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Abstract 

Not all risks are insurable. In accordance with the natural and fundamental operation of the practice 

of insurance, insurers envision certain characteristics that they attribute to “ideally insurable” risks. 

One of these key elements of an insurable risk is the degree of loss caused by the risk, if loss were 

to occur. For an insurer, an insurable risk would ideally not result in devastatingly destructive loss; 

in other words, the risk must not be catastrophic. However, the difficulty of insuring against 

catastrophes does not lessen the importance for companies to be able to estimate how their own 

performance will be impacted by the occurrence of a catastrophic loss. This paper aims to estimate 

the extent of a firm’s business interruption, income loss, and value-at-risk to a catastrophic loss 

event. The study involves a Poisson-Pareto calamity simulation to estimate business interruption 

and income loss, and a modified VaR simulation that offers a customized estimation of value-at-

risk to catastrophe. The data utilized to run these simulations is gathered from the financial 

statements of a thoroughly and realistically imagined hand-tool manufacturing company—

Kingston Tools, Inc.—in order to provide an estimation of the firm’s risk in a catastrophic event.  
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Company Background and Introduction 

Kingston Tools, Inc. is conceived as an American-based but international manufacturer of 

hand tools, power tools, diagnostic tools, tool storage and shop equipment for a variety of industrial 

and commercial businesses, including: auto, marine, and aviation dealers; farmers; and repair 

shops. The company operates in three core segments: (1) Tools; (2) Diagnostics and Repair 

Information; and (3) Equipment. Its Tools segment includes the manufacturing of hand tools, 

power tools, and tool storage products. The Diagnostics and Repair Information segment is 

comprised of handheld and computer-based diagnostics products, diagnostics software, service 

and repair information products, and business management services. The Equipment segment 

spans (1) automotive uses—like wheel alignment equipment, tire changers, and vehicle lifts—and 

(2) industrial diagnostic and service equipment—such as troubleshooting equipment and air

conditioning service equipment. 

I was originally introduced to Kingston Tools, Inc. through the capstone course, Enterprise 

Risk Management, of my Risk Management & Insurance degree program here at Appalachian 

State. Dr. Karen Epermanis and David D. Wood devised the company as the focus of a cumulative 

case study to span the entirety of the course. The aim of the case for students is to analyze various 

information about Kingston’s operations, performance (from financial statements), and loss 

history (such as an extensive log of the company’s recent workers’ compensation claim history), 

and use this analysis to serve the role of risk consultant and provide Kingston management with a 

comprehensive risk audit and improved risk management & insurance program.  
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This thesis is an extension of the case work that I completed for the Enterprise Risk 

Management course. Dr. Lori Medders—my thesis director—and I wanted to expand upon the risk 

management analysis and recommendations that I made in the original case; we wanted to see if 

we could use the information in the case to investigate the potential impact of a catastrophic loss 

event on the company’s operations and performance.  

The importance of our work here seems particularly timely considering the catastrophic 

nature of the COVID-19 pandemic, of which we all as a society are navigating together. We hope 

that these difficult times, in addition to our work on this thesis, can serve as a reminder of the 

reality and tangibility of catastrophes. Such events are not something to dismiss because of their 

statistical rarity; rather, they are occurrences which affect all industries, all companies, and all 

people, and it is crucial that we do all we can to anticipate them and prepare for them.  

Poisson-Pareto Model: A Calamity Simulation 

The fallout of business interruption is a direct risk that companies like Kingston face in the 

event of a catastrophe. Such huge loss events can often limit a business’s capability to operate at 

normal levels. Business interruption refers to this reduction in or total stoppage of operations and 

“the actual loss of income the insured sustains during the necessary suspension of its operations 

during the period of restoration” (Levin, 2008).  

The Pareto distribution is a skewed, heavy-tailed power-law probability distribution. For 

the sake of conceptualizing an application for the Pareto model, a general visual of which is 

provided below in Exhibit 1.1, consider that the Pareto is often used to model the distribution of 

incomes in a population. The model reflects that the vast majority of the wealth in a population is 
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typically owned by only a small minority of the population’s people, and that the remaining minute 

minority of the population’s wealth is dispersed across the majority of its people. This idea can be 

translated to the concept of catastrophic loss. The majority of a firm’s possible total amount of loss 

resides in catastrophic risk—risk that is relatively much less likely to occur than the less severe 

risks that constitute a smaller portion of the firm’s total loss amount.  

