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INTRODUCTION
The Salinity Processes in the Upper-
ocean Regional Study 2 (SPURS-2) field 
campaign was an international, multi- 
investigator project that took place in 
the eastern tropical Pacific Ocean during 
2016–2017 (Figure 1a). It was designed as 
a complement and follow-on to SPURS-1, 
which was conducted in the subtropi-
cal North Atlantic in 2012–2013. Results 
from SPURS-1 can be found in the March 
2015 issue of Oceanography (Lindstrom 
et  al., 2015). The purpose of SPURS-2 
was to study the dynamics of the rainfall-​
dominated surface ocean at the western 
edge of the Eastern Pacific Fresh Pool 
(Alory et  al., 2012), a region character-
ized by high seasonal variability (Fiedler 
and Talley, 2006; Guimbard et al., 2017) 
and subject to strong zonal flows associ-
ated with the North Equatorial Current 
and Counter Current (Kessler, 2006). The 
campaign sought to address the ques-
tions: How does the ocean integrate the 
freshwater forcing and destroy variance 
created at the surface? What are the local 
and non-local effects of freshwater flux 
on the ocean? More detailed information 
about SPURS-2 can be found in SPURS-2 
Planning Group (2015), Lindstrom et al. 
(2017), and in articles in this special issue 
of Oceanography.

The SPURS-2 field campaign consisted 
of a large variety of autonomous, drifting, 
ship-based, and moored in situ instru-
mentation. Some of the instruments were 
standard (e.g.,  CTDs) and others very 
unusual or innovative (e.g.,  SEA-POL 
radar and saildrones). The activity was 
centered at a main mooring located near 
10°N, 125°W, and two other moorings 
were deployed to the north and south 
(Figure 1b). 

Two ships visited the SPURS-2 site, 
R/V Roger Revelle (Table 1) operated by 
Scripps Institution of Oceanography, 
and the schooner Lady Amber. There 
were two cruises on Revelle in August–
September 2016 and October–November 
2017 (Table 1 and Figure 1a,b).

Lady Amber is a 20 m long twin-masted 
schooner, outfitted with a thermosa-
linograph and meteorological instru-
mentation (Rainville et  al., 2019, in this 
issue). It represents a proof-of-concept 
for the NASA Physical Oceanography 
Program’s exploration of new avenues 
for conducting oceanographic research 
in an environment constrained by cost 
and high demand for major research ves-
sel time. Perhaps it could be considered 
a throwback to an earlier era of oceano-
graphic research. Lady Amber visited the 
SPURS-2 site several times during the 

yearlong field campaign, (see Rainville 
et al., 2019, in this issue), whereas Revelle 
was only able to visit the site at the begin-
ning and end. Lady Amber was used for 
light deployment and recovery of instru-
ment platforms as well as coordinated 
scientific activities with the larger and 
more mobile and capable Revelle.

The SPURS-2 field campaign was 
extensive in its scope, innovative in its 
approach, diverse in its participation, and 
heterogeneous in its methods. The pur-
pose of this paper is to give an overview 
of the various component data sets that 
were collected during the program. Many 
of these data sets are described more fully 
elsewhere, but it is useful to put all of this 
information into one place to empha-
size the degree of unity and coordination 
that went into the field program. In addi-
tion, we gathered all of the data set DOIs 
into one table (Table 2) to allow readers 
access to the full suite of data. Lastly, we 
describe an interactive online tool that 
is designed to actively explore the rela-
tionships among SPURS-2 data sets. This 
tool also includes links to additional con-
textual information such as posts from 
the cruise blog.

