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Abstract

Adaptive Segmentation of Cardiovascular Vessels

Erik J Cole
B.S.E., University of Iowa

M.S., Appalachian State University

Chairperson: Dr. Rahman Tashakkori

Coronary collateral vessels are small vessels that may contribute to survival after myocar-

dial infarction by providing blood to the cardiac muscle after coronary arterial occlusion.

These collateral vessels develop in part due to increasing pressure caused by an occluded

vessel helping to provide blood to otherwise inaccessible tissue. However, these vessels

are not present in all people and can develop after infarction and in some cases they

develop prior to infarction for reasons not fully understood.

The goal of this thesis is to investigate the segmentation of coronary collateral ves-

sels from micro-computed tomography (microCT) images of a mouse’s heart. A problem

limiting study of collateral vessels is exceedingly small size and correspondingly low blood

flow of these vessels, making the regions of interest (ROI) below the resolution of most

imaging modalities. Segmentation of vessels is a challenge for all imaging modalities and

organs. There is no standard algorithm or method that works for all images, therefore, a

combination of multiple approaches were used to address this problem. This thesis found

utilizing Sobel and Gaussian Filters, Regional filtering, and a global threshold to produce
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best results for segmenting the coronary collateral vessels in the microCT images of a

mouse’s heart.
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Chapter 1

Introduction

A myocardial infarction (Heart attack) is a serious medical event that affects about

735,000 people in the United States every year. According to the Centers for Disease

Control and Prevention (CDC), over 500,000 of these patients are experiencing their first

heart attack, while over 200,000 experience a second heart attack [1]. People survive

a heart attack for many different reasons, however it is not always possible to predict

survival or determine the reason for survival for a significant number of cases. Some

suggested heart attack preventative measures are aimed at lifestyle practices: regular

exercise, a better diet, managing weight, and not smoking. While these lifestyle practices

have been proven effective, the etiology of heart attacks and reasons for surviving a heart

attack still are not always known. One known effect of exercise is that it increases

coronary collateral vessel growth on the heart which may contribute to survival [13].

These vessels are the focus of the research in this thesis.
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Coronary collateral vessels can provide redundant blood supply to heart tissue if a

blockage occurs in the main pathways. These vessels are extremely small and challenging

to locate in medical images. The research described here aims to identify these collateral

vessels from microCT. The results reported here may be valuable to further physiological

studies tracking the presence of and change in these vessels or to asses a patient’s chance

of survival in case of a heart attack. Using an adaptive local threshold, Sobel and

Guassian filters, and other refinement techniques the vessels are able to be segmented

and displayed.

This thesis is organized as follows: Chapter 2 - Theoretical Background provides

a summary of the theories used in this research. Chapter 3 - Literature Review provides

a review of existing work and Chapter 4 - Methodology addresses how selected theories

are implemented in this thesis. Chapter 5 - Results provides some of the results and

Chapter 6 - Conclusion and Future Work provides a summary of findings and highlights

future work.



Chapter 2

Theoretical Background

Segmentation refers to the processes of drawing a boundary around a region of interest.

This can be done by hand but requires training and time. Image segmentation is a

complex problem and currently there is no single algorithm that works efficiently for

all imaging modalities and subjects. Medical imaging has many different parameters

and image types which present a broad spectrum of images. Two main categories exist

for image segmentation: region-based and edge-based. The region-based methods include

thresholding, clustering, and region growing and the edge based methods include machine

learning, fuzzy logic, and genetic algorithms. Edge-based methods utilize edge detecting

algorithms such as Sobel, Prewitt, or Canny [15]. Many methods can be used to achieve

comparable results across various categories depending on the goal of the segmentation

[10]. Rudyanto et al. compared 23 different methods from 17 different teams. These

methods comprised of primarily four sub-categories: thresholding, region growing-based,

3
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machine-learning, and Hessian-based. These four methods can be combined, in some

cases, to create a hybrid method. These methods are discussed later in this chapter.

2.1 Physiological Background

The heart is a muscle that requires blood to provide it oxygen and nutrients so that it can

pump blood to the rest of the body. The heart is therefore innervated by vessels on the

outside. Cardiac muscle tissues receive their main supply of blood from the two coronary

arteries that branch off the aorta. Having two coronary arteries provides redundancy to

one of the most critical organs in the body. If one becomes partially blocked, then the

other can still pump blood to the heart. However, a full blockage of a coronary artery

can lead to heart attack or other serious issues. The human body’s responses to partially

occluded arteries includes chest pain, shortness of breath, and potentially the growth of

collateral vessels.

Collateral circulation refers to a situation where an artery or vein is occluded

but blood is still able to circulate through nearby vessels in the affected area. These

alternative routes for blood flow are sometimes redundant pathways already grown by

the body to maintain blood supply to a critical region. However, in some cases, new

vessels are grown in response to a stimulus such as a blocked vessel. Unfortunately,

some factors, such as diabetes, can inhibit the formation of collateral vessels [13]. The

existence of coronary collateral vessels is crucial to surviving a myocardial infarction

(heart attack) caused by a blocked coronary artery.
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Collateral vessels grow and form as a result of an increase in vascular pressure

[2]. Chilian et al. and Tatli et al. both evaluated coronary collateral flow indirectly by

testing blood flow [2] or by evaluating the amount of blockage present in a larger artery

[13]. Coronary collateral vessels are at most 50 microns in diameter [12]. Investigating

the formation or presence of coronary collateral vessels indirectly through other factors

or measurements is not precise and limits the accuracy of measurements. However, due

to the small scale of these vessels most medical imaging modalities are not suitable to

accurately and reliably capture coronary collateral vessels.

