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INTRODUCTION 

The purpose  of  this   thesis is  to study the elementary properties 

of pure subgroups of an abelian group,   to use these properties  to prove 

the Fundamental Theorem of Finitely Generated Abelian Groups,  and to 

generalize the abelian group concept of purity  to modules over a com- 

mutative ring.    Many of  the  results of this paper are found in 

Kaplansky  [4J. 

Chapter   I defines  a pure subgroup of an abelian group,  and con- 

siders   the behavior of  purity with respect  to direct summands,   to divis- 

ible groups,   to the  operations  of union and  intersection,   to homomorphisms, 

and  to  torsion and   torsionfree groups.     An easy method of obtaining pure 

subgroups of primary groups  is  discussed.     Also,   a characterization of  an 

abelian group  in which every subgroup  is a pure subgroup is   developed. 

In Chapter  II,   groups of bounded order are  introduced.     Pure sub- 

groups which are direct  sums of  cyclic groups are  then considered,   and 

are used  to prove that  any group of bounded order is a direct sum of 

cyclic  groups.     The  last major  result of  this chapter is using the con- 

cept of purity  to prove  the  Fundamental Theorem of  Finitely Generated 

Abelian Groups. 

Chapter  III defines  R-purity for modules over a commutative ring, 

defines  injective modules,   and defines   the injective envelope of a module. 

The concept of a module being absolutely R-pure is  introduced and is char- 

acterized.     Several of  the properties  of pure subgroups of an abelian group 

are generalized  to the module concept of R-purity. 

v 



CHAPTER  I 

ELEMENTARY  PROPERTIES  OF PURE  SUBGROUPS 

Throughout  this  paper,   it  is understood  that the   term "group" will 

mean "abelian group,"    Z      will represent  the set of positive  integers, 

* 
and    Z      will represent   the set of nonzero  integers. 

We present  three definitions of a pure subgroup of  a group   that are 

easily seen  to be equivalent.     Thus, we will feel  free to use the most 

convenient  definition  in our later proofs. 

Definition 1.1.     A subgroup    H    of a group    G    is pure in    G 

* 
provided  if    n e   2   ,   y e   G    such  that    ny e   H,   then    ny - nh    for some 

h £   H. 

Definition 1.2.     A subgroup    H    of a group    G    is pure  in    G    if 

* 
nH = nG n H    for every    n c   Z   . 

Definition  1.3.     A  subgroup     H     of  a  group     G     is  pure  in     G     if 

for    h e   H,   h = ny   (n e   Z   ,  y s   G),   then  this implies    h = nl^    with 

h.  £   H.     In other words,   if    h e   H    is divisible by    n    in    G,  h     is 

already divisible by    n    in    H.     Note that for    h e   H    to be divisible by 

n     in    G,   there must  exist    y e   G    such that    h = ny. 

Example  1.4.     For an example of a nonpure subgroup,   let    G    be  the 

additive group of  integers mod 4,   Z^.     Then    G =  {0,   1,   2,   3}.     Consider 

the subgroup    H =   {0,   2}.     Choose    2 « Z  ,  1 l  G    such that    2*1 - 2 e  H. 

Then  there does not exist    h e   H    such that    2-h =  2-1,   since    h    must be 

either    0    or    2    and  in either case    2-h = 0.     Therefore    H    is not a 

pure subgroup of    G. 



Example  1.5.     Consider the four nontrivlal subgroups of    Z     . 

Let    H: -  {0,   6},   let    H2 = {0,  4,   8},   let    H3 = {0,  3,   6,   9),  and  let 

H^ =  {0,   2,   4,   6,   8,   10}.     Then one  can  tediously check that    H,     and    H. 

are pure subgroups of    Z  ..     However,     H,     and    H,     are not pure sub- 

groups  of     Z12,   since  for     2  e.   2   ,   {0)   =  2H.   *  21..  n  H.   - 

(0,   2,   4,   6,   8,   10)   n  {0,   6}  = (0,   6}     and,   for    6 e   Z*. 

{0} = 6H4  *  6Z12 n H^ = (0,   6}   n  {0,   2,   4,  6,   8,   10} = {0,   6}. 

The  following propositions contain some  important properties of 

pure subgroups. 

Proposition   1.6.     Any direct  summand of a group    G    is a pure sub- 

group of    G. 

Proof:     Let    G    be a group such  that    G =  S » T.     We wish to  show 

that     S     is   a  pure  subgroup  of     G.     Let     n c   1   ,   y e   G     such   that     ny e   S. 

Since    G=S®T,   ycG    implies    y = y.  + y„     for    y.  e   S,   y. e   T.     Thus 

ny  =  n(y    +  y   )   =  ny    + ny_  c   S.     But     ny.   e   S     and     ny.  e   T,   so 

ny. = ny - ny    e   S n T = 0.     Therefore    ny, = 0,  so    ny - ny^    for    y^ e   S. 

Hence    S    is  a pure subgroup of    G. 

Remark 1.7.     The converse of Proposition  1.6 is not necessarily 

true.     As we will see  in Example  1.33,   the purity of  a subgroup    T    of a 

group    G    does not   imply    T    is a direct summand of    G.     However,   Theorem 

1.18 and Theorem 2.12 give  two special  cases where a pure subgroup of a 

group    G    is a direct summand of    G. 

The next proposition  shows an easy way of obtaining pure subgroups 

by using Proposition 1.6.     Recall that for integers    m    and    n,     (m,   n)  - 1 

means  that    m    and    n    are relatively prime;   i.e.,   the greatest common 

divisor of    m    and    n    is    1. 



Proposition  1.8.     If     (m,  n)  =  1    for    m,  n e   Z+,   then 

Z_„ = Z    • Z   .     Furthermore,    Z       and    Z      are pure subgroups of    Z mntnn m normn 

Proof:     Let     (m,  n)  = 1    for    m, n s   Z+.     Choose     (1   ,   1  ) e   Z   •   Z   , 
m      n m        n 

where     1^    generates    Zra    and    1      generates    Z   .     Consider  the cyclic 

subgroup generated by    (1^,   ln>,   denoted    <(1   ,   1   )>.     Now    1      has order 

m    and     1      has order    n,   so the order of     (1,1)     is  the  least common n m      n 

multiple  of    m    and    n.     Since     (m,  n)  - 1,   the order of     (1,1),  and 
m      n 

hence  the order of    <(1   ,   1 )>,   is    mn.     Thus    Z    •   Z   , with order    mn, m      n m n ' 

has a cyclic subgroup    <(1   ,   1  )>     of order    mn,   so    Z   «   Z    ■ <(1   ,   1 )>. 
m       n m n m       n 

But    Z is a cyclic group of order    mn,   so    <(1   ,   1  )> ■ Z     .     There- mn ' OF m      n mn 

fore    Z    •   Z    =» Z 

Finally,   by Proposition  1.6,  Z       and    Z       are pure subgroups of    Z m n mn 

with orders    n    and    m    respectively,   since we may  consider    Z       and    Z 
m n 

as direct  summands of    Z mn 

We  remark  that  Proposition  1.8 gives us a quick method of seeing 

that    H„     and    H,     are pure subgroups of    Z in Example 1.5,   because 

(3,  4) =  1    and hence    1n = l^ 9 Z4 = H2*   Hg. 

Proposition 1.9.     If    H    is a pure subgroup of a group    G,   and if    K 

is a pure subgroup of    H,   then    K    is a pure subgroup of    G. 

Proof:     Let    n e   2*.     Then    nK = K n nH = K n   (H n nG)  = 

(K n H)  n nG = K n nG.     Thus    K    is a pure subgroup of    G. 

An alternate method of proof  follows:     Let    n c   1   ,  y e.   G    such  that 

ny e K.     Since    H    is  a pure subgroup of    G    and    K £ H,  ny e   H    and 

ny - nh    for some    h e   H.     Now    K    is a pure subgroup of    H,   so nh = nk 

for some    k c   K.     Therefore    ny = nk    for some    k e   K.     Thus    K    is a pure 

subgroup  of     G. 



Remark 1.10.     Recall  the  following definitions   for a set    A.     A 

relation    <    on a set    A    is called a partial order provided for 

a, b,   c £   A,   the relation    <    is   (i)    reflexive:    a s a;   (ii)    anti- 

symmetric:     If    a £  b    and if    b <  a,   then    a - b;  and   (iii)     transitive: 

If    a < b    and if    b 6 c,   then    a £  c.    A partially ordered set     (A,   s) 

is a set    A    together with a partial order    £    on    A.     If     (A,  s)     is  a 

partially ordered set,   a nonempty subset    C    of    A    is  called a chain 

provided if    c,  d £   C,   then either    c £ d    or    d s c. 

In our use of  the above definitions, we will be concerned with 

subsets of a set,  and our partial order will be set  inclusion. 

Proposition 1.11.     The union of an ascending chain of pure sub- 

groups  of a group    G    is a pure subgroup of    G. 

Proof:    Let    H    c H2 £ H3 £ £H±£ be  an ascending chain 

of pure  subgroups of     G.     We must show     i)H      is a pure subgroup of    G. 

Let    n  e   Z   ,  y £   G    such that    ny £   u H .     Then ny e   H±    for some    lei. 

