data mining and machine

learning problems [15]. PCA maps high-dimensional data onto lower dimensional hyper-

planes, finding ways of representing complex data with a smaller amount of features. It does

this through the use of eigenvectors that describe the data set being compressed. The eigen-

vectors are sorted based on their associated eigenvalues from largest to smallest, with the

largest eigenvalues corresponding to the highest data variances and the smallest eigenvalues

corresponding to the smallest data variances [15]. The dimensionality of the reduced data

set is determined by the number of eigenvectors, or principal components, that are selected.

Typically, the amount of principal components used is constrained by the overall data

set variance that they represent. The data set variance that a number of eigenvectors ex-

15

plains is determined by a cumulative sum of the eigenvalues that correspond to the sorted

eigenvectors. By normalizing the eigenvalues by the overall number of eigenvalues and cu-

mulatively summing them up, it becomes possible to observe the overall variance of the data

set that a combination of principal components explains. Figure 3.1 is a plot of the MNIST

database features and their cumulative explained data variances that was generated to help

select an effective number of dimensions for the PCA compressed MNIST database. This

graph gives a visual demonstration of having to balance a smaller data set size with losing

overall data. For example, the 100 eigenvectors shown in Figure 3.1 account for approxi-

mately 70% of the overall variance, while the first 200 eigenvectors approximately account

for 87% of the overall variance. Most applications of the PCA dimension reduction technique

seek to preserve most of the overall data variance of the source data when compressing it.

Typically, an application using PCA dimension reduction attempts to preserve at least 90%

of the source data variance. The underlying assumption of removing some of the source

data variance is that any features removed by this variance threshold are either noise or

unimportant to the overarching data set patterns.

0 100 200 300 400 500 600 700

Number of PCA Components

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti
v
e

 E
x
p

la
in

e
d

 V
a

ri
a

n
c
e

Figure 3.1: PCA Cumulative Data Variance by Principal Component

16

For this study, the number of dimensions that the MNIST database was compressed to

represents approximately 97% of the overall variance of the original database. Additionally,

it was considered important to this study that the number of dimensions that the MNIST

database was compressed to still represented a square picture. For example, compressing

the MNIST database to 144 features would have kept the images to a 12 × 12 shape, but

compressing to 150 features would not have kept a recognizable image shape. The PCA

compressed MNIST database was reduced from 784 features (28×28) to 400 features (20×20),

which met both the variance condition with 96.92% overall variance explained and kept the

images square. Figure 3.1 shows how the number of features and their overall variance

were determined during the simulation design process. The vertical red line show where 400

principal components falls on the cumulative data variance curve for the MNIST database.

The horizontal red line visually demonstrates the explained variance of 400 data features,

showing that it is near the variance threshold of 97%.

The reason that PCA dimension reduction was used in this study is the high di-

mensionality of the MNIST database images. The topic of dimensionality has already been

addressed in Section 2.4, but it is important to expand on it more in order to discuss some

of the issues that this research encountered. Originally, this study had been planning to use

the Canonical Fireworks Algorithm and Bare Bones Particle Swarm Optimization search

algorithms for the ANN training simulations. However, the high dimensionality of the ANN

structure, caused by the sheer number of data values in the MNIST 28 × 28 images, kept

both algorithms from any form of reasonable performance. The use of PCA compressed

images resulted in some improvement in the classification accuracy of the ANN trained by

these algorithms. However, the number of dimensions that the MNIST database would have

to be compressed to take advantage of this improvement in performace would have sacrificed

most of the data variance in the images. Therefore, these algorithms were replaced with the

CPSO algorithm, which was made to better handle high-dimensional optimization problems.

17

3.2 Artificial Neural Network Configuration

This study utilized a feedforward MLP ANN architecture for its simulations. The

simulations used two different three layered MLP structures for the simulations, to account

for the different dimensions of the two MNIST databases that were used in this study.

The uncompressed MNIST ANN used a 784 input-35 hidden-10 output structure, and the

PCA compressed MNIST ANN used a 400 input-35 hidden-10 output structure. The only

difference in the two ANN structures used in the simulations was the size of the input layer;

they both used the same activation functions and cost functions. The hidden layer used

a Rectified Linear Unit (ReLU) activation function [16]. The general form of the ReLU

equation is shown below:

f(xi) = max(x, 0) =

{
xi, if xi ≥ 0

0, if xi < 0
(3.1)

The ReLU function is useful in gradient-based learning because it avoids vanishing

gradients due to weight saturation. Weight saturation, in the context of ANN learning,

occurs when a nodal weight becomes so large that any changes to it have little effect on the

activation function. For example, the output of the sigmoid activation function [16] is very

similar for an input value of 40 and 400. The learning of the PSO and CPSO algorithms

were hampered by nodal weight saturation during development. The ReLU function was

employed for the hidden layer of the neural networks in order to provide a fairer comparison

between the three search algorithms tested in this study.

The activation function used in the ANN output layer was the softmax activation

function [16]. The softmax activation function is used in multi-class classification problems

to normalize the results of the output layer nodes to a range between 0 and 1, where all of

the output numbers sum up to 1. The general formula for the softmax activation function

is shown below:

18

f(xi) =
exi∑
j e

xj
(3.2)

This allows for the output layer’s results to be interpreted as the probability that any

one sample belongs to a class. A one-hot binary encoding scheme was used for the output

layer, where the output node with the highest probability was assigned a 1 and all other

nodes were assigned a 0.

The fitness function used by the search algorithms was the cross-entropy cost function

[17]. The cross-entropy cost function allows for a bit-wise comparison between a ground truth

label and a neural network label prediction, assuming a one-hot encoded binary scheme is

used for both. The cost function assigns a logarithmically increasing penalty for bits that

are 0 when they should be 1 as well as bits that are 1 when they should be 0. This function

works well with classification ANN, as it can assign a cost to output values regardless of

what label they actually represent. L2 regularization was also added to the fitness function.

L2 regularization sums up the squared values of the nodal weights and adds the resulting

value to the cost function. By doing this, L2 regularization encourages the ANN nodal

weights to be small and reduces model complexity [18]. The cross-entropy formula with L2

regularization is shown below:

J =
1

m

m∑
k=1

(−yk · log(hk)− (1− yk) · log((1− hk))) +
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(θ
(l)
ij)2 (3.3)

where J is the cost value of the current neural network predictions, m is the total number of

data samples that have been analyzed, yk is the ground truth label of a data sample, hk is

the actual neural network output for a data sample, λ is the regularization constant, L is the

total number of layers in the ANN, sl is the number of nodes in layer l, and θ
(l)
ij is the nodal

weight matrix between layers l and l + 1. The cross-entropy equation has been multiplied

by −1 in order to ensure that the resulting value is positive, so that the search algorithms

can properly minimize this equation. An important consideration to make regarding the

19

L2 regularization portion of Equation (3.3) is that the bias node connections should not be

regularized. Given the constant output of the bias nodes, regularization of the bias nodes

could cause problems for the ANN as it tries to adapt to the training data and desired

behavior. Therefore, the summations of the nodes that are a part of the regularization term

in Equation (3.3) are indexed from 1 instead of 0.

3.3 Simulation Setup

3.3.1 Search Algorithm Implementation

One of the most important elements in setting up the study simulations was un-

derstanding how to apply the search algorithms to the task of ANN training. The search

algorithm search space consisted of nodal weights in the overall ANN configuration, meaning

that each dimension represented a single nodal weight. In the context of this study, an ANN

configuration refers to a complete set of nodal weights that creates an ANN. In the BBFWA

and PSO algorithms, each particle or spark represented a single ANN configuration. This

means that both algorithms effectively train a number of ANN equal to the size of their

populations in this study. The CPSO algorithm splits an overall ANN configuration into

parts and assigns each part a sub-swarm. While each portion of the ANN configuration has

a number of different versions equal to the number of particles in its assigned sub-swarm,

the CPSO only trains one full ANN configuration comprised of the best solutions of each

sub-swarm.

The CPSO algorithm required a more detailed particle swarm initialization scheme

than the BBFWA and PSO algorithms in setting up its initialization process. Determining

the best solution for the BBFWA and PSO algorithms consisted of evaluating each particle

with Equation 3.3. However, with the CPSO sub-swarm structure, determining the best

overall ANN configuration requires combining each sub-swarm particle with particles from

the other sub-swarm(s) in order to use Equation 3.3. In this study, particles were combined

by index during this process. This means that particle 1 from sub-swarm A would be

20

evalauted with particle 1 from sub-swarm B, particle 2 from A with particle 2 from B,

and so on until all particle pairs were evaluated. Since all CPSO sub-swarms had the same

number of particles in them, this scheme worked fairly well at initializing the CPSO particles.

This scheme was adopted to reduce the computational time and complexity of evaluating

each sub-swarm particle with all other sub-swarm particles, a process that could become

prohibitively expensive and time-consuming with larger particle populations and/or more

sub-swarms.

3.3.2 Search Algorithm Parameters

The simulations in this study were run using MATLAB R2018b. This study augments

research run by Gilley and Yan in a paper that compared search algorithms in improving

upon a BP trained ANN [19]. Specifically, this study tests the BBFWA with a different set

of parameters in an attempt to improve upon noted weaknesses with the original BBFWA

parameters in [19]. [19] used a reduced set of sparks in the BBFWA that put the algorithm

at a disadvantage to the other search algorithms. This study used an increased spark count

and changed the cr coefficient to attempt to further improve upon the performance of the

BBFWA. For the purposes of this study, the BBFWA parameter set from [19] will be referred

to as BBFWA Set 1, and the adjusted BBFWA parameters used in this study will be referred

to as BBFWA Set 2. The parameters for each algorithm were set as follows:

1. BBFWA Parameter Set 1:

� Number of Sparks: 30

� Amplification Coefficient ca: 1.2

� Reduction Coefficient cr: 0.5

2. BBFWA Parameter Set 2:

� Number of Sparks: 50

� Amplification Coefficient ca: 1.2

21

� Reduction Coefficient cr: 0.25

3. PSO Parameters:

� Swarm Size: 30

� c1 Weight: 1.325

� c2 Weight: 1.325

� ω Weight: 0.7298

4. CPSO Parameters:

� Number of Sub-Swarms: 2

� Swarm Size: 30

� c1 Weight: 1.325

� c2 Weight: 1.325

� ω Weight: 0.7298

Some of the parameters for the BBFWA were sourced from established literature, and

others were determined experimentally. The ca value of 1.2 was sourced from the BBFWA

proposal paper [9]. The cr values in both BBFWA parameter sets were both experimentally

set. In developing the BBFWA implementation for this study, the cr coefficient was modu-

lated in an attempt to improve upon the performance of the algorithm. The cr value of 0.5 in

the first BBFWA parameter set was observed to result in more accurate ANN classification

rates than higher cr values. The cr coefficient was then set at 0.25 for the second parameter

set because it encouraged better fitness values from the BBFWA, which resulted in more

reliable ANN training results. The spark count of 30 in the first set of BBFWA parameters

was selected based on reducing the time per training iteration while allowing the BBFWA to

still converge to a solution. It was increased to 50 in the second set of BBFWA parameters

because the data recorded in [19] showed that a BBFWA spark count of 30 was too low for

reliable performance.

22

The PSO and CPSO shared the same parameters, as the CPSO algorithm uses the

same method as the PSO algorithm in the particle training process. The ω inertial weight

of 0.7298 was sourced from a PSO hyperparameter configuration proposed by Clerc [20].

Originally, the c1 and c2 weights were experimentally determined by the same process as

the BBFWA cr coefficient was. Setting the c1 and c2 weights to 1.325 encouraged better

ANN performance on the image data sets. As the Esplit architecture was used for the CPSO

algorithm and there were only three layers in the ANN structures in this study, only two

sub-swarms were used in the CPSO algorithm. The number of CPSO sub-swarms used in

this study mirrors the same design decision made in the CPSO proposal paper, which used

2 sub-swarms with the Esplit architecture on the tested three layer ANN [4].

23

CHAPTER 4: RESULTS

This study tested the BBFWA, PSO, and CPSO algorithms on the standard MNIST

database and the PCA compressed MNIST database. This section will organize the data

into two different sections in order to present and discuss data related to each database

separately. A third section will be devoted to discussing overarching trends between the

results of the two databases. For the sake of clarity, most of the figures generated from the

simulation results will be placed in Appendix A. Only a few figures will be shown in this

chapter to illustrate some of the conclusions made from the simulation results.

4.1 Standard MNIST Database Results

The original, uncompressed MNIST database was comprised of 28× 28 greyscale im-

ages, resulting in 784 data features per image. This resulted in a large ANN structure in

order to accommodate all of these data features, creating a difficult environment for the

search algorithms. The performance of the search algorithms on the original, unmodified

MNIST database was evaluated based on the ANN classification accuracy on both the train-

ing and testing data sets. Additionally, the search algorithm’s fitness data was analyzed

to provide fitness curves to illustrate how the search algorithms learned over the course of

the simulation trials. The Monte Carlo simulation approach used in this study provided 50

different copies of these metrics per search algorithm. The mean and standard deviation of

both ANN training and testing classification accuracies are listed in Table 4.1. The BP ANN

training and testing classification accuracies are also listed in Table 4.1 for reference.

The fitness values achieved by the search algorithms were recorded and used to gen-

erate fitness curves that visually show how the search algorithms learned. A fitness curve for

a search algorithm is a plot that shows the output of a search algorithm’s fitness function

on each iteration it executes. This provides a visual demonstration of a search algorithm’s

progression from beginning to end. The fitness values shown in the fitness curves are the

24

output of Equation 3.3 for an iteration of the search algorithm that the fitness curve belongs

to. These fitness curves were augmented with error bars that demonstrate the 90th and 10th

percentiles of the fitness values. The error bars show the general fitness curve trend of the

search algorithms as they refined the BP ANN, without outlier data points from trials that

had particularly good or bad random number draws. Each error bar plot also shows the

average fitness curve as red dots on the plots. These average fitness curves were created by

averaging all of the recorded fitness values at each iteration. Additionally, the BP cost curve

was combined with the search algorithm error bar plots. The first 50 iterations on the plot

show the cost curve from the BP ANN training process, which serves the same purpose as a

fitness curve in this context. This shows where the BP training process started when train-

ing the original ANN, as well as where it ended. This point is where the search algorithms

took over refining the ANN, attempting to further minimize the cross-entropy cost function

from where the BP algorithm left off. The fitness curve error bar plots for BBFWA Set 1,

BBFWA Set 2, PSO, and CPSO are shown as Figure 4.1 through Figure 4.4, as well as in

Appendix A as Figure A.1 through Figure A.4.

The results shown in Table 4.1 demonstrate that the search algorithms were not able

to make any significant improvements on the classification accuracy of the BP trained ANN.

However, since the search algorithms were employed to fine-tune the pre-trained BP ANN,

even smaller, more incremental improvements in the overall ANN classification accuracy

have meaning in this study. On that basis, the BBFWA search algorithm performed the

Table 4.1: Mean and Standard Deviation of Standard MNIST ANN Classification
Accuracies

Algorithm Training Accuracy (%) Testing Accuracy (%)

BP 89.8900 90.4100

BBFWA Set 1 89.9618± 0.3385 90.4366± 0.3536

BBFWA Set 2 89.8992± 0.2996 90.3916± 0.2756

PSO 89.7630± 0.1712 90.2138± 0.2398

CPSO 87.7485± 1.1946 88.3852± 1.1321

25

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5
F

it
n
e
s
s
 V

a
lu

e

Figure 4.1: BBFWA Set 1 Standard
MNIST Error Bar Fitness Curve Plot

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.2: BBFWA Set 2 Standard MNIST
Error Bar Fitness Curve Plot

best out of the three tested search algorithms. On average, both of the BBFWA parameter

sets that were tested managed to either preserve the original ANN accuracy or make minor

improvements to it. BBFWA Set 2 had a slightly smaller average accuracy than BBFWA

Set 1, but it also had a smaller standard deviation. This would indicate that BBFWA Set

2 was more reliable than BBFWA Set 1, and that its average classification accuracy gives a

better observation of its optimization performance. The difference between BBFWA Set 1

and BBFWA Set 2 is further demonstrated in Figure 4.1 and Figure 4.2. Both BBFWA sets

stall for a certain amount of iterations as the firework’s explosion radius calibrates to a range

where the BBFWA can start improving upon its initial solution. However, BBFWA Set 2

generally takes fewer iterations than BBFWA Set 1 to start improving upon the pre-trained

ANN. Additionally, the error bars in Figure 4.2 tend to be smaller than the error bars in

Figure 4.1, reinforcing the difference in the standard deviations of the BBFWA parameter

sets. Based on the results in Table 4.1 and the fitness curve error bar plots of BBFWA Set

1 and BBFWA Set 2, BBFWA Set 2 performed better than BBFWA Set 1 on the standard

MNIST database.

The PSO algorithm did not perform as well as either of the BBFWA configurations.

The PSO algorithm had the lowest standard deviation of the original MNIST trials, indicat-

26

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.3: PSO Standard MNIST Error Bar Fitness Curve Plot

ing that it was the most reliable of the tested search algorithms. However, the average PSO

classification accuracy was less than the pre-trained BP ANN accuracies were, indicating

that the PSO algorithm on average caused a slight decrease in performance. In Figure 4.3,

it can be observed that both the PSO algorithm’s average fitness and error bar curves are

very flat. This indicates that while the PSO algorithm was able to improve the pre-trained

ANN, it was very slow in doing so. Compared to either of the BBFWA parameter sets, the

PSO algorithm was slow and inefficient when working with the standard MNIST database.

The CPSO algorithm had the worst performance of the tested algorithms by far.

Its average accuracies were significantly less than the pre-trained BP ANN’s were, and the

standard deviation of its results was significantly larger than the other search algorithms.

This indicates that the CPSO algorithm badly under performed compared to the other

algorithms. It had a tendency to decrease performance and it was very unreliable. The

CPSO fitness curves shown in Figure 4.4 show that the CPSO barely improved on the

pre-trained ANN. On average, the CPSO algorithm’s fitness would only decrease for a few

iterations, and then it would essentially lock at a single value for the rest of the simulation.

The large standard deviation of the CPSO algorithm listed in Table 4.1 further shows how

27

0 20 40 60 80 100 120 140 160 180 200

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.4: CPSO Standard MNIST Error Bar Fitness Curve Plot

poorly the CPSO algorithm performed on the standard MNIST database. The wide spread

of ANN classification results suggests that the ANN being trained by the CPSO algorithm

did not see any significant changes; rather, the ANN tended to stay at the classification

accuracy it had when it was initialized. These results indicate that the CPSO algorithm was

incapable of working with the standard MNIST database and the pre-trained ANN, given

that its performance was more influenced by its random initialization than anything the

algorithm did during the training process.

4.2 PCA MNIST Database Results

The PCA MNIST database is an altered version of the standard MNIST database,

compressed from 784 data features per sample to 400 data features per sample via PCA

dimension reduction. This had the effect of significantly reducing the dimensionality of the

ANN optimization problem, making the simulation conditions more favorable for the PSO

and CPSO algorithms. The PCA MNIST database was evaluated with the same methods

and conditions as the standard MNIST database, and the same metrics were recorded. The

mean and standard deviation of the refined ANN training and testing classification accuracies

28

are listed in Table 4.2. As with Table 4.1, the BP ANN training and testing classification

accuracies are listed in Table 4.2 for reference. The fitness values of the search algorithms

were recorded and used to generate the same type of fitness curve error bar plots as the ones

created for Section 4.1. The fitness curve error bar plots for BBFWA Set 1, BBFWA Set 2,

PSO, and CPSO are shown as Figure 4.5 through Figure 4.8, as well as in Appendix A as

Figure A.5 through Figure A.8.

The data in Table 4.2 shows that three of the four search algorithms tested on the

PCA MNIST database did not make any significant improvements on the performance of

the pre-trained ANN. However, BBFWA Set 2 was able to improve upon the pre-trained

ANN’s training classification accuracy of the pre-trained ANN while preserving its testing

classification accuracy. This shows that BBFWA Set 2 was superior to BBFWA Set 1 on the

Table 4.2: Mean and Standard Deviation of PCA MNIST ANN Classification Accuracies

Algorithm Training Accuracy (%) Testing Accuracy (%)

BP 90.0617 90.8500

BBFWA Set 1 89.9348± 0.3544 90.4724± 0.3489

BBFWA Set 2 90.3087± 0.2572 90.8064± 0.2722

PSO 90.0281± 0.1655 90.5500± 0.2353

CPSO 86.9439± 1.8804 87.5504± 1.8364

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.5: BBFWA Set 1 PCA MNIST
Error Bar Fitness Curve Plot

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.6: BBFWA Set 2 PCA MNIST
Error Bar Fitness Curve Plot

29

PCA MNIST database. BBFWA Set 2 had a smaller standard deviation than BBFWA Set

1, while maintaining higher mean classification accuracies. Comparing the fitness curves of

BBFWA Set 1 and BBFWA Set 2 in Figure 4.5 and Figure 4.6 shows the same characteristics

that were noted in Section 4.1 when analyzing how the two BBFWA algorithm sets performed

on the standard MNIST database. BBFWA Set 2 generally takes fewer iterations to start

converging to a solution than BBFWA Set 1. Additionally, BBFWA Set 2 generally converges

to a solution faster than BBFWA Set 1, given the steeper slope of its fitness curves and the

smaller error bars in Figure 4.6.

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.7: PSO PCA MNIST Error Bar Fitness Curve Plot

The PSO algorithm was the most reliable of all the tested search algorithms on the

PCA MNIST database. Table 4.2 shows that the PSO algorithm had the lowest recorded

standard deviation values of all the PCA MNIST database results. The PSO algorithm

easily outperformed the CPSO algorithm and matched BBFWA Set 1 in terms of ANN

classification accuracy mean and standard deviation. Deciding whether the PSO algorithm

or BBFWA Set 1 performed better on the PCA MNIST database is more difficult than

just comparing their performance metrics in Table 4.2. In [19], it was concluded that the

BBFWA used in the paper performed better than the PSO and CPSO algorithms, despite

30

having slightly worse mean ANN classification accuracies and larger standard deviations than

the PSO algorithm did. BBFWA Set 1 is the same BBFWA used in [19], and the data for

everything in Table 4.2 with the exception of BBFWA Set 2 was sourced from the simulations

run in [19]. The conclusion that BBFWA Set 1 was superior to the PSO algorithm in [19] was

made on the basis that BBFWA Set 1 matched the performance of the PSO algorithm, even

though the parameters used in BBFWA Set 1 put the algorithm at a significant handicap.

