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Abstract: 
 
The incidence of pre-diabetes (PD) and Type-2 Diabetes Mellitus (T2D) is a worldwide 
epidemic. African American (AA) individuals are disproportionately more likely to become 
diabetic than other ethnic groups. Over the long-term, metabolic complications related to 
diabetes result in significant alterations in growth hormone (GH) and insulin-like growth factor-1 
(IGF-1). Considering the limited exercise-related studies in the area of gene expression changes 
with disease progression, the objective of this study was to examine differences in exercise-
induced gene expression related to the GH and IGF-1 pathways in peripheral blood mononuclear 
cells (PBMCs) of healthy (CON) and PD AA individuals. Design: Ten subjects [5 PD (age = 
35±9.3 yr, BMI = 32.1±4.0, FBG = 101.8±1.3 mg/dl) and 5 CON (age = 31±9.4 yr, BMI = 
29.4±5.2, FBG = 82.8±9.7 mg/dl)] had blood drawn for RNA isolation prior to exercise (Pre), 
immediately following acute moderate intensity exercise on a treadmill (Post-1), 6-hours post 
(Post-6), and 24-hours post (Post-24). Isolation of mRNA from PBMCs was performed using 
ficoll separation, while the profiling of mRNA expression was performed using Illumina 
beadchip arrays with standard protocols. Scan results were statistically analyzed for a specific list 
of genes related to GH and IGF-1. GH and IGF-1 protein levels were also assessed in each 
sample. To address issues of normality, all GH and IGF-1 data were log-transformed prior to 
analysis. Statistical significance was set at p<0.05. Results: Group differences for GH2 variant 2 
(p = 0.070) and GH2 variant 3 (p = 0.059) were coupled with significant alterations in IGF-1 
mRNA over time (p = 0.024). A significant interaction between group and time was observed for 
GHRH mRNA (p = 0.008). No group differences were observed in GH AUC (p = 0.649), ΔGH 
(p = 0.331), GHrec (p = 0.294), or IGF-1 AUC (p = 0.865), representing a similar exercise-
induced GH and IGF-1 response for both groups. Conclusions: Analysis of GH and IGF-1 
related-gene expression indicates that mild elevations in fasting blood glucose and exercise-
induced alterations in gene expression are impacted by the prediabetic state. 
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Abstract

The incidence of pre-diabetes (PD) and Type-2 Diabetes Mellitus (T2D) is a worldwide epi-

demic. African American (AA) individuals are disproportionately more likely to become dia-

betic than other ethnic groups. Over the long-term, metabolic complications related to

diabetes result in significant alterations in growth hormone (GH) and insulin-like growth

factor-1 (IGF-1). Considering the limited exercise-related studies in the area of gene ex-

pression changes with disease progression, the objective of this study was to examine dif-

ferences in exercise-induced gene expression related to the GH and IGF-1 pathways in

peripheral blood mononuclear cells (PBMCs) of healthy (CON) and PD AA individuals.

Design: Ten subjects [5 PD (age = 35±9.3 yr, BMI = 32.1±4.0, FBG = 101.8±1.3 mg/dl) and

5 CON (age = 31±9.4 yr, BMI = 29.4±5.2, FBG = 82.8±9.7 mg/dl)] had blood drawn for RNA

isolation prior to exercise (Pre), immediately following acute moderate intensity exercise on

a treadmill (Post-1), 6-hours post (Post-6), and 24-hours post (Post-24). Isolation of mRNA

from PBMCs was performed using ficoll separation, while the profiling of mRNA expression

was performed using Illumina beadchip arrays with standard protocols. Scan results were

statistically analyzed for a specific list of genes related to GH and IGF-1. GH and IGF-1 pro-

tein levels were also assessed in each sample. To address issues of normality, all GH and

IGF-1 data were log-transformed prior to analysis. Statistical significance was set at p<0.05.

Results: Group differences for GH2 variant 2 (p = 0.070) and GH2 variant 3 (p = 0.059) were

coupled with significant alterations in IGF-1 mRNA over time (p = 0.024). A significant inter-

action between group and time was observed for GHRH mRNA (p = 0.008). No group differ-

ences were observed in GH AUC (p = 0.649), ΔGH (p = 0.331), GHrec (p = 0.294), or IGF-1

AUC (p = 0.865), representing a similar exercise-induced GH and IGF-1 response for both

groups. Conclusions: Analysis of GH and IGF-1 related-gene expression indicates that mild

elevations in fasting blood glucose and exercise-induced alterations in gene expression are

impacted by the prediabetic state.
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Introduction

The number of individuals diagnosed with type-2 diabetes mellitus (T2D) has continued to

increase over the past several decades [1]. It was estimated that 422 million adults were living

with diabetes in 2014 and that the age-standardized global prevalence of diabetes has nearly

doubled since then [2]. The complications associated with T2D include higher risk of heart

attack, stroke, kidney disease, and increased rates of hospitalization, as well as premature death

[2]. Given the dire health consequences of long-term mismanagement of T2D and the signifi-

cant medical costs associated with T2D complications, significant resources have been focused

on disease management.

There is significant inter-individual variation in disease progression that occurs over time

and impacts different systems across levels of physiological organization. It should be remem-

bered that lower levels of physiological organization (i.e. gene expression) work on faster time-

scales and are more flexible than markers at higher levels of organization (i.e. proteins). This

physiological organization contextualizes how changes and adaptations at the gene expression

level may be more similar between PD and T2D, whereas time-corresponding protein levels

may be more similar between PD and CON. Since disease progression occurs on a continuum,

understanding how physiological responses at various levels of biological organization differ

throughout the disease continuum may provide important information for future methods of

detection and treatment.

It is well known that the degree of insulin resistance necessary to cause persistent hypergly-

cemia may be present for extended periods of time prior to a clinical diagnosis of T2D.

Depending when measurement occurs throughout the continuum of disease progression,

these adaptations may be coupled with a variety of additional physiological changes including

system wide alterations in several other endocrine pathways. Individuals in the prediabetic

(PD) state are identified as having a glycosylated hemoglobin (HbA1C) between 5.7–6.4%, a

fasting blood glucose (FBG) between 100–125 mg/dl, or an oral glucose tolerance test (OGTT)

between 140–199 mg/dl [2]. These individuals are encouraged by physicians to manage their

blood glucose with lifestyle modifications as the progression of T2D is exacerbated by obesity

and an inactive lifestyle [3]. Pre-diabetic individuals are typically advised to decrease their fat

and energy intake and lose 5–10% of their body weight through exercise and dietary modifica-

tion [2]. Approximately 70% of individuals with pre-diabetes develop T2D [4] and an esti-

mated 35% of Americans over the age of 20 are pre-diabetic, while approximately half of the

individuals over the age of 65 are affected by diabetes [5]. While testing fasting blood glucose

and measuring HbA1c may provide an indication of disease onset, the progressive nature of

the pathophysiology inherent in the development of T2D suggests that many metabolic alter-

ations precede overt disease.