Since each    H      is a pure subgroup of    G,   there exists    h £ Hf    such that 

ny - nh.     Therefore  there exists    h e   u H.     such that    ny ■ nh.     Thus 
I    i 

u H      is a pure subgroup of    G. 
l * 

An alternate method of proof follows:     Let    n £   Z   ,   and let 

H    cH    cH    c  •••   c H    c  •••    be an ascending chain of pure subgroups of 

G.     Then    nG n   (u B±)  = u   (nG n H±)  - u   (nH±) - n(u H±).     Therefore    u H^, 

is a pure subgroup of    G. 

Remark 1.12.     Due to  this property   (Proposition  1.11)  of pure sub- 

groups,   one often finds  it more convenient to work with pure subgroups 

instead of with direct  summands,  since the union of an ascending chain of 

direct summands  is not necessarily a direct summand. 



Example 1.13.     In general,   the union of pure subgroups of a group 

G    is not a pure subgroup of    G.     Consider    G ■ Z,  « {0,   1,   2,   3,   4,  5}. 

Then    S -  {0,   3}     and    T =  {0,   2,  4}    are pure subgroups of     G    by Propo- 

sitions 1.6 and 1.8.     However,     S u T - {0, 2,  3,   4}    is not even a sub- 

group of    G. 

Definition 1.14.     A group    G    is divisible  if    G - nG    for all 

n e  I   ;  i.e.,  for all    x e   G    and    n e   Z   ,   there exists    y e   G    such 

that    x ■ ny. 

Proposition 1.15.     A divisible subgroup    H    of a group    G    is a 

pure subgroup of    G. 

Proof:     Let    H    be a divisible subgroup of a group    G,   and let 

* 
n e   Z   .     Since    nH £ nG,  nH = nG n nH » nG n H.     Therefore    H    is a pure 

subgroup of    G. 

Proposition 1.16.    A subgroup    H    of a divisible group    G    is a 

pure subgroup of    G    if and only if    H    is divisible. 

Proof:     (-►)    Assume    H    is a pure subgroup of a divisible group    G, 

and let    n e   Z*.     Then    nH - nG n H - G n H - H.     Therefore    nH = H. 

(«-)     Assume    H    is a divisible subgroup of a divisible group    G. 

By Proposition  1.15,  H    is a pure subgroup of    G. 

The following is a fundamental lemma on pure subgroups. 

Lemma  1.17.     Let    G    be a group,   let    H    be a pure subgroup of    G, 

and let    y e  G/H.     Then there exists an element    z     in    G, with    z + H = y, 

such that    z    has   the same order as    y. 

Proof:     Let    H    be a pure subgroup of a group    G,   and let    y e G/H. 

Suppose    y    has infinite order.     Then any choice of an element    z    in    G, 



with    z + H » y,  will have  the desired property, because  the order of 

z + H    is less  than or equal  to the order of    z. 

Suppose    y    has finite order    n.     Then y e G/H    implies 

y - y1 + H    for    y± e   G,   and    ny - n(y1 + H)  - nyx + H - H,   so    ny    e   H. 

By the purity of    H,     there exists    h e   H    such that    ny    - nh.     So 

nyx - nh • n(y    - h) - 0.     Let     z = y    - h.     Then    z + H -   (y    - h) + H • 

v! + H " y-     Now    n(z) - n(y    - h) = 0,   so the order of     z     is less  than 

or equal   to    n.     But clearly     z     cannot have order less  than    n,  because 

then    y = z + H    would have order less   than    n.     Therefore    z    has  the 

same order as    y. 

The next  theorem,   stating  that a pure subgroup is  sometimes a 

direct summand,   follows from Lemma 1.17. 

Theorem 1.18.     Let    G    be a group,  and  let    H    be  a pure subgroup 

of    G    such that    G/H    is a direct sum of  cyclic groups.     Then    H    is a 

direct summand of    G. 

Proof:     Let    H    be a pure  subgroup of a group    G    such  that    G/H 

is a direct sum of  cyclic groups.     For each cyclic summand of    G/H,   pick 

a generator    y   .     By Lemma 1.17,  we can select  elements    x       in    G,  with 

x    + H = y   ,   such that    x.  has  the same order as    y  .     Let     K    be  the 

subgroup of    G    generated by the elements    x.. 

Claim:     G - H • K 

Subproof:     We must show   (i)    G - H + K,   and  (ii)    H fl  K - 0. 

(i)     Clearly    H + K £ G.     Let    t e  G,   and let    t + H -  t    e   G/H. 
* 

Since    G/H    is  a direct sum of cyclic groups,  we may write     t      as  a 

finite sum    I ay, where    a± e   Z.     Then     (t -  I a^) + H =   t    - Z  a^, 



which is   zero  in    G/H,   so     t - I a±x± e  H.     Since    I ax    e.  K, we have 

t =   (t -  I  ai
x

±) + l  a
i
x
i e  H + K.     Thus    G £ H + K.     Therefore    G - H + K. 

(ii)     Let    w e   H n K,   say    w = I ax.     Then if    w + H = I  ay, 

we have    I a^ = 0    since    w e  H.     If each    y      has infinite order,   then 

Z aiyi = °     lmPlies    ai ■ 0.     If some    y      has finite order    n   ,   then    a 

must be a multiple of    n  .     In either case,    w = £ ax.  « 0.    Thus 

H n  K = 0. 

Therefore    G " H 9 K,   from which we conclude that    H    is a direct 

summand of    G. 

The next  two lemmas are concerned with  the behavior of purity with 

respect  to a homomorphism. 

Lemma 1.19.     Let    G    be a group,   let    S    be a pure subgroup of    G, 

and  let    T    be a subgroup of    G    containing    S    such that    T/S    is a 

pure subgroup of    G/S.     Then    T    is  a pure subgroup of    G. 

Proof:     Let    n e   1   ,  x e   G    such that    nx e   T.     Then    x + S    is 

the homomorphic   image of    x    in    G/S,   so    n(x + S) - nx + S e T/S.     By 

the purity of    T/S    in    G/S,   there exists    t + S e   T/S    such that 

n(x + S) = n(t + S).     Thus    nx + S = nt + S,  so nx - nt - n(x - t) e   S. 

Now    S    is a pure subgroup of    G,  so n(x - t) - ns    for some    s e   S. 

Thus    nx = nt + ns = n(t + s)     for  t + s «  T.     Therefore    T    is a pure 

subgroup of    G. 

The converse of Lemma 1.19 is  also true.     If    S    and    T    are pure 

subgroups of    G,  with    S £ T,   then    T/S    is a pure subgroup of    G/S.     How- 

ever,   the purity  of    S    is not essential.     Therefore we state it  as fol- 

lows. 



Proposition  1.20.     Let     S    be a subgroup of    G,  and  let    T    be a 

pure  subgroup of    G, with    S £ T.     Then    T/S    is a pure subgroup of     G/S. 

Proof:     Let    n e   Z      and    g + S e  G/S    for    g e   G,     such that 

n(g + S) e   T/S.     We wish to show that  there exists    c + S £   T/S    such 

that    n(g + S)  - n(c + S).     Let    n(g + S)  - t + S e   T/S.     Then 

ng+S=t+S,   or    ng =  t + s  £ T    for some    s E   S.     By  the purity of    T 

in    G,   there exists    c £   T    such that    ng ■ nc   t  T.     So    ng = nc =  t + s, 

or    nc + S =  t + S = n(g + S).     Thus    n(c + S)  = n(g + S).     Therefore 

T/S     is a pure subgroup of    G/S. 

Lemma 1.21.     Let    n t   1   ,  and  let    S    be a pure subgroup of    G 

with    nS -  0.     Then     (S + nG)/nG    is a pure subgroup of    G/nG. 

Proof:     Let    m c   I   ,   y t   G/nG     such  that    my - x e   (S + nG)/nG. 

Now    y =  t + nG    for some     t £   G,  and    x ■ s + nG    for some    s £   S.     So 

x = my    implies    s + nG = m(t + nG)  - mt + nG,   or    s = mt + nz    for some 

z e   G.     Let     (m,   n)  ■  r,     then    m =   rn^    and    n = rn^     Then 

s = mt + riKZ =  r(m t + n,z).     Since    (m., nj) = 1,   there exist 

a,  b c   Z    such  that    an^ + bnx = 1.     Now    s = rdi^t + Hj»)    where 

(m t + n z) e   G,  and    S    is a pure subgroup of     G,   so    s =  rSj^    for some 

sx t   S.     Therefore    s = rs: =  r(am1 + bn1)s1 =  ram^ + rbn^ = 

ams    + bns     = ams   ,     since    nSj £   nS = 0.     Thus 

my = x = s + nG = an^ + nG - ■(Uj + nG),  where     (as1 + nG)  £   (S + nG)/nG. 

Hence     (S + nG)/nG    is a pure subgroup of    G/nG. 

Definition  1.22.     The  torsion subgroup    T    of  a group    G    is   the 

set of  all elements  in    G    having finite order;   i.e.,   if    a £   G,   then 

a e  T    provided  there exists a positive integer    n    such that    na - 0.     It is 

easy to prove  that    T    is,   in fact,   a subgroup of  the abelian group    G. 



Proposition 1.23.     The  torsion subgroup    T    of a group    G    is a 

pure subgroup of    G. 

* 
Proof:     Let    n e   I   .     We must  show    nT ■ nG n T.     Clearly 

nT £ nG n T.     Choose    x e   nG n T.     Then    x e  nG, so    x = ny    for some 

y c G.     Since    x ■ ny e   T,  ny    has  finite order, say    m.    Thus 

0 = m(ny)  =   (mn)y,  which  implies    y e T,   or    x = ny e   nT.     Therefore 

nG n T £ nT.     Hence    nT = nG n T. 