This conclusion is supported by the results of BBFWA Set 2 in this study. BBFWA Set 2

used expanded parameters that improved its performance, and clearly performed better than

any other search algorithm tested on the PCA MNIST database. Given that BBFWA Set 2

validated the conclusions of [19] where the BBFWA’s performance was concerned, the PSO

algorithm performed marginally better than BBFWA Set 1 on the PCA MNIST database

in terms of ANN classification accuracy. In terms of the PSO algorithm’s fitness curves, the

same behavior noted in Section 4.1 occurs here. While the PSO algorithm constantly learns

over the entire training process, it does so at a slower rate than either BBFWA algorithm.

The PSO algorithm could probably reach the same effective solutions that BBFWA Set 2

did, but it would require a substantially increased number of training iterations to do so.

0 20 40 60 80 100 120 140 160 180 200

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure 4.8: CPSO PCA MNIST Error Bar Fitness Curve Plot

31

The CPSO algorithm had the worst performance on the PCA MNIST database by

far. There was a marked decline in both training and testing average ANN classification

accuracies, and the standard deviations of both classification accuracies were much larger

than the rest of the search algorithms. Figure 4.8 shows that the CPSO algorithm had

many of the same problems on the PCA MNIST database that it had with the standard

MNIST database. The CPSO algorithm had a tendency to lock into a constant fitness value

after a few training iterations, showing its inability to learn with the PCA MNIST database.

Comparing the fitness curves in Figure 4.4 and Figure 4.8 shows that the CPSO algorithm’s

problems were even more pronounced on the PCA MNIST database. The lower error bars

in Figure 4.8 move towards the average fitness curve much faster than they do in Figure 4.4,

showing that the CPSO algorithm was more unstable when working with the altered images

and pre-trained ANN of the PCA MNIST database.

4.3 Overall Results Discussion

Considering the results presented in Section 4.1 and Section 4.2, the overall conclusion

of this study is that the BBFWA Set 2 was the best performing search algorithm in the

simulations. In terms of the ANN classification accuracies shown in Table 4.1 and Table 4.2,

BBFWA Set 2 consistently produced classification accuracies that were higher than those of

the pre-trained ANNs with a lower standard deviation. BBFWA Set 2 proved to be more

effective than BBFWA Set 1 across both MNIST databases; BBFWA Set 2 took less iterations

than BBFWA Set 1 to start the learning process, and its results were more consistent than

BBFWA Set 1’s were. Because BBFWA Set 2 took less iterations than BBFWA Set 1 did to

start improving upon a pre-trained ANN, it was able to more effectively utilize the training

iterations that it was allowed than BBFWA Set 1 was. As mentioned in Section 4.2, the

conclusions of [19] hypothesized that expanded BBFWA parameters would lead to an increase

in performance and set the BBFWA as the best search algorithm out of all the algorithms

tested in the paper. The results of this study have verified this hypothesis, for the ANN

32

classification accuracies already mentioned and because of the fitness curves produced by the

search algorithms. BBFWA Set 2 consistently has the steepest fitness curve in its starting

iterations, and maintains the largest slope across the entire training process. This shows

that it avoids the issues of BBFWA Set 1 in regards to the initial iteration stall as well as

the issues of the PSO algorithm regarding how the flatness of its fitness curves show the

algorithm’s stagnation.

The PSO search algorithm stands as a close second to both of the BBFWA parameter

sets. The consistently low classification accuracy standard deviations of the PSO algorithm

shows that the PSO algorithm was the most reliable in its final results out of all the tested

search algorithms. However, the PSO algorithm generally was unable to make any improve-

ments upon either BP trained ANN. In fact, it had a tendency to cause a decrease in both BP

trained ANNs’ classification accuracies. The fitness curves in Figure 4.3 and Figure 4.7 give

some insight into why the PSO algorithm behaved the way it did with the pre-trained ANN

and MNIST databases. The difference between the PSO algorithm’s initial and final fitness

values tended to be very small, and the slope of its fitness curves tended to be just as small.

This indicates that the PSO algorithm encountered significant difficulties in attempting to

learn within the solution space with both versions of the MNIST database.

The best explanation for the PSO algorithm’s results is that the algorithm struggled

to work in the high dimensionality of the optimization problems presented by the standard

and PCA MNIST databases. As already mentioned by Rakitianskaia and Engelbrecht, the

PSO algorithm struggles to optimize problems with a large number of dimensions [7]. The

slow rate of learning shown in the fitness curves indicates that the PSO algorithm was

not able to find and pursue better solutions effectively. The recorded PSO algorithm’s ANN

classification accuracies show that the solutions the PSO particles chased were not necessarily

improvements upon the original solution. This indicates that there were too many variables

in the solution space for the particle swarm’s communication mechanisms to guide the swarm

to better solutions.

33

The CPSO algorithm was the worst performing search algorithm tested in this study.

The high standard deviations and low means of the ANN classification accuracies produced

by the CPSO algorithm demonstrate the how unreliable the CPSO algorithm was on both

MNIST databases. In fact, the pre-trained ANN testing and training accuracies were over

one standard deviation away from the mean accuracies of the CPSO algorithm with both

MNIST databases, indicating that over 66% of the CPSO’s refined ANN were significantly

worse than the original ANN. The fitness curves produced from the CPSO algorithm’s results

on both the standard and PCA MNIST databases further illustrate the poor performance of

the algorithm in this study. Both Figure 4.4 and Figure 4.8 show that the CPSO algorithm

on average was unable to find any meaningful improvements on the pre-trained ANN. Even

if there were a few trials that did manage to make some improvements on the pre-trained

ANN, the vast majority of the other trials do not reflect this behavior.

The CPSO algorithm was the most complex search algorithm employed in this study

in terms of its architecture. The number of sub-swarms used in the CPSO algorithm, as

well as the context vector splitting scheme, play a significant role in how well the CPSO

algorithm operates. Another consideration to make in CPSO architecture design is in how

the search space variables are correlated with each other. If there are a set of variables

that directly influence one another in an optimization problem, and those variables are split

between CPSO sub-swarms, the overall performance of the CPSO algorithm will suffer [7].

One of the reasons for this is that if correlated variables are split between sub-swarms, those

sub-swarms will miss out on important information as they optimize the variables that they

are responsible for. In most ANN implementations, it is very difficult to determine which

nodal weights correlate to other nodal weights, beyond the already existing ANN nodal layer

structures. The poor performance of the CPSO algorithm in this study indicates that using

the Esplit architecture with two sub-swarms may not have been an effective choice for this

application.

The fitness curves of the CPSO algorithm in Figure 4.4 and Figure 4.8 show that the

CPSO algorithm generally was unable to learn at all on either data set. The fitness data

34

used to generate Figure 4.4 and Figure 4.8 came from the fitness value history of the context

vector. In the CPSO algorithm, each sub-swarm has its own set of fitness values that it tries

to minimize. Whenever the sub-swarms improve upon the global solution, the sub-swarm

particles that were responsible for the solution inherit the new fitness value. However, the

sub-swarms do not directly minimize this value. This means that the overall fitness of the

context vector has a tendency to increase and then stay constant at the beginning of the

training process until the sub-swarms can lock into effective regions of the solution space

and start improving the overall context vector. The CPSO algorithm was given more than

enough training iterations to consistently avoid getting trapped in this kind of behavior. This

behavior indicates that the CPSO sub-swarms were unable to find any regions where the two

sub-swarms could work together to improve upon the context vector. Given the observed

fitness curve behavior and that the BBFWA and PSO algorithms could find solution space

regions to optimize the overall ANN configuration that they were given, the CPSO algorithm

may be incompatible with the two-stage approach used in this study. Starting at a solution

that a different algorithm arrived at deprives the CPSO algorithm of the freedom it needs

to calibrate its sub-swarms to find better solutions.

An important consideration to make when analyzing the performance of any multi-

class classifier is observing how the classifier handles the various data classes within its target

data set. By analyzing the classification performance of the ANN trained and refined during

the study simulations, misclassification trends can be identified in order to help determine

why there are differences in classification rates between data classes. Additionally, this

helps quantify the differences between a poor classifier and a great classifier. In order to

perform this analysis on the thesis data, confusion matrices were generated for each search

algorithm on both versions of the MNIST database by using the classification results of the

training phase of all the ANN produced by the search algorithms. The training data results

were used instead of the testing data results because the training phase of the ANN used

60,000, which provides more data to analyze than the ANN testing phase. These confusion

matrices were generated for two test cases for each search algorithm tested in this study. The

35

test cases represented the best and worst training results of the search algorithms, which

were determined to be the best and worst based on their respective final fitness values and

associated training accuracies. The confusion matrices for the standard MNIST database

results are shown in Appendix A as Figure A.9 through Figure A.16, and the PCA MNIST

database confusion matrices are listed as Figure A.17 through Figure A.24. The BBFWA Set

2 confusion matrices for both the standard and PCA MNIST databases are included in this

section as Figure 4.9 through Figure 4.12 as test cases representing the ANN classification

behavior on their respective MNIST databases.

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

47

36

17

102

63

21

22

47

58

36

22

64

23

47

153

22

36

49

181

48

42

63

74

96

23

18

35

135

3

191

3

45

174

78

9

6

104

7

62

58

79

22

197

48

25

21

231

4

4568

85

13

167

55

37

6

108

35

88

103

6

58

5

15

20

93

74

13

33

4

32

183

60

117

156

145

39

185

42

24

63

9

17

40

66

295

71

9

169

94

5691

6467

5196

5320

5313

5568

5787

5033

5276

3.9%

4.1%

12.8%

13.2%

9.1%

15.7%

5.9%

7.6%

14.0%

11.3%

96.1%

95.9%

87.2%

86.8%

90.9%

84.3%

94.1%

92.4%

86.0%

88.7%

5.9% 6.2% 10.5% 11.4% 9.3% 12.4% 7.4% 7.5% 14.2% 12.7%

94.1% 93.8% 89.5% 88.6% 90.7% 87.6% 92.6% 92.5% 85.8% 87.3%

Figure 4.9: BBFWA Set 2 Standard MNIST
Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

59

46

10

119

73

31

38

40

89

45

33

45

20

55

143

27

33

43

183

26

58

69

76

122

20

23

25

108

6

248

2

40

222

95

14

7

106

10

87

108

83

34

227

76

33

35

278

11

4420

81

20

205

55

43

7

114

43

117

149

7

67

8

18

23

107

91

19

43

1

34

199

79

119

156

182

68

182

52

18

111

11

10

33

72

290

70

4

265

100

5626

6475

5151

5181

5262

5508

5670

4886

5167

5.0%

4.0%

13.5%

15.5%

9.9%

18.5%

6.9%

9.5%

16.5%

13.1%

95.0%

96.0%

86.5%

84.5%

90.1%

81.5%

93.1%

90.5%

83.5%

86.9%

6.9% 6.6% 10.9% 12.9% 11.4% 15.2% 9.2% 8.6% 16.5% 14.2%

93.1% 93.4% 89.1% 87.1% 88.6% 84.8% 90.8% 91.4% 83.5% 85.8%

Figure 4.10: BBFWA Set 2 Standard MNIST
Worst Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

54

41

11

81

44

19

33

48

43

27

24

52

26

62

136

35

26

35

160

35

46

48

72

77

20

14

22

94

6

184

6

36

145

80

16

5

96

5

91

63

67

28

221

47

25

23

244

9

4591

63

12

154

56

42

7

101

27

81

132

2

82

4

13

19

72

65

13

23

2

18

180

65

82

148

126

56

161

50

11

68

12

14

20

79

302

60

2

210

103

5688

6533

5307

5357

5305

5614

5774

5075

5237

4.0%

3.1%

10.9%

12.6%

9.2%

15.3%

5.1%

7.8%

13.3%

12.0%

96.0%

96.9%

89.1%

87.4%

90.8%

84.7%

94.9%

92.2%

86.7%

88.0%

5.5% 5.8% 8.9% 9.9% 10.0% 12.1% 7.8% 6.6% 13.1% 13.3%

94.5% 94.2% 91.1% 90.1% 90.0% 87.9% 92.2% 93.4% 86.9% 86.7%

Figure 4.11: BBFWA Set 2 PCA MNIST
Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

67

24

15

102

48

28

44

40

55

28

28

62

21

59

141

29

29

34

150

38

43

69

98

94

15

14

32

89

3

201

8

18

152

90

11

10

111

5

64

58

58

22

206

31

50

23

259

14

4563

71

11

180

57

54

4

89

29

70

118

4

68

11

10

16

84

70

26

25

3

17

186

59

76

161

160

50

168

40

29

68

10

9

18

77

280

75

3

199

104

5705

6511

5261

5329

5318

5597

5761

5029

5247

3.7%

3.4%

11.7%

13.1%

9.0%

15.8%

5.4%

8.0%

14.0%

11.8%

96.3%

96.6%

88.3%

86.9%

91.0%

84.2%

94.6%

92.0%

86.0%

88.2%

6.1% 6.1% 9.8% 10.2% 9.3% 13.2% 7.4% 7.1% 13.9% 12.9%

93.9% 93.9% 90.2% 89.8% 90.7% 86.8% 92.6% 92.9% 86.1% 87.1%

Figure 4.12: BBFWA Set 2 PCA MNIST
Worst Training Trial Confusion Matrix

36

The search algorithms struggled with classifying some digits more than others. Fig-

ure 4.9 through Figure 4.12 use the same organizational scheme in showing data. Blue cells

represent correct predictions, and orange cells show incorrect predictions. The percentages

below the confusion matrices represent the percentage of digit predictions that were correct

and incorrect. The percentages to the right of each confusion matrix represent the percent-

age of each digit class that was correctly and incorrectly classified. It can be observed from

the confusion matrices that the refined ANN misclassified the digits 3, 4, 5, 8, and 9 the

most. Digit 2 was somewhat of an issue for BBFWA Set 2, but comparing these confusion

matrices to the rest of the confusion matrices in Appendix A shows that the digit 2 was not

as common of an issue as the digit classes listed earlier. Determining which digit classes were

commonly mistaken for other digit classes involved finding digit classes with high misclassi-

fication rates and then finding the highest prediction error number in the confusion matrix

for that class. The ANN trained by the search algorithms had a tendency to confuse the

digits 3, 5, and 8 with one another. The digits 4 and 9 were another group of digit classes

that were commonly confused by the ANN. To help illustrate how the confusion matrices

were used to arrive to this conclusion, all of the confusion matrices have highlighting around

the relevant cells. Green highlighting was used to identify classification rates and prediction

error cells that demonstrate that the ANN had difficulty distinguishing the digits 3, 5, and

8 from each other. Red highlighting was used to do the same task for digits 4 and 9.

As Figure 4.9 through Figure 4.12 show, the digits 3, 5, and 8 all had higher misclas-

sification rates. If the orange cells for the class predictions or the digit class populations are

compared for any one of these three digit classes, the errors for the other two classes in the

group is always unusually higher than the rest of the prediction errors. The same goes for

digits 4 and 9; the ANN classification errors for these classes have an even more noticeable

tendency to favor the other class in this group than they did for the other digit class group.

When these digits are written, they tend to look very similar to each other. The digits 4 and

9 differ by only the presence of straight lines and angles or curves on the top of each digit,

which can blur together for many people’s handwriting. The digits 3, 5, and 8 all share the

37

same type of curve on the lower half of the digit, and the digit 3 is written almost the same

as digit 8. Since the trained ANN have a tendency to confuse all three digits with each other,

it seems reasonable to conclude that the lower curve of all three digits is a key discriminative

feature being learned by the ANN as they are refined by the search algorithms.

These two digit class groups are the biggest hurdle for the ANN being refined by

the search algorithms. Comparing the best ANN training trial results in Figure 4.9 and

Figure 4.11 to the worst training trial results in Figure 4.10 and Figure 4.12 clarifies the

difference between good and bad ANN classifiers. The rates of correct and incorrect classifi-

cation for digit classes 0, 1, 2, 6, and 7 tend to remain fairly constant between the best and

worst training runs on either database. What really changes between the best and worst

training runs is that the best training results significantly reduce the rate of misclassification

of the other five digit classes. This clearly demonstrates that one of the main influencing

factors in how well the handwritten character recognition ANN performs in classifying these

handwritten digits is dependent on how well it can handle these difficult distinctions. The

ANN used to create Figure 4.9 and Figure 4.11 has a higher success rate on all of the chal-

lenging digit classes than the ANN used to create Figure 4.10 and Figure 4.12. This is what

resulted in the striking difference in performance between the selected trial results.

38

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusions

This study compared the ability of the BBFWA, PSO, and CPSO search algorithms

in refining an ANN trained with conjugate gradient BP to classify the MNIST database.

After analyzing the results presented in Chapter 4, this study concludes that the BBFWA

was the best performing search algorithm in producing a better ANN than it started with.

The optimization problem of refining the BP trained ANN had a very high dimensionality,

which was caused by the tens of thousands of nodal weights in the ANN structures used

in this study. Additionally, conjugate gradient BP is a fairly efficient training algorithm in

terms of reaching a good solution, and the ANN trained with it were already able to achieve

a high classification performance on both the standard and PCA MNIST databases. Despite

both of these major challenges, the BBFWA was able to reliably produce a better ANN than

it started with.

The methods used for the BBFWA in this study explored some of the conclusions

made by Gilley and Yan in [19]. The data and conclusions of [19] noted that the BBFWA

setup it used had issues in both converging to a solution and the consistency of the algorithm’s

final solutions. BBFWA Set 1 was a full copy of the BBFWA used in [19], in order to allow

this study to compare against the results in that paper. BBFWA Set 2 was an experimental

parameter set for the search algorithm, created as an improvement to BBFWA Set 1. By

increasing the number of sparks per explosion and by adjusting the reduction coefficient to

cause the firework’s explosion radius to contract faster, BBFWA Set 2 removed the handicap

that BBFWA Set 1’s low spark count caused and allowed the firework to zoom into the

number range of the ANN nodal weights faster than BBFWA Set 1 could. BBFWA Set

2 clearly out performed BBFWA Set 1 on the PCA MNIST database, and produced more

reliable results on the standard MNIST database than BBFWA Set 1 did. The data and

fitness curves clearly show that the adjusted parameters in BBFWA Set 2 improved upon

39

the weaknesses of BBFWA Set 1. The number of iterations it took for the firework used by

BBFWA Set 2 to calibrate its explosion radius to a range where it could start improving the

BP ANN was smaller than the number of iterations it took BBFWA Set 1 to accomplish the

same thing in every trial run in this study. On average, when BBFWA Set 2 started learning,

it did so faster than BBFWA Set 1 on both MNIST databases. This allowed BBFWA Set

2 to use its time more efficiently than BBFWA Set 1. Additionally, BBFWA Set 2 always

had a smaller classification accuracy standard deviation than BBFWA Set 1, showing that

BBFWA Set 2 was always more consistent in its final results than BBFWA Set 1 was. This

study concludes that the parameter changes made to BBFWA Set 1 to create BBFWA Set

2 were effective in improving the performance of the BBFWA for this application, which

verifies the conclusions of [19] regarding the BBFWA search algorithm.

The PSO algorithm struggled to overcome the dimensionality issues presented by the

problem of refining the BP trained ANN. The classification accuracies for both the standard

and PCA MNIST databases were worse than the original ANN’s were. It would seem that

compressing the MNIST database using PCA dimension reduction techniques made little

difference in how the PSO algorithm behaved in this study. The PSO algorithm’s classifica-

tion accuracy standard deviations for the PCA MNIST database were nearly identical to its

classification accuracy standard deviations for the standard MNIST database. Additionally,

the difference between the average PSO and BP classification accuracies is nearly identical.

The fitness curves generated for the PSO algorithm for both data sets shows a very slow

rate of convergence to a solution. The PSO algorithm was the most reliable algorithm when

it came to being consistent in the solution it arrived at. However, the PSO algorithm was

consistently very slow to learn and arrive at a solution, and the amount of dimensions it was

working in seemed to significantly reduce the sensitivity of the PSO particle swarm to better

solutions.

The CPSO algorithm was unable to make any improvements to the BP trained ANN

in this study for either MNIST database. Part of the reason for the CPSO algorithm’s in-

ability to optimize the pre-trained ANN in this study may come from the dimension splitting

40

architecture used in this study. Only the Lsplit and Esplit architectures were investigated in

this study using two sub-swarms, so a different architecture or an increased number of sub-

swarms with the Esplit architecture may have resulted in some improvement in the CPSO

algorithm’s performance. However, any problems that may have arisen as a result of the

CPSO dimension splitting architecture were over-shadowed by the problems that occurred

as a result of the nature of the optimization problem itself. The CPSO algorithm will spend

a number of training iterations finding solution space regions where its sub-swarms can start

improving upon the context vector representing the overall optimization problem solution.

Since the CPSO algorithm had to start at a solution that a different optimization algorithm

arrived at, the CPSO sub-swarms did not have the ability to find their own regions to explore

in order to improve the context vector solution. While there could have been individual tri-

als where the CPSO algorithm may have made improvements to the pre-trained ANN, the

CPSO fitness curves in Figure 4.4 and Figure 4.8 indicate that the majority of the CPSO

trials were unable to. In fact, those fitness curves seem to indicate that the sub-swarms

spent the entire training process trying to find effective regions for both sub-swarms, which

reinforces the conclusion that the CPSO algorithm was not very suited to this application.

This study used two different input data sets based on the MNIST database: the

standard, unaltered MNIST database and the PCA compressed MNIST database. The

purpose of applying PCA dimension reduction techniques to the MNIST database was to

reduce the dimensionality of the image data set and consequently the dimensionality of the

ANN used to classify it. However, the results of the two different MNIST databases are not as

different as they were expected to be. While the classification accuracies of the PCA MNIST

results are higher than the standard MNIST classification results, the difference is mainly due

to the fact that the BP trained ANN for the PCA MNIST had higher classification accuracies

than the BP trained ANN for the standard MNIST. The behavior of the PSO and CPSO

algorithms was fairly constant, turning out almost identical fitness curves and classification

accuracy patterns. The BBFWA was the only algorithm that saw any noticeable change

between the two data sets. BBFWA Set 1 and BBFWA Set 2 were closely matched on the

41

standard MNIST database in terms of classification accuracies. However, BBFWA Set 2

saw a noticeable increase in performance on the PCA MNIST database by increasing both

the training and testing accuracy of the BP trained ANN. Conversely, BBFWA Set 1 saw

a decrease in performance on the PCA MNIST database, with its classification accuracies

decreasing to match the PSO algorithm’s classification accuracies. Unfortunately, based on

the results of this study, it would seem that applying PCA dimension reduction techniques

to the MNIST database was not very effective in increasing the performance of the search

algorithms.