DATA ELEMENTS
The full list of SPURS-2 data sets 
(Table 2) shows the collection’s hetero-
geneity. SPURS-2 was unique in the 
use of innovative sensors and platforms 
coordinated with more traditional ones. 
The innovative sensors and platforms 
included saildrones (Zhang et al., 2019, in 
this issue), Lady Amber (Rainville et  al., 
2019, in this issue), the salinity snake, the 
surface salinity profiler (Drushka et  al., 
2019, in this issue), and the SEA-POL 
radar (Rutledge et al., 2019, in this issue), 
plus a dedicated regional modeling system 
(Li et al., 2019, in this issue). The tropical 

ABSTRACT. This paper describes the large, diverse set of in situ data collected during 
the Salinity Processes in the Upper-ocean Regional Study 2 (SPURS-2) field campaign. 
The data set includes measurements of the ocean, atmosphere, and fluxes between 
atmosphere and ocean; measurements of the skin surface layer, bulk mixed layer, and 
deeper water; (mostly) physical, chemical, and biological measurements; and ship-
based, mobile drifting/floating, and moored observations. We include references detail-
ing the methods for collection of each data set, provide DOIs for accessing the data, 
and note some papers in this special issue that use them. To facilitate broader access to 
SPURS-2 data and information, we created an online tool that allows users to explore 
data sets organized by various categories (e.g., instrument type, mobility, depth). This 
tool will complement content available from the Physical Oceanography Distributed 
Active Archive Center (PO.DAAC) and will be highly engaging for visual learners.

FACING PAGE. All photos, except as noted, courtesy of Eric Lindstrom. Abbreviations are defined in Box 1. Middle set of photos, starting at the top left, 
proceeding clockwise and spiraling inward: (1) SEA-POL radome installed on R/V Revelle for cruise 2. Also visible are the laser for the CFT in front of 
radome and the radiometer for the ROSR to the right. (2) Janet Sprintall (pointing) and some members of her group watching a display during a CTD 
cast on Revelle cruise 1. (3) Two yellow Seagliders in the foreground and a neutrally buoyant float in the background before deployment on Revelle 
cruise 1. (4) Two gray and white PICO moorings on the aft deck of Revelle, one about to be deployed. (5) A radiosonde about to be launched. (6) A front 
view of the SSP secured on deck. (7) The LA. (8) A Wave Glider being deployed from Revelle. (8) Flotation for the central mooring being prepared for 
deployment on the aft deck of Revelle. (9) A nighttime view of some of the meteorological instrumentation on the bow of Revelle (photo courtesy of 
Julian Schanze). (10) The central mooring.



Oceanography |  Vol.32, No.2144

Pacific, particularly in this region, is a dif-
ficult place to sample. Currents are strong 
and highly variable, both on seasonal and 
shorter timescales (Guimbard et al., 2017; 
Melnichenko et  al., 2019, in this issue). 
This fact renders traditional Lagrangian 
methods less effective, as drifters placed 
into the region have very short residence 
times. The Lagrangian frame experi-
ment, making use of Seagliders and Wave 
Gliders to follow the motion of a neu-
trally buoyant float (Shcherbina et  al., 
2019, in this issue), was set up to finesse 
this issue. Heavy rainfall, the principal 
reason for conducting SPURS-2 in this 
region, is patchy and difficult to sam-
ple, necessitating the use of sophisti-
cated rain radar (Rutledge et  al., 2019, 
in this issue). Surface-intensified fresh
water lenses are the principal mechanism 
by which this heavy rainfall gets incor-
porated into the bulk mixed layer and 
spread across the Pacific basin (SPURS-2 
Planning Group, 2015). These layers, gen-
erally not more than a couple of meters 
thick and transient, last on the of order 

hours or less and are small in horizon-
tal scale, no more than a few kilometers 
(Drushka et al., 2019, and Schanze et al., 
2019, both in this issue). This motivated 
the use of rain radar, along with high ver-
tical resolution sampling of surface layers 
in the wakes of rain events. These obser-
vations could then be related back to sat-
ellite measurements of sea surface salinity 
(SSS) made by Soil Moisture and Ocean 
Salinity (SMOS) and Soil Moisture Active 
Passive (SMAP) satellites (Supply et  al., 
2018). This gives us an improved under-
standing of the surface signature being 
resolved by these satellite missions and 
provides a better sense of what satellite 
data can tell us about this and other simi-
lar rainfall-​dominated regions.

