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Let     K    be an extension of a field    F    of  characteristic  zero and 

let    G    be   the  group of automorphisms of    K.     A characterization of  the 

subgroups  of    G    and the corresponding fixed fields  is developed,   and  it 

is shown  that  there is  a one-to-one  correspondence between  closed sub- 

fields of     K    and  closed  subgroups of    G.     It   is   then shown  that    K    is 

a normal extension of    F    if  and only if    K    is  the splitting field of 

some polynomial    p(x)     over    F. 

Using these results,   it  is  shown in  the Fundamental Theorem of 

Galois Theory that  there   is a    one-to-one  correspondence between sub- 

fields of     K,   the splitting field of    p(x), which contain    F    onto the 

subgroups  of   the group of automorphisms of    K    relative to     F.     These 

results  are  then applied  to a fourth degree polynomial over  the rational 

numbers. 
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INTRODUCTION 

The  purpose  of   this thesis is to examine the correspondence 

between groups of automorphsims and fields and to prove  the Fundamental 

Theorem of Galois Theory.     The  fields under consideration are  infinite. 

Chapter I  is devoted  to the basic definitions and theorems needed 

throughout   the paper.     It has been assumed that the  reader has a know- 

ledge of  the basic properties of groups,   rings,   integral  domains, 

fields,  and  isomorphisms.     Standard theorems  have been stated without 

proofs  but  with  a   reference   to  a  proof. 

In Chapter II,   the basic properties of  field extensions,   consid- 

ered as vector spaces,   are  investigated.     Several  theorems which char- 

acterize splitting fields,   simple extensions,   and separable extensions 

are proved.     It  is   then shown  that a finite,   separable extension  is a 

simple extension. 

The  concepts   of   automorphism  groups  and   fixed   fields  are   intro- 

duced   in Chapter  III.     This  discussion concludes by showing that  there 

is a one-to-one correspondence between closed subfields and closed sub- 

groups of  the group of automorphisms of a field. 

Chapter  IV  is  devoted  to a discussion which characterizes normal 

extensions.     The  chapter concludes by establishing an  important  rela- 

tionship between normal extensions and splitting fields. 

The  results  of  the preceding chapters are then used  in Chapter V 

to prove  the Fundamental Theorem. 



CHAPTER  I 

PRELIMINARIES 

The  following  basic   definitions   and  theorems  will  be  used  through- 

out  the paper. 

1.1  DEFINITION.     Let     F     be  a  field.     If   there   exists  a  positive 

integer    p    such that    pa = 0     for each    a    in     F,   the smallest such    p 

is called the  characteristic of    F.     If no such positive integer exists, 

F    is  said to have  characteristic zero. 

1.2 THEOREM.     The  characteristic of a field    F    is either zero or 

a prime. 

Proof:     Let     F    be a field and    0 * a n  F.     If  there  is no posi- 

tive   integer     p     such  that     pa  =  0,   then  by  definition,     F     is  of   char- 

acteristic  zero. 

Suppose   the characteristic of     F    is    p,   where    p    is not a prime. 

Then   there are positive  integers    r  < p    and    s  < p     such that    p =  rs. 

Now    pa =  (rs)a =  r(sa)  = 0.     By the properties of an  integral domain, 

r  =  0     or     sa   =  0.      Since     r   >   0,     sa  =  0.     But     s   <   p     and     p     is   the 

smallest positive integer such   that    pa = 0.     Hence     sa * 0.    Thus    p 

must  be  a  prime. 

1.3 DEFINITION.     Let    F    be a field.     An isomorphism from    F    onto 

itself  is  called an   automorphism. 



l.A THEOREM.    The set of automorphisms   for a  field    F    form a 

group under composition of mappings. 

Proof:  Let be automorphisms of  F. Let a and b 

Now 

be in    F.     By definition of composition     <}>(o(a)) =   <Ma).     Since 

and    o    are one-to-one and onto,   then    $0    is  one-to-one and onto. 

4>o(a + b)   =  <)>(o(a +b)) 

=  <(>(a(a) + o(b)) 

=  *(o(a)) + *(o(b)) 

■ <t>o(a)  + i))o(b) 

and    *o(ab)  =  *(o(ab))   = «(o(a)o(b)) =  *(o(a))*(o(b))  = <f>o(a)*o(b). 

Hence    *o     is an  automorphism of    F, and    F    is closed under composition 

of mappings. 

Associativity follows  from the definition of   composition.     Let 

I:     a - a.     Then     *I(a)  =  ♦(1(a))  =  *(a).    Thus  I   is  the  identity auto- 

morphism since  I(a + b)   = a + b =  1(a) + Kb)   and  I(ab) = ab =   I(a)I(b). 

Now,   let     <J>~  :     *(«) * a-     since is   one-to-one  and  onto, 

exists and  is one-to-one and onto.    Then 

*_1     is  the inverse automorphism since 

-1, (a)   =  a =  1(a).      Hence 

-1, 
*     (<Ka)  +  *(b))  =  *"  (*(« + b>> 

=  a +   b 

- $_1*(a)  + *"%(b) 

.-1. ■ -1, 
and    $_1($(a)*(b)) = *_1(*(ab))   = ab =  ^Va)*"x*0» •    Thus  the auto- 

morphisms of    F     form a group under composition of mappings. 



1.5 THEOREM.     Any field of characteristic zero has a subfield  iso- 

morphic  to the rationals    Q.. 

Proof:     Let    F    be a field of characteristic zero.     Let    a  e  F. 

Then  there  is no positive  integer    p    such  that    pa = 0.     Let    e    be  the 

multiplicative  identity  in    F.     Then    e,     2e,   .   .   .   ,    ne,   .   .   .     are 

all distinct elements of    F. 

Let    0    be the additive identity in    F.     By the field properties 

-e,     -2e,   ....    -ne,   ...     are  in    F.     Let    r,    s  c  Z,   the integers. 

Then     re,     se  £   F,   so     re/se  £   F.     Let     K     be  the  subset  of     F    with 

elements     re/se, where    r,     s e  Z,    s  * 0.     Then    K    is a subfield of    F 

and    K    is  isomorphic  to    1.     For  let    re/se,    ae/be ,  K,  where    r,     s, 

a,     b   £   Z,     s,     b   *   0.     Then 

re/se - ae/be  =   ((re)(be)  -(ae)(se))/((se)(be)) 

=   ((rb)e -   (as)e)/((sb)e) 

=   ((rb - as)e)/((sb)e)   £  K. 

Now  let    a * 0.     Then     (re/se)(ae/be)"1 =   (re/se)(be/ae)  =   (rb)e/(sa)e 

is in    K.     Hence    K    is a subfield of    F.     Define a mapping    *    from    K 

into     £    by     *(re/se)   =  r/s     for  all     r/s  6   Q.,  where     r,      s  <   Z,     s  *   0. 

Assume     *(re/se)  =  4>(ae/be).    Then    r/s =  *(re/se) =  $(ae/be)  = a/b, 

and  hence     *     is  one-to-one.     By  definition  of     ♦,     *     is   onto.     Finally 

^    is a homomorphism since 

*(re/se + ae/be)  =  *((rb + as)e/(sb)e) 

=   (rb + as)/(sb) 

= r/s + a/b 

- 4>(re/se)  + *(ae/be) 



and    4>((re/se)(ae/be))  =  <}>((ra)e/(sb)e)  =  ra/sb =  ^(re/se)().(ae/be). 

Thus    K    is  isomorphic to    Q. 

1.6 THEOREM.    A system of    m    linear homogeneous equations  in    n 

unknowns,  where    m < n,  always has a nontrivial solution. 

Proof:     Consider the system of homogeneous equations 

Ll = allxl +  •   •   • + alnxn = ° 

L2 = anx1 + .   .   . + a2nxn = 0 

L    = a ,x,  +  .   .   .  + a x    = 0 m        ml   1 "in n 

Let    n  =  1.     Then    m = 0.     Since  there are no equations,   there are no 

restrictions on   the  unknowns.     Then arbitrarily set each    x..     equal   to 

Assume  the  theorem is  true  for all systems of    k    equations  for 

k <   m.     If all    a.     = 0,   t   jn  the   theorem holds  for    k = n.     Suppose 
IK 

there   is at  least  one    a±k *   0.     Without   loss of generality,   assume 

a      *   0,   and it   is  then possible  to multiply by    «u"1.     Now eliminate 

X       from  the  remaining    m  -   1     equations.      Thus   the  system  becomes 

4-o 
-i. 

L2   "  a2iall     Ll  =  ° 

m        ml  11       1 



Then  there  is a nontrivial solution to the original system if there is 

a nontrivial solution to the new system.    The system of equations 

L,,   .   .   .   ,     L      is a system of    m - 1    equations   in    n - 1     unknowns. 

By   the   induction  hypothesis,   this   system  has  a nontrivial  solution, 

x.,   .   .   .   ,     x  ,   that   is,   there exist    n - 1    unknowns,  not  all zero, 

such  that     L„  - aona,1     L,  =   .   .   .  = L    - a ,an    L,  = 0.     But    L.   - 0 2 21 11      1 m        ml  11      1 1 

and     a      * 0.     Hence there exists    x   ,   .   .   .   ,     x      not all   zero  such 

that    L    =   .   .   .   = L    =0. 1 m 

1.7 THEOREM.     Let    K    be a field and    $.     for    1 - 1,   .... n 

be distinct automorphisms of    K.     Then  it  is impossible to find elements 

a.     for    1 - 1 n,  not all zero,   in    K    such  that 

a1*1(u)  +  .   .   .   + an*n(u)  = 0 

for  all     u  t   K. 

Proof:  Let u e K.  Suppose there exist ai> • • * » a„ in K' 

not all zero, such that a^Cu) + . . . + an$n(u) = 0. Then elimi- 

nating the zero terms and renumbering the remaining terms, the expres- 

sion becomes 

(1) a1*1(u) + . . . + am*m(u) = 0 

where all    a.   = 0.     Suppose    m =  1.     Then    a^Cu)  =0,   and hence 

a    = 0.     But   this  is  a contradiction  to  the  choice of  the    a±    in     (1). 

Thus    m >  1.     Since  the automorphisms are all distinct,   there   is     c t   K 

such   that     *   (c)   *  *m(c).     Also,     cu  «   K     for all     U  t   K.     Thus     cu 

must  satisfy     (1),   that  is, 

(2) a +1<cu)  +  .   .    •   + am*m(cu)   =  0. 



Now multiply     (1)     by    if   (c)    and subtract the result  from     (2).     Then 

a1*1(u)*1(c) - a1*1(u)*1(c) + .   .  . + a^OO^Cc) - •,♦.(«)^(O 

- a2*2(u)($2(c)   - ^(c)) +  .   .   .   am*m(u)(*m(c)  - ^(c)). 