5.2 Future Work

There are several avenues of investigation for future work on this research. The ANN

structure and training process used in this study were limited by computational resources

and simulation time constraints, and would benefit from the use of expanded parameters.

The hidden layer of the ANN for both MNIST databases was rather small for the size of the

input layer in either database. Additionally, the number of training iterations allocated to

the search algorithms was also smaller than normal. Rerunning the study simulations with a

larger hidden layer and much higher number of training iterations could yield different results

and behaviors than the ones seen in this study. Another line of research would be a more

thorough exploration of dimension reduction techniques. The PCA dimension reduction

technique is robust, but it is an older technique that may be unintentionally sacrificing data

important to the ANN classifiers even as it preserves the data variances of the original data.

The difference between the PCA and standard MNIST databases was not as pronounced as

it was hoped to be in this study. Therefore, testing other dimension reduction techniques

along with PCA techniques in compressing the MNIST database to different dimensions

could give some useful insight as to how those techniques could help search algorithms with

such high dimension problems. Another interesting line of research would be investigating

the CPSO algorithm’s performance in more detail. The CPSO algorithm did not work

42

well with either database in this study, so it would be interesting to investigate how the

CPSO algorithm handles optimizing pre-trained ANN in general to see if the problems

that the CPSO algorithm had in this study were unique or not. Additionally, it would

be worthwhile to try and determine some general guidelines for selecting a CPSO dimension

splitting architecture of a problem, as well as the number of sub-swarms that should be used

with it. The last line of research would be comparing the performance of the conjugate-

gradient BP algorithm against the search algorithms in this paper. This would provide a

more thorough comparison between the performance of the BP algorithm and the search

algorithms. The results of the BBFWA indicate that it could viably compete with the BP

algorithm in training an ANN on the MNIST database, as its performance in this study

shows that it was not unduly impacted by the optimization problem’s dimensionality unlike

the PSO and CPSO algorithms.

43

BIBLIOGRAPHY

[1] Parul Shah, Sunil Karamchandani, Taskeen Nadkar, Nikita Gulechha, Kaushik Koli, and

Ketan Lad, “Ocr-based chassis-number recognition using artificial neural networks,”

2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES),

Nov 2009.

[2] Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, chapter

Artificial Neural Networks, pp. 165–217, Addison-Wesley, Harlow, 2005.

[3] Donald Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching,

Addison-Wesley, Redwood City,CA, 2 edition, 1998.

[4] Frans van den Bergh and Andries Engelbrecht, “Cooperative learning in neural networks

using particle swarm optimizers,” South African Computer Journal, vol. 26, pp. 84–90,

01 2000.

[5] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimization

and backpropagation as training algorithms for neural networks,” in Proceedings of the

2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), April 2003, pp.

110–117.

[6] Ram Kinkar Dutta, Nabin Kanti Karmakar, and Tapas Si, “Artificial neural network

training using fireworks algorithm in medical data mining,” International Journal of

Computer Applications, vol. 137, no. 1, pp. 975–8887, 04 2016.

[7] A. Rakitianskaia and A. Engelbrecht, “Training high-dimensional neural networks with

cooperative particle swarm optimiser,” in 2014 International Joint Conference on Neu-

ral Networks (IJCNN), July 2014, pp. 4011–4018.

44

[8] James Kennedy and Russell Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95 - International Conference on Neural Networks, Nov 1995, vol. 4, pp. 1942–

1948.

[9] Ying Tan and Junzhi Li, “The bare bones fireworks algorithm: A minimalist global

optimizer,” Applied Soft Computing, vol. 62, pp. 454–462, 2018.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[11] Jorge Nocedal and J Stephen Wright, Numerical Optimization, Springer-Verlag GmbH,

second edition, 2006.

[12] Abhijit Suresh, K.V. Harish, and N. Radhika, “Particle swarm optimization over back

propagation neural network for length of stay prediction,” Procedia Computer Science,

vol. 46, pp. 268 – 275, 2015, Proceedings of the International Conference on Information

and Communication Technologies, ICICT 2014, 3-5 December 2014 at Bolgatty Palace

& Island Resort, Kochi, India.

[13] Asaju Bolaji, Ali Aminu Ahmad, and Peter Shola, “Training of neural network for

pattern classification using fireworks algorithm:,” International Journal of System As-

surance Engineering and Management, vol. 9, 07 2016.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov

1998.

[15] Sara Sharifzadeh, Ali Ghodsi, Line H. Clemmensen, and Bjarne K. Ersbøll, “Sparse

supervised principal component analysis (sspca) for dimension reduction and variable

selection,” Engineering Applications of Artificial Intelligence, vol. 65, pp. 168 – 177,

2017.

45

[16] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall, “Ac-

tivation functions: Comparison of trends in practice and research for deep learning,”

CoRR, vol. abs/1811.03378, 2018.

[17] G.E. Nasr, E. Badr, and C. Joun, “Cross entropy error function in neural networks:

Forecasting gasoline demand.,” in Proceedings of the Fifteenth International Florida

Artificial Intelligence Research Society Conference, Jan. 2002, pp. 381–384.

[18] Andrew Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational invariance,”

Proceedings of the Twenty-First International Conference on Machine Learning, 09

2004.

[19] Patrik Gilley and Yanjun Yan, “Comparison of search optimization algorithms in two-

stage artificial neural network training for handwritten digits recognition,” in 2020

SoutheastCon. IEEE, 2020.

[20] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive par-

ticle swarm optimization,” in Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), July 1999, vol. 3, pp. 1951–1957 Vol. 3.

46

APPENDIX A: COLLECTED DATA

A.1 Search Algorithm Error Bar Fitness Curves

A.1.1 Standard MNIST Database Fitness Curves

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.1: BBFWA Set 1 Standard MNIST Error Bar Fitness Curve Plot

47

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.2: BBFWA Set 2 Standard MNIST Error Bar Fitness Curve Plot

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.3: PSO Standard MNIST Error Bar Fitness Curve Plot

48

0 20 40 60 80 100 120 140 160 180 200

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.4: CPSO Standard MNIST Error Bar Fitness Curve Plot

49

A.1.2 PCA MNIST Database Fitness Curves

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.5: BBFWA Set 1 PCA MNIST Error Bar Fitness Curve Plot

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.6: BBFWA Set 2 PCA MNIST Error Bar Fitness Curve Plot

50

0 50 100 150 200 250 300 350

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.7: PSO PCA MNIST Error Bar Fitness Curve Plot

0 20 40 60 80 100 120 140 160 180 200

Algorithm Iteration Count

0

0.5

1

1.5

2

2.5

3

3.5

F
it
n
e
s
s
 V

a
lu

e

Figure A.8: CPSO PCA MNIST Error Bar Fitness Curve Plot

51

A.2 Search Algorithm Confusion Matrices

A.2.1 Standard MNIST Database Confusion Matrices

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

3

70

25

19

108

77

34

34

59

55

27

21

46

23

56

135

27

20

38

153

42

55

56

99

89

27

14

24

96

6

165

5

23

145

87

12

7

106

6

78

74

56

36

182

29

39

17

257

10

4604

65

6

138

42

47

3

104

28

78

99

2

60

4

9

16

78

77

14

30

23

181

58

84

169

99

50

182

50

23

62

8

13

23

91

248

54

4

206

104

5726

6515

5240

5368

5354

5564

5760

5087

5278

3.3%

3.4%

12.1%

12.4%

8.4%

15.1%

6.0%

8.1%

13.1%

11.3%

96.7%

96.6%

87.9%

87.6%

91.6%

84.9%

94.0%

91.9%

86.9%

88.7%

7.0% 5.6% 10.0% 9.5% 9.4% 11.6% 7.1% 6.9% 13.3% 12.5%

93.0% 94.4% 90.0% 90.5% 90.6% 88.4% 92.9% 93.1% 86.7% 87.5%

Figure A.9: BBFWA Set 1 Standard MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

2

92

60

12

105

43

39

53

58

1

49

30

22

79

31

60

141

29

42

32

164

59

61

58

85

125

32

27

17

135

5

199

7

44

179

102

11

6

101

7

109

80

94

24

255

68

48

16

311

12

4483

63

18

186

63

70

18

147

52

96

147

9

82

11

11

19

100

97

23

25

3

19

227

59

97

148

127

52

151

73

41

72

12

9

38

67

320

62

3

248

110

5622

6494

5132

5216

5241

5557

5627

4932

5100

5.1%

3.7%

13.9%

14.9%

10.3%

17.3%

6.1%

10.2%

15.7%

14.3%

94.9%

96.3%

86.1%

85.1%

89.7%

82.7%

93.9%

89.8%

84.3%

85.7%

7.6% 6.4% 11.4% 12.1% 11.6% 14.9% 10.2% 8.5% 14.3% 14.6%

92.4% 93.6% 88.6% 87.9% 88.4% 85.1% 89.8% 91.5% 85.7% 85.4%

Figure A.10: BBFWA Set 1 Standard MNIST Worst Training Trial Confusion Matrix

52

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

47

36

17

102

63

21

22

47

58

36

22

64

23

47

153

22

36

49

181

48

42

63

74

96

23

18

35

135

3

191

3

45

174

78

9

6

104

7

62

58

79

22

197

48

25

21

231

4

4568

85

13

167

55

37

6

108

35

88

103

6

58

5

15

20

93

74

13

33

4

32

183

60

117

156

145

39

185

42

24

63

9

17

40

66

295

71

9

169

94

5691

6467

5196

5320

5313

5568

5787

5033

5276

3.9%

4.1%

12.8%

13.2%

9.1%

15.7%

5.9%

7.6%

14.0%

11.3%

96.1%

95.9%

87.2%

86.8%

90.9%

84.3%

94.1%

92.4%

86.0%

88.7%

5.9% 6.2% 10.5% 11.4% 9.3% 12.4% 7.4% 7.5% 14.2% 12.7%

94.1% 93.8% 89.5% 88.6% 90.7% 87.6% 92.6% 92.5% 85.8% 87.3%

Figure A.11: BBFWA Set 2 Standard MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

59

46

10

119

73

31

38

40

89

45

33

45

20

55

143

27

33

43

183

26

58

69

76

122

20

23

25

108

6

248

2

40

222

95

14

7

106

10

87

108

83

34

227

76

33

35

278

11

4420

81

20

205

55

43

7

114

43

117

149

7

67

8

18

23

107

91

19

43

1

34

199

79

119

156

182

68

182

52

18

111

11

10

33

72

290

70

4

265

100

5626

6475

5151

5181

5262

5508

5670

4886

5167

5.0%

4.0%

13.5%

15.5%

9.9%

18.5%

6.9%

9.5%

16.5%

13.1%

95.0%

96.0%

86.5%

84.5%

90.1%

81.5%

93.1%

90.5%

83.5%

86.9%

6.9% 6.6% 10.9% 12.9% 11.4% 15.2% 9.2% 8.6% 16.5% 14.2%

93.1% 93.4% 89.1% 87.1% 88.6% 84.8% 90.8% 91.4% 83.5% 85.8%

Figure A.12: BBFWA Set 2 Standard MNIST Worst Training Trial Confusion Matrix

53

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

61

27

20

123

60

27

34

55

76

32

30

101

41

49

140

36

33

45

155

24

40

40

69

113

25

28

34

148

2

209

5

35

155

85

10

7

88

4

61

67

77

36

230

65

17

22

254

5

4484

90

20

207

49

36

8

124

28

102

132

36

3

9

18

87

73

17

33

3

34

198

64

100

152

117

36

178

46

31

58

7

9

31

70

259

60

3

175

120

5671

6504

5169

5371

5347

5563

5782

4976

5210

4.3%

3.5%

13.2%

12.4%

8.5%

17.3%

6.0%

7.7%

15.0%

12.4%

95.7%

96.5%

86.8%

87.6%

91.5%

82.7%

94.0%

92.3%

85.0%

87.6%

6.7% 7.2% 9.5% 11.5% 9.8% 14.0% 7.8% 7.5% 13.6% 12.3%

93.3% 92.8% 90.5% 88.5% 90.2% 86.0% 92.2% 92.5% 86.4% 87.7%

Figure A.13: PSO Standard MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

67

43

19

131

70

45

33

54

1

76

33

23

62

25

57

129

38

46

27

183

48

62

82

83

119

34

24

44

116

3

242

7

43

167

88

7

8

91

7

74

77

79

33

237

55

32

29

285

6

4339

60

20

224

46

69

11

114

34

90

140

3

56

3

6

20

94

87

15

26

2

23

198

84

106

192

135

54

284

50

24

52

9

8

30

62

363

61

4

193

129

5622

6486

5149

5262

5221

5541

5718

4938

5199

5.1%

3.8%

13.6%

14.2%

10.6%

20.0%

6.4%

8.7%

15.6%

12.6%

94.9%

96.2%

86.4%

85.8%

89.4%

80.0%

93.6%

91.3%

84.4%

87.4%

7.6% 6.4% 11.7% 12.2% 10.5% 14.9% 8.6% 7.6% 16.6% 14.2%

92.4% 93.6% 88.3% 87.8% 89.5% 85.1% 91.4% 92.4% 83.4% 85.8%

Figure A.14: PSO Standard MNIST Worst Training Trial Confusion Matrix

54

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

68

41

22

143

62

40

26

50

63

33

30

87

35

56

153

25

38

40

160

33

40

53

103

142

32

24

46

138

2

253

7

40

155

82

7

8

100

3

49

71

62

30

225

35

24

20

216

4

4383

59

8

169

41

41

8

131

35

105

140

4

58

3

7

15

97

80

14

48

39

242

80

76

184

123

65

209

34

21

98

13

19

28

93

261

69

1

186

101

5678

6505

5129

5347

5306

5596

5745

4978

5151

4.1%

3.5%

13.9%

12.8%

9.2%

19.1%

5.4%

8.3%

14.9%

13.4%

95.9%

96.5%

86.1%

87.2%

90.8%

80.9%

94.6%

91.7%

85.1%

86.6%

7.4% 6.9% 11.1% 12.3% 9.5% 11.6% 8.6% 8.6% 15.2% 13.0%

92.6% 93.1% 88.9% 87.7% 90.5% 88.4% 91.4% 91.4% 84.8% 87.0%

Figure A.15: CPSO Standard MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

76

42

38

178

148

48

83

53

117

36

50

91

29

42

240

25

74

36

171

45

72

138

43

308

30

32

63

193

20

555

18

29

673

138

5

10

95

4

76

198

66

72

272

118

47

19

166

25

4036

81

15

552

35

26

16

136

29

72

145

6

97

3

35

35

191

137

55

52

1

69

552

8

8

69

17

3

66

3

3

3055

3

23

21

77

99

323

150

4

162

702

4838

5602

6505

4985

5430

5211

5298

5851

74.5%

52.2%

5.4%

3.5%

16.3%

11.4%

10.8%

25.5%

10.5%

6.6%

47.8%

18.7%

94.6%

96.5%

83.7%

88.6%

89.2%

89.5%

93.4%

81.3%

10.6% 8.8% 15.5% 24.1% 13.3% 20.8% 9.1% 16.2% 5.6% 24.4%

89.4% 91.2% 84.5% 75.9% 86.7% 79.2% 90.9% 83.8% 94.4% 75.6%

Figure A.16: CPSO Standard MNIST Worst Training Trial Confusion Matrix

55

A.2.2 PCA MNIST Database Confusion Matrices

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

65

29

8

118

33

25

34

51

57

37

19

100

17

59

121

23

29

53

152

47

50

75

99

135

28

12

20

97

7

198

2

48

151

89

16

8

93

5

93

54

74

29

200

52

58

25

243

11

4504

79

7

204

59

48

7

98

41

88

94

4

39

5

3

19

64

74

14

19

2

20

201

76

53

150

138

51

167

60

10

50

8

19

22

62

271

78

1

198

74

5679

6504

5287

5350

5326

5595

5741

5044

5243

4.1%

3.5%

11.3%

12.7%

8.8%

16.9%

5.5%

8.4%

13.8%

11.9%

95.9%

96.5%

88.7%

87.3%

91.2%

83.1%

94.5%

91.6%

86.2%

88.1%

6.0% 6.2% 11.2% 10.4% 9.7% 14.1% 7.0% 6.8% 13.0% 12.3%

94.0% 93.8% 88.8% 89.6% 90.3% 85.9% 93.0% 93.2% 87.0% 87.7%

Figure A.17: BBFWA Set 1 PCA MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

90

32

8

116

83

50

34

48

105

29

21

81

26

86

176

29

50

64

201

31

50

53

83

136

41

25

33

162

8

224

3

27

229

97

18

6

88

12

93

115

92

45

297

111

33

34

273

31

4453

100

12

230

36

73

9

162

46

108

110

7

76

16

16

19

71

78

13

34

3

17

185

77

78

150

168

102

173

65

22

4758

104

22

12

41

101

368

87

3

237

150

5531

6488

5055

5191

5152

5467

5649

5096

6.6%

3.8%

15.2%

15.3%

11.8%

17.9%

7.6%

9.8%

18.7%

14.3%

93.4%

96.2%

84.8%

84.7%

88.2%

82.1%

92.4%

90.2%

81.3%

85.7%

7.7% 7.9% 12.3% 13.5% 12.9% 16.2% 10.0% 7.2% 16.5% 16.7%

92.3% 92.1% 87.7% 86.5% 87.1% 83.8% 90.0% 92.8% 83.5% 83.3%

Figure A.18: BBFWA Set 1 PCA MNIST Worst Training Trial Confusion Matrix

56

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

54

41

11

81

44

19

33

48

43

27

24

52

26

62

136

35

26

35

160

35

46

48

72

77

20

14

22

94

6

184

6

36

145

80

16

5

96

5

91

63

67

28

221

47

25

23

244

9

4591

63

12

154

56

42

7

101

27

81

132

2

82

4

13

19

72

65

13

23

2

18

180

65

82

148

126

56

161

50

11

68

12

14

20

79

302

60

2

210

103

5688

6533

5307

5357

5305

5614

5774

5075

5237

4.0%

3.1%

10.9%

12.6%

9.2%

15.3%

5.1%

7.8%

13.3%

12.0%

96.0%

96.9%

89.1%

87.4%

90.8%

84.7%

94.9%

92.2%

86.7%

88.0%

5.5% 5.8% 8.9% 9.9% 10.0% 12.1% 7.8% 6.6% 13.1% 13.3%

94.5% 94.2% 91.1% 90.1% 90.0% 87.9% 92.2% 93.4% 86.9% 86.7%

Figure A.19: BBFWA Set 2 PCA MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

67

24

15

102

48

28

44

40

55

28

28

62

21

59

141

29

29

34

150

38

43

69

98

94

15

14

32

89

3

201

8

18

152

90

11

10

111

5

64

58

58

22

206

31

50

23

259

14

4563

71

11

180

57

54

4

89

29

70

118

4

68

11

10

16

84

70

26

25

3

17

186

59

76

161

160

50

168

40

29

68

10

9

18

77

280

75

3

199

104

5705

6511

5261

5329

5318

5597

5761

5029

5247

3.7%

3.4%

11.7%

13.1%

9.0%

15.8%

5.4%

8.0%

14.0%

11.8%

96.3%

96.6%

88.3%

86.9%

91.0%

84.2%

94.6%

92.0%

86.0%

88.2%

6.1% 6.1% 9.8% 10.2% 9.3% 13.2% 7.4% 7.1% 13.9% 12.9%

93.9% 93.9% 90.2% 89.8% 90.7% 86.8% 92.6% 92.9% 86.1% 87.1%

Figure A.20: BBFWA Set 2 PCA MNIST Worst Training Trial Confusion Matrix

57

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

81

42

9

108

56

25

33

34

1

89

34

23

66

33

68

146

23

29

46

152

33

46

57

76

101

17

19

24

112

5

171

3

32

129

89

12

7

103

6

86

46

98

41

182

51

48

19

237

6

4583

88

17

164

54

52

3

115

33

99

123

3

55

11

9

15

83

67

9

22

24

187

65

64

155

132

56

161

43

19

57

8

14

22

63

272

55

210

113

5677

6520

5179

5365

5330

5592

5717

5045

5295

4.2%

3.3%

13.1%

12.5%

8.8%

15.5%

5.5%

8.7%

13.8%

11.0%

95.8%

96.7%

86.9%

87.5%

91.2%

84.5%

94.5%

91.3%

86.2%

89.0%

6.4% 6.9% 9.7% 9.8% 9.8% 13.0% 8.1% 6.8% 13.0% 12.5%

93.6% 93.1% 90.3% 90.2% 90.2% 87.0% 91.9% 93.2% 87.0% 87.5%

Figure A.21: PSO PCA MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

53

32

5

92

45

33

36

50

62

35

18

32

13

78

126

27

36

37

140

38

51

76

82

92

20

8

38

105

8

217

4

28

157

95

18

11

97

6

96

114

70

35

234

67

50

12

302

12

4496

59

9

201

55

57

8

147

45

87

131

1

84

5

15

21

115

61

12

27

10

28

214

70

93

164

169

53

207

37

18

87

13

13

40

69

311

72

2

259

91

5639

6471

5163

5272

5298

5558

5687

5001

5162

4.8%

4.0%

13.3%

14.0%

9.3%

17.1%

6.1%

9.2%

14.5%

13.2%

95.2%

96.0%

86.7%

86.0%

90.7%

82.9%

93.9%

90.8%

85.5%

86.8%

5.8% 5.7% 10.0% 11.1% 11.4% 14.6% 9.2% 8.1% 15.2% 14.4%

94.2% 94.3% 90.0% 88.9% 88.6% 85.4% 90.8% 91.9% 84.8% 85.6%

Figure A.22: PSO PCA MNIST Worst Training Trial Confusion Matrix

58

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

83

31

14

111

60

21

32

47

87

35

28

62

18

67

135

30

21

26

119

45

38

71

90

84

34

11

35

118

9

225

8

42

168

82

11

9

105

3

58

69

84

35

203

60

33

17

223

8

4469

76

4

164

51

46

4

129

31

100

155

4

64

7

13

15

111

78

13

31

5

36

198

82

69

170

135

45

207

36

11

73

14

9

24

84

268

65

230

91

5665

6541

5114

5392

5312

5575

5712

5042

5224

4.4%

3.0%

14.2%

12.1%

9.1%

17.6%

5.8%

8.8%

13.8%

12.2%

95.6%

97.0%

85.8%

87.9%

90.9%

82.4%

94.2%

91.2%

86.2%

87.8%

6.6% 6.6% 9.4% 11.5% 9.8% 12.5% 8.8% 8.0% 14.1% 13.1%

93.4% 93.4% 90.6% 88.5% 90.2% 87.5% 91.2% 92.0% 85.9% 86.9%

Figure A.23: CPSO PCA MNIST Best Training Trial Confusion Matrix

0 1 2 3 4 5 6 7 8 9

Predicted Digits

0

1

2

3

4

5

6

7

8

9

T
ru

e
 D

ig
it
s

1

56

18

10

125

60

47

36

49

42

22

38

30

12

68

272

37

19

57

123

49

23

85

92

169

43

138

181

335

156

597

73

167

1254

337

9

2

118

3

51

25

49

36

1029

201

46

36

196

47

4117

93

49

331

128

104

5

175

38

247

177

5

152

28

26

20

85

86

39

24

4

23

452

23

23

85

100

44

251

19

14

3469

47

2

3

11

38

178

26

72

109

3799

5401

6404

5015

5507

5034

5547

5702

59.3%

63.9%

8.8%

5.0%

15.8%

10.2%

13.8%

24.1%

6.3%

9.0%

40.7%

36.1%

91.2%

95.0%

84.2%

89.8%

86.2%

75.9%

93.7%

91.0%

6.9% 7.5% 11.6%

63.0%

37.0% 20.8% 21.5% 14.4% 11.7% 14.9% 10.4%

93.1% 92.5% 88.4% 79.2% 78.5% 85.6% 88.3% 85.1% 89.6%

Figure A.24: CPSO PCA MNIST Worst Training Trial Confusion Matrix

59

APPENDIX B: SOURCE CODE

B.1 Simulation Framework Code

1 % Thesis Final ANN Simulation Framework
2 % Created by: Patrik Gilley
3 % Date Created: November 27, 2019
4 % Date Last Modified: April 15, 2020
5 % Program name: ANN Simulation Frame.m
6 %
7 % This program is intended to serve as a simulation framework for testing
8 % the various ANN training algorithm permutations created as a part of my
9 % thesis work, and store data and figures from the tests for further

