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Abstract 

THE EFFECTS OF BEAVER IMPOUNDMENTS ON MONTANE STREAM FISH 

COMMUNITES  

Samuel Frederick Fritz  

B.S., Appalachian State University  

M.S., Appalachian State University  

Chairperson: Michael M. Gangloff, Ph.D.  

  

North American beavers (Castor canadensis) are ecological engineers, and their dams alter 

stream hydrology, sediment dynamics, nutrient cycling, riparian communities, and water 

chemistry. Impacts of beaver dams on fish communities are complex and regionally-variable. 

Few previous studies have examined the effect of beaver dams on the fishes of the Southern 

Appalachians, likely because beaver populations in this region are still recovering from historical 

over-exploitation. Populations in the Southern Appalachians have been increasing slightly, but 

are still at relatively low levels. I sampled fish communities during the summer of 2019 from 9 

streams with active beaver ponds and 7 with inactive beaver ponds. Four sites were sampled for 

fishes in each stream and sediment cores were taken from all ponds in the study in order to 

quantify the abundance of oligochaete worms, potential hosts for the myxozoan fish parasite 

Myxobolus cerebralis. I found that both active and inactive beaver impoundments affect stream 

physicochemical habitat parameters, fish community structure and possibly the potential for 

disease transmission. Generalized linear mixed effect models (GLMMs) indicate that fish 

diversity is reduced in streams with active beaver impoundments and that the magnitude of this 

reduction is dependent on the proximity of a site relative to an active impoundment. Models 

indicate that site elevation plays the strongest role in determining fish species richness. Further, 
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GLMMs indicate that beaver activity and proximity to a dam were important predictors of 

dissolved oxygen (DO) saturation and water temperature. Although active ponds had lower DO 

they also had slightly lower temperatures. Indicator species analysis found that two species had a 

significant association with active beaver ponds whereas 8 were associated with inactive beaver 

ponds or unimpounded reaches up and downstream from active beaver ponds. The probability of 

detecting oligochaetes and oligochaete density were greater in active compared to inactive beaver 

ponds. However, relatively few worms in the family Tubificidae were encountered and no 

abnormal salmonids were detected during fish surveys. My work indicates that Appalachian 

Mountain streams with active beaver ponds support less diverse fish assemblages than streams 

where beaver ponds have been abandoned. However, both Semotilus atromaculatus and Salmo 

trutta appear to prefer active beaver ponds. My results also indicate that beaver ponds may 

improve habitat for freshwater oligochaetes but the potential role of impoundments in fish 

disease transmission remains unclear.  
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Introduction  

North American beavers (Castor canadensis) are ecological engineers and their activities 

may substantially alter ecosystems through non-trophic effects (Jones et al. 1994, Schlosser and 

Kallemeyn 2000, Colleen and Gibson, 2001). Beaver dams form temporary lentic habitats within 

stream networks and alter hydrology, sediment dynamics, nutrient cycling, riparian communities, 

and water chemistry (Johnston and Naiman 1990, Gibson et al. 2014). The impact of beaver 

dams on fish communities is complex, and may both positively and negatively affect diversity 

(Snodgrass and Meffe 1998, Schlosser and Kallemeyn 2000, Colleen and Gibson 2001, Kemp et 

al 2011, Smith and Mather 2013). Much of the variability in responses to beaver impoundments 

is attributable to biogeographic and taxonomic variation in fish communities as well as pond 

morphology and successional stage (Schlosser and Kallemeyn 2000, Kemp et al. 2011, Smith 

and Mather 2013). Beavers have long been prized for their fur, and their populations were 

decimated by the North American fur trade. Native beavers were completely extirpated from 

North Carolina by 1897 and were not reintroduced to the state until 29 individuals were brought 

in from Pennsylvania in 1939 (McGrath et al. 2018). Since their reintroduction, beavers have 

become common throughout the state, including in the western region (McGrath et al. 2018). The 

return of these ecosystem engineers to the southern mountains raises questions about their impact 

on freshwater communities.  

Although beaver impoundments affect fishes throughout their life cycle, body size and 

life history can have important implications for how taxa respond to dams. For example, 

Schlosser and Kallemeyn (2000) found that collapsed beaver dams on the Kabetogama Peninsula 

in Minnesota may provide habitat for juvenile fishes dispersing from an adjacent large lake. Sites 

that were closer to the lake also had higher species richness compared with those farther away  
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(Schlosser and Kallemeyn 2000). Juveniles of species typically found only in nearby lakes were 

absent from ponds with intact dams, suggesting that collapsed ponds also provide important 

habitat for lentic species dispersing through lotic ecosystems, whereas intact dams may act as 

barriers to dispersal (Schlosser and Kalleymeyn 2000). Conversely, intact beaver impoundments 

in Oregon supported higher densities of juvenile steelhead (Onchorynchus mykiss) compared to 

unimpounded reaches in the same streams (Bouwes et al. 2016). Both adult and juvenile PIT 

tagged steelhead were frequently detected moving over intact beaver dams both upstream and 

downstream (Bouwes et al 2016). Although salmonids are adept at bypassing obstacles they were 

absent from the sites on the Kabetogama Peninsula where the majority of fishes observed were 

small-bodied taxa that were likely unable to move upstream of beaver dams (Schlosser and  

Kalleymeyn 2000).   

