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To test the hypothesis   that voluntary alpha   control is at least 

partly mediated through self-induced changes   in cortical activation 

level and bodily arousal,  changes  in several physiological indicants 

of such activity were systematically examined while  subjects volun- 

tarily produced and suppressed  alpha activity.    Physiological indicants 

consisted of cortical evoked potentials,   eye motor activity, neck EMG, 

and skin conductance. 

Three male and three female subjects were pretrained to a 

specified  criterion to produce and suppress alpha activity, using 

auditory  feedback.     Following pretraining, each subject participated 

in four experimental sessions  under instructions  to  either produce or 

suppress alpha while keeping his eyes  closed.     Each session consisted 

of eight  alternating  three-minute trials of high and low alpha condi- 

tions with rest  intervals between trials. 

During each session EEG activity was recorded monopolarly  from 

the occiput with the  reference electrode on the right  earlobe.     Fil- 

tered,  integrated EEG consisting of alpha activity only,  drove a fre- 

quency-modulated power driver connected to a speaker which provided 

continuous  feedback in terms of the pitch of a tone.     Cortical evoked 

potentials based on the presentation of 100  irregularly presented 

light  flahses per  trial were recorded with a Computer of Average 

Transients.     Using  the appropriate Grass Model 7 preamplifiers,  skin 

conductance was   recorded from the  first and third   fingers of the  left 

hand;  EMG from the trapezius neck muscle,  and eye motor activity with 

electrodes placed diagonally across the eyes. 



■■ 

The cortical evoked potentials   reflecting visual attention 

and degree of cortical activation differed  consistently between the 

high and low alpha conditions.     The peripheral physiological measures 

of  eye motor activity,  EMG, and skin  conductance provided further 

evidence that subjects were more highly activated during the low alpha 

condition.     In general the results of  the experiment  support  the 

notion that alpha control is partly mediated  through self-induced 

changes  in  cortical activation and bodily arousal. 
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CHAPTER  I 

INTRODUCTION 

Much research has been devoted to the alpha rhythm,  usually defined 

as  the  frequency band of 8-13  c/sec in the EEC    Historically,   investi- 

gators  in the areas of neurophysiology,  physiology,   and physiological 

psychology have studied  this neuro-electrical activity most   intensively. 

However,   in recent years psychologists  in the areas  of operant  condi- 

tioning  and personality have become interested  in such activity in view 

of  preliminary reports by Kamiya and his associates   (Kamiya,   1968,  1969; 

Nowlis & Kamiya,   1970)   that human subjects  could learn to  control 

these waveforms with operant  techniques,  and that  certain subjective 

moods accompany this control.     Studies by Kamiya indicated that human 

subjects   could control their alpha activity when provided with visual 

or auditory feedback correlated with the amount of alpha activity in 

their EEC     The feedback mechanism can be considered  either in terms of 

a  cybernetic control system  (e.g., Gaardner,   1971)  or in terms of rein- 

forcement  in an operant   conditioning paradigm.     The operant model sug- 

gests  control procedures  that  could determine the efficacy of  the feed- 

back technique  in actually altering alpha activity. 

Beatty   (1971)  has  examined the question of whether feedback, per 

se,   is   the effective factor in altering  alpha, by manipulating the con- 

tingency of such feedback on EEG output  level.    He employed a yoked 

control procedure wherein he trained his   experimental subjects  to in- 

crease differentially the abundance of alpha  and beta  (above 13 c/sec) 

frequency bands when auditory  feedback was contingent on their EEG 



activity.     The yoked  control group   receiving  feedback which was noncon- 

tingent  in relation to  their own EEG output  levels   (being the recorded 

feedback of their matched experimental subjects)  failed to show any 

diffarence in their EEG activity between  the alpha  and beta conditions. 

These results  suggest  that some kind of contingent sensory feedback is 

necessary  in order  for subjects to gain control over  their alpha activ- 

ity. 

Other studies have confirmed the  fact that with contingent feed- 

back subjects can learn to gain bidirectional control of alpha,  either 

increasing or decreasing alpha at specified times   (Beatty,   1972; Dewan, 

1967; Hart,   1968;  Kamiya,   1968,   1969; Mulholland & Evans,   1965; Nowlis & 

Kamiya,   1970).     Having well established  the fact that alpha level can 

be brought under voluntary control,   investigators have been concerned 

with methodology and  techniques   to enhance the efficiency with which 

such  control is   attained.     Thus,  investigators have studied  the effects 

of:     (a)   eyes open vs.   eyes closed on alpha production with either con- 

tinuous  or binary   (discrete)   feedback   (Travis, Kondo,  & Knott,  1974); 

(b) auditory feedback by means  of presentation of a tone vs.   termina- 

tion of  an ongoing tone for  criterion alpha   (Hord & Barber,  1971); 

(c) instructional information vs.  auditory feedback  (Beatty,   1972); and 

(d) various  control procedures  such as  irrelevant feedback,  no feedback, 

and yoked   controls.     While the  conditions under which individuals can 

gain some  control of  their alpha activity have been intensively 

studied,   researchers  in this  area have virtually  ignored the   fundamental 

issue of  exactly what producing   alpha does  for the individual,  as well 



as  the nature and scope of any physiological and psychological changes 

which accompany alpha production. 

Despite  the  lack of definitive evidence, individuals  in thera- 

peutic settings have proposed the use of alpha training  in treating 

certain kinds of behavior problems,  in view of reports of pleasure, 

relaxation,   and increased awareness accompanying alpha production 

(Kamiya,  1968;  Nowlis   & Kamiya,  1970).     If  it  can be reliably demon- 

strated that  a dominant alpha state is associated with lower levels of 

affective arousal and a  "relaxation of normal perceptual and cognitive 

control"   (Nideffer,  1972,  p.   179),  then the use of training procedures 

to enhance voluntary alpha  control might  indeed be valuable in a vari- 

ety of therapeutic procedures.    Based perhaps more on hope  than on 

empirical evidence of its  potential effectiveness, Nideffer   (1972)  has 

suggested voluntary alpha  control training for schizophrenics as  a 

means to reduce hypothesized stimulus overload.    Budzynski and Stoyva 

(1972)  have  employed  alpha feedback training in behavior  therapy in an 

attempt  to help a patient regain a state of calm after an anxiety epi- 

sode in a desensitization program.     Alpha enhancement has been used 

(unsuccessfully)   as a treatment  for pain by Gannon and Sternbach  (1971) , 

with the rationale that a high alpha state and pain are incompatible. 

Judging  from these and similar kinds  of  reports,  the effectiveness of 

alpha control   training as a therapeutic device has not yet been clearly 

demonstrated. 

The actual evidence for a particular subjective state accompany- 

ing alpha is  inconsistent.    Although Brown  (1970,  1971)  provides more 



(and stronger)   support  for the  reported subjective  feelings of  the 

Kamiya studies,  expectancy and demand characteristics of  the  experi- 

mental situations were not adequately controlled  (see Lynch  & Paskewitz, 

1971).     Paskewitz,   Lynch,  Orne,   and CosCello   (1970)   observed  that sub- 

jects  resting in total darkness  failed  to report any of the pleasant 

characteristics of the "alpha experience" though they were at   the time 

producing  large amounts of alpha.     In a well-controlled study, Beatty 

(1972)   found conflicting subjective reports when subjects were unin- 

formed as   to the affective states associated with alpha.     Only subjects 

who were informed,   "presumably because of their initial biases,  re- 

ported the  typical  correlates of brain alpha rhythms—relaxation,  calm- 

ness,  inner awareness,  etc."   (p.   153).     In a more recent  study, Walsh 

(1974)   found that  alpha feedback and alpha instructions  individually 

had no effect on reported subjective responses.     Rather,  the two vari- 

ables  interacted in such a way that  for alpha experiences   to be re- 

ported  alpha activity had to be present  in the EEG,  and the appropriate 

cognitive set or expectation had  to be induced.     "Either  alone is  a 

necessary but not a sufficient  condition  for the experience of  the 

'alpha state'   "   (p.   433). 

Apparently  the psychological effects of producing alpha activity 

depend on what the  individual expects.     If biofeedback of alpha  acti- 

vity  is  to have any direct practical applications research is now 

needed  to determine whether particular physiological events are associ- 

ated with alpha production.    Without entering the controversy of 

whether feedback is  theoretically a reinforcer or a source of 



information apart  from reinforcement, one  can use the feedback techni- 

que as a means  of  investigating the nature of the physiological corre- 

lates of voluntarily  induced changes  in alpha level.     Training subjects 

to produce and  suppress  alpha activity would permit  systematic investi- 

gation of   any physiological  concomitants of  alpha vs. non-alpha states. 

Much of  the psychophysiological  research reported in the litera- 

ture has  dealt with factors  affecting alpha blocking,   those factors 

including  level of  arousal and/or visual activity.     Special emphasis 

has been  given to the effects of visual attention on alpha blocking, 

since alpha activity is most dominant at and probably originates  in 

the occipital lobe of   the brain.     In relation to visual motor  activity 

and acuity Oswald (1957,  1959)   reported that a loss of ocular fixation 

and accommodation is  accompanied by an increase in the dominance of  the 

alpha rhythm  (when the subject  is engaged in a task that demands  audi- 

tory alertness).     Hord, Naitoh,  and Johnson   (1972)   found slow frontal 

EEG activity,  due primarily to eye movements,  to be less intense during 

self-regulated high alpha activity than during baselines.     The  results 

of these studies suggest that ocular  fixation,  accommodation,  and eye 

movements  are associated with,   if not actively involved in the produc- 

tion of,   low-  or non-alpha states.    More direct evidence in support of 

this   conclusion is provided by the following studies.     Lehtonen and 

Lehtinen  (1972)   found ocular fixation or events  related to fixation to 

interfere actively with  the  alpha rhythm.    When subjects were instructed 

to fixate on  a spot  in an otherwise uniform visual field,  enduring 

desynchronization was observed   (eye-position or   fixation was  not 



directly measured) .    Visual perception and attention   (flash counting) 

did not  interfere with the alpha rhythm.     In an EEG study involving 

the concurrent  electro-oculographic recording of eye movements   (EOG) , 

in conjunction with subjects'   reports  of  subjective  clarity or appar- 

ent  clearness of  the target, Mulholland and  Peper  (1971)   reported  that 

alpha attenuation or blocking was not  due to "'visual attention' but 

to processes of fixation,   lens accomodation,   and pursuit  tracking" 

(p.   556).     The conclusion that alpha blocking occurred only with oculo- 

motor change was  based on the authors'   inference that   "visual attention' 

remained relatively constant between tasks that differed only  in  the 

presence or absence of oculomotor activity.     However,  they had no 

direct measure of visual attention,  and such a measure    would seem 

necessary before  its influence on alpha  activity  can definitely be 

ruled out.     The visually evoked potential would seen to be a good can- 

didate  for monitoring shifts  in visual attention,  given its  established 

relationship to attentional processes   (Donchin 5. Cohen,   1967; Eason, 

Harter,   & White,  1969). 

Long before the  relationships between EPs and attentional pro- 

cesses were established,  the alpha rhythm was  recognized  as  an electro- 

physiological  correlate of general arousal,  desynchronization reflect- 

ing increased  cortical activation and dominant  alpha  activity reflect- 

ing a low arousal state.    Evidence for such a correlation is  to be 

found in the classical studies  conducted by Moruzzi, Magoun,  Lindsley, 

and associates   (e.g., Lindsley,  1952; Moruzzi & Magoun,   1949).     However, 

other electrophysiological measures     of arousal,   for example EMG 



activity,  have not shown a consistent relationship  to alpha activity 

(Kreitman & Shaw,   1965, with  forearm muscles;  Lehtonen & Lehtinen, 

1972, with extrinsic laryngeal muscles).     Oswald   (1959)   has  suggested 

that alpha blocking may represent  an increase of   "specific visual 

alertness which may be but one component of general arousal."    He 

found that  alpha rhythms occurred  at  times  of intent auditory alert- 

ness   (and were accompanied by loss of ocular fixation and accomodation) 

He proposed   that specific auditory alertness may be  associated with 

"reciprocal inhibition of visual functions."    In  line with this, 

Martinius  and Hoovey  (1972)   reported that acoustic attention,   required 

by a tonal discrimination task,  resulted in a quantitative increase  in 

occipital alpha waves over background  (resting)  alpha rhythms. 

There is an obvious need  for research more closely examining  the 

physiological  correlates of high and low alpha   conditions.     The bio- 

feedback  technique offers a convenient procedure  for  obtaining discrete 

time samples   of relatively high and low alpha production.     Since it 

has been established that alpha level can be brought  under voluntary 

(bidirectional)   control,  concomitant  changes in other  physiological 

responses  could be observed in direct relationship to specified periods 

of high  and low alpha levels.     The present study used  a  feedback tech- 

nique to obtain experimental  conditions  of high and  low alpha in order 

to investigate concurrent changes in other physiological events with 

specific  interest directed toward arousal-attentional  factors. 

To expand on the evidence  relating alpha activity  to cortical 

arousal,   two peripheral electrophysiological measures  of  arousal were 
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chosen,   one  controlled primarily by  the somatic nervous  system and one 

controlled primarily by the autonomic nervous  system.     These measures 

were neck EMG and skin conductance,   respectively.     Since there  is much 

literature establishing a relationship between oculomotor activity and 

alpha,   a measure of general eye motor activity was  also obtained. 

In order  to clarify the relationship between visual attention and 

alpha activity, visually evoked potentials were obtained during high 

and  low alpha conditions.     The visually evoked potentials   (EPs)   fur- 

nished the dependent variable of primary  interest, because it provided 

a direct  measure of  cortical responses to external  stimuli during  the 

experimental  conditions of voluntary production of high and  low alpha 

activity. 