Scientists wishing to use the data col-
lected during SPURS-2 are urged, if 
possible, to cite directly the individ-
ual data sets they use (e.g.,  Drushka, 
2018). This issue is undergoing a spirited 
debate in the world of science publish-
ing (http://www.copdess.org/enabling-
fair-data-project/enabling-fair-project-

overview/). We believe that in the future 
data sets will be acknowledged by such 
citations. If a particular journal does not 
allow this kind of data set citation, those 
using these data should endeavor to find 
and cite the most appropriate reference. 
Table 2 gives a place to start that search.

For the sake of organization, the ele-
ments of Table 2 are divided loosely 
into categories as to how deep they mea-
sure; whether they are drifting, fixed 
(moored), mobile, or ship-based; and 
whether they are physical, chemical, or 
biological. Several papers in this special 
issue of Oceanography have made exten-
sive use of these data as can be seen in the 
References column.

DATA SET EXPLORATION TOOL
The information in Table 2 has also been 
organized into an ontology, which is a col-
lection of encoded terms and relationships 
used in computer sciences (Antoniou and 
van Harmelen, 2004). Ontologies can be 
visualized to illustrate complex concep-
tual relationships, for example, between 

TABLE 1. Information about R/V Revelle cruises.

Cruise 
Number

Departure Date/ 
Port

Completion Date/
Port

UNOLS Cruise 
Designation Data URL* Chief Scientist 

(Institution)

1 August 13, 2016/ 
Honolulu, HI

September 23, 2016/  
Honolulu, HI RR1610 http://www.rvdata.us/catalog/RR1610 A. Jessup (UW APL)

2 October 16, 2017/ 
San Diego, CA

November 17, 2017/  
San Diego, CA RR1720 http://www.rvdata.us/catalog/RR1720 K. Drushka (UW APL)

*This column shows where some of the processed shipboard data can be accessed.

FIGURE 1. Tracks of R/V Revelle for cruise 1 (blue) and cruise 2 (red). See Table 1 for cruise dates. Boundaries for panel b are shown in panel a by a dot-
ted line. The black “X” marker in panel b is the nominal location of the central mooring (Table 2, #s 27–30) and green “X”s are the locations of the north 
and south PICO (Platform Instrumentation for Continuous Observations) moorings (Table 2, #s 23–26).
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Table 2 forms the heart of this paper, listing the 
individual SPURS-2 data sets. Because many of the 
data sets were not finalized by the time of submis-
sion of this paper, the DOIs given in Table 2 may 
not be active immediately. We plan to maintain an 
updated version of this table at the SPURS archive 
website, https://podaac.jpl.nasa.gov/SPURS.

TABLE 2. Information about individual SPURS-2 data sets. “Revelle-1”/”Revelle-2”  
refers to data sets associated with the first/second R/V Revelle cruise (Table 1). 

O/A/F: O = Ocean; A = Atmosphere; F = Ocean-Atmosphere Flux

P/C/B: P = Physical; C = Chemical; B = Biological; Pc = Currents;  
Pt = Temperature/Salinity; Pw = Waves