Beaver activity may positively affect fish diversity by increasing the variability of aquatic 

habitats in a system. The depth, width, and temperature of beaver-impounded streams is much 

more variable than unimpounded systems, and these systems may provide habitats and trophic 

niches that may be absent or uncommon in unimpounded streams (Bouwes et al. 2016). Beaver 

ponds in Massachusetts were associated with increased diversity of native fish species, possibly 

due to increased habitat heterogeneity (Smith and Mather 2013). Beavers also introduce coarse 

woody debris (CWD) into streams during the construction and rebuilding of dams, and through 

the inundation and death of riparian woody plants due to rising water tables (Pollock et al. 1995). 

CWD provides shelter for juvenile and adult fishes and plays an important role in stream 

productivity in many regions (Kemp et al. 2011). Beaver-associated CWD may also provide 

habitat and food resources for invertebrates, increasing available forage for fish (Kemp et al.  

2011, Smith and Mather 2013).   
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In arid environments, beaver impoundments may improve water retention and fish habitat 

but this may also promote the establishment of invasive species. For example, beaver ponds on 

the Verde River in Arizona harbored a higher proportion of non-native fishes compared to 

unimpounded reaches (Gibson et al. 2014). In contrast, a study of 21 beaver dams in Northern 

Utah found that native Oncorhynchus clarkii were able to pass upstream of dams at a much 

higher rate than invasive Salmo trutta (Lokteff et al. 2013). Even when beavers are introduced 

outside of their native range, their ponds may improve habitat suitability for a variety of fishes. 

In South America, beaver ponds provide improved habitat for imperiled galaxiid fishes, and may 

provide a refuge against predation from introduced salmonids (Moorman et al. 2009).   

Beaver ponds may also improve fish habitats by stabilizing channels and reducing bed 

and bank erosion as well as by retaining suspended sediment within active ponds (Compton et al. 

2013, Puttock et al. 2018). By trapping these sediments, beaver ponds can also combat excessive 

nutrient loading due to agricultural waste, a major source of stream degradation (Fairchild and  

Velinsky 2006). Many stream-dwelling fishes are dependent on clean gravel substrates to spawn. 

Beaver ponds themselves therefore prove poor spawning grounds due to the large amounts of 

sediment they retain (Kemp et al. 2011).  

Beavers can have negative impacts on fish communities and populations. In many cases, 

fishes in systems with active beaver ponds are less diverse than those inhabiting adjacent 

unimpounded reaches (Schlosser and Kalleymeyn 2000). This reduction in community diversity 

is often attributed to increased water temperatures and decreased oxygen levels, though these 

trends do not apply across all regions where beavers occur, or even for all ponds within a region 

(Schlosser and Kalleymeyn 2000, Kemp et al. 2011). Further, for many small-bodied fishes, 

beaver dams are a significant barrier to upstream movement (Compton et al. 2013). A 2011 meta-
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analysis found that barriers to upstream fish passage were the most frequently-cited negative 

impact of beavers in the literature (Kemp et al. 2011).  

Previous research has also shown beaver ponds to be suitable habitat for freshwater oligochaetes 

and other more sediment or low-DO tolerant macroinvertebrate taxa (Margolis et al.  

2002, Fairchild and Velinsky 2006; Pliūraitė and Kesminas 2012). The freshwater oligochaete 

Tubifex tubifex is an intermediate host for the parasite Myxobolus cerebralis, the causative agent 

of whirling disease in salmonids (Gilbert and Granath 2001). Myxobolus cerebralis was first 

detected in North Carolina in 2015, and this has raised concerns about possible impacts to the 

state’s trout fisheries (NCWRC 2015). However, there have been few studies of oligochaete 

distributions in southern Appalachian streams and it is unclear to what extent these streams 

afford habitat for tubificid worms capable of transmitting Myxobolus and other fish parasites. As 

beaver populations increase in North Carolina, it is possible that the increase in beaver 

impoundments may create hotspots for Myxobolus transmission.   

These results highlight the role of biogeography in determining the response of fish 

populations to beaver dams. Although geographic and taxonomic context have been shown to be 

important to understanding the effects of beaver impoundments on streams, no studies have 

examined the response of diverse Southern Appalachian fish communities to beaver 

impoundments. Much of the research conducted on beaver effects on stream communities has 

been conducted in low-elevation, low-gradient streams, or in systems where beavers are not 

native (Jakes et al. 2007, Anderson and Rosemond 2010, Curran and Cannatelli 2014). These 

systems are typically warmer, more nutrient-rich, and have lower DO concentrations compared 

to Appalachian headwater streams. High elevation stream fish communities in this region are 

often comprised of species adapted to cool water temperatures and clean substrates. Because 
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Appalachian streams tend to be cooler, low-productivity systems, beaver-mediated changes to 

water temperature and DO may be more ecologically relevant in high elevation systems than 

compared to warmer low-elevation systems where low DO conditions are more common.  

I predicted that headwater streams in Western North Carolina would see reduced species 

richness and diversity where active beaver ponds were present, compared to where ponds had 

been abandoned. I also predicted that certain fishes would be strongly associated with active 

beaver impoundments. Based on previous research, I also believed that active beaver ponds 

would provide ideal habitat for oligochaete worms. Finally, I predicted that active beaver 

impoundments would show lower DO saturation and higher water temperature when compared 

to surrounding reaches or inactive ponds. To test these predictions I collected fish community 

and water quality data from a number of blue ridge headwater streams during the summer of  

2019.  