CHAPTER II 

METHOD 

Subjects 

Five graduate students and one speech therapist   (age range from 

23 to 26 years)   served as  subjects.     They were   chosen from an initial 

group of  12 individuals  for the main part  of the study on the basis 

of their  ability  to demonstrate during preexperimental practice ses- 

sions reliable changes   (at least a 20% difference)   in alpha production 

when provided with an auditory  feedback tone.     The other six indivi- 

duals were not included because  they  demonstrated no apparent progress 

in gaining  control of alpha after several practice sessions.     Partici- 

pation in the preexperimental sessions familiarized each subject with 

the laboratory and data collection procedures.     During  this  training 

period the subjects were informed as  to the general characteristics 

of alpha  activity   (relaxed, awake, nonattentive state). 

Experimental Design 

The preexperimental screening sessions   functioned  as practice ses- 

sions for those subjects who were selected to participate in the ex- 

periment.     These sessions   consisted of alternating 2-minute  trials of 

high and low alpha conditions with a 30-second rest period between each 

trial and the next and a 2-minute rest period following each block of 

five  trials.     After every three blocks  the subject was asked  to get up 

and walk around for  5 minutes.    Practice sessions were continued until 
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a  criterion performance  level   (at least a  20% difference in  the inte- 

grated alpha measure between high and   low alpha conditions)  was 

reached. 

After demonstrating reliable  control  of alpha,   each subject par- 

ticipated in four experimental sessions.     Each session  consisted of 

two blocks of  four alternating 3-minute trials  of high and  low alpha 

conditions.     There was a 10-minute rest  following  each block,  during 

which the subject  left  the subject's  room and walked around.    After 

each of  the  trials  there was a 1-minute  rest during which the subject 

remained seated in the subject's room.     The order of   trials was  counter- 

balanced for  each subject.     Each subject  ran  in no r.ore than one ses- 

sion on a given day. 

After at least two sessions each subject was   asked  to write down 

his  strategy for controlling the feedback tone. 

Apparatus 

The subject was seated in an electrically shielded,  semi-darkened 

room during the recording session.    White noise was fed  into the sub- 

ject's room to mask extraneous  sounds.     A Grass Model   7 Polygraph 

equipped with appropriate preamplifiers was  used  to record the various 

physiological events, with permanent records  obtained on an attached 

oscillograph. 

1Alpha level will be used to refer  to the dependent variable of 
the integrated alpha measure;  alpha condition will refer  to the ex- 
perimental manipulation of high vs.   low alpha. 
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EEG and  EPs.     EEG activity was recorded monopolarly with a Grass 

gold disc electrode placed  2% cm above  the inion on the inidline.     The 

reference electrode was   clipped to the right ear lobe.     The electrodes 

were connected to the input of  a 7P5 EEG preamplifier, with half- 

amplitude low and high frequency filters set a 1 and 35 Hz,  respec- 

tively.     The  amplified EEG activity was fed to  a Computer of Average 

Transients   (CAT, Model 400B) which was  triggered by the presentation 

of  a light  flash.     Each averaged evoked potential  (EP) was   the sura of 

individual responses to 100 light flashes.    A permanent record of each 

EP was  obtained with a Moseley X-Y plotter  (Model 2D-2) .     The CAT 

analysis   time was  500 msec. 

Integrated Alpha.     EEG activity was  directed through  a  low- 

frequency band-pass  filter set at  8-13 Hz  to a Grass Model  7P3 pre- 

amplifier which amplified  the filtered signal and integrated  the EEG 

in  the alpha frequency band.     This integrated signal of  d.c. voltage 

was used  to operate a frequency modulated power driver connected to a 

speaker which provided  continuous  feedback to the subject  in terms of 

the pitch of a  tone.    The  integration procedure  also provided an easily 

quantifiable measure of alpha activity. 

EMG.     Muscle action potentials were recorded from  two gold disc 

electrodes  attached  5  cm apart over the trapezius muscle of the neck. 

The half-amplitude low and high frequency filters  of the 7P3 pre- 

amplifier were set  at 10 and 75 Hz.     The potentials were integrated, 

with  the  time  constant equal  to   .5 seconds,  to facilitate quantifica- 

tion. 
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Eye Motor Activity.     Two gold  disc electrodes,  one placed  above, 

and   to the  right of the right eye,   the other below and to the left of 

the left eye, were used to record eye motor activity.    The potentials 

were integrated by means of a 7P3 preamplifier  (time constant,   .5 

seconds)   to obtain a more easily quantifiable measure of eye activity. 

(The electrode positioning did not yield information about  the direc- 

tion of eye movement.     Only general information about  the amount of 

eye movement and muscle  tension around  the eyes was   obtained.)     The 

half-amplitude low- and high-frequency filter settings were 3 and 35 Hz. 

In attaching   the electrodes  to record EEG, DIG and eye motor 

activity, skin resistence was   reduced  to less than 10,000 ohms with 

Redux Electrode Paste.     This procedure reduced the possibility of 

60-cycle interference. 

Skin Conductance.     Skin resistance was recorded with silver 

silver-chloride electrodes attached  to the volar  surface of the first 

and third fingers  of the left hand.     (An exception was one subject who 

had a wart on  the recording surface of the third finger.    For  this 

person the second  finger was used.)     A Grass  7P1 preamplifier was used 

to amplify resistance changes and to balance the resistance bridge. 

The resistance  level  (expressed in ohms)  was derived from the cali- 

brated polygraph records   for the beginning and end of each trial with 

an intermediate measurement being the average of   the  resistance levels 

at the beginning and end of the second 1-minute interval.     The resis- 

tance values were converted to conductance values   (nicromhos)  before 

subjecting  the  data to statistical  analysis. 
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Auditory Feedback System.     Through the use of solid  state   logic 

nodules,   a continuous  auditory tone was  programmed  to vary in fre- 

quency as a function of the voltage level of the integrated alpha 

measure.     For three subjects an increase in pitch indicated an in- 

crease in alpha;  for the other three subjects a decrease  in pitch 

indicated an increase  in alpha.     The pitch of the  tone varied within 

less than an octave's range, with slight  changes  in pitch easily dis- 

criminable by the subjects. 

Visual Stimulus.     The EPs were evoked by the presentation of un- 

patterned light  flashes generated by a Grass PS-2 photostimulator 

(with flash intensity set at  2).     The distance from subjects'  eyes  to 

the stimulus display was  approximately 122  cm.     Because the subjects 

sat with eyes  closed throughout  the recording sessions  the visual 

stimuli were further diffused by the eyelids, giving  them a  true 

Ganzfeld quality.     The light  flashed at irregular  intervals   throughout 

each trial, with a minimum interval of  1075 msec.     The  longest inter- 

stimulus  intervals may have approached, but probably never exceeded, 

2 seconds.     The averaged EPs were based on  the sum of the responses  to 

the first 100   light flashes within each trial; more than the required 

100 for averaging generally occurred during a 3-minute  trial. 

Procedure 

Three of  the subjects were informed that  a high-pitched  tone re- 

flected low alpha activity and that  a low-pitched   tone reflected high 

alpha activity.     Instructions  for the low alpha condition were,   "Try 

to keep the tone high;  try not to produce  alpha;" for the high alpha 
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condition,   "Try  to keep  the  tone low;   try to produce alpha."    The other 

three subjects were  informed  that  a low-pitched  tone reflected low 

alpha activity and  that a high-pitched tone reflected high  alpha activ- 

ity.     Instructions  for the low alpha condition were,   "Try  to keep  the 

tone low;   try not  to produce alpha;" for  the high alpha condition, 

"Try to keep the tone high;   try to produce alpha."    All  subjects were 

instructed  to keep their eyes  closed during recording periods. 
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CHAPTER  III 

RESULTS 

The reader will recall that each subject  ran in four  experimental 

sessions,   each  consisting of four trials  of high alpha and  four trials 

of low alpha.     Each  trial was  divided into  three 1-minute  intervals   to 

facilitate visual average measurements and to gain information about 

temporal  changes within a trial.     A  "best   fit" visual average per 

1-minute interval for  the  integrated eye motor activity,  EMG,  and alpha 

polygraph records was  obtained,   after it had been established that  this 

could be done with a consistency of  ±.5mm by the author.     The mm mea- 

surements were then converted to microvolts   C^v)   for statistical analy- 

sis.    For skin conductance   (SC), measurements   (in ohms) were made at 

the beginning and end of each trial and at   the beginning of  the second 

and third 1-minute intervals.    The latter  two were collapsed into a 

single measure by averaging across them.    The resulting  three measure- 

ments were then converted to  conductance  (micror.hcs). 

Each of  these physiological measures was analyzed both for the 

group and   for  individual subjects by means  of univariate analyses of 

variance   (ANOVAs).     For individual subjects,   the factors  consisted of 

alpha condition  (H-L),  sessions,  trials,  and  1-mir.ute intervals 

(2x4x4x3).     The group analyses contained an  additional   (subjects)   fac- 

tor.     The EP data for each subject were analyzed by visual inspection. 
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Alpha Level,  Eye Motor Activity,  EMG,  and SC 

GROUP  RESULTS 

Table 1 summarizes  the significant effects obtained  from the group 

analyses  of  the integrated alpha measure,  eye notor   activity, EMG,   and 

SC.     The significant effects not  involving the subject  factor are de- 

picted in Figure  1 with  integrated  alpha and SC plotted as functions 

of  1-minute intervals  and trials for the high and   low alpha conditions. 

Since group analyses  of  the eye motor activity and EMG data revealed 

no significant effects except  interactions involving subject   factors, 

these data are not presented graphically. 

The alpha activity presented in Figure 1 shows  the consistent  dif- 

ference between the high and low alpha  conditions that was required by 

the experimental task.     The H-L effect was significant at £ < .009. 

The nature of  the trials  effect can be seen in the figure by visualiz- 

ing the average  of the functions for  the high and   low alpha conditions 

for each trial.     The only noticeable  change is £ slight increase in 

alpha on  the third trial, which followed the cid-session break.    The 

change in alpha across 1-minute intervals within trials  depended upon 

the experimental conditions of high or low alpha;   the H-L X 1-Minute 

Intervals  interaction was  significant  at £ < .002.     Viewing the graphic 

data,   it  appears  that  during the  low alpha condition alpha activity 

tended  to increase,   and during  the high alpha condition alpha activity 

perhaps  tended  to decrease slightly. 

From the graph of the SC data presented in Figure 1,  the most 

obvious effect   is  the decrease in SC across  1-minute intervals;   this 
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Table 1 

Summary of  the Significance Levels   (n-values)   From the Group 

Analyses of Variance of the Integrated Alpha Measure, 

Eye Motor Activity, EMG, and SC 

Source Alpha Eye EMG SC 

H-L .009 
Ses 
Trials .001 .003 
Min Int .001 
H-L X Ses 
H-L X Tr 
Ses X Tr 
H-L X Min Int .002 
Ses X Min Int 
Tr X Min Int .004 
H-L X Ses X Tr 
H-L X Ses X Min 
H-L X Tr X Min Int 
Ses X Tr X Min  Int 
H-L X Ses X Tr X Min Int 
£ X H-L .001 .001 .001 .001 

S X Ses .001 .001 .001 .001 
S XIr .001 .001 .001 .001 
J3 X Min .001 .001 .001 
S X H-L X Ses .001 .001 .001 .036 

S X H-L X Tr .001 .001 .001 .006 
S X Ses X Tr .001 .001 .001 .001 

£ X H-L X Min  Int .002 .001 
S X Ses X Min Int .010 .001 

SXIrX Min Int 
S X H-L X Ses X Tr .001 .001 .001 .001 

S X K-L X Ses X Min Int 
S X H-L X Tr X Min Int .047 

S X Ses X Tr X Min Int .018 
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effect was statistically significant   (p_ < .001).     The  change in SC 

across  trials was  also found  to be significant   (p_ < .003).     From the 

figure  this effect  appears to be due primarily  to  the increase in SC 

on trial  three   (which followed the raid-session break)   and perhaps  to 

decreases in SC between trials one and two and trials   three and  four. 

Changes   in SC across  1-minute  intervals were    dependent on trials—the 

Trials X 1-Minute  Intervals interaction was significant at p_ < .004. 

The functions  presented in the figure appear to be steeper,   showing a 

greater  degree  and extent of decrease on  the initial trial of  the ses- 

sion and  on trial three which followed the mid-session break. 

In addition to  the effects described  above,   there were signifi- 

cant interactions involving subjects with alpha condition  (H-L)   and/or 

various temporal factors   (sessions,   trials, and  I-minute intervals) 

for each measure—integrated alpha,  eye motor activity,  EMS, and SC. 

(See Table  1.) 

INDIVIDUAL  RESULTS 

Alpha 

The integrated alpha  record served  as an index of subjects'   abil- 

ity to follow instructions  to generate high or low alpha,   and provided 

evidence  for  the effectiveness of  the experimental manipulation. 

Figure  2 shows  alpha  level, with alpha  conditions  as a parameter and 

with the following time bases on the abscissa:     (a)   sessions  in graphs A, 

(b)   trials  in graphs B,   (c)   1-ir.inute intervals  in graphs  C,   (d)   ses- 

sions and  trials  in graphs  D,  and  (e)   sessions  and 1-ninute intervals 
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Figure 2.    Alpha  level under high and low conditions  for each 
S as a  function of   (A)   sessions,   (3)   trials, 
(C)   1-tiinute  intervals,   (D)   trials  and  sessions, 
and (E)   1-ninute intervals  and sessions.    Open 
circles  represent   the low alpha condition   (o—o); 
filled  circles represent   the high   condition   (•—•}. 
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in graphs E.     Table  2 summarizes  the significant effects  in  the alpha 

data for each subject. 

H-L effect.     For each of  the  time bases plotted  in Figure 2,   it 

is readily apparent that  the subjects  generated consistently different 

levels  of alpha activity under the high and low instruction conditions. 