During rest, differences in the activation of signaling pathways exist between individuals

with T2D and healthy controls [3, 6]. While the signaling alterations in full blown diabetes

have been extensively described, the timing of these changes with relation to disease progres-

sion are not clearly elucidated and even less is understood regarding the relationship between

disease progression (as in PD) and the effect of exercise on altering various signaling pathways.

Exercise has well established effects on insulin-related signaling pathways in T2D [2, 3] and

exercise training results in a re-sensitization of the endocrine system in these individuals that

beneficially effects hormonal regulation of many different physiological functions [2, 3]. Com-

parisons between the effects of acute and chronic aerobic and strength training on blood glu-

cose management and insulin sensitivity in T2D are provided elsewhere [7], but can generally

be summarized as beneficial. While specific questions regarding whether or not the exercise-

induced responses of PD individuals are more like healthy individuals or more like T2D
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individuals may be posed, these relationships should be considered to be on a continuum

between healthy and T2D individuals; remembering that lower levels of physiological organi-

zation often work on faster timescales and are more flexible than markers at higher levels of

organization. While the measurement of messenger ribonucleic acid (mRNA) responses to

exercise have predominantly been performed using muscle tissue samples, it has been sug-

gested that peripheral blood mononuclear cells (PBMC) may offer an effective whole-body

measure of response [8]. Both aerobic [9–11] and resistance exercise [12] significantly alter

PBMC gene expression. While there is a small literature base in the area of PBMC and exer-

cise-induced alterations in gene expression, there are very few articles investigating changes in

these responses in diseased individuals. However, of the limited studies available, PBMC gene

expression has been shown to reflect the pathophysiology of diabetes [8], but this study did not

include exercise. While several DNA single nucleotide polymorphisms (SNPs) have been

linked to the development of T2D in genome wide association studies [13–16], very little

research has focused on discerning the deviations in various signaling pathways and the down-

stream metabolic alterations that occur early in disease. Understanding how these pathways

respond to physiological stimuli such as exercise, which is known to benefit individuals with

T2D, during the early stages of disease may help to identify key molecules in the pathway that

could be targeted for further investigation. While some of the T2D related alterations in thy-

roid, adrenal, and gonadal function are reversed by insulin replacement therapy, glycemic con-

trol does not normalize endocrine function [17].

The link between growth hormone (GH) and T2D has been well established and either

over-synthesis of GH or exogenous GH supplementation can result in the development of

T2D [18]. GH secretory changes are observed across ages, between genders, and in various dis-

ease states [17], including diabetes [19]. In addition, growth hormone and IGF-1 play signifi-

cant roles in body composition and have been associated with alterations in lean body mass

and fat mass [20] which further complicates T2D [19].

Asplin et al. [19] previously reported altered pulse frequency and interpulse GH concentra-

tion with hypothalamic dysfunction in diabetics. These alterations result in deviations from

the normal, “healthy,” interaction dominant dynamics across levels of physiological organiza-

tion. Knowing at what point during disease progression these alterations begin to occur could

provide vital information for clinicians and researchers. For instance, these alterations may be

the result of upregulated promotional pathways and associated transcripts, down regulation of

inhibitory pathways, or both. Either way, better understanding these dynamic relationships

could prove critical to our ability to assess, diagnosis, monitor, and treat disease. Both lean

body mass and fat mass are significantly impacted by GH [20] and a 7–8% reduction in lean

body mass (LBM) has been observed in GH deficient individuals compared to healthy controls

[21–23]. Meanwhile, fat mass accumulation has also been associated with GH deficiency [21,

24, 25]. In addition to decreased LBM and increased fat mass, analysis of fat mass distribution

has shown that fat mass accumulates preferentially in the abdominal area. These individuals

also have increased risk of cardiovascular events, T2D, mortality, and morbidity [26, 27].

Obese individuals also have overall reductions in GH output [28] and all of this taken together

suggests an intricate relationship between body composition, GH, and alterations in metabo-

lism that promote a negative shift in the overall health of an individual.

Given the current understanding of the relationships between T2D, GH, IGF-1, coupled

with the lack of exercise-related studies in the area of gene expression, this study aimed to

investigate the effects of an acute bout of moderate-intensity exercise on PBMC gene expres-

sion between healthy and PD individuals. Furthermore, because certain groups such as African

Americans (AA) are more likely to become diabetic than others [5], this study focuses specifi-

cally on comparing the effects of an acute bout of moderate-intensity exercise on PBMC gene
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expression between healthy and PD AA individuals. Defects in insulin secretion, insulin

action, or both, result in hyperglycemia, which when sustained over extended periods of time,

results in damage, dysfunction and eventually failure of various organs. We expected that the

exercise-related profiles of the GH and IGF-1 proteins would be similar between the two

groups but that the expression of GH and IGF-1 related mRNA would differ between the two

groups in response to the exercise stimulus. To further our understanding of early changes in

pre-diabetic individuals that may be influenced by exercise, we also investigated potential gene

expression differences for related metabolic and inflammatory pathways.

Material and methods

General overview

Individuals were screened over the phone and those who met the initial screening criteria were

scheduled to come into the laboratory for an additional screening process. Upon arrival to the

laboratory screening visit, informed written consent was obtained and anthropometric mea-

sures were taken prior to a fasted blood draw. Following the screening visit, individuals

reported twice more; once for baseline testing and a second time to complete an acute submax-

imal exercise bout. During the exercise visit, blood samples were taken prior to beginning

exercise (Pre), immediately post (Post-1), 6-hours post (Post-6), and 24-hours post (Post-24).

This study was approved by the Institutional Review Board at the University of North Carolina

at Greensboro (09–0174, PI: Wideman). All data pertaining to this manuscript are available at

Gene Expression Omnibus (GEO) under acquisition number GSE101931.