    

Materials and Methods  

Study Design 

I sampled 16 headwater streams in the Catawba, New and Tennessee drainages in western North  

Carolina, displayed in figure 1. Sites were classified as active or inactive based on the apparent 

level of maintenance of the dam. Dams which appear to be maintained by resident beavers (i.e., 

have fresh branches incorporated, are free from major leaks) were classified as active. Dams that 

were breached and no longer impounded significant quantities of water were classified as 

inactive. For each dam, I selected four sites for habitat and fish sampling. Sites were 150-m 

reaches located 1) upstream of the impoundment in a free-flowing reach, 2) within the 

impoundment, 3) the tailrace, immediately downstream of the dam and 4) in a free-flowing reach 
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located >300 m downstream of a beaver impoundment. If multiple impoundments or abandoned 

dams existed within a single site, the farthest downstream dam was used to calculate distances 

for tailrace and downstream samples. Downstream samples served as reference reaches to allow 

comparison between beaver-altered fish communities and unaltered fish communities. This 

followed the method of Smith and Mather (2013), who located control reaches > 100 m on the 

same stream from beaver impoundments to ensure the habitat was not influenced, but ensure 

geographical and physiochemical similarity between control and beaver reaches was maintained. 

I decided that upstream samples were not appropriate reference reaches, due to the difficulty 

many fishes have passing upstream of dams (Kemp et al. 2011)  

  

Habitat Assessment and Sampling  

In order to compute drainage area and compare forest cover among stream catchments, 

watershed boundaries were delineated at the downstream extent of sampling for each site using 

USGS Stream Stats (www.usgs.streamstats.gov). The amount of total forest cover (deciduous + 

coniferous + mixed) within the watershed for each site was then obtained using the 2016 

National Land Cover Dataset in ArcMap 10.5.1 for Windows. A suite of water quality 

parameters was also collected from each sample reach. I measured water temperature, DO 

saturation, pH, NO3
- concentration and specific conductance using a YSI Pro Series 

MultiParameter Meter (Yellow Springs Instruments, Yellow Springs OH).  
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Biotic Sampling  

Fish and oligochaete samples as well as habitat and water quality data were collected during 

summer baseflow conditions at all sites. Study reaches were separated into mesohabitats (pool, 

riffle, run, or pond) and four different mesohabitats were sampled in each reach. Fish samples 

were collected from each of these mesohabitats. The four mesohabitats sampled in each sample 

reach were selected to incorporate as much habitat heterogeneity as possible.   

Fishes were collected by backpack electrofishing using a Smith-Root LR-20B Backpack 

Electrofisher. Sampling effort in free-flowing reaches was standardized to ~100 s per 

mesohabitat (i.e., 400 s per reach). Four 100 s samples were also obtained from ponds and to 

account for habitat variability I attempted to sample from different mesohabitats within the pond 

including shorelines, woody debris and undercut banks. In both ponds and free-flowing reaches, 

a seine was also used to help isolate mesohabitats and reduce escapement. The deployment of the 

seine alongside backpack electrofishing allowed for the collection of a representative sample of 

the fish community that would not have been obtainable through backpack electrofishing alone 

(Meador et al. 1993).  

All fishes were identified to species on site and returned to the water as quickly as 

possible following recovery. The only exception occurred at sites in the New River drainage, 

where multiple Nocomis spp. were present, but not readily identifiable to species in many cases. 

All Nocomis encountered at New River sites were therefore called Nocomis sp. in subsequent 

analysis. Any fish that did not recover from the electrofisher were euthanized with MS-222, 

preserved in non-denatured 95% alcohol, and vouchered in the Appalachian State University 

Zoological Collections. The total length of the first 30 individuals of each species from each 

study reach were measured and subsequent individuals were identified, enumerated and released.  
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Five benthic sediment samples were collected within each active or inactive pond using a 

bucket with the bottom removed and placed in undisturbed locations on the bottom of the pond. 

The substrate was then gently agitated by hand for 10 seconds and surface sediments, along with 

any vegetation or woody debris within the substrate were collected with a fine mesh aquarium 

net. Sediment samples were then transferred to clean glass or plastic jars and stored in a cooler 

until they could be transported to Appalachian State University. Sediment samples were washed 

through a 300-μm sieve and oligochaetes removed with forceps and stored in 95% non-denatured 

alcohol. Oligochaetes were transported to the Aquatic Parasitology Lab at Auburn University for 

identification and Myxobolus infection testing using PCR assays. In addition, all salmonid fishes 

were examined for any external signs of whirling disease (darkened caudal fin pigments, 

deformed craniums) in the field.  

  

Data Analyses  

I computed species richness (α) and Shannon-Weiner diversity (H’) for each 100-second 

mesohabitat sub-sample using the vegan package in R 3.6.2 for Windows. The distribution of 

Shannon-Weiner diversities was strongly non-normal (Shapiro test: W = 0.82255, p-value < 

0.001), and fish samples were clustered by site. Therefore, the package lme4 was used to 

construct an a priori set of generalized linear mixed effects models (GLMMs) to examine the 

effect of beaver activity, sample reach (upstream, pond, tailrace, and downstream), forest cover, 

and other habitat variables on diversity and species richness. Backpack shocker time was also 

included as a co-variate in several candidate models, in order to account for any potential effects 

of deviating from the 100-second time limit imposed on the samples. Site was used as a random 

effect in all models. An appropriate distribution for a GLMM was then selected by examining 
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QQ-plots generated using the MASS package. A gamma distribution with a log link function was 

selected as the most appropriate for the data. Model parameter estimates were generated by the 

Laplace approximation. All continuous variables not represented by percentages were 

standardized using z-scores to reduce parameter estimate bias, with the exception of relative 

proportion of forest cover, which was arcsin transformed. Any models which failed to converge 

were removed from the candidate model set. The candidate models were then compared using 

the package AICcmodavg to calculate second order Akakie’s Information Criterion (AICc) to 

account for small sample sizes. Models with a △AICc of < 2.0 were considered competitive 

models.   