Unsurprisingly,   the variance analyses performed on each subject's  data 

revealed that the differences between high and low alpha were statis- 

tically significant   (£ < .001 for all subjects except P.S.,   in whose 

case p < .002).     It  is also apparent from Figure  2 that  the subjects 

differed in the degree of  alpha control they were able  to generate. 

These differences are summarized  in Table 3 in terms of  the average 

alpha level for each subject  obtained under the high and  low conditions 

(column  1);   the numerical difference between the averages  for  the low 

and high  conditions  for each subject   (column 2);   and the per  cent dif- 

ference   (i.e.,   the numerical difference between high and  low alpha ex- 

pressed  relative  to alpha level averaged across the high and  low con- 

ditions)   between the two conditions   for each subject   (column 3). 

A comparison of each subject's  difference score, whether in terms 

of microvolts  or per cent difference, with his mean alpha level reveals 

no apparent relationship between  the  two.     That is,  the ability to 

generate differential amounts of  alpha activity under the high and  low 

conditions apparently was unrelated to mean alpha  level for these six 

subjects.     One subject  (P.B.) with a relatively high mean alpha  level 

generated one of the smallest amounts of alpha  change, whereas  another 

subject   (R.S.)   also having a high mean alpha level generated one of  the 
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Table 2 

Summary of  the Significance Levels   (£-values)  Obtained From the 

Individual Analyses of Variance of the Integrated 

Alpha Measure for Each S 

Source R.S. G.R. J.K. P.S. K.F. P.B. 

H-L .001 .001 .001 .002 .001 .001 

Ses .001 .001 .001 

Trials .001 .002 (.069) .005 

Min Int .048 .003 

H-L X Ses .004 .001 .016 

H-L X Tr (.055) 

Ses X Tr 

H-L X Min Int .040 .001 .001 .001 

Ses X Min Int .040 .009 

Tr X Min Int .014 

H-L X Ses X Tr .001 .001 .015 .003 

H-L X Ses X Mix Int .043 

H-L X Tr X Min Int 

Ses X Tr X Min Int 



Table 3 

Rank Order of the Ss  in Terms of  (1)   the Mean Level In AV of Alpha   (High + Low/2),   (2)   the 

Absolute Difference injiw Between High and Low Alpha,  and  (3)   the Per  Cent 

Difference Between High and Low Alpha  (Absolute Difference/Mean) 

s 
Mean Alpha 

H+L/2 
C*v) 

S_ 
Absolute 
Between 

Difference 
H and L  Uv) S 

Per Cent Difference 
(Abs Diff/Mean) 

P.B. 16.16 R.S. 8.80 R.S. .64 

R.S. 13.77 P.B. 4.44 G.R. .62 

P.S. 9.49 P.S. 4.41 J.K. .60 

J.K. 5.70 J.K. 3.44 P.S. .46 

K.F. 5.46 G.R. 2.75 K.F. .28 

G.R. 4.46 K.F. 1.53 P.B. .27 



26 

highest   levels  of alpha  change.     The same kind of dissociation exists 

for the  two subjects having  the lowest mean alpha levels,  one of them 

(K.F.)   having generated a relatively low degree of  alpha change and 

the other   (G.R.)   a relatively high degree of  change.    Of the remaining 

two subjects,   the one with  a moderate alpha level  (P.S.)   generated 

an intermediate per cent change score while the one with a relatively 

low mean alpha level   (J.K.) manifested a relatively high degree of 

alpha control. 

Temporal main effects.     Figure 2A shows  the effects  of sessions 

on alpha level  for each subject.    Although there are apparent changes 

across  sessions   for all subjects,   the variance analyses   revealed signi- 

ficant  effects  only for subjects G.R., J.K.,   and K.F.   (£ < .001). 

Even though significant effects were obtained for these three subjects, 

it is   clear from the figure that the direction and degree of the 

changes  are specific to each individual.     Thus G.R.  showed a progres- 

sive increase  followed by a decrease whereas J.K. and K.F. both showed 

a marked decrease between the first and second sessions with little or 

no change throughout the remaining sessions. 

The trials effect,  shown in Figure 2B, was significant for R.S. 

(£< .001), G.R.   (£< -002), and K.F.   (£ < .005),   and approached sig- 

nificance  for J.K.   (£<.07).     As  the figure indicates,  this difference 

is  characterized by an S-shaped curve generated by a decrease in alpha 

level between the two prebreak and postbreak trials and a sharp  in- 

crease between trials   two and three, which were separated by the mid- 

session break. 
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The changes within trials   (i.e.,  across  1-minute intervals)   are 

shown in Figure  2C.     The apparent  changes depicted in these graphs 

were significant  only for P.S.   (£ < .048)   and P.B.   (j> < .003).    Both 

of these  subjects show a similar pattern of  change.    Visualizing  the 

average of  the high and low data,  it is apparent from the graphs  that 

the significant  effect   found for these two subjects reflects  a general 

increase in alpha level during the 3-minute trial. 

First-Order Interactions.    A significant H-L X Sessions  inter- 

action was  found for R.S.   (£ < .004), P.S.   (£ < .001),  and P.B. 

(£ < .016);  however, as Figure 2A indicates,   the nature of the inter- 

action was not consistent  for the three subjects.    For R.S.,   the inter- 

action effect appears   to reflect a progressive  convergence of the   two 

curves over the  four sessions, whereas  the effect appears to be due 

primarily to a divergence of the two functions across sessions for  the 

other two subjects. 

Alpha level changed across  the 1-minute intervals differentially 

for high and low alpha conditions.    Figure 2C depicts  this pattern of 

activity.     The H-L X 1-Minute Intervals interaction was  significant 

for four of  the six subjects; R.S.  at £ < .04,  and G.R.,  J.K.,  and 

P.S. at £ < .001.    Referring to the graphic data,  one can surmise that 

the interaction effect for R.S.   is due primarily to a drop in alpha 

during  the  course of the trial under the high alpha  condition and to 

an increase over the 1-minute intervals  for the low alpha condition. 

For G.R. and P.S.,   the interaction effect reflects the  fact that alpha 

level remained essentially constant during  the high alpha condition 
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but increased progressively across   the 1-minute intervals during  the 

low alpha condition.    For J.K.   the interaction effect reflects a con- 

vergence of the  two functions across  the 1-minute intervals due pri- 

marily  to a decrease in alpha level during the high alpha  condition, 

with no substantial change under the low condition. 

Figure 2E depicts  changes across 1-minute intervals  and sessions. 

Subjects  R.S.  and P.S.   showed significant  Sessions X 1-Minute  Intervals 

interactions  for alpha at £ < .04 and £ < .009, respectively,   though 

the nature of these effects were different for the  two subjects.    Again 

visualizing  the average function for high and low conditions, one can 

observe  from the graphs  for R.S.  an inverted-V pattern across 1-minute 

intervals during session one,   essentially  flat  functions during ses- 

sions  two and three,  and a decreasing  function during session four. 

For P.S.,  one  can observe a general increase in alpha within trials 

for each of the sessions, but   the degree of increase becomes progres- 

sively less   from session to session. 

Because  a significant Trials X 1-Minute Intervals interaction was 

found for only one subject   (K.F.; £< .014),   this effect  is not pre- 

sented  graphically.    However,   the effect may be described verbally as 

reflecting a tendency for alpha level to  increase during  the course 

of trial one,  remain constant during trials  two and three,   and decrease 

during  trial four. 

Second-order interactions. The H-L X Sessions X Trials effect can 

be seen in Figure 2D. This interaction was significant for four of the 

six subjects;  G.R.   (£ <.001),  J.K.   (£ < .001),  P.S.   (£ < .015),  and 
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K.F.   (£ < .003).     The complex patterns manifested in Figure 2D indicate 

that alpha level did not vary simply as a  function of  sessions,   trials 

within sessions,  or conditions of high  and low alpha, but was  specifi- 

cally dependent  on which condition existed within a particular  trial 

of a particular  session. 

Another significant effect involved a second-order interaction 

between alpha  level,  sessions,  and  1-minute intervals for K.F. 

(£ < .043).     This effect can be seen in Figure 2E.     This  complex pic- 

ture also indicates   that the difference  in alpha for high and low con- 

ditions was dependent for this subject  on sessions as well as  1-minute 

intervals within each session. 

Eye Motor Activity 

Figure  3 shows  eye motor activity  as  a function of sessions, 

trials, 1-minute intervals,  sessions and  trials,  and sessions and 

1-minute intervals  for each subject   (in a fashion similar  to the pre- 

sentation of alpha in Figure 2).     Table 4 summarizes  the significant 

effects found from the analyses of the eye motor  activity for each 

subject. 

H-L Effect.     Examining Figure 3,  it is  apparent  that the subjects 

differed from each other with respect  to both the direction and degree 

to which eye motor activity was affected by the high and low alpha 

conditions.     Also,  the subjects differed with respect  to  temporal 

changes in such activity for the high and low alpha conditions. 

Despite these temporal variations,  the degree of  eye motor activity 

under the high and low alpha conditions differed significantly for 
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Figure 3.     Eye motor activity under high and  low conditions  for 
each S  as a function of   (A)   sessions,   (B)   trials, 
(C)   1-minute  intervals,   (D)   trials  and sessions, and 
(E)   1-minute intervals  and sessions.     Open circles 
represent the low alpha  condition   (°—• ) ;   filled 
circles  represent the high  condition  ( •—• ) . 
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Table 4 

Summary of the Significance Levels   (£-values)  Obtained From the 

Individual Analyses of Variance of the Eye Motor 

Activity Data for Each S 

Source R.S. G.R. J.K. P.S. K.F. P.B. 

H-L 

Ses 

Trials 

Min Int 

H-L X Ses 

H-L X Tr 

Ses X Tr 

H-L X Min Int 

Ses X Min Int 

Tr X Min Int 

H-L X Ses X Tr 

H-L X Ses X Min Int 

H-L X Tr X Min Int 

Ses X Tr X Min Int 

(.070)       .050 .020 .020 

.020 .001 .003 

.002 

.040 .005 .001 

(.060) 

.001 .007 

.001 

.002 

.003 

.023 .002 .001 
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three of the six subjects   (K.F., £< .02; P.S., £ < .05;  and P.B., 

£ < .02), and approached significance at the   .05 level for another 

(J.K., £ < .07).     For three of  these subjects  (P.S., P.B.,  and J.K.) 

eye motor activity was greater during the low alpha condition, but 

for K.F.  such activity was significantly greater during  the high con- 

dition. 

Temporal Main Effects.     Changes in eye motor activity across  ses- 

sions can be seen in Figure 3A by visualizing the average of  the func- 

tions for high and low alpha conditions.    The sessions effect was 

statistically significant for three subjects, R.S.   (p_ < .02), G.R. 

(£ < .001),   and K.F.   (£ < .003).     The nature of  these changes were 

specific to the  individual subject as shown in Figure  3A.     For R.S. 

the significant effect appears  to reflect primarily the relatively 

high degree of  eye motor activity under the low alpha condition during 

the  third session, whereas for G.R.   it reflects a general increase in 

motor activity across  the four sessions under both conditions.     In 

contrast to both R.S. and G.R.,  the significant effect noted for K.F. 

may be characterized as reflecting a general decrease across  the four 

sessions.     In  the case of J.K.  a significant sessions effect was not 

found even though there was a marked increase in eye motor activity 

across sessions under  the low alpha condition.    A cursory inspection 

of Figure 3A for this subject suggests  that any such main effect may 

have been masked by the marked H-L X Sessions interaction which 

clearly exists   (to be described below). 
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The changes   in eye motor activity with trials  are shown in 

Figure 3B.     The trials effect reached significance for only one subject 

R.S.   (£< .002).     In this case there is a noticeable increase in eye 

motor activity on the third trial following the mid-session break. 

First-order  interactions.    Eye motor activity changed as a func- 

tion of  alpha level condition and sessions as depicted in Figure 3A. 

The H-L X Sessions interaction was significant for  four of the subjects, 

R.S.   (p_< .04),  G.R.   (p_< .005), J.K.  (£ < .001),  andP.B.   (p_<.002). 

The pattern of  changes reflected in Figure 3A was different for each 

of these subjects.    For  R.S., eye motor activity changed little across 

sessions  during the low alpha condition, but during the high alpha con- 

dition there was  a sharp increase in such activity on the third session, 

a circumstance generating the significant interaction.    For G.R.  eye 

motor activity increased progressively across sessions for both high 

and low alpha conditions, but  the pattern of increase was markedly dif- 

ferent  for the  two conditions, being approximately linear under the low 

condition and negatively accelerated under the high condition.     For 

J.K.   the interaction effect  is characterized by an obvious progressive 

divergence of the two  curves across sessions, due to the marked in- 

crease in eye motor activity across sessions under  the low alpha condi- 

tion, with little or no  change under the high condition.     For P.B.   the 

effect  reflects  a progressive convergence of the  curves over session, 

primarily due  to a tendency for eye motor  activity  to decrease under 

the low alpha  condition. 
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The changes  in eye motor activity across trials  interacted with 

sessions  for two subjects, G.R.   (£ < .001)   and J.K.   (£ < .007).    The 

pattern of  changes  across sessions and trials  can be seen in Figure 3D 

by visualizing  the average of  the  functions for the high and  low alpha 

conditions  in each case.    For G.R.   there was a tendency for the change 

across trials   to become more pronounced in later sessions.    Thus,  in 

session one,  eye motor activity remained essentially constant  across 

trials;  in session two,  there was  a slight tendency for such activity 

to  increase;  and during sessions three and four, there was a marked in- 

crease across  trials.     For J.K.  the effect may be characterized as re- 

flecting changes  across  trials which differed  from session to session, 

with no systematic pattern of change being manifested across  the four 

sessions. 

Figure 3C depicts  eye motor activity for the high and low  alpha 

conditions as a function of 1-minute intervals.    The two subjects for 

whom the H-L X 1-Minute Intervals  interaction was significant, G.R. 