A microCT image usually contains many files in Digital Imaging and Communi-

cations in Medicine format (DICOM). DICOM format consists of a header with useful

information about the image acquisition device, scan parameters, subject’s information,

image parameters, other relevant information, and most importantly, the pixel array

representing the image itself. The pixel array contains the image data and when all

pixel arrays are combined a three dimensional volume can be created. The pixel array is

usually 8-bit grayscale but in case of a microCT image a 16-bit format is not uncommon.

X-ray microcomputed tomography (microCT) can achieve an image resolution of

3 to 50 microns [9]. A higher image resolution of a scan results in smaller objects being

captured. MicroCT, one of the highest resolution imaging modalities, is therefore viable

for successfully capturing coronary collateral vessels. MicroCT is a method where many

x-ray images are taken at varying depths. This imaging modality therefore creates many

two-dimensional slices of a three-dimensional object. The resulting slices can be used to

recreate the three-dimensional objects including some internal features. For example, a
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heart containing empty chambers could be scanned and the 3D recreation would contain

the empty internal chambers. With microCT, the resolution able to acquire some of

collateral vessels from the surrounding tissue.

High-resolution microCT scans allow for the segmentation of the blood vessels.

Segmentation refers to the process of partitioning an image by selecting objects or regions

of interest by a user. For example, selecting a tumor in a medical image, a person in a

forest, or a building in a skyline. Segmentation can be done manually through tracing

regions of interest on an image, however, this process is time intensive and prone to bias

through individual determinations. Ideally, automated segmentation would be used to

remove the human bias from the process. Methods for image segmentation are discussed

later in this thesis.

In this thesis, image segmentation is used to create the initial skeleton of the blood

vessels in a set of mircoCT images of a mouse’s heart. This segmentation utilizes thresh-

olding, filtering background and cardiovascular tissue, refinement of vessel structure, and

error correction methods. These are described in Chapter 4.

2.2 Thresholding

Thresholding is a straightforward approach that is widely used in image segmentation.

While thresholding can be done on a subsection of an image as shown by Jiang and

Mojon [3], it generally refers to a global segmentation in which a threshold is applied to

the whole image. Thresholding applied on a subsection of an image will be referred to as
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local thresholding to prevent confusion. Thresholding can be implemented by choosing a

target intensity value and then checking every pixel on an image to investigate whether

it is greater than or equal to the intensity. In this process, pixel values meeting the above

criteria can be set to a fixed value, such as 1, and pixel not meeting the criteria to another

fixed value such as 0. This would result in a binary image being created. In such a case,

the resulting binary values can be stored to create a binary matrix of the same size as

the image, and this matrix can be used as a mask to retain only the regions of interest on

the image (i.e. the regions that meet the threshold criteria). This type of thresholding

works best when a clear contrast is apparent between the region of interest and the rest

of the image. For example, when bone surrounded by soft tissue is the region of interest

on an x-ray image, it would be an ideal time to use a thresholding approach to separate

the pixels representing the bone from those of the tissue.

Thresholding has more complex options besides a simple threshold value discussed

above. Iterative thresholding is a viable approach when no clear distinction is apparent

or if multiple regions of interest could exist on the image [5]. Iterative thresholding

allows for the discovery of a threshold without a prior knowledge of a suitable value

on the image but requires a more robust evaluation method to provide feedback to the

algorithm. Other threshold determinations such as Otsu’s method, maximum correlation,

clustering, or adaptive thresholding exist but are not relevant to the images used in this

thesis [5, 15].

Another interesting thresholding method is adaptive thresholding [5]. The appli-

cation of repeated thresholds of non-overlapping ranges allows for multiple objects to be
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segmented. Due to blood vessels of varying sizes having different intensities in microCT

images, adaptive thresholding is a better approach for segmenting vessels of differing

diameter. The pixel intensity of blood vessels decreases relative to the diameter as less

air/fluid is inside the vessel. The attenuation of the vessel trends toward that of the sur-

rounding tissue, which makes identification of tiny vessels challenging on lower resolution

images.

Edge-based thresholding methods exist but are not suitable for this type of seg-

mentation. Edge detection struggles to find all but the largest of vessel edges due to the

overlapping vessels and the complex nature of the vessels. Applying an edge detection

algorithm to the images results in many fragmented edges that do not provide context

or relevant information.

2.3 Region Growing

Region growing starts with a single pixel (usually selected manually) then continues by

including similar ones from its neighboring pixels. Similarity can be measured by pixel

intensity, pixel variance, correlation, texture, or shape. Region growing guarantees a

connected region from the seed; however, if multiple seeds are used, unconnected regions

may occur. In images with less noise or with noise filtered out, region growing can

provide fast results with minimal error. However, when the image is noisy, or the region

of interest contains large changes in its pixel intensity, then this method results in many

smaller regions that may not be relevant.
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Seed pixel selection is crucial when preforming region growing. Manual seed se-

lection is common in this approach, but automated selection can be done as well. The

selection of a seed must be consistent as different seeds can change the segmented re-

gion. Furthermore, if multiple seed pixels are chosen, the computational time needed to

complete the segmentation can increase with no clear benefit. Choosing multiple seed

points can prevent problems with disconnected regions at a high cost of computational

time and work. Multiple overlapping seeds results in an unsatisfactory waste of system

resources.