Definition 1.24.     The group    G    is  said to be  torsionfree 

provided all  the elements   (except  zero)  of    G    have  infinite order.     In 

other words,   the  torsion subgroup of    G    is    tO}. 

Remark  1.25.     If    T    is  the  torsion subgroup of a group    G,   then 

G/T    is torsionfree. 

Proof:     Let    T    be  the  torsion subgroup of a group    G.     Consider 

g + T c   G/T     for     g  e   G.     Assume     n     is  a  positive  integer  such   that 

n(g + T)  = T,  where    T    is  the  identity of    G/T.     Then 

1 = n(g + T) =  ng + T    implies    ng t   T.     Thus there exists a positive 

integer    m    such  that    m(ng) = 0,   so     (mn)g - 0, which implies    g e   T. 

Hence    g + T = T,   and the   torsion part of    G/T    is zero.     Therefore    G/T 

is torsionfree. 

Proposition  1.26.     If     S    is a subgroup of a group    G    such that 

G/S    is  torsionfree,   then    S    is a pure subgroup of    G. 

Proof:     Let    n (   Z*,  y <   G    such that    ny e   S.     Consider 

y + S ,   G/S.     Then    n(y + S) = ny + S - S.     Since    n *  0    and    G/S    is 

torsionfree,  y + S = S,  which implies    y e   S.    Thus,  if    x e   nG n S,     then 

x =  ny  «:   S   (n e    Z*,   y t   G)     and     y  £   S.     So     x  e  nS     and     nG  n  S £ nS. 

Clearly    nS c nG n  S.     Therefore    nS ■ nG n  S. 
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Proposition 1.27.     Let     G    be a torsionfree group,  and let     S    be 

a pure subgroup of     G.     Then 

(i)       S    is  closed  (within    G)  under division by integers;   i.e., 

for all    s t   S    and    ncZ,ny=seS    for some    y e   G 

implies   that    ye   S;  and 

(ii)     this division by integers is unique;   i.e.,   y    is unique. 

Proof:    Let     S    be a pure subgroup of a torsionfree group    G. 

(i)     Let    n (   Z   ,   y t   G    such  that    ny e   S.     Since    S     is a pure 

subgroup of    G,   ny = ns     for some    s c   S.     Thus     0 » ny - ns ■ n(y - s). 

But     n  *  0,   so     y  -  s  =  0,   or  y  =  s.     Therefore     y  e   S. 

* 
(ii)     Assume  for all    s e   S    and n e   Z       that    n    divides    s 

implies  there exist    y,  w ( G    such  that    ny ■ s     and    nw -  s.     Then 

nw = ny    implies    nw - ny = n(w - y)  = 0.     Now    n  * 0    and    G    is   torsion- 

free,   so    w - y » 0.     Thus    w = y.     Therefore    y     is unique. 

From the results of Proposition 1.27, we obtain two corollaries, 

valid only  for a torsionfree group. 

Corollary 1.28.     If    G    is a torsionfree group,   then the inter- 

section of pure subgroups  of    G    is a pure subgroup of    G. 

Proof:     Let    G    be a torsionfree group,   and let     (H^    be a 

collection of pure subgroups of    G.     Let    n e   Z   ,   y c   G    such   that 

ny e   n H  .     Then    ny 6   H.     for all    i e   I.     Since    G    is  torsionfree and 
I     i 1 

each    H       is a pure subgroup of    G,  ny e   *±    for all    i    implies    y e   H± 

for all     i.     Thus    ye   n  H.,  so    ny e   n(n H±).     Therefore 

nG n   (n H,)  c  n(n H4).     Clearly    n(n H ) £ nG n   (n H.).     Hence 
I     1' - 

n(n H ) - nG n   (n H,),   so    n H 
I    i i    1 I    x 

H      is a pure subgroup of    G. 
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Corollary   1.29.     Any subset    K    of  a torsionfree group G    is 

contained  in  a unique smallest pure subgroup. 

Proof:     Let    {H.}       be  the collection of pure subgroups of a  torsion- 

free group     G    which contain    K.     By Corollary 1.28,   n H      is also a pure 

subgroup of     G.     Since    K e  H.     for all    i,     then    K c n H. .     Furthermore, 
1 I    i 

if    P    is a pure  subgroup of    G    containing    K,   then    n H    c P.     Thus 

n H.     is  the unique smallest  pure subgroup of    G    which contains    K. 
I    * ' 

Theorem 1.30.     Let     G    be a torsionfree group,   let    x e   G,  and let 

S = ((a/b)x   |   a,   b e   Z,   b  * 0,  and     (a/b)x -   (l/b)(ax)     is defined in    G}. 

Then    S    is   the smallest  pure  subgroup of    G    containing    x. 

Proof:     Let    G    be  a torsionfree group,   let    x €  G,   and  let 

S = {(a/b)x   I   a,   b e   Z,   b  * 0,   and     (a/b)x =   (l/b)(ax)     is defined in    G}. 

Claim 1:     S    is a subgroup of    G. 

Subproof:     Clearly    0 e   S    and    S    contains  inverses.     Thus we only 

need to consider closure.     Choose    u, v £   S;   so    u =   (a/b)x    and    v =   (c/d)x 

for    a,  b,   c,   d c   Z, b *  0    and    d * 0.     Then    u =   (l/b)(ax),   so    bu = ax; 

and    v «  (l/d)(cx),  so    dv = ex.    Thus    bdu - adx    and    bdv = bcx,  so 

bdu + bdv = adx + bcx,  or     bd(u + v)  =   (ad + bc)x.     Therefore 

u + v ■   [(ad + bc)/bd]x t   S.     We have shown that  if     (a/b)x    and     (c/d)x 

are defined  in    G,   then    u + v =   (a/b)x +  (c/d)x -   [(ad + bc)/bd]x c   S. 

Thus    S    is  closed,   and hence   is a subgroup of    G. 

Claim 2:     S    is a pure subgroup of    G. 

Subproof:     Let    n c   Z*.     Clearly    nS £ nG n S.     Choose    y «   nG n  S. 

Then    y - nz     for some    z  c  G    and    y -   (a/b)x    for    a,  b «   Z,  b  * 0.     Thus 

nz =   (a/b)x,   so bnz - ax    or    z -   (l/bn)(ax)  -   (a/bn)x e   S.     Therefore 

y = nz e   nS.     Hence    nG n  S £ nS,  so    nS - nG n S. 
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Finally,   let    P    be the smallest pure subgroup of    G    containing    x; 

i.e.,  P     is  the  intersection of all the pure subgroups of     G    which con- 

tain    x.     Since     S    is one of   the subgroups over which this  intersection 

takes place,   then    P c  S.     To prove that    S £ P, choose     (a/b)x e   S. 

Then there exists    y £   S    with    by » ax.     But    x £  P    implies    ax £   P,   so 

by £   P n bG = bP    since    P    is a pure subgroup of    G.     Hence    by « bp    for 

some    p £   P, or    by - bp ■ b(y - p)  ■ 0.     Since    b * 0    and    G    is  tor- 

sionfree,   we have    y - p = 0,   so    y = p £ P.     Thus    y =   (a/b)x t  P. 

Therefore     S £ P,   so    S = P.     Hence    S    is the  smallest pure subgroup of 

G    containing    x. 

Definition 1.31.     A torsion group    G    is  said to be primary   (or 

p-primary)   if,   for a prime number    p,  every element of    G    has order a 

power of    p. 

Proposition  1.32.     Let    m t   1   ,  let    p    be a prime number,   and let 

H    be a subgroup of a p-primary group    G.     If     (m,  p) - 1,   then    mH = H 

and also    mH ■ mG n H.     Finally,    mG = G. 

Proof:     Let     H    be a subgroup of a p-primary group    G,   and let 

* k 
m £  Z      such  that     (m,   p) = 1.     Choose    x £   H;   then    x    has  order    p  . 

Since    (m,   p  )  =  1,   there exist    a,   b £  Z    such that    am + bp    - 1. 

Therefore     x = 1-x =   (am + bp  )x = amx + bp x - amx = m(ax).     Hence there 

exists    y e   H    such  that    my ■ x,   namely    y » ax.     Thus    H    is divisible 

by    m,   so    mH =  H.     Therefore    mG n  H - mG n mH = mH.     If    H - G,   then we 

have shown   that    mG ■ G. 

Example 1.33.     If    G    is not  torsionfree,   then Corollary  1.28 is not 

necessarily   true;   i.e.,   the intersection of pure subgroups of    G    may not 

be a pure subgroup of    G. 
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Consider    G =  Z 7 « Z       for a prime number    p, where    Z ?    is 
Pz P Pz 

generated by    a,   so     Z 2 =  <a>,   and    Z       is  generated by    b,   so    Z    ■ <b>. 

Let    S - <(a,  0)>     and    T =   <(a,   b)>.     Then,  by Proposition  1.6,   S    is  a 

pure subgroup of    G    since    S    is a direct summand of    G. 

Claim:     T    is a pure subgroup of    G. 