10 % analysis. Algorithm parameters are stored within object style
11 % containers to simplify the input arguments of the composite functions.
12 % This framework will automatically create folders to save the results in.
13 % It will create a folder for the day it is executed on, and then will
14 % label individual trial runs with time of execution, the general
15 % parameters used, and the fitness function used. The final results will
16 % be stored in a .mat file labelled with key parameters, and the
17 % individual algorithm files will save their figures to that same folder.
18 %
19 % User−defined Functions:
20 % sim predict final.m: Program to provide selection from list of ...

algorithm fitness functions.
21 % Canon PSO ANN sim.m: Canonical PSO algorithm program.
22 % Simulation Barebones PSO.m: Barebones PSO algorithm program.
23 % Simulation Canon FWA.m: Canonical FWA algorithm program.
24 % Simulation Barebones FWA.m: Barebones FWA algorithm program.
25 % draw ground truth.m: Used to create function data for plotting of ...

the ground truth of a fitness function or benchmark function.
26 % save my figs.m: Application sourced from Dr. Yan to save generated
27 % figures into .fig and .jpeg files.
28

29 % Clear Out Previous Program Executions
30 %**
31 clear;
32 close all;
33

34 % ANN Parent Data Set Loading/Initialization
35 %**
36 dataset type = 'mnist'; % Controls which data set is used for the
37 % simulation. Options are 'mnist' for using the
38 % MNIST database, and 'ex4' for using an example
39 % data set for verifying/testing programs.
40 dataset num = 2; % Variable that allows for easy switching of data set
41 % used by the framework. dataset num = 1 uses the
42 % standard, unaltered version of the data set, and
43 % dataset num = 2 uses the PCA compressed version of the

60

44 % data set.
45

46 % Data set options for example data use/testing of programs.
47 if(strcmp(dataset type,'ex4'))
48 % Standard, unaltered parent data set.
49 if(dataset num == 1)
50 load('ex4data1.mat');
51

52 % Create a variable to denote what type of database is used. Kept
53 % for file naming and figure labelling purposes.
54 sub type = 'standard';
55

56 % PCA dimension reduced parent data set.
57 elseif(dataset num == 2)
58 load('ex4data1 pca.mat');
59

60 % Create a variable to denote what type of database is used. Kept
61 % for file naming and figure labelling purposes.
62 sub type = 'pca';
63

64 % Remove internal reference variables from the PCA data set. These
65 % are still present in the file; this justs keeps them from
66 % cluttering local memory during sims.
67 clear U pca comp
68

69 % Matches the data sample array to naming convention used in the
70 % program.
71 X = X reduced;
72 end
73 m = size(X, 1); % Detects the number of samples in the data set.
74

75 % Sets the overall size of the digit classes (number of data samples
76 % in the parent data set).
77 n class = 500;
78

79 % Set the percentage of the parent data set samples that will be set
80 % aside for the training data set.
81 per train = 0.8;
82

83 % Separate the parent data set randomly into training and testing
84 % data sets.
85 [X train,X test,y train,y test,size train,size test] = ...
86 ann traintest single(n class,per train,X,y);
87

88 % MNIST database data set options.
89 elseif(strcmp(dataset type,'mnist'))
90 % Standard, unaltered parent data set.
91 if(dataset num == 1)
92 load('MNISTdata.mat');
93 % Set training and testing data set sample matrices and label
94 % matrices.
95 X train = train images;
96 X test = test images;
97 y train = train labels;

61

98 y test = test labels;
99 X = X train;

100 y = y train;
101

102 % Create a variable to denote what type of database is used. Kept
103 % for file naming and figure labelling purposes.
104 sub type = 'standard';
105

106 % PCA dimension reduced parent data set.
107 elseif(dataset num == 2)
108 load('MNISTdata pca.mat');
109 % Remove internal reference variables from the PCA data set.
110 % These are still present in the file; this justs keeps them from
111 % cluttering local memory during sims.
112 clear U pca comp
113

114 % Set training and testing data set sample matrices and label
115 % matrices.
116 X train = train images;
117 X test = test images;
118 y train = train labels;
119 y test = test labels;
120 X = X train;
121 y = y train;
122

123 % Create a variable to denote what type of database is used. Kept
124 % for file naming and figure labelling purposes.
125 sub type = 'pca';
126 end
127 end
128

129 % Simulation Parameter Initialization
130 %**
131 % Set the number of trials the simulation uses.
132 num trials = 50;
133

134 % Set whether or not the framework should regenerate the BP ANN.
135 % run BP = 1 will train an ANN with BP for the search algorithms to use,
136 % run BP = 0 loads a pre−trained ANN coniguration.
137 run BP = 0;
138

139 % Name of the fitness function. Stored for reference in file naming and
140 % figure labelling.
141 fxn name = 'Cross Entropy';
142

143 % General Algorithm Parameter Definition
144 %**
145 param.hid size = 35; % Size of the ANN hidden layer.
146 param.num lab = 10; % Size of the ANN output layer.
147

148 % Defines solution space bounds for the algorithms.
149 param.uppbound = 100; % Upper bound.
150 param.lowbound = −100; % Lower bound.
151

62

152 % Max training iterations allowed for BBFWA and PSO algorithms.
153 param.main maxiter = 300;
154

155 % Max training iterations allowed for CPSO algorithm.
156 param.coop maxiter = param.main maxiter/2;
157

158 param.bp maxiter = 50; % Max training iterations allowed for BP algorithm.
159 param.lambda = 1;% Sets the regularization parameter for the ANN training.
160

161 % Seed value that sets the range in which the nodal weigths will be
162 % initialized.
163 param.epsilon init = 0.12;
164

165 % Algorithm Internal Plotting Controls
166 %**
167 % Set whether the confusion matrix plotting code should be executed.
168 plot control.will plot = false;
169

170 % Set whether the program pauses on intermediate confusion matrix plots.
171 plot control.will pause = false;
172

173 % Set the interval between intermediate confusion matrix updates.
174 plot control.iter interval = 10;
175

176 % Control whether the ANN training programs will generate and save figures.
177 plot control.final plot = true;
178

179 % PSO Algorithm Parameter Definition
180 %**
181 pso.swarm = 30; % Number of particles used.
182 pso.c1 = 1.325; % Individual exploration weight.
183 pso.c2 = 1.325; % Group exploration weight.
184 pso.omega = 0.7298; % Inertial weight.
185

186 % FWA Algorithm Parameter Definition
187 %**
188 fwa.bbspk = 30; % Sets the number of sparks for the BBFWA program.
189 fwa.cr = 0.5; % Explosion amplitude reduction coefficient.
190 fwa.ca = 1.2; % Explosion amplitude amplification coefficient.
191

192 % Train a base ANN with conjugate gradient backpropagation
193 %**
194 % The BP ANN is only going to be generated once and then the data will be
195 % used repeatedly; the BP ANN should only be trained once per data set and
196 % ANN structure.
197 if(run BP == 1)
198 % This option trains the BP ANN. It should only be used to generate
199 % initial data for the different data sets, as well as regenerating
200 % ANNs if ANN structure gets changed.
201

202 % Run the BP ANN training program.
203 [BP results,BP weights] = BP ANN sim(X train,X test,y train,...
204 y test,param);
205

63

206 % Name and save the BP ANN training results.
207 bp name = ['bp ' dataset type ' ' sub type '.mat'];
208 save(bp name,'BP results','BP weights','param','X train','X test',...
209 'y train','y test');
210 elseif(run BP == 0)
211 % This option loads a trained BP ANN to seed the search algorithm's
212 % starting locations with. This is generally the option that should be
213 % used.
214 bp name = ['bp ' dataset type ' ' sub type '.mat'];
215 load(bp name);
216 end
217

218 % Data File Saving
219 %**
220 % Folder creation per day. This creates a folder to hold the simulations
221 % run on a single day.
222

223 % Declare a character string for parent directory location for file saving.
224 savepath = ['C:\Users\PWGil\Documents\Masters Program Documents\'...
225 'Thesis Documents\conference ann sim'];
226 savedir = ['Simulation ' date];
227 if ¬exist(savedir, 'dir') % Checks to see if the directory being created
228 % already exists.
229 mkdir(savepath,savedir) % Creates a new folder if one does not exist.
230 end
231

232 % Individual simulation folder creation.
233 time = datestr(now); % Pulls the current time and date for labelling.
234 sim time = replace(erase(time,date),':',' ');% Removes the date and
235 % replaces time : with
236 % underscores to match file
237 % name conventions.
238 sim time = erase(sim time,' ');
239 savepath ind = [savepath '\' savedir]; % Creates a folder path that
240 % includes the date folder.
241 subFolder = ['Simulation Time ' sim time ' Gen Param ',...
242 num2str(param.main maxiter), ' ' fxn name ' Trials ' ...
243 num2str(num trials) ' Dataset ' dataset type];
244 if ¬exist(subFolder, 'dir') % Checks to see if the directory being
245 % created already exists.
246 mkdir(savepath ind,subFolder) % Creates a new folder if one does not
247 % exist.
248 end
249

250 % Simulation data directory creation
251 subsubFolder = 'Simulation Data';
252 savepath ind = [savepath '\' savedir '\' subFolder];
253 if ¬exist(subFolder, 'dir') % Checks to see if the directory being
254 % created already exists.
255 mkdir(savepath ind,subsubFolder)% Creates a new folder if one does not
256 % exist.
257 end
258

259 % File save path. Generate an individual file saving path dependent on

64

260 % previous folder establishments.
261 filepath = [savepath ind '\' subsubFolder];
262

263 % Function Handle Definition
264 %**
265 % Function handle for the Canonical PSO program.
266 capso = @Canon PSO ANN sim;
267 % Function handle for the Esplit Cooperative PSO program.
268 ecopso = @Coop CPSO ANN esplit sim;
269 % Function handle for the Barebones FWA program.
270 bbfwa = @Barebones FWA ANN sim;
271

272 % Main Simulation Loop
273 %**
274 for sim = 1:num trials
275 % Evaluate the search algorithm programs with rolling variable names.
276 eval(['[bbfwa results ',num2str(sim),'] = bbfwa(X train,X test,'...
277 'y train,y test,BP results.final params,param,fwa,'...
278 'plot control,filepath);']);
279 eval(['[ecopso results ',num2str(sim),'] = ecopso(X train,X test,'...
280 'y train,y test,BP results.final params,param,pso,'...
281 'plot control,filepath);']);
282 eval(['[capso results ',num2str(sim),'] = capso(X train,X test,'...
283 'y train,y test,BP results.final params,param,pso,'...
284 'plot control,filepath);']);
285 % Print out the trial number upon completion of a trial, so that
286 % simulation progress can be tracked.
287 fprintf('Sim number %i',sim)
288 end
289

290 % Naming of .mat results file.
291 filename = [fxn name ' Data set ' dataset type ' PSO ',...
292 num2str(pso.swarm),' BBFWA ',num2str(fwa.bbspk),'.mat'];
293 % Create a name and save path for saving the stored results.
294 matfile = fullfile(filepath,filename);
295 save(matfile);

1 % Simulation Data Post Processor
2 % Created by: Patrik Gilley
3 % Date Created: December 17, 2019
4 % Date Last Modified: April 15, 2020
5 % Program Name: ANN Simulation Post.m
6 %
7 % This program is an adapted version of Simulation Post.m, a program
8 % written to analyze the results of Monte Carlo simulations from the search
9 % algorithm testing phase of my thesis. This version cleans up some old

10 % code and adapts the analysis mechanisms to perform the analysis required
11 % by the ANN simulations research.
12 %
13 % User−Defined Functions Used:
14 % save my figs.m: Used to save the error bar plots created as part of the

65

15 % data analysis.
16

17 % Clear Out Previous Data
18 %**
19 clear;
20 close all;
21 clc;
22

23 % Parameter Initialization and Importing of Simulation Results
24 %**
25 gen dir = ['C:\Users\PWGil\Documents\Masters Program Documents\'...
26 'Thesis Documents\conference ann sim\Simulation 16−Dec−2019'];
27 sim dir = ['Simulation Time 17 37 04 Gen Param 300 Cross Entropy Trials'...
28 ' 100 Dataset mnist'];
29 sim filename = 'Cross Entropy Data set mnist PSO 30 BBFWA 30';
30 sim results = load([gen dir '\' sim dir '\Simulation Data\'...
31 sim filename '.mat']);
32

33 % Program results save directory establishment
34

35 % Pulls the file path that was used to save the simulation results to save
36 % figures and results to the same directory as the simulation results.
37 savepath = sim results.filepath;
38 if(contains(savepath,'Simulation Data')) % Defines the parent directory.
39 savepath = erase(savepath,'\Simulation Data');
40 end
41

42 % Creates a separate folder for the post processed data.
43 savedir = 'Post Proc Data';
44

45 % Check to see if the directory being created already exists.
46 if ¬exist(savedir, 'dir')
47 mkdir(savepath,savedir) % Creates a new folder if one does not exist.
48 end
49 % Create a save path for the individual files saved from this program.
50 filepath = [savepath '\' savedir];
51

52 % Accuracy matrix initialization
53 bbfwa acc train = zeros(sim results.num trials,1); % Barebones FWA
54 bbfwa acc test = zeros(sim results.num trials,1);
55

56 capso acc train = zeros(sim results.num trials,1); % Canonical PSO
57 capso acc test = zeros(sim results.num trials,1);
58

59 ecopso acc train = zeros(sim results.num trials,1); % Esplit CoPSO
60 ecopso acc test = zeros(sim results.num trials,1);
61

62 bp acc train = sim results.BP results.train acc; % Backpropagation
63 bp acc test = sim results.BP results.test acc;
64

65 % Fitness error bar plot matrix initialization
66 bbfwa fit = zeros(sim results.num trials,sim results.param.main maxiter);
67 capso fit = zeros(sim results.num trials,sim results.param.main maxiter);
68 ecopso fit = zeros(sim results.num trials,sim results.param.coop maxiter);

66

69 bp fit = sim results.BP results.train cost;
70

71 % SA Accuracy Analysis
72 %**
73 % Iteratively search all of the results structures.
74 for acc = 1:sim results.num trials
75 % ANN Final Accuracy Data Aggregation
76 %**
77 % Finds the mean squared error between the final result and ground
78 % truth for each dimension, then sums up the individual errors for the
79 % overall solution error.
80 bbfwa acc train(acc,:) = sim results.(['bbfwa results '...
81 num2str(acc)]).train acc;
82 bbfwa acc test(acc,:) = sim results.(['bbfwa results '...
83 num2str(acc)]).test acc;
84

85 capso acc train(acc,:) = sim results.(['capso results '...
86 num2str(acc)]).train acc;
87 capso acc test(acc,:) = sim results.(['capso results '...
88 num2str(acc)]).test acc;
89

90 ecopso acc train(acc,:) = sim results.(['ecopso results '...
91 num2str(acc)]).train acc;
92 ecopso acc test(acc,:) = sim results.(['ecopso results '...
93 num2str(acc)]).test acc;
94

95 % Error Bar Plotting Data Collection
96 %**
97 for iter = 1:(sim results.param.main maxiter)
98 bbfwa fit(acc,iter) = sim results.(['bbfwa results '...
99 num2str(acc)]).gbest fit(1,:,iter);

100 capso fit(acc,iter) = sim results.(['capso results '...
101 num2str(acc)]).gbest fit(1,:,iter);
102 end
103

104 % CPSO was split off from the other two algorithms for this step ...
due to

105 % the difference in training iterations.
106 for iter = 1:(sim results.param.coop maxiter)
107 ecopso fit(acc,iter) = sim results.(['ecopso results '...
108 num2str(acc)]).gbest fit(1,:,iter);
109 end
110 end
111

112 % Acquire relevant BP ANN statistics from the pre−trained ANN file.
113 bp results = sim results.BP results;
114

115 % ANN Accuracy Mean and Standard Deviation
116 %**
117 % Barebones FWA accuracies
118 avg bbfwa acc train = mean(bbfwa acc train);
119 sigma bbfwa acc train = std(bbfwa acc train);
120 avg bbfwa acc test = mean(bbfwa acc test);
121 sigma bbfwa acc test = std(bbfwa acc test);

67

122

123 % Canonical PSO accuracies
124 avg capso acc train = mean(capso acc train);
125 sigma capso acc train = std(capso acc train);
126 avg capso acc test = mean(capso acc test);
127 sigma capso acc test = std(capso acc test);
128

129 % Esplit Cooperative PSO accuracies
130 avg ecopso acc train = mean(ecopso acc train);
131 sigma ecopso acc train = std(ecopso acc train);
132 avg ecopso acc test = mean(ecopso acc test);
133 sigma ecopso acc test = std(ecopso acc test);
134

135 % Error Bar Plot Generation
136 %**
137 % Set the x−axis iteration count.
138 x main iter = 0:(sim results.param.main maxiter−1);
139 x coop iter = 0:(sim results.param.coop maxiter−1);
140

141 % BBFWA Plot
142 % Find the average fitness values path for plotting.
143 ave bbfwa fit = mean(bbfwa fit,1);
144 % Determine the 10th and 90th percentile fitness values across all trials
145 % in each iteration.
146 bbfwa fit max = prctile(bbfwa fit,90,1);
147 bbfwa fit min = prctile(bbfwa fit,10,1);
148

149 figure
150

151 hold all
152 errorbar(x main iter,ave bbfwa fit,bbfwa fit min,bbfwa fit max,...
153 'vertical','.','MarkerSize',5,'MarkerEdgeColor','red',...
154 'MarkerFaceColor','red')
155 title('BBFWA Simulation Results Fitness Plot with Error Bars')
156 xlabel('Algorithm Iteration Count')
157 ylabel('Fitness Value')
158 temp fig = gcf;
159 save my figs(temp fig,filepath,'BBFWA Error Bars')
160

161 % CPSO Plot
162 % Find the average fitness values path for plotting.
163 ave capso fit = mean(capso fit,1);
164 % Determine the 10th and 90th percentile fitness values across all trials
165 % in each iteration.
166 capso fit max = prctile(capso fit,90,1);
167 capso fit min = prctile(capso fit,10,1);
168

169 figure
170 hold all
171 errorbar(x main iter,ave capso fit,capso fit min,capso fit max,...
172 'vertical','.','MarkerSize',5,'MarkerEdgeColor','red',...
173 'MarkerFaceColor','red')
174 title('CPSO Simulation Results Fitness Plot with Error Bars')
175 xlabel('Algorithm Iteration Count')

68

176 ylabel('Fitness Value')
177 temp fig = gcf;
178 save my figs(temp fig,filepath,'CPSO Error Bars')
179

180 % Esplit Coop PSO Plot
181 % Find the average fitness values path for plotting.
182 ave ecopso fit = mean(ecopso fit,1);
183 % Determine the 10th and 90th percentile fitness values across all trials
184 % in each iteration.
185 ecopso fit max = prctile(ecopso fit,90,1);
186 ecopso fit min = prctile(ecopso fit,10,1);
187

188 figure
189 hold all
190 errorbar(x coop iter,ave ecopso fit,ecopso fit min,ecopso fit max,...
191 'vertical','.','MarkerSize',5,'MarkerEdgeColor','red',...
192 'MarkerFaceColor','red')
193 title(['Esplit Cooperative PSO Simulation Results Fitness Plot'...
194 'with Error Bars'])
195 xlabel('Algorithm Iteration Count')
196 ylabel('Fitness Value')
197 temp fig = gcf;
198 save my figs(temp fig,filepath,'ECOPSO Error Bars')
199

200 % Saving of Data Post Processing Results
201 %**
202 % Pull the date and time string from the simulation framework file saving
203 % code for further file naming.
204 sim time = sim results.time;
205 sim time = replace(sim time,':',' ');
206 sim time = replace(sim time,' ',' at ');
207 filename = ['Post Data for ' sim results.fxn name ' Sim on '...
208 sim time ' UTC'];
209

210 % Deletes the structure containing the source simulation data and the temp
211 % variable holding the figure handles to reduce file size and saving time.
212 clear sim results temp fig
213 matfile = fullfile(filepath,filename);
214 save(matfile)

B.2 Backpropagation Algorithm Code

1 function [results,weights] = BP ANN sim(X train,X test,y train,...
2 y test,param)
3

4 % Backpropagation Artificial Neural Network Training Algorithm Simulation
5 % Variant
6 %
7 % Created by: Patrik Gilley