Coronary vessels are connected and form trees with the left and right coronary

arteries acting as the roots of the trees. Region growing therefore appears to be a suitable

approach for segmenting the vessels while retaining their spatial orientation. Additionally,

because vessels get smaller as they get farther away from arteries that feed them, the

small collateral vessels of interest should be present at the end of the region growing

process. If collateral vessels are present, then the left and right arterial vessel trees

should be connected to each other resulting in one tree.

2.4 Hessian Filter

Like edge detection algorithms that look for edges by using contrasting pixel intensities,

the Hessian filter can search for curves existing in a 2D image. By applying a Hessian

filter, the curvature of objects such as, blood vessels, can be studied in 2D images. When

applied to the microCT images used in this thesis, the Hessian filter vessels are isolated
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due to the nature of the blood vessels presenting with non-linear trends. The application

of a Hessian filter can help remove non-vessels items. The Hessian filter is based off the

Hessian matrix. This matrix consists of second order partial derivatives. The application

of a Hessian filter requires a convolution with a Gaussian resulting in a blurring of edges

[4]. However, this blurring can be used with region growing methods to solve some of

the disconnects in the vessels on the image.

Suppose f : Rn −→ R is a function taking as input a vector x ∈ Rn and outputting

a scalar f(x) ∈ R; if all second partial derivatives of f exist and are continuous over the

domain of the function, then the Hessian matrix H of f is a square n-by-n matrix, usually

defined and arranged as follows:

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2
n



(2.1)

This can be stated as an equation for the coefficients using indices i and j:

Hi,j =
∂2f

∂xi∂xj
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Using a Hessian matrix to isolate the pixels that most likely contain vessels reduces error

and aids in segmentation by eliminating things that do not represent vessels. However,

this filter must be applied to every pixel on each 2D image, This application of the

Hessian filter to a microCT image is computationally expensive.

2.5 Level Sets

Image segmentation is about identifying boundaries around regions of interest. This can

be done manually, tracing the borders of region by hand or can be automated with some

risk of accuracy loss and completeness. However for large images, manual segmentation

can consume a significant amount of time and still contain some error. One method of

automatic segmentation uses level sets [8]. Osher and Sethian first proposed using level

sets to enclose a surface.

Level sets is a method of segmentation that works similar to region growing but

also keeps track of the contour level of the feature. This method can track the vessels as

they split and merge while also maintaining information about the vessels location and

size.

Malladi proposed using this in medical images and demonstrated its success [6].

By propagating a 2D surface through the 3D data a complex curve can be created. In

the case of blood vessels in our images, due to the preprocessing, the vessels are at a

single contour level while the surrounding tissue is set to another. Using level sets, only

one level will need to be enclosed as the vessel level. Level sets are a form of region
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growing that is constrained by the distance from a seed point or the contour currently

being examined. This means the constraints on region growing methods generally apply

to level sets.

2.6 Sobel Filter

The Sobel filter is an edge detection filter. Edges are detected by calculating the gradi-

ent along both x and y axes by convolving the image with each of these two matrices,

respectively.

X-axis matrix:


−1 0 1

−2 0 2

−1 0 1



Y-axis matrix:


−1 0 1

−2 0 2

−1 0 1


These matrices allow for a resulting value to indicate where a potential edge is

by finding places with larger changes in the perceived gradient of the image data. This

filter is not ideal for noisy images or images that lack consistent features.
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2.7 Gaussian Blur Filter

The Gaussian blur filter can reduce noise in an image by smoothing the image. The

smoothing of the image is achieved by representing every pixel value with the average

of the pixels in a region of specific size surrounding that pixel. A Gaussian filter is a

low-pass filter in which the higher value pixels are reduced in intensity and the lower

value ones are increased. The reduction in extreme values reduces image noise and is a

valuable preprocessing step in which edges are blurred and the contrast is reduced.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.2)

Where x represents the pixel distance from the origin in the horizontal axis, y

represents the the distance from the origin in the vertical axis, and σ is the standard de-

viation of the Gaussian distribution. When this filter is applied on an image, it produces

a surface whose contours are concentric circles with a Gaussian distribution from the

center point. Equation (2.2) is used to create a matrix containing a value for every pixel.

The resulting values then convolved with the original image producing a smoothing effect

known as Gaussian Blur.

2.8 Interpolation

Interpolation is the ability to find missing values at some data points based on the already

known values at the neighboring data points. The new data point is an approximation

using the surrounding data points to provide insight into the trend of the data at that
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point. Interpolation utilizes a mathematical formula that best describes the trend of the

existing data. One of the most common interpolation techniques is linear interpolation.