Subproof:     Since    G    is a p-primary group,  by Proposition 1.32,   if 

(m,   p)   =  1    for    m e   Z   ,   then    mT - mG n T.     Assume     (m,   p)  *  1.     Then    m 

is a multiple of    p,   so m = np     for n e   Z   .     Choose    x £   mG n T.     For 

some     (ka, lb) e   G,  x = m(ka, lb) -   (mka, mlb) "   (npka,   np£b) -   (npka,   0)  = 

np(ka,   0)  - np(ka,   kb)  ■ m(ka,   kb)   e mT.     Thus    mG n T £ mT.     Clearly 

mT £ mG n T,  so we have    mT ■ mG n T    for any    m e   Z   . 

Now we know that    S    and    T    are pure subgroups of    G.     Consider 

the subgroup    S   n  T =  <(pa,   0)>,   and let    m - p.     Then 

{0} - p(S n T)  * pG n   (S n T)  =   (S n T)  n   (S n T) - S n T.     Therefore 

S n T     is not a pure  subgroup of    G. 

For example,   choose    p = 3.     Then    G -  Zg • l^ =   {(0,   0),   (0,   1), 

(0,  2),   (1,  0),   (1,   1),   (1,   2),   (2,   0),   (2,   1),   (2,   2),   (3,   0),   (3,   1), 

(3,  2),   (4,   0),   (4,   1),   (4,   2),   (5,  0),   (5,   1),   (5,  2),   (6,  0),   (6,   1), 

(6,   2),   (7,   0),   (7,   1),   (7,   2),   (8,   0),   (8,   1),   (8,   2)}.     So    S =  <(1,   0)> = 

{(0,  0),   (1,  0),   (2,   0),   (3,   0),   (4,   0),   (5,  0),   (6,  0),   (7,   0),   (8,   0)} 

and    T =   <(1,   1)> =   {(0,   0),   (1,   1),   (2,   2),   (3,   0),   (4,   1),   (5,  2),   (6,   0), 

(7,  1),   (8,   2)}.     Thus     S n T -  <(3,   0)> -  {(0,   0),   (3,   0),   (6,   0)}.     Now 

S n T    is a subgroup  of    G.     However,   for    3 e   Z   , 

{0} = 3(S  n T)  * 3G n   (S n T)   - {(0,  0),   (3,   0),   (6,   0)}  0   (S n T)  - S n  T. 

Therefore    S n T    is not a pure subgroup of    G. 



14 

Proposition  1.34.     If     G    is a torsionfree group, and if     S    is a 

pure subgroup of    G,   then    G/S     is  torsionfree. 

Proofj     Let    S    be a pure subgroup of a torsionfree group    G.    Let 

y + S e   G/S    for    y e   G,   and assume    n e   Z      such that    n(y + S)  =  S. 

Then    S = ny + S,   so    ny £   S.     Since    G    is  torsionfree and     S    is  a pure 

subgroup of    G,   ny t   S    implies     y t   S    by Proposition  1.27.     Therefore 

y + S = S,  and   the  torsion part  of    G/S    is zero.    Thus    G/S    is   torsionfree. 

From Propositions  1.26 and 1.34 we obtain the following corollary. 

Corollary  1.35.     Let    G    be a torsionfree group.     Then    S    is a 

pure subgroup of    G    if and only  if    G/S    is a torsionfree group. 

Finally,  we wish  to show  that    G    is  a torsion group in which every 

element  has square-free order  if  and only  if every subgroup of    G    is a 

pure subgroup of    G.     To do so,  we need some preliminary information. 

Theorem 1.36.     Any  torsion group is a direct sum of primary groups. 

Proof: Let G be a torsion group. For every prime p, let G 

be the subset of G consisting of elements with order a power of p. 

Then    G      is a subgroup of    G,   and    G      is  primary.     In order  to show 

G s * Z    G    , we need   (i)    G =   £, G    ,  and   (ii)    for any    x e   G,   the 
i    Pi I    P< Pi 

expression  for     x     is  unique. 
Pi 

(i)    Choose    x £   G    with order    n.    By factoring    n    into prime 

powers, we have    n = p1     p,     •••   p.    ,  and we can write     n^^ = n/pi       for 

i =  1,  2,   •••,   k.     Then  the greatest common divisor of     Bi» °2»   ***' °lt 

is    1,  so there exist integers    a^   a2>   •••,   afe    such that 

Vl + a2n2 + ••'  + Vk = l'     ThUS 

l«x -  (a.n. + a2n2 + + aknk)x a.n1 x + a^n-x + + aknkx, 
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where    n±x    has order    pi       since    0 = nx - (p * n )x - p ± (n x). 

Therefore    n^X e   G    ,   and  for    x e   G,  x     is the sum of elements  in the 

subgroups    G 
Pi 

(ii)    Let    x = y    + y    + + y,     and    x = z    + z. + + V 
where    y±,   z± e   G    .     Then    y1 + y2 +  •••  + y    - z    + z    + • • • + z  . 

Consider     yx  -   zx  =   (z2  +  z^  +  • • •   +  zfc)   -   (y,,  + y3 +   • • •  + yfc).     Now 

y.   - z      has order a power of    p^ ,  but  the order of 

(z2 + zo +  " "  + z
k)   ~   (y,  + ^3 +  "'  + ^fc)    is a Product °f powers of 

'>2'  ^3*   "*"»  Pw'     Thus    y.   -  z.     must equal    0, which  implies    y.   »  z. 

In a similar way,     y z       for all    i.     Therefore the expression for    x 

£T G     . 
1    Pi 

is unique. 

Hence    G 

Remark 1. 37.     Recall   from Remark 1.10 the definitions of a par- 

tially ordered set and of a chain.     In addition,  note   the following 

definitions.     If    C     is a chain of a partially ordered  set   (A,  <),  an 

element     a e A    is called an  upper bound of    C    provided    c s a    for 

all    c c   C.     We call an element    x e   A    maximal   (with respect  to    s) 

provided     if    a s  x    for some    a e A,   then    a » x. 

Zorn's Lemma 1.38.     Let     (A,   <)    be a nonempty partially ordered 

set in which every chain  in    A    has an upper bound in    A.     Then    A    has 

a maximal element. 

Proposition 1.39.     Let     H    and    K    be subgroups of  a group    G,   let 

H £ K,  and let    H    be a pure  subgroup of    G.     Then    H    is a pure subgroup 

of    K. 

Proof:     If    n e   1*,   then    nK n H £ nG n H - nH.     Clearly 

nH c nK n H,   so nH = nK n H. 
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Fact  1.40.     No nontrivial  subgroup of     Z    is  a pure subgroup of    Z. 

For let    H    be a nontrivial subgroup of     Z;   say    H - nZ    for    n e  Z  . 

Then    nH = n Z,   and    nZ n  H = H.     So    nZ n H - H ■  nZ I n Z - nH.     Hence 

nH i nZ n H. 

Theorem 1.41.     Let    G    be a group  in which every subgroup of    G    is 

a pure  subgroup of     G.     Then    G    is a torsion group  in which every element 

has square-free order. 

Proof:     Let    G    be a group  in which every subgroup of    G    is a pure 

subgroup of    G. 

Claim 1:     G     is  a torsion group. 

Subproof:     Let    x c   G,   and assume    x    is  torsionfree.     Then    Zx » Z. 

If    H     is a nontrivial subgroup  of    Zx,   then    H    is  a pure subgroup of    G. 

Thus by Proposition  1.39,   since    H £ Zx £ G,   H    is  a pure subgroup of    Zx, 

which contradicts  Fact 1.40.     Therefore every element of    G    is a torsion 

element,   so    G    is  a  torsion group. 

Claim 2:     If    x e   G,   then    x    has square-free  order. 
2 

Subproof:     Let    n    be  the order of    x 6   G, and assume    n = p k    for 

a prime    p and    k <   Z+.     Then    nx -  (p k)x = p  (kx)   « 0,  so    kx    is an 

element of order    p   .     Thus    K -= <kx> S Z o.     Let    H - <pkx> £ K.     Since 

H    is  a pure subgroup of    G,   H    is  a pure subgroup of    K    by Proposition 

1.39.     But    pK n  H = H t pH - 0,   so    pH % pK n  H, which contradicts    H 

being a pure  subgroup of    K.     Thus    x «r   G    has  square-free order;   i.e., 

2 7+ >   i 
no element of    G    has order    kp       for some    p e   I   ,   P -  *■ 

Theorem 1.42.     Let    G    be a  torsion group in which every element has 

square-free order.     Then every subgroup of    G    is a pure subgroup of    G. 
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Proof:     Let     G    be a  torsion group  in which every element has 

square-free order.     Then    G = 9 E_ ?±    where    P±    are p^primary groups, 

by    Theorem 1.36.     Fix    lei,   and consider the p^primary group    P^ 

where    p.     is a prime number.     If    x e   P.,   then the order of    x    is a 

power of    p  .     But  since    x    must have square-free order,   this means 

that    p.x = 0,   so    x    has  order    p±.     Thus    p^ - 0. 

It  follows  from  this  fact   that    P.     can be considered a vector 

space over the  field    Z     .     For   if    a e   Z and    x £   P   ,  we can    define 
K Pi Pi x 

ax    to be    x + x +  •••  + x     (a  -  times).     This  is well-defined,  since if 

a .  6     (mod    Pi),   then    a  = S + kp4,  so    ax -   (6 + kp^x = 6x + kp^ = 6x 

since    p.x = 0.     Now every vector space has a basis.     If    y e   Pj    is  a 

"basis vector,"   then    Z    y = Z     , where the isomorphism is both as 
Pi Pi 

vector spaces  and as groups.     Hence    ?±     is isomorphic to a direct sum 

of groups    Z     .     These are simple groups since  they  contain no non- 

trivial subgroups,   so    P.     is a direct sum of simple groups.     Hence    G 

is a direct sum of simple groups. 