D/F/M/S: D = Drifting; F = Fixed; M = Mobile; S = Ship-Based

S/T/D: S = Skin (<2 cm); T = Top (2 cm–6 m); D = Deep

# Data Set Name and DOI Institution1 O/A/F P/C/B D/F/M/S S/T/D References2

1,2
Revelle-1 and -2 ADCP 150 kHz BB
https://doi.org/10.5067/SPUR2-ADCP0

SIO O Pc S D

3,4
Revelle-1 ADCP 150 kHz NB
https://doi.org/10.5067/SPUR2-ADCP0

SIO O Pc S D

5,6
Revelle-1 ADCP 75 kHz NB
https://doi.org/10.5067/SPUR2-ADCP0

SIO O Pc S D

7,8
Revelle-1 and -2 CTD
https://doi.org/10.5067/SPUR2-CTD00

SIO O Pt S D

9,10
Revelle-1 and -2 XBT
https://doi.org/10.5067/SPUR2-XBT00

SIO O Pt S D

11,12
Revelle-1 and -2 uCTD
https://doi.org/10.5067/SPUR2-UCTD0

SIO O Pt S D
Ullman and Hebert, 2014;  
Sprintall, 2019

13,14
Revelle-1 and -2 underway/USPS
https://doi.org/10.5067/SPUR2-USPS0

UW APL O Pt S T
Asher et al., 2014a;  
Drushka et al., 2019

15
Argo floats
https://doi.org/10.5067/SPUR2-ARGO0

UW APL O Pct D D Riser et al., 2019

16
PALS on floats and moorings
https://doi.org/10.5067/SPUR2-PALS0

UW APL F D, F Yang et al., 2015

17
Wave Gliders
https://doi.org/10.5067/SPUR2-GLID3

WHOI O, A, F Pt M T

18
Seagliders
https://doi.org/10.5067/SPUR2-GLID1

UW APL O Pt M D Eriksen et al., 2001

19
SVP-S drifters
https://doi.org/10.5067/SPUR2-DRIFT

SIO O Pct D T

Hormann et al., 2015;  
Lindstrom et al., 2017;  
Centurioni, 2018;  
Volkov et al., 2019

20
Surpact drifters
https://doi.org/10.5067/SPUR2-DRIFT

L’OCEAN O, F Pct D T Reverdin et al., 2013

21
Revelle-2 CODE drifters
https://doi.org/10.5067/SPUR2-DRIFT

SIO O Pct D T Centurioni, 2018

22
Revelle-2 ADOS drifter
https://doi.org/10.5067/SPUR2-DRIFT

SIO O Pct D T Centurioni, 2010, 2018

23
North PICO mooring meteorological
https://doi.org/10.5067/SPUR2-MOOR2

PMEL A, F F Freitag et al., 2018

24
South PICO mooring meteorological
https://doi.org/10.5067/SPUR2-MOOR2

PMEL A, F F Freitag et al., 2018 

25
North PICO mooring CTD
https://doi.org/10.5067/SPUR2-MOOR2

PMEL O Pt F T, D Osse et al., 2015

26
South PICO mooring CTD
https://doi.org/10.5067/SPUR2-MOOR2

PMEL O Pt F T, D Osse et al., 2015

27
Central mooring meteorological
https://doi.org/10.5067/SPUR2-MOOR1

WHOI A, F F Clayson et al., 2019

28
Central mooring CTD
https://doi.org/10.5067/SPUR2-MOOR1

WHOI O Pt F T, D
Farrar and 
Plueddemann, 2019

Table continued on next page…

https://podaac.jpl.nasa.gov/SPURS
http://dx.doi.org/10.5067/SPUR2-ADCP0
http://dx.doi.org/10.5067/SPUR2-ADCP0
http://dx.doi.org/10.5067/SPUR2-ADCP0
http://dx.doi.org/10.5067/SPUR2-CTD00
http://dx.doi.org/10.5067/SPUR2-XBT00
http://dx.doi.org/10.5067/SPUR2-UCTD0
http://dx.doi.org/10.5067/SPUR2-USPS0
http://dx.doi.org/10.5067/SPUR2-ARGO0
http://dx.doi.org/10.5067/SPUR2-PALS0
http://dx.doi.org/10.5067/SPUR2-GLID3
http://dx.doi.org/10.5067/SPUR2-GLID1
http://dx.doi.org/10.5067/SPUR2-DRIFT
http://dx.doi.org/10.5067/SPUR2-DRIFT
http://dx.doi.org/10.5067/SPUR2-DRIFT
http://dx.doi.org/10.5067/SPUR2-DRIFT
http://dx.doi.org/10.5067/SPUR2-MOOR2
http://dx.doi.org/10.5067/SPUR2-MOOR2
http://dx.doi.org/10.5067/SPUR2-MOOR2
http://dx.doi.org/10.5067/SPUR2-MOOR2
http://dx.doi.org/10.5067/SPUR2-MOOR1
http://dx.doi.org/10.5067/SPUR2-MOOR1
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# Data Set Name and DOI Institution1 O/A/F P/C/B D/F/M/S S/T/D References2