Now    a^^Cc)   -  ^(c))     is  in    K    for    1 » 1 m    and 

a   (i   (c)  - $, (<0)   * 0    since    a    * 0    and    *  (c)  * <t>, (c).     But  then the 
m    m 1 m mi 

equation above has  fewer terms than     (1), which contradicts the  choice 

of     (1)     as  the minimal relation.     Hence there exist no such    a±     in    K. 

1.8 DEFINITION.     The ring of polynomials  in    x    over a field    F, 

n 
denoted    F[x],   is  the set of all symbols    aQ + ajX +  .   .   .  + a^x   , 

where    n    is a nonnegative integer and    a^ <   F    for     i = 0 n, 

with  the usual addition and multiplication. 

Now let     F,   = F[Xl],     F2 = F^],   the polynomial ring in    x2    over 

F .    .    ,   F     =   F     _   ,[x  ],   the  polynomial  ring  in     XR     over     Fn   _  r 

Then    F      is a ring called the ring of polynomials  in    x,,   •   •   •   .    xn 
n 

over    F,   and is denoted    V[x,,   ■   •   •   .   xnl- 

1.9 DEFINITION.     Let    F    be a field and    F[x1 xj     be  the 

ring of polynomials  in n variables    %l xn    over    F.     Then the 

set of all quotients of polynomials   in    F[xr   .   .   .   ,   xj     is called the 

n   c       .,•«„<>   ,.    v x      over    F,  and  is denoted set of rational  functions  in    X,,   •   •   •   '       n 

by    F(xx,   .   .   .   ,xn). 

1.10 THEOREM.  Let  F  be a field.  Then the set of rational func- 

tions in Xl xn over F is a field. 



Proof 

in    Xj, 

:     Let    F(x  ,   .   .   .   , x )     be the set of rational functions 

.   ,   x      over    F.     Since    F    is a field,   it  is an  integral 

domain.     Hence by the properties of integral domain,     F[x^,   .   .   •   »  xnl 

is an  integral domain.     Then  it is possible to construct  the field of 

quotients of     F[x  ,   .   .   .   ,   Jt ].     Clearly,   the elements of 

F[x  ,   .   .   .   ,  x  ]    are polynomials in    j^,   .   .   .   , xn     over    F.     Then 

the  field of quotients of polynomials  in    F[xj,   .   .   .   ,  xn]     is pre- 

cisely  the set  of rational functions  in    x1 xn    over    F.     Hence 

F(Xl,   .   .   .   ,   xn)     is a field. 

1.11 DEFINITION.  A polynomial p(x) over a field F is said to 

be irreducible over F if whenever p(x) = s(x)t(x), where s(x),  t(x) 

are in  F[x], then one of  s(x)  or  t(x)  has degree zero. 

1.12 DEFINITION.  Let  F  be a field.  If  p(x) = anx + . . . 

+ a.X + aQ in  F[x], then the derivative of P(x), denoted by p (x), 

is the polynomial p (x) - na^x 

in F[x]. 

n -  1 +  (n  -  l)a    _  jf '  2 +  •   •   •  + «x 

1.13 DEFINITION.     Let     A     be  the   finite  set     {1,   .   .   •   .  n).     Then 

the  group   consisting  of   the     a!     possible  permutations   of     A     is   called 

the symmetric  group on    n    variables and  is denoted by    S^ 

1.14 FIRST  ISOMORPHISM THEOREM.      Let      *    be  a  Isomorphism   from  a 

u     „!fh  IfPrnp]     K.     Then     G/K     is   isomorphic   to group     G     onto   a  group     H    with  Kernel     *• 

H. 

Proof:      [5] 



CHAPTER II 

FIELD EXTENSIONS 

2.1 DEFINITION.     Let    F    be a  field.   Then    K    is an extension of 

F     if     F     is   a  subfield  of     K. 

2.2 LEMMA.     Let     F     be a field   and     K     be  an  extension  of     F.     Then 

under the field operations of    K,     K    is a  vector space over    F. 

Proof:     Since    K    is a field,   clearly    K    forms an abelian group 

under addition.     Let    a,     6 6   F    and    v,    we   K.     Since    F c K,   then 

av c K,     a(v + w)  = av + aw,     (a + 6)v = av +  Sv,   and     (aB)v = a(6v). 

Hence    K    is a vector space over    F. 

2.3 DEFINITION.     Let    K    be an extension of a field    F.     The 

degree of    K    over    F    is  the dimension of    K    as  a vector space over 

F,  and   is denoted     [K:F]. 

2.4 DEFINITION.     If     [K:F]     is   finite,   then    K    is a finite exten- 

sion of     F. 

2.5 THEOREM.     Let     K,     L,     M     be   fields  such   that        K c L <   M. 

Then     [M:K]      is   finite   if  and  only   if  both     [M:L]     and     [L:K]     are   fi- 

nite.      In  this  case     [M:K]   =   [M:L][L:K]. 

Proof:     Suppose     [K:K]     is  finite.     Since    L = M,     [L:K]    must 

also be  finite.     Since    K c L,   any finite basis   that spans    M    over    K 

must also span    M    over    L,  and hence some  subset of a basis   for    M 



over    K    will  be a basis  for    M    over    L.     Thus     [M:L]     must  also be 

finite. 

Suppose     [M:L]   = m    and     [L:K]  = n.     Let    u.     for     i =  1,   .   •   •   i 

m    be a basis  of    M    over    L.     Let    v.     for    J • 1,   .   .    .   , n  be a 

basis of     L    over    K.     Then the    mn    elements of  the form    u;v.     f°r 

i =  1,   .    .   .   ,   m    and    j  =  1,   .   .   .   ,  n    form a basis for    M    over    K. 
m 

Let     x  s   M.     Then     x =     I  a.u.     where     a.   e   L.     Similarly 
n i=l 

a.   =       I   3..v       where    8..  s  K.     Thus 
1 j=l    J  2 J 

■ A 'A"1*'"'' £ tf»vi- 

Thus  the    u.v.     span    M. 
m      n 

Now  suppose       Z       I   Bj.i^v,  =  0     for     6±.   t   K.     Then 

m        n 

i (iV)N = .I.V. * "• 

But  the     u.     are linearly  independent over    L.     Hence    a± - 0     for    all 
1 n 

i =  1,   .   .   .   ,  m.     Thus each      I B    v.  = 0.     But   the    Vj     are   linearly 

independent  over     K,   so  each     B.j   =  0.     Thus   the     u.v.     are  linearly 

independent  over     K,   and     [M:K]   =   [M:L][L:K]. 

2.6  DEFINITION.     Let     K     be  an  extension  of   a  field     F     and     u  < 

K.     Then     u     is   said   to  be  algebraic  over     F     if   there  exists   a  poly- 

nomial     p(x)   t   F[x],   with  coefficients,  not  all   zero,   such  that 

p(u)  = 0. 
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2.7 DEFINITION.     Let    K    be  an extension of a field    F.     Then    K 

is said  to be algebraic over    F    if every element of    K    is algebraic 

over    F. 

2.8 DEFINITION.     Let    K    be an extension of a field    F    and    u    be 

in    K.     Then    F(u)    denotes the intersection of all  subfields of    K 

containing both    F    and    u,  and    F(u)     is known as  the field obtained by 

adjoining    u    to    F. 

2.9 THEOREM.     Let     K    be an  extension of a field    F    and    let 

u £  K.     Then    F(u)     is   the smallest subfield of    K    containing both    F 

and    u. 

Proof:     Let    M.,     it   I,  be   the subfields of    K    which contain 

both    F    and    u.     Then     F(u)  =  nM±.     It  is necessary  to show only  that 

the intersection  of fields is a field.     Let    a,    b e   nM..     Then    a,    b « 

M      for all    i e   I.     But since each    M.     is a field,     a - b s M±    and 

ab"1 e  U .     Thus     a - b  c   M±    and    ab'1 e rfl±.     So    F(u)     is a subfield 

of     K. 

Now  suppose   there   is  a   field     L     containing     F    and     u    such  that 

L     is  a  proper  subfield  of     F(u).     Then     L  «    nM..     Since     L     contains     F 

and     u,     L  =  Mk     for  some     k  c   I.      But     M±  ■   \ -  L.     Hence     F(u)     must 

be  the  smallest  subfield containing both    F    and    u. 

2.10 EXAMPLE.    Let    u .£     Show    &<tt) =   U + bu   I     a,    b *  Q.]     is 

afield.     Let    a + bu,     c + du    « {*<«).     Then     (a + bu)   -   (c + du) = 

(a - c)  +  (b - d)u, which is in    2(u)    since     (a - c),     (b - d)   c  Q.. 

Assume     (c + du)   " 0.     Then 
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(a + bu)(c + du)~ = (a + bu)/(c + du) 

■ ((a + bu)(c - du))/((c + du)(c - du)) 

= (ac + (be - ad)u - 5bd)/(c2 - 5d2) 

= (ac -5bd)/(c2 - 5d2) + ((be -ad)u)/(c  - 5d ) 

These conditions suffice to show that Q_(u)   is a subfield of the real 

numbers. 

2.11 THEOREM.     Let    K    be an extension of a field    F,    u e   K,  and 

suppose    u    is algebraic over    F.     Let     p(x)    be a monic polynomial  in 

F[x]     3f  least degree such  that    p(u)  = 0,  and let   this minimal degree 

be    n.     Then 

(1) p(x)     is  unique 

(2) p(x)     is   irreducible over    F 

(3j     it     U)   .   .   .   ,     u" " X    form a vector space basis of     F(u) 

over    F. 

(A)      [F(u):F]   =  n 

(5)     A  polynomial     q(x)   e   F[x]     satisfies     q(u)   =  0     if  and  only 

if    q(x)     is a multiple of    p(x). 

Proof:      (1)     Suppose     f(x)     is  another monic  polynomial  of   degree 

n  such   that     f(u)   =  0.     Then 
n i n i 

p(x)  -  f(x)  =    I b x    -    I ex 
i=0 i=0 

n-1 i 
■L   (b±  -  c±)x 

K ,     f   F     and     b     =  c„  =  1.     Then     q(x)   =  p(x)   -  f(x)      is  a where    b   ,     c.  «   F    ana    DQ       <-Q 

polynomial of  degree less  than    n,  and    q(u)  = p(«)   -  Hn)  = 0.     If 
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q(x)   * 0,   this  contradicts  the fact  that    n    is the minimal degree. 

Hence    q(x)  =  p(x)  - f(x)  = 0    and    p(x)  = f(x). 