We have     G = • t     S.     is  a direct sum of simple groups  for some 

index set     I.     Let     H    be  a subgroup of    G. 

Claim:     H    is  a direct summand of    G. 

Subproof:     If    H - 0,   then we are finished.     Assume    H * G; 

then  there exists some simple group    S±    with    S± t H.     Hence    S± n H = 0, 

since    S±  fl H     is a  subgroup of     S±    and    S±    is a simple group.     Let 

S - {8 c 6  |  S     is a subgroup of     0    and    S n H - 0).     Then    S - 0,  so 

by Zorn's Lemma  1.38,  S    has a maximal element    L.     Thus    L     is a sub- 

group of    G    maximal with  respect  to    L n  H - 0.     Hence    H • L c G.     We 

wish to show that    H * L = G.     Suppose    G ± H * L;   then there exists 
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some simple group    S.     with    S.   i H « L.     Thus     (H • L)  n S.   = 0    as 

before,   so     H ♦ L • S.  £ G.     But    H n   (L ♦ S ) - 0, which contradicts 

the maximality of    L.     Therefore    H « L - G,   so    H    is a direct  summand 

of    G. 

Hence every subgroup of G is a pure subgroup of G, since it is 

a direct  sunimand  of     G. 

In conclusion,   from Theorem 1.41 and Theorem 1.42 we obtain  the 

following corollary. 

Corollary 1.43. Every subgroup of a group G is a pure subgroup 

of G if and only if G is a torsion group in which every element has 

square-free order; or, alternately, if and only if every subgroup of G 

is a direct   summand of    G. 
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CHAPTER  II 

PURITY  IN  FINITELY  GENERATED  GROUPS 

In  this   chapter, we will use purity  to show that any group of 

bounded order  is a direct sum of  cyclic groups.     We will then work 

towards proving the  Fundamental  Theorem of Finitely Generated Abelian 

Groups, which states  that every finitely generated abelian group is  the 

direct sum of   cyclic groups. 

Definition 2.1.     A torsion group    G    is said to be of bounded 

order if  there  is a  fixed upper bound to  the orders of  the elements; 

i.e.,  if   there  exists a positive  integer    n    such that    nx ■ 0    for all 

x «   G,  or equivalently,  such that    nG = 0. 

Remark 2.2.     Any finite group is of bounded order.     However,  an 

infinite group  can also be of bounded order.     For example,  consider the 

direct sum of  an  infinite number of finite cyclic groups,  having an 

upper bound on   the orders of  the summands;   such as    G -  l^ * l^ « 2^ * 

Remark 2.3.     Although  it   is difficult  to construct a cyclic direct 

summand  in a given group of  bounded order,   the next lemma helps us to 

obtain a pure  cyclic  subgroup.     So,  once again,  we see that a pure sub- 

group can be  a good   temporary  substitute for a direct summand. 

Lemma 2.4.     Let    G    be a primary group satisfying    P
rG - 0.     Let 

x e   G    have order    P
r.     Then  the  cyclic subgroup    K   generated by    x    is 

a pure subgroup  of     G. 

Proof:     Let    G    be a primary group satisfying    P
rG - 0,   let    x «   G 

have order    pr,   and  let    K    be  the cyclic subgroup generated by    x.    We 
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know that every element  in a primary group  is  divisible by any integer 

prime  to    p    by Proposition  1.32.     Thus,   if    n = p t    with     (p,   t) - 1, 

then    tK = K    and     tG = G.     Hence    nK » p  tK - p K    and    nG - p G.    We 

wish to show that    p K = p G n  K    for    1 <   i  <   r.    Clearly    p K £ p1G n K. 

Let    y e   G    and    pyepGnK,   so    py = kx     for    0 £ k <  p  .     Let 

= J k = pJt'     for    0 < j   <   r    and for     (p,   t')  =   1.     Then    kx = pJ(t'x)    and 

t'x    also generates     K    since     (t',   p ) = 1.     Let    t'x =  z,   so    z    has 

order    p   .     Thus    pXy = pJz.     If     i s j,   then    p y = p   (p       z),  and 

p y £   p K    since    pJ~  z £   K.     So     p G n K £ pXK.     If    i >  j,   thai 

n        r r-i  i 0-py-p       py pr_i
pJz = pr+J"iz, and    0 £ r-i+j  <  r.     This con- 

tradicts  the hypothesis   that     z    has order    p   .     Therefore,   for a group 

G    of bounded order,   the cyclic  subgroup    K    generated by    x £   G    is a 

pure subgroup of    G. 

We wish to construct pure subgroups which are direct sums of cyclic 

groups.     The  following  lemma will  insure the independence of  these pure 

subgroups. 

Lemma 2.5.     Let     S    be a subgroup of a group    G,   and  let    x    be an 

element of    G    with    x + S =  y e   G/S.     Suppose    x    and    y    have the same 

order.     Let     K    be  the  cyclic subgroup generated by    x.     Then the sum 

S + K    is a direct  sum. 

Proof:     We must  show that    S  n  K - 0.     Assume    rx £   S n K.     Then 

x + S)  - ry,  which implies r(x + S)  ■  rx + S =  S    since    rx Also 

ry -   S,  or    ry » 0.     Thus    i 

hypothesis,  x    and    y    have 

is a multiple of   the order of    y.     By the 

the same order,   so     rx = 0.     Therefore 

S n K = 0. 
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To make the proof of the next   theorem more concise,  we make the 

following definitions. 

Definition 2.6.     A subset    X    of a group    G    is said to be pure 

provided it generates  a pure  subgroup of    G. 

Definition 2.7.     Let     'S.}    be any set of subgroups of    G.     If  the 

sum    IS.     of  these subgroups   is a direct sum, we call the subgroups 

Independent. 

Definition 2.8.     The elements     fxjJ-r £ G    are said to be inde- 

pendent provided  the cyclic subgroups  they generate are independent. 

Equivalently,   the elements    IXJJT £ G    are independent provided in any 

finite sum    I n.x.   =0     for    n    e   Z,   this  implies each    n.X. = 0. 

Remark 2.9.     Thus,   a subset     S    of a group    G    is a pure,   inde- 

pendent set provided    S     is  independent and  the subgroup generated by    S 

is a pure subgroup of    G. 

Theorem 2.10.     A group    G    of bounded order  is a direct sum of 

cyclic groups. 

Proof:     Let     G    be   a group of bounded order.     Then    G    is a torsion 

group,   so by Theorem 1.36, we may assume    G    is primary.    We wish to 

construct a direct sum of  cyclic groups,   preserving purity as we go. 

Now we  know  that  the subsets of    G    form a partially ordered set under 

the partial order of set   inclusion.     Let    x £   G    be of maximal order;  we 

know that    x    exists because    G    is bounded.     Assume    x    has order    p   , 

so    prx - 0.     Then every  other element of    G    has order a power of    p 

less  than or equal   to    r,   so    P
rG = 0.     Hence the cyclic subgroup generated 

by    x     is pure,   by Lemma   2.4.     Thus     {x}     is a pure,   independent subset 

of     G. 
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Let    Hx £ H2 £ H3 c   •••   c HA £ ...     be a chain of pure,   independent 

subsets of    G.     If     <H.>    denotes   the subgroup generated by    H.,   then 

<H >    is pure in    G.     Also    <y H > = u <H >,  so    <u  H.>     is a pure sub- 
i Iiii ii v 

group of    G by Proposition 1.11.     Let    x    be an element  in the cyclic 

subgroups generated by    u H..     Then    x    is a finite sum 

x = x    + x. + + x      of elements  in  the cyclic subgroups generated by 

I  <x.>.     If    S    is all of    G, our 

u H,,  and so each of   these elements    x.     belongs  to the cyclic subgroups 

generated by some    H   .     Since    H,      is independent,   the expression 

x = x1 + x, + • • •   + x      is unique.     Thus    u H      is independent.    We have 

shown that    u H.     is a pure,  independent subset of    G.     Therefore    u H^ 

is an upper bound of   the  chain in    G.     Hence,  by Zorn's Lemma 1.38, we 

may select a maximal  pure,   independent subset    'X<^T    °^    **.     *-et    S    be 

the subgroup generated by  the elements    x..    Then    S    is a pure,   inde- 

pendent subgroup of     G,   and    S 

proof  is  complete. 

Assume S is not all of G, and consider G/S. Now G/S is a 

primary group of bounded order. We may select an element y of G/S 

of maximal order, say pry = 0. Then pr(G/S) = 0 since G/S is a 

primary group and if z < G/S, then pCz = 0 where 0 < p S p . So 

by Lemma 2.4, the cyclic subgroup generated by y is a pure subgroup 

of G/S. By Lemma 1.17, there exists x e G, with x + S = y e G/S, 

such that    x    has the  same order as    y. 

Claim:     {x,   (x^j.)     is a pure,   independent set. 