29
Central mooring velocity
https://doi.org/10.5067/SPUR2-MOOR1

WHOI O Pc F T, D
Farrar and 
Plueddemann, 2019

30
Central mooring direct covariance flux
https://doi.org/10.5067/SPUR2-MOOR1

WHOI F F Clayson et al., 2019

31
Revelle-2 WAMOS waves
https://doi.org/10.5067/SPUR2-WAMOS

UW APL O Pw S T

32,33
Revelle-1 and -2 X-band radar imagery 
and derived rain intensity
https://doi.org/10.5067/SPUR2-XBAND

UW APL F S Thompson et al., 2019

34
Neutrally buoyant float
https://doi.org/10.5067/SPUR2-NBFLT

UW APL O Pct D T, D
D’Asaro, 2003;  
Lindstrom et al., 2017;  
Shcherbina et al., 2019

35
Lady Amber underway
https://doi.org/10.5067/SPUR2-LAMBR

UW APL O, A, F Pt S T Rainville et al., 2019

36
Revelle-2 Ecomappers
https://doi.org/10.5067/SPUR2-ECOMP

WHOI O Pt M T, D
Hodges and
Fratantoni, 2014

37
Revelle-2 underway biology and optics
https://doi.org/10.5067/SPUR2-BIONT

ODU O B S S, T Olson and Sosik, 2007

38
Revelle-2 profile biology and optics
https://doi.org/10.5067/SPUR2-BIONT

ODU O B S T, D Olson and Sosik, 2007

39
Saildrones
https://doi.org/10.5067/SPUR2-SDRON

PMEL O, A, F M T Zhang et al., 2019

40
Revelle-1 rawinsondes
https://doi.org/10.5067/SPUR2-SONDE

WHOI A S Clayson et al., 2019

41
Revelle-2 rawinsondes
https://doi.org/10.5067/SPUR2-SONDE

CSU A S Ciesielski, 2018

42,43
Revelle-1 and -2 meteorological
https://doi.org/10.5067/SPUR2-MET00

WHOI A, F S Clayson et al., 2019

44,45
Revelle-1 and -2 salinity snake
https://doi.org/10.5067/SPUR2-SNAKE

ESR O Pt S S

46,47
Revelle-1 and -2 ROSR
https://doi.org/10.5067/SPUR2-ROSR0

UW APL O Pt S S
Remote Measurements  
& Research, 2015

48,49
Revelle-1 and -2 CFT
https://doi.org/10.5067/SPUR2-CFT00

UW APL F S S Asher et al., 2004

50,51
Revelle-1 and -2 underway pCO2, DIC, 
and pH
https://doi.org/10.5067/SPUR2-WQAL

UH O C S S

Ho et al., 1997;  
Pierrot et al., 2009;  
Friederich et al., 2002;  
Martz et al., 2010

52,53
Revelle-1 and -2 A-sphere
https://doi.org/10.5067/SPUR2-ASPHER

WHOI F S

54
Revelle-2 SEA-POL rain radar
https://doi.org/10.5067/SPUR2-RNRDR

CSU A, F S
Rutledge et al., 2019;  
George et al., 2018

55,56
Revelle-1 and -2 SSP
https://doi.org/10.5067/SPUR2-SSP00

UW APL O Pt S S, T
Asher et al., 2014a,b;  
Drushka et al., 2019

57
Synthesis rain product3

https://doi.org/10.5067/SPUR2-SNTH0
UW APL F S

58
Synthesis SSS product3

https://doi.org/10.5067/SPUR2-SNTH0
UW APL O Pt F

1	 See Box 1 for a list of abbreviations. 
2	The list of references gives references to the methods associated with the measurement and papers in this special issue that make use of the data.  
	 More information may be available in the archived data file at the given DOI. 
3	 The nature of these products is not certain as of the publication date of this paper.