   Exhibit 1.1: Pareto Distribution 

    Image credit: https://valelab4.ucsf.edu/svn/3rdpartypublic/boost/libs/math/doc/sf_and_dist/graphs/pareto_pdf2.png 

This study aims to utilize a Pareto simulation to do just this—to estimate the extent of 

business interruption and income loss that Kingston would suffer in the event of catastrophic loss. 

The first component of this model involves a simulation of the frequency of catastrophic loss that 

Kingston might face. Catastrophic loss events exhibit a discrete loss frequency distribution; that 

is, in any given time period—say, in one year—Kingston might experience no catastrophic loss, 

one catastrophic loss, or more than one catastrophic loss. To achieve a simulation of catastrophe 

frequency, we built a Poisson-distributed frequency model. The Poisson distribution is “a discrete 

probability distribution for the counts of events that occur randomly in a given interval of time” 
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(Filippi, 2015). Using the Poisson, we can determine the probability of observing x number of 

events in the given time interval with the equation: 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑒𝑒−𝜆𝜆
𝜆𝜆𝑥𝑥

𝑥𝑥!

Where: 

x = 0, 1, 2, 3, etc. (the number of losses per year) 
𝜆𝜆 = the mean number of events per interval (the frequency of losses per year) 

We first calculate the probability of each x value occurring in a given year, ranging from 0 

catastrophic events to 16 catastrophic events, as shown below in Exhibit 1.2 in the column “P(X = 

x).” However, the infrequency of catastrophic loss quickly becomes clear, as shown in the column 

“P(X ≤ x);” there is nearly a 96% chance that the number of catastrophic events (x’s) in a given 

year will not exceed two events, and each x value above two approaches even closer to statistical 

impossibility.  

 Exhibit 1.2: Simulating Loss Frequency with Poisson Model 
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Once we have these probability values, we can conduct a simulation of X that includes ten 

simulated time periods. Our simulation results over the ten time periods are shown above in Exhibit 

1.2. In five of the ten simulated years, no catastrophic loss events occurred. In four of the remaining 

five simulated years, one single catastrophic loss event occurred. In the final remaining simulated 

year, three catastrophic loss events occurred, representing what would be an extremely unlikely 

but very severe period for Kingston’s operations.  

Now that we have conducted a frequency simulation of Kingston’s potential catastrophic 

loss events, we simulate loss severity to estimate how these simulated catastrophes would impact 

Kingston through business interruption and income loss. First, we use information from Kingston’s 

income statement, as provided in the original case material, to estimate the company’s net income 

before taxes and continuing expenses—the sum of which would represent Kingston’s dollar loss 

amount in the event that a catastrophe completely halts normal operations. As shown below in 

Exhibit 1.3, from Kingston’s income statement information we can determine each key business 

segment’s net income before taxes, as well as each division’s contribution to the company’s overall 

net sales. All values are in thousands: 

 Exhibit 1.3: Contribution to Net Sales, By Division 
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After calculating each division’s net income before taxes and contribution to net sales, we 

need to estimate each division’s continuing expenses. First, we estimate the company’s total 

continuing expenses by summing: (1) 60% of the company’s estimated utilities expense; (2) 42% 

of the company’s actual salaried payroll; and (3) 100% of the company’s interest expense. Once 

we calculate the company’s total estimated continuing expenses, we make the assumption that 

each division’s percentage contribution to net sales would be the same as its percentage 

contribution to the company’s continuing expenses, as shown in Exhibit 1.4. Again, values in 

thousands: 

      Exhibit 1.4: Estimation of Continuing Expenses 

Now, we are able to find the sum of estimated net income before taxes and continuing 

expenses for the previous two periods (years 2018 and 2019) and use these values to reach the 

expected value of net income before taxes and continuing expenses in 2020, which we placed at 

$60,000,000. We can move forward with this value to use as an average claim size within our 

Pareto-based loss severity simulation.  