   The distribution of species richness was also strongly non-normal (Shapiro test W = 

0.81136, p-value < 0.0001), and clustered by site. GLMMs were therefore generated to examine 

the effect of the same covariates used to examine diversity on species richness. Site was once 

again used as a random effect in all models. Since the response variable was a count, a Poisson 

distribution with a log link function was selected as the most appropriate for the data. Model 

parameter estimates were again generated by the Laplace approximation. All continuous 

variables not represented by percentages were standardized using z-scores to reduce parameter 

estimate bias, with the exception of relative proportion of forest cover, which was arcsin 

transformed. Any models which failed to converge were removed from the candidate model set. 

The candidate models were then compared using the package AICcmodavg to calculate second 

order Akakie’s Information Criterion (AICc) to account for small sample sizes.  

Models with a △AICc of <2.0 were considered competitive models.   

  Fish species were divided into spawning and feeding guilds, and the relative frequency of 

these guilds was compared across activity levels and sample reach location. Following Jenkins 
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and Burkhead (1994), Rhode et al. (2009) and the methods outlined in Sutherland et al. (2002), 

fishes were divided into benthic crevice spawners (BC), gravel spawners (G), benthic excavators 

(BE), benthic nest builders (BNB), and benthic nest associates (BNA). An additional category 

for species that attach eggs to vegetation (V) was added to accommodate species not considered 

by Sutherland et al. (2002). Fishes were also divided into feeding guilds: insectivore (I), 

piscivore (P), detritivore (D), or omnivore (O). Feeding guild assignments were made using 

evidence from available literature on life history and diet (www.fishbase.org, Jenkins and 

Burkhead 1994, Rhode et al. 2009). Where insufficient research was available on the life history 

of a species to reliably assign it to a spawning or feeding guild, the species was classified as 

unknown.   

  I conducted indicator species analyses on all fish species detected during the study, as 

well as each spawning and feeding guild, using the package Indicspecies (Indval.g, nperm = 

9999, De Cáceres et al. 2010). Each sample reach position (upstream, pond, tailrace, and 

downstream) was considered a habitat type for both active and inactive streams. Groups were 

considered in the indicator species analysis, meaning that if a species had a higher affinity for a 

combination of different habitat types than for a single habitat type, that combination was 

considered significant. For the analysis of individual species, species that did not occur at more 

than one site were not considered valid indicators and were not reported in the final results. 

Associations between fishes categorized in unknown trophic groups and habitat types were also 

not reported. Raw numbers were converted to relative abundance to account for the influence of 

sites with high overall abundances for all indicator analyses.  

   Non-metric multidimensional scaling (NMDS) was also conducted both the full list of 

fish species in each sample, and a list of the breeding guilds present in each sample. To avoid the 

http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
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presence of samples in which no fish were detected, all four 100- second samples in a sample 

reach were combined and treated as a single sample. All abundances were converted to relative 

abundance to reduce the influence of highly abundant sites on the ordination. Pairwise 

dissimilarities were calculated using the Bray-Curtis method. This analysis was conducted using 

the vegan package in R 3.6.2 for windows. 

I then used the packages lme4 and AICcmodavg to construct generalized linear mixed 

effects models to examine the effect of beaver activity, sample reach position (upstream, pond, 

tailrace, and downstream), forest cover, and other habitat variables on DO saturation and water 

temperature. Because water quality data were non-normally distributed, these models were then 

compared using second order Akakie’s Information Criterion (AICc) to correct for small sample 

sizes. All continuous variables not represented by percentages were standardized using z- 

scores to reduce parameter estimate bias.  
 

   The number of samples which had oligochaetes present were compared based on activity 

using McNemar’s test to account for the non-independence of bucket bottoms taken from the 

same site. The number of worms detected in each bucket bottom was then compared based on 

activity with a Mann-Whitney test in order to account for the strongly non-normal distribution of 

the data.   

Results  

Fish Species Richness and Diversity  

The top GLMM selected found that species richness was best explained by main effects terms for 

dam activity status, elevation, and specific conductance. Although the 95% CIs around β 

estimates for elevation did not include zero, all other confidence intervals did. Therefore, while 
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the model predicted decreasing species richness with increasing elevation with high confidence, 

and boxplots of species richness indicate that richness is universally lower at active sites, the 

model parameter estimate for activity cannot be confidently separated from zero (Figure 2). This 

indicates that a decrease in species richness with increasing elevation is the strongest factor 

determining species While The other top four models and the intercept only model and generally 

contained many of the same main effect terms (Table 3), One other competitive model with a 

△AICc of 1.9 also included a main effect term for sampling effort (electrofishing time). 

However, the top-ranked model is parsimonious and is consistent with our a priori hypotheses. 

Similarly, the top model for fish diversity found that diversity was best explained by main effects 

terms for dam activity and position, along with a main effect term for water conductivity. The 

95% CIs around β estimates for sites in streams with inactive dams, as well as pond and tailrace 

sites did not include zero but all other parameter confidence intervals did (Table 4). This 

indicates a confident prediction by the model that streams with active beaver ponds have lower 

fish community diversity than streams with inactive beaver ponds, and that diversity in ponds 

and pond tailraces is lower than in surrounding unimpounded reaches. While the other terms in 

the model helped to more completely explain the data, their effect size estimates could not 

confidently be separated from zero. Boxplots of Shannon diversity by sample reach show that 

diversity was lower for active sites than inactive sites, and that diversity was generally lowest in 

pond and tailrace reaches (figure 3). One other competitive model with a △AICc of 0.99 

included main effect terms for dam activity level and drainage area, along with an interaction of 

the two and a main effect term for water conductivity. However, the top model was still 

considered best since the two competitive models were equally parsimonious (Table 4).  
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Indicator Species Analysis  

A Dufrene-Legendre indicator species analysis with groups found that 19 of 41 species that were 

significant indicators for habitat type, 10 occurred at more than one site (Table 1), and their 

specific associations are displayed in a heatmap (Figure 4). Associations between 4 of 6 sampled 

spawning guilds and one or more habitat types were also detected by indicator species analysis 

(Table 2). Of all the feeding guilds, only insectivores had a significant association with habitat 

type. Insectivores were associated with all habitat types except active beaver ponds (Indicator 

value = 0.667, p-value = 0.0097).  