69

8 % Date Created: November 29, 2019
9 % Date Last Modified: November 29, 2019

10 % Program Name: BP ANN sim.m
11 %
12 % Program Inputs:
13 % X train = Data set sample array that the ANN will be trained with.
14 % X test = Data set sample array that the ANN will be tested with.
15 % y train = Data set labels that the ANN will be trained with.
16 % y test = Data set labels that the ANN will be tested with.
17 % param = MatLab structure defined in the simulation framework that
18 % contains the general algorithm settings.
19 %
20 % Program Outputs:
21 % results = MatLab structure that holds the algorithm output data.
22 % Properties:
23 % final params = Final nodal weight configuration for the trained
24 % ANN.
25 % train cost = Final training cost/fitness achieved by the training
26 % algorithm.
27 % train acc = Final training accuracy achieved by the neural network.
28 % train pred = Column vector archiving the final training phase
29 % output labels.
30 % train time = Total training time of the BP algorithm.
31 % test acc = Final testing accuracy achieved by the neural network.
32 % test pred = Column vector archiving the testing phase output
33 % labels.
34 % test time = Total testing time of the BP algorithm.
35 % weights = MatLab structure containing the final weight matrices of the
36 % trained ANN.
37 % Properties:
38 % theta1 = Nodal weight matrix for the input to hidden layers.
39 % theta2 = Nodal weight matrix for the hidden to output layers.
40 %
41 % This program is a simulation subprogram for the Backpropagation
42 % algorithm, which is used as a control in the ANN test simulations. The
43 % program takes a training data set and ANN structure and trains an ANN
44 % using all of them. The program evaluates the performance of the
45 % trained ANN on both the training and testing data sets. Both the ANN
46 % performance evaluation and the trained ANN weights are passed out of the
47 % program as outputs for use with other programs.
48

49 % Parameter Initialization
50 %**
51 % Randomly shuffle the data set.
52 size train = size(X train,1);
53 shuffle train = randperm(size train,size train);
54 X train(:,:) = X train(shuffle train,:);
55 y train(:,1) = y train(shuffle train,:);
56

57 size test = size(X test,1);
58 shuffle test = randperm(size test,size test);
59 X test(:,:) = X test(shuffle test,:);
60 y test(:,:) = y test(shuffle test,:);
61

70

62 % Internal Parameter Initialization
63 input layer size = size(X train,2);
64 hidden layer size = param.hid size;
65 num labels = param.num lab;
66

67 % ANN Training Phase
68 %**
69 tic;
70 % ANN nodal weight matrix initialization
71 initial Theta1 = randInitializeWeights(input layer size,...
72 hidden layer size);
73 initial Theta2 = randInitializeWeights(hidden layer size, num labels);
74

75 % Unroll initialized weight matrices into a full vector for use with
76 % training program.
77 initial nn params = [initial Theta1(:) ; initial Theta2(:)];
78

79 % Backpropagation training algorithm definitions.
80 lambda = param.lambda; % Reads in framework set regularization constant.
81

82 % Define the max number of training iterations allowed for the training
83 % program.
84 options = optimset('MaxIter', param.bp maxiter);
85

86 % Cost function handle for the training program to train with.
87 costFunction = @(p) sim predict BP(p, ...
88 input layer size, ...
89 hidden layer size, ...
90 num labels, X train, y train, lambda);
91 % Call the training program.
92 [results.final params, results.train cost] = fmincg(costFunction,...
93 initial nn params, options);
94

95 % Obtain Theta1 and Theta2 back from nn params
96 weights.theta1 = reshape(results.final params(1:hidden layer size...
97 * (input layer size + 1)),hidden layer size, (input layer size + 1));
98

99 weights.theta2 = reshape(results.final params((1 + (hidden layer size...
100 * (input layer size + 1))):end),num labels, (hidden layer size + 1));
101

102 % Use the trained weights to predict the labels of the training data.
103 results.train pred = predict(weights.theta1, weights.theta2, X train);
104

105 % Calculate the overall classification accuracy of the ANN.
106 results.train acc = mean(double(results.train pred == y train)) * 100;
107 results.train time = toc; % Archives the overall training time of the ANN.
108

109 % ANN Testing Phase
110 %**
111 % Repeats post−training use of ANN done in training phase, but with
112 % testing data set.
113 results.test pred = predict(weights.theta1, weights.theta2, X test);
114 results.test acc = mean(double(results.test pred == y test)) * 100;
115 results.test time = toc;

71

1 function [fit, grad] = sim predict BP(nn weights, input layer size,...
2 hidden layer size, num labels, X, y, lambda)
3

4 % Cost Function Calculator for OCR MLP ANN
5 % Created by: Patrik Gilley
6 % Date Created: November 29, 2019
7 % Date Last Modified: November 29, 2019
8 % Program Name: sim predict BP.m
9 %

10 % This program was created to take the trained weights of an ANN and use
11 % them to predict the label of the data inputs to that ANN. Given a
12 % database of handwritten digits and the nodal weights of an ANN trained
13 % for classifying those digits, this program would predict the output label
14 % of each input image. Currently, this program is set for a specified ANN
15 % layer structure of one input layer, one hidden layer, and one output
16 % layer. This is a variant of sim predict final.m, created to better match
17 % the expected syntax of the cost function used in the fmincg.m
18 % backpropagation training algorithm.
19 %
20 % Program Inputs:
21 % nn weights = Unrolled vector of neural network nodal weights. Will be
22 % reshaped into weight matrices.
23 % input layer size = Number of nodes in the input layer of the ANN.
24 % hidden layer size = Number of nodes in the hidden layer of the ANN.
25 % num labels = Number of output nodes in the ANN.
26 % X = The data inputs to the neural network.
27 % y = The labels that correspond to the data inputs used with the ANN.
28 % lambda = The lambda or regularization constant that the weight
29 % regularization calculation should use.
30 %
31 % Program Outputs:
32 % fit = Overall fitness value of the ANN nodal weights, based on training
33 % accuracy.
34 % grad = Unrolled vector of calculated gradients.
35 %
36 % NOTE: The code partially adapts code from a Coursera online course about
37 % machine learning created by Dr. Andrew Ng.
38

39 % Feed Training Data Through ANN
40 %**
41 m = size(X, 1); % Identifies the number of input data entries.
42 Theta1 = reshape(nn weights(1:hidden layer size*(input layer size + 1)),...
43 hidden layer size, (input layer size + 1));
44

45 Theta2 = reshape(nn weights((1+(hidden layer size*(input layer size+1)))...
46 :end),num labels, (hidden layer size + 1));
47

48 % Feed input data through activation functions.
49 h1 = relu sim([ones(m, 1) X] * Theta1');

72

50 h2 = softmax sim([ones(m, 1) h1] * Theta2');
51

52 % Correction for number rounding.
53 %**
54 % Makes sure that there are no actual ones in the final h2 output matrix.
55 % Subtracts a very small number from found 1's in order to make them
56 % slightly less than one without overtly affecting the results of the
57 % neural network.
58 h2(h2==1) = h2(h2==1) − 1e−15;
59

60 % Fitness/Cost Calculation
61 %**
62 % Convert data set labels into ANN output layer format.
63 I = eye(10);
64 Y = zeros(m, 10);
65 for i=1:m
66 Y(i, :)= I(y(i), :);
67 end
68

69 % Regularization
70 % Remove unregularized bias nodal weights from weights to be regularized.
71 reg theta1 = Theta1(:,2:size(Theta1,2));
72 reg theta2 = Theta2(:,2:size(Theta2,2));
73 % Calculate regularization term of cost function.
74 reg = (lambda/(2*m))*(sum(sum((reg theta1.ˆ2),2))+...
75 sum(sum((reg theta2.ˆ2),2)));
76

77 % Calculate the cost function based on outputss and converted data set
78 % labels.
79 fit = (1/m)*sum(sum((−Y.*log(h2))−(1−Y).*log(1−h2),2))+reg;
80

81 % Backpropagation Gradient Calculations
82 %**
83 % Parameter Initialization
84 Delta1 = zeros(size(Theta1));
85 Delta2 = zeros(size(Theta2));
86

87 for t = 1:m
88 % Hidden layer activation function output calculation
89 a 1 = [ones(1, 1) X(t,:)];
90 z 2 = a 1 * Theta1';
91 a 2 = relu sim(z 2);
92

93 % Output layer activation outputs
94 % Add a bias term to the activation matrix.
95 alt a 2 = ones(size(a 2,1),(size(a 2,2)+1));
96 alt a 2(:,2:(size(a 2,2)+1)) = a 2;
97 z 3 = alt a 2 * Theta2';
98 a 3 = softmax sim(z 3);
99

100 % Delta error calcs
101 % Calculate the errors of the output layer.
102 ∆ 3 = (a 3 − Y(t,:))';
103 % Calculate the errors of the hidden layer.

73

104 ∆ 2 = (Theta2(:,2:size(Theta2,2))'*∆ 3)'.*reluGradient(z 2);
105

106 % Accumulated errors
107 Delta2 = Delta2 + ∆ 3*(alt a 2);
108 Delta1 = Delta1 + ∆ 2'*(a 1);
109 end
110

111 % Regularization
112 % Copy the theta matrices.
113 reg Theta1 = Theta1;
114 reg Theta2 = Theta2;
115 %j 6=0
116 reg Theta1(:,1:size(Theta1,2)) = (lambda/m)*Theta1;
117 reg Theta2(:,1:size(Theta2,2)) = (lambda/m)*Theta2;
118 %j=0
119 reg Theta1(:,1) = 0;
120 reg Theta2(:,1) = 0;
121

122 % Unregularized gradient calculations using partial derivative formula
123 % (1/m)*∆

124 Theta1 grad = (1/m)*Delta1+reg Theta1;
125 Theta2 grad = (1/m)*Delta2+reg Theta2;
126

127 % Unroll gradients
128 grad = [Theta1 grad(:) ; Theta2 grad(:)];
129 end

1 function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
2 % Minimize a continuous differentialble multivariate function. Starting
3 % point is given by "X" (D by 1), and the function named in the string "f",
4 % must return a function value and a vector of partial derivatives. The
5 % Polack−Ribiere flavour of conjugate gradients is used to compute search
6 % directions, and a line search using quadratic and cubic polynomial
7 % approximations and the Wolfe−Powell stopping criteria is used together
8 % with the slope ratio method for guessing initial step sizes. Additionally
9 % a bunch of checks are made to make sure that exploration is taking place

10 % and that extrapolation will not be unboundedly large. The "length" gives
11 % the length of the run: if it is positive, it gives the maximum number of
12 % line searches, if negative its absolute gives the maximum allowed number
13 % of function evaluations. You can (optionally) give "length" a second
14 % component, which will indicate the reduction in function value to be
15 % expected in the first line−search (defaults to 1.0). The function returns
16 % when either its length is up, or if no further progress can be made (ie,
17 % we are at a minimum, or so close that due to numerical problems, we
18 % cannot get any closer). If the function terminates within a few
19 % iterations, it could be an indication that the function value and
20 % derivatives are not consistent (ie, there may be a bug in the
21 % implementation of your "f" function). The function returns the found
22 % solution "X", a vector of function values "fX" indicating the progress
23 % made and "i" the number of iterations (line searches or function
24 % evaluations, depending on the sign of "length") used.

74

25 %
26 % Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
27 %
28 % See also: checkgrad
29 %
30 % Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002−02−13
31 %
32 %
33 % (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
34 %
35 % Permission is granted for anyone to copy, use, or modify these
36 % programs and accompanying documents for purposes of research or
37 % education, provided this copyright notice is retained, and note is
38 % made of any changes that have been made.
39 %
40 % These programs and documents are distributed without any warranty,
41 % express or implied. As the programs were written for research
42 % purposes only, they have not been tested to the degree that would be
43 % advisable in any important application. All use of these programs is
44 % entirely at the user's own risk.
45 %
46 % [ml−class] Changes Made:
47 % 1) Function name and argument specifications
48 % 2) Output display
49 %
50

51 % Read options
52 if exist('options', 'var')&&¬isempty(options)&&isfield(options, 'MaxIter')
53 length = options.MaxIter;
54 else
55 length = 100;
56 end
57

58

59 RHO = 0.01; % a bunch of constants for line searches
60 SIG = 0.5; % RHO and SIG are the constants in the Wolfe−Powell conditions
61 INT = 0.1;% don't reevaluate within 0.1 of the limit of the current bracket
62 EXT = 3.0;% extrapolate maximum 3 times the current bracket
63 MAX = 20; % max 20 function evaluations per line search
64 RATIO = 100; % maximum allowed slope ratio
65

66 argstr = ['feval(f, X']; % compose string used to call function
67 for i = 1:(nargin − 3)
68 argstr = [argstr, ',P', int2str(i)];
69 end
70 argstr = [argstr, ')'];
71

72 if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
73 S=['Iteration '];
74

75 i = 0; % zero the run length counter
76 ls failed = 0; % no previous line search has failed
77 fX = [];
78 [f1 df1] = eval(argstr); % get function value and gradient

75

79 i = i + (length<0); % count epochs?!
80 s = −df1; % search direction is steepest
81 d1 = −s'*s; % this is the slope
82 z1 = red/(1−d1); % initial step is red/(|s|+1)
83

84 while i < abs(length) % while not finished
85 i = i + (length>0); % count iterations?!
86

87 X0 = X; f0 = f1; df0 = df1; % make a copy of current values
88 X = X + z1*s; % begin line search
89 [f2 df2] = eval(argstr);
90 i = i + (length<0); % count epochs?!
91 d2 = df2'*s;
92 f3 = f1; d3 = d1; z3 = −z1; % initialize point 3 equal to point 1
93 if length>0, M = MAX; else M = min(MAX, −length−i); end
94 success = 0; limit = −1; % initialize quanteties
95 while 1
96 while ((f2 > f1+z1*RHO*d1) | | (d2 > −SIG*d1)) && (M > 0)
97 limit = z1; % tighten the bracket
98 if f2 > f1
99 z2 = z3 − (0.5*d3*z3*z3)/(d3*z3+f2−f3); % quadratic fit

100 else
101 A = 6*(f2−f3)/z3+3*(d2+d3); % cubic fit
102 B = 3*(f3−f2)−z3*(d3+2*d2);
103 z2 = (sqrt(B*B−A*d2*z3*z3)−B)/A; % numerical error possible − ok!
104 end
105 if isnan(z2) | | isinf(z2)
106 z2 = z3/2; % if we had a numerical problem then bisect
107 end
108 z2 = max(min(z2, INT*z3),(1−INT)*z3); % don't accept too close
109 % to limits
110 z1 = z1 + z2; % update the step
111 X = X + z2*s;
112 [f2 df2] = eval(argstr);
113 M = M − 1; i = i + (length<0); % count epochs?!
114 d2 = df2'*s;
115 z3 = z3−z2; % z3 is now relative to the location of z2
116 end
117 if f2 > f1+z1*RHO*d1 | | d2 > −SIG*d1
118 break; % this is a failure
119 elseif d2 > SIG*d1
120 success = 1; break; % success
121 elseif M == 0
122 break; % failure
123 end
124 A = 6*(f2−f3)/z3+3*(d2+d3); % make cubic extrapolation
125 B = 3*(f3−f2)−z3*(d3+2*d2);
126 z2 = −d2*z3*z3/(B+sqrt(B*B−A*d2*z3*z3)); % num. error possible − ok!
127 if ¬isreal(z2) | | isnan(z2) | | isinf(z2) | | z2 < 0 % num prob or wrong
128 % sign?
129 if limit < −0.5 % if we have no upper limit
130 z2 = z1 * (EXT−1); % the extrapolate the maximum amount
131 else
132 z2 = (limit−z1)/2; % otherwise bisect

76

133 end
134 elseif (limit > −0.5) && (z2+z1 > limit) % extraplation beyond max?
135 z2 = (limit−z1)/2; % bisect
136 elseif (limit < −0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
137 z2 = z1*(EXT−1.0); % set to extrapolation limit
138 elseif z2 < −z3*INT
139 z2 = −z3*INT;
140 elseif (limit > −0.5) && (z2 < (limit−z1)*(1.0−INT))% too close to
141 % limit?
142 z2 = (limit−z1)*(1.0−INT);
143 end
144 f3 = f2; d3 = d2; z3 = −z2; % set point 3 equal to point 2
145 z1 = z1 + z2; X = X + z2*s; % update current estimates
146 [f2 df2] = eval(argstr);
147 M = M − 1; i = i + (length<0); % count epochs?!
148 d2 = df2'*s;
149 end % end of line search
150

151 if success % if line search succeeded
152 f1 = f2; fX = [fX' f1]';
153 fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
154 s = (df2'*df2−df1'*df2)/(df1'*df1)*s − df2; % Polack−Ribiere direction
155 tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
156 d2 = df1'*s;
157 if d2 > 0 % new slope must be negative
158 s = −df1; % otherwise use steepest direction
159 d2 = −s'*s;
160 end
161 z1 = z1 * min(RATIO, d1/(d2−realmin)); % slope ratio but max RATIO
162 d1 = d2;
163 ls failed = 0; % this line search did not fail
164 else
165 X = X0; f1 = f0; df1 = df0; % restore point from before
166 % failed line search
167 if ls failed | | i > abs(length) % line search failed twice in a row
168 break; % or we ran out of time, so we give up
169 end
170 tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
171 s = −df1; % try steepest
172 d1 = −s'*s;
173 z1 = 1/(1−d1);
174 ls failed = 1; % this line search failed
175 end
176 if exist('OCTAVE VERSION')
177 fflush(stdout);
178 end
179 end
180 fprintf('\n');

1 function [grad] = reluGradient(in)
2 % Rectified Linear Unit Gradient/Derivative Calculator

77

3 % Created by: Patrik Gilley
4 % Date Created: December 5, 2019
5 % Date Last Modified: December 5, 2019
6 % Program Name: reluGradient.m
7 %
8 % Program Inputs:
9 % in = Nodal weight matrix to be transformed. Must have already had any

10 % relevant transformations (Data samples, previous error terms,
11 % etc.) applied to it.
12 %
13 % Program Outputs:
14 % grad = ReLU gradient of the input weights. Returns with the same
15 % dimensions of the input.
16 %
17 %
18 % Computes the gradient of the ReLU function. The derivative of relu is
19 % f'(x) = 1 if x>0,0 if x<0, && undefined/Inf if x=0. The undefined case
20 % is set to zero for simplicity, as well as keeping the gradient from
21 % blowing up on the off chance of a zero result.
22

23 % Gradient Calculation
24 %**
25 grad = ones(size(in)).*(in>0);
26 end

1 function W = randInitializeWeights(L in, L out)
2 %RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L in
3 %incoming connections and L out outgoing connections
4 % W = RANDINITIALIZEWEIGHTS(L in, L out) randomly initializes the weights
5 % of a layer with L in incoming connections and L out outgoing
6 % connections.
7 epsilon init = 0.12;
8 W = rand(L out,1 + L in)*2*epsilon init − epsilon init;
9 end

1 function p = predict(Theta1, Theta2, X)
2 %PREDICT Predict the label of an input given a trained neural network
3 % p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X ...

given the
4 % trained weights of a neural network (Theta1, Theta2)
5 m = size(X, 1);
6 h1 = relu sim([ones(m, 1) X] * Theta1');
7 h2 = softmax sim([ones(m, 1) h1] * Theta2');
8 [¬, p] = max(h2, [], 2);
9 end

78

B.3 Search Algorithm Code

B.3.1 Bare Bones Fireworks Algorithm

1 function [results]=Barebones FWA ANN sim(X train,X test,y train,y test,...
2 seed nnparam,param,fwa,plot control,filepath)
3

4 % Barebones Firework Algorithm Artificial Neural Network Training Algorithm
5 % Simulation Variant
6 %
7 % Created By: Patrik Gilley
8 % Program name: Barebones FWA ANN sim.m
9 % Date Created: November 29, 2019

10 % Date Last Modified: December 13, 2019
11 %
12 % This program is the final version of the Barebones FWA ANN training
13 % program, reformatted for use in a Monte Carlo simulation framework. This
14 % is the master program for the BBFWA ANN training algorithm. All of the
15 % neural network programs and functions are used within this program and
16 % its subroutines/functions. The only program on a higher level than this
17 % program is the simulation script itself.
18 %
19 % Program Inputs:
20 % X train = Data set sample array that the ANN will be trained with.
21 % X test = Data set sample array that the ANN will be tested with.
22 % y train = Data set labels that the ANN will be trained with.
23 % y test = Data set labels that the ANN will be tested with.
24 % seed nnparam = Pre−trained ANN weights that the ANN that will be
25 % trained by this program should be seeded with.
26 % param = MatLab structure defined in the simulation framework that
27 % contains the general algorithm settings.
28 % fwa = MatLab structure defined in simulation framework that contains
29 % FWA algorithm specific settings.
30 % plot control = MatLab structure defined in simulation framework that
31 % contains confusion matrix plotting settings.
32 % filepath = String path to directory that figures will be saved to.
33 %
34 % Program Outputs:
35 % results = MatLab structure that holds the algorithm output data.
36 % Properties:
37 % gbest fit = The array of best global fitness values achieved by the
38 % firework.
39 % gbest pos = Vector containing the best position achieved by the
40 % firework.
41 % Training Metrics:
42 % train time = Total training time of the BBFWA algorithm.
43 % train acc = Final training accuracy achieved by the neural
44 % network.
45 % train fit = Final training fitness achieved by the training
46 % algorithm.
47 % train pred = Column vector archiving the final training phase
48 % output labels.