In this technique the assumption is that the behavior of the points follow a linear equation

defined by equation (2.3) where m is the slope of the line and b is the y intercept. For

an image the slope is gradient between two points. Therefor to interpolate with a linear

technique, after calculating the gradient it is simple to find the value of the interpolated

point by substituting the x and y coordinates into equation (2.3).

y = mx+ b (2.3)

Spline interpolation is a more complex form of interpolation than linear in which instead

of finding a single resulting formula, a low order polynomial is generated for each interval

between the known data points. This results in a smaller error than linear interpolation

when the trend of the data is not linear and is also computationally more efficient than

using higher order polynomials to fit a larger curve.



Chapter 3

Literature Review

Little work has been aimed at identifying and segmenting coronary collateral vessels.

Blood vessel segmentation for different organs including the heart has been studied be-

fore and studies of vessel segmentation have been conducted using various techniques.

Validation of segmentation is done by comparing the results obtained from an auto-

mated program to those obtained manually. A manual segmentation takes time and can

introduce error due to the human element. Machine learning, region growing, global

thresholding, and adaptive local thresholding are all effective methods used by several

efforts to segment blood vessels.

Tatli et al. [13] investigated the identification and segmentation of blood vessels

present in a CT scan of a heart. Their paper covered the formation and development

of the coronary collateral vessels and the significance of being able to research them

further[13]. They demonstrated that coronary collateral vessels are relevant to surviving

a myocardial infarction. Collateral vessel size is very small, approximately 200 microns.

15
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The formation and factors promoting growth of coronary collateral vessels is also dis-

cussed with comparisons to the data providing some conclusions.

Tatli et al. classified the patients by the amount of blockage (without functional

impact to the heart), but did not directly evaluate the state of the coronary collateral

vessels[13]. It appears that they were not able to image or evaluate the coronary collateral

vessels due to challenges in acquiring such small features. Instead, the authors relied on

the state of the larger vessels to deduce the state of the coronary vessels. Finally, the

authors conclude that further research on coronary collateral vessels is needed[13].

Rudyanto et al. investigated vessel segmentation in CT scans of the lungs as

approached in a contest. An open call was put out for teams to contribute their algo-

rithms for segmenting pulmonary vessels [10]. The control data were provided by medical

students doing a manual segmentation. Manual segmentation took a significant amount

of time for a single scan and was not feasible for large number of images. However, it

provided a baseline to which the results were compared [10]. There were 20 teams that

provided results. The results took the form of a pixel array containing either a binary

value (vessel or not vessel) or an 8-bit number representing the probability that the pixel

was a vessel. Hessian filters were a popular choice for the teams that submitted their re-

sults. Other methods included fuzzy algorithms, seed point algorithms, machine learning,

and thresholding [10]. The various algorithms describe by Rudyanto et al. demonstrate

the current approaches to vessel segmentation. Adaptation and tuning of these methods

to apply to the cardiovascular system could provide better results and allow for more

detailed analysis. The initial attempt at only thresholding and enhancing the image
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struggle across different image sets with different parameters. However, using a more

advanced algorithm should allow it to be applicable to most image sets [10].

Marks et al. attempted to quantify the volume of blood vessels from MRI or

Micro-CT scans [7]. They noted the time intensive nature of the task and wanted a

faster automated approach to acquire the measurements. Using ImageJ and Fiji, they

developed a plug-in that was capable of achieving this. 3D skeletonization techniques

were used to determine vessel paths on a thresholded image. They compared their results

to commercial software and achieved a high accuracy. Furthermore, the reduced need

of manual control resulted in a less laborious method than other options [7]. Their

method used a thresholded image, but didn’t require some manual selection of vessels of

interest. The threshold value does not change for a set of scanning parameters however,

meaning each set of scanning parameters requires some manual fine tuning for optimal

performance. After the image is skeletonized, a tree is created for vessels allowing them

to be correlated based on their connecting portions. After the tree is created the output

is a 3D representation of the vessels for users to select or manipulate. The algorithm

proposed in [7] seems applicable to cardiac collateral vessels due to the tree-like nature of

vessel perfusion. Their approach is to threshold the image, create a skeletonized version

of it, and then select vessels of further interest from an 3D reconstruction. This approach

demonstrates a simple method to visualize and acquire information about vessels that

are part of a larger system while retaining the spatial and relational data [7].

Schaap et al. [11] presented a learning method based on the geometry of the ves-

sels. The training data consisted of manually annotated images. This machine learning
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approach applied linear regression and nonlinear regression to identify vessels in a region

of interest (ROI). They compared their results to a publicly available data set called

the Rotterdam Coronary Artery Evaluation Framework. This showed positive results

and demonstrates how vessel shape can contribute to their identification or segmenta-

tion. Additionally, they extracted center lines, which would help in creating a tree based

network for an image [11].

Zaitoun and Aqel [15] investigated different segmentation techniques that are in

use currently. Along with Rudyanto et al. a significant overview of the available image

segmentation techniques are presented. Thresholding, region growing, machine learning,

and filters (Hessian and others) are of particular interest to us. Zaitoun and Aqel classify

segmentation as region based or edge based. These categories provide a basis for attempt-

ing to segment an image and introduce some methods previously not considered. While

not going into much detail, Zaitoun and Aqel are able to discuss the benefits of many

approaches along with the drawbacks. Their publication served as a strong overview of

the available methods [15].