Pareto distributions are commonly used to represent heavy-tailed loss possibilities, such as 

catastrophes. For example, a 2013 study reviewing data of “earthquake disaster loss from 1969 to 

2011” yielded a distribution featuring “the characteristics of right skew peak, excess kurtosis and 
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heavy-tail;” the study identified the Pareto distribution as fitting “the earthquake loss perfectly,” 

and significantly improving estimation precision (Pu & Pan, 2013). The use of a truncated Pareto 

allows us to incorporate decision strata into our Pareto work. A truncation point of 100,000, for 

instance, allows us to denote a loss in excess of $100,000,000 as having moved into a different 

decision stratum (e.g., to insure a risk rather than to retain it, or to insure it in an excess layer of 

insurance rather than a primary layer). Defining the average size of a loss below the truncation 

point—the $60,000,000 sum of net income before taxes and continued expenses referenced 

above—helps us to simulate realistic loss amounts within that stratum. Beyond the truncation point, 

our choice of Pareto location and shape parameters help us to simulate realistic loss amounts in 

the Pareto (tail of the distribution) stratum or multiple Pareto strata. 

t = truncation point = 100,000 
s = average loss size of losses below truncation point of 100,000 = 60,000 
p = probability loss is smaller than truncation point = 0.40 
β = pareto location (scale) parameter = 600,000 
α = pareto shape parameter = 4.00 

In our model, F*(y) is a random number (between 0 and 1) generated by Excel that can be 

used to simulate a loss amount. If the random number (F*(y)) is less than or equal to the probability 

p that the loss is smaller than the truncation point (i.e., falls within the lowest loss stratum and is 

thus not in the tail), we use one probability density function (pdf) to convert the random number 

into a corresponding simulated loss amount (such as the pdf associated with the normal or 

exponential distribution). If the random number (F*(y)) is greater than the probability p of the loss 

being smaller than the truncation point (i.e., falls within a higher loss stratum and is thus in the 

tail), we use a different probability density function (pdf)—the Pareto—to convert the random 

number into a corresponding simulated loss amount.  
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F**(y) and F***(y) are transformations of F*(y)—the initial random number generated—

that we use to convert to higher simulated loss amounts (i.e., our Pareto loss amounts). Some of 

these simulated Pareto losses may fall just above the truncation point but others can fall quite far 

out into the tail of the Pareto distribution, indicating a catastrophic loss amount. The location and 

shape parameters chosen for the Pareto determine the likelihood of smaller and larger loss amounts 

being simulated beyond the truncation point. Once we possess simulated values for F*(y) and 

F**(y), we can calculate Kingston’s simulated dollar loss amount F***(y) in Excel with: 

= Exp{ln(t + β) – [ln(1 – F**(y)) – ln(1 – p)]/α} – β 

Exhibit 1.5 below shows a simulation of F***(y), which provides Kingston with a tangible 

dollar loss amount that it would face with each catastrophic event. Naturally, the 8th period trial—

with three simulated catastrophes in the same year—would be especially damaging to Kingston’s 

operations, with a total business interruption and income loss of approximately $2.8 billion. As 

illustrated in this Kingston case, we envision this Poisson-Pareto model as a valuable tool for any 

group that wishes to simulate its catastrophe risk and loss exposure so that it can develop an 

adequate plan for those difficult times.  

          Exhibit 1.5: Pareto Loss Severity Simulation 
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Value-at-Risk Simulation 

In its typical form, value-at-risk statistically measures the riskiness of an entity or asset 

portfolio. VaR modeling estimates the potential loss in value within the firm or portfolio over a 

specific period of time and at a predetermined confidence interval. In this study, we designed a 

customized VaR-based simulation that estimates Kingston’s value-at-risk to catastrophic loss 

based on the asset value and returns of the company’s three key operating segments—Tools, 

Diagnostics and Repair Information, and Equipment.   