79

49 % train confuse=Confusion matrix for the gbest ANN predictions
50 % on the final evaluation of the training data set.
51 % Testing Metrics:
52 % test time = Total testing time of the BBFWA algorithm.
53 % test acc = ANN classification accuracy on the testing data set.
54 % test fit = BBFWA fitness from the testing phase evaluation.
55 % test pred = Column vector archiving the output labels from the
56 % test phase evaluation.
57 % test confuse = Confusion matrix for the gbest ANN predictions
58 % on the testing data set.
59 %
60 % User Defined Functions:
61 % sim predict final.m: ANN fitness function evaluator for the search
62 % algorithms.
63 % confusemat plot.m: Creates confusion matrix plots to display the
64 % progress of the ANN training.
65

66 % Clear Out Previous Figures
67 %**
68 close all;
69

70 % Neural Network Parameter Initialization
71 %**
72 % Randomly shuffle the data set.
73 size train = size(X train,1); % Determines number of samples in data set.
74 % Create an integer vector from 1 to size train with randomly sorted
75 % values.
76 shuffle train = randperm(size train,size train);
77 % Use random integers as new sample indices.
78 y train(:,1) = y train(shuffle train,:);
79

80 size test = size(X test,1);
81 shuffle test = randperm(size test,size test);
82 X test(:,:) = X test(shuffle test,:);
83 y test(:,:) = y test(shuffle test,:);
84

85 % ANN network structure
86 input layer size = size(X train,2); % Sets input layer size to number of
87 % data features in X train.
88 hidden layer size = param.hid size;
89 num labels = param.num lab; % 10 labels, from 1 to 10.
90 % Label 10 represents 0.
91

92 % Solution Space and Initial Parameter Initialization
93 %**
94 % Control Structure Parameter Setting
95 upper bounds = param.uppbound;% Sets the upper bound of the solution space.
96 lower bounds = param.lowbound;% Sets the lower bound of the solution space.
97 max iter = param.main maxiter;% Maximum number of iterations allowed.
98 epsilon init = param.epsilon init; % Seed value that sets the range in
99 % which the nodal weigths will be

100 % initialized.
101 lambda = param.lambda; % Regularization constant.
102 iter interval = plot control.iter interval; % Sets the interval between

80

103 % intermediate confusion
104 % matrix updates.
105 num spark = fwa.bbspk; % Sets number of sparks per iteration.
106 c r = fwa.cr; % Sets the reduction coefficient to tighten the explosion
107 % radius if the best solution is within the search range.
108

109 c a = fwa.ca; % Sets the amplification coefficient to widen the
110 % explosion radius if the best solution is not within the
111 % search range.
112

113 % Internal Parameter Initialization
114 % Find the size of the nodal weight matrices.
115 theta1 size = hidden layer size*(input layer size+1);
116 theta2 size = num labels*(hidden layer size+1);
117 dim num = theta1 size+theta2 size; % Uses the ANN structure to determine
118 % the number of weights that need to
119 % be set. Accounts for bias nodes.
120 exp amp = (upper bounds−(lower bounds))/2;% Finds the radius of the initial
121 % firework explosion amplitude
122 % based on the solution space
123 % dimensions.
124 iter = 1; % Initializes an iteration tracking variable.
125 dummy = 0; % Creates a dummy variable for confusemat plot.m figure ...

handle input.
126

127 % Firework metric matrix initialization
128 confuse mat = zeros(num labels,num labels,num spark); % Single iteration
129 % storage of
130 % confusion matrices.
131 ANN pred = zeros(size(X train,1),num spark); % ANN output labels.
132 ANN acc = zeros(1+num spark,max iter); % ANN classification accuracies.
133 fire pos = zeros(1,dim num,max iter); % Firework positions.
134

135 % Spark positions. Row per spark and column per dimension.
136 spark pos = zeros(num spark,dim num,max iter);
137

138 % Spark fitness values. Initialized to infinity to prevent initial values
139 % from interfereing with fitness check.
140 spark fit = ones(num spark,1,max iter)*Inf;
141 exp amp hist = zeros(1,max iter); % Explosion amplitude storage.
142

143 % Firework Initialization
144 %**
145 tic
146 pos sign = (randi([0,1],1,dim num)*2)−1; % Randomly determine the sign of
147 % the matrix position coordinate.
148

149 % Seeding code for giving the algorithm a pre−trained ANN by giving an
150 % unrolled vector of nodal weights for the entire network.
151 seed pos = seed nnparam'; % Copies the pre−trained ANN weights.
152

153 % Implement input to hidden layer weights with symmetry breaking
154 % random numbers.
155 fire pos(:,1:theta1 size,1) = seed pos(:,1:theta1 size)+...

81

156 pos sign(:,1:theta1 size).*(epsilon init*2*rand(1,theta1 size)...
157 −epsilon init);
158

159 % Implement hidden to output layer weights with symmetry breaking
160 % random numbers.
161 fire pos(:,(theta1 size+1):dim num,1)=seed pos(:,...
162 (theta1 size+1):dim num)+pos sign(:,(theta1 size+1):dim num).*...
163 (epsilon init*2*rand(1,(dim num−theta1 size))−epsilon init);
164

165 % Acquire and reshape the data for the Theta matrix parameters
166 % to fit ANN structure.
167 Theta1 = reshape(fire pos(1,1:theta1 size),...
168 [hidden layer size input layer size+1]);
169 Theta2 = reshape(fire pos(1,(theta1 size+1):dim num),...
170 [num labels hidden layer size+1]);
171

172 % Determine the fitness of the firework.
173 [fire fit(1,:,1),ANN acc(1,1),ANN pred(:,1),confuse mat(:,:,1)] = ...
174 sim predict final(Theta1,Theta2,X train,y train,lambda);
175

176 % If plots are enabled, a confusion matrix will be plotted for the global
177 % best particle solution.
178 if(plot control.will plot)
179 sol select = 1;
180 ann fit = sol select;
181 [inter fig]=confusemat plot(confuse mat(:,:,1), sol select, iter,...
182 ann fit, max iter, iter interval, dummy, plot control.will pause);
183 end
184

185 % Firework Algorithm Main Execution
186 %**
187 while(iter < max iter)
188 % Spark Generation and Fitness Evaluation
189 %**
190 % Randomly determine matrix position coordinate signs.
191 pos sign = (randi([0,1],num spark,dim num)*2)−1;
192

193 % Randomize the spark locations within the explosion zone.
194 spark pos(:,:,iter) = fire pos(1,:,iter)+...
195 (exp amp.*rand(num spark,dim num).*pos sign);
196 exp amp hist(1,iter) = exp amp; % Archive current explosion amplitude.
197

198 % Reshape spark positions into ANN weight matrices.
199 Theta1 = reshape(spark pos(:,1:theta1 size,iter)',...
200 [hidden layer size input layer size+1 num spark]);
201 Theta2 = reshape(spark pos(:,(theta1 size+1):dim num,iter)',...
202 [num labels hidden layer size+1 num spark]);
203

204 % Evaluate the fitness of the sparks.
205 for ann fit = 1:num spark
206 [spark fit(ann fit,:,1),ANN acc(ann fit+1,iter),...
207 ANN pred(:,ann fit),confuse mat(:,:,ann fit)] = ...
208 sim predict final(Theta1(:,:,ann fit),Theta2(:,:,ann fit),...
209 X train,y train,lambda);

82

210 end
211

212 % Determine minimum fitness values for recalibration of firework.
213 [best spark fit, best ind] = min(spark fit(:));
214 % Convert the index contained in best ind into row and column indices.
215 [row, ¬] = ind2sub(size(spark fit),best ind);
216

217 % Check if best spark fit is a better solution than the current
218 % firework position.
219 if(best spark fit < fire fit(1,1,iter))
220 % Move the firework to the new best solution.
221 fire pos(1,:,iter+1) = spark pos(row,:,iter);
222 % Set firework fitness to the new global best fitness, and set the
223 % ANN accuracy of the spark to the overall ANN accuracy.
224 fire fit(1,:,iter+1) = best spark fit;
225 ANN acc(1,iter+1) = ANN acc(row,iter);
226 % Expand the search zone for better exploration.
227 exp amp = c a * exp amp;
228 else
229 % Preserve the current firework solution if better solution
230 % not found.
231 fire pos(1,:,iter+1) = fire pos(1,:,iter);
232 fire fit(1,:,iter+1) = fire fit(1,:,iter);
233 ANN acc(1,iter+1) = ANN acc(1,iter);
234 % Shrink the search zone for better explotation of the search area.
235 exp amp = c r * exp amp;
236 end
237

238 % If plots are enabled, a confusion matrix will be plotted for the
239 % current global best particle solution.
240 if(plot control.will plot)
241 sol select = row;
242 ann fit = sol select;
243 [inter fig] = confusemat plot(confuse mat(:,:,ann fit),...
244 sol select, iter, ann fit, max iter, iter interval,...
245 inter fig, plot control.will pause);
246 end
247

248 iter = iter + 1;
249 end
250

251 % Testing of Trained ANN
252 %**
253 % Identify the best result ANN nodal weights.
254 final ann param = fire pos(1,:,max iter);
255 % Reshape into ANN weight matrices.
256 Theta1 = reshape(final ann param(:,1:theta1 size)',...
257 [hidden layer size input layer size+1]);
258 Theta2 = reshape(final ann param(:,(theta1 size+1):dim num)',...
259 [num labels hidden layer size+1]);
260 % Evaluate best parameters with the test data set.
261 [results.test fit,results.test acc,results.test pred,...
262 results.test confuse]=sim predict final(Theta1,Theta2,X test,...
263 y test, lambda);

83

264

265 % Simulation Run Results Archiving
266 %**
267 % Archives any data results not already accounted for. Testing results are
268 % archived in the actual evaluation of the test data; there's no need to
269 % create temporary variables just to archive those results here.
270 results.gbest fit = fire fit;
271 results.gbest pos = fire pos;
272 results.test time = toc;
273 results.train confuse = confuse mat(:,:,row);
274 results.train acc = max(ANN acc(:,max iter));
275 results.train pred = ANN pred(:,size(ANN pred,2));
276 results.train fit = best spark fit;
277

278 % Plotting of Algorithm Global Fitness Curve
279 %**
280 % Plots the global best fitness if finishing plots are enabled.
281 if(plot control.final plot)
282 figure
283 semilogy(fire fit(:))
284 title('Bare Bones Fireworks Algorithm Fitness Curve')
285 xlabel('Swarm Iterations')
286 ylabel('Fitness Value')
287 fit log = gcf;
288 save my figs(fit log,filepath,'BBFWA Fitness Curve')
289 end

B.3.2 Particle Swarm Optimization

1 function [results] = Canon PSO ANN sim(X train,X test,y train,y test,...
2 seed nnparam,param,pso, plot control,filepath)
3

4 % Canonical Particle Swarm Optimization Algorithm Artificial Neural ...
5 % Network Training Algorithm Simulation Variant
6 %
7 % Created By: Patrik Gilley
8 % Date Created: November 27, 2019
9 % Date Last Modified: December 5,2019

10 % Program Name: Canon PSO ANN sim.m
11 %
12 % This program is the final version of the Canonical PSO ANN training
13 % program, reformatted for use in a Monte Carlo simulation framework. This
14 % is the master program for the PSO ANN training algorithm. All of the
15 % neural network programs and functions are used within this program and
16 % its subroutines/functions. The only program on a higher level than this
17 % program is the simulation script itself.
18 %
19 % Program Inputs:
20 % X train = Data set sample array that the ANN will be trained with.
21 % X test = Data set sample array that the ANN will be tested with.

84

22 % y train = Data set labels that the ANN will be trained with.
23 % y test = Data set labels that the ANN will be tested with.
24 % seed nnparam = Pre−trained ANN weights that the ANN that will be
25 % trained by this program should be seeded with.
26 % param = MatLab structure defined in the simulation framework that
27 % contains the general algorithm settings.
28 % pso = MatLab structure defined in simulation framework that contains
29 % PSO algorithm specific settings.
30 % plot control = MatLab structure defined in simulation framework that
31 % contains confusion matrix plotting settings.
32 % filepath = String path to directory that figures will be saved to.
33 %
34 % Program Outputs:
35 % results = MatLab structure that holds the algorithm output data.
36 % Properties:
37 % gbest fit = The array of best global fitness values achieved by the
38 % particle swarm.
39 % gbest pos = Vector containing the best position achieved by the
40 % swarm.
41 % Training Metrics:
42 % train time = Total training time of the CPSO algorithm.
43 % train acc = Final training accuracy achieved by the neural
44 % network.
45 % train fit = Final training fitness achieved by the training
46 % algorithm.
47 % train pred = Column vector archiving the final training phase
48 % output labels.
49 % train confuse = Confusion matrix for the gbest ANN predictions
50 % on the final evaluation of the training data
51 % set.
52 % Testing Metrics:
53 % test time = Total testing time of the CPSO algorithm.
54 % test acc = ANN classification accuracy on the testing data set.
55 % test fit = CPSO fitness from the testing phase evaluation.
56 % test pred = Column vector archiving the output labels from the
57 % test phase evaluation.
58 % test confuse = Confusion matrix for the gbest ANN predictions
59 % on the testing data set.
60 %
61 % User Defined Functions:
62 % sim predict final.m: Function that evaluates the fitness function for
63 % the search algorithm.
64 % confusemat plot.m: Creates confusion matrix plots to display the
65 % progress of the ANN training.
66

67 % Clear Out Previous Figures
68 %**
69 close all
70

71 % Neural Network Parameter Initialization
72 %**
73 % Create training and testing data sets from the parent data set. The MNIST
74 % data set already has pre−defined training and testing data sets; dividing
75 % the data sets further is unnecessary here.

85

76

77 % Randomly shuffle the data set.
78 size train = size(X train,1); % Determines number of samples in data set.
79 % Create an integer vector from 1 to size train with randomly sorted
80 % values.
81 shuffle train = randperm(size train,size train);
82 % Use random integers as new sample indices.
83 X train(:,:) = X train(shuffle train,:);
84 y train(:,1) = y train(shuffle train,:);
85

86 size test = size(X test,1);
87 shuffle test = randperm(size test,size test);
88 X test(:,:) = X test(shuffle test,:);
89 y test(:,:) = y test(shuffle test,:);
90

91 % ANN network structure
92 input layer size = size(X train,2); % Sets input layer size to number of
93 % data features in X train.
94 hidden layer size = param.hid size;
95 num labels = param.num lab; % 10 labels, from 1 to 10.
96 % Label 10 represents digit 0.
97

98 % Solution Space and Initial Parameter Initialization
99 %**

100 % Control Structure Parameter Setting
101 upper bounds = param.uppbound;% Sets the upper bound of the solution space.
102 lower bounds = param.lowbound;% Sets the lower bound of the solution space.
103 max iter = param.main maxiter;% Maximum number of iterations allowed.
104 epsilon init = param.epsilon init;% Seed value that sets the range in which
105 % the nodal weigths will be initialized.
106 lambda = param.lambda; % Regularization constant.
107 iter interval = plot control.iter interval;% Sets the interval between
108 % intermediate confusion matrix
109 % updates.
110 swarm size = pso.swarm; % Sets the number of PSO particles.
111 c 1 = pso.c1; % Particle personal best weight.
112 c 2 = pso.c2; % Particle global best weight.
113 omega = pso.omega; % Inertial weight, used to set the particle's
114 % resistance to change in velocities.
115

116 % Internal Parameter Initialization
117 theta1 size = hidden layer size*(input layer size+1);
118 theta2 size = num labels*(hidden layer size+1);
119 dim num = theta1 size+theta2 size; % Uses the ANN structure to determine
120 % the number of weights that need to
121 % be set. Accounts for bias nodes.
122 iter = 1; % Initializes an iteration tracking variable.
123 dummy = 0; % Creates a dummy variable for confusemat plot.m
124 % figure handle input.
125

126 % Particle Metric Matrix Initialization
127 %**
128 confuse mat = zeros(num labels,num labels,swarm size); % Single ...

iteration of confusion matrices.

86

129 ANN pred = zeros(size(X train,1),swarm size); % ANN output labels.
130 ANN acc = zeros(swarm size,max iter); % ANN classification accuracies.
131

132 % Initializes the particle position matrix to have a row per particle and
133 % a column for every dimension, and a layer for each iteration.
134 part pos = zeros(swarm size,dim num,max iter);
135 part vel = zeros(swarm size,dim num,max iter); % Initializes the ...

particle velocity matrix with the same organization as the positions.
136 part best pos = zeros(swarm size,dim num,max iter); % Initializes the ...

best particle position matrix.
137 temp pos fit = zeros(swarm size,1); % Temporary fitness value storage.
138

139 % Initialize the particle best fitness matrix as a column vector.
140 % Matrix is populated with infinity in order to allow for finding of ...

minimum fitness values without initialization values interfering.
141 part best fit = ones(swarm size,1,max iter)*Inf;
142

143 % Particle Initialization
144 %**
145 tic;
146 % Randomly determine the sign of the matrix position coordinates.
147 pos sign = (randi([0,1],swarm size,dim num)*2)−1;
148

149 % Seeding code for giving the algorithm a pre−trained ANN by giving an
150 % unrolled vector of nodal weights for the entire network. Clones the
151 % pre−trained ANN weights for each swarm particle.
152 seed pos = ones(swarm size,size(seed nnparam,1)).*seed nnparam';
153

154 % Seeds the input to hidden layer nodal weights in particles. Adds random
155 % numbers to scatter particles.
156 part pos(:,1:theta1 size,1) = ...

seed pos(:,1:theta1 size)+pos sign(:,1:theta1 size)...
157 .*(epsilon init*2*rand(swarm size,theta1 size)−epsilon init);
158

159 % Seeds the hidden to output layer nodal weights in particles.
160 part pos(:,(theta1 size+1):dim num,1)=seed pos(:,...
161 (theta1 size+1):dim num)+pos sign(:,(theta1 size+1):dim num).*...
162 (epsilon init*2*rand(swarm size,(dim num−theta1 size))−epsilon init);
163

164 % Archive the particle starting positions as their personal best.
165 part best pos(:,:,1) = part pos(:,:,1);
166

167 % Determine each particle personal best solution value/fitness.
168 % Acquires the data for the Theta1 matrix parameters, and reshape to
169 % properly fit ANN structure.
170 Theta1 = reshape(part best pos(:,1:theta1 size)',...
171 [hidden layer size input layer size+1 swarm size]);
172

173 % The position data is transposed to take advantage of the reshape
174 % function's behavior, which preserves the columnwise ordering of data.
175 Theta2 = reshape(part best pos(:,(theta1 size+1):dim num)',...
176 [num labels hidden layer size+1 swarm size]);
177

178 % Runs each particle position through the fitness function and stores the

87

179 % results for comparison.
180 for ann fit = 1:swarm size
181 [part best fit(ann fit,:,1),ANN acc(ann fit,1),ANN pred(:,ann fit),...
182 confuse mat(:,:,ann fit)]=sim predict final(Theta1(:,:,ann fit),...
183 Theta2(:,:,ann fit),X train,y train,lambda);
184 end
185

186 % Determine the global best fitness position and value.
187 %**
188 % Finds the smallest particle fitness value and its index.
189 [best fit, best ind] = min(part best fit(:));
190

191 % Converts the index reported by the min() command into a useable index.
192 [row, ¬] = ind2sub(size(part best fit),best ind);
193

194 % Pulls the position of the best fit particle.
195 global best pos(1,:,1) = part pos(row,:,1);
196

197 % Hold the best fitness value for later comparison.
198 global best fit(1,:,1) = best fit;
199

200 % If plots are enabled, a confusion matrix will be plotted for the global
201 % best particle solution.
202 if(plot control.will plot)
203 sol select = row;
204 ann fit = sol select;
205 [inter fig] = confusemat plot(confuse mat(:,:,ann fit), sol select,...
206 iter,ann fit,max iter,iter interval,dummy,plot control.will pause);
207 end
208

209 % PSO Algorithm Execution
210 %**
211 while(iter < max iter)
212

213 % Particle Velocity and Position Update
214 %**
215 % Finds the particle's next velocity and position using its current
216 % position and velocity.
217 part vel(:,:,iter+1) = omega*(part vel(:,:,iter)) + c 1*...
218 rand(swarm size,dim num).*(part best pos(:,:,iter)−...
219 (part pos(:,:,iter))) + c 2*rand(swarm size,dim num).*...
220 (global best pos(1,:,iter)−(part pos(:,:,iter)));
221

222 % Update each dimension location of a particle.
223 part pos(:,:,iter+1) = part pos(:,:,iter) + part vel(:,:,iter+1);
224

225 % Out of Function Bounds Detection and Correction
226 %**
227 % Finds any particle positions that have gone over the upper limit.
228 up check = part pos(:,:,iter+1) > upper bounds;
229

230 % Finds any particle positions that have exceeded the lower limit.
231 down check = part pos(:,:,iter+1) < lower bounds;
232

88

233 % Split into two if statements to ensure that both positive and
234 % negative boundaries are checked.
235

236 % Check to see if the particle has exceeded the max positive bound.
237 if(ismember(1,up check))
238 % Set the new velocity to be the opposite of the old velocity.
239 part vel(:,:,iter+1) = (¬up check.*part vel(:,:,iter+1))+...
240 (up check.*(−part vel(:,:,iter+1)));
241 % Force the particle position to the max positive position.
242 part pos(:,:,iter+1) = (¬up check.*part pos(:,:,iter+1))+...
243 (up check.*upper bounds);
244 end
245

246 % Checks to see if the particle has exceeded the max negative bound.
247 if(ismember(1,down check))
248 % Set the new velocity to be the opposite of the old velocity.
249 part vel(:,:,iter+1) = (¬down check.*part vel(:,:,iter+1))+...
250 (down check.*(−part vel(:,:,iter+1)));
251 % Force the particle position to the max negative position.
252 part pos(:,:,iter+1) = (¬down check.*part pos(:,:,iter+1))+...
253 (down check.*lower bounds);
254 end
255

256 % Particle Fitness Evaluation and Update
257 %**
258 % Check particle position vs. best position so far.
259

260 % Acquire the data for the Theta1 matrix parameters, and reshape to
261 % properly fit ANN structure.
262 Theta1 = reshape(part pos(:,1:theta1 size,iter+1)',...
263 [hidden layer size input layer size+1 swarm size]);
264

265 Theta2 = reshape(part pos(:,(theta1 size+1):dim num,iter+1)',...
266 [num labels hidden layer size+1 swarm size]);
267

268 % Runs each particle position through the function that is being
269 % minimized and stores the results for comparison.
270 for ann fit = 1:swarm size
271 [temp pos fit(ann fit,:,1),ANN acc(ann fit,iter+1),...
272 ANN pred(:,ann fit),confuse mat(:,:,ann fit)] =...
273 sim predict final(Theta1(:,:,ann fit),Theta2(:,:,ann fit),...
274 X train,y train,lambda);
275 end
276

277 % Find all of the fitness values that have decreased.
278 new = temp pos fit < part best fit(:,:,iter);
279

280 % Check to see if the new fitness values have decreased at all.
281 if(ismember(1,new))
282 % Find the fitness values that have decreased and add in the values
283 % that are better than the current ones.
284 part best pos(:,:,iter+1) = (new.*part pos(:,:,iter+1))+...
285 (part best pos(:,:,iter).*¬new);
286 % Assign the new fitness value in the next iteration layer.