Yang [14] presented a method of cardiovascular vessel segmentation based on an

active contour model using level sets. The goal was to identify coronary atherosclerosis

from computed tomography angiography. This requires a segmented vessel tree that can

then be searched for atherosclerosis plague formations. Level sets first introduced by

Osher and Sethian [8] assisted in providing a segmented vessel tree for further analysis.

This work proves that applying a level set approach to cardiovascular segmentation is

successful.
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Adaptive Local thresholding is a technique presented by Jiang and Mojon [3].

Their work on segmenting the retinal vessels demonstrates the improved accuracy of an

adaptive local threshold over a global threshold. They demonstrate that dividing an

image that contains objects of interest varying in color or intensity or are non-uniformly

sampled during image acquisition may require something more complex than a global

threshold. By dividing the image into smaller regions then acquiring a threshold based

on those regions a more complete segmentation can be accomplished. The drawback to

this method is the increased computational time over a global threshold.

Vessel segmentation remains a complex task. Many approaches to segmentation

exist which depend on various criteria including imaging modality, image resolution,

physiological abnormalities, and physiological features. The existing methods currently

rely on knowing specific physiological features of the vessels and surrounding tissue (ex.

Tumor growth or abnormal tissue density). For the purpose of the research in this thesis,

a mixed method is utilized that includes these critical parts: thresholding, an adaptive

local threshold, and filtering. Both global and local thresholds are required along with

Sobel, Guassian, and Edge Detection filters to refine the images before displaying them.

The combination of these methods provided the best results, which are discussed in

chapter 5.



Chapter 4

Methodology

This thesis utilizes images of mouse hearts provided by the UNC Medical Center. They

were acquired using a microCT machine which has more accurate resolution compared

to a normal CT machine. This resolution allows for the capture of smaller structures.

The hearts were imaged after being removed from the mice. The only treatment to them

involved having excess blood drained and the heart cleaned up to allow for a clean image

capture.

Figure 4.1 shows the work-flow used in this thesis. After the regional filtering,

there are 3 options to help refine the image being being displayed. All 3 options are not

required for display but were tested in this thesis.

Using a Python library a DICOM image can be loaded into memory. The total

image size is approximately 8GB. This image size presents a problem on some machines

that do not have sufficient RAM to allocate 8GB in contiguous fashion. The DICOM file

must be specified in the code by giving the directory name containing all of the image

20
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Figure 4.1: The Flow Diagram of the Research

slices. The image slices contain 16 bit pixel values. These values are stored in a three

dimensional array, created by stacking the slices in order. Figure 4.2 shows the data from

all 3 dimensions. The lower right image shows a cropped view of the scan. Removing

the portion of the image that doesn’t contain the heart reduces the memory required by

75% and reduces the runtime. The top scans show slices 250 and 700. Those scans are

displayed along their original axis.

4.1 Data Construction

The first step in processing the image file is to obtain the image data from the DICOM

file. The pydicom package in Python is used to read the DICOM file. The DICOM

image format contains an array of pixel values and a header containing scan specifica-

tions, optional patient information, and machine details. The header provides the scan

resolution and slice thickness among other important information. To load the data,
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Figure 4.2: Slices and trimmed slice
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three things must be provided: 1) a path to the folder containing the image slices, 2)

the path to a single image slice, and 3) the total number of slices. The pixel array is

extracted slice-by-slice and added to a three dimensional array stacking the slices on top

of one another. This does not cause any image skew because the slice proportions are

the same, pixel width and height is 6 microns while slice thickness is also 6 microns. The

result is a square voxel that can be stacked without distortion. If the slice thickness was

not the same as the pixel width and height other steps would be required to correct this

distortion before continuing.

Figure 4.3: Slice Stacking

4.2 Pre-processing

Approximately 3/4 of the areas on the mouse heart images in the scanned set can be

removed because they mainly contain background which is considered as noise. This can

reduce the memory needed to upload an image set to about 2GB. In addition, this reduces

the complexity of the algorithms for reconstructing the 3d volume (cube) containing the
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blood vessels and prevents the noise from being used in the future operations as well. The

raw image dimensions are 1968x1992x1084 and after trimming the background (noise)

the new image size is reduced to 1000x800x1084.

After assembling the cube the next step is to apply a threshold to the image to

set the background to a unified standard value. This step allows the background to be

separated from the cardiovascular tissue of interest. The background pixel intensity of

the background tissue is much lower than that of the cardiovascular tissue allowing for

an easy distinction. This step also contributes to increasing the differential between the

lower density vessels and the cardiovascular muscle tissue.

4.3 Filtering

After loading only the region of interest, a portion of the vessels can be visualized as

illustrated on Figure 4.4. Without the previous steps, it is not feasible to display the

image due to the large rendering time and artifacts that exist in the background. The

visualization of the full image with these minimal steps taken still can take over 15 hours

and is not feasible on a large scale. This visualization provides a means to manually

identify abnormalities in an image while also providing feedback on the results of any

image processing done. The first applied filter is a straightforward thresholding filter.