To begin this analysis, we gather the excess returns for each of Kingston’s three key 

divisions over the last 48 months, benchmarked against an industry index. For modeling purposes, 

we take the natural logarithm of these excess return values to achieve an approximation of a normal 

distribution. The average of each division’s “Ln of excess returns” is represented by “Ln of Asset 

Return” in Exhibit 2.1. Likewise, the variance of each division’s log of excess returns is 

represented by “Variance” in Exhibit 2.1. Using these two values, we generate each division’s 

expected return. Asset values in the exhibit below are in thousands: 

Exhibit 2.1: Division Asset Values and Returns 
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Next, we construct a correlation matrix (Exhibit 2.2) among Ln Excess Returns for each 

division over the 48-month period; the matrix correlates each division’s set of Ln Excess Returns 

against the same respective values over the same period for the two other divisions, as well as 

against itself—hence the presence of the value “1” at the three conjunctions in the matrix where a 

division is pitted against itself.  

    Exhibit 2.2: Correlation Matrix 

At this point, we have the values necessary to calculate not only each division’s relative and 

absolute value-at-risk, but also the entire portfolio’s—the firm’s—relative and absolute VaR.  

The relative VaR calculation for each asset, or division, is as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  ×   𝑧𝑧 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  ×   √𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  ×   𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

Where: 

­ “Asset Value” refers to the division’s asset value
­ “z-value” refers to the z-value corresponding with our chosen confidence interval

*in this case, an internal of 95%
­ “Variance” refers to the division’s variance of Ln Excess Returns
­ “Time” refers to our chosen time period

*in this case, one quarter (3 months)

The absolute VaR calculation for each division is as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉 − (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 
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To calculate the portfolio’s relative VaR, we utilize Excel’s “MMULT” function to 

construct a multiplication matrix between the previously mentioned correlation matrix and the 

values of each division’s relative VaR, and then take the square root of the product to reach the 

portfolio relative VaR calculation. We follow the same process to calculate the portfolio’s absolute 

VaR, except the multiplication matrix includes the correlation matrix and the values of each 

division’s absolute VaR, rather than relative. Our portfolio VaR calculations are shown below in 

Exhibit 2.3, in thousands. 

       Exhibit 2.3: VaR Calculations 

Absolute VaR is simple VaR calculated, but with respect to a mean of zero, as the 

maximum loss that can occur at a certain confidence level over a specific period of time. Relative 

VaR is typically given at a 95% confidence level as 1.645*volatility*Value of Portfolio, whereas 

Absolute VaR will take into consideration the overall loss, including the gain from the positions 

that can be expected for a given confidence level. Absolute VaR is the loss relative to zero (0) and 

relative VaR is the loss compared to the mean, μ. One way in which the Absolute VaR is 

particularly useful lies in its ability to consider potential loss against what would otherwise have 

been the expected future gain, rather than just considering potential loss against the current 

financial position (which is what Relative VaR does). As such, Kingston can consider the “Var 

Port Abs” calculation to mean that at 95% confidence, and with consideration of what would have 

otherwise been expected future gain under normal circumstances, it faces a possible loss of 

approximately $5.8 million to firm value over a three-month time period due to catastrophe. 
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Discussion 

The simulation methods that we have provided—the Poisson-Pareto simulation of 

catastrophic loss frequency and severity to estimate the extent of Kingston’s business interruption 

and income loss risk due to catastrophe, and the VaR simulation to estimate how much of 

Kingston’s firm value is at risk over a certain time period due to catastrophe—combine to provide 

an in-depth illustration of Kingston’s catastrophic risk. We hope that they can serve together as a 

useful device for any group aiming to simulate their catastrophic loss exposures and develop a plan 

to manage these large risks.  

We encourage, for Kingston and other firms alike, the adoption of key risk management 

strategies that can help a group navigate catastrophe, especially as we all endure this current 

COVID-19 situation. In a 2018 study of catastrophic risk management strategies across both 

domestic and international publicly-traded firms, Howard Kunreuther and Michael Useem find 

that firms “who have already put in place a risk management strategy that enables them to take 

deliberative actions in response to an adverse event are better prepared to recover from that 

disruption and stay true to their firm’s core values.” For example, a company that has developed a 

thorough business-continuity plan will be better prepared to conduct productive, albeit limited, 

post-catastrophe operations than a company that did not exhibit the foresight to develop such a 

plan. Their study identifies several steps that can be taken towards mastering catastrophic risk. 