Initial phone screening

Individuals were recruited from a larger study. Participants who expressed interest in this por-

tion of the study were initially contacted by phone and after the study was explained, if they

were still interested and met screening inclusion criteria, a laboratory visit was scheduled. A

member of the research team determined if the individual met all of the screening inclusion

criteria; age 18–45 years, self-identified as African American, no known blood glucose issues

and self-reported BMI>19 and <36 kg/m2. Fasting blood glucose was confirmed at the labora-

tory screening visit. Any individual with a FBG>126 mg/dl, with known active disease (car-

diovascular, metabolic, or pulmonary), BMI>36 kg/m2 or with orthopedic limitations were

excluded from the study. Other exclusions included: acute or chronic health conditions, medi-

cations for cardiovascular disease, mental health, endocrine, infectious conditions, or a history

of cancer treatment. The first ten individuals who expressed interest in this study were sched-

uled for a laboratory visit.

Laboratory screening visit

Upon arriving in the laboratory, all individuals provided informed written consent. Each indi-

vidual was then asked to complete a detailed family history and medical questionnaire (S1

File) and a physical activity questionnaire [29]. Height and weight were assessed and BMI cal-

culated to confirm that each individual met the inclusion criteria. A blood draw (5ml) was

taken following a 10-hour fast to assess FBG, insulin, and HbA1C. The first 5 individuals with

FBG between 100–125 mg/dl and without active disease or orthopedic limitations were

enrolled into the PD group. Similarly, the first 5 individuals with FBG of less <100 mg/dl and

without disease or orthopedic limitations were enrolled into the healthy (CON) group. Of the

first ten individuals who expressed interest in this study, all ten met the inclusion criteria; five

of which met the PD criteria while five were enrolled into the study as healthy controls. Of
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these ten individuals, none dropped out and none were removed from the study for any

reason.

Baseline assessment visit

Participants were asked to return to the laboratory to have a comprehensive body composition

assessment completed and were asked to perform a submaximal exercise stress test. Body com-

position was performed via Dual-energy X-ray absorptiometry (DXA) (GE Lunar Prodigy).

The submaximal exercise protocol utilized 3 minute stages on a treadmill (Quinton Q-Stress

TM65). The test was terminated when the participant reached 85% of his/her heart rate (HR)

reserve (HRR); oxygen uptake (VO2) was assessed throughout and maximal VO2 (VO2max)

was extrapolated.

Acute submaximal exercise visit

Participants returned to the lab at least 48 hours after the baseline assessment visit to perform

an acute submaximal exercise bout. All participants were asked to eat a standardized breakfast

of juice and toast, approximately 1.5–2 hours prior to arriving at the lab. Upon arrival in the

lab, subjects completed a 3-day dietary recall, and resting blood pressure (BP), HR, and resting

pre-exercise blood sample were obtained. Subjects completed a 60-minute exercise bout at

moderate intensity (60% VO2 reserve) on the treadmill. HR, BP, and a rating of perceived exer-

tion (RPE) was taken every 15-minutes. Methodologically, this 60-minute moderate intensity

exercise bout was chosen in order to meet the American College of Sports Medicine (ACSM)

guidelines for weight management. Workload was adjusted accordingly and to assure that

each individual could complete the 60-minute exercise bout. Immediately following exercise,

an additional blood sample was taken (Post-1). Subjects returned to the lab 6 hours later (Post-

6) (at least 2-hours post-prandial) to complete another blood draw. The following morning,

individuals ate the same standardized breakfast as they had the previous day (average total cal-

ories: 207±119kcal; protein: 10.8±3.0%; carbohydrate: 81.5±6.6%; fat: 8.2±2.4%;) and returned

to the laboratory for a fourth blood sample (Post-24) taken 24 hours after the cessation of the

exercise bout.

Blood processing & RNA preparation

A portion of each blood sample collected during the acute submaximal exercise visit was uti-

lized to analyze the response of plasma proteins. The remainder of the blood was processed

and PBMCs were isolated using ficoll separation. Total RNA was isolated from PBMCs using a

Qiagen kit that was specifically designed for blood extractions and stored at -80˚C until

analysis.

Microarray procedures & analysis

Quality controls included adequate amplifications, thresholds for appropriate scaling factors,

detection p values and internal controls for RNA integrity. Any sample not meeting all QC

values after processing through microarray was reprocessed from the original total RNA sam-

ples, after the integrity of the RNA samples was verified by agarose gel electrophoresis and

imaging. Two round amplification of total RNA was done using the Illumina HumanHT-12

v4.0 Expression BeadChip Array for gene expression analysis (Illumina Inc., San Diego, CA).

Thirty μg of biotinylated complementary RNA (cRNA) from the second amplification round

was hybridized to Illumina microarray techniques. Data processing of resultant iDAT files is

described below. Average normalization was done within the BeadStudio module of Illumina’s
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GenomeStudio. Expression levels were imported directly into Partek Genomics Suite (Partek

Inc., St. Louis, MO) for statistical analysis.

A small sample of RNA was quantified by reverse transcription polymerase chain reaction

(RT-PCR) to ensure that the RNA was intact and free from DNA contamination. A second

sample was quantified by RT-PCR after microarray analysis as a cross-validation for any sig-

nificant changes detected by the microarray analysis.

RT-PCR procedures

Once microarray analysis was completed, the genes with the greatest fold change from baseline

to post-exercise as well as several additional genes of interest were investigated. Once identi-

fied, RT-PCR was completed to verify the findings from the microarray analysis. Quality con-

trol for RT-PCR was performed using GAPDH, while analysis of PKC2/PRKCZ, GCGR2,

RXRG, HSPA1B, SREBP1, IL8, and MAPK7 were performed using the stored RNA sample.

For the RT-PCR, primers that lie on either side of an exon/intron boundary were chosen for

those genes that were selected for further validation. Assay kits from Applied Biosystems (ABI)

were used: GAPDH, Hs02758991_g1; PRKCZ, Hs00177051_m1; GCGR, Hs01026189_g1;

RXRG, Hs00199455_m1; HSPA1B, Hs01040501_sH; SREBF1, Hs01088691_m1; IL8,

Hs00174103_m1; JUN, Hs01103582_s1; MAPK7, Hs00611114_g1. RT-PCR was performed

with 1μg of RNA from the stored samples. RNAse-free DNAse I was used to digest any DNA

that was co-isolated with the RNA. Having used primers that cross introns further served to

ensure that a false positive signal is not obtained. An RNAse-treated control samples was also

subjected to RT-PCR to ensure that amplification arose from RNA. A commercially available

kit was used for RT-PCR and a control RT-PCR reaction was run with each sample using the

ubiquitously expressed rp49 gene in order to ensure that the quantity of RNA and the effi-

ciency of the RT-PCR amplification was the same in each sample.