 

Ordination analysis 

The ordination analysis showed no obvious clustering by dam activity or sample reach position 

for either the full species list (Figure 6), or the list of breeding guilds (Figure 7). The only factor 

which showed obvious clustering of fish communities was the full species list grouped by major 

drainage basin (Figure 8). Further discussion of the ordination results is therefore not warranted.  

 

Physicochemical Parameters  

The top models for DO and water temperature as selected by AICc both showed that the data 

were best explained by main effects terms for activity and position, along with their interaction. 

For oxygen, one other competitive model with a △AICc of 1.94 included an additional main 

effect term for sample elevation but was considered less parsimonious than the top model due to 

the additional term. An interaction term for which the confidence interval did not include zero 
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indicated that inactive beaver ponds had higher oxygen levels than active beaver ponds. Boxplots 

of DO by sample reach show that oxygen saturation in active ponds is lower and more variable 

(78.99±13.28% mean and standard deviation) than in inactive ponds (87.62±2.33%) (Figure 9). 

Additionally, two interaction terms with confidence intervals not including zero indicated that 

water temperatures were higher for inactive ponds (18.65±2.42 ⁰C) than active ponds 

(17.21±2.97 ⁰C) and inactive upstream samples (18.78±2.15 ⁰C) compared to active upstream 

samples (16.07±2.57 ⁰C). Boxplots of water temperature by sample reach can be found in figure 

10. Model parameter estimates and a comparison of the four top models with the null model can 

be found in tables 5 and 6.  

  

Oligochaetes  

The proportion of sediment samples in which oligochaetes were detected was significantly higher 

in active beaver ponds (McNemar’s Test,  Χ2 = 6.57, p= 0.010) and worm densities were higher 

(Mann-Whitney test, W = 1015.5, p = 0.004). Mean oligochaete density in active ponds was 8.93 

± 24.8 worms2-1 (mean ± SD). Oligochaetes were less abundant and variable in inactive ponds. 

Mean overall oligochaete density in inactive ponds was 1.96 + 5.9 worms m2-1. Although these 

results suggest that active beaver ponds provide habitat for oligochaetes and these habitats may 

act as transmission hotspots for Myxobolus cerebralis, I detected no abnormal salmonids during 

the study. The taxonomy and infection status of worms collected in the study has not yet been 

determined.  
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Discussion  

Fish Community Structure  

Results of diversity metrics and indicator species analyses suggested that beaver activity status as 

well as baseline biogeographic parameters including elevation and drainage area influence fish 

community composition. These effects were observed among streams supporting a diverse (N = 

40 species) headwater fish community and represent among the first studies of beaver mediated 

impacts in southeastern upland streams.  

Although the top model for fish species richness also included terms for dam activity, and 

water conductivity, only the elevation term had a 95% CI that did not contain 0. The β estimate 

for elevation predictably suggested that richness decreased with increasing elevation and this 

reflects the fact that higher elevation drainages naturally have smaller drainage areas.  

Watersheds with smaller areas generally support fewer fish species and this has been widely 

documented in southeastern streams (Watters 1992, Snodgrass and Meffe 1998). Additionally, 

higher elevation sites may have a larger number of downstream geographic barriers to fish 

movement and Schlosser and Kallemeyn (2000) considered this to be important to fish 

community structures in Great Lakes streams inhabited by beavers.   

Though the confidence interval for the activity term in the species richness model 

included zero, median species richness in systems with active beaver ponds was universally 

lower than those with inactive ponds for all sample reaches. Reduced species richness observed 

in streams with active beaver ponds can be further illuminated by examining the results of ISAs. 

ISAs revealed that although some fishes were more likely to be detected in active and inactive 

beaver ponds, the majority of species sampled are more likely to be detected in free-flowing 
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stream habitats. Most of my top models indicated that streams with inactive beaver dams had 

higher diversity relative to streams with active beaver dams. In addition, pond and tailrace sites 

had reduced fish diversity compared to other sites although site effects were relatively small. 

Although Schlosser and Kallemeyn (2000) also found lower species richness in intact beaver 

impoundments compared with free flowing stream habitats, my findings are contrary to other 

studies (Snodgrass and Meffe 1998, Smith and Mather 2013).   

  

Physicochemical Parameters  

Reduced stream DO and elevated water temperatures are frequently associated with active beaver 

impoundments (Kemp et al. 2011). Although a priori hypotheses predicted that active beaver 

ponds might reduced headwater DO levels, the top model that included temperature predicted a 

slight temperature increase in inactive ponds compared to active ponds. Bouwes et al. (2016) 

similarly found that increased water depth in beaver ponds creates a thermal refuge characterized 

by cooler and more consistent temperatures. Although I did not collect time series data, 

temperature effects may warrant further study, since it appears dam-mediated thermal 

stabilization documented by Bouwes et al. (2016) from Oregon may also occur in North 

Carolina.   