As we discussed earlier in this paper, decision makers should resist the temptation to 

“perceive the likelihood of a disastrous event to be so small that they view it below their threshold 

level of concern” (Kunreuther & Useem, 2018)—do not assume that “this will not happen to us” 
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just because of how unlikely a catastrophic event might seem. Companies should adopt long-term 

mindsets and “stretch time horizons,” as getting stuck in a short-term perspective can make it hard 

to look beyond the high upfront costs that might be required to establish the protective measures 

to adequately defend against catastrophic events in the future. Scenario planning and sensitivity 

analyses can help a firm gauge how its operations will be impacted by loss scenarios of different 

severities. Lastly, we hope that companies follow Kunreuther and Useem’s advice to view risk 

management as a long-term, value-creating investment for the firm by “creating sustainable value 

and protecting the firm and its reputation, rather than a short-run burden on management’s time 

and the company’s budget” (Kunreuther & Useem, 2018). A risk management department’s ability 

to develop a quality strategy of preparation for and defense against catastrophe can be the 

difference between demise and survival.  
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APPENDIX A - Net Income + Continuing Expenses Estimation

(all values in thousands)

Mitchell & Medders

Net Sales Actual) 2019 2018 2017
Tools 223,873.00$   266,211.00$   247,553.00$   
Diagnostics & repair information 95,010.00$     92,638.00$     98,220.00$     
Equipment 84,458.00$     89,308.00$     85,147.00$     
Totals 403,341.00$   448,157.00$   430,920.00$   

Contribution to Net Sales (Actual) 2019 2018 2017
Tools 55.50% 59.40% 57.45%
Diagnostics & repair information 23.56% 20.67% 22.79%
Equipment 20.94% 19.93% 19.76%

Net Income before taxes (Actual) 9,792.00$       38,420.00$     51,593.00$     
Tools (Estimated)* 5,435.02$       22,821.97$     29,638.92$     
Diagnostics & repair information (Esimated)* 2,306.58$       7,941.75$       11,759.64$     
Equipment (Estimated)* 2,050.41$       7,656.28$       10,194.44$     

Continuing Expenses
Continuing Selling, G&A Expenses:
    60% of Utilities (Estimated) 8,894.40$       7,467.60$       
    42% of Payroll (Actual salaried payroll) 27,951.42$     29,631.42$     
100% of Interest Expense 6,066.00$       5,329.00$       
Total 42,911.82$     42,428.02$     

Continuing Expenses (Estimated)
Tools (Estimated)* 23,818.05$     25,202.79$     
Diagnostics & repair information (Esimated)* 10,108.20$     8,770.25$       
Equipment (Estimated)* 8,985.56$       8,454.99$       

*Assuming % contribution of each division equals % contribution to net sales

Net Income BT + Continuing Expenses (Estimat 2019 2018
Tools 29,253.07$     48,024.76$     
Diagnostics & repair information 12,414.78$     16,712.00$     
Equipment 11,035.97$     16,111.26$     

52,703.82$     80,848.02$     

2020 Expected Value
Net Income BT + Continuing Expenses $60,000
(Exponentially distributed)



APPENDIX B - Poisson-Pareto Simulation

Poisson Distributed Frequency Process Mitchell & Medders

*note that the Pareto Appendix included here (and subsequent uses of the live Excel workbook) will show different values than
are shown in the Exhibits included in thesis write-up, as the simulation produces new values each time it runs

X ≡ number of losses per year
λ ≡ frequency of losses per year

λ 0.75
p(x) = e-λλx/x!