(2) Let     s(x),     t(x)   £   F[x],   and     p(x)   =  s(x)t(x).     Suppose     p(x) 

is not  irreducible.     Then neither    s(x)    nor    t(x)     is of degree zero, 

and     s(x)     and     t(x)     must  both  be  of  degree   less  than     n.     But 

p(u)  = s(u)t(u)   = 0    implies    s(u)  = 0    or    t(u)  = 0    by integral domain 

properties.     Then there is a polynomial of degree  less  than    n    which 

satisfies  the  conditions.     This contradicts  the minimal choice of    p(x), 

and hence    p(x)     is  irreducible. 

(3) Suppose    1,     u,   .   .   . u" are  linearly  dependent  over 

F.     Then  there   is a polynomial    q(x)  e  F[x]     of degree     k < n     such   that 

q(x)   =     I  b.x1  =  0,   where     b.   e   F,   and not  all     b.   =  0.     Then     q(u)   =  0. 
1=0  x 

But  this contradicts  the choice of    n    as   the minimal degree.     Hence 

must be linearly independent. 1,     u u 

Let    T    be a subspace of    F(u)    which is spanned by    1,     u, 

n - 1 Then   show     T     is  a  field.     Let     s,   t  c   T.     Let     s  =   s(u)     and 

t =   t(u)    where    s(u),     t(u)     are nonzero polynomials of degree less  than 
n-1 n-^ 1 

n    such that     s(u)  =     l    c.u1,  where    a    e   F,   and    t(u)  =    I     6.u  , 
i = 0 

where     3.   e   F.     Then 
n-1 

s(u)   -  t(u)  =    S   (a± - e±)u 
i=0 

and  each     (a.   -   &±)   e   T. 

Now  let     k  =  n  -   1.     Every  power  of     u     through     n-1     is   in     T 

n  -  1       „ k_1T ,    .   ,     u .     Suppose     u t   T, T     is  spanned  by     1,     u, 

and  show     u     e   T.     Now, 
n-1 

uk  =  u(uk  " h  - U< 
1=0 

n-1 
u1)   =     I     <* u1 

i=0 

i +  1 
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n-1        . 
where    a    e   F.     By the minimal polynomial    p(x),    p(u)  = u    +    I b.u 

1 1=0 1 

n-1 
where    b.   £   F.     Thus    u    = -    I b.u  , and    u      can  therefore be ex- 

i-0 x a 
pressed as  a linear combination of    1,    u,   .   .   .   ,    u .    Hence 

k n  —  1 
u       is a  linear combination of     1,     u,   .   .   .   ,     u ,  and by  induction 

u    £  T.     Since    polynomials    s(x)     and    t(x)    when multiplied give  sums 

of  powers   of     u   ,   the  product  is   in    T. 

Let     z £ T.     Let     z = h(x)    where    h(x)     is a nonzero polynomial 

of degree  less  than    n.     Since    p(x)     is irreducible,   the greatest  com- 

mon divisor of    p(x)     and    h(x)     is     1.     Then  there are polynomials     r(x) 

and     s(x)      such   that     p(x)r(x)  + h(x)s(x)  =  1.     Let     x  =  u.     Then 

1 = p(u)r(u) + h(u)s(u)  = 0 + h(u)s(u)     since    p(u) = 0.     Thus    s(u)     is 

the  inverse of    h(u).     Hence    T    is a subfield of    F(u)     and    T    contains 

u.     But     F(u)     is  the smallest subfield containing    u    and    F,   so 

T = F(u).     Thus     1,     u un spans     F(u)     and hence  is a 

basis  for     F(u)     over    F. 

(4) From     (3),     the basis  for    F(u)     over    F    contains    n    elements 

and therefore     [F(u):F]  = n. 

(5) Let     q(x)   £   F[x].      Suppose     q(u)   =  0     and     q(x)     is  not  a 

multiple of    p(x).     Since    p(x)     is irreducible over    F,   the greatest 

common divisor of    p(x)    and    q(x)     is    1.     Then  there are polynomials 

r(x),     s(x)   £   F[x]     such  that     p(x)r(x)  +  q(x)s(x)   =   1.     Let     x  =  u. 

Then     1  =   p(u)r(u)  +  q(u)s(u)  =  0  since     p(u)   =  0     and     q(u)  =   0.     But 

this  is a contradiction so    q(x)     must be a multiple of    p(x). 

Now suppose     q(x)     is  a  multiple  of     p(x).     Then   there  is  a  nonzero 
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polynomial    r(x)  e   F[x]     such that    q(x)  ■» r(x)p(x).     Let    x ■  u.    Then 

q(u)  =  r(u)p(u)  = 0    since    p(u)  =0. 

2.12 DEFINITION.     Let    K    be an extension of a field    F    and    u, 

v c   K.     Let     F(u)     and     F(v)     be  subfields  of     K.     Then     F(u,v)     denotes 

the   intersection  of  all   the  subfields  of     K     containing  both     F(u)     and 

F(v). 

2.13 THEOREM. Let K be an extension of a field F and u, v e 

K. Then F(u,v) is the smallest subfield of K containing both F(u) 

and    F(v). 

Proof:     This  result  follows from    2.9. 

2.14 REMARK.      The  subfield  F(u,v)  may  be  considered  in   three ways: 

(1) the  smallest  subfield  containing     F,     u,     and     v 

(2) the  result  of  adjoining     v     to     F(u) 

(3) the result of adjoining    u    to    F(v). 

2.15 DEFINITION.     Let     F    be a  field.     If    p(x)  i   F[x]     can be 

factored  into linear  factors  in a finite extension    K    of    F    but cannot 

be  factored  into  linear factors in any proper subfield of    K,   then    K 

is  called a splitting field of    p(x),   and it  is said  that    p(x)     splits 

in    K. 

2 2 
2.16 EXAMPLE.     Find the splitting field of    p(x)  =   (x    + 5)(x    -  2) 

over    Q_.     Factor    p(x)     into linear  factors.     Then 

p(x)   =   (x -  i/5)(x + i/5)(x - /2)(x + /2) 
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where     i =   /-l.     Let     u =  i/5".     Clearly    £(u)     is  the same field as 

Q.(-u)     since for any     a. e   Q(-u),     a = a + b(-u)  = a - bu    and    -b ■■   0.. 

Thus   consider     Q_(u)   as   the  splitting  field of     x    +5.     But     (>(u)     is 

not   the  splitting field of    x    - 2.     So adjoin /Z    or /T      to    <2(u). 

Let    v =  /I.     Then  the splitting field of    p(x)     is    <2(uv)   = Q(u,v). 

The  two  following theorems  are stated here without proof and will 

be used   later  in  the paper. 

2.17 THEOREM.     Let     4/    be an  isomorphism of a field    F    onto a 

field     F       with     cf>(c)   =  c        for  all     c   £  F.     Let     p(x)   e  F[x]   be   irre- 

ducible and    p   (x)     be the corresponding polynomial over    F  .     Let    u, 
i t 

u      be roots of    p(x),     p   (x)     respectively.    Then there exists an  iso- 
i i ' ' 

morphism     %       from     F(u)     onto     F   (u)     such  that     i/   (u)   =  u       and 
i i 

<t> (c)  =  c       for  all     c e  F. 

Proof:     [5] 

2.18 THEOREM.      Let     $     be  an   isomorphism of  a  field     F     onto  a 

field    F'     with     «(c)   = c'     for all    c e  F.    Let    p(x)  t   F[x]    and 

p  (x)  be  the corresponding polynomial over    F .    Let    K,    K      be  the 

splitting fields of    P(x),     P'(x)     over    F,    F      respectively.     Then 

there exists an  isomorphism       $      of    K    onto    K      such that     *   (c) = c 

for  all     c     e   F. 

Proof:     [5] 
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2.19 THEOREM.     Let    p(x)     be a polynomial over a field    F    and 

p  (x)  = 0, where     p   (x)     is the derivative of    p(x).     Then    p(x)   = a 

for some    a e  F. 

n 
Proof:  Suppose p(x) * a    for any a e F. Then p(x) = Z  a.x 
  1-0 

where    a    e  F,     a     * 0,   and    nil.     Hence   the derivative of    p(x)     is 
in 

n , 
p'(x)   =     Z   ia.x1   1.     But     n   *  0,     a     *  0,   and     x"       *  0,   so     p   (x)   *  0. 

1-1 " 
This is a contradiction;     hence    p(x)  = a    for some    a c  F. 

2.20 LEMMA.     Let    K    be an extension of a field    F.     If    p(x), 

q(x)   t   F[x]     have a nontrivial  common factor in K[x],   then  they have a 

nontrivial  common  factor in    F[x]. 

Proof: Let p(x) and q(x) have a nontrivial common factor in 

K[x]. Suppose they have no nontrivial common factor in F[x]. Then 

there exists r(x), s(x) c F[x] such that r(x)p(x) + s(x)<i(x) = 1. 

But r(x), s(x) * P[X], so p(x) and q(x) must also be relatively 

prime in K[x]. Contradiction. Hence p(x) and q(x) have a non- 

trivial common  factor  in    F[xJ. 

2.21 THEOREM.     Let     F    be a field.    A polynomial    p(x)   £   F[x]     has 

a multiple  root   if  and  only   if     P(x)     and     p'(x)     have  a nontrivial 

common   factor. 

Proof:     Without   loss of generality,   assume the roots of    p(x)    are 

in     F,   by     2.20.      Let     P(x)   e   F[x]     be  of   degree  n   >  0     with  multiple 

root     u.     Thus    P(x)  =   (x - uA(x)    where    q(x)  c   F[x]     and    m >  1. 

Then 
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p   (x)   = m(x -  u) q(x) +  (x -u)  q   (x) 

=   (x  -  u) (mq(x)  +   (x  - u)q   (x)) . 
i 

Clearly     x  -  u     is  a  common  factor  of     p(x)     and     p   (x). 
i 

For the  converse,   let    p(x)    and    p   (x)    have a common  factor 

x - u   .     Suppose    p(x)     has no multiple roots.     Then  there are    n    dis- 

tinct  roots    u.    where    i = 1,   .   .   .     n, of    p(x)    and  thus 
n , n n 

p(x)  =    n   (x - u.).     But    p   (x)  =    I   (      n   (x - u )).     Since    x - U. 
1-1 X j=l      1-1 

i*j 
i 

is a common  factor,     u,      is a root of    p(x)    and    p  (x).     Clearly 

p(u )  = 0.     But    p   (u )   * 0    since  there  is exactly one term in    p  (ufc) 
k k n 

which is not equal  to zero, namely       II   (u    - u )   * 0.    This  is a contra- 
il    k 

i*k 

diction.     Hence    p(x)    must have a multiple root. 

2.22 THEOREM.     Let     F    be a field of  characteristic zero.     If    p(x) 

is irreducible over    F,   then    p(x)     has no multiple roots. 