89

287 part best fit(:,:,iter+1) = (new.*temp pos fit(:,:))+...
288 (part best fit(:,:,iter).*¬new);
289 else
290 % Keeps the current best position and fitness values if the new
291 % solution is worse than the previous one.
292 part best pos(:,:,iter+1) = part best pos(:,:,iter);
293 part best fit(:,:,iter+1) = part best fit(:,:,iter);
294 end
295

296 % Global Function Fitness Check and Update
297 %**
298 % Finds the smallest fitness value of the particles and its index.
299 [hold fit, hold ind] = min(part best fit(:,:,iter+1));
300

301 % Check the current position against the global best position. This
302 % uses the same general approach of the particle personal best
303 % fitnesses.
304 if(hold fit < global best fit(1,1,iter))
305 global best pos(1,:,iter+1) = part pos(hold ind,:,iter+1);
306 global best fit(1,1,iter+1) = hold fit;
307 else
308 global best pos(1,:,iter+1) = global best pos(1,:,iter);
309 global best fit(1,1,iter+1) = global best fit(1,1,iter);
310 end
311

312 % If plots are enabled, a confusion matrix will be plotted for the
313 % current global best particle solution.
314 if(plot control.will plot)
315 sol select = hold ind;
316 ann fit = sol select;
317 [inter fig] = confusemat plot(confuse mat(:,:,ann fit),...
318 sol select, iter, ann fit, max iter, iter interval,...
319 inter fig, plot control.will pause);
320 end
321

322 iter = iter + 1; % Advances the iteration counter.
323 end
324

325 results.train time = toc; % Archives the training time.
326

327 % Testing of Trained ANN
328 %**
329 % Identify the best result ANN nodal weights.
330 final ann param = global best pos(1,:,max iter);
331

332 % Reshape final best ANN weights into weight matrices.
333 Theta1 = reshape(final ann param(:,1:theta1 size)',...
334 [hidden layer size input layer size+1]);
335

336 Theta2 = reshape(final ann param(:,(theta1 size+1):dim num)',...
337 [num labels hidden layer size+1]);
338

339 % Evaluate best ANN weights using test data set.
340 [results.test fit,results.test acc,results.test pred,...

90

341 results.test confuse]=sim predict final(Theta1,Theta2,X test,...
342 y test,lambda);
343

344 % Simulation Run Results Archiving
345 %**
346 % Archives any data results not already accounted for. Testing results are
347 % archived in the actual evaluation of the test data; there's no need to
348 % create temporary variables just to archive those results here.
349 results.gbest fit = global best fit;
350 results.gbest pos = global best pos;
351 results.test time = toc;
352 results.train confuse = confuse mat(:,:,hold ind);
353 results.train acc = max(ANN acc(:,max iter));
354 results.train pred = ANN pred(:,size(ANN pred,2));
355 results.train fit = hold fit;
356

357 % Plotting of Algorithm Global Fitness Curve
358 %**
359 % Plots the global best fitness if finishing plots are enabled.
360 if(plot control.final plot)
361 figure
362 semilogy(global best fit(:))
363 title(['Canonical Particle Swarm Optimization Global Fitness'...
364 'Logarithmic Plot'])
365 xlabel('Swarm Iterations')
366 ylabel('Fitness Value')
367 fit log = gcf;
368 save my figs(fit log,filepath,'CPSO Fitness Curve')
369 end

B.3.3 Cooperative Particle Swarm Optimization

1 function [results] = Coop CPSO ANN esplit sim(X train,X test,y train,...
2 y test,seed nnparam,param,pso,plot control,filepath)
3

4 % Cooperative Canonical Particle Swarm Optimization Artificial Neural
5 % Network Training Algorithm Simulation Variant
6 %
7 % Created By: Patrik Gilley
8 % Date Created: November 29, 2019
9 % Date Last Modified: December 13,2019

10 % Program Name: Coop CPSO ANN esplit sim.m
11 %
12 % Program Inputs:
13 % X train = Data set sample array that the ANN will be trained with.
14 % X test = Data set sample array that the ANN will be tested with.
15 % y train = Data set labels that the ANN will be trained with.
16 % y test = Data set labels that the ANN will be tested with.
17 % param = MatLab structure defined in the simulation framework that
18 % contains the general algorithm settings.

91

19 % pso = MatLab structure defined in simulation framework that contains
20 % CPSO algorithm specific settings.
21 % plot control = MatLab structure defined in simulation framework that
22 % contains confusion matrix plotting settings.
23 % filepath = String path to directory that figures will be saved to.
24 %
25 % Program Outputs:
26 % results = MatLab structure that holds the algorithm output data.
27 % Properties:
28 % gbest fit = The array of best global fitness values achieved by the
29 % particle swarm.
30 % gbest pos = Vector containing the best position achieved by the
31 % swarm.
32 % train acc = Final training accuracy achieved by the neural network.
33 % train fit = Final training fitness achieved by the training
34 % algorithm.
35 % train pred = Column vector archiving the final training phase
36 % output labels.
37 % train time = Total training time of the Coop Esplit PSO algorithm.
38 % test acc = ANN classification accuracy on the testing data set.
39 % test fit = CPSO fitness from the testing phase evaluation.
40 % test pred = Column vector archiving the output labels from the test
41 % phase evaluation.
42 % test time = Total testing time of the Coop Esplit PSO algorithm.
43 %
44 % This program is the final version of the Cooperative PSO ANN training
45 % program, reformatted for use in a Monte Carlo simulation framework. This
46 % is the Cooperative PSO algorithm variant that utilizes the Esplit
47 % architecture from the source paper.
48 %
49 % User Defined Functions:
50 % sim predict final.m: Function that evaluates the fitness function for
51 % the search algorithm.
52 % confusemat plot.m: Creates confusion matrix plots to display the
53 % progress of the ANN training.
54

55 % Clear Out Previous Figures
56 %**
57 close all
58

59 % Neural Network Parameter Initialization
60 %**
61 % Randomly shuffle the data set.
62 size train = size(X train,1);
63 shuffle train = randperm(size train,size train);
64 X train(:,:) = X train(shuffle train,:);
65 y train(:,1) = y train(shuffle train,:);
66

67 size test = size(X test,1);
68 shuffle test = randperm(size test,size test);
69 X test(:,:) = X test(shuffle test,:);
70 y test(:,:) = y test(shuffle test,:);
71

72 % ANN network structure

92

73 input layer size = size(X train,2); % Sets input layer size to number of
74 % data features in X train.
75 hidden layer size = param.hid size;
76 num labels = param.num lab; % 10 labels, from 1 to 10.
77 % Label 10 represents 0.
78

79 % Solution Space and Initial Parameter Initialization
80 %**
81 % Control Structure Parameter Setting
82 upper bounds = param.uppbound;% Sets the upper bound of the solution space.
83 lower bounds = param.lowbound;% Sets the lower bound of the solution space.
84 max iter = param.coop maxiter;% Maximum number of iterations allowed.
85 epsilon init = param.epsilon init;% Seed value that sets the range in which
86 % the nodal weigths will be initialized.
87 lambda = param.lambda; % Regularization constant.
88 iter interval = plot control.iter interval;% Sets the interval between
89 % intermediate confusion matrix
90 % updates.
91 % NOTE: Swarm hyperparameters are applied equally across all sub−swarms;
92 % currently no method of setting parameters for each individual sub−swarm.
93 swarm size = pso.swarm; % Sets the number of CPSO sub−swarm particles.
94 omega = pso.omega; % Inertial weight, used to set the particle's
95 % resistance to change in velocities.
96 c 1 = pso.c1; % Particle personal best weight.
97 c 2 = pso.c2; % Particle global best weight.
98

99 % Internal Parameter Initialization
100 theta1 size = hidden layer size*(input layer size+1);
101 theta2 size = num labels*(hidden layer size+1);
102 dim num = theta1 size+theta2 size; % Uses the ANN structure to determine
103 % the number of weights that need
104 % to be set. Accounts for bias nodes.
105 split dim = dim num/2; % Determines the number of dimensions an even
106 % split of the context vector means.
107 odd test = mod(dim num,2); % Checks to see if the resulting value is even.
108

109 % If overall number of dimensions is odd, then the context vector
110 % cannot be evenly split. The extra dimension is given to sub−swarm 2.
111 if(odd test)
112 split dim1 = floor(split dim);
113 split dim2 = ceil(split dim);
114 else
115 split dim1 = dim num/2;
116 split dim2 = split dim1;
117 end
118 iter = 1; % Initializes an iteration tracking variable.
119 dummy = 0; % Creates a dummy variable for confusemat plot.m figure
120 % handle input.
121

122 % Particle Metric Matrix Initialization
123 %**
124 % Subswarm 1 matrix structure.
125 context = zeros(1,dim num); % Initializes the context vector of the
126 % CPSO sub−swarms.

93

127 % Initialize the particle position matrix to have a row per particle and
128 % a column for every dimension, and a layer for each iteration.
129 coop.swarm1.part pos = zeros(swarm size,split dim1,max iter);
130 % Initialize the particle velocity matrix with the same organization as
131 % the positions.
132 coop.swarm1.part vel = zeros(swarm size,split dim1,max iter);
133 % Initialize the best particle position matrix.
134 coop.swarm1.part best pos = zeros(swarm size,split dim1,max iter);
135 % Initialize the particle best fitness matrix as a column vector.
136 % Matrix is populated with infinity in order to allow for finding of
137 % minimum fitness values without initialization values interfering.
138 coop.swarm1.part best fit = ones(swarm size,1,max iter)*Inf;
139 % Initialize global best position and fitness matrices.
140 coop.swarm1.global best pos = zeros(1,split dim1,max iter);
141 coop.swarm1.global best fit = zeros(1,1,max iter);
142 % Store the number of dimensions that sub−swarm 1 is responsible for.
143 coop.swarm1.theta size = split dim1;
144

145 % Subswarm 2 matrix structure. Uses same scheme aas sub−swarm 1.
146 coop.swarm2.part pos = zeros(swarm size,split dim2,max iter);
147 coop.swarm2.part vel = zeros(swarm size,split dim2,max iter);
148 coop.swarm2.part best pos = zeros(swarm size,split dim2,max iter);
149 coop.swarm2.part best fit = ones(swarm size,1,max iter)*Inf;
150 coop.swarm2.global best pos = zeros(1,split dim2,max iter);
151 coop.swarm2.global best fit = zeros(1,1,max iter);
152 coop.swarm2.theta size = split dim2;
153

154 % General matrices
155 % Context vector position and fitness matrices.
156 global best fit = zeros(1,1,max iter);
157 global best pos = zeros(1,dim num,max iter);
158

159 % Matrix to hold confusion matrices generated in fitness
160 % function evaluation.
161 confuse mat = zeros(num labels,num labels,swarm size);
162

163 % Matrix to hold the ANN output label predictions.
164 ANN pred = zeros(size(X train,1),swarm size);
165

166 % Matrix to hold ANN classification accuracy measurements calculated during
167 % fitness function evaluation.
168 ANN acc = zeros(swarm size,max iter);
169 temp pos fit = zeros(swarm size,1);
170

171 % Sub−Swarm Initialization
172 %**
173 tic;
174 % Clones the pre−trained ANN weights for each swarm particle.
175 seed pos = ones(swarm size,size(seed nnparam,1)).*seed nnparam';
176

177 % Sub−swarm 1 (Theta 1 Matrix)
178 pos sign = (randi([0,1],swarm size,split dim1)*2)−1;
179

180 % Initialize the first subswarm weights to the Theta 1 matrix dimensions.

94

181 coop.swarm1.part pos(:,:,1) = seed pos(:,1:split dim1)+pos sign.*...
182 (epsilon init*2*rand(swarm size,split dim1)−epsilon init);
183 % Saves the current subswarm positions as best positions.
184 coop.swarm1.part best pos(:,:,1) = coop.swarm1.part pos(:,:,1);
185

186 % Sub−swarm 2 (Theta 2 Matrix)
187 pos sign = (randi([0,1],swarm size,split dim2)*2)−1;
188

189 % Initialize the second subswarm weights to the Theta 2 matrix dimensions.
190 coop.swarm2.part pos(:,:,1) = seed pos(:,(split dim1+1):dim num)+...
191 pos sign.*(epsilon init*2*rand(swarm size,split dim2)−epsilon init);
192 % Save the current subswarm positions as best positions.
193 coop.swarm2.part best pos(:,:,1) = coop.swarm2.part pos(:,:,1);
194

195 % Corrects for the odd split's extra dimension so that the current context
196 % vector indexing scheme can still work with it.
197 if(odd test)
198 split dim2 = split dim2−1;
199 end
200

201 % Particle Personal Best Fitness Determination
202 %**
203 % For initialization, the initial fitness will be determined by pairing up
204 % particle from each subswarm using their indices; e.g. particle 1 from
205 % sub−swarm 1 will be evaluated with particle 1 from sub−swarm 2.
206 for ann fit = 1:swarm size
207 % Context Vector Construction
208 %**
209 % Pull the j−ith particle from sub−swarm 1 for evaluation.
210 context(1,1:split dim1) = coop.swarm1.part best pos(ann fit,:,1);
211 % Pulls the j−ith particle from sub−swarm 2 (matching sub1's index)
212 % for evaluation.
213 context(1,(split dim2+1):dim num) = ...
214 coop.swarm2.part best pos(ann fit,:,1);
215

216 % Acquires the data for the Theta1 matrix parameters, and reshapes
217 % both sub−swarm particles to properly fit ANN structure.
218 Theta1 = reshape(context(1,1:theta1 size)',...
219 [hidden layer size input layer size+1]);
220 Theta2 = reshape(context(1,(theta1 size+1):dim num)',...
221 [num labels hidden layer size+1]);
222

223 % Particle Pair Fitness Evaluation
224 %**
225 % Acquire current context vector fitness.
226 [initial tempfit,ANN acc(ann fit,1),ANN pred(:,ann fit),...
227 confuse mat(:,:,ann fit)] = sim predict final(Theta1,Theta2,...
228 X train,y train,lambda);
229 % Assign evaluated fitness to all sub−swarm particles used in the
230 % current context vector.
231 coop.swarm1.part best fit(ann fit,:,1) = initial tempfit;
232 coop.swarm2.part best fit(ann fit,:,1) = initial tempfit;
233 end
234

95

235 % Determine the global best fitness position and value.
236 %**
237 for sub swarm = 1:2
238 % Find the smallest fitness value and index of the particles.
239 [best fit, best ind] = min(coop.(['swarm' num2str(sub swarm)])...
240 .part best fit(:));
241 % Convert best ind into row and column indices.
242 [row, ¬] = ind2sub(size(coop.(['swarm' num2str(sub swarm)])...
243 .part best fit),best ind);
244

245 % Pull the position and fitness of the gbest particle for
246 % each sub−swarm.
247 coop.(['swarm' num2str(sub swarm)]).global best pos(1,:,1) = ...
248 coop.(['swarm' num2str(sub swarm)]).part pos(row,:,1);
249 coop.(['swarm' num2str(sub swarm)]).global best fit(1,:,1) = best fit;
250

251 % Assigns gbest sub−swarm weights to context vector for record−keeping.
252 if(sub swarm == 1)
253 context(1,1:split dim1) = coop.swarm1.global best pos(1,:,1);
254 else
255 context(1,(split dim2+1):dim num) =...
256 coop.swarm2.global best pos(1,:,1);
257 end
258 end
259

260 % Global best fitness and weight archiving. Gbest fitness values for the
261 % context vector should be the same for both sub−swarms.
262 global best fit(1,:,1) = coop.swarm1.global best fit(1,:,1);
263 global best pos(1,:,1) = [coop.swarm1.global best pos(1,:,1)...
264 coop.swarm2.global best pos(1,:,1)];
265

266 % Runs each particle position through the fitness function and stores the
267 % results for comparison.
268 if(plot control.will plot)
269 sol select = row;
270 ann fit = sol select;
271 [inter fig] = confusemat plot(confuse mat(:,:,ann fit), sol select,...
272 iter, ann fit, max iter, iter interval, dummy,...
273 plot control.will pause);
274 end
275

276 % PSO Algorithm Execution
277 %**
278 while(iter < max iter)
279 for sub swarm = 1:2
280 % Particle Velocity and Position Update
281 %**
282 % Finds the particle's next velocity and position using its current
283 % position and velocity.
284 coop.(['swarm' num2str(sub swarm)]).part vel(:,:,iter+1)=omega*...
285 (coop.(['swarm' num2str(sub swarm)]).part vel(:,:,iter))...
286 +c 1*rand(swarm size,...
287 coop.(['swarm' num2str(sub swarm)]).theta size).*...
288 (coop.(['swarm' num2str(sub swarm)]).part best pos(:,:,iter)...

96

289 −(coop.(['swarm' num2str(sub swarm)]).part pos(:,:,iter)))...
290 +c 2*rand(swarm size,coop.(['swarm' num2str(sub swarm)])...
291 .theta size).*(coop.(['swarm' num2str(sub swarm)])...
292 .global best pos(1,:,iter)−(coop.(['swarm'...
293 num2str(sub swarm)]).part pos(:,:,iter)));
294

295 % Updates each dimension location of a particle.
296 coop.(['swarm' num2str(sub swarm)]).part pos(:,:,iter+1)=...
297 coop.(['swarm' num2str(sub swarm)]).part pos(:,:,iter)+...
298 coop.(['swarm' num2str(sub swarm)]).part vel(:,:,iter+1);
299

300 % Out of Function Bounds Detection and Correction
301 %**
302 % Find any particle positions that have gone over the upper limit.
303 up check = coop.(['swarm' num2str(sub swarm)])...
304 .part pos(:,:,iter+1) > upper bounds;
305 % Find any particle positions that have exceeded the lower limit.
306 down check = coop.(['swarm' num2str(sub swarm)])...
307 .part pos(:,:,iter+1) < lower bounds;
308

309 % Check to see if the particle has exceeded the max positive bound.
310 if(ismember(1,up check))
311 % Set the new velocity to be the opposite of the old velocity.
312 coop.(['swarm' num2str(sub swarm)]).part vel(:,:,iter+1) = ...
313 (¬up check.*coop.(['swarm' num2str(sub swarm)])...
314 .part vel(:,:,iter+1))+(up check.*(−coop.(['swarm'...
315 num2str(sub swarm)]).part vel(:,:,iter+1)));
316 % Force the particle position to the max positive position.
317 coop.(['swarm' num2str(sub swarm)]).part pos(:,:,iter+1) =...
318 (¬up check.*coop.(['swarm' num2str(sub swarm)])...
319 .part pos(:,:,iter+1))+(up check.*upper bounds);
320 end
321

322 % Check to see if the particle has exceeded the max negative bound.
323 if(ismember(1,down check))
324 % Set the new velocity to be the opposite of the old velocity.
325 coop.(['swarm' num2str(sub swarm)]).part vel(:,:,iter+1) =...
326 (¬down check.*coop.(['swarm' num2str(sub swarm)])...
327 .part vel(:,:,iter+1))+(down check.*(−coop.(['swarm'...
328 num2str(sub swarm)]).part vel(:,:,iter+1)));
329 % Forces the particle position to the max negative position.
330 coop.(['swarm' num2str(sub swarm)]).part pos(:,:,iter+1) =...
331 (¬down check.*coop.(['swarm' num2str(sub swarm)])...
332 .part pos(:,:,iter+1))+(down check.*lower bounds);
333 end
334

335 % Particle Fitness Evaluation and Update
336 %**
337 % Determine the fitness values of each sub−swarm particle.
338 for ann fit = 1:swarm size
339 % Sub Swarm Dependent Context Vector Construction
340 %**
341 % If working through sub−swarm 1, use best sub2 weights and
342 % cycle through all sub1 weights.