Simulation of X
x P(X = x) P(X ≤ x) Low High Value Mean 0.60000

0 0.47237 0.47237 0 0.47237 0 Variance 0.44000  
1 0.35427 0.82664 0.47237 0.82664 1 Standard Deviation 0.66332
2 0.13285 0.95949 0.82664 0.95949 2
3 0.03321 0.99271 0.95949 0.99271 3 10 Simulated Time Periods x
4 0.00623 0.99894 0.99271 0.99894 4 1 0
5 0.00093 0.99987 0.99894 0.99987 5 2 0
6 0.00012 0.99999 0.99987 0.99999 6 3 1
7 1.3E-05 1 0.99999 1 7 4 1
8 1.2E-06 1 1 1 8 5 0
9 9.8E-08 1 1 1 9 6 0

10 7.3E-09 1 1 1 10 7 0
11 5E-10 1 1 1 11 8 1
12 3.1E-11 1 1 1 12 9 1
13 1.8E-12 1 1 1 13 10 2
14 9.7E-14 1 1 1 14
15 4.8E-15 1 1 1 15
16 2.3E-16 1 1 1 16



Simulation of a Pareto Density Function Mitchell & Medders

Sample Simulation of Y
Y ≡ Severity of losses Trial 1 2 3 4 5 6 7
F(y) = 1 – (1-p) [(t + β)/(y + β)]α , y>t F*(y) 0.440466971 0.483602811 0.767204421 0.692921572 0.223888843 0.241778 0.176673
F*(y) = Rand() F**(y) 0.975731996 0.977602878 0.989903216 0.986681429 0.966338593 0.967114 0.964291
F**(y) = F(600000) + F*(y)∙[1-F(600000)] F***(y) 960908.1079 992530.6555 1343524.799 1213516.208 60000 60000 60000
F***(y) = 60000, F*(y) ≤ 0.40
= Exp{ln(t + β) – [ln(1 – F**(y)) – ln(1 – p)]/α} – β
0.40 ≤ F*(y) ≤ 1

t = truncation point = 100,000 100000
s = average loss size of losses below truncation point of $100,000 60000 0.4
p = probability loss is smaller than truncation point = 0.40 0.4
β = pareto location (scale) parameter 600000
α = pareto shape parameter = 4.00 4

 F(600,000)≡Prob(Loss < Strata LImit) 0.9566

Using frequency simulation results OR  
 

10 Period Trials Losses 1 2 3 4 5 6 7
1 0
2 0
3 1 0.500226133
4 1 0.991532949
5 0
6 0
7 0
8 1 0.987581937
9 1 0.856323411

10 2 0.282257573 0.19372053

Trial number of loss amount: F*(y)



Simulation of a Pareto Density Function Mitchell & Medders

Sample Simulation of Y
Y ≡ Severity of losses Trial 1 2 3 4 5 6 7
F(y) = 1 – (1-p) [(t + β)/(y + β)]α , y>t F*(y) 0.314207097 0.802007354 0.806700542 0.574702131 0.24772543 0.027102 0.035464
F*(y) = Rand() F**(y) 0.975731996 0.991412685 0.991616237 0.981554028 0.967372431 0.957804 0.958166
F**(y) = F(600000) + F*(y)∙[1-F(600000)] F***(y) 60000 1423818.23 1435992.197 1071708.178 60000 60000 60000
F***(y) = 60000, F*(y) ≤ 0.40
= Exp{ln(t + β) – [ln(1 – F**(y)) – ln(1 – p)]/α} – β
0 ≤ F*(y) ≤ 1

t = truncation point = 100,000 100000
s = average claim size of losses below truncation point of $100,000 60000
p = probability claims are smaller than truncation point = 0.40 0.4
β = pareto location parameter = 2,000,000 600000
α = pareto shape parameter = 4.00 4
F(750,000)≡Prob(Loss < Strata Limit) 0.956628

10-Year Period Trials Losses 1 2 3 4 5 6 7
1 0
2 0
3 1 0.978323863
4 1 0.999632768
5 0
6 0
7 0
8 1 0.999461405
9 1 0.993768475

10 2 0.968870155 0.965030136

Trial number of loss amount: F**(y)