Pixel intensity values can range from -32,000 to +32,000, but in the case of mouse heart

images used in this thesis, pixels are usually between 0 and 17,000 intensity. A band

pass threshold can be applied to identify all pixels that are not within a threshold value
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Figure 4.4: Heart Visualization with no processing

of 12,000 to 13,000 and set their values to 0. This is illustrated in 4.5. Changing the

threshold value can increase or decrease the size of vessels appearing in the resulting

image because larger vessels have a higher intensity than smaller ones. Application of

this threshold filter reduces image noise through the removal of fragments not intensive

enough to be a vessel but also not like the rest of the cardiac tissue. These fragments

could include small air pockets or denser tissues than the majority of surrounding tissue.
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Figure 4.5: Heart Visualization with a Threshold

4.4 Regional Filtering

After pre-processing is complete, the next step is to apply a regional filtering strategy

to the image. The difference in vessel pixel intensity varies based on vessel size and

location. Due to this variation, a single threshold or filtering plan for the entire image is

unfeasible. However, vessels continue to have a higher pixel intensity then the surrounding

tissue. Therefore the image is then processed in smaller sub-regions. The number of sub-

regions can be changed, but we have used 15 for a full slice. This results in regions of

approximately 75 by 60 pixels. Through testing this size range allows for the identification

of small vessels while not adding artifacts and vessel structures. The larger number of

region caused too many false positives for vessels with the small region sizes. Additionally,
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large regions resulted in fewer vessels being identified including the collateral ones which

are the primary interest.

While the sub-region size is variable, in practice it is kept consistent for all sub-

regions of an image. Testing was done to change the sub-regions dynamically based on

average pixel intensity but this resulted in worse results then holding a constant number

of regions for each slice of an image. The threshold is calculated dynamically for the

local sub-region. The threshold is calculated based on the keeping the top 3 percent of

the pixels. The threshold is repeatedly applied until the standard deviation is 1000 less

than the average. This serves to remove noise and isolate the vessels. The repetition is

used to ensure the less intense pixels are included as those contain some of the smallest

vessels. After thresholding, the resulting pixels are used as a mask on the original image.

This image is then filtered. First a Sobel edge detection filter is used for all 3 dimensions

and is then averaged for each pixel. Finally, a Gaussian filter is applied to smooth the

image and reduce any noise as well as remove any artifacts. The resulting image is then

visualized in three dimensions based on a visualization toolkit (VTK) routine.

4.5 Region Growing

After the regional thresholding region growing can be attempted. Region growing re-

quires neighboring pixels to be connected and similar. However due to thresholding,

image resolution, and potential image discontinuities, this is not always the case. Figure

4.6 highlights a significant example of this. The large vessels occur close to the artery
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which causes region growing to end prematurely. These discontinuities present a technical

challenge that can be solved but requires extensive work to do so. Removing the discon-

tinuities requires connecting the two vessels or restarting the algorithm on the other side

of the discontinuity. Both methods require selecting the other side of the discontinuity.

Automatically selecting the correct vessel next to the discontinuity is tricky and is instead

currently done manually. While restarting the region growing algorithm would work, it

still does not solve the issue of the discontinuity itself. That is considered in the next

section using interpolation.

Figure 4.6: Heart Visualization with a Discontinuity
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4.6 Interpolation

Interpolation is utilized in this thesis to address the discontinuities that occurred on

image frames where visually it was expected to connect 2 vessels. The goal is to provide

points of the vessel provided by the existing image frames and use spline interpolation

to return a mathematical formula modeling the shape of the vessel. This would allow

us to use the mathematical model to connect the two sides of the same vessel on two

consecutive frames to establish continuity of the vessel. However the main drawback to

a larger scale application of this process is the need to manually select points. Another

issue is that a vessel is usually more then 1 voxel in size and interpolation works best

with a single point per slice. Therefore each slice must have the vessel reduced to a single

point. Linear interpolation works well in most cases, however spline interpolation was

chosen because it allows for a more refined interpolation in the cases where the vessel is

perfectly straight, however this does require more than two points for an accurate result.

Interpolation was implemented using 4 main steps:

1. Point Acquisition

2. Pattern Search for subsequent slices

3. B-Spline interpolation

4. Prediction for missing slice result

Step 1 consists of point acquisition. This is done manually. A user must provide

the point from which interpolation must start. Additional points before this can be

included to assist in capturing a more complex curve but are not required. After the
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initial point is provided, the algorithm will begin step 2, searching for the most likely

point on the next slice. This is achieved by conducting a search in a outward spiral

pattern on the next slice from the point provided in step one. Figure 4.7 shows an

example of the pattern.

Figure 4.7: Search pattern for subsequent slices

This works because the vessels do not drastically change orientation across each

slice. The number of slices it searches can be set to allow for a more complex curve to

be calculated if needed. After an adequate number of slices are captured, the points

are then used to calculate a B-Spline interpolation equation. Then, for the slices that

contain the discontinuities, the equation is used to predict where the vessel would be.

This only returns a point, however; thus the radius of the vessel has to still be estimated

by calculating the radius of the vessels at surrounding points. Currently, only the point



31

is used to fix the discontinuity and the radius is not calculated. Without the estimated

radius it is not possible to replace more than the initial point calculated within the image.

After the search is completed. The points that are found are used to do spline

interpolation to create a equation that represents the suspected vessel path. The expected

curve is not drastic and has few inflection points so a low order interpolation is sufficient.

An order of 5 is used to ensure adequate flexibility in the polynomial equation. Finally,

after the equation is generated, slices where the data is missing or unclear can be used

in conjunction with the equation to find the expected position of the vessel.