Bioassays

All bioassays were performed on serum samples. Growth hormone and IGF-1 were assessed

using enzyme linked immunosorbent assays (ELISA) from RayBiotech, Inc. and IDS (Immu-

nodiagnostic systems), respectively. Kits from R&D Systems (Minneapolis, MN) were used to

assess TNF-α and IL-6 respectively while fasting blood glucose was assessed using a colorimet-

ric assay kit (Cayman Chemicals, Ann Arbor, Michigan) and insulin was assessed using an

ELISA (Mercodia, Winston-Salem, NC).

Data analysis and statistics

Resultant gene lists were analyzed to determine differences in gene expression between groups

at baseline and following the acute exercise stimulus, using repeated measures analysis of

covariance (ANCOVA). Due to the known effects of increased body composition to alter GH

secretory patterns as well as the relationships between body composition and T2D, body com-

position (%fat) was used in the analysis to control for these differences. Statistical significance

was evaluated using multivariate permutation tests that controlled for the false discovery rate

[30]. Lists of probe sets with differential expression between groups over time were analyzed

using Ingenuity Pathway Analysis (IPA) software, which generates novel networks of molecule

interactions and maps expression data onto well-established canonical pathways.

All statistical procedures related to bioassays and subject demographics were performed in

R statistical software [31]. Log-transformations were performed on all GH, IGF-1 IL-6, and

TNF-α protein data to correct for violations of normality. Area under the curve (AUC) was

calculated using the Pre, Post-1, Post-6, and Post-24 time points. The ΔGH, ΔIL-6, and ΔTNF-
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α values were calculated as the difference from Pre to Post-1 while recovery (i.e. GHrec, TNF-

αrec, and IL-6rec,) was calculated as the difference between Post-1 and Post-6. An ANCOVA

was used to assess mean differences between groups after controlling for body composition (%

fat) while two-sample t-tests were used to determine group differences between measures

taken during the baseline assessment testing session. Significance was determined a priori
(p<0.05) for all statistical tests.

Results

Subject characteristics are shown in Table 1 and this table also provides values obtained during

the baseline testing session. As expected based on screening criteria, comparison of FBG values

from the screening visit indicates a significant difference between pre-diabetic (PD) and con-

trol (CON) (t = 4.327, df = 8, p = 0.002) while differences in the mean values of HbA1C indicate

a near significant group effect (t = 2.298, df = 8, p = 0.051). In both PD and CON, only 1 indi-

vidual per group reported having a first-degree relative with T2D while 2 and 4 individuals in

the PD and CON groups, respectively, reported having second-degree relatives with T2D.

Response to acute moderate intensity exercise is summarized in Table 2 for the PD and CON

groups. No statistically significant differences were observed for any of the variables reported

in Table 2. Genes of interest, and all pertinent p-values for interactions and main effects of

group and time are provided in Table 3. Post-hoc analyses indicating the fold differences for

significant interactions and main effects are provided in Table 4.

Bioassays

No significant differences were observed in GH AUC between groups (t = 0.473, df = 8,

p = 0.649). No differences were observed in the ΔGH (t = 0.782, df = 8, p = 0.457) or GHrec

Table 1. Subject demographics organized by group.

CON PD

Mean (±SD) Mean (±SD)

Age 31 (±9) 35 (±9)

Wt (kg) 84.4 (±26.0) 100.1 (±11.2)

Ht (cm) 167.7 (±12.1) 176.9 (±5.8)

BMI (kg/m2) 29.4 (±5.2) 32.1 (±4.0)

FBG (mg/dl) 82.8 (±9.7) 101.8 (±1.3)�

HbA1C (%) 5.7 (±0.3) 6.0 (±0.1)†

Insulin (ng/ml) 6.9 (±1.7) 7.6 (±4.2)

Sag. Diam. (cm) 24.1 (±5.3) 27.1 (±4.1)

Waist (cm) 86.6 (±16.1) 98.6 (±6.1)

Hip (cm) 101.6 (±23.8) 113.8 (±8.1)

Thigh (cm) 61.6 (±4.3) 61.8 (±8.2)

Fat (%) 34.5 (±6.9) 32.4 (±12.4)

Lean Mass (kg) 43.9 (±14.5) 65.2 (±12.0)

Fat Mass (kg) 37.9 (±26.1) 31.6 (±13.7)

Presented as mean (±SD).

�Denotes significant group difference (p<0.05)

†Denotes group difference (p<0.10).

BMI–body mass index; FBG–fasting blood glucose; HbA1C - glycosylated hemoglobin; Sag. Diam.–sagittal diameter;

Waist–waist circumference; Hip–hip circumference; Thigh–thigh circumference.

https://doi.org/10.1371/journal.pone.0191331.t001
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(t = 0.352, df = 8, p = 0.734) between groups, representing a similar exercise-induced GH

response for both groups. While body composition measures (including %fat, fat mass, and

lean mass) were not statistically significant between the PD and CON, the apparent increase in

lean mass within the PD group may contribute to these null findings. No differences were

observed for IGF-1 AUC calculations (t = 0.175, df = 8, p = 0.865). Graphical representations

of the measured GH and IGF-1 concentrations are provided in Fig 1. Graphical representa-

tions of glucose and insulin are shown in Fig 2 while TNF-α and IL-6 are presented in Fig 3.

There were no significant group differences in IL-6 AUC (t = 0.713, df = 8, p = 0.496) or TNF-

α AUC (t = 0.713, df = 8, p-value = 0.496) in response to the acute moderate intensity exercise

protocol. No group differences were observed for ΔIL-6 (t = 0.873, df = 8, p = 0.408), TNF-αrec

(t = 0.43994, df = 8, p = 0.672), or IL-6rec (t = 1.44, df = 8, p = 0.1876, ΔTNF-α (t = 0.397,

df = 8, p = 0.702). Coefficient of variation for GH, IGF-1, TNF-α, and IL-6 bioassays were cal-

culated as 8.0±6.5%, 5.9±5.8%, 3.6±4.3 and 5.2±7.6 respectively.

Growth hormone and IGF-1 related mRNA

No differences were observed for GH1 variant 3 (group comparison p = 0.263; time compari-

son p = 0.842) or GH1 variant 5 (group comparison p = 0.117; time comparison p = 0.799).