Simulation of a Pareto Density Function Mitchell & Medders

Y ≡ Severity of losses
F(y) = 1 – (1-p) [(t + β)/(y + β)]α , y>t
F*(y) = Rand()
F**(y) = F(600,000) + F*(y)∙[1-F(600,000)]
F***(y) 
= Exp{ln(t + β) – [ln(1 – F**(y)) – ln(1 – p)]/α} – β
0 ≤ F*(y) ≤ 1

t = truncation point = 100,000 100000
s = average claim size of losses below truncation point of $100,000 60000
p = probability claims are smaller than truncation point = 0.40 0.4
β = pareto location parameter = 600,000 600000
α = pareto shape parameter = 4 4
F(600,000)≡Prob(Loss < Strata Limit) 0.956628111

10-Year Period Trials Losses 1 2 3 4 5 6 7 Total
1 0 -                      -                      -                      -                      -                      -                      -                      -                       
2 0 -                      -                      -                      -                      -                      -                      -                      -                       
3 1 1,005,611     -                      -                      -                      -                      -                      -                      1,005,611      
4 1 3,850,417     -                      -                      -                      -                      -                      -                      3,850,417      
5 0 -                      -                      -                      -                      -                      -                      -                      -                       
6 0 -                      -                      -                      -                      -                      -                      -                      -                       
7 0 -                      -                      -                      -                      -                      -                      -                      -                       
8 1 3,444,085     -                      -                      -                      -                      -                      -                      3,444,085      
9 1 1,592,741     -                      -                      -                      -                      -                      -                      1,592,741      

10 2 866,701         824,664         -                      -                      -                      -                      -                      1,691,365      
Total 6

Trial number of loss amount: F***(y)



APPENDIX C - VaR Calculations

VaR Solutions Mitchell & Medders

Portfolio Detail
Tools Info Equip

Asset Value 29253 12415 11036
Ln of Asset Return 0.01291 0.00828 0.02986
Variance 0.00524 0.00289 0.00266
Expected Return 0.01565 0.00978 0.03169

Portfolio Analysis Criteria
Time Months 3
Confidence Level 95.00%
z-value 1.64485

Tools Info Equip
Tools 1 0.50253 0.23379
Info 0.50253 1 0.20048
Equip 0.23379 0.20048 1

Portfolio VaR Analysis Results
VaR Asset Rel 6033.42 1901.5 1621.81
VaR Asset Abs 4659.62 1537.39 572.731

VaR Port Rel 7745.35
VaR Port Abs 5762.33

   



Exhibit Mitchell & Medders

Market Data Coversion of Return into Approximation of Normal Distribution
Excess Returns for Industry Index + 3 Divisions Over 48 Months Ln Excess Returns for Industry + 3 Divisions Above

Month Industry Tools Info Equip Month Industry Tools Info Equip  
1 1.038731 0.980199 1.077884 1.077884 1 0.03800 -0.02000 0.07500 0.07500
2 0.974725 0.962809 1.052323 1 2 -0.02560 -0.03790 0.05100 0.00000
3 1.003506 0.910374 1.033654 1.039459 3 0.00350 -0.09390 0.03310 0.03870
4 1.02593 1.087194 1.074118 0.943461 4 0.02560 0.08360 0.07150 -0.05820
5 1.10506 1.127835 0.997703 1.122659 5 0.09990 0.12030 -0.00230 0.11570
6 1.040395 1.011162 1.040082 1.087411 6 0.03960 0.01110 0.03930 0.08380
7 1.004309 1.155346 1.017959 1 7 0.00430 0.14440 0.01780 0.00000
8 1.042477 0.979905 1.063005 1.022448 8 0.04160 -0.02030 0.06110 0.02220
9 0.96464 0.926075 0.940165 0.964737 9 -0.03600 -0.07680 -0.06170 -0.03590