TABLE 2. Continued from previous page…
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will re-center and update the display; for 
example, “Ship-Based” would be encir-
cled by all the data sets marked as “S” in 
the sixth column of Table 2.

The data exploration tool also connects 
to additional SPURS-2 content, including 
data sources and detailed descriptions of 
instruments. This technical information is 
augmented by links to pertinent content 
on the SPURS-2 blog, hosted by the NASA 
Earth Observatory (Figure 4). Informative 
and entertaining, this extensive blog cap-
tures not only the stories behind SPURS-2 
data acquisition but also provides insights 

Surface 
Salinity 
Pro�ler

Temperature 
and SalinityMeasures

TERM TERMRELATIONSHIP
FIGURE 2. An example of a link between 
terms in the SPURS-2 ontology. When 
viewed in the data exploration tool, the 
relationship between terms is described 
by a linking phrase (“measures”).

Within this online tool, the ontology is 
viewed as interactive objects whose rela-
tionships are depicted as labeled arrows 
(Figure 2). As a result, the tool has flex-
ible starting points and no “dead ends,” 
enabling self-directed exploration of the 
SPURS-2 data collection. Figure 3 shows 
an expanded view of the term “surface 
salinity profiler,” as presented by the data 
exploration tool. This visualization allows 
users to quickly grasp how this particular 
instrument fits into the bigger picture of 
the SPURS-2 campaign. In the live tool, 
clicking on any of the peripheral terms 

oceanographic instruments, data types, 
and underlying scientific concepts 
(deCharon et  al., 2015). Information 
about SPURS-2 data sets has been cate-
gorized into a set of terms. Relationships 
between these terms have been mapped 
using five mathematical symbols (>, <, =, 
~, ≈). In turn, the meaning of each sym-
bol has been translated to phrases. These 
terms and their relationships are visual-
ized via a customized data exploration 
tool developed for SPURS-2 that can be 
accessed at https://salinity.​oceansciences.
org/​science-​spurs-​datatool.htm.

FIGURE 3. An expanded view of the 
visualized ontology based on a user 
click of the term “Surface Salinity 
Profiler.” Properties measured by 
the central term (e.g.,  “Top,” “Skin,” 
“Ocean,”) are placed at the ends of 
arrows. Conversely, arrows associ-
ated with broader categories (“Ship-
Based”) lead to the central term. An 
image (lower left), a description of a 
data set, and a blog post link (lower 
right) provide context to enhance 
the user’s understanding.

https://salinity.oceansciences.org/science-spurs-datatool.htm
https://salinity.oceansciences.org/science-spurs-datatool.htm
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into the individuals, teams, and skills 
needed to investigate salinity-related pro-
cesses at the ocean surface. 

ARCHIVING AND DISTRIBUTION
Efforts are ongoing among SPURS-2 PIs to 
complete the production of finalized data 
sets. Once these data sets are produced, 
they will be packaged with appropriate 
metadata and placed into a permanent 
archive at PO.DAAC at the Jet Propulsion 
Laboratory. The available files will be in 
netCDF format and CF-compliant con-
sistent with the NOAA National Centers 
for Environmental Information in situ 
standard templates (https://www.nodc.
noaa.gov/data/formats/netcdf/v2.0/). The 
URL for SPURS-1 and -2 at PO.DAAC 
is https://podaac.jpl.nasa.gov/SPURS. In 
addition to the data that are searchable 
and accessible via a range of tools and 
services, there is a list of available SPURS-
related publications, reports, and artifacts 
for these field campaigns. 
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