Proof:     Let    p(x)       F[x]     be irreducible and suppose    p(x)     has a 

multiple root     u.     Since    p(x)     is  irrdeucible,   its only  factors are     1 

and     p(x).      By     2.21,     p(x)     and     p'(x)     have  a nontrivial   common   fac- 
i i 

tor.     Thus     u    is a  root  of    p(x)    and    p   (x).     By    2.11   (5),    p   (x) 

must  be a multiple of    p(x).     But  then the degree of    p   (x)     is  greater 

than  the degree of    p(x)     or    P'(x)  = 0.     Clearly    p'(x)  =  0    since by 

definition,   the    degree of    p'(x)     is less  than  the degree  of    p(x). 

Then     p(x)      is  a  constant  and  has  no  roots.     Thus     P(x)     has  no  multi- 

pie  roots. 
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2.23 DEFINITION.     The extension    K    of a field    F    is called a 

simple   extension  of     F     if     K =   F(u)     for  some     u  e  K. 

2.24 THEOREM.     Let     F    be a field of characteristic     zero.     If 

u.     for    i =  1,   .   .   .   n    are algebraic over    F,   then there exists    c     in 

F(uj,    •    ■    •    ,   U  )     such  that     F(c)  =   F(ur   .   .   .    ,   %).   that   is, 

extension   is simple. 

the 

Proof:     If    n =  1,   clearly      Fd^)  = F(Uj).     Suppose    n = 2.     Let 

u,    v    be algebraic over    F.     Let    p(x)     and    q(x)     be the minimal irre- 

ducible polynomials over    F    of  degree    m    and    n    satisfied by    u,    v 

respectively.        Let     K     be   the  splitting  field  of   both     p(x)     and     q(x). 

Since    p(x)     and    q(x)     are  irreducible and since     F    has  characteristic 

zero,   then neither    p(x)     nor    q(x)    has a multiple  root  by    2.22.     Let 

the  roots   of     p(x)     be     u  =  u.      for     i  =   1 »    and   the   roots  of 

q(x)     be    v = v.     for    j - 1,   .... n.     Suppose    j  * U     then 

v.   * v    - v.     Then  there   is exactly one solution     X..    in    K    such    that 

U
J  +   ,     v     .  u     +   Xv,   =   u +  XV     for  all     1 -  1 ••      Solving 
I IJ  j 1 ij   l XJ 

this  equation,      X..   =   (u  -  u^/Cv.   - v).     But     F     is  infinite,   so  there 

is a    Y «  F    such  that    Y  * ^     for all    I - 1.   .... ■    and    J   *  l- 

Then     u.   +     v4*U+    v.     Let     c  =  u+     v.     Clearly     c  c   F(u,v) ,   so 

F(c)   -    F(u,v). 

Now  show  that     u,     v,F(c).     Since     v     is  a  root  of     q(x)over     F, 

it  is a root of     q(x)     over    F(c).    Define a polynomial    h(x)     by 

h(x)   =   p(c   -  yx).     Let     x  =  v.      Then     h(v)   =   p(c  -  YV)  =   P(«)   =   0. 

Thus     v     satisfies     h(x)     over     F(c).     Therefore,   there  is  an  extension 

field     K     of     F(c)     which  contains  the   common   factor    x -  v    of     p(x) 
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and    q(x).     Suppose    v.   * v    is another root of    q(x).     Since 

c   * u.  +   YV      for all     1 - 1,   .... m,    h(Vj)  = p(c  -YVj )*   p(u.)  = 0, 

and hence    v.     is not a root of    h(x).    Thus    v    is  the only common  root 

of     q(x)     and     h(x),   and     x  -  v     is   the  only  common   factor  since     q(x) 

has no multiple  roots.     Hence     x - v    is the  greatest common divisor of 

q(x)     and    h(x)     over    K.     Then there is a nontrivial  greatest common 

divisor  of     q(x)     and     h(x)     over     K=F(c).     But     x-v     is   the  only 

nontrivial  divisor of    x - v,   so    x-v    is a polynomial    F(c).     Thus 

v  .    F(c).     Also     u  c   F(c)     since     u =  c  -   yv,   and     c,     v,   y  (   F(c). 

Then     F(u,v)   '   F(c),   and  hence     F(c)   =  F(u,v). 

Now assume the  theorem is  true for    n = k.     Then  if    u±    for 

1 ■ 1,   .   .   .   , k      are algebraic over    F,   there is an element    c     in 

F(u O     such  that     F(c)  =  Ku,.   .   .   •   , uk).     Suppose that 
1 K 

for     i . 1 uk+1)     are algebraic over    F.     Then 

F(ur V   uR+1)   =  F(c,   uk+1).     But by  the case  for    n = 2,   there 

exists   an  element     c'   6   F     such  that     F(c')   =  F(c,   U^).     Thus  by 

induction,   the  theorem is  true  for all    n. 

2.25 DEFINITION.      Let     F     be  a  field.     A polynomial     p(x)   «   F[x] 

is called separable if it has no multiple  roots. 

2.26 DEFINITION.     Let     K     be  an  extension  of  a  field     F.     Then   an 

element     u     in    K    is  called separable over    F    if  it   is a root of a 

separable polynomial over    F. 

2.27 DEFINITION. Let K be an extension of a field F. Then K 

is called a separable extension of F if every element of K is sepa- 

rable over     F. 
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2.28 DEFINITION.     A  field     F     is  called  perfect   if  every   finite  ex- 

tension of    F    is  a separable extension. 

2.30 LEMMA.     Let     F    be a field of characteristic zero.     Then every 

irreducible polynomial    p(x)   over    F    is separable. 

Proof:     Let     p(x)   £ F[x]     be  irreducible.     By    2.22    p(x)    has no 

multiple roots.     Hence    p(x)     is separable. 

2.31 THEOREM.     Every field    F    of characteristic  zero is perfect. 

Proof:     Let     F    be a field of characteristic zero and let    K    be a 

finite  extension  of     F.     Let     u   6   K.        Let  p(x)   c F[x]     be  a  poly- 

nomial  of minimal degree with  root     u.     By    2.11,    P(x)     is   irreducible. 

Then    u    is separable over    F,  and    K    is separable.     Thus    F    is a 

perfect  field. 

2.32  THEOREM.     Let     F    be  a  field  of  characteristic   zero  and     K     be 

a  finite  extension  of     F.     Then     u  e   K     is  algebraic  over     F     if  and 

only  if    u    is separable over    F. 

Proof:     Let    u £   K be algebraic over    F.     Since     F is of charac- 

teristic zero,     F    is perfect and hence    K    is a separable extension  of 

F.     But   then every element of    K    is separable over    F, so    u is sep- 

arable  over    F. 

Now  assume     u  c   K  is  separable  over     F.     Let     p(x) t   F[x]     be  a 

polynomial of minimal degree  such  that    u    is a root  of p(x).    Then 

p(u)  = o    and hence    u    is algebraic over    F. 
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2.33 THEOREM. Let F be a field of characteristic zero, and let 

K be an extension of F. Then u c K is algebraic over F if and 

only  if    F(u)     is  a  finite extension of    F. 

Proof:     Let     u t K    and assume     F(u)   is a finite    extension of    F. 

Since     F     is  perfect,     F(u)     is  a separable  extension  of     F.     Hence     u 

is separable over     F.     Then by    2.32,    u    is algebraic over    F. 

For the  converse,   assume    u e K    is algebraic over    F.     Then    u 

satisfies  some polynomial over    F.     Let    p(x)  t   F[x]     be a monic poly- 

nomial  of minimal  degree    n    such that    p(u) = 0.    Then by    2.11   (4), 

[F(u):F]  = n.     Hence by definition of    F(u)    is a finite extension of  F. 

2.34 THEOREM.   Let    F    be  a field of characteristic zero.     If    K    is 

a finite,   separable extension of    F,   then    K    is a simple extension. 

Proof:     Let     K    be a finite,  separable extension of    F.    Then 

K =  F(u U  )     where     u.   e   K     for     1 -  1,   ...»  n.     But   the 

u.     are separable  over    F,  and hence by    2.32,   are algebraic over    F. 

Since     F    is of characteristic zero,   it follows  from    2.24     that     there 

is  a     c  c   F(ur   .    .   .   ,  Un)  - K     such  that     F(c)   =  K.     Thus     K     is  a 

simple  extension  of    F. 

2.35 EXAMPLE.   Find     c  e   <UJT,&     such   that     1(c)   =  £< Gt <§).      Let 

u =   G   and    v =   G.     Since    1    is of characteristic zero and    £(u,v) 

is a finite extension of    Q,     £(u,v)     is a separable extension of    0. 

Thus    u    and    v    are separable over    0    and hence algebraic over    fc 

Then    p(x)  = x2  -  2    and    q(x)  = x2  -  3    are polynomials of minimal 
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degree over    0.    such  Chat and    u    and    v    are roots of    p(x)    and    q(x) 

respectively.     Let   the roots of    p(x)    be  denoted by    u    = u,     u^ = -u. 

Let  the  roots  of    q(x)     be denoted by    v..   ■ V,    v    = -v.     Clearly    p(x) 

and    q(x)     are separable polynomials.     For    j  * 1,   the only    v    = v^. 

Then for each    i,   there  is exactly one solution     X        in    Q.(u,v)     such 

that    u    + X..v    ■ u. + At.v2 ■ Uj +  \*vi'     Thus»  solving the equation, 

\..  =   (u.   - u,)/(v.  - v ).    Then    for    i =  1, 
ij 1 I l 1 

A      =  A12 = 0    and for 

i = 2       X   .  =   X      =  -u/u.     Since    Q.    is of  characteristic zero,   there  is 

Y £ 1    such that    y  * *t1    and    ui + YV2  * 
u
x + Wj/     Let    c = ui + YVl' 

and let     y =  ~1«     Hence    c ■ u.  - Vj =  u  -  v.     Then     <2(u -  v)   c  Q.(".v). 

Define     h(x)   =  p(c   -     x)   =  p(u  -  v +  x)  =  x     -  2xv +  2xu  -  2uv +  3.     So 

h(x)     is a polynomial over    £(u - v).     Let    x = v.     Then    h(v)  =  0, 

and    v    is  a root  of    h(x).     Thus    x  - v    is a common divisor of    h(x) 

and    q(x)     in an extension    K    of    0(u - v).     But    -v    is not a root  of 

h(x),   so     x +  v     is  not  a  common  divisor  of     h(x)     and     q(x).     Thus 

x - v    is  the greatest common divisor of    h(x)     and    q(x)     over    K,   and 

hence over     0(u - v)     since    x - v    is  the only nontrivial  divisor of 

itself.     Then    x - v    is a polynomial over    £(u - v),  which  implies    u 

0(u-v).     Clearly     U  (l  QLu  -  v)   since     u  =  c +  v     and     v,     c is  in 

are   in     fi(u  -  v).      Then     4(u,v)   =  0(u  -  v) ,   and     c  =  u  -  v 

the  conditions. 

satisfies 
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CHAPTER  III 

AUTOMORPHISMS AND  FIXED  FIELDS 

3.1 DEFINITION.    The group of all automorphisms  for a field    F    is 

called  the automorphism group    of    F. 