Subproof:     Let     T    be  the subgroup generated by    {x,   {x^}.    Then 

S £ T    and    T/S -  <y>,  which is a pure subgroup of    G/S.     By Lemma 1.19, 

T    <„  - i_ c    a    •«    /•    f* \   \    is pure.     Now let    K    be  the l    is a pure subgroup  of    G,  so    tx,   txj/i/ H
UIC

- 
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subgroup generated by    x e.   G.     By Lemma 2.5,   the sum    S + K    is a direct 

sum.     Thus     S    and    K    are independent subgroups, which implies 

{x,  {x.}-}     is  independent. 

Therefore    {x,   (x.}-}     is a pure,   independent set containing 

fx.}   , which  contradicts the maximality of     {x  }   .     Hence    S    is  indeed 

all of    G.     Therefore    G    is   the direct sum of cyclic groups. 

Lemma  2.11.     Let    S    and    T    be subgroups of a group    G    with 

S n T = 0.     Suppose     (S + T)/T    is a direct summand of    G/T.     Then    S 

is a direct  summand of    G. 

Proof:     Let     S    and    T    be subgroups of a group    G    with    S n T = 0, 

and let    (S + T)/T    be a direct summand of    G/T.     Suppose    R/T    is a 

complementary summand   to     (S + T)/T    in    G/T.     Then 

G/T =   (S + T)/T ® R/T,   so    R +   (S + T) = G    and    R n   (S + T) ■ T. 

Claim:     G = S 9 R 

Subproof:     Since    T £ R, we have    S + R = S + X + R = G.     Also 

(R n S) £ R n   (S + T)  = T,  so     (R n  S) £   (T n  S) = 0.    Therefore 

R n S = 0,   and    G =  S • R.     Thus    S    is a direct summand of    G. 

Theorem  2.12.     Let     G    be a group,   and  let    S    be a pure subgroup 

of bounded order.     Then     S    is a direct summand of    G. 

Proof:     Let     S    be  a pure subgroup of a group    G.    Assume    nS = 0 

for some positive  integer    n.     Then,  by Lemma 1.21,     (S + nG)/nG    is a 

pure subgroup of    G/nG.     Also,   G/nG    and all  its homomorphic images are 

groups of bounded order;   thus,   by Theorem 2.10,   they are direct  sums of 

cyclic groups.     Thus     (G/nG)/(S + nG/nG)     is a direct sum of cyclic 

groups.     By Theorem 1.18,   (S + nG)/nG    is  a direct summand of    G/nG.     Now 
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since    S     is a pure  subgroup of     G    and    nS = 0, we have     S n nG = nS = 0. 

Therefore,   by Lemma 2.11,   S     is a direct summand of    G. 

Theorem 2.13.     A divisible  subgroup    H    of a group    G    is a direct 

summand of    G. 

Proof:     See Kaplansky   [4,   p.   8]. 

Remark 2.14.     We have  shown,   in Proposition 1.23,   that the torsion 

subgroup    T    of a group     G     is a pure subgroup of    G.     Now as a special 

case of Theorem 2.12,   if  the  torsion subgroup    T    of a group    G    is of 

bounded order,  we can show that    T    is a direct summand of    G.     In fact, 

with the aid of Theorem 2.13,  we can carry this statement  even further. 

Theorem 2.15.     Let    T    be the torsion subgroup of  a group    G. 

Suppose    T    is  the direct  sum of a divisible group    D    and a group    B 

of bounded order.     Then    T    is a direct  summand of    G. 

Proof:     Let    T    be   the  torsion subgroup of a group    G.     Suppose 

T = B » D    for a group    B    of bounded order and a divisible group    D. 

Since    B    is a direct  summand of    T,   B    is a pure subgroup of    T.    Now 

I    is a pure subgroup of    G,   so by the transitivity of pure subgroups 

(Proposition 1.9),   B     is  a pure subgroup of    G.     By Theorem 2.12, since 

B    is a pure subgroup of bounded order,  B    is a direct summand of    G, 

say     G =  B 9 G'.     Now     D  =  T/B £  G/B *  G',   so     G'   has  a  subgroup     D' 

isomorphic   to    D.     Thus    D'     is a divisible subgroup of    G'.     By Theorem 

2.13,   D'     is  a direct summand of    G\   so    G'   = D' ® G",  or    G'-B« G". 

Therefore    G = B * G'   « B • D'   • G" = B • D • G" * T • G".     Hence    T    is 

a direct summand of    G. 

Division Algorithm 2.16.     Let    a    and    b    be integers with    b  > 0, 

then there exist unique integers    q     and    r    such that    a =  qb + r    for 

0 s r < b. 
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Lemma 2.17.     Let    G    be a torsionfree group,   let    x e   G,  and 

assume that  the minimal pure subgroup of    G    which contains    x, 

S = f(a/b)x   I   a,   b e   Z,  b  * 0,   and     (a/b)x =   (l/b)(ax)   is defined in    G), 

is a finitely generated subgroup of    G.     Then    S     is a cyclic subgroup 

of    G. 

Proof:    Let     G    be a torsionfree group,   let    x e   G,   and let 

S =  {(a/b)x   I   a,   b f   Z,   b  * 0,   and     (a/b)x =  (l/b)(ax)   is defined in    G} 

be a finitely generated subgroup of    G.     Let us first assume  that    S 

has  two generators,   y.     and    yr     Then    S - Zy1 + Zyr     Now    j^, y^ e  S, 

so    y.   ■   (a/b)x    and    y,  =   (c/d)x    for    a,  b,  c,   d £   Z, b * 0,   and 

d * 0.     Choose    s £   S;   then    s - m^ + m2y2    where    n^, m2 e   Z.     Hence 

s = my    + m2y2  =   (m1a/b)x +   (m2c/d)x =   [(n^ad + m2bc)/bd]x    since    S 

is a subgroup of    G. 

Let    k    be  the smallest positive integer such that     (k/bd)x    is 

defined in    G,   so    k *   1.     Clearly    k    exists,   since 

(a/b)x +  (c/d)x =   [(ad + bc)/bd]x    and    -(a/b)x -   (c/d)x =   [-(ad + bc)/bd]x, 

and either    ad + be    or    -(ad + be)     is positive.     Now there exists    y £   G 

such  that    bdy -  kx,  so    bdy £   bdG n  S - bdS    since    S    is pure in    G. 

Hence    bdy =  bdt     for some     t £   S,   so    bdy - bdt = bd(y -  t)  - 0,  or    y -  t 

since    G    is  torsionfree and    bd * 0.     But    y -  (k/bd)x,  so     (k/bd)x e   S. 

Claim:     (k/bd)x    generates    S. 

Subproof:     Since     (k/bd)x £   S,   then    Z(k/bd)x = <(k/bd)x> £ S. 

By the Division Algorithm 2.16,   there exist  integers    q    and    r    such  that 

ni^ad + m be = qk + r    where    0 <  r <  k.     Hence for    s £   S, 

s =   [(rn^d + m2bc)/bd]x =   [(qk + r)/bd]x,   so    bds =   (qk + r)x = qkx + rx, 

or    bds- qkx -rx.     Now     (l/bd)(bds)     is defined,   (1/bd)(qkx)   is defined, 
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so    (l/bd)(bds  - qkx)  =   (1/bd) (rx) =   (r/bd)x     is defined.     But    0 <  r < k, 

so by the choice of    k,  we must have    r = 0.     Thus    m ad + m.bc = qk,  so 

s ■  (qk/bd)x =  q[(k/bd)x]  e   Z(k/bd)x.     Hence    S c Z(k/bd)x,   so    S = Z(k/bd)x. 

Now we can complete our proof by generalizing the preceding argument. 

Assume    S     is generated by    j^,  y2>   •••   ,  y   .     Then  if    y    -   (a./bjx, 

y- =   (a2/b.)x,   •••   ,   y    =   (a_/b   )x,  we let    k    be  the smallest positive 

integer such  that     (k/b.b--**b )x    is defined in    G.     Arguing exactly as 

before, we can  show that     (k/b.b."*b   )x    generates    S.     Therefore    S    is 

a cyclic subgroup of     G. 

Theorem 2.18.     Any finitely generated abelian group is a direct sum 

of cyclic groups. 

Proof:     Assume  first   that    G    is a finitely generated,   torsionfree 

abelian group.     We wish  to prove by induction  that    G    is a direct sum of 

cyclic groups.     Clearly,   if     G    is generated by one element,   then    G    is 

a cyclic group.     Assume  that any group generated by    k - 1,  or fewer 

elements,   is a direct  sum of   cyclic groups.     Let    G    be generated by 

{\,  x2, ,   x   }.     By Theorem 1.30, 
K 

S - {(a/b)x1   |   a,   b t   Z,   b *   0,  and     (a/b^ -   Cl/b)(«j)     is defined  in    G} 

is the smallest  pure subgroup of    G    containing    x^.     Then    G/S    is 

generated by    {x2 + S,   x3 + S,   • • •   ,  xk + S},   so    G/S    is generated by 

k - 1    elements.     Thus,   by the  induction hypothesis,   G/S    is a direct 

sum of cyclic groups.     By Theorem 1.18,   S    is a direct summand of    G. 