In many active beaver ponds, reduced DO is ascribed to increased temperature due to 

high residence times and high input of solar radiation at the surface of the impoundment (Kemp 

et al 2011). However, the prediction of elevated temperatures in inactive ponds conflicts with this 

explanation for reduced DO. Instead, it is perhaps more likely that the reduced DO in active 

ponds is attributable to high rates of decomposition and therefore biological oxygen demand, 
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which has been proposed as a mechanism for hypoxia in other studies (Schlosser and Kallymen 

2000). This may also explain the broad variation in DO in active ponds (mean and standard 

deviation = 79.0 ± 13.3) as ponds with differing amounts of leaf litter accumulation would 

experience highly variable rates of respiration due to microbial decomposition.  

  

Indicator Analysis  

Of the 10 fishes that were considered valid indicator species, only Semotilus atromaculatus and 

Salmo trutta, were significantly associated with active beaver impoundments. All other species 

in the analysis were associated with inactive impoundments or unimpounded reaches. Both 

species associated with active impoundments are known to frequently inhabit slow-moving, pool 

or pond-type habitats in many cases (Jenkins and Burkhead 1994). Semotilus atromaculatus is 

frequently found in pools, backwaters, and slow runs in southeastern streams but is considered to 

be intolerant of fine sediment because it needs clean gravel substrates for spawning (Jenkins and 

Burkhead 1994). Semotilus atromaculatus was also associated with habitats upstream of active 

beaver impoundments. Semotilus atromaculatus found upstream of active beaver impoundments 

were larger than those found in active ponds (Mann-Whitney test, W = 751.00, p = 0.004). Size 

differences observed between S. atromaculatus captured in pond and upstream reaches may 

indicate that spawning occurs in unimpounded habitats, and juveniles subsequently move into 

impoundments, since individuals captured in ponds were most frequently of size which indicated 

they were young of the year, while the majority of fish in unimpounded reaches were adults.  At 

one site, 120 of 122 Semotilus atromaculatus captured in the pond < 40 mm TL, whereas only 1 

individual < 60 mm was detected at all sampled upstream sites. Interestingly, Gilliam and Fraser 

(1987) conducted an experiment in which juvenile creek chubs avoided predation by adults of 
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their own species by hiding in a refuge area inaccessible to adults. The juveniles were more 

likely to leave the refuge to forage in the presence of predators if the density of Tubifex spp. 

worms available for consumption was higher. It seems likely therefore, that both the absence of 

large piscivorous adult creek chubs, and the presence of high densities of oligochaetes may make 

active beaver impoundments appealing habitat for juvenile creek chubs.   

  Salmo trutta inhabits a broad range of habitat types including both natural and artificial 

ponds (Jenkins and Burkhead 1994). Interestingly, Hägglund and Sjöberg (1999) reported that 

Salmo trutta were more abundant in unimpounded reaches relative to beaver ponds throughout 

the summer months in Scandinavian streams. This discrepancy may be attributable to the fact 

that S. trutta is native to Sweden (Bouwes et al. 2016). In my study, S. trutta was also 

significantly associated with sites upstream, downstream, and in the tailrace of beaver ponds.  

These associations are likely indicative of the ability of S. trutta, like other salmonids, to pass 

over intact beaver dams (Lokteff et al. 2013). In addition to associations with habitats adjacent to 

active impoundments, S. trutta was associated with sites downstream of inactive beaver 

impoundments. The majority of downstream sites represent habitats that are largely unaltered by 

beaver activity, and thus this association may not be an effect of stream impoundment.  

  The only other species that had a significant association with streams where active beaver 

ponds were present was Cottus bairdi. However, C. bairdi was associated with all habitat types 

except active beaver impoundments across both activity levels. Active beaver ponds likely 

provide poor habitat for Cottus bairdi, a species that also unimpounded stream habitats with 

clean substrate for spawning and at all life history stages and is generally considered intolerant of 

sedimentation (Jenkins and Burkhead 1994). I therefore consider this broad range of associations 
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to represent intolerance of beaver impoundments. Freshwater sculpins require unimpounded 

stream habitats with clean substrate at all life history stages.  

  The remaining 7 indicator species were associated only with sites in streams with inactive 

beaver dams. Oncorhynchus mykiss was associated with all sites in streams with inactive dams. 

Although it is not native to the southern Appalachians, Oncorynchus mykiss typically inhabits 

cooler, high-gradient streams and swift current has been shown to be more important to the 

species than to S. trutta (Lewis 1969). A suite of 4 other fishes was also associated with all 

positions at inactive streams: Campostoma anomalum, Chrosomus oreas, Luxilis coccogenis, and 

Nocomis sp. Three species, Campostoma anomalum, Chrosomus oreas, and Luxilis coccogenis, 

spawn over nests constructed by Nocomis chubs and two other species of chub, Nocomis 

leptocephalus and Nocomis micropogon were associated with inactive dam imoundment and 

tailrace site. Male Nocomis construct nests using small stones placed into a large (1+ m2) mounds 

and females deposit eggs within these structures (Jenkins and Burkhead 1994). Furthermore, N. 

micropogon and N. leptocephalus are thought to prefer high-gradient streams with coarse 

substrates, and N, leptocephalus is infrequently found over silt substrate (Jenkins and Burkhead  

1994). Though Nocomis and Semotilus are known to be able to cope with a degree of 

sedimentation, stream reaches impounded by beavers are thus unlikely to provide any of the 

coarse substrates needed by Nocomis due to their complete burial below fine sediment  