3.2 EXAMPLE.     Find  the automorphism group of     Q.     Let     <f>    be an 

automorphism  of     Q..      By   the  properties  of  isomorphisms,      $(0)   =  0     and 

;(1)  =  1.     Assume     4>(k)  = k    for the positive integer    k.    Then by 

induction,     <)>(k + 1)  =  4>(k) + $(1)  = k + 1.     Hence     *    maps every posi- 

tive  integer  into  itself.     Again by the properties of isomorphisms, 

;(-k) = -k    and     $(k-1) =  k-1    for all positive  integers    k.     Thus     * 

maps every integer   into itself.     Let    m    and    n  * 0    be   integers.     Then 

m/n «   1    and     <Km/n)  =   4>(mn-1)  =   ♦<m)*(n" )  = mn"    = m/n.    Hence     * 

maps  every  rational   into   itself  and   is   the   identity  map     I.     Clearly 

this  is  the only automorphism of    'I,  so the automorphism group  is     {I}. 

3.3 EXAMPLE.     Find the automorphism group of     1(/5).     Let     U -   </5. 

Let     I     be   the   identity  map. Define  a map     a    by     a(a  +  bu)   -  a  -  bu 

where    a,     be^.     Clearly    a is one-to-one and onto.     Let     (a + bu), 

(c  +  du)   s   Q(.u).     Then 

o((a  +  bu)   +   (c  + du))   = a((a +c)  +  (b + d)u) 

= (a + c)   -   (b + d)u 

= (a - bu) +  (c - du) 

= a(a + bu)  +  a(c + du) 

and 
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u((a  + bu)(c  +  du))   =  <x(ac +  bcu +  adu +  5bd) 

=   (ac + 5bd)  -   (be + ad)u 

=  c(a  - bu)   -  d (a  - bu)u 

=   (a  -  bu)(c  -  du) 

=  u(a + bu)u(c  + du). 

Hence    u    Is  an automorphism.     Assume there is another automorphism    T. 

Then     T(U
2
)   =   T(5)  = 5    and    T(U

2
)  =  T(UU) = T(U)T(U).     Thus 

i(u)i(u)   =  5.     Now     x(a +  bu)   =   T(a)  +   t(bu)  =  a + bt(u),   since     I     is 

the only automorphism of    Q.,  and     i (u)  = u    or     T(U)  = -u.     But   then 

either     T(a + bu)  = a + bu, which is just     I,  or    r(a + bu)  = a - bu, 

which  is    a.      Hence   the  automorphism group  of     £(u)     is     {I,a}. 

3.4 DEFINITION.     Let     K     be  a  field  and     G     be   the  automorphism 

group  of     K.      If     H     is  a  subgroup     of     G,   the  set     H       of  elements  of 

K    whose elements  remain  fixed under the automorphisms of    H    is called 

the fixed field    of     H,   that  is,     H'  =  (a e  K   |   *<a)  = a for all  * t   H). 

3.5 THEOREM.     The  fixed field    H'     of    H    is a subfield of    K. 

Proof:     Let    H'     be   the  fixed field of    H.     Let    a,    b e  H  .    Then 

a +   (_b)   =  *(a)  +   *(-b)   =   *<■  " b)     for  all     *  c   H.     Hence     a  -  b  -    H   . 

-1. H. 
Now suppose    b  * 0.     Then    ah"1 = ♦(aHOT1) =   ♦(*' )     for all 

Thus    ab"1 c   H\  and hence    H    is a subfield of    K. 

3.6  DEFINITION.     Let     K     be  a  field  and     G    be  a  group  of  automor- 
 — ■  , 

phisms of K.  If F is a subfield of K, the set F  of all automor- 

phisms of  K  which leave every element in  F  fixed is called the 
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group of automorphisms of    K    relative to    F,     that is, 

t . 

F    =   {<j> e  G   I   <J>(a)  = a     for all    a e   F}. 

t 

3.7 THEOREM.     The group of automorphisms    F      of    K    relative  to a 

subfield    F     is  a subgroup of    G,   the automorphism group of    K,  under 

composition of mappings. 

i 
Proof:     Let     F      be   the  group of automorphisms of    K    relative to 

i ' 
F.     Let     $,   T    «   F      and    a <   F.     Since    1(a) = a,     I £   F  . Now 

_, i i 

$T-1(a)   =   4.(T_1(a))   =   .KT_1(T(a)))  =   *(a)  =  a.     Thus     *T"     e F   ,   and     F 

is   a  subgroup  of     G. 

3.8 EXAMPLE.     Consider the  field    2(u,v)    where    u = *5    and 

v = /2.     Then  any element   in   the field  is of the form    a + bu + cv + duv 

where    a,     b,     c,     d  e  £.     Let    I    be  the identity automorphism.     Con- 

sider  the  field  as     (£(v))(u).     Then     cy     a +  bu   > a  -  bu     is an  auto- 

morphism of     a<U,v)    where    a,    b e «v).     Also,     Q.M     is  the fixed 

field of     0        Now consider    a<u,v)     as     (a(u))(v).     Similarly,   there is 

an automorphism    0%l     a + bv - a - bv    where    a,  b «   0(u),   with fixed 

field    !i(u).     By     1.4,   the composition of automorphisms   is an automor- 

phism.     Define     o3    by     o3 =  o^ =  a^Oy 

°3: 

o3     is     1. 

Let    G = {I, or o2,o3}.     Clearly    C    is a group under composition 

of mappings.     As  in    3.3,   there are no other automorphisms  of    <2(u,v), 

so    G    is  the group of all automorphisms and   g    is its  fixed field. 

Now  to  illustrate    2.5,     compute     [0(u,v):a].     Since    ft c  d<»> <- V**> > 

0   •      a  +  bu +  cv +  duv -  a  -  bu  -  cv +  duv.     The  fixed  field  of 
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[2(u,v):Qj  =   [£(u,v):Q.(u)][a(u):Q].    Any element  in     £(u,v)     over     G(u) 

is  of  the  form    a + bv    where    a,    b   e £(u).     So     {l,v}    is a basis  and 

[Q.(u,v): Q.(u)]   = 2.     Since any element  of    £(u)    over    Q   is of the form 

a + bu, where     a,     b   e  Q,   a basis  is     {1|U}.     Hence    [Q(u):QJ   = 2.     So 

[d(u,v):«2] =  (2)(2) = 4. 

3.9 THEOREM. Let N be a field with subfields K, L, M such 

that    K c L c M <- N.     Let     G   be  the group    of automorphisms of    K    with 

subgroups     J     and     H     such  that     J   c H   c G.     Then 
i i 

(1) L   c M    implies    L    o M 
i t 

(2) J   c H     implies     J     = H   . 

i i 
Proof:   (1)     Let    L ,    M      be the automorphism groups of    N    rela- 

I 

tive  to    L    and    M,   respectively.     Let     <p c H .    Then     $(a) = a    for all 

a  £ N.     Since     L <- M,     ♦    must also leave every element of    L    fixed. 

i i > 

Then     4> e  L  .     Hence    M    c  L  . 

(2)     Let     j',     M'     be  the  fixed  fields of    J    and    H    respective- . 

ly.     Let    a £   H'.     Then    $(a) = a    for all     * £ H.     Since    J c  H,  every 
i • • 

element   in    J     also  leaves    a    fixed.     Then    a t  J      and    H    c J   . 

3.10 DEFINITION. Let H be a subgroup of the group of automor- 

phisms of a field K and let H' be the fixed field of H. Then the 

closure  of     H,   denoted     H",      is  the  group  of  automorphisms  of     K     rela- 

tive   to    H  . 

t 

3.11 DEFINITION.     Let     F    be  a subfield  of  a   field     K    and  let     F 

be  the group of automorphisms of    K    relative   to    F.     Then the closure 

of     F,  denoted     F",   is  the  fixed field of    F   . 
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3.12 DEFINITION.     A  subfield     F     of  a  field     K     or  a  subgroup     11 

of  the group of automorphisms of    K    is called closed if and only  if 
it " 

F = F      or    H = H      respectively. 

i 

3.13 THEOREM.     Let    F    be a subfield of a field    K    and let    F      be 

the group of automorphisms of    K    relative to    F.    Then 

(1) F  c  F 

(2) F'   C   F'". 

II ' 

Proof:     (1)     Let    a t   F and let    F      be  the fixed field of    F  . 
, ti " 

Then     <j>(a)   = a     for all     $ e   F  .     Then clearly    a t   F .     Hence    F e   K  . 
II 

(2)     Let     F be  the  group  of  automorphisms  of     K     relative   to     F 

and let     4> e F' .     Then     *(a) = a    for all    a 6   F.     But  then    a e   F   ,   and 

hence e   F     .     Thus     F     =  F     . 

3.14 THEOREM.     Let    K    be a field and let    G    be the group of auto- 

morphisms   of     K.      Let     F     be  a  closed  subfield  of     K    with     F       the 

group of automorphisms of    K    relative to    F.     Then  the fixed  field of 

t 

F     is     F. 

i 

Proof:     Let    a «   F.     Let    L    denote the  fixed field of    F .    Then 

♦ (a)   = a     for all     M f.     Hence    a a, and    F <   L.     Let      L      be  the 

group  of   automorphisms  of     K     relative   to     L.     Let     a «  L.     Then     since 

L    is  the  fixed field of     F',     *(a) - a    for all    ♦ «»'•     **     * < L • 

so    F'CL'.     By part     (2)     of    3.13,    L" « F".     Since    F    is  closed, 

F =   F".      Hence     L  c  L" C   F"  =  F.     Thus     L =   F. 
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3.15 THEOREM.     Let    K    be a field and    G    be  the group of auto- 

morphisms  of    K.     Let    H    be a closed subgroup of    G    with fixed field 

H  .     Then  the group of automorphisms of    K    relative to    H      is    H. 

Proof:     Let   4> e. H.     Let    J    denote the group of automorphisms of    K 
, t 

relative   to    H  .     Then     i(a)  - a    for all      a e  H  .     Hence    * c  J,   and 

H c j.     Now let     * c   J.     Let    j'    be the  fixed  field of    J.     Clearly  if 

a t   H*.   then    a e  J   .     Hence    H    c J  .    Then by part     (2)  of    3.13, 

ii i< " " 

j"   c  H   .      But     H  =   H       since     H     is  closed.     Thus     J  '   J     = H    - H. 