(£< .001)   and P.S.   (£ < .003), show a similar pattern of differential 

change.    As depicted, there is a progressive increase in eye motor 

activity for the low alpha condition and a progressive decrease for 

the high alpha condition.     (The H-L X 1-Minute Intervals interaction 

approached significance for R.S., £< .06, with the pattern of eye 

motor activity  apparently the opposite of  that described for G.R.  and 

P.S.) 

Second-order interactions.     A H-L X Sessions X Trials  interaction, 

manifested in Figure 3D, was significant  for three of  the six subjects 
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(R.S., £< .023; P.S., £< .002; and P.B., £< -001).    As indicated by 

the graphs presented in this figure,  the direction and degree of  dif- 

ference in eye motor activity between the high and low alpha conditions 

were dependent  on the particular  trial of a particular session for each 

of  the subjects,  the nature of these dependencies being specific to 

each subject. 

£MG 

The EMG data for each subject are plotted in Figure 4.     The signi- 

ficant differences found  from the statistical analyses  of  the EMG data 

for each subject   are presented in Table 5. 

H-L Effect.     The subjects showed different patterns of EMG activ- 

ity across  the various time periods  for the high and low alpha condi- 

tions, as depicted  in Figure 4.     For subjects R.S.,  P.S., and J.K., EMG 

activity, when averaged across all of  the time bases plotted in the 

figure, was  reliably greater during the low alpha condition (£ < .002, 

.003, and   .004,  respectively)   than during the high. 

Temporal Main Effects.     EMG changes over sessions are shown in 

Figure 4A.     The main sessions effect may be visualized by perceptually 

averaging the functions for high and low alpha conditions.    The sessions 

effect was  significant for four subjects, R.S.   (£ < .05), G.R. 

(£ <.002),  P.S.   (£< .039),  and P.B.   (£ < .001).     Viewing  the graphic 

data,  it  is apparent  that  the pattern of  change across sessions was 

idiosyncratic.     For R.S.   there was an S-shaped pattern reflecting a 

decrease  in EMG between sessions one and two and between sessions   three 

and  four, with an increase on session three.     For G.R.   there was  a 
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Figure 4.     EMG under high and low conditions  for  each £ as a 

function of   (A)   sessions,   (B)   trials,   (C)   1-minute 
intervals,   (D)   trials  and  sessions,  and  (E)   1-minute 
intervals  and sessions.     Open circles  represent  the 
low alpha condition (•—•);  filled circles represent 
the high condition ( •—•) . 
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Table 5 

Summary of the Significance Levels   (£-values)  Obtained  From the 

Individual Analyses  of Variance of  the EMG 

Data for Each S 

Source R.S. G.R. J.K. P.S. K.F. P.B. 

H-L 

Ses 

Trials 

Min Int 

H-L X Ses 

H-L X Tr 

Ses X Tr 

H-L X Min Int 

Ses X Min Int 

Tr X Min Int 

H-L X Ses X Tr 

H-L X Ses X Min Int 

H-L X Tr X Min  Int 

Ses 2 Tr X Min Int 

.002 .004 .003 

.050 .002 .039 

.003 

.040 .003 

.001 

.001 .025 

.001 

.001 

.001 .001 .023 .040 .00] 

.001 

.016 

.001 
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progressive increase in EMG across   the first   three sessions followed by 

a decrease in  the final session.     For P.S.  there was a progressively 

mild decrease  in EMG across  the first three sessions followed by an in- 

crease  in the fourth, generating  a shallow U-shaped function.     For P.B. 

an S-shaped  function was generated which mirror-imaged that of R.S. 

The simple  1-minute  intervals  effect for EMG was significant for 

only one subject, J.K.   (£ < .003).     The data depicted in Figure AC in- 

dicate that   for this subject EMG tended  to decrease during  the  course 

of  a trial.     Viewing  the graphs in this  figure for the other subjects 

there is an apparent  change across   1-minute intervals for subjects R.S. 

and P.S.     However,  this  change did not gain significance, due to the 

magnitude of the interaction with the H-L factor described below. 

First-order interactions.     The  interaction of alpha  level with 

sessions  for the EMG data was significant  for G.R.   (£ < .04)   and P.S. 

Cp_ < .003).     The interaction as  depicted in Figure 4A reflected dif- 

ferent patterns of change for these two subjects.    For G.R.   there was 

a greater degree of change across sessions under the high than under 

the low alpha condition, whereas  for P.S.  just the opposite was   the 

case. 

A significant Sessions Z Trials   interaction was found for J.K. 

(£ < .001)  and P.S.   (£< .025).     One  can see this  interaction effect 

by visualizing the average of the functions for high and low alpha 

conditions in Figure 4D and noting the differential change across 

trials for each session.    The graph for J.K.   indicates a substantial 

increase in EMG across trials in session one, followed by little or 
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no change in the  remaining  three sessions.     For P.S.  the interaction 

appears  to reflect  the general decrease in EMG across trials in ses- 

sion three  as   compared  to relatively little  change within the other 

three sessions. 

A statistically significant H-L X 1-Minute Intervals interaction 

in EMG was  found for two subjects, R.S.   and P.S.   (p_ < .001).     Figure 4C 

for these  two subjects depicts this interaction.     It can be seen upon 

inspection of this graph that EMG increased within trials during  the 

low alpha condition but not during the high alpha condition. 

Second-order interactions.     The changes  in EMG as a function of 

alpha level,   as well as  sessions and trials within each session,   is 

depicted in Figure 4D for each subject.    All six of  the subjects showed 

significant H-L X Sessions X Trials interactions   (for R.S., G.R., K.F., 

and P.B., £ < .001;   for J.K., £< .023;  and for P.S., £.< .04).     As 

indicated by  the figure,   the direction and degree of difference in EMG 

between the high and low alpha conditions were dependent on the parti- 

cular trial of a particular session. 

For one subject, G.R.,  the direction and degree of difference in 

EMG between the high and low alpha conditions were also dependent on 

sessions   and on 1-minute intervals within each session.    This second- 

order interaction is depicted in Figure 4E for this subject.     (The H-L 

X Sessions X 1-Minute Intervals interaction was significant for G.R. 

at £ < .001.) 

EMG was   significantly affected by sessions, trials, and  1-minute 

intervals  in only one case  (R.S., £ < .016).    This interaction is not 



depicted graphically but  can be described verbally as  reflecting pro- 

gressive  increases  in EMG activity across 1-minute intervals with the 

degree of   increase being dependent on sessions  as well as   trials within 

each session. 

SC 

The changes in SC during the high and low alpha conditions  for 

sessions,   trials,   1-minute  intervals,  sessions and trials, and trials 

and 1-minute intervals are    presented in Figure 5.    Significant effects 

revealed by the analyses of the SC data for each subject are sumnarized 

in Table 6. 

H-L Effect.     Viewing the various functions plotted in Figure 5,  it 

is apparent that  in general there were no consistent differences  in SC 

between the high and low alpha conditions.    Only one subject  (G.R.) 

showed a significant difference in SC as a function of  alpha condition. 

In this  case SC was greater during the  low alpha condition  (.£ < .008) . 

Twpnral Main Effects.     Figure 5A illustrates the changes  in SC 

across sessions  for each subject, all of which were significant 

(£<.001   forG.R., J.K., K.F.,  and P .B.; and £ < .002 for R.S.   and 

P.S.).     The nature of  these changes as  reflected in Figure 5A was 

specific to the individual subject.    For R.S., SC was relatively high 

during session three, whereas  for G.R.  and P.B.  it was at a relatively 

high level during session two.    For P.S. and K.F.   the graphic data 

reflect   a progressive decrease in SC across early sessions, with an 

apparent  increase during later sessions.     For J.K., SC tended to in- 

crease over sessions. 
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Figure 5.     SC under high and low conditions  for each S as a 
function of  (A)   sessions,   (B)   trials,   (C)   1-minute 
intervals,   (D)   trials and sessions, and   (E)   1-minute 
intervals and sessions.    Open circles  represent  the 
low alpha condition   (•—•);  filled  circles  represent 
the high condition ( •—•) . 
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Table 6 

Summary of  the Significance Levels   (^-values)  Obtained From the 

Individual Analyses of Variance of the SC 

Data for each S 

Source R.S. G.R. J.K. P.S. K.F. P.B. 

H-L 

Ses 

Trials 

Min Int 

H-L X Ses 

H-L X Tr 

Ses X Tr 

H-L X Min Int 

Ses X Min Int 

Tr X Min Int 

H-L X Ses X Tr 

H-L X Ses X Min Int 

H-L X Tr X Min Int 

Ses X Tr X Min Int 

.008 

002 .001 .001 .002 .001 .001 

004 .001 .001 .013 

001 .001 .001 (.070) .001 .004 

.030 .003 .050 

.007 

.013 .001 

.050 

.002 

.030 .001 .040 

.010 
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The  changes  in SC with trials is  shown in Figure 5B.    The trials 

effect was  significant for   four  subjects, R.S.   (£ < .004), G.R. 

(£ < .001) ,  K.F.   (£ < .001) ,  and P.B.   (£ < .013).     This effect appears 

to reflect a similar pattern of  change for  each of these subjects as 

depicted  in the  figure.     In each case there is an S-shaped function 

indicating  a decrease in SC between trials one and two  and between 

trials three and four, with an increase on trial three  following the 

mid-session break. 

Figure 5C shows an apparent decrease in SC within each trial for 

each subject.    The effect of 1-minute  intervals as reflected in this 

figure, was  significant for   five of the six subjects, R.S.,  G.R.,  J.K., 

and K.F.   at £ < .001,  and P.B.  at £ < .004;  it approached significance 

for the sixth subject,  P.S.   (£ < .07). 

First-order  interactions.    Figure 5D illustrates the changes in 

SC across  sessions and across trials within each session.    The Sessions 

X Trials effect,   reflected in this figure by visualizing the average 

of the  functions   for  the high and  low alpha  conditions, was significant 

for  three subjects, J.K.   (E < .03) , P.S.   (£ < .003) , and P.B.   (£ < .05). 

The pattern of changes was  different for each of these subjects.    As 

reflected in the figure,  skin conductance for J.K.   appeared to remain 

relatively stable  across trials  for the first  three sessions,  showing 

a tendency to increase across trials in session four.     In the case of 

P.S.,   SC showed a tendency  to increase across  trials in sessions one, 

and remained essentially stable across  trials in the last  three ses- 

sions.     For P.B.,   the graphs  reflect progressive increases in SC across 
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trials for   the first  three sessions and an apparent decrease across 

trials in session four. 

Apparent  changes across 1-minute intervals for each session can 

be seen in Figure  5E by visualizing the average  functions for  the high 

and low alpha conditions.    A significant Sessions X 1-Minute Intervals 

interaction was  found in two cases, R.S.   (£ < .007) and K.F.   (£ < .05). 

There was no systematic  tendency for the degree of  change within trials 

to either increase or decrease across sessions for either of these sub- 

jects.    Rather,  the decrement  in SC across sessions was greatest during 

session three for R.S.  and during session one for K.F. with no appre- 

ciable differences in the slopes of the curves during any of the re- 

maining sessions. 

A Trials  X 1-Minute Intervals interaction was found to be signi- 

ficant for  one subject,  K.F.   (£ < .002).    Though this interaction is 

not depicted graphically,  it  can be verbally characterized as  reflect- 

ing differential decreases in SC across 1-minute intervals,  the extent 

of decrease being dependent on the particular trial.    The most pro- 

nounced decrease occurred on trial three,  the initial 1-minute inter- 

val of this   trial   (which immediately followed the mid-session break) 

having the  largest  SC value. 

WnnH-„rH.r  interactions.     Changes in SC as a function of alpha 

level, sessions,   and trials within each session are presented in 

Figure 5D.     The H-L X Sessions X Trials interaction was significant 

for five of the six subjects,  R.S.   (£ < -013) , G.R.   (£ < -001) , 

P.S.   (£< .03),  K.F.   (£< .001),  and P.B.   fe < .04).    The pattern of 
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change reflected in the graphs for these subjects indicates that  the 

degree and  direction of difference in SC for the high and low alpha 

conditions were dependent on the particular session and the particular 

trial within each session, but  the exact nature of these dependencies 

is specific to each subject. 

A second-order interaction involving sessions,   trials,  and 

1-minute  intervals was   found to be    significant for one subject  (P.S., 

£ < .01).     The appropriate graphs  to reflect this interaction are not 

presented,  but the data can be verbally described as indicating  that 

the extent  of   any  change in SC across  1-minute intervals for this sub- 

ject was  dependent on the particular session and the particular trial 

within each session. 

Subjective Reports 

The subjects were asked to report  the strategies they used to con- 

trol the  tone  (i.e.,   to increase or decrease alpha).    According to 

their verbal reports,  three subjects, R.S., P.S., and P.B., used simi- 

lar strategies   throughout most of each session.    These subjects re- 

ported that for  the low alpha condition they imagined a spot or image 

very close  to  the eye and concentrated on focusing  their eyes on that 

spot or image.    For the high alpha condition they stated they simply 

remained "relaxed"  and tended to daydream.    J.K. stated that he 

imagined listening  to music during the high alpha condition (sometimes 

breathing out or saying   "omm" to himself);  during the  low condition 

he  "watched"  the  inside of his eyelids,  sometimes visualizing images 

or working math problems.    K.F. reported looking at   "spots" on her 
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eyes, or   concentrating on bodily sensations   (e.g., a heavy, weighted- 

down feeling)   during the low alpha condition.     For the high condition 

she would,   "get  in a relaxed,   lightheaded state and let my mind 

wander."    During  the  low alpha condition, G.R.   reported, he squinted 

his  eyes,  moved his eyes rapidly, gazed with concentration at an image 

produced on his  eyelid by the  light  flashes,   tensed his body, and 

thought about  things  in rapid succession.    During the high condition 

he tried to avoid  concentrating on any particular  cognition, to relax 

his body,   to roll his eyes back,  and to open and close his  Eustachian 

tubes. 