4.7 3D Display

The display method used to render the image is a 3D contour map. A contour map

provides proper visualization because the vessels have a much higher intensity than the

surrounding tissue. A VTK (The Visualization Toolkit) object is created from the image

data array. Four contours are plotted to render the vessels. With less than four contours,

small fine vessels like collateral vessels are lost and not clearly displayed. In addition, us-

ing more than four contours causes artifacts, non- vessel fragments, and other non-vessel

structures to appear. The number of contours needed for optimal visualization is depen-

dent on the processing and image analysis done beforehand. However, for the methods

previously described the the best rendering results from using only four contours.



Chapter 5

Results

Identifying and segmenting blood vessels in the images of a mouse heart is a challenging

problem that can only be achieved using a combination of several methods. This research

utilizes several of these methods in varying combinations to address different issues and

problems that arise during segmentation. This chapter presents the results after the full

workflow is complete and for some intermediate steps.

5.1 Preprocessing

The first step after loading one of the images from the DICOM files is to trim it by remov-

ing most of the background that doesn’t contain any cardiovascular information. This

step speeds up the processing time and prevents the background from overly influencing

the calculations. An example is shown in Figure 5.1 achieved by setting a threshold of

500.

32
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Figure 5.1: Example of background removal

After trimming the image, the background pixels are separated using a threshold

value and all are set to 0 which represents the color black. In the case of this research,

the background is considered the area surrounding the diagnostic part of the image with

pixel intensity values of lower than 500. Figure 5.1 illustrates the increased contrast

resulting after the completion of of the background removal. Setting the background to a

set color such as black helps eliminate a significant number of artifacts. This preparation

will improve processing speed in later steps as well.
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5.2 Regional Results

After the completion of the preprocessing step, each image slice is divided into 9 sub-

regions which were determined empirically based on the diversity of the intensity values

appearing in the image. For example, in one region a vessel could appear as bright as a

pixel value of 15,000 while the continuation of the same vessel to the side of the image

had a pixel value of 8000. This is partially because the regions away from the center of

the image appear with lower intensity values, i.e. are dimmer. The highest value pixel

intensities are considered to be vessels in the subregion, thus a region’s specific threshold

value is applied on each of these regions to separate the vessels. This threshold value is

determined by investigating all the pixel values in that region and finding the highest

intensity value in that region for a vessel and using that as the base for the threshold

value with a small percent tolerance. Figure 5.2 illustrates the results on a single slice.

The thresholds for these regions vary between 800 and 15000 across the entire image set.

Some slices had thresholds values varying by as much as 4000. These threshold values

highlight the variance across the full image and demonstrate a need to treat the images

as subregions instead of applying a threshold to the entire image.

Figure 5.2 contains an example of 9 regions from a slice. The squares labeled a

through i are the original images. The squares labeled a1 through i1 correspond to these

images, respectively, after a regional threshold has been applied. This method results in

many more vessels being identified. The highest intensity spots on the original image are

shown as white. These white spots also correspond the the white spots remaining after
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Figure 5.2: Regional Filtering: a-i - original images and a1-i1 - their corresponding results
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thresholding. However, some spots that are not as obvious are also identified. The spots

that are not as high intensity are the ones that gained by using an adaptive regional

threshold instead of a global one.

5.3 Threshold Results

Applying a single threshold value to the entire image is moderately successful in identify-

ing vessels that are clearly bright on the image. However, it fails to identify and extract

many small vessels that are not as bright. The global threshold approach was used to

separate background from cardiovascular tissue and the threshold value was adjusted

based on the image slice to achieve the highest accuracy.

Figure 5.3 shows the results of applying a global threshold to a single slice. The

slice is displayed on both dimensions. The global threshold isolates the larger vessels but

fails to isolate the smaller ones. Figure 5.2 shows the results of the regional filtering. The

regional filter is able to isolate an increased number of vessels because the threshold is

adaptive to the region based on the region of the image and can find the smaller vessels

at a lower intensity.

5.4 Interpolation Results

Interpolation can be used to predict data points in missing or incomplete slices. In

addition, it can be used to correct disconnects in vessels due to thresholding or other

processes. These situations are unavoidable in some cases as parts of the vessel may be
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Figure 5.3: Results of Global Threshold
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at a lower intensity due to non-standard factors. Some of these factors include denser

tissue surrounding the vessel, location of vessel (closer to the center of the heart). Linear

interpolation was able to predict and connect sample data, however it worked best for only

one missing point. For times when multiple slices were missing, b-spline interpolation

was preferred. This method handles the slight curve vessels can exhibit even over a single

slice. Part of this process uses the interpolate package in scipy.

Figure 5.4: Example of Interpolated Missing Slice

For interpolation to work well, the known points must be extracted from the

scanned images. A single point per slice is required to achieve the best results. These

points were extracted manually because the challenge of reducing vessels to a single center

point per slice is out of the scope of this project. Searching for subsequent points given

a single starting point was possible but required the vessels to be reduced to a single

point. This search method shows promising results but requires that vessels be reduced
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to a single point for every interpolation. Manually finding a point representing every

vessel per slice is extremely time consuming and not feasible for large scale images. For

this reason, using interpolation to connect vessel fragments was not used to analyze the

entire image despite its promising results. Another problem with interpolation is that

the slices are taken every 6 microns and often the small blood vessels have a diameter in

a lower range. To solve this issue, slices should be obtained at a lower spacing.