(Sutherland et al. 2002). Many Nocomis nest associates, including Chrosomus oreas are obligate 

participants in the nesting symbiosis and will not lay eggs in the absence of chub nests (Jenkins 

and Burkhead 1994, Peoples and Frimpong 2016). This association likely explains the results of 

breeding guild-focused indicator analyses.  
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Benthic nest associates were significantly associated with all sites in streams with 

inactive beaver dams. This indicates that fishes with life histories linked to the presence of 

Nocomis or Semotilus nests indirectly require coarse, sediment-free substrates characteristic of 

free-flowin streams in this region. Benthic nest builders were associated with all sites in streams 

with inactive dams, as well as with active ponds and sites upstream of active ponds. The 

association with sites in streams with active beaver dams may be driven by the presence of 

Semotilus at these sites, whereas Nocomis presence likely indirectly drove associations with 

inactive habitats. Benthic crevice spawners were associated with all sites and habitat types except 

active ponds. These species included fishes like Etheostoma flabellare and C. bairdi, that build 

nests under flat rocks, as well as Cyprinella galactura, a species that spawns in cracks in bedrock 

or boulders. All of these species require clean substrate with open interstices to complete their 

life cycle, and thus their absence from active ponds is unsurprising. Species that attach their eggs 

to vegetation included 2 species, Etheostoma blenniodies and Etheostoma swananoa, that attach 

their eggs to emergent vegetation or aquatic macrophytes (Jenkins and Burkhead 1994). Their 

increased prevalence in streams with inactive dams likely reflects a preference of the adults of 

both darter species for sediment-free substrate, and is likely not related to spawning habitat 

availability.  

The preference for clean substrate may also be the driving mechanism behind the 

association between insectivores and habitat other than active impoundments. Many of the 

insectivore fishes in the analysis are species like C. bairdi, which feed on small invertebrates like 

chironomids in the interstices (Jenkins and Burkhead 1994). Active impoundments probably 

impede this behavior, and thus deter these species from inhabiting beaver ponds.  
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Oligochaetes  

Genetic testing to confirm the identity of oligochaetes and the presence or absence of Myxobolus 

and other fish parasites is ongoing. However, the absence of any abnormal salmonids from the 

surveyed streams is an encouraging sign that active beaver ponds are unlikely to be currently 

facilitating the transmission of myxozoan parasites in North Carolina streams. Although no 

transmission appears to be currently affecting trout populations associated with beaver ponds, it 

is clear that active ponds provide higher quality oligochaete habitat than inactive ponds. The 

presence of freshwater oligochaetes in beaver ponds is consistent with the results of previous 

studies of pond invertebrate communities (Margolis et al. 2002). The results of the ongoing 

genetic testing will prove vital in further assessing the potential of beaver ponds to facilitate the 

spread of fish parasites.  

  

Management Implications  

These data represent the first study to examine beaver effects on stream fish communities in the 

Southern Appalachian Mountains. Although intact beaver ponds in this study supported less 

diverse fish communities, this does not mean that they are inherently poor habitat. Preferences of 

some species for streams with active beaver impoundments may reflect the fact that many of the 

region’s fishes likely co-evolved with beavers, and that beaver impoundments may be integral to 

the life history of these species. When managers are deciding whether or not to allow beavers to 

colonize a reach of stream, it is crucial that the life history and trophic ecology of the fishes 

under management be considered. My data also show that a trait-based approach to assessing the 

impact of beavers on native or introduced fishes is likely an effective way to inform management 

decisions. Beavers are increasingly being used in stream restoration programs and 
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regionallybased studies that consider how beavers implement changes to stream water chemistry 

and fish populations are need to better understand how to manage stream communities in the 

southern Appalachian Mountains.  
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Figures and Tables 

  

Figure 1. Location of survey sites. Blue points represent sites with active beaver dams, and red 

points represent sites with inactive dams. Inset map shows area of detail in western North  

Carolina.  
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Figure 2. Boxplots of species richness by sample reach  
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Figure 3. Boxplots of Shannon diversity index by sample reach  
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Figure 4. A heatmap displaying the results of an indicator species analysis for breeding guilds. 

All guilds included had significant associations with their habitat (p < 0.05) and occurred at  

multiple sites.  
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Figure 5. A heatmap displaying the results of an indicator species analysis for species. All 

species included had significant associations with their habitat (p < 0.05) and occurred at 

multiple sites. 
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Figure 6. An NMDS plot for the full list of species in the study, with sites assigned to their 

activity level and position. Stress value = 0.12 
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Figure 7. An NMDS plot based on assignment of each species to its breeding guild. Each sample 

is assigned to its activity level and sample reach position. Stress value = 0.11. 
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Figure 8. An NMDS plot based on all fish species in the analysis, with samples assigned to their 

major drainage: Atlantic Slope (AS), New (NW), or Tennessee (TN). Stress value = 0.12. 
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Figure 9. Boxplots of DO saturation by sample reach.  
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Figure 10. Boxplots of water temperature by sample reach.  
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Table 1. A list of indicator species detected by indicator species analysis. Indicator statistics and 

permutational p-values for each species are provided above. The specific habitat associations of 

each species can be found in Figure 1. 

Species  Indicator Statistic  p-value  

Campostoma anomalum  0.497  0.0001  

Chrosomus oreas  0.339  0.0051  

Cottus bairdi  0.512  0.0040  

Luxilis coccogenis  0.450  0.0001  

Nocomis leptocephalus  0.357  0.0027  

Nocomis micropogon  0.301  0.0268  

Nocomis sp.  0.341  0.0038  

Oncorhynchus mykiss  0.401  0.0018  

Salmo trutta  0.494  0.0040  

Semotilus atromaculatus  0.369  0.0046  
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Table 2. A list of spawning guilds with significant habitat associations detected by indicator 

species analysis. Indicator statistics and permutational p-values for each guild are provided 

above. The specific habitat associations of each guild can be found in Figure 1. 