Then    J =  H. 

3.16     THEOREM.     Let     K    be  a  field.     Let     F  -  F       be  a mapping   from 

the  ordered structure     (F,c)     of all closed subfields of    K    onto  the 

ordered  structure     (H,=)     of  all  closed  subgroups  of  the  group  of  auto- 

morphisms  of    K.     Then the mapping is a one-to-one correspondence,  and 

its   inverse   is     H ■*  H   . 

Proof:     Let     *    be a mapping of     (F,=)    into     (H,o), defined by 

♦ (F)  = F\  where     F c   (F,c).     Let    Fj    and    ?2    be  closed subfields of   ^ 

K.     Assume     K^)-   ♦<!,>-     Then     *[  -  *r   _ Hence  the  fixed  field  of     ?, 

must   be   the   fixed   field  of     j',   that   is,     ?[ =  £     But  since     ^     and 

.        ,       ■    ■»"•*"-?«.    Thus     *    is one-to-one. F      are closed,     F^ -  0^ ■  '2 2 

Now   let     H     be  a  closed  subgroup  in     <«.,).     Then     #     is  onto   if 

there  exists  a  subfield     E     of     K    such  that     *<E)   =  H.     Let     E  =  H   , 
1 " 

./ir\ -   A(U  1  = H    = H    since    H    is 
the  fixed  field of    H.    Then    *(B)  - ♦(« ) 

closed.     Thus     d,    is a one-to-one correspondence. 



29 

Let     t    be a mapping from    (H, ->)     into     (F,L),   defined by 

i '           " 
,(H)  = H   ,     Then <)>(i(H))  =   *(H  )  = H    = H    since    H    is closed.     Thus 

t =  <f   ;     so  the inverse of    $    maps    H * H  . 
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CHAPTER  IV 

NORMAL EXTENSIONS 

Let  the  field    F    be of  characteristic zero throughout  this 

chapter. 

4.1  THEOREM.     Let     F     be  a  field  and     Ffc^ xj   be   the 

field of  rational   functions in    xx *n   over    F.     Let     a   t Sn> 

the symmetric group of  degree    n,   and    r(Xj,   .   .   •   ,  xj     be  in 

F(x .   ,   x ).     Define a mapping    a    of    F(x *n>  °nt0 

1'    ' n 

itself by     o:   rlx^   .   .   .   ,  XR)   -r(x
o(1) *a(fiY' "" 

is an automorphism. 

Proof:     By definition,     0    is one-to-one and onto.     Let 

C(X1 xn)   and     s(Xl,   ....   xn)  be  in     F^,   ..,*„)     and 

0   ,  Sn.     Since     F<*lf    .   .   .  XQ)     is  a  field,   the  sum and  product  of 

rational  functions   in    X.i   ■ 
are also rational  functions  in 

n 

xr x   .     Then 
n 

SlrUj,   .   .   ,   xn)  + s(xr   •   •   , xn)) 

=  r + s(xo(1) 
x

0(n)) 

and 

" r(jco<l)' 

=  o(r(x1,   . 

o(r(x   ,   - 

•    •   Xo(n)>  +  S(Xo(D 'X°(n)) 

.  , x )) + JCsd^. •   •   ' *n
)J 

, xn)s(x1,  .... *n>> 

= rs(x 
a(l)* 

.    .    .   x a(n) 
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=  r(xo(1),   .   .   .   ,   xo(n))s(xo(1),   ....  xo(n)) 

= a(r(x1,   .   .   ,  xn))o(s(x1,   .   .   , x^)). 

Hence    a    is  an automorphism. 

4.2 COROLLARY.     The set of all automorphisms of    F(x  ,   .   .   ,  x ) 

relative  to    F    is a group. 

Proof:     The  result  follows   immediately from    3.7. 

4.3 DEFINITION.     An element of    F(x.,   .   .   ,  x )   left fixed by all 
  1 n 

defined by    o e   S      is called a symmetric rational   function in 

x.,   .   .   .   ,   x       over     F. 

4.4 THEOREM.     Let    F    be a field and F(x  ,   .   .   ,  xn>    be  the 

field of  rational  functions  in    x,  xn    over    F.    Then  the  fixed 

field of    F(x   ,   .   .    ,   x )     with  respect  to S      is  the set of all  sym- 

metric  rational  functions  in    x.,   .   .   ,  x^      over    F. 

Proof:     By definition,   the set of elements  left   fixed by all ele- 

ments in    S       is precisely the set of  symmetric rational  functions, 
n 

4.5 COROLARY.     The set of symmetric rational  functions is a sub- 

field of     F(x   ,   .   .   .   xn). 

Proof:     This  follows   from    3.5. 

4.6 DEFINITION.       The elementary symmetric functions in 

x   ,   .   .   .   ,   x       are defined  to be 
1 n 
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32  =   .   *    \\ 
ix<la     1    2 

a    = x     ....   x n 1 n 

a    = 0    for all    r > n. 

4.7  THEOREM. Let    F    be a field and    F(x.,   .   .   ,  x  )    be 
1 n 

the 

field  of   rational   functions  in     Xj.   •   •   .  «„  over     F.     Then   the  elemen- 

tary symmetric functions  in    xJ,   .   .   , jt    over    F    are symmetric ration- 

al  functions. 

Proof:       Let     o  e  S      and    o    be an automorphism of 

F(x1,   .    .   ,   xn).     Assume    the    x      are all distinct and let    p(x)     in 

F[x]     be defined  by 
n n 

p(x)  =    It   (x - x.)  = xn -  (    Z x,)xn-1 +  .   .   . + (-l)V   .   .   .   x   . 
1=1 i 1-1 * In 

n 
Then    o(p(x))  =     II   (x - x   .   .) = p(x)     since    o(i)     is just  a permuta- 

i=l 0U; 

tion  of     ],...,   n     and   the  factors  of     p(x)     are  commutative.     Hence 

the coefficients of p(x) remain fixed. But the coefficients are pre- 

cisely 1 and the elementary symmetric functions. Thus the elementary 

symmetric functions are symmetric. 

A. 8 DEFINITION.     Let     F    be a field.     If    K    is a finite extension 

of    F    such  that     F    is  the fixed field of the group of automorphisms 

of    K    relative   to     F,   then    K    is called a normal extension. 
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4.9 THEOREM.     Let    F    be a field and    K    be a finite extension of 

F.    Then     K    is a normal extension of    F    if and only if    F    is a closed 

subfield of     K. 

Proof:     Let     F      be   the group of automorphisms of    K    relative  to 

F    and    F"    be  the   fixed field of     F .     Suppose that    K    is a normal 

extension  of    F.     Then    F    is  the  fixed field of    F  .     But  the  fixed 

field  of     F'      is     F",   so     F =   F  .     Hence     F     is  closed. 
t 

Now suppose F is closed. Then F is the fixed field of F . 

Since K is a finite extension of F, by definition, K is a normal 

extension of    F. 

A. 10  THEOREM.     Let     K  be  a  finite  extension  of  a  field     F.     Then 

..__     B       _r     v     rplative  to     F     is   finite,   and the  group  of   automorphisms     F       of     K     relative 
, i 

its order    o(F )     satisfies    o(F )   S  [K:F]. 

.   . s—     <   -   1 .   n    be  a basis 
Proof:     Let     [Clf]   = n    and let    u.     for    I • 1,   . 

,  r Af    F'     is    n + 1.    Then there are 
for    K    over     F.     Suppose   the order of    B       «    " 

„'        . i  -   i n +  1.     Consider   the 
n + 1    automorphisms     ^    in    F ,  where    j -  i,   •   • 

system  of     n     homogeneous   equations   in     n +  1     unknowns 

A   (u   )x     +  .   .   .  +   Vl(ui)Xn+l  =  °' 
.        .   ' n From      1.6,  this system has a nontrivial sol- 

where     l  =   1,   ...,».        riuw 

.       K       4 - 1     .   .   .   , n + 1,   that  is, not all    x    = 0. 
ution    x.  = a.     in    K,     j       i» 

,    v ' L *      fn la • 0    for all    i " 1»  •  •  n- 

Then    *,(u.)a    +  .   •   •  + *n+l(Ui}  n+1 
1  -   1 .   •   •   ,   n,     is a basis for    K 

Let     t   £  K.     Since    u.,     i       L • 

+  c u      where    c.   t   t    Then,   since    *, 
over    F,     t = CJUJ   +  •   •   •   + c

n n l 

leaves     c.      fixed, 
l 
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n+1 n+1 

j=l J J       j=l J     J    i=l 

n+1      n 

=    5: Z aici'MUi^ 
j = l     i=l J      J 

n n+1 
=    I  c   (     Z a <J>   (u ) 

1=1  X    j-1 J  J 

=     Z  c.O 
i-1  X 

0 
for all     t c  K.     But   this  contradicts    1.7.     Then    o(F )   * n + 1.     Thus 

O(F')   ■   n =   [K:F]. 

4.11  THEOREM.      Let     K     be  a  normal     (finite)     extension  of  a  field 
t 

F    and let     H    be  a subgroup of    F  ,   the group of automorphisms of    K 

relative  to    F.     Let    H'     be   the fixed field of    H.    Then 

(1) [K:H  ]  =  o(H) 

(2) H     is   closed. 

Proof:  (i)  Let H" be the group of automorphisms of K rela- 

tive to ..'.  By  3.13,  Bci", SO 0<H) * O(H"). Then by 4.10, 

i ,       • 

o(H ) ■ [K:H ].  Thus o(H) < [K:H J. 

By   2.24,  there is  uc K  such that  K=»'(u).  Let  [K:H ] = 

n.  Then  u  satisfies an irreducible polynomial over  «.'  of minimal 

degree n.  Let .(H) = h.  Then there are h distinct automorphisms of 

K relative to F in H.  Denote these by i±.  where i - 1, . . . b 

(c) = c    for all Thus 
and    *       is  the  identity automorphism of    F   . 

c e   F.     Now consider  the elementary symmetric  functions in    ♦, 
(c) 
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defined by 

a,   =     t   *.(c) 
1       1=1   X 

i, •       I       -K   (c)4>.   (c) 
Vl2     h H 

ah=   ^(c)   .   .   .   *h(c). 