No effect for time was observed for GH2 variant 2, GH2 variant 3, or GH2 variant 4, however,

group differences for GH2 variant 2 (p = 0.059) and variant 3 (p = 0.070) approached signifi-

cance. A significant interaction between group and time was observed for GH releasing hor-

mone (GHRH) mRNA (p = 0.008) but no effect for group or time were reported for GHRH

receptor (GHRHR) variant 1, or GHRHR variant 2. Somatostatin receptor 2 (SSTR2) was sig-

nificantly different between groups (p = 0.020), however, no differences were observed for any

of the other SSTRs. A near significant interaction between group and time was observed for

GH secretagogue receptor (GHSR) transcript variant 1a (p = 0.061) while no differences were

observed for GHSR variant 1b. Visual presentation of the interaction between group and time

for GHRH and GHSR are provided in Fig 4.

A significant time effect for IGF1 mRNA (p = 0.024) was observed, however, no other dif-

ferences were observed for IGF1 or IGF1 receptor (IGF1R). The interaction between group

Table 2. Individual exercise responses separated by group.

CON PD

Mean (±SD) Mean (±SD)

BP (mmHg) Rest 127/82 (±13/10) 123/71 (±16/14)

Max 137/85 (±19/10) 144/83 (±26/15)

HR (bpm) Rest 72 (±10) 70 (±11)

0–20 146 (±15) 144 (±10)

20–40 154 (±13) 148 (±12)

40–60 156 (±13) 147 (±11)

RPE 5–10 11.3 (±2.2) 10.8 (±2.5)

15–30 11.8 (±2.6) 12.1 (±2.6)

45–60 12.0 (±2.3) 13.0 (±2.4)

O2 110 (±44) 136 (±26)

Kcal 549 (±219) 680 (±128)

Presented as mean (±SD). O2 –total oxygen consumption over the course of the hour long exercise bout–measured by Parvo Medics TrueOne 2400; Kcal–estimated

kilocalorie expenditure calculated based on oxygen consumption; Heart rate–measures taken every five minutes and reported values are averages of those measures per

denoted time frame; RPE–reported values are averages of measures taken denoted time points.

https://doi.org/10.1371/journal.pone.0191331.t002
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Table 3. Gene symbols and p-values for interactions, group, and time effects.

Symbol Definition Int. Group Time

GH1 Growth hormone 1, transcript variant 3 0.263 0.843

GH1 Growth hormone 1, transcript variant 5 0.117 0.799

GH2 Growth hormone 2, transcript variant 2 0.926 0.582

GH2 Growth hormone 2, transcript variant 3 0.059 0.722

GH2 Growth hormone 2, transcript variant 2 0.204 0.354

GH2 Growth hormone 2, transcript variant 4 0.071 0.335

GHRH Growth hormone releasing hormone 0.008

GHRHR Growth hormone releasing hormone receptor, transcript variant 2 0.787 0.568

GHRHR Growth hormone releasing hormone receptor, transcript variant 1 0.869 0.446

GHRHR Growth hormone releasing hormone receptor, transcript variant 2, 0.678 0.873

SST Somatostatin 0.657 0.095

SSTR1 Somatostatin receptor 1 0.504 0.342

SSTR2 Somatostatin receptor 2 0.020 0.986

SSTR3 Somatostatin receptor 3 0.672 0.270

SSTR4 Somatostatin receptor 4 0.359 0.910

SSTR5 Somatostatin receptor 5 0.530 0.694

IGF1 Insulin-like growth factor 1 (somatomedin C) 0.500 0.024

IGF1R Insulin-like growth factor 1 receptor 0.544 0.352

IGFBP1 Insulin-like growth factor binding protein 1 0.850 0.985

IGFBP2 Insulin-like growth factor binding protein 2 0.794 0.226

IGFBP3 Insulin-like growth factor binding protein 3 0.080

IGFBP4 Insulin-like growth factor binding protein 4 0.082 0.117

IGFBP5 Insulin-like growth factor binding protein 5 0.055 0.534

IGFBP6 Insulin-like growth factor binding protein 6 0.382 0.640

IGFBP7 Insulin-like growth factor binding protein 7 0.457 0.059

IGFBPL1 Insulin-like growth factor binding protein-like 1 0.549 0.142

GHSR Growth hormone secretagogue receptor, transcript variant 1a 0.061

GHSR Growth hormone secretagogue receptor, transcript variant 1b 0.567 0.751

GHRL Ghrelin/obestatin preprohormone 0.142 0.205

INS Insulin 0.279 0.769

INSR Insulin receptor, transcript variant 1 0.082

SLC2A4 Solute carrier family 2, member 4 0.020

SLC2A4RG SLC2A4 regulator 0.049 0.662

GYS1 Glycogen synthase 1 (muscle) 0.295 0.624

GYS2 Glycogen synthase 2 (liver) 0.176 0.412

PYGL Phosphorylase, glycogen, liver 0.159 0.573

PYGM Phosphorylase, glycogen; muscle 0.214 0.570

LIPE Lipase, hormone-sensitive 0.343 0.618

LPL Lipoprotein lipase 0.550 0.456

TNF Tumor necrosis factor (TNF superfamily, member 2) 0.559 0.035

TNFRSF1A Tumor necrosis factor receptor superfamily,

member 1A

0.414 0.065

TNFRSF1B Tumor necrosis factor receptor superfamily,

member 1B

0.045 0.373

IL4 Interleukin 4, transcript variant 1 0.537 0.568

IL4 Interleukin 4, transcript variant 2 0.171 0.067

IL4R Interleukin 4 receptor, transcript variant 2 0.015 0.585

IL4R Interleukin 4 receptor, transcript variant 1 0.106 0.048

(Continued)
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and time for IGFBP3 trended toward significance (p = 0.080) and is presented in Fig 4. Simi-

larly, a near significant group difference (p = 0.052) was observed for IGFBP5. Changes in

IGFBP7 trended toward significance over time (p = 0.059). No effect for group or time was

observed for the ghrelin/obestatin (GHRL) encoding gene.