10 1.029322 1.09834 1.042477 1.004008 10 0.02890 0.09380 0.04160 0.00400
11 1.0008 1.009848 0.936786 1.058656 11 0.00080 0.00980 -0.06530 0.05700
12 0.960886 0.995112 0.960213 0.969185 12 -0.03990 -0.00490 -0.04060 -0.03130
13 1.002303 0.936318 0.960886 1.076591 13 0.00230 -0.06580 -0.03990 0.07380
14 0.963773 0.910283 1.012275 1.011566 14 -0.03690 -0.09400 0.01220 0.01150
15 1.013896 1.002904 1.04446 0.971805 15 0.01380 0.00290 0.04350 -0.02860
16 1.054535 1.099439 1.016332 1.027368 16 0.05310 0.09480 0.01620 0.02700
17 1.037901 1.084696 1.011465 0.988171 17 0.03720 0.08130 0.01140 -0.01190
18 0.989852 0.941011 0.941011 1.052007 18 -0.01020 -0.06080 -0.06080 0.05070
19 1.023471 1.026136 1.039147 0.993124 19 0.02320 0.02580 0.03840 -0.00690
20 1.019793 0.994913 0.968119 1.069509 20 0.01960 -0.00510 -0.03240 0.06720
21 0.972777 0.913018 0.907738 1.112155 21 -0.02760 -0.09100 -0.09680 0.10630
22 0.972194 1 1.055801 1 22 -0.02820 0.00000 0.05430 0.00000
23 0.965509 0.931276 0.95466 1 23 -0.03510 -0.07120 -0.04640 0.00000
24 1.044251 1.22067 1.032931 1.056541 24 0.04330 0.19940 0.03240 0.05500
25 1.004912 1.018061 1.053692 1.003707 25 0.00490 0.01790 0.05230 0.00370
26 0.996108 0.958103 0.932674 1.007427 26 -0.00390 -0.04280 -0.06970 0.00740
27 1.07907 1.125357 1.08937 1.06844 27 0.07610 0.11810 0.08560 0.06620
28 1.020303 1 1.09812 1.044042 28 0.02010 0.00000 0.09360 0.04310
29 1.017451 1.004711 1.009041 1.036967 29 0.01730 0.00470 0.00900 0.03630
30 1.045087 1.087846 1.041019 1.054008 30 0.04410 0.08420 0.04020 0.05260
31 0.982161 1.057598 0.962135 1.036967 31 -0.01800 0.05600 -0.03860 0.03630
32 1.057598 1.071865 0.99551 1.16416 32 0.05600 0.06940 -0.00450 0.15200
33 1.049381 1.038627 1.103735 1.085999 33 0.04820 0.03790 0.09870 0.08250
34 1.017959 1.06812 0.971805 0.968797 34 0.01780 0.06590 -0.02860 -0.03170
35 1.034585 1.043416 1.028087 1.043312 35 0.03400 0.04250 0.02770 0.04240
36 0.995709 0.996606 1.012376 1.033034 36 -0.00430 -0.00340 0.01230 0.03250
37 1.092862 1.17539 1.096474 1.107827 37 0.08880 0.16160 0.09210 0.10240
38 1.018978 1.054113 1.057809 1.102963 38 0.01880 0.05270 0.05620 0.09800
39 1.078423 1.025315 1.062793 1.071222 39 0.07550 0.02500 0.06090 0.06880
40 1.082962 1.023369 1.050746 1.124569 40 0.07970 0.02310 0.04950 0.11740
41 0.924595 0.857443 0.915669 0.950659 41 -0.07840 -0.15380 -0.08810 -0.05060
42 0.975505 0.979807 0.909919 1.043938 42 -0.02480 -0.02040 -0.09440 0.04300
43 0.984915 0.966958 0.978142 0.994117 43 -0.01520 -0.03360 -0.02210 -0.00590
44 0.996307 1.026752 1.04697 1.014301 44 -0.00370 0.02640 0.04590 0.01420
45 0.962809 0.923116 0.979317 0.991834 45 -0.03790 -0.08000 -0.02090 -0.00820
46 0.989852 1.023574 0.996207 0.897628 46 -0.01020 0.02330 -0.00380 -0.10800
47 1.024393 0.967345 0.984816 1.058973 47 0.02410 -0.03320 -0.01530 0.05730
48 0.963291 0.953897 0.911194 0.967248 48 -0.03740 -0.04720 -0.09300 -0.03330
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