S unnary 

Consistent differences  in the physiological measures between the 

high and   low alpha conditions were observed for particular subjects. 

As shown in Table 7,  in  7 of  the 18 opportunities, indicated by aster- 

isks,  these  physiological measures were significantly greater during 

the  low alpha condition.     In three cases eye motor activity was greater 

during the low  alpha condition, in three cases EMG was greater,  and in 

one  case SC was greater.     In only one instance,  indicated by an X and 

involving  eye motor  activity for K.F., was a statistically significant 

difference   found in  the opposite direction,  i.e.,  greater during the 

high alpha   condition.     This  is  a likely chance occurrence at the 5% 

level,   inasmuch as   there were 18 opportunities  for obtaining a statis- 

tical « of   .05. 

There were statistically significant  temporal changes  in one or 

r.ore  of  the peripheral physiological variables  for each subject.     In 
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Table 7 

Summary of  the Significant H-L Effects Obtained From the Individual 

Analyses of Variance for Each £ for Eye Motor 

Activity,  EMG, and SC 

Physiological Measures 

Subjects 
Eye Motor 
Activity EMG SC 

R.S. 

G.R. 

J.K. 

P.S. 

K.F. 

P.B. 

*  (.002) 

*  (.008) 

*  (.07) *  (.004) 

*  (.05) *  (.003) 

X  (.02) - 

*  (.02) - 

indicates  the physiological measure was greater during the low alpha 
condition. 

indicates   the physiological measure was greater during the high alpha 
condition. 



54 

some instances  such changes were within trials, some were across trials, 

and some were across   sessions.     A number of first and second-order 

interactions  involving changes within and across  trials and across  ses- 

sions  also were found  for some of  the variables.    The temporal changes 

noted tended to be quite specific for each subject; also, such changes 

did not tend to  covary in any consistent manner with concomitant tem- 

poral changes occurring in alpha level.     Some of the more salient tem- 

poral changes,   either in terms of their  consistency or magnitude, were: 

(A)  a progressive increase  in eye motor activity under the low alpha 

condition across sessions  for two subjects  (G.R. and J.K.), with essen- 

tially no change occurring  under the high alpha condition;   (B)   a dif- 

ferential change in EMG within trials for two subjects   (R.S.  and P.S.), 

increasing  during the  low alpha condition and remaining essentially 

constant  during high  alpha;   (O   a drop in SC within trials  for all sub- 

jects;  and  (D)   a significant  change across trials for four of the six 

subjects for SC and alpha.     In addition to these changes, significant 

interactions involving alpha conditions,  sessions, and trials were ob- 

tained in 18 of  24 opportunities  for the various physiological vari- 

ables. 

Averaged Evoked Potentials 

The EPs  for each subject are presented in Figure 6.     Each poten- 

tial is  the sum of  individual responses  to 100 light  flashes per trial. 

Each tracing  is  the superimposition of 16 potentials  for each subject 

from four  trials  of high alpha and four  trials of  low alpha, for each 

of  the four sessions. 
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Figure 6.    Averaged evoked potentials   for each S^ for the high (H) 
and low (L)   alpha conditions.     Each potential is 
based on responses   to 100  light  flashes.     Each tracing 
is the superimposition of 16 potentials   (one for each 
of  4 trials  for 4 sessions). 
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It  is   clear upon inspection of Figure 6 that the EPs obtained 

under the high  and low alpha conditions differed for each of  the sub- 

jects.    Generally speaking,  there was less variability in the super- 

imposed tracings under the low condition.    While noticeable for all 

subjects,   the more highly replicable response under the low condition 

is particularly  apparent  for subjects G.R. and P.B. 

Although  the EP patterns differ  for each of  the subjects under 

the two conditions,   the nature of  the difference is idiosyncratic. 

That is,  there was no  tendency for the major components of the EP pat- 

terns to be consistently greater under one condition than under  the 

other for all  the subjects.     For any given subject, however, specific 

components  of the EPs did differ consistently for the two conditions 

throughout  all 16 replications. 

The EPs  of subject R.S. were highly variable across replications, 

there being  somewhat  less variability under the low than under the high 

conditions.     There is an indication that the averaged potentials were 

loosely time   locked to the probe stimuli under both conditions but 

with somewhat greater  consistency under the low than under the high 

condition.     Negative components with peak latencies  of 80-100 msec, 

and 140-160 msec,  and positive components with peak latencies of 

110-120 and  170-190 msec,  are readily discernible in the superimposed 

tracings obtained under the low condition.    Although less readily per- 

ceptible,  these same components can be visually abstracted  from the 

tracings obtained under the high condition. 



58 

For G.R.   the EPs  obtained under the low condition, in addition to 

being more  consistent  than those obtained under the high, also are 

more highly  articulated.    There is a distinct, although small, positive 

component with a peak latency of about 90 msec,  in the EP data obtained 

under the low condition which is   followed by a positive  (110 msec.) and 

second negative  component  (peak latency of  120 msec).    None of these 

components  is discernible in the EPs obtained under the high condition. 

A late positive component   (peak latency of  170-180 msec.) appears  in 

both sets of  EP data but is more sharply defined for the low alpha con- 

dition. 

For J.K.,  the first negative  component, occurring at 100-110 msec, 

was greater  under the low than under  the high condition; a positive 

component occurring at about 150 msec was very pronounced under the 

low condition but barely discernible under the high; a negative com- 

ponent occurring at about  170 msec  is present under both conditions, 

as is a positive component with a peak latency of about 200 msec; 

finally,  a well-articulated third negative component with a peak la- 

tency of about 210-220 msec,  is present under the low but not under the 

high condition.     In other  terms,   the EP for this subject is more highly 

articulated under  the low than under the high condition.    There is a 

distinct  "W" configuration composed of the three negative and  two 

positive components just described  in the EPs for  the low condition 

whereas  for the high condition there is a ■V'-shaped pattern consist- 

ing of a single negative  deflection and a slow-rising positive wave. 
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For subject P.S. highly similar EP patterns were obtained under 

the high and  low conditions.    The most salient difference between the 

two was   that   the major components of the EPs   (a positive and negative 

wave with peak latencies of 180-190 and 210-220 msec,  respectively) 

were consistently smaller under  the low than under the high  condition. 

In  contrast to  the other  five subjects,   the EP patterns obtained 

for K.F. were more pronounced and more highly articulated under the 

high than under  the low condition.     In both sets of tracings a "W" 

configuration beginning and ending with two negative  components with 

peak latencies  of 90-100 and 220-240 msec,  is  readily apparent.    The 

negative and positive components composing the inner legs of the  "W" 

are considerably more pronounced under the high than under the low 

condition.     The degree of between-replication variability was of ap- 

proximately the same magnitude under both conditions.     It should be 

recalled  that with respect  to eye motor activity, the effect of  the 

high and  low conditions for  this subject was inconsistent with the 

statistically significant effect obtained for three other subjects 

(J.K., P.S.,   and P.B.).    The eye motor effect is also  inconsistent 

with the significant  changes  found in EMG and SC for four of  the sub- 

jects. 

The  difference in EP patterns obtained under the high and low 

conditions for P.B.  are dramatic.    Under the high condition  there is 

very little indication that the averaged potentials  contain components 

which were time locked to the proble stimulus.     Instead,  the tracings 

appear to contain primarily sinusoidal oscillations which reflect 
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ongoing spontaneous  EEG activity.    While there is some hint from the 

superimposed  tracings  that this sinusoidal activity may be loosely 

time locked  to  the probe stimulus,   the pronounced variability across 

replications strongly suggests  that  light flashes had a very weak 

effect,   if  any,   on the cortical evoked response.     In contrast  to the 

highly variable and poorly time-locked responses obtained under the 

high alpha condition,  averaged potentials containing components which 

were distinctly time locked to the probe stimulus were obtained under 

the low condition.     There is a discernible positive component with a 

peak latency of approximately 110 msec, which is followed by three 

much larger  components   (negative,  positive, negative) with peak laten- 

cies of 140-160,   200-220,  and 240-260 msec, respectively.    Even though 

there was  considerable between-replication variability, such variability 

was much reduced under the low condition. 
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CHAPTER IV 

DISCUSSION 

Group Results 

ALPHA LEVEL,   EYE MOTOR  ACTIVITY,  EMG,  AND SC 

Alpha Level 

The group  results for alpha activity  (depicted in Figure 1) 

provide further evidence that  individuals can in  fact demonstrate 

differential  control of alpha activity with auditory feedback, either 

producing or suppressing  alpha as instructed.    Such differential con- 

trol was maintained  throughout all four experimental sessions in the 

present study despite a statistically significant general increase 

in alpha activity level on the third trial of each session.    The 

reason alpha level was higher on the  third trial   of each session is 

not  entirely  clear.     Since this particular trial   immediately followed 

a 10-minute rest interval,  it  is tempting to hypothesize that the sub- 

jects were at  their  lowest  level of arousal during trial three because 

they had just had an opportunity to engage in a sustained period of 

relaxation midway through the session.    One might  argue  that the sub- 

jects should have been just as  relaxed on the first  trial since at 

least 24 hours had passed since they last participated in a session. 

However,   there is evidence to suggest  that suojects  tend  tc be rela- 

tively highly aroused at the beginning of an experimental session 

(Eason, Harter,   & Storm,  1964)• 

The interaction between alpha level condition and  changes within 

trials  (across  1-minute  intervals), manifested in terms  of an increase 
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across  trials   under  the low alpha condition while remaining essentially 

constant  under  the high condition, may reflect differential  changes in 

arousal.     One may infer that under the high condition alpha level was 

about as  high as it   could become at  the outset of  the experiment,  since 

the subjects had had extensive practice generating alpha.    Under the 

low condition  the subjects may have become progressively less activated 

during the course of the trial due to fatigue, boredon,  lack of sus- 

tained attention to  the auditory stimulus,  etc. 

In view of  the  fact that an arousal explanation can account  for 

the temporal changes  across  trials as well as the differential  changes 

within trials,   such an explanation gains some plausibility on grounds 

of consistency.     However,  it should be kept in mind that  numerous other 

factors  could be contributing to these effects, and this particular ad 

hoc explanation    is  at best only tentative.     Further evidence for  or 

against the arousal hypothesis may be deduced from the changes  in the 

group physiological data reported below in this section and from the 

data obtained for individual subjects  reported in the subsequent sec- 

tion. 

Eye Motor Activity, EMG, and  SC 

It will be recalled that  the analyses of  the group physiological 

data revealed no significant  changes with respect  to the high and low 

alpha conditions  even though the individual analyses revealed signifi- 

cant changes in some of the measures for certain subjects.    Failure to 

obtain significant differences  for the group data certainly does not 

prove  that no differences exist and therefore cannot be taken as 
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evidence against   the arousal hypothesis.    Such failure, however,  serves 

to remind us  that even if  there should be a common effect of an indepen- 

dent variable   (in this particular experiment,  alpha-level instructions) 

on one or n»re of   these physiological variables, unless such an effect 

is particularly pronounced,   it may be masked by idiosyncratic changes 

occurring  for each subject.     Such masking effects require unusually 

large amounts of  group data to demonstrate statistical significance. 

This point  receives additional impact when considered in the context 

of  individual  analyses discussed  in the next section. 

With  respect   to  temporal changes,  the group analyses revealed 

that only SC changed significantly.     The changes were in terms of a 

progressive decrease within trials,  a change across  trials,  and an 

interaction between trials and 1-minute intervals.    The within-trial 

decrease is   typical of  SC and has been reported many times in the 

literature   (e.g.,   Eason et al.,  1964).     It  is  interesting to note that 

the significant  change in SC across  trials   (depicted in Figure 1)   is 

similar to  that described in the preceding section for  alpha,  in that 

SC also is highest on trial three following the mid-session break. 

However,   the  increase in SC on trial three suggests an increase,  rather 

than a decrease,   in arousal,  at least in the autonomic nervous system, 

which is just  the opposite of  that which would have been predicted by 

an arousal hypothesis of   alpha control. 

SSSSaSaggl  Involving Subjects.    The significant interactions  in- 

volving subjects   (see Table 1)   indicate that the effect of the alpha 

level instructions,  as well as  the  temporal effects, on the various 
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physiological variables varied markedly from subject to subject.    Al- 

though tvo or more subjects occasionally showed similar changes  in cer- 

tain dependent variables,   the effects for most subjects may best be 

described as being idiosyncratic,  and their significance for voluntary 

alpha control will therefore be described in the next section. 

AVERAGED EVOKED POTENTIALS 

Although  the evoked potential data were not subjected to a group 

analysis,  due to the marked differences in waveform from subject to 

subject,   the reader is being reminded of these data at this time in 

order that he may not  overlook their potential importance for the in- 

vestigation of voluntary control of alpha.     The highly discernible and 

consistent differences manifested in the EPs obtained from each subject 

under the high and low alpha  conditions provide information which may 

prove to be most helpful in understanding the neural activational 

state of the subject while engaged in the voluntary generation or sup- 

pression of alpha.     The  implication of the EP results for a cortical 

arousal hypothesis of alpha control will be discussed as a separate 

unit  in the section which follows. 