Table 3. (Continued)

Symbol Definition Int. Group Time

IL6 Interleukin 6 0.158 0.205

IL6R Interleukin 6 receptor, transcript variant 1 0.010 0.339

IL10 Interleukin 10 0.058

IL10RA Interleukin 10 receptor, alpha 0.474 0.118

IL10RB Interleukin 10 receptor, beta 0.151 0.511

https://doi.org/10.1371/journal.pone.0191331.t003

Table 4. Post-hoc analyses indicating fold differences for significant interactions, group, and time effects.

p-value Pre Post-1 Post-6 Post-24

Group

GH2 var. 3 0.059 1.059 1.055 � 1.012 1.018

GH2 var. 4 0.071 1.064 � 1.082 �� 1.042 1.057

SSTR2 0.020 1.374 �� 1.588 �� 1.256 1.423 ��

IGFBP5 0.055 1.066 �� 1.055 � 1.005 1.046

SLC2A4RG 0.049 1.153 � 1.213 �� 1.075 1.115

TNFRSF1B 0.045 1.221 �� 1.361 �� 1.210 1.383 ��

IL4R 0.015 1.060 �� 1.123 �� 1.052 1.063

IL6R 0.010 1.185 �� 1.167 �� 1.165 �� 1.120 ��

IL10 0.024 1.767 �� 2.125 �� 1.480 1.577

Time

CON
IGF1 0.024 1.019 1.002 -1.017

IGFBP7 0.059 1.050 -1.125 -1.036

TNF 0.035 -1.18 ♦ 1.029 -1.088

TNFRSF1A 0.065 1.006 1.032 -1.175 ♦
IL4 0.067 -1.023 -1.051 ♦ -1.056 ♦
IL4R 0.048 -1.270 ♦ 1.058 -1.182

PD
IGF1 -1.017 -1.032 -1.096 ff

IGFBP7 1.137 -1.085 -1.047

TNF 1.024 1.177 -1.124

TNFRSF1A 1.064 -1.049 -1.147

IL4 1.007 -1.052 -1.024

IL4R -1.166 -1.025 -1.122

Significance of the overall effect/interaction are presented in the p-value column. Simple comparisons were performed to determine significant group differences at each

respective time point. A significant time effect was followed up with comparisons of fold differences at Post-1, Post-6, and Post-24 to Pre.

�Denotes group differences at respective time point (p<0.10)

��Denotes group differences at respective time point (p<0.05)

ff Denotes difference from Pre for PD (p<0.05)

♦Denotes difference from Pre for CON (p<0.10).

https://doi.org/10.1371/journal.pone.0191331.t004
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Substrate mobilization and transport related mRNA

While a near significant interaction between group and time was observed for insulin receptor

(INSR) mRNA (p = 0.082), no significant effects were observed for insulin (INS) expression.

Neither liver glycogen synthase (GYS1) nor muscle glycogen synthase (GYS2) mRNA was

Fig 1. GH and IGF-1 protein concentrations. Comparison of mean (±SD) protein concentrations of GH and IGF-1 as well as the

corresponding changes in GH and IGR1 mRNA expression between groups at Pre-, Post-1, Post-6, and Post-24. IGF-1 values at Post-1

were not measured. No significant interactions, group, or time effects were observed for mRNA.

https://doi.org/10.1371/journal.pone.0191331.g001
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Fig 2. Glucose and insulin protein concentrations with corresponding INS and INSR mRNA expression between groups. Comparison of mean (±SD)

protein concentrations of glucose, insulin, INS and INSR mRNA expression between groups at Pre-, Post-1, Post-6, and Post-24. No significant group, or

time effects observed for INS. An interaction between group and time for INSR approached significance (p = 0.082) while a significant interaction was

observed for SLC2A4 (p = 0.20).

https://doi.org/10.1371/journal.pone.0191331.g002

Fig 3. TNF-α, IL-6 and corresponding mRNA between groups. Comparison of mean (±SD) protein concentrations and corresponding values of

mRNA expression for TNF-α and IL-6 between groups at Pre-, Post-1, Post-6, and Post-24. No significant group effects were observed for TNF or IL6

mRNA. A main effect for time was observed for TNF mRNA (p = 0.035) but not for IL6 mRNA.

https://doi.org/10.1371/journal.pone.0191331.g003
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differentially expressed between groups or across time. Similarly, no differences in liver glyco-

gen phosphorylase (PGYL) mRNA (p = 0.159) or muscle glycogen phosphorylase (PYGM) (p =

0.176) were observed between groups. Neither lipoprotein lipase (LPL) mRNA (p = 0.550) or

hormone sensitive lipase (LIPE) mRNA (p = 0.343) were different between groups.

Genetic transcripts associated with glucose transport are part of the solute carrier 2 (SLC2)

family. A significant interaction between group and time (p = 0.020) was observed for

SLC2A4, which encodes glucose transporter type 4 (GLUT-4) mRNA and a significant group

effect (p = 0.049) was observed for the SLC2A4 regulator.

Inflammatory related mRNA

Tumor necrosis factor (TNF) mRNA (p = 0.035) was altered across time while differences in

TNF receptor superfamily (TNFRSF) member 1a (TNFRSF1A) trended toward significance

Fig 4. GHRH, GHSR, and IGFBP3 mRNA between groups. Comparison of mean (±SD) mRNA expression for

GHRH, GHSR, and IGFBP3 between groups at Pre-, Post-1, Post-6, and Post-24. (Reported values are log-

transformations).

https://doi.org/10.1371/journal.pone.0191331.g004
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(p = 0.065) across time. TNFRS1B was differentially expressed between groups (p = 0.045) and

a near significant main effect for time was observed for both interleukin (IL) 4 (IL4) variant 2

(p = 0.067) and IL-4 receptor (IL4R) variant 1 (p = 0.050). These findings were coupled with

differential expression of IL4R variant 2 between groups (p = 0.015). While no differences in

IL-6 (IL6) mRNA were observed between groups or across time, a significant group difference

was observed for IL6 receptor (IL6R) variant 1 (p = 0.010); indicating elevated expression of

IL6R mRNA in the PD group compared to CON. This difference was coupled with a signifi-

cant increase of IL10 in PD compared to CON (p = 0.024). No differences in IL10 receptor

(IL10R) alpha (IL10RA) or beta (IL10RB) were reported between groups or across time.