Spawning Guild  Indicator Statistic  p-value  

Vegetation Associate  0.275  0.0238  

Benthic Nest Builder  0.477  0.0001  

Benthic Nest Associate  0.664  0.0011  

Benthic Crevice Spawner  0.551  0.0036  
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Table 3. Parameter estimates for the top model describing fish species richness in streams with 

active and inactive beaver dams in western North Carolina mountain streams. Site was used as a 

random effect in all models. Bold text indicates terms with 95% CIs around the parameter 

estimate which did not include zero. 

Model   Parameters  β estimate  95% CI  

Species richness  Activity(Inactive)  0.521  -0.161, 1.007  

   Elevation  -0.432  -0.087, -2.453  

   Activity(Inactive):Elevation  0.186  -0.382, 0.754  

   Conductivity  0.233  -0.007, 0.473  

  

Model  Ka  ΔAICcb  AICcWtc  

Species richness ~ Activity * Elevation + 

Conductivity  

6  0  0.41  

Species richness ~ Activity * Area +  

Conductivity  

  

6  0.98  0.25  

Species richness ~ Activity * Elevation+  

Shocker Time+ Conductivity  

  

7  2.08  0.15  

  

Species richness ~ Activity * Position + 

Landuse + Conductivity  

6  2.89  0.10  

  

Null model: Species richness  

  

2  

  

74.44  

  

0.00  
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Table 4. Model parameter estimates for fish Shannon-Weiner diversity in streams with active and 

inactive beaver dams in western North Carolina mountain streams. Site was used as a random 

effect in all models. Bold text indicates terms with 95% CIs around the parameter estimate which 

did not include zero. 

   Parameters  β estimate  95% CI  

Shannon Diveristy + 1  Activity(Inactive)  0.335  0.012, 0.657  

   Position(Pond)  -0.083  -0.154, -0.011  

   Position(Tailrace)  -0.082  -0.154, -0.011  

   Position(Upstream)  -0.028  -0.100, 0.044  

   Conductivity  0.057  -0.086, 0.200  

  

Model  Ka  ΔAICcb  AICcWtc  

Shannon Diversity + 1 ~ Activity + Position +  

Conductivity  

   

8  0  0.50  

Shannon Diversity + 1 ~ Activity + Position +  

Conductivity + Shocker Time  

  

8  1.9  0.18  

  

Shannon Diversity + 1  ~ Activity * Area +  

Conductivity  

  

7  7.0  0.10  

  

Shannon Diversity + 1  ~ Activity * Landuse  

+  Conductivity  

5  7.3  0.07  

  

Null model: Shannon Diversity + 1  

3  20.1  0.00  
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Table 5. Model AICc and parameter estimates for the top model describing DO saturation in 

western North Carolina streams with active and inactive beaver dams. Site was used as a random 

effect in all models. Bold text indicates terms with 95% CIs around the parameter estimate which 

did not include zero. 

    Parameters  β estimate  95% CI  

DO Saturation  Activity(Inactive)  -0.002  -0.116, 0.111  

   Position(Pond)  -0.108  -0.132, -0.084  

   Position(Tailrace)  -0.013  -0.038, 0.011  

   Position(Upstream)   0.012  -0.012, 0.036  

   Activity(Inactive):Position(Pond)  

Activity(Inactive):Position(Tailrace)  

Activity(Inactive):Position(Upstream)  

 0.113  

 0.019  

-0.003  

 0.075, 0.151  

-0.019, 0.058  

- 0.040, 0.035  

  

Model  Ka  ΔAICcb  AICcWtc  

DO Saturation ~ Activity * Position   

  

10  0  0.48  

  

DO Saturation ~ Activity * Position +  

Elevation  

  

11  1.94  0.18  

  

DO  Saturation ~ Activity * Position + Area  

  

11  2.03  0.17  

  

DO Saturation ~ Activity * Position +  

Landuse    

11  2.11  0.16  

Null model: DO Saturation  3  80.7  0.00  
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Table 6. Model AICc and parameter estimates for the top model describing water temperature in 

western North Carolina streams with active and inactive beaver dams. Site was used as a random 

effect in all models. Bold text indicates terms with 95% CIs around the parameter estimate which 

did not include zero. 

Dependant Variable  Parameters  β 

estimate  

95% CI  

Temperature  Activity(Inactive)   0.008  -0.217, 0.232  

   Position(Pond)  -0.012  -0.034, 0.010  

   Position(Tailrace)   0.034   0.012, 0.056  

   Position(Upstream)   0.011  -0.100, -0.057  

   Activity(Inactive):Position(Pond)  

Activity(Inactive):Position(Tailrace)  

Activity(Inactive):Position(Upstream)  

 0.080  

 0.018  

 0.157  

 0.045, 0.115  

-0.023, 0.046  

  0.123, 0.192  

  

Model  Ka  ΔAICcb  AICcWtc  

Temp ~ Activity * Position  

  

10  0  0.44  

  

Temp ~ Activity * Position + Area  

  

11  0.63  0.32  

  

Temp ~ Activity * Position + Elevation  

  

11  1.20  0.24  

  

Temp  ~ Position  
11  75.35  

0.00  

Null model: Temp  3  97.60  0.00  
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