Individual Results 

SUBJECT  DIFFERENCES   IN  ALPHA  CONTROL AND MEAN 

ALPHA LEVEL 

Tangentially  related to the arousal-attentional hypothesis of 

alpha control  is   the question of whether the ability  to voluntarily 

alter one's  alpha level is  related  to the spontaneous amount of alpha 
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activity involuntarily generated per unit time under some specified 

condition.     The  reader will  recall that while the subjects in the 

present experiment differed  in the degree of alpha  change associated 

vita  the high-low  conditions,  such differences  appeared to be essen- 

tially independent of  each subject's mean alpha level as manifested, 

during the course  of the experiment   (Table 3) .    Failure to find a 

relationship between mean alpha level and ability to voluntarily en- 

hance or suppress alpha is consistent with results obtained by Beatty 

(1971), who failed to  find a significant correlation between the two 

variables.     Although negative findings can never prove conclusively 

the complete absence of  a relationship,  combined results of these two 

studies  at   least suggest  that  if such a relationship  does  exist, as 

some people have stated  (Hord & Barber,  1971; Nowlis   & Kamiya,   1970), 

it is at best a very weak one.    Quite clearly, knowledge of the mean 

amplitude of   alpha activity of individuals obtained under standardized 

conditions would be of   little value in predicting the degree to which 

each individual could, with practice, voluntarily alter his alpha 

level. 

Inasmuch  as   the between-subject differences  in mean alpha  level 

observed for  the six subjects  in the present study could have been due 

to the composite variations of numerous chemical, physical, biological, 

and behavioral factors,   including variations in degree of general 

arousal and  attentional state,  it would be inappropriate to attribute 

such differences solely to the latter  factor.    Even if  the variations 

did primarily  reflect subject differences  in arousal  and attention, 
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there is no a priori reason to assume that a relatively highly aroused 

subject will generate a greater (or  lesser)   differential in alpha level 

between the high and low conditions  than a less aroused subject.     It is 

concluded,   therefore,   that an examination of  the between-subject differ- 

ences exhibited by the six subjects in voluntarily controlling alpha in 

relation to  their mean alpha levels simply sheds no light on the ques- 

tion of whether such control is mediated through self-induced changes 

in arousal and attention.     Hopefully,   further examination of such vol- 

untary control  in relation to concomitant changes in eye motor activity, 

E>E,  SC,  and  cortical evoked potentials will prove to be more enlight- 

ening. 

CHANGES   IN  EYE  MOTOR ACTIVITY,   EMG,  AND SC RELATED 

TO ALPHA LEVEL 

Alpha Level 

It will be  recalled that consistent differences in the non- 

cortical electrophysiological measures recorded in the present study 

between the high and low alpha conditions were observed for particular 

subjects   (see Table 7) .     In 7 of   18 opportunities  the three measures 

of peripheral nervous system activity   (eye motor activity, EMG, and 

SC) were greater during  the low alpha  condition.    In only one  case 

(eye motor activity for K.F.)  was difference between high and low 

conditions  found in the direction of greater activity during  the high 

alpha condition,  a likely chance occurrence at the   .05  level,  in view 

of  the fact  that  there were  18 opportunities   to obtain significance 

at this level.    These findings strongly support  the hypothesis that 
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the voluntary  control of  alpha is mediated in part by self-induced 

changes  in arousal and/or attention. 

Temporal Relationships 

Examination of  the temporal changes in alpha level and the various 

peripheral physiological measures lends no further substantive support 

for the  arousal/attentional hypothesis of alpha control.    Thus,  it ap- 

pears that  in order  to demonstrate a relationship between alpha level 

and peripheral physiological activity level an experimental situation 

must be  contrived wherein large differences  in alpha level are gener- 

ated and  sustained for a substantial period of  time, as was  done in 

the present experiment.    Apparently, any temporal  covariation related 

specifically to   changes in arousal and attentional states is masked by 

other factors concomitantly affecting the various physiological vari- 

ables. 

Although  temporal changes in alpha level and the various physio- 

logical variables shed no further light on the hypothesis  that alpha 

control is mediated in part through self-induced alterations of  arousal 

and attention,   it is  interesting to speculate as  to why some of   the 

temporal variations occurred.    For example,  the progressive increase 

in EMG level across  1-minute intervals for R.S.  and P.S.  under the low 

alpha condition  (Figure AC and E)   is reminescent of  so-called "EMG 

gradients" described by Bartoshuk   (1955a, b)   and interpreted by Eason 

and Branks   (1963)   as   reflecting increasing voluntary effort.     If  their 

interpretation is applied  to the present data,  it appears  that progres- 

sively more effort was exerted during the course of a trial    under  the 



68 

low condition in order to maintain  the degree of self-induced cortical 

activation and general bodily arousal required to maintain alpha sup- 

pression throughout  the trial.     Applying  the same interpretation to the 

high alpha  condition one would have to assume that no change in effort 

was required  to maintain a high level of  alpha since EMG level remained 

essentially  constant  throughout  the trial. 

A second example,  involving differential changes in eye motor 

activity  across  trials and sessions for two subjects   (see J.K.  and G.R. 

in Figure 3A and E; .  perhaps reflects an intensification of visual 

strategies  in attempting to suppress alpha under the low condition 

while employing  essentially  the same strategy throughout each session 

under the high condition.     Both of  these subjects showed marked in- 

creases   in eye motor activity across sessions with significant in- 

creases within trials under the low alpha condition for G.R.   (Figure 3C 

and E), whereas neither showed any substantial changes under the high 

condition.     It  is  interesting to note that  the marked increase in eye 

motor activity across  1-minute intervals and sessions was not accom- 

panied by a corresponding change in alpha  level under the low condition, 

so it would appear  that if  the subjects were intensifying strategies 

involving  the eyes,   this intensification had little payoff in terms of 

improving voluntary alpha suppression. 

AVERAGED  EVOKED  POTENTIALS 

The evoked potentials  for each subject differed markedly for  the 

high and  low alpha conditions,   as  illustrated in Figure 6.     These data 

provide  the strongest support for an arousal/attentional hypothesis of 
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alpha control.     In general  there was  less variability in the superim- 

posed tracings generated  from one replication to the next under the 

low alpha condition.     For individual subjects  the EPs were more clearly 

defined under the  low condition,   reflecting more stimulus-locked activ- 

ity in the  clearer  differentiation of earlier components.    The one ex- 

ception, K.F.,  whose EP waveforms were more highly articulated under 

the high than under  the low condition, was also the only subject with 

a difference in the peripheral physiological measures opposite to that 

expected by an arousal hypothesis,  and also showed relatively poor con- 

trol of alpha as  compared to the other subjects. 

The EP data in the present study as  interpreted in arousal/atten- 

tional terms directly concur with results,  reported by Eason,  Harter, 

and White   (1969) ,  of   a study in which arousal level and attention were 

externally manipulated.    Only one EP study has been found in which,  as 

in the present study,  subjects voluntarily induced  changes in  cortical 

arousal.     Spilker, Kamiya,  Callaway,  and Yeager (1969),  recording flash- 

evoked potentials from subjects voluntarily producing high and low 

alpha levels,   found that  two early components were usually greater  in 

amplitude during periods of high alpha.     Only one subject in  the pre- 

sent study   (P.S.)   showed a comparable difference.     This finding is 

probably related to  this subject's strategy for controlling alpha. 

The Spilker et al.   findings   cannot be further extended since they pre- 

sented no EP tracings and apparently recorded only a single EP from 

each of seven subjects  in the high and low conditions   (as compared to 

the 16 replications  in each condition for each subject in the present 
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study).    Furthermore they did not  specify whether their subjects were 

in an eyes-opened or eyes-closed  condition, a fact which nakes  their 

limited results  impossible  to interpret. 

Summary and Conclusion 

The present  study was designed to examine the hypothesis that 

voluntary alpha control is at least partly mediated through self- 

induced changes  in cortical activation level and bodily arousal. 

Changes in several physiological indicants of such activity were sys- 

tematically  examined, for subjects who voluntarily produced and sup- 

pressed alpha activity.     In general the results of  this experiment 

support  the notion that  the voluntary alteration of alpha activity 

is partly mediated through such self-induced changes.    Physiological 

arousal was  greater during  the low alpha condition as measured by 

eye motor activity, EMG, and SC in 7  of  18 opportunities.    The com- 

plexity of   the association between the physiological response systems 

and alpha  activity must be recognized, however, in viev of the lack 

of direct  and consistent covariation between the temporal changes  in 

these physiological measures and the temporal changes  to alpha.     Fur- 

ther  research is  needed to establish what factors   contribute to tem- 

poral variations   in alpha level and the peripheral physiological 

variables. 

Attentional and arousal factors have been viewed in the present 

study as representing concomitant,  if not functionally equivalent, 

neural and behavioral states.     Inasmuch as visually evoked potentials 

reflect visual attention and degree of  cortical activation,   the 
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consistent  differences  in the EPs found between the high and low 

conditions  provide substantial evidence that subjects were more highly 

activated  during the  low alpha condition.    Although the results of 

this study indicate that voluntary control of alpha is partly mediated 

through self-induced changes in cortical activation and bodily arousal, 

more specific factors affecting such  control nevertheless need to be 

examined. 
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Table 8 

Summary of Group Analysis of Variance for Alpha 
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Source MS Error Term      df 

1. H-L 
2. Ses 
3. Tr 
4. Min Int 
5. H-L X Ses 
6. H-L X Tr 
7. Ses X Tr 
8. H-L X Min Int 
9. Ses X Min Int 

10. Tr X Min Int 
11. H-L X Ses X Tr 
12. H-L X Ses X Min Int 
13. H-L X Tr X Min Int 
14. Ses X Tr X Min 
15. H-L X Ses X Tr X Min Int 
16. £ X H-L 
17. £ X Ses 
18. S X Tr 
19. £ X Min Int 
20. S X H-L X Ses 
21. S X H-L X Tr 
22. £ X Ses X Tr 
23. £ X H-L X Min Int 
24. £ X Ses X Min Int 
25. SXTrX Min Int 
26. S X H-L X Ses X Tr 
27. SXH-LX Ses  X Min Int 
28. S_ X H-L X Tr X Min Int 
29. £ X Ses X Tr X Min Int 
30. S X H-L X Ses X Tr X Min 

2575.18 
58.60 
33.24 
4.15 

10.31 
2.10 
1.88 

14.28 
1.78 
1.36 
2.21 

.43 

.29 

.55 

.29 
149.01 
30.23 
3.84 
4.08 
6.22 
2.76 
1.54 
1.15 
1.26 

.99 
1.66 

.71 

.36 

.72 
Int .66 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

1 
3 
3 
2 
3 
3 
9 
2 
6 
6 
9 
6 
6 

18 
18 

5 
15 
15 
10 
15 
15 
45 
10 
30 
3C 
45 
30 
30 
90 
90 

17.28** 
1.93 
8.65** 
1.02 
1.66 

.76 
1.22 

12.45** 
1.41 
1.38 
1.33 

.60 

.80 

.76 

.43 
225.81** 
45.81** 
5.83** 
6.19** 
9.43** 
4.17** 
2.33** 
1.74 
1.91** 
1.49 
2.51** 
1.07 

.54 
1.09 

*p_ < .05 
**£ < .01 
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Table 9 

Summary of Group Analysis of Variance for Eye Motor Activity 

Source MS Error Term df F 

1.  H-L 254.47 16 1 .50 
2.  Ses 71.53 17 3 1.03 
3.  Trials 6.60 18 3 .36 
4. Min Int 1.47 19 2 .56 
5. H-L X Ses 6.01 20 3 .11 
6. H-L X Tr 4.41 21 3 .71 

7.  Ses X Tr 5.77 22 9 1.20 

8.  H-L X Min Int 7.84 23 2 1.62 

9.   Ses X Min Int 4.20 24 6 2.15 

10.  Tr X Min Int 1.13 25 6 1.54 

11. H-L X Ses X Tr 5.49 26 9 1.14 

12. H-L X Ses X Min Int 1.79 27 6 1.83 

13. H-L X Tr X Min Int 1.62 28 6 1.35 

14.   Ses X Tr X Min Int 1.41 29 18 .97 
.75 15.  H-L X Ses X Tr X Min Int 1.18 30 18 

16. j[ X H-L 515.00 30 5 325.41** 

17.   S X Ses 69.73 30 15 44.06** 

18.   SXTr 18.23 30 15 11.52** 

19.   S X Min Int 2.65 30 10 1.68 

20. S X H-L X Ses 
21. S X H-L X Tr 
22. S X Ses X Tr 
23. S X H-L X Min Int 
24. S X Ses X Min Int 
25. S X Tr X Min Int 
26. S X H-L X Ses X Tr 
27. S X H-L X Ses X Min Int 
28. S X H-L X Tr X Min Int 
29. S X Ses X Tr X Min Int 

53.00 
6.19 
4.80 
4.84 
1.96 
.73 

4.81 
.98 

1.21 
1.45 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

15 
15 
45 
10 
30 
30 
45 
30 
30 
90 
90 

33.49** 
3.91** 
3.03** 
3.06** 
1.24 

.46 
3.04** 

.62 

.76 

.92 

30.   S X H-L X Ses X Tr X Min Int    1.58 

*£ < .05 
**£ < .01 
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Summary of Group Analysis of Variance for EMG 
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Source MS Error Term df F 

1.   H-L 88.87 16 1 3.36 
2.   Ses 14.44 17 3 .76 
3.  Trials 3.04 18 3 1.98 
4. Min Int 3.19 19 2 1.28 
5. H-L X Ses .17 20 3 .05 
6. H-L X Tr 1.88 21 3 1.62 
7.  Ses X Tr 1.42 22 9 .60 
8.  H-L X Min Int 4.61 23 2 2.24 

9.   Ses X Min Int .09 24 6 1.18 

10.   Tr X Min Int .07 25 6 1.00 

11. H-L X Ses X Tr 1.15 26 9 1.21 

12.  H-L X Ses X Min Int .05 27 6 .51 

13.   H-L X Tr X Min Int .02 28 6 .18 

14.  Ses X Tr X Min Int .14 29 18 1.19 

15.  H-L X Ses X Tr X Min Int .07 30 18 .93 

16.   S X H-L 26.43 30 5 352.45** 

17. £ X Ses 18.88 30 15 251.72** 

18.  S XTr 1.54 30 15 20.56** 

19.  S X Min Int 2.50 30 10 33.39** 

20. £ X H-L X Ses 3.20 30 15 42.68** 

21. J3 X H-L X Tr 1.16 30 15 15.48** 

22.   S  X Ses  X Tr 2.38 30 45 31.77** 

23. S X H-L X Min Int 
24. S X Ses X Min Int 
25. S X Tr X Min Int 
26. £ X H-L X Ses X Tr 
27. S X H-L X Ses X Min Int 
28. S X H-L X Tr X Min Int 
29. S X Ses X Tr X Min Int 
30. S X H-L X Ses X Tr X Min 