Let    4)      H.     By    4.7,   each    a.     is a symmetric rational  function.     Hence 
t 

C(a.) = a.     for all     * « H    and    i -  1,   .   .  h.     Thus    a.   « H      for all 

i ■  i h.     Let     p(x)     be a polynomial over    H      defined by 

p(x) = ! (x - ^(O) = xh - a/"1 + . . . + (-Dah as in 4.7. Then 

for x -"c, x - ^(c) = c - c = 0. Thus p(c) = 0, and c is a root 

of p(x).     Since    n     is  the minimal degree of an   irreducible polynomial 

for which    c     is a  root,     h > n.     Then    o(H) = h   > n =   [M ],  and hence 

i • 
o(H)   i   [K:H  ].     Thus    o(H)  =   [K:H  ]. 

ii " ' 
(2)     By     3.13,     o(H)   S o(H ).     From    part     (1),     o(H )   i   [K:H  ] • 

o(H).     Hence    O(H")   S O(H).   so    O(H")=O(H).     Since    H    is a subgroup 

of    H"    with  the same  order of    H" ,    H = H".    Then    H    is closed. 

4.12  COROLLARY.     If    H = F ,   then    [K:F]  = o(F ). 

Proof:     Let     H =  F'.     Then    H' - f".     But K    is a normal exten- 

sion of    F,   so by    4.9,     F = F".     Hence    ■'  = f. Then     [K:F]  =  [K:H  ]  = 

o(H). 
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4.13 LEMMA.     Let     F    be a field,     f(x)   6  F[x], and    K    be the 

splitting field of     f(x)     over    F.    Let    p(x)    be an irreducible factor 

of    f(x).     If  the roots  of    p(x)    are    u , where    i =  1,   .   .   .   , n,   th 

for each    i,   there exists an  automorphism 

en 

of    K    relative  to    F 

such that     *J(
U

I^  
= u4" 

Proof:     Let    u., where    i = 1,   .   .   .   ,  n,  be the roots of    p(x). 

Then    each    u.   e  K    and are  roots of     f(x).     Let    u^^    and    ^    be two 

roots of    p(x).     Then  there  is an isomorphism    T    of    FCu^    onto 

F  (u  )  =   F(u.)      such  that      T(U.)   = U.     and     i(c)  =  c     for  all     c  c   F    by 

2.17.     Now     K     is   the   splitting  field  of     f(x)     over     F^)     and  over 

F(u.).     Then by    2.18,     there is an isomorphism    ♦.    of    K    onto    K, 

hence an automorphism,  which coincides with     T    on    F(Ul>.     In particular 

$ (u ) =   t(u  )   = u.     and     *(c)  =  i(c) = c    for all    c e   F. 

4.14 THEOREM.     K    is a normal extension of a field    F    if and only 

if    K    is  the  splitting field of some polynomial    over    F. 

Proof:     Let     F    be a  field.    Assume    K    is a normal extension of 

F.     Let    F'     be   the  group of automorphisms of    K    relative  to    F.     Since 

K    is a normal     (finite)     extension and    F    is of characteristic zero, by 

2.24,   there  exists  an  element     c   (  K    such  that     K =  F(c).     Let     ^     for 

I - 1,  .... n    be  the elements  in    f\ where     ^    is  the identity. 

Let    a      be  the elementary symmetric functions  in    $.(c), 

n-1   , 
n.     Let    p(x)  =     II   (x -  4>^ <c))  = x    - OjX 

i=l 

.   .    .  +   (-l)a       over     K. 

Thus    p(x)     factors  into distinct  linear factors over    K.     By    4.7,   each 

*      v        Hence    a      form the fixed field 
a.     remains  fixed under every    <t> £  *   •     nc'"- I 



37 

0f p'.     But  the  fixed field of     F      is    F    since    K    is a normal exten- 

sion of    F,  so     a.   « F    for    i =  1,   .   .   .  n.     Then the coefficients of 

p(x)    are   in    F.     Thus    p(x)     is  in    F[x].     Clearly,    c    is a root of 

p(x)    since  for    x =   c,    x -   ^(c) = c - c = 0.    Hence    p(c) = 0.     By 

2.9      F(c)     is  the smallest subfield containing both    F    and    c.     Since 

K-  F(c),     K    is   the  smallest  subfield containing    F    and    c.    Thus    c 

is in no proper subfield of    K,   and    p(x)     cannot  be factored into  lin- 

ear factors  in any proper subfield of    K.    Hence    K    is  the splitting 

field of    p(x)     over     F. 

For the  converse,   let    K    be the splitting field of some polynomial 

f(x)    over    F    and proceed by induction on    [K:F].     Let     [K:F] = n. 

Assume that  for any pair of  fields    K      and    F,  where     [K  :F   ]   < n,   if 

K'    is  the splitting  field of  a polynomial over    F  ,  then    K      is a nor- 

mal extension of     P\     Let    p(x)   t   F[x]     of degree    r>l    be an  irre- 

ducible  factor of    f(x).     Since     F    is of characteristic zero,    pfr)  is 

separable    by    2.30.     Hence    the roots of    p(x)    are all  distinct.     Let 

u„ where    i =  1 n,  be   the roots of    p(x).    Consider    U,.    Then 
I 

K    is  the splitting field of    p(x)    over    F^).     By    2.5, 

[K:F(u1)][F(u1):F]  =   [KsF]   = n. 

rv of.. \1 m n/r  < n.     By the induction hy- 
But     [F(ux):F]   =   r;     hence     [KtFCu^J - n/r      n.       y 

pothesis,     K    is  a normal extension of    Ffr^). 

Let    x    be  any element  in    K    which remains  fixed under every 

in    F' .    At  least  one such    x    exists since    0    and    1    In 

of..  1   1 paves     F    fixed 
fixed.     Any automorphism of    K    relative to    FCu^ 

c-     A       Then    x     is   in  the   fixed 
since     F,     F^),   and  hence   leaves     x     fixed.     Then 
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field of    K    relative to    F(u.).    But    K    is a normal extension of     F(iO 
r i and so    x  £  F(u.).     Thus    x =     I c.u      where    c    t F, by    2.11,     (3). 

1 j-0 J i 
By    A. 13,   for each     i,   there  is a    $    e  F      such that     M^)  = u

i 

r_1      1 
and    *.(c.)  =  c,     for all c,  e  F.    Then    x =   * (x) =    Z c uJ.     Let 

i    J           J                        J                                      x            j=o J 

q(x) =  (CQ - x) + c±x +  .   .   .  + cr-1xr"  .    Then    a±    for    i =  1  

n,  are all  distinct roots of    q(x).     But then the number of roots   is 

greater than the degree of    q(x).     Hence the coefficients of    q(x)     must 

be zeros.     Then     cQ - x = 0    and    cQ = x.    But    cQ t   F,  so    x e  F.     This 

means    F    must  be  the fixed field of    F ;    hence    K    is a normal exten- 

sion of    F. 
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CHAPTER V 

FUNDAMENTAL  THEOREM OF GALOIS THEORY 

Let  the  field     F    be of  characteristic zero  throughout  this 

chapter. 

5.1 DEFINITION. Let F be a field and p(x) e F[x]. Let K be 

the splitting field of p(x) over F. Then the group of automorphisms 

of K relative to F which leave every element of F fixed is called 

the Galois group  of     p(x),   and  is denoted by    G(K,F). 

5.2 THEOREM.     Let     F     be  a  field,     p(x)  c   F[x]     be  separable,   and 

K   be  the  splitting field of     p(x)    over    F.    Then the Galois  group of 

p(x)     is the  group of  permutations of the roots of    p(x). 

Proof:     Let    G(K.F)     be   the Galois group of    p(x).     Let  the roots 

of    P(x)     be    a±,  where    1 - 1 «•     ™en by    4.13,   for each     i, 

there exists     c.   * G(K.F)     leaving elements of    F    fixed such that 
l 

oi(u)  =  u.,     u =  u.     for    i =   1 n- n        ± 

Conversely,   consider a root    u    of    p(x), where    p(x) =    tf?   . 

for    c     .   F.     Then    for any    o   < G(K,F), 

p(o(u))   =      }:  c.o(u) 
i-0 

I o(c  )o(u)' 
i-0 
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. o(    £ c.u ) 
i=0 

= o(0) 

= 0. 

Hence each    o e  G(K,F)     is just  the permutation of the roots. 

5.3  FUNDAMENTAL  THEOREM.     Let     F     be  a  field and    p(x)  g   F[x]. 

Let    K    be  the splitting  field  of    P(x)     over    F,  and    G(K,F)    be  the 

Galois group of    P(x).     Let    T    be a subfield of    K    containing    F,  and 

H    be  a  subgroup  of     G(K,F).     Let     G(K,T)   =   (o  .   G(K,F)   |   o(t)  =   t     for 

all     t  e   T)     and     1.'   =   (x  c   K   |   o(x)  =  x     for  all     o  c   H}.     Then   the 

association  of     T     with     G(K,T)     sets  up  a  one-to-one  correspondence of 

the subfields  of    K    which contain    F    onto the subgroups of    G(K,F) 

such that 

(1) T     is  the   fixed field of    G(K,T) 

(2) H =  G(K,H  ) 

(3) [KIT] - 0<G(K,T»     and    [T:F]  =   index of    G(K,T)     in    0(K,F) 

(A)    T     is a normal extension of    F    if and only  if    G(K,T)   is a 

normal subgroup of    G(K,F) 

(5)     If     T    is  a normal  extension of     F,  then    G(T,F)     is iso.or- 

phic  to     G(K,F)/G(K,T). 

Proof:     Since     K    is  the splitting field of    ,60    over    I.   it is 

the splitting  field of    P(x)     over    any subfield which contains^ F. 

Hence    K    is   the splitting field of    p(x)     over    T.    Then    by 

is a normal extension of    T.     But then    T    is closed by    ..9,  and by 

4.11,    G(K.T)     is  closed.     From    3.16,   there exists a one-to-one 
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correspondence of   the  closed subfields of    K    onto the closed subgroups 

f    G(K F) .     Hence  there  is  a one-to-one correspondence of the subfields 

of    K    which contain     F    onto the subgroups of    G(K,F). 

(1) Since    K    is a normal extension of    T,  by definition,    T    is 

Che fixed  field of    G(K,T). 

(2) By    4.11,     H    is  closed.     Hence    H    is  the group of automor- 

phisms of     K    relative  to    H .     But  this  is precisely    G(K,H ). 

(3) Since    K    is a normal extension of both    T    and    F,   then 

[1ST] = o(G(K,T))     and     [K:F] = o(G(K,F))     respectively by part     (2) 

and    A.12.     Now     [K:F]   =   [K:F][T:F]    by    2.5.    Hence 

o(G(K,F))   =  o(G(K,T))[T:F]. 

Then     [T:F]   =   o(G(K,F))/o(G(K,T) ) .     Since     K     is  the  splitting  field  of 

p(x)    over    F,     K    is a finite extension of    F.    Then    [K:F] =  o(G(K,F)) 

is finite,   and  thus    G(K,F)     is  finite.     Then    o'G(K,F))/o(G(K,T))    is 

the index of    G(K,T)     in    G(K,F). 