97

343 if(sub swarm == 1)
344 context(1,1:split dim1) =...
345 coop.swarm1.part pos(ann fit,:,iter+1);
346 context(1,(split dim2+1):dim num) =...
347 coop.swarm2.global best pos(1,:,iter);
348 % If working through sub−swarm 2, use best sub1 weights and
349 % cycle through all sub2 weights.
350 elseif(sub swarm == 2)
351 context(1,1:split dim1) =...
352 coop.swarm1.global best pos(1,:,iter);
353 context(1,(split dim2+1):dim num) =...
354 coop.swarm2.part pos(ann fit,:,iter+1);
355 end
356

357 % Context Vector Evaluation
358 %**
359 % Form ANN weight matrices from the sub−swarm particles.
360 Theta1 = reshape(context(:,1:theta1 size)',...
361 [hidden layer size input layer size+1]);
362 Theta2 = reshape(context(:,(theta1 size+1):dim num)',...
363 [num labels hidden layer size+1]);
364

365 % Run each particle position through the function that is
366 % being minimized and store the results for comparison.
367 [temp pos fit(ann fit,:,1)]=sim predict final(Theta1,Theta2,...
368 X train,y train,lambda);
369 end
370

371 % Sub−Swarm Particle Best Fitness Check and Update
372 %**
373 % Check to see if any sub−swarm particle positions found are
374 % better than the previous generation.
375 new = temp pos fit < coop.(['swarm' num2str(sub swarm)])...
376 .part best fit(:,:,iter);
377

378 % Check to see if the any fitness values have decreased.
379 if(ismember(1,new))
380 % Find the fitness values that have decreased and add any old
381 % values that are better than the current ones.
382 coop.(['swarm' num2str(sub swarm)]).part best pos(:,:,iter+1)...
383 =(new.*coop.(['swarm' num2str(sub swarm)])...
384 .part pos(:,:,iter+1))+(coop.(['swarm'...
385 num2str(sub swarm)]).part best pos(:,:,iter).*¬new);
386

387 % Assign the new fitness value in the next iteration layer.
388 coop.(['swarm' num2str(sub swarm)]).part best fit(:,:,iter+1)...
389 =(new.*temp pos fit(:,:))+(coop.(['swarm'...
390 num2str(sub swarm)]).part best fit(:,:,iter).*¬new);
391 else
392 % Keep the current best position and fitness values if all of
393 % the new solutions are worse than the previous ones.
394 coop.(['swarm' num2str(sub swarm)]).part best pos(:,:,iter+1)...
395 =coop.(['swarm' num2str(sub swarm)]).part best pos(:,:,iter);
396

98

397 coop.(['swarm' num2str(sub swarm)]).part best fit(:,:,iter+1)...
398 =coop.(['swarm' num2str(sub swarm)]).part best fit(:,:,iter);
399 end
400

401 % Sub−Swarm Global Function Fitness Check and Update
402 %**
403 % Find the smallest fitness value and index of the particles.
404 [hold fit, hold ind] = min(coop.(['swarm' num2str(sub swarm)])...
405 .part best fit(:,:,iter+1));
406

407 % If the sub−swarm 1's best pbest solution is better than the gbest
408 % solution, update gbest.
409 if(hold fit < coop.(['swarm' num2str(sub swarm)])...
410 .global best fit(1,1,iter) && sub swarm == 1)
411 % Update gbest fitness and position.
412 coop.swarm1.global best pos(1,:,iter+1) = coop.swarm1...
413 .part pos(hold ind,:,iter+1);
414 coop.swarm1.global best fit(1,1,iter+1) = hold fit;
415

416 % Sub swarm credit assignment strategy; if a new global
417 % best is found, then update the fitness values of all best
418 % particles that generated the new global best.
419

420 % Update the global best fitness value of the second subswarm.
421 coop.swarm2.global best fit(1,1,iter+1) = hold fit;
422 % Updates the corresponding best particle fitness that matches
423 % the global best (Updates the list item that global best was
424 % selected from).
425 coop.swarm2.part best fit(hold ind,1,iter+1) = hold fit;
426

427 % If the sub−swarm 2's best pbest solution is better than the gbest
428 % solution, update gbest.
429 elseif(hold fit < coop.(['swarm' num2str(sub swarm)])...
430 .global best fit(1,1,iter) && sub swarm == 2)
431 % Update gbest fitness and position.
432 coop.swarm2.global best pos(1,:,iter+1) = coop.swarm2...
433 .part pos(hold ind,:,iter+1);
434 coop.swarm2.global best fit(1,1,iter+1) = hold fit;
435

436 % Sub swarm credit assignment strategy; if a new global
437 % best is found, then update the fitness values of all best
438 % particles that generated the new global best.
439

440 % Update the global best fitness value of the first subswarm.
441 coop.swarm1.global best fit(1,1,iter+1) = hold fit;
442 % Updates the corresponding best particle fitness that matches
443 % the global best (Updates the list item that global best was
444 % selected from).
445 coop.swarm1.part best fit(hold ind,1,iter+1) = hold fit;
446 else
447 % If no better solution found, preserve current gbest position.
448 coop.(['swarm' num2str(sub swarm)])...
449 .global best pos(1,:,iter+1) = coop...
450 .(['swarm' num2str(sub swarm)]).global best pos(1,:,iter);

99

451 % If no better solution found, preserve gbest fitness.
452 coop.(['swarm' num2str(sub swarm)])...
453 .global best fit(1,1,iter+1) = coop...
454 .(['swarm' num2str(sub swarm)]).global best fit(1,1,iter);
455 end
456 end
457

458 % Context Vector (Overall Global Best) Update
459 %**
460 % This code ensures that the values in the context vector represent
461 % the global best particle positions from the current iteration
462 % being considered, and then evalautes the context vector to
463 % provide an overall picture of improvement.
464

465 % Build context vector from the sub−swarm gbest particles.
466 context(1,1:split dim1) = coop.swarm1.global best pos(1,:,iter+1);
467 context(1,(split dim2+1):dim num) = ...
468 coop.swarm2.global best pos(1,:,iter+1);
469

470 % Reshape the context vector to properly fit ANN structure.
471 Theta1 = reshape(context(:,1:theta1 size)',...
472 [hidden layer size input layer size+1]);
473 Theta2 = reshape(context(:,(theta1 size+1):dim num)',...
474 [num labels hidden layer size+1]);
475

476 % Evaulate context vector fitness.
477 [global best fit(1,1,iter+1),ANN acc(ann fit,iter+1),...
478 ANN pred(:,ann fit),confuse mat(:,:,ann fit)]=sim predict final(...
479 Theta1,Theta2,X train,y train,lambda);
480 % Archive the current gbest context vector.
481 global best pos(1,:,iter+1) = context(1,:);
482

483 % If plots are enabled, a confusion matrix will be plotted for the
484 % current global best particle solution.
485 if(plot control.will plot)
486 sol select = hold ind;
487 ann fit = sol select;
488 [inter fig]=confusemat plot(confuse mat(:,:,ann fit),sol select,...
489 iter,ann fit,max iter,iter interval,inter fig,...
490 plot control.will pause);
491 end
492

493 iter = iter + 1; % Advances the iteration counter.
494 end
495

496 results.train time = toc;
497

498 % Testing of Trained ANN
499 %**
500 % Identify the best result ANN nodal weights.
501 final ann param = global best pos(1,:,max iter);
502 % Reshape best parameter weights into ANN weight matrices.
503 Theta1 = reshape(final ann param(:,1:theta1 size)',...
504 [hidden layer size input layer size+1]);

100

505 Theta2 = reshape(final ann param(:,(theta1 size+1):dim num)',...
506 [num labels hidden layer size+1]);
507 % Evaluate best ANN configuration using the test data set.
508 [results.test fit,results.test acc,results.test pred,¬] =...
509 sim predict final(Theta1, Theta2, X test, y test, lambda);
510

511 % Simulation Run Results Archiving
512 %**
513 % Archives any data results not already accounted for. Testing results are
514 % archived in the actual evaluation of the test data; there's no need to
515 % create temporary variables just to archive those results here.
516 results.gbest fit = global best fit;
517 results.gbest pos = global best pos;
518 results.test time = toc;
519 results.train acc = max(ANN acc(:,max iter));
520 results.train pred = ANN pred(:,size(ANN pred,2));
521 results.train fit = hold fit;
522 results.swarm1 fit = coop.swarm1.part best fit;
523 results.swarm2 fit = coop.swarm2.part best fit;
524

525 % Plotting of Algorithm Global Fitness Curve
526 %**
527 % Plots the global best fitness if finishing plots are enabled.
528 if(plot control.final plot)
529 % Plots the global best fitness
530 figure
531 semilogy(global best fit(:))
532 title(['Esplit Cooperative Particle Swarm Optimization Global'...
533 'Fitness Logarithmic Plot'])
534 xlabel('Swarm Iterations')
535 ylabel('Fitness Value')
536 fit log = gcf;
537 save my figs(fit log,filepath,'Esplit Coop PSO Fitness Curve')
538 end

B.4 Sub-Function Code

B.4.1 Fitness Functions

1 function [fit,ANN acc,p,confuse mat]=sim predict final(Theta1,Theta2,X,...
2 y,lambda)
3

4 % Search Algorithm Fitness Calculator for OCR MLP ANN
5 % Created by: Patrik Gilley
6 % Date Created: November 27, 2019
7 % Date Last Modified: December 5, 2019
8 % Program Name: sim predict final.m
9 %

10 % This program was created to take the trained weights of an ANN and use

101

11 % them to predict the label of the data inputs to that ANN. Given a
12 % database of handwritten digits and the nodal weights of an ANN trained
13 % for classifying those digits, this program would predict the output label
14 % of each input image. Currently, this program is set for a specified ANN
15 % layer structure of one input layer, one hidden layer, and one output
16 % layer. This program is set for a classification ANN that uses the sigmoid
17 % function for its activation function. This is a copy of sim predict.m,
18 % created to clean up older code while preserving what code is useful.
19 %
20 % Program Inputs:
21 % Theta1 = The nodal weight matrix for the input to hidden layer
22 % connections.
23 % Theta2 = The nodal weight matrix for the hidden to output layer
24 % connections.
25 % X = The data inputs to the neural network.
26 % y = The labels that correspond to the data inputs used with the ANN.
27 % lambda = The lambda or regularization constant that the weight
28 % regularization calculation should use.
29 %
30 % Program Outputs:
31 % fit = Overall fitness value of the ANN nodal weights, based on training
32 % accuracy.
33 % ANN acc = The accuracy of the ANN on the provided data with the current
34 % nodal weights.
35 % p = Vector of labels that match the highest output probability of the
36 % ANN.
37 % confuse mat = Array of confusion matrix values generated from the
38 % fitness value evaluation.
39 %
40 % NOTE: The code partially adapts code from a Coursera online course about
41 % machine learning created by Dr. Andrew Ng.
42

43 % Feed Training Data Through ANN
44 %**
45 % Identify the number of input data entries to correct for bias term
46 % additions in the ANN structure.
47 m = size(X, 1);
48

49 % Apply nodal weights to input layer data and feeds them into ReLU
50 % activation function.
51 h1 = relu sim([ones(m, 1) X] * Theta1');
52 % Apply nodal weights to hidden layer data and feeds them into softmax
53 % activation function.
54 h2 = softmax sim([ones(m, 1) h1] * Theta2');
55

56 % Correction for number rounding.
57 %**
58 % Makes sure that there are no actual ones in the final h2 output matrix.
59 % Subtracts a very small number from found 1's in order to make them
60 % slightly less than one without overtly affecting the results of the
61 % neural network.
62 h2(h2==1) = h2(h2==1) − 1e−15;
63

64 % Calculation of Search Algorithm Position Fitness

102

65 %**
66 % Finds the highest output label probability of data set entries.
67 [¬, p] = max(h2, [], 2);
68 % Find the average percent rate of predictions matching ground truth.
69 ANN acc = mean(double(p == y)) * 100;
70 % Create a confusion matrix for the tested ANN.
71 confuse mat = confusionmat(y,p);
72

73 % Convert data set labels into bitwise format.
74 I = eye(10);
75 Y = zeros(m, 10);
76 for i=1:m
77 Y(i, :)= I(y(i), :);
78 end
79

80 % Regularization term calculation
81 reg theta1 = Theta1(:,2:size(Theta1,2)); % Remove bias terms from the
82 % Theta1 weight matrix, as the
83 % bias weights should not be
84 % regularized.
85

86 reg theta2 = Theta2(:,2:size(Theta2,2)); % Apply the same procedure to the
87 % Theta2 weight matrix.
88 reg = (lambda/(2*m))*(sum(sum((reg theta1.ˆ2),2))...
89 +sum(sum((reg theta2.ˆ2),2))); % Calculate L2 regularization term.
90

91 % Calculate the cost function based on outputs and converted data set
92 % labels. Applies previously calculated regularization term.
93 fit = (1/m)*sum(sum((−Y.*log(h2))−(1−Y).*log(1−h2),2))+reg;
94

95 end

B.4.2 Nodal Activation Functions

1 function [out] = relu sim(in)
2 % Artificial Neural Network Rectified Linear Unit Activation Function
3 % Created by: Patrik Gilley
4 % Date Created: December 5, 2019
5 % Date Last Modified: December 5, 2019
6 % Program Name: relu sim.m
7 %
8 % Program Inputs:
9 % in = Forward pass input to the ANN layer that is using the ReLU

10 % function as its activation function.
11 %
12 % Program Outputs:
13 % out = Data outputs of the ANN layer that is using the ReLU function as
14 % its activation function.
15 %
16 % This program implements the Rectified Linear Unit (ReLU) neural network

103

17 % activation function. This activation function is commonly used for hidden
18 % layer nodes due to its simplicity and the fact that it avoids the
19 % nodal weight saturation issues of a sigmoid function. The ReLU function
20 % preserves all positive values while zeroing out negative values.
21

22 % ReLU Activation Function Transformation of Input Data
23 %**
24 out = in.*(in > 0);
25 end

1 function [output] = softmax sim(input)
2 % Softmax Activation Function
3 % Created By: Patrik Gilley
4 % Date Created: December 5, 2019
5 % Date Last Modified: December 5, 2019
6 % Program Name: softmax sim.m
7 %
8 % Program Inputs:
9 % input = The inputs to the ANN layer.

10 %
11 % Program Outputs:
12 % output = The transformed outputs of the ANN layer.
13 %
14 % This program is an implementation of the softmax ANN activation function.
15 % The softmax function is traditionally used in multi−class classification
16 % artificial neural networks. Its advantage over the sigmoid function
17 % comes from the fact that it normalizes nodal output probabilities into
18 % the range of 0 to 100%. As such, it's used primarily as the activation
19 % function of a neural network's output layer.
20

21 % Softmax Equation
22 %**
23 output = exp(input)./sum(exp(input),2);

B.5 Utility Function Code

1 function save my figs(h,filepath,filename)
2 % Search Algorithm Figure Saving
3 % Modified by: Patrik Gilley
4 % NOTE: This code was sourced from Dr. Yan. Small modifications have been
5 % made to add an adaptive file saving path for better use with
6 % Simulation Frame.m's Monte Carlo simulation approach.
7 % Date Created: April 10, 2019
8 %
9 % This program is intended to provide a method of saving figures generated

10 % by the SA programs. It was bundled off into a separate function to ease

104

11 % the implementation of any modifications to file save types and/or number
12 % of files saved. This program uses a filepath specified by the user to
13 % save figures with a user−specified file name wherever they are needed.
14 %
15 % Program Inputs:
16 % h = Figure being saved. This input should be passed to the function as
17 % a handle of the current figure, as that is the format required to
18 % properly save the figure data.
19 % filepath = Directory/folder path to destination folder that the file
20 % should be saved to. Must match the file path syntax of
21 % platform that the program is being run on. Input should be
22 % passed as a character string.
23 % filename = Name that the saved file should use. Input should be passed
24 % as a character string.
25

26 %printpdf(h,filename);
27 %savefig([filename,'.jpg'],'jpeg','−rgb','−crop', '−r250');
28 % Save the figure as a .pdf file.
29 saveas(h,[filepath '\' filename,'.pdf']);
30 % Save the figure as a .jpeg file.
31 saveas(h,[filepath '\' filename,'.jpg']);
32 % Save the figure as a MatLab .fig file.
33 saveas(h,[filepath '\' filename,'.fig']);
34 %saveas(h,[filename,'.eps'],'epsc');

1 function [temp mid]=confusemat plot(confuse mat, sol select, iter,...
2 ann fit, max iter, iter interval, inter fig, will pause)
3

4 % Confusion Matrix Plotter
5 % Created By: Patrik Gilley
6 % Date Created: May 22, 2019
7 % Date Last Modified: May 22, 2019
8 % Program Name: confusemat plot.m
9 %

10 % Program Inputs:
11 % confuse mat = Confusion matrix data of specific solution being plotted.
12 % sol select = The spark/firework/particle that will be used to generate
13 % the confusion matrices.
14 % iter = The iteration count of the ANN training code.
15 % ann fit = The loop count of the fitness evaluation loop.
16 % max iter = The maximum number of iterations allowed in the overall
17 % search algorithm program.
18 % iter interval = Sets the number of iterations the search algorithm
19 % must execute before creating an intermediate confusion
20 % matrix.
21 % inter fig = Passes a figure handle to the intermediate confusion matrix
22 % plotting code to set where the confusion matrix plot goes.
23 % will pause = Controls whether the program pauses execution every time
24 % an intermediate confusion matrix is generated, or pauses
25 % every iter interval iterations.
26 %

105

27 % Program Outputs:
28 % temp mid = Figure handle for the intermediate confusion matrix plot.
29 % For use in later executions of the program.
30 %
31 % This program was created to package an iterative confusion matrix
32 % plotting mechanism into a function to ease how it's adapted across
33 % multiple search algorithms. It will plot confusion matrices for the ANN
34 % performance on a chosen solution found by a search algorithm, e.g. a
35 % specific particle for the PSO variants. Separate confusion matrices will
36 % be generated for initial and final solutions, and an intermediate
37 % confusion matrix will be plotted and updated/replotted every ten search
38 % algorithm iterations. An important note to make about the structure of
39 % this code is that it creates and outputs the handle of the intermediate
40 % confusion matrix figure that will be continually updated as temp mid.
41 % This handle will need to be passed back into the program as inter fig for
42 % this program to work as intended. Alternatively, other figure handles can
43 % be passed into this program through inter fig if there is a need to have
44 % specific iterations on separate figures for later use. Those figures will
45 % need to be created before this program is run, as the code only creates
46 % a figure for the initial intermediate confusion matrix plot; the updating
47 % relies on referencing a figure that already exists.
48

49 % Confusion Matrix Generation
50 %**
51 if(ann fit == sol select) % Allows for selection of specific
52 % particle/firework/spark for use with
53 % confusion matrix plotting, to limit the
54 % effects of the code on performance.
55

56 % Initial Confusion Matrix Generation
57 %**
58 if(iter == 1)
59 temp mid = figure;
60 confusionchart(confuse mat);
61 title('Initial Confusion Matrix (Iter = 1)')
62

63 % Final Confusion Matrix Generation
64 %**
65 elseif(iter == (max iter+1))
66 temp mid = figure;
67 confusionchart(confuse mat);
68 title(['Final Confusion Matrix (Iter = ' num2str((max iter+1)) ...

')'])
69

70 % Intermediate Confusion Matrix Generation − Start
71 %**
72 elseif((iter−1) == iter interval)
73 temp mid = figure;
74 confusionchart(confuse mat);
75 title(['Intermediate Confusion Matrix (Iter = ' num2str(iter) ')'])
76 if(will pause)
77 pause
78 end
79

106

80 % Intermediate Confusion Matrix Generation − Continuation
81 %**
82 % Regenerates the confusion matrix every iter interval iterations.
83 elseif(¬mod((iter−1),iter interval) && ((iter−1) 6= iter interval))
84 temp mid = figure(inter fig);
85 confusionchart(confuse mat);
86 title(['Intermediate Confusion Matrix (Iter = '...
87 num2str(iter) ')'])
88 if(will pause)
89 pause
90 end
91 else
92 % Returns the given figure handle to ensure that the program always
93 % has an output.
94 temp mid = inter fig;
95 end
96 else
97 temp mid = inter fig;
98 end

1 % Principle Component Analysis Dimension Reduction for Artificial Neural
2 % Network Data Set Simplification
3 %
4 % Created by: Patrik Gilley
5 % Date Created: September 26, 2019
6 % Date Last Modified: September 26, 2019
7 % Program Name: proto ann pca ana.m
8 %
9 % This program was written to reduce the dimensions of ANN training data.

10 % Specifically, this is meant to reduce the dimensions of the images of
11 % handwritten digits. A 28x28 image of a handwritten digit makes a feature
12 % vector of 784 features, which adds a lot of complexity in neural networks
13 % being trained to classify them. This program will run a Principle
14 % Component Analysis (PCA) of the image data set to create a plot that will
15 % identify the amount of information contained from a single dimension to
16 % the original amount of dimensions in the program. For example, a 28x28
17 % image has 784 features/dimensions, so this program will plot how much of
18 % the image information will be retained if it is compressed to one
19 % dimension, coompressed to two dimensions, and so on until the original
20 % amount of dimensions is reached which equates to no compression/dimension
21 % reduction being applied. The program will then compress the data set to
22 % the desired amount of dimensions.
23 %
24 % User−defined functions used:
25 % featureNormalize.m: Used to normalize the features of the data set
26 % being used for PCA analysis/compression to an
27 % appropriate range.
28 %
29 % Note: [U,S,V] = svd(x) is used. U is a matrix containing eigenvectors,
30 % and S is a diagonal matrix containing eigenvalues.
31

107

32 % Clear Out Previous Program Executions
33 %**
34 clear;
35 close all;
36

37 % Load Target Data Set
38 %**
39 load('MNISTdata.mat');
40 X train = train images;
41 X test = test images;
42 X = vertcat(X train,X test);
43

44 % Normalize the features in the target data set.
45 [X norm] = featureNormalize(X);
46

47 % Determine the number of samples and features in the target data set.
48 [m, n] = size(X norm);
49

50 % Calculates the covariance matrix of the target data set.
51 sigma = (1/m)*(X norm'*X norm);
52

53 % Calculates the singular value decomp of sigma and returns the
54 % eigenvectors and eigenvalues.
55 [U, S] = svd(sigma);
56

57 % Controls whether the compressed data set generated by the program is
58 % saved. save Xred = 1 enables results saving, and save Xred = 0 disables
59 % it.
60 save Xred = 0;
61

62 % Individual and Total Explained Variance Calculation and Plotting
63 %**
64 % Sum up all of the eigenvalues for determining the ratio of individual
65 % value variances.
66 tot eigen = sum(S,'all');
67

68 % Determine the individual explained variance of each eigenvalue.
69 indiv var = sum(S./tot eigen);
70

71 % Turn the individual explained variance matrix into a cumulative vector
72 % that shows the amount of information captured by any number of compressed
73 % data set dimensions.
74 cumul var = cumsum(indiv var);
75

76 % Variance plotting
77 figure
78 plot(1:length(cumul var),cumul var)
79 title(['Number of PCA Components Used vs. Percentage of Target'...
80 'Data Variance Captured'])
81 xlabel('Number of PCA Components')
82 ylabel('Cumulative Explained Variance')
83

84 % PCA Dimension Reduction of Target Data Set
85 %**

108

86 pca comp = input('Enter the amount of PCA components to be used: ');
87

88 % Test to see if the number of PCA components that the data set will be
89 % compressed to result in a square picture, e.g. if pca comp=225, resulting
90 % pictures will be 15x15.
91 pict size test = sqrt(pca comp);
92 % Display a warning if the pictures are no longer square.
93 if(floor(pict size test) 6= pict size test)
94 disp('Warning! Compressed pictures are not square!')
95 end
96 u reduce = U(:,1:pca comp); % Captures the eigenvectors to be used.
97

98 % Initialize the matrix that will hold the compressed data set.
99 X reduced = zeros(size(X, 1), pca comp);

100

101 for ex count = 1:size(X,1)
102 X reduced(ex count,:) = X(ex count,:)*u reduce;
103 end
104 train images = X reduced(1:60000,:);
105 test images = X reduced(60001:70000,:);
106

107 % Saving of Compressed Data Set
108 %**
109 if(save Xred)
110 save('MNISTdata pca.mat','train images','test images',...
111 'train labels','test labels','U','pca comp')
112 end

1 function [X norm, mu, sigma] = featureNormalize(X)
2 %FEATURENORMALIZE Normalizes the features in X
3 % FEATURENORMALIZE(X) returns a normalized version of X where
4 % the mean value of each feature is 0 and the standard deviation
5 % is 1.
6 %
7 % Code sourced from Dr. Ng's machine learning course on Coursera.
8 mu = mean(X);
9 X norm = bsxfun(@minus, X, mu);

10 sigma = std(X norm);
11 % This if statement is to fix a problem with the standard deviation calcs
12 % for ex4data1.mat usage in the PCA code. Several columns have no standard
13 % deviation, causing undefined/Inf/NaN results that cannot be used in svd
14 % function.
15 if (ismember(0,sigma))
16 sigma(find(sigma == 0)) = eps;
17 end
18 X norm = bsxfun(@rdivide, X norm, sigma);
19 end

109