2.06 
.08 
.07 
.95 
.10 
.12 
.12 

Int     .08 

30 
30 
30 
30 
30 
30 
30 

10 
30 
30 
45 
30 
30 
90 
90 

27.42** 
1.06 

.99 
12.66** 
1.36 
1.60* 
1.56* 

*£ < .05 
**£ <.01 



Table 11 

Summary of  Group Analysis of Variance for SC 
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Source MS Error Term      df 

1.  H-L .84 
2.   Ses 14.71 
3.   Trials 37.492 
4. Min Int 51.42 
5.   H-L X Ses .34 
6.  H-L X Tr .53 
7.  Ses X Tr .41 
8. H-L X Min  Int .00 
9.   Ses X Min Int .31 

10.  Tr X Min  Int .92 

11.   H-L X Ses X Tr .64 
12. H-L X Ses  X Min Int .18 
13. H-L X Tr X Min Int .12 
14.   Ses X Tr X Min Int .12 
15.  H-L X Ses X Tr X Min Int .21 
16.   S X H-L 1.11 
17.   S X Ses 15.76 

18.   S X Tr 5.19 

19.  S X Min Int 3.10 

20.   S X H-L X Ses .37 

21.   S X H-L X Tr .47 

22.   S X Ses X Tr 1.68 

23.   S X H-L X Min  Int .18 

24.   S X Ses  X Min Int .49 

25.   S X Tr X Min Int .22 

26.  S X H-L X Ses X Tr .92 

27.   S X H-L X Ses X Min Int .17 

28.   S X H-L X Tr X Min Int .09 

29.  S X Ses X Tr X Min Int .25 

30.   S X H-L X Ses X Tr X Min Int .20 

*£ <.05 
**£  <.01 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

1 
3 
3 
2 
3 
3 
9 
2 
6 
6 
9 
6 
6 

18 
18 

5 
15 
15 
10 
15 
15 
45 
10 
30 
30 
45 
30 
30 
90 
90 

.75 

.93 
7.22** 

16.57** 
.91 

1.12 
.24 
.00 
.64 

4.09** 
1.09 
1.10 
1.34 

.47 
1.07 
5.65** 

79.63** 
26.22** 
15.67** 
1.87* 
2.38** 
8.48** 

.93 
2.49** 
1.13 
4.63** 

.84 

.47 
1.28 
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Table  12 

Summary Analysis  of Variance of  Integrated Alpha  for R.S. 

Source MS Error Term df F 

1. H-L 1857.55 5,8 1 229.72** 

2.  Ses 10.87 .   5,7,9 3 2.56 

3. Trials 21.03 6,7,10 3 10.31** 

4. Min Int 2.29 8,9,10 2 .61 

5.  H-L X Ses 9.31 11 ,12,13,14,15 3 4.95** 

6. H-L X Tr .32 11 ,12,13,14,15 3 .17 

7.  Ses X Tr 2.45 11 ,12,13,14,15 9 1.30 

8. H-L X Min Int 6.24 11 ,12,13,14,15 2 3.32* 

9.  Ses X Min Int 4.40 11 ,12,13,14,15 6 2.34* 

10.  Tr X Min Int 2.29 11 ,12,13,14,15 6 1.22 

11. H-L X Ses X Tr 3.45 15 9 1.90 

12.  H-L X Ses X Min Int 2.01 15 6 1.11 

13.  H-L X Tr X Min Int .85 15 6 .47 

14.  Ses X Tr X Min Int 1.41 15 18 .78 

15.  Full Model 1.81 18 

*£ <.05 
**£ <.01 
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Table 13 

Summary Analysis  of Variance of Integrated Alpha for G.R. 

Source MS Error Term df F 

1. H-L 181.93 5,6,8 1 233.24** 

2.  Ses 9.83 5,7,9 3 35.11** 

3.  Trials 3.63 6,7 3 9.31** 

4. Min Int .68 8 2 .30 

5. H-L X Ses .24 11 3 .41 

6. H-L X Tr .34 11 3 .59 

7.  Ses X Tr .40 11 9 .69 

8. H-L X Min Int 2.25 15 2 23.06** 

9.  Ses X Min Int .11 15 6 1.12 

10.  Tr X Min Int .03 15 6 .36 

11. H-L X Ses X Tr .58 15 9 5.96** 

12. H-L X Ses X Min Int .04 15 6 .40 

13. H-L X Tr X Min Int .10 15 6 1.07 

M.  Ses X Tr X Min Int .20 15 18 2.07 

15.  Full Model .10 18 

*£ < .05 
**P_ < .01 
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Table 14 

Summary Analysis  of Variance of Integrated Alpha for J.K. 

Source MS Error Term df F 

1. H-L 284.25 5,6,8 1 38.32** 

2.  Ses 56.50 5'7 3 11.97** 

3. Trials 18.49 6,7 3 3.06 

4. Min Int 6.12 8 2 .96 

5.  H-L X Ses 5.11 11 3 1.82 

6.  H-L X Tr 10.40 11 3 3.70 

7.  Ses X Tr 4.59 11 9 1.63 

8.  H-L X Min Int 6.39 15 2 12.15** 

9.   Ses X Min  Int .79 15 6 1.50 

10.  Tr X Min Int 1.10 15 6 2.08 

11.  H-L X Ses X Tr 2.81 15 9 5.34** 

12.  H-L X Ses X Min Int .21 15 6 .39 

13.  H-L X Tr X Min Int .21 15 6 .40 

14.   Ses X Tr X Min Int .79 15 16 1.50 

15.  Full Model .53 18 

*£ <.05 
**£ <.01 
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Table 15 

Summary Analysis of Variance of Integrated Alpha for P.S. 

Source MS Er ror Term df F 

1.  H-L 466.74 5,8 1 37.43** 

2.   Ses 12.83 5 3 .78 

3.  Trials 1.86 6,7 3 1.74 

4. Min Int 7.49 8,9 2 4.51* 

5.  H-L X Ses 18.44 11 3 15.11** 

6.   H-L X Tr 1.86 11 3 1.52 

7.   Ses X Tr .80 11 9 .65 

8.  H-L X Min Int 3.53 12 ,13,14 ,15 2 11.20** 

9.   Ses X Min Int 1.04 12 13,14 ,15 6 3.29** 

10.   Tr X Min Int .33 12 13,14 15 6 1.05 

11.  H-L X Ses  X Tr 1.22 15 9 3.29* 

12.   H-L X Ses X Min Int .40 15 6 1.09 

13.  H-L X Tr X Min Int .25 15 6 .67 

14.   Ses X Tr X Min Int .25 15 18 .68 

15.   Full Model .37 18 

*£ <.05 
**s. <-01 
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Table 16 

Summary Analysis of Variance of Integrated Alpha for K.F. 

Source MS Error Term df 

1 H-L 

2 Ses 

3 Trials 

4 Min Int 

5. H-L X Ses 

6. H-L X Tr 

7. Ses X Tr 

8. H-L X Min Int 

9. Ses X Min  Int 

10. Tr X Min Int 

11. H-L X Ses X Tr 

12. H-L X Ses X Min Int 

13. H-L X Tr X Min Int 

14. Ses X Tr X Min Int 

15. Full Model 

*P < .05 
**T> < .01 

56.05 5,6,8 1 156.39** 

88.63 5,7,9 3 127.58** 

7.40 6,7,10 3 6.05** 

.88 9,10 2 .62 

.24 11 3 .21 

.68 11 3 .61 

.82 11 9 .73 

.05 12 2 .07 

.73 12 6 1.03 

2.09 14 6 3.73* 

1.12 15 9 4.42** 

.71 15 6 2.78* 

.27 15 6 1.08 

.56 15 18 2.20 

.25 18 
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Table 17 

Summary Analysis of Variance of   Integrated Alpha for P.B. 

Source MS Error Term df F 

1.  H-L 473.57 5,6,8 1 112.41** 

2.  Ses 31.13 5 3 3.87 

3.  Trials .09 6 3 .04 

4. Min Int 7.17 8,9,10 2 8.73** 

5.  H-L X Ses 8.05 11 3 6.01* 

6. H-L X Tr 2.22 11 3 1.66 

7.  Ses X Tr .50 11 9 .37 

8.  H-L X Min  Int 1.45 15 2 2.46 

9.  Ses X Min Int 1.00 15 6 1.69 

10.  Tr X Min Int .44 15 6 .74 

11.  H-L X Ses X Tr 1.34 15 9 2.27 

12. H-L X Ses X Min Int .61 15 6 1.04 

13.  H-L X Tr X Min Int .40 15 6 .68 

14.  Ses X Tr X Min Int .97 15 18 1.65 

15.  Full Model .59 18 

*£ < .05 
**£ < .01 



Table 18 

S-jnraary Analysis  of Variance of Eye Motor 

Activity for R.S. 
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Source MS Error Term df •   F 

1. H-L 8.14 5,6,8 1 1.03 

2.  Ses 41.03 5,7 3 4.76* 

3. Trials 45.70 6,7 3 9.12** 

4. Min Int .86 8,9,10 2 .50 

5. H-L X Ses 16.46 11 3 4.34* 

6. H-L X Tr 2.02 11 3 .53 

7. Ses X Tr 6.01 11 9 1.59 

8. H-L X Min Int 3.93 12,13,15 2 3.03 

9.  Ses X Min Int 1.72 15 6 1.35 

10. Tr X Min Int .95 15 6 .75 

11. H-L X Ses X Tr 3.79 15 9 2.98* 

12.  H-L X Ses X Min Int .98 15 6 .77 

13. H-L X Tr X Min Int .82 15 6 .65 

14.  Ses X Tr X Min Int 1.51 15 18 1.19 

15.  Full Model 1.27 18 

*o <.05 
**£ < .01 



Table 19 

Summary Analysis of Variance of Eye Motor 

Activity for G.R. 

87 

Source MS Error Term df ■ F 

1.   H-L 18.03 5,8 1 1.43 

2.  Ses 113.72 5,7,9 3 9.25** 

3.  Trials 12.73 6,7,10 3 2.88 

4. Kin Int 5.35 8,9 2 .74 

5.  H-L X Ses 8.83 11,12,13,14,15 3 4.71** 

6. H-L X Tr 1.87 11,12,13,14,15 3 .99 

7.   Ses X Tr 6.95 11,12,13,14,15 9 3.71** 

8.  H-L X Min Int 18.19 11,12,13,14,15 2 9.70** 

9.   Ses X Min Int 3.59 11,12,13,14,15 6 1.91 

10.  Tr X Min Int 1.90 11,12,13,14,15 6 1.01 

11.  H-L X Ses X Tr 2.96 15 9 1.38 

12.  H-L X Ses X Min  Int 1.15 15 6 .53 

13.  H-L X Tr X Min Int .93 15 6 .43 

14.   Ses X Tr X Min Int 1.61 15 18 .75 

15.  Full Model 2.15 18 

*£ <.05 
**v  <.01 



Table 20 

Summary Analysis of Variance of Eye Motor 

Activity for J.K. 
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Source MS Error Term df F 

1.   H-L 1686.32 5 1 8.47+ 

2.   Ses 194.07 5 3 .97 

3.   Trials 3.41 6,7 3 .70 

4.  Min Int 1.85 8,9 2 .54 

5. H-L X Ses 199.16 11,12,13,14,15 3 171.20** 

6.  H-L X Tr 4.46 11,12,13,14,15 3 2.50 

7.   Ses  X Tr 4.99 11,12,13,14,15 9 2.90** 

8.  H-L X Min Int 3.61 11,12,13,14,15 2 2.10 

9.   Ses X Min Int 3.30 11,12,13,14,15 6 1.92 

10.   Tr X Min Int .49 11,12,13,14,15 6 .28 

11.H-L X Ses X Tr 2.45 15 9 1.28 

12.  H-L X Ses X Min Int 1.81 15 6 .94 

13.  H-L X Tr X Min Int 1.47 15 6 .77 

14.   Ses X Tr X Min Int 1.21 15 18 .63 

15.   Full Model 1.92 18 

+£ < .07 
*£ < .05 

**£ <.01 



Table  21 

Summary Analysis of Variance of Eye Motor 

Activity for P.S. 