Discussion

With knowledge of physiological differences in GH and IGF-1 secretion in healthy controls

compared to individuals with T2D, the purpose of this study was to examine differences in

exercise-induced gene expression specifically related to the GH and IGF-1 pathways of healthy

and PD AA individuals following an acute bout of moderate intensity exercise. Analysis of GH

AUC and IGF-1 AUC suggests that overall release of both hormones was similar between the

two groups in response to the exercise stimulus. Trends in the mean concentrations of GH fol-

lowing exercise suggest that the exercise-induced GH response may be higher in the PD group

compared to CON. Nevertheless, this observation was not supported by a statistical compari-

son of the exercise-induced GH response immediately post-exercise (ΔGH). The PD group

performed slightly more work (Kcal expended), had slightly higher lean body mass and slightly

lower percent body fat compared to the CON group, all of which could potentially contribute

to slightly higher GH output [32]. This study was designed specifically to investigate changes

in gene expression and the blood sampling paradigm was chosen to maximize the chances of

capturing these changes. We recognize that the lack of a GH profile and pulsatility information

limits the conclusions that can be gleaned from the current exercise-induced GH values and

the comparison of this data to many of the previously published results on exercise-induced

GH responsiveness. Because the timing of the blood draws likely did not catch the exercise-

induced GH increase, we are unable to accurately compare how potential differences in peak

GH output, or the 24-hr GH AUC, may have altered gene expression for GH or inflammatory

related transcripts between PD and CON. However, potentially significant differences in either

of these values would alter the subsequent regulation of gene expression.

While no significant group differences in GH output were observed in the 24-hours follow-

ing exercise, GH2 mRNA was differentially expressed between the two groups. These differ-

ences appear to be present prior-to (Pre) and immediately following exercise (Post-1) with the

PD group having approximately 5% higher expressions of GH2 mRNA compared to CON.

This data suggests that both elevated GH mRNA and GH release may occur in PD compared

to CON in response to an acute exercise stimulus, although these findings should be inter-

preted with caution given the small number of subjects in the current study. As previously

mentioned, the ability of GH to affect insulin sensitivity has been well established [17]. Both

well- and poorly- maintained T2D have shown an altered exercise-induced GH response com-

pared to healthy controls [33–35]. More specifically, diabetics with well-controlled blood glu-

cose (blood glucose values more like healthy individuals), elicited a blunted GH response

compared to individuals with poorly-controlled diabetes [34, 35]. Our findings suggest that

the exercise-induced GH response in PD individuals would more likely correspond to the GH

response observed in individuals with well-controlled diabetes and this is likely due to the fact

that most of these individuals had fasting blood glucose values that were only slightly elevated,

suggesting they were very early in the progression toward T2D. In addition, these observations
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further support the idea that an altered exercise-related GH response in PD precedes altered

resting serum GH concentrations typically seen in T2D [36].

A significant interaction between group and time for GHRH gene expression was coupled

with GH protein concentrations that appeared to be similar between the two groups outside of

the immediate response following exercise. An elevated expression of GHRH in PD during Pre

and Post-1 was paired with elevated expression in CON at Post-24. This suggests that an exer-

cise stimulus differentially effects expression of GHRH mRNA and this difference could be

due to various factors. Since GHRH is the primary pulse generator for GH release, PD individ-

uals may actually have consistently increased output of GH compared to CON or differential

pulsatility profiles for GH. However, because we do not have sustained 24 hour profiles of GH

either in response to the exercise stimulus or in an unstimulated 24-hour period for compari-

son, it is virtually impossible to tell if elevated GHRH mRNA results in significantly more GH

output in PD. Potentially higher GH outputs in the PD group suggests this may be the case,

but further investigation is necessary to confirm this finding. It is also possible that PD pro-

duce more GHRH but that these individuals express alterations in hypothalamic regulatory

mechanisms that inhibit its release or that differences in somatostatin concentrations or sensi-

tivity exist. Of course, as is the case with all assessments of mRNA, increased levels of mRNA

do not automatically result in greater protein expression and it is possible that elevated

destruction of GHRH mRNA or lower rates of translation, necessitate higher levels of GHRH

mRNA in PD to maintain output of GH at the levels needed for proper physiological function.

The increased expression in CON at Post-24 may also represent a preparatory response for

future exercise events and the lack of this response in PD suggests that these individuals are

not responding as expected and mounting the necessary production for future exercise.

Although SST mRNA expression was not different between groups, elevation of SSTR2

mRNA expression in the PD group at Post-1 and Post-24 suggests a counter regulatory feed-

back mechanism may be present. While evidence from this study is inconclusive and measure-

ment of GHRH, somatostatin and somatostatin receptor proteins would be needed before we

could support this theory, an upregulation in SSTR2 in response to an acute bout of moderate

intensity exercise in PD may indicate a shift in sensitivity as a counter regulatory mechanism

to an altered exercise-induced GH response. Ultraradian oscillations in both hypothalamic

GHRH and somatostatin are known to regulate GH secretion [37] and higher concentrations

of somatostatin reduce the responsiveness of pituitary somatotrophs to GHRH. This sensitizes

these somatotrophs to future GHRH release and suggests that while an upregulation of SSTR

may precede an increase in somatostatin receptor protein concentration, the counter regula-

tory mechanisms associated with an altered exercise-induced GH response in PD may para-

doxically increase the sensitivity of the anterior pituitary to future GHRH release [38].

While the findings of IGFBPs are interesting, it is important to consider not only the physi-

ological role related to the extension of the half-life of IGFs [39], but the other roles in biologi-

cal function independent of being bound to IGF-1 [39]. IGFBP-3 is the most abundant IGFBP

in circulation and high IGFBP-3 may be a risk factor for insulin resistance in the development

of T2D [39] irrespective of IGF-1 levels [40]. In addition, low IGFBP-1 and IGFBP-2 coupled

with elevated IGF-1, may represent compensatory mechanisms in response to increasing insu-

lin resistance [39]. We observed non-significant group differences in IGF1 and IGF receptor-1

(IGF1R) mRNA that were coupled with significantly elevated levels of IGF binding protein-5

(IGFBP5) mRNA in the PD group. We also observed a significant interaction between group

and time for IGFBP3 mRNA which may correspond to the previously reported alterations in

IGFBP-3 concentrations in T2D [39]. Wheatcroft and Kearney [41] reviewed the role of IGF-

dependent and IGF-independent actions of IGFBP-1 protein and IGFBP-2 protein on regulat-

ing metabolic homeostasis. Specifically, they discuss the inverse relationship between IGFBP-1
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concentrations and insulin. They also discuss how IGFBP-1 protein concentrations and insu-

lin sensitivity might serve an inhibitory effect of hyperinsulinemia on hepatic IGFBP-1 synthe-

sis from the liver; suggesting IGFBP-1 transcription in insulin resistant individuals is sensitive

to plasma insulin levels. We failed to observe any difference in INS mRNA between groups but

the insulin response following exercise (Post-6) in the PD group may shed light on an interest-

ing relationship between the progression of diabetes and differing glucoregulatory responses

between PD and CON following exercise.