Therefore    G =  S * C    * C, *  •••  * Cn    where    Ci    are cyclic groups.     Now 

S    is finitely generated since the homomorphic  image of a finitely gener- 

ated group is  finitely generated.     Thus,  by Lemma 2.17,   S    is a cyclic sub- 

group of    G.     Hence    G    is  the direct sum of cyclic groups. 
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We now turn to the  general case  for which    G    is not necessarily 

torsionfree.     Let    T    be  the torsion subgroup    of    G.     Since    G/T    is 

torsionfree, we have just proven that    G/T    is a direct sum of cyclic 

groups.    By Theorem 1.18,   since    T    is pure in    G,   then    T    is a direct 

summand of    G,  so    T    is   finitely generated.     Thus    T    has bounded order 

since it is a  torsion group,   so by Theorem 2.10,  T    is a direct sum of 

cyclic groups.     Therefore    G = T 9 G/T    is a direct sum of  cyclic groups. 

Fundamental  Theorem of Finitely Generated Abelian Groups 2.19. 

Let    G    be a finitely generated abelian group.     There exist unique finite 

index sets    A    and     B    such  that    G * • E» 2      •    * E. Z,    where each    n± 

is a nontrivial power of  a prime member.     Furthermore,  this expression 

for    G    is unique,   except  for order. 

Proof:     Let    G    be  a  finitely generated abelian group.    Then, by 

Theorem 2.18 and its proof,   G    is a direct sum of cyclic groups,  and 

G a T ® G/T    where    T    is  the  torsion subgroup of    G.     By Theorem 1.36, 

T    is a direct sum of a  finite number of primary groups    P±,  and each 

?t    is a homomorphic image  of    G,  hence  is finitely generated and torsion 

and so is of bounded order.     Thus,  by Theorem 2.10,  every    P£    is a direct 

sum of finitely many  cyclic groups.     Now each cyclic group must be of 

prime power order,   so we have    T ■ « I.   Z for a finite index set    A 

and each    n.     is a nontrivial power of a prime number.     Since    G/T    is a 

direct sum of  cyclic groups,   is  torsionfree, and is finitely generated, 

we have    G/T * * En  Z    for a finite index set    B.     Thus 
B 

GST»G/TS»E(   Z 
A    n. hZ- 

Furthermore,   this expression for    G    is unique,  except for order. 

(We do not present  a proof of uniqueness  since it does not   involve the 

1 
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use of pure subgroups.      If   the reader wishes  to see a proof  of unique- 

ness,  he may  consult either Kaplansky   [4]  for a proof using  the Ulm 

invariant,   or Bernhardt   [1].) 
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CHAPTER  III 

PURITY  IN MODULES 

In this chapter, we will  generalize the concept of purity in 

abelian groups  to   the concept of R-purity  in modules.     It will be under- 

stood  that  the  tern "ring"  represents a commutative ring with unity, 

unless otherwise explicitly  stated. 

Definition 3.1.     If     R    is  a   (not necessarily commutative)  ring 

with unity,   a unital  left  R-module,    denoted      M,   is an abelian group 

(M, +)     together with a function    us  R x M -* M, where we denote    u(r, x) 

by    rjix,   such  that: 

(i) (r + s)ux = riix + sux; 

(ii)       ru(x + y) = rpx + ruy; 

(iii)     (rs)ux = ry(sux); 

(iv)       lux = x; 

for all  r,  s t   R    and    x,   y c   M.     We will denote    rux    by    rx. 

The reader can  easily see how to define a unital  right R-module, 

Mg, where    u:  M x R ■* M.     However,   since we are working with a commutative 

ring,  every right R-module is also a left R-module,   and conversely.     Thus 

we will simply use  the  term "module." 

Definition 3.2.     A submodule      N    of a module    RM    is a subgroup    N 

of    M   with  the property that for each    n e   N    and    r e   R,  rn e. N. 

Remark 3.3.     Recall  the definitions of a subring of a ring    R    and 

an ideal of a ring    R.     A nonempty  subset    S    of a ring    R    is called a 

subring of    R    provided    S    together with    +    and    •     restricted to    S 
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forms a ring.     In other words,   S    is a subring of    R    provided    a - b e   S 

and    ab e   S    for all    a,  b e   S.     If     I    is a subring of    R, we  call    I 

a left ideal of    R    if    ra e   I    for all    a e   I    and    r £   R.    Again the 

reader can see how  to define a right ideal of    R.     A two-sided  ideal of 

R, or just an ideal of     R,   is both a left and a right ideal of    R.    How- 

ever,  in a commutative  ring,   a left ideal is also an ideal of    R.    Thus 

we do not need the adjectives  "left" or "right." 

Definition  3.4.     If    I    is an ideal of a ring    R,  and if     nM   is 
R 

a module,   then    IM    denotes all finite sums of the  form    ax, where    a €   I 

and    x e   M. 

Proposition  3.5.     If     I    is an ideal of a ring    R,   and if    „M    is 

a module,   then    IM    is a submodule of    M. 

Proof:     Let     I    be  an ideal of    R,  and let      M    be a module. 
K 

Claim 1:     IM    is a subgroup of    M. 

n m 
Subproof:     Choose    Z a.x,,   I b.y,   e   IM    for    a,, b    £   I    and 

x ,  y    e M.     Then    2 a.x    - ? b.y,   = 
11 i-1  1  1     i-1 1  1 

(alxl + a2x2 +  "•  + Vn)  "   (blyl + b2y2 + '•' + b»ym)  " 

Vl + a2X2 +  '••  + Vn '  Vl  "  b2y2  "  "•   " Vm = 

Vl + a2x2 + + a nxn + b^-yj) + b2(-y2) + •••  + bB(-ym)  e   IM    since 

-y. £   M    for all    i.     Therefore     IM    is a subgroup of    M. 

Claim 2:     If    r e   R,   I a.x.   e   IM,   then    r( I ax) £   IM. 

Subproof:     Let     r £   R    and     Z a.x.  £   IM    for    a^ 

r(j1
aixi)  *  r(alxl + a2x2  +  '•"  + Vn) = 

(ra )x, + (ra„)x. + • • • +  (ra )x    £   IM    since    ra    - a 
1122 nn 1X 

Therefore     IM    is a submodule of    M. 

£   I,  x. £   M.    Then 

r £   I    for all    i. 
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Definition  3.6.     Let       N    be a submodule of a module      M.     Then 

N    is an R-pure submodule of    M    provided    IN -  IM n N    for all  ideals 

I    of the ring    R. 

Theorem 3.7.     If    2  = R,  and if      L    is  a submodule of a module    _M, 
K R 

then    L    is  an R-pure submodule of    M    if and only if    L    is a pure 

subgroup of    M. 

Proof:     Let      L    be a submodule of  a module    _M.    Let    Z =  R;  then 
  K K 

the nonzero   ideals of    Z     are of  the form    Zn    for    n e  1   .     Also 

ZL = RL - L,   and    ZM = RM - M. 

{-*)    Assume    L    is  an R-pure  submodule of a module    M.     Then 

ZnL ■ ZnM n   L    for all ideals    Zn    of    Z.     Let    n e   Z   .    Then 

nL = nZL = ZnL * ZnM n L = nZM n  L » nM n L.     Therefore    nL - nM n L, 

and    L    is a pure  subgroup of    M. 

(■<-)      Assume    L    is a pure subgroup of    M.     Then    nL = nM n  L    for 

all    n e   Z   .     Choose a nonzero ideal    I ■ Zn    of    Z.     Then 

IL = ZnL » nZL - nL » nM n  L = nZM n L - ZnM n L =  IM n L.     Hence    L    is 

an R-pure submodule of    M. 

Remark 3.8.     By this   theorem,  we can see that this concept of 

R-purity generalizes  the abelian group concept of purity. 

Proposition  3.9.     If     _N    is an R-pure submodule of a module    RM, 

and if       L    is  an R-pure submodule of    N,   then    L    is an R-pure sub- 

module of    M. 

Proof:     Let     1    be an ideal of    R,  let    RN    be an R-pure submodule 

of a module      M,  and let    DL    be an R-pure submodule of    N.     Then 
R R 

IL =  IN n L =   (IM n N) n L =  IM n   (N n L)  =  IM n L.     Thus    L    is an 

R-pure submodule of    M. 
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Proposition  3.10.     If       L    is an R-pure submodule of a module    _M, 

and if    „N    is a submodule of    M    containing      L,   then    L    is an R-pure 
K K 

submodule of    N. 

Proof:     Let      L    be an  R-pure submodule of a module      M,   let      N ■~—^— K R R 

be a submodule of M containing L, and let I be an ideal of R. Then 

IN n L c IM n  L =  IL.     Clearly     IL £ IN n  L.     Therefore    IL - IN n L. 

Proposition 3.11. Any direct summand of a module _M is an R-pure 

submodule of    M. 

Proof:     Let     _M    be a module such that    M ■ L * N    for submodules 

L    and    „N    of    M.     We wish to  show that    L    is an R-pure submodule of 
R R 

m 
M.     Let     I    be  an ideal of    R.     Choose    y e   IM n L;   so    y = I a.x.     for 

i-1 ' 1 

a.  €   I, x, £   M.     Then    y =  E a.x.  £   L.     Since    M ■ L • H, X. 6 M    implies 
ii i=1 i  i 1 

x.   =1.  + n.     for    t,  £   L    and    n.  £  N.     Thus 
ill i i 

m m mm 
X, + Z a.n, £   L.     But 

i i 
ra 
I  afx,  =  E a.Ct.   + n.) =  I   (a.l.  + an)  - Z il + I a 

i=l i i    i-i   i    * i       i-1    i  i J1       W11    i-1 
m m mmm . 
E a^, £   L    and    ! a,n4 £   N,  so     E a.n    - E a x    ■III.  £  L n N - 0. 

i=i   i i i=i  i i i«l i *    i-1 x x    i=l x x 

m m in 
Therefore    E a.n,  - 0,  or    y -  E  a.x,  - E at    £  IL.     Hence    IM n L £ IL. 

i-1 i   i i-1 X *    i-1  X X 

Since    IL £ IM n L,  we have    IL -  IM n L.     Therefore    L    is an R-pure 

submodule of    M. 