89 

Source MS Error Term df F 

1.  H-L 22.19 5,6,8 1 6.37* 

2.   Ses 7.54 5,7 3 2.30 

3.  Trials 3.64 6,7 3 1.67 

4. Min Int .06 8 2 .02 

5.  H-L X Ses 5.88 11 3 3.32 

6.  H-L X Tr 1.47 11 3 .83 

7.   Ses X Tr 2.41 11 9 1.36 

8.   H-L X Min  Int 2.91 15 2 8.39** 

9.   Ses X Min Int .55 15 6 1.59 

10.   Tr X Min  Int .28 15 6 .81 

11.  H-L X Ses X Tr 1.77 15 c 5.11** 

12. H-L X Ses X Min Int .73 15 6 2.09 

13.  H-L X Tr X Min Int .50 15 6 1.45 

14.   Ses X Tr X Min Int .70 15 18 2.03 

15.  Full Model .35 18 

*£ < .05 
**£ < .01 



Table 22 

Summary Analysis of Variance of Eye Motor 

Activity for K.F. 
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Source MS Error Term df F 

1.  B-l 855.88 5,6 1 9.86* 

2.  Ses 52.31 5,7,9 3 6.98** 

3.   Trials 31.11 6 3 1.32 

4. Min Int 4.01 8,9,10 2 2.02 

5.  H-L X Ses 16.74 11 3 1.02 

6.  H-L X Tr 23.49 11 3 1.44 

7.  Ses X Tr 7.05 11 9 .43 

8.  H-L X Min Int .69 15 2 .31 

9.  Ses X Min Int 3.54 12,14,15 6 1.65 

10.  Tr X Min Int .86 15 6 .38 

11.  H-L X Ses  X Tr 16.34 15 9 7.28** 

12.  H-L X Ses X Min Int 1.05 15 6 .47 

13. H-L X Tr X Min Int 2.69 15 6 1.20 

14.  Ses X Tr X Min Int 2.39 15 18 1.07 

15.   Full Model 2.24 18 

*£ < .05 
**£  <.01 



Table 23 

Summary Analysis of Variance of Eye Motor 

Activity for P.B. 
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Source MS Error Term df F 

1.  H-L 238.94 .      5,8 1 15.45* 

2.  Ses 11.48 5 3 .48 

3.  Trials 1.18 6,7 3 .52 

4. Min Int 2.59 8,9 2 1.57 

5. H-L X Ses 23.96 11 3 10.74** 

6. H-L X Tr 2.04 11 3 .91 

7.   Ses X Tr 2.36 11 9 1.06 

8. H-L X Min Int 2.73 15 2 2.34 

9.  Ses X Min Int 1.29 15 6 1.10 

10.   Tr X Min Int .32 15 6 .27 

11. H-L X Ses X Tr 2.23 15 9 1.91 

12. H-L X Ses X Min Int .97 15 6 .84 

13.  H-L X Tr X Min Int 1.23 15 6 1.06 

14.   Ses X Tr X Min Int 1.24 15 18 1.06 

15.   Full Model 1.17 18 

*2. <.05 
**£  < .01 



Table  24 

Summary Analysis of Variance of EMG for R.S. 
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Source MS Error Term      df 

1.  H-L 161.46 5,6,8 1 24.21** 

2.   Ses 66.44 5 3 12.35* 

3.   Trials 2.63 6 3 .61 

4. Min Int 12.23 8 2 1.00 

5.  H-L X Ses 5.38 11 3 1.72 

6.  H-L X Tr 4.29 11 3 1.37 

7.  Ses X Tr .83 11 9 .26 

8.  H-L X Min Int 12.17 15 2 105.74** 

9.  Ses X Min Int .06 14 6 .19 

10. Tr X Min Int .18 14 6 .56 

11. H-L X Ses X Tr 3.13 15 9 27.18** 

12. H-L X Ses X Min Int .13 15 6 1.09 

13.  H-L X Tr X Min Int .22 15 6 1.92 

14. Ses X Tr X Min Int .32 15 18 2.82* 

15. Full Model .12 18 

*£ < .05 
**£  < .01 



Table 25 

Summary Analysis  of Variance of BUS for G.R. 
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Source MS Error Term df 

1. H-L 

2. Ses 

3. Trials 

4. Min Int 

5. H-L X Ses 

6. H-L X Tr 

7. Ses X Tr 

8. H-L X Min Int 

9. Ses X Min  Int 

10. Tr X Min Int 

11. H-L X Ses X Tr 

12. H-L X Ses  X Min Int 

13. H-L X Tr X Min Int 

1A. Ses X Tr X Min Int 

15.   Full Model 

.02 

25.70 

2.99 

.06 

5.02 

1.50 

2.30 

.03 

.09 

.05 

1.20 

.23 

.06 

.05 

.03 

5,6 1 .01 

5,7 3 8.62** 

6,7 3 .71 

8,9,10 2 .42 

11 3 4.18* 

11 3 1.25 

11 9 1.92 

12 2 .13 

12 6 .39 

15 6 1.32 

15 9 35.01** 

15 6 6.61** 

15 6 1.85 

15 16 

18 

1.49 

*£ <.05 
**£   <.01 



Table 26 

Summary Analysis of Variance of DIG for J.K. 

94 

Source MS Error Term df F 

1. H-L 9.69 5,6,8 1 15.36** 

2. Ses 3.05 5,7 3 .44 

3. Trials 3.58 7 3 .41 

4. Min Int 1.27 8,9,10 2 9.17** 

5. H-L X Ses 1.37 11 3 2.98 

6. H-L X Tr .25 11 3 .54 

7. Ses X Tr 8.78 11 9 19.09** 

8. H-L X Min Int .08 15 2 . .53 

9. Ses X Min Int .23 15 6 1.47 

10. Tr X Min Int .07 15 6 .42 

11. H-L X Ses X Tr .46 15 9 2.97* 

12. H-L X Ses X Min Int .05 15 6 .31 

13. H-L X Tr X Min Int .20 15 6 1.30 

14. Ses X Tr X Min Int .20 15 18 1.31 

15. Full Model .16 18 

*£ <.05 
**£ <.01 



Table 27 

Summary Analysis of Variance of EMG for P.S 
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Source MS Error Term      df 

1.   H-L 41.34 5,8 1 26.20** 

2.   Ses 2.07 5,7 3 3.83* 

3.   Trials .27 6,7 3 .79 

4. Min Int 2.08 8 2 .84 

5.  H-L X Ses .98 11 3 9.80** 

6.  H-L X Tr .17 11 3 1.70 

7.   Ses X Tr .40 11 9 4.00* 

8.   H-L X Min Int 2.47 15 2 64.21** 

9.   Ses X Min Int .03 15 6 .84 

10.  Tr X Min Int .02 15 6 .46 

11. H-L X Ses X Tr .10 15 9 2.54* 

12.  H-L X Ses X Min Int .04 15 6 1.14 

13.  H-L X Tr X Min Int .02 15 6 .40 

14.   Ses X Tr X Min Int .03 15 18 .65 

15.  Full Model .04 18 

*£ < .05 
**£  <.01 



Table 28 

Summary Analysis  of Variance of EMG for K.F. 
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Source MS Error Term df 

1. H-L 

2. Ses 

3. Trials 

4. Min  Int 

5. H-L X Ses 

6. H-L X Tr 

7. Ses X Tr 

8. H-L X Min Int 

9. Ses X Min Int 

10. Tr X Min Int 

11. H-L X Ses X Tr 

12. H-L X Ses X Min Int 

13. H-L X Tr X Min Int 

14. Ses X Tr X Min Int 

15. Full Model 

**£ 
<.05 
<.01 

6.25 

1.43 

.04 

.06 

1.72 

.42 

.41 

.04 

.02 

.07 

.49 

.06 

.02 

.05 

.04 

5,6 1 5.82 

5 3 .01 

6,7 3 .09 

8,9,10 2 1.18 

11 3 3.51 

11 3 .86 

11 9 .84 

15 2 .88 

15 6 .50 

15 6 1.58 

15 9 10.96** 

15 6 1.39 

15 6 .42 

15 16 

18 

1.22 



Table 29 

Summary Analysis  of Variance of EMG for P.B. 
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Source MS Error Term df 

1 H-L 

2. Ses 

3. Trials 

4. Min Int 

5. H-L X Ses 

6. H-L X Tr 

7. Ses X Tr 

8. H-L X Min Int 

9. Ses X Min Int 

10. Tr X Min  Int 

11. H-L X Ses  X Tr 

12. H-L X Ses X Min Int 

13. H-L X Tr X Min Int 

14. Ses X Tr X Min Int 

15. Full Model 

**£ 
<.05 
<.01 

2.27 

10.16 

1.24 

.01 

1.70 

1.05 

.63 

.11 

.06 

.06 

.51 

.06 

.10 

.06 

.05 

5,6,8 1 2.75 

5,7 3 11.33** 

6,7 3 1.69 

8,9,10 2 .14 

11 3 3.33 

11 3 2.06 

11 9 1.23 

15 2 2.01 

15 6 1.18 

15 6 1.21 

15 9 9.72** 

15 6 1.09 

15 6 1.88 

15 18 

18 

1.17 



Table 30 

Summary Analysis  of Variance of SC for R.S. 
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Source MS Error Term df 

1. H-L 

2. Ses 

3. Trials 

4. Min Int 

5. H-L X Ses 

6. H-L X Tr 

7. Ses X Tr 

8. H-L X Min Int 

9. Ses X Min Int 

10. Tr X Min Int 

11. H-L X Ses X Tr 

12. H-L X Ses X Min Int 

13. H-L X Tr X Min Int 

14. Ses X Tr X Min Int 

15. Full Model 

*£ < .05 
**£ < .01 

.07 5,6,8 1 .20 

3.38 5,7,9 3 7.56** 

2.61 6,7,10 3 6.40** 

5.51 8,9,10 2 18.80** 

.16 11 3 .27 

.57 11 3 .97 

.54 11 9 .91 

.29 15 2 1.66 

.46 12,14,15 6 3.46** 

.13 15 6 .76 

.59 15 9 3.37* 

.06 15 6 .36 

.09 15 6 .51 

.11 15 18 .64 

.17 18 



Table 31 

Summary Analysis of Variance of SC for G.R. 
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Source MS Error Term df F 

1.  H-L 3.79 5,6,8 1 12.23** 

2.   Ses 16.49 5,7,9 3 15.41** 

3.  Trials 44.09 6,7,10 3 40.45** 

4. Min Int 38.62 9,10 2 61.30** 

5.  H-L X Ses .24 3 .11 

6.  H-L X Tr .57 3 .25 

7.   Ses X Tr 1.61 9 .71 

8.   H-L X Min Int .03 2 .12 

9.   Ses X Min Int .68 6 2.40 

10.   Tr X Min Int .58 6 2.03 

11.  H-L X Ses X Tr 2.28 9 7.97 

12.  H-L X Ses X Mir Int .25 15 6 .87 

13. H-L X Tr X Min Int .04 15 6 .15 

14.   Ses X Tr X Min Int .44 15 18 1.55 

15.  Full Model .29 18 

*£ <.05 
**£ <.01 



Table 32 

Summary Analysis of  Variance of SC for J.K. 
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Source MS Error Term df 

1.   H-L .89 5,6 1 3.35 

2.   Ses 20.91 5,7,9 3 18.69** 

3.   Trials 2.68 6,7 3 1.75 

4.  Min Int 11.91 9 2 31.23** 

5.  H-L X Ses .31 11 3 .63 

6.  H-L X Tr .22 11 3 .45 

7.   Ses X Tr 1.88 11 9 3.84* 

8.   H-L X Min  Int .01 15 2 .02 

9.   Ses X Min Int .38 15 6 1.76 

10.   Tr X Min Int .07 15 6 .31 

11.  H-L X Ses X Tr .49 15 9 2.30 

12. H-L X Ses X Min Int .25 15 6 1.15 

13.   H-L X Tr X Min Int .01 15 6 .07 

14.   Ses X Tr X Min Int .13 15 18 .62 

15. Full Model .21 18 

*£ < .05 
**£  <.01 



Table 33 

Summary Analysis of Variance of SC for P.S, 
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Source MS Error Tern      df 

1.   H-L .27 5,6,8 1 1.47 

2.  Ses 6.09 5,7,9 3 7.47** 

3.   Trials .89 6,7 3 .85 

4. Min Int 1.56 8,9 2 3.77 

5. H-L X Ses .15 11 3 .88 

6.  H-L X Tr .27 11 3 1.59 

7.  Ses X Tr 1.29 11 9 7.59** 

8. H-L X Min Int .09 15 2 1.52 

9.   Ses X Min Int .43 14 6 2.26 

10.  Tr X Min  Int .08 14 6 .42 

11. H-L X Ses X Tr .17 15 9 2.83* 

12. H-L X Ses X Min Int .07 15 6 1.22 

13.  H-L X Tr X Min Int .08 15 6 1.33 

14.  Ses X Tr X Min Int .19 15 18 3.09** 

15. Full Model .06 18 

*£ < .05 
**£ <.01 



Table 34 

Summary Analysis  of Variance of SC for K.F. 
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Source MS Error Tern df 

1.  H-L 1.31 5,6,8 1 2.56 

2.  Ses 4.42 5,7,9 3 9.40** 

3.  Trials 3.80 6,7,10 3 10.80** 

4. Min Int 4.34 8,9,10 2 13.52** 

5. H-L X Ses 1.01 11 3 1.31 

6.  H-L X Tr .15 11 3 .19 

7.   Ses X Tr .41 11 9 .53 

8. H-L X Min Int .30 12,13 2 1.88 

9.   Ses X Min Int .29 12,14 6 2.52* 

10.  Tr X Min Int .36 13,14 6 5.14** 

11. H-L X Ses X Tr .77 15 9 6.62** 

12.  H-L X Ses X Min Int .25 15 6 2.16 

13.   H-L X Tr X Min Int .07 15 6 .61 

14.   Ses X Tr X Min Int .07 15 16 .60 

15.  Full Model .12 18 

*£ <.05 
**£  <.01 



Table 35 

Summary Analysis  of  Variance of SC for P.B, 
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Source MS Error Term df F 

1.   H-L .09 5,6,8 1 .15 

2.  Ses 42.23 7 3 13.80** 

3.  Trials 9.38 6,7,10 3 4.72* 

4.  Min Int 4.99 8,9,10 2 8.17** 

5. H-L X Ses .33 11 3 .36 

6. H-L X Tr 1.09 11 3 1.18 

7.   Ses X Tr 3.06 11 9 3.33* 

8.  H-L X Min Int .21 15 2 .60 

9.   Ses X Min Int .54 15 6 1.53 

10.  Tr X Min Int .82 13,14,15 6 2.15 

11. H-L X Ses X Tr .92 15 9 2.26* 

12. H-L X Ses  X Min Int .13 15 6 .38 

13. H-L X Tr X Min Int .29 15 6 .82 

14.  Ses X Tr X Min Int .44 15 18 1.26 

15.   Full Model .35 18 

*£ < .05 
**£ <.01 