O’Gorman et al. [42] previously observed increases in GLUT4 protein content in T2D indi-

viduals despite that SLC2A4 expression was unchanged following acute or chronic exercise in

either T2D or obese non-diabetic individuals. Exercise training increased insulin-mediated

glucose disposal in the individuals with T2D irrespective of the alterations in the insulin-sig-

naling cascade and GLUT4 protein concentration [42]. The most notable difference between

the samples of O’Gorman et al. [42] and our study were the differences in BMI; the PD group

from our sample matched closely to the non-diabetic obese individuals of O’Gorman et al.,

while our CON group had a notably lower BMI and the T2D group from O’Gorman et al. was

significantly higher (BMI: 35.8). The difference in our observations from those previously

reported may be due to sample size or may suggest that other factors, such as weight and body

fat percentage, may contribute to SLC2A4 expression. While the samples are not directly com-

parable and GLUT-4 protein content was not measured in the current study, we did observe

differentiated expression of SLC2A4. Elevated expression of SLC2A4 at Pre and Post-1 time

points was eliminated at Post-6 and Post-24. Previous evidence indicates that elevated insulin

activity increases transcription of SLC2A4 [43]. While we did observe an increase in insulin at

Post-6 in PD, SLC2A4 gene expression remained similar between PD and CON at both Post-6

and Post-24. Exercise training is known to increase skeletal muscle GLUT-4 concentrations

[44, 45], which quickly translates to skeletal muscle GLUT-4 protein concentrations [46, 47]. It

is difficult to tease apart all the potential influences on SLC2A4 gene expression since individu-

als were allowed to eat after the exercise session (prior to the Post-6 draw) and food consump-

tion was not monitored for the remainder of the day.

While the changes in TNF-α and IL-6 protein were not statistically different between

groups, it does appear as though elevated concentrations of IL-6 were present in the PD group

compared to CON. However, these observations were not corroborated by differences in either

TNF or IL6 mRNA. While the exercise-induced changes in TNF and TNFRSF1A mRNA rep-

resent an increased expression of the inflammatory genes that therein correspond to the

inflammatory response that may be expected in aerobically untrained individuals following an

exercise stimulus, no changes in IL6 mRNA were observed within the 24 hours. Interestingly,

the increased expression of TNFRSF1B in PD further suggests that although TNF-α protein

concentration may be lower in the PD group, they may also have a more sensitive inflamma-

tory response to an exercise stimulus. This is further corroborated by elevated expression of

IL6R mRNA and lower expression of IL4 mRNA in PD compared to CON throughout the 24

hours. Elevations in IL4R were coupled with increased expression of IL10 mRNA. Neverthe-

less, we did not assess protein levels for all these inflammatory markers and thus, we can’t

address the balance of the pro- versus anti-inflammatory profile that resulted in each group

in response to the exercise stimulus. However, it is crucial to point out that the findings of

increased pro-inflammatory and reduced anti-inflammatory gene expression followed the pat-

tern one would expect to see in PD compared to CON given published findings related to

inflammation and diabetes [48].

This study has several limitations. As pointed out earlier, a full GH profile would permit

additional descriptive indices to be compared and for measures of variability and complexity

to be assessed. To adequately address any exercise-induced changes in GH secretion, blood
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samples should be taken at least every 10–15 minutes for 2 hours or more. While the current

analyses indicate that the overall GH response was not different between groups, these findings

are limited by low sample size and poor statistical power that is inherent in a pilot study of this

nature. In addition, these limitations prohibited us from appropriately comparing concentra-

tions of TNF-α and IL-6 between groups and across time. We asked that individuals eat a stan-

dardized breakfast approximately 90–120 minutes prior to arriving at the lab for the exercise

session and that they eat this exact same standardized breakfast prior to arriving at the lab for

the 24 hours post exercise (Post 24) blood draw. We also asked that individuals be at least 2

hours post-prandial for the 6 hour post-exercise blood draw (Post-6). However, we did not

monitor food intake or ask individuals to report foods that were eaten during the 24-hour

period other than the standardized breakfast. Thus, it is possible that some of the gene ex-

pression changes observed in the current study were related to either acute dietary intake dif-

ferences between the groups, or potentially reflected chronic differences in dietary habits

between the 2 groups. While selectively including African American’s into the study was a

methodological decision related to diabetes risk, it limits the generalizability of the findings to

other ethnic groups. Although we expect that similar patterns would exist across all ethnicities,

genetic differences that increase susceptibility for various diseases in certain ethnic groups

may further compound the signaling differences between PD and healthy controls in response

to exercise. In addition, we recognize that the differences between the 2 groups may be limited

by several other factors; 1) individuals in the pre-diabetes group were screened in to this group

based on one fasting blood glucose value only, 2) none of these individuals had ever been told

they were pre-diabetic by a physician suggesting that the PD individuals in our study were in

the beginning of the disease process and 3) family history for T2D was similar between the 2

groups.

In summary, we observed elevated levels of GH2 mRNA in the PD before and immediately

following exercise that do not directly correspond to the observed changes in GH protein con-

centrations. While our findings, from a statistical perspective, indicate that the GH and IGF-1

protein response to an acute bout of exercise did not differ between groups, additional studies

are warranted. The seemingly incongruent findings between GH and IGF-1 related mRNA

expression and the GH and IGF-1 protein concentrations observed in the blood, pose in-

teresting questions regarding the regulatory mechanisms associated with these transcripts in

response to an acute exercise bout. While the regulation of associated proteins may not repre-

sent physiologic strain, the differences in associated mRNA do suggest that some stressor, pos-

sibly the pre-diabetic state, moderates resting and exercise-related effects on GH-axis gene

expression. Given the known benefits of exercise for treating and managing T2D, these find-

ings further highlight the important role that exercise plays in the treatment of this disease.

Furthermore, these findings provide context to how a 60-minute moderate-intensity exercise

affects disease-related physiological mechanisms at the lowest levels of physiological organi-

zation. Additional research is warranted and we recommend that specific research questions

target how different exercise intensities and durations affect gene expression in T2D. For

instance, it may be that different types of exercises are more beneficial to mitigating the effects

of disease in this population. Such findings would provide evidence to support changing/

adapting current guidelines to more dynamically target the treatment of disease through

exercise.
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