Proposition 3.12.     The union of an ascending chain of R-pure sub- 

modules of a module     DM    is an R-pure submodule of    M. 
R 

Proof:     Let    N,  £ N2 e N3 c   • • •  c ^ c   • • •     be an ascending chain of 

R-pure submodules of  a module      M.     We must show that    u Nfc    for    k £   A 

is an R-pure submodule of    M.     Let    I    be an ideal of     R.    Then 

IM n   (u N, ) - U   (IM n N. ) = U   (IN. ). 
A    k        A k        A K 

Claim:     u   (IN. )  -  I(u N. ) 
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Subproof:     Choose    y <.   u   (IN,).     Then    y t   IN.     for some    k <   A. 
A   K R 

■ 
So y - I a1xi for a± e   I, x± e.  Nfe.  Since x. £ N  for some k £ A, 

m 
x   £   u N  .     Therefore     y = I ax    e   I(u N ),   so    u   (IN.) c  I(u N, ). 

1       A     K i»l   l ± AK A k A    k 

m 
Choose    z e.   I(u  N, ).     Then    z - t  a.x      for    a.   £  I, x, £   u N, .     Pick 

Ak i-111 i*iAk 

k e.   A    such  that     i <   k    for    x    £   u N. .     Then    x, £  N, ,  so 
l      A    * i        k 

m m 
Z a.x.  e   IN, .     Hence     z - I a.x.  £   u   (IN.),  and    I(u N, ) c  u   (IN,). 

i-1  1 x k i-1  * *      A        k A    k    " A        k 

Thus    u   (IN.) -  I(u  N, ). 
A K A     K 

Therefore     IM n   (u  N. ) » I(u  N. ),  so    u N,     is an R-pure submodule 
A    k A    K A    k 

of     M. 

Proposition  3.13.     If    RL    is  an R-pure submodule of a module    RM, 

and if      N    is a submodule of    M    containing    L    such that    N/L    is an 

R-pure submodule of    M/L,   then    N    is an R-pure submodule of    M. 

Proof:     Let     I    be an ideal of    R,   let      L    be an R-pure submodule 

of a module      M,   and  let       N    be a submodule of    M    containing    L    such 
K K 

that    N/L    is an R-pure  submodule of    M/L.     Choose    y e   IM n N.     Then 

y + L ■;   N/L n   (IM + L)/L = N/L n   I(M/L) -  I(N/L),   so 

>• -f L •:   I (N/L)  -   (IN + L)/L.     Hence    y + L - z + L    where    z e   IN.     Thus 

y -  z £   L.     Also     y c    IM     and     z £    IN £  IM,   so     y  -  z £   IM n  L  -   IL.     Thus 

y - z £   IL £  IN.     Let    y  - z = w £   IN.     Then    y =  z + w £   IN.     Hence 

IM n N c IN;   clearly    IN £ IM n N.     Therefore    IM n N = IN. 

Proposition  3.14.      If    RL    is  a submodule of a module    RM,  and if 

RN    is an R-pure submodule of    M    containing    L,   then    N/L    is an R-pure 

submodule of    M/L. 

Proof:     Let     I    be  an ideal of     R,   let    RL    be a submodule of a 

module      M,   and  let    _N    be an R-pure submodule of    M    containing    L. 
R R 

Clearly    I (N/L)  £ I (M/L)   n   (N/L).     Choose    y £   I (M/L)   n   (N/L).     Then 
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m 
y - I a. (x. + L) e   I(M/L)  for a e I, x. + L e M/L.  We must show 

1=1 i i 1      i 

there exists b. e I, c. + L e N/L such that 

I  a, (x. + L) = I  b,(c + L) e I(N/L).  Since ? a. (x, + L) t  N/L, ther 
i-i 1  * j-i *   i    . w1  * 
exists    n e   N    such that    £  a.(x. + L) « n + L,  or    £ a.x,  - n + I e  N 

1-1  ±    i W11 

for some    I (.   L.     By the R-purity of    N    in    M,   there exists    be   I, 

m k m 
c. €   N    such that     I a_.x,  - I be    - n + t,  or    E a.x. + L - n + L = 

i-1 11 1.1  i  i    j-i j i 
m    J . * 

y - Z  a.(x.  + L) - Z b,(c, + L) e   I(N/L)    for 
i-1  x    -1 j«l J    J 

j 

l b,c, + L.     Thus 
j-1 J  J 
c   + Le   N/L,   so     I(M/L)   n   (N/L) g I(N/L).     Therefore 

I(N/L) -  I(M/L)  n   (N/L),  and    N/L    is an R-pure submodule of    M/L. 

Remark 3.15.     If     DL    and    _Q    are modules,   the function    h    from 

L    into    Q    is called an R-homomorphism provided    h(x + y) « h(x) + h(y) 

and    h(rx)  ■ rh(x)     for all    r e   R    and    x,  y e  L.     Recall that a 

sequence of modules    0 ■* _L •    M    is  called exact provided the R-homo- 
K R 

morphism f from  L into M is one-to-one. 

Definition 3.16.  Let „Q be a module. We call Q injective —  ^ 

DL 4 DM    is  an exact  sequence of modules and if    g    is 
K R 

provided if    0 

an R-homomorphism from    L    into    Q,   then there exists an R-homomorphism 

h    from    M    into    Q    such  that  the diagram 

0 * RL J,RM 

8 t*   h commu tes;   i.e.,  such that    h°f = g. 

Definition 3.17.     Let    DM    be a module.     If    M    is an R-pure sub- 
 ■  K 

module of every module which contains it as a submodule, then we say M 

is absolutely R-pure. 

Example 3.18.  Every injective module is absolutely R-pure. 

Proof: Let  „Q be an injective module, and let Q be a submodule 
R 

of a module  M.  One can prove that an injective module is a direct 
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summand of any module which contains it as a submodule;   see   [1, p.   1481. 

Hence    Q    is a direct summand of    M,   so    Q    is an R-pure submodule of 

M.     Therefore    Q    is  absolutely R-pure. 

Definition  3.19.    Let      N    be a submodule of a module      M.     We say 

that    N    is essential in    M    provided if      L * 0    is a submodule of    M, 

then    L n N * 0.     If    N    is an essential submodule of    M, we call    M   an 

essential extension of    N. 

Definition 3.20. Let M be a module. The injective envelope of 

M, denoted E (M) , is an injective module which is an essential extension 

of     M. 

One can prove that every module has an injective envelope, which is 

unique up   to isomorphism.     See   [1,   p.   153]. 

Theorem 3.21. Let 0M be a module. Then M is absolutely R-pure 

if and only if    M    is an R-pure submodule of  its  injective envelope    E„(M). 

Proof:     Let    DM    be a module. 

(-»■)       Assume    M    is absolutely R-pure.     Since    ER(M)     is  the injec- 

tive envelope of    M,  we have    M £ E_(M).     But    M    is absolutely R-pure, 

so    M    is  an R-pure submodule of     E_(M). 

(«•)     Assume    M    is an  R-pure  submodule of its  injective envelope 

ER(M).     Let    M    be a submodule of  the module    RN;   then    ER(M) £ ER(N). 

But    E (M)     is  injective,   and hence  is an R-pure submodule of    ER(N). 
R 

Since    M    is an R-pure submodule of     E  (M),   then    M    is an R-pure sub- 

module of     E  (N)     by  Proposition 3.9.     Thus    M    is an R-pure submodule of 
R 

N    by Proposition 3.10.     Hence    M    is absolutely R-pure. 

Theorem 3.22.     Let    R -   Z,   so  that the R-modules are just abelian 

groups.     Then the abelian group    M    is absolutely pure if and only if    M 

is divisible. 
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Proof:     (-»■)       Assume  that    M    is absolutely pure,  so that    M    is t» 

pure subgroup of  its  injective envelope    E(M)     by Theorem 3.21.     But an 

injective abelian group  is  just a divisible abelian group;  see  [1,  p.   144]. 

Hence    M    is a pure  subgroup of a divisible group    E(M).    Thus    M    is 

divisible,   since    nM = nE(M)  n M = E(M) n M - M    for every    n «  Z   . 

(-•-) Assume that M is a divisible abelian group. Then one can 

prove that M is an injective R-module; see [1, p. 144]. Hence M is 

absolutely pure by Example  3.18. 
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SUMMARY 

In this  thesis, we examined  the basic properties of a pure subgroup 

of an abelian group,   and,   subsequently,  we proved the Fundamental Theorem 

of Finitely Generated Abelian Groups by using  the concept of purity. 

Several examples of pure subgroups were exhibited.     Finally, we gener- 

alized the  concept of purity  in abelian groups  to a concept of R-purity 

in modules over a commutative ring    R. 

There  are several ways of generalizing purity  in abelian groups to 

modules over a ring,   and we would have liked to study more of these, 

given sufficient  time.     Another interesting question is  the following: 

for what rings,   other  than  the integers,   is it  true  that the absolutely 

pure modules are   the  injective modules? 
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