(4)     First  show     T     is  a  normal  extension of     F    if  and  only  if 

for all     a.OOCI).     °<T)       T"     AsSUme     °<T>  ' *"     ""*    '    " ^ 
.   .       ar    a        T    is a finite extension 

splitting  field of  some polynomial over    r, 

of     F.     Hence   by     2.24,   there  exists     u,T     such  that     T  ■  F(«).     Then 

, n    be the elemen 
B(U)   t T.     Let     0.     for     i = l  

ts  of     G(K,F). 

Then,  as in   the  preceding theorems,    T    is  the splitting field of 
n yfvl       Hence    T    is a normal exten- 

p(x)  -    II   (x -  ot(u))     which is  in    F[x].    Hence 

i=l 
sion  of     F. 

OM    T    is a normal extension of    t.     Since    T    is 
Conversely,   suppose    T    is a no 

, . T    such    that    T = F(u)    by 
a finite extension of     F,   there is an 
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4.14,  there   is a minimal polynomial    p(x)   « F[x]    of u    with all its 

roots in    T.     But  for all     0 c G(K,F),     o(u)     is also a root of    p(x) 

by    4.13,   and  so     o(u)   e T.     Since    T= F(u),       o(T)  c T. 

Thus    T    is  a normal extension of    F    if and only if    for all 

tl!    and    o c  G(K,F),     o(t)   £ T.    Assume    T    is a normal extension of 

F.    Let    a c   G(K,F)     and     TCG(K.T).    Then     T<B<t» - fl(t)     for all 

t c T    since     B<t)   *  T.     Now,     a-1(T(o(t)» = <fl<*<t» ■ t    for all 

t f T.    Then    O
_1

TO e   G(K,T).     Hence by definition of normal,    G(K,T)is 

a normal subgroup of    G(K,F). 

Conversely,   assume    G(K,T)     is normal in    G(K,F).    Then    oSo    is 

in    G(K,T).     Hence  for all    C < T,     B*  to(t) =  t.    Then 

0(t)  =   o(o_1To(t))   =  oo-1(To(t)) =  T(0(t». 

But  then    B(t)   e  T    for all     t <  T.    Thus    B(T) C T.     Therefore,    T    is 

a normal extension of     F    if  and only if    G(K,T)     is normal in    G(K,F). 

(5)     Let    T    be  a normal extension of    F    and let     J « G(K,F). 

since    o(T)   c T,     by     (A),     o    induces an automorphism    o    of    T    such 

that    5(t)   -   o(t)     for all  «   . X.     Then    3   must  leave every element of 

.,    G(K F)  ■* G(T,F)    by 
F    fixed.     Hence     36G(K,F).     Define a map     V    *<■*-*> 

$(o) =  o    for all     o  t   G(K,F). 
7 . alT Vi    be  induced by    o,     T. 

Let     o,      T   c  G(K,F).     Let     o.     X  «  G(T.F) 

  .   . ,   ,.u      and      Ot(t)   =   B(t(t))   " 
Now for all     t   e T,     ox(t)  =  cx(t)  = B<i(t»     and      J. 

/#»       „fr>  .  T.     Then ox    = ox-     Hence 
o~(x(t))   = o(x(t))     since,  by     (4),     o(t)  < 

morphism. 
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The  kernel of     *    is  the set of     " « G(K,F)     such that     *K °)     is 

the identity map  in     G(T,F).     But the identity map  in    G(T,F)     is     a. 

Thus  the kernel   is  the set of all     o  e G(K,F)    such that  for all    t   e T, 

:(-)(t)   =   o(t)  =   a(t)   =   t.     But  this is precisely    G(K,T)     since    T 

remains   fixed.     Thus  the kernel of     $    is    G(K,T). 

Now,   by  the First  Isomorphism Theorem,   the image of    G(K, F)     in 

G(T,F)     under     *    is   isomorphic  to    G(K,F)/G(K,T).     But  the order of  the 

image   is   the  index of     G(K,T)     in G(K,F),    which is    o(G(K,F))/o(G(K,T)) 

since     C(K,F)      is  finite.     By  part     (3),       o(G(K,F))/o(G(K,T))   =   [T:F] 

and by    4.12,     [T:F]   = o(G(T,F)).     Thus the  image of    G(K,F)   in    G(T,F) 

must be    G(T,F),   and hence     $    is onto.     Thus    G(K,F)/G(K,T)     is isomor- 

phic  to     G(T,F). 

5.4  EXAMPLE.     Consider  the polynomial    p(x) = x    - 2    over    Q. 

In the  field of   complex numbers    p(x)     factors  into 

(x  -   u)(x  + u)(x  -   iu)(x +  iu), 

where     u  =   /2     and     i  =  /^I.     Then   the  splitting  field of     p(x)   over 

<l    is     0(iu,u).      But     <)(iu,u)   =  £(i,u)     since  any element   in     0(iu,u) 

is of  the   form 

bl  +  b2iu +  b3(iu)2  + b4(iu)3 + b5u + b6(iu)u    + b7(iu)2u +  b8(iu)Ju 

=  bl +  b2iu  -  b3u2  -  b^iu3  +  b5u +  b6iu     -  b?u    -  bgi, 

whe re    b.   c   (J,   and any element  in    <2(i,u)     is  of the  form 

c2 + c2u + c3u2 + cAu3 + c5i + c6iu + c?iu
2 + Cgiu  , 

where     c,   e   Q_- 

By     2.5,     [ft(io)«Q]  =   [0(i,u):0(u)][0(u):OJ.    Any element  of 

0(i,u)     over    <IM     is  of  the  form    ^ + c2i    where    c^     c2  «   Q.M ■ 
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Then    (l,i)     is a basis for    Q.(i,u)    over    2.(u),  and hence,    by    2.11, 

I On  u):Q.(u)l   = 2-     Similarly,   any element of    £(u)  °ver    0.   is of  tne 

2 3 
form    c.  + c?u + c.u    + c.u   ,  where    o.   £   Q..     Hence a basis for    Q.(u) 

over    1    is     (i,u,   u2,   u3}    and     [a(u):<U  = * •    Thus     [a(i,u):QJ  = 8. 

Then the group of automorphisms of    £(i,u)    has eight elements.    Let    I 

be the  identity map,     a(u,i) +  (iu,i),  and    i(u,i) ->  (u,-l).    All of 

the automorphisms  can be expressed  in  terms of the generators    o    and 

A 7 3 
T, by means of  the equations     o    =1,     T    =  I,   and     TO = o T.    Then 

I(u,i)   -   (u,i) 

o(u,i)   ■*  (iu,i) 

a2(u,i)   ■*  (-u,i) 

o3(u,i)   ■* (-ui,i) 

T(u,i)   ->  (u,-i) 

OT(u,i)   + (iu,-i) 

o2T(u,i)  +  (-u,-i) 

a3t(u,i)  * (-iu,-i) 

The subgroups of the group of automorphisms of &(i,u) are clas- 

sified by order, with their corresponding fixed fields as follows: 

Order 8 

Order  4 

Order  2 

G    =  the whole group 

2      3, 
G    =   (I,   o,   o  ,  o   I 

2 2 
G3 =   (I,   o   ,   T,  o  T) 

2 3 
G,  =   (I,  o   ,   at,  a  T} 

4 

G5 =   (I,   o2} 

G,  =   (I,   T} 
o 

G? = (i, at} 

Fl = 
a 

F2 = a<i) 

F3 = S(u2) 

F4 = a(iu2> 

F5  = 
au.u2) 

F6 = 2(u) 

F7 = (£(u(J + D) 
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G8  =   (I,   O2!} 

G9 =   (I,   O
3
T) 

Fg =   Of iu) 

F9 =   QJud - D) 

Order 1 C1Q =   (I> *lQ =   &i.<0 

Hence the Galois group of p(x) over Q. is G^ Each subgroup of Gx 

corresponds to a subfield of Q.(i,u), which is its field, by the Funda- 

mental Theorem. 

For example,   consider the subgroup    G?.     The fixed field of this 

group  is  the set of elements left  fixed by    I    and    at-    Clearly    I 

leaves every element  fixed.     Now,   for    0 t   ()(i,u), 

6  - C,  +  c2u +  c3u2  + c4u3  +  c5i +  c6iu  +  c?iu    +  c8iu   , 

where       c.   e   Q,     Then 
1 9 3 

ox (0)   =  Cj +  c2iu  -  c3u2  -  c4iu3  -  c5i  +  c6u +  c?iu     -  CgU   . 

If    OT(6)  = 6,   then    c2 =  c6,     c3 = c5 = 0,       c^ = -cg,  and    Cj,    c? 

are arbirtary.     Thus 
3 .2.3 

0  = c- + c2u + c4u    + c2iu + c?iu    - c^iu 

? 3 
= cx + c2u(l + i)  + c?iu    + c4u  (1 -  i) 

=   cx  ♦  c2u(l  ♦  i)   +   (c7/2)(u(l  +  i))2   -   (c4/2)(u(l +  I))3- 

Hence    £(u(l + i))     is  the  fixed field of    G?. 

/(.    dincfrarps the correspondence of the The diagram on page    46    illustrates  me K-V        Y 

subfields and the subgroups.    [2] 

The  following discussion  illustrates parts of the Fundamental 

Theorem.     (1)     Consider the subfield    *<»)    of    «!.•>.    Then  the group 

of automorphisms  of    Q(i,u)    relative to    0(u)     consists of    I    and    t, 

.     ,«     c    r      <=      F    = 0(u).     Hence 
which  is  just    G6.     The fixed field of    Gfe    is      *6 

£(i,u)   is a normal extension of    £>(") • 
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Fin =   <2U,u) 
Gio ■ {I> 

F,-   Q. 
G1   = the automorphism group 

(2) Now look at   the subgroup    G,,    of    Gy     The fixed field of    G2 

is    F    =   (&i).     The  automorphisms of     Q,(i,u)    which leave    <2(D     fixed 

are     I,    o,     o2,    o3.     But   this is just    G.,.    Hence    G2    is closed. 

(3) Now,     [4<l,u):S]  = 2,   from the first part of  this example, 

and     o(G6)   =   2.     Thus      [ «i<i,u) : &<u) ]  =  o(6fi)  =  o(G(0(i,u) ,««») •     Also 

from this example,     [0(o)lQ]   = A and the order of  the Galois group of 

!i<i,u)     relative  to    0.    is    o^) = 8.     Hence, 

0(G((l(i,u),Q))/o(G((>(i,u),a(u)))   =  o(Gl)/o(G6)  =  4  -   [4<1.»Q]. 
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