Figure 5.4 is an example of how interpolation can be used to substitute for a

corrupted, missing, or inaccurate slice or region. Some information may be lost if the

interpolation model doesn’t perfectly match the trend of the vessels from one slice to

another, but interpolation allows for a close estimate to be created for the missing value.

Linear interpolation is used in this case as only 2 data points from two subsequent slices

were used to reconstruct the missing pixel. Figure 5.5 illustrates how interpolation can

be used in our research to generate a new slice between two known slices. Note that for

the illustration purpose here, we have taken a known slice (Slice 2) out from between two

other known slices (Slice 1 and Slice 3) and reconstructed Slice 2 using this technique

to come up with Interpolated Slice. As it can be seen the Interpolated Slice and Slice 2

are almost identical. However, the interpolated slice contains pixels 10% less than the

original. This results in a darker figure and less contrast between vessels and background

tissue. Figure 5.5 illustrates the reconstruction of a new slice based on the two known

slices in the set.
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Figure 5.5: Example of Interpolation between Slices
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5.5 Filter Results

After the images were trimmed and thresholded filters were applied to the data, a Sobel

and Gaussian filter were both applied on the resulting images. This combination is used

to help find and sharpen the vessel edges but also to connect and smooth them. Originally

this was used to help the region growing progress and bridge the gaps across fragmented

vessels. This method was not suitable for all gaps and did not allow region growing to

complete. Thus, this step was used to refine the vessels and fill in gaps before display. By

using this combination of filters, the edges were refined. A mask was then created for the

original image and was used to further isolate the vessels and remove extra fragments.

This allowed for 3D rendering to be completed in a reasonable time since only areas

identified by these filters were displayed.

Figure 5.7 contains more complete vessels and smaller vessels than Figure 5.6 or

Figure 4.5. Figure 5.7 shows the results of the refinement after the regional threshold is

applied to Figure 5.6. Specifically in the smaller, thinner vessels less discontinuities are

found and these vessels show a better connection to the other vessels.



42

Figure 5.6: Display before filtering



43

Figure 5.7: Display after filtering



Chapter 6

Conclusion and Future Work

6.1 Preprocessing

The preprocessing applied on the images used in this research was an important step for

reducing computation time and allowing for accurate threshold values to be acquired.

Figure 5.1 illustrates the reduction in size. In addition, Figure 5.1 shows the increase in

contrast achieved by isolating the background values. However, because the background

shares some pixel values within the region of interest(ROI), it is important to note that

the ROI is being slightly modified. This modification is not an issue as no vessel appears

with a pixel value close to the background.

6.2 Regional Filter

The regional filter is an appropriate way to filter the image slices. While a global threshold

was initially proposed, it was not feasible. Thus, the regional filter that could adapt to

44
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each subregion provided increased feature distinction. Therefore it was superior to a

single global threshold to identify vessels. Figure 5.2 shows the results on one of the

images slices. Making the threshold value too high resulted in only the largest vessels

with the highest intensity values to remain, while too low of a value resulted in non-vessel

artifacts to appear as vessels. With this in mind, for the images used in our research, a

threshold value at 99th percentile of the highest intensity value observed within a region

was found to be most suitable through an empirical trial and produced reasonable results

in the final display.

6.3 Sobel and Gaussian Filtering

After thresholding was preformed, the image was not ready to be displayed. Applying

Sobel and Gaussian filters to the image, resulted in smoothing the edges and refining

the image. The creation of a mask with smoothed edges also allows for identifying more

complete and connected vessels. While this step is not necessary for accuracy it does

facilitate a more efficient display of the image. Without this step, the image would take

more memory and time to display.

6.4 Interpolation and Region Growing

Interpolation and region growing were both proven useful and showed great potential

for assisting in segmentation of the vessels in the mouse heart images. However, these

methods require additional investigation to produce reliable and accurate results for
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this project. In example cases with manual adjustments, it was illustrated that they

were useful in refining vessels and isolating vessel segments. Due to the additional work

required for interpolation to extract the points by reducing a vessel to a single pixel per

slice, it is not feasible to successfully use it in a fully automated process, but it shows

a significant potential for future work. Region growing works best when the vessels

are fully connected and no fragments exist. This state is not likely so the disconnects

and fragments must be addressed to acquire a full representation of the vessel structure.

Solving these fragments and disconnects problem requires utilizing interpolation, different

preprocessing steps, or other filtering methods.

6.5 Future Work

The research uncovered the many challenges related to segmentation of fine blood vessels

in the heart of a mouse. A significant amount of work needs to be done to achieve

reconstruction of these vessels to create an accurate 3D model. For one, a tool could be

developed to make threshold determination and seed selection faster and easily applicable

to different image sets. Currently, this step must be done manually and is not precise.

In addition, the tool could be designed in such a way that it can be applied to blood

vessels of various diameters. Another work that must be expanded upon is allowing for

the tracking of different coronary vessels.

This thesis provides a means to study coronary collateral vessels through medical

imaging. Future research into the formation or loss of collateral vessels over time would
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be made easier with the results from this work. Researchers could investigate stimuli

affecting the angiogensis for collateral vessels, including drugs and exercise.
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