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We develop a theory for the study of the absorption and disper- 

sion of a sound wave propagating in a binary mixture of gases by using 

both the 13-moment approximation and the Navier - Stokes theory. This 

general theory is valid for a mixture of any two monatomic gases, how- 

ever,  we  limit our study to the mixture of helium and argon. 

After   lengthy mathematical  formulation we obtain a set of linear 

equations in  the general  eigenvalue  - eigenvector form.     Using numerical 

methods  to solve the eigenvalue equation, we compute   the absorption and 

dispersion. 

We compare  the absorption calculated by both the  13-moment approx- 

imation and  the Navier -  Stokes theory with experimental data  for mix- 

tures containing 5%,   10%,   25%,   50% and 75% argon.    Both theories give 

values which   compare favorably with  experiment for  low and mid-range 

values  of frequency/pressure.     The  Navier - Stokes absorption values are 

consistently  closer to experiment   for higher values of f/p. 

For the 50% argon mixture, we  find  that   the  13-moment  absorption 

curve peaks  sharply for  f/pSf 280.     The corresponding dispersion curve 

dips at  the  same value.     The Navier - Stokes  theory yields neither of 

these  features. 

For each of  the remaining cases,  the dispersion curves   for the 

13-moment approximation start at^l and decrease until   leveling off. 

The Navier - Stokes   dispersion curves also start at  1  but decrease 

steadily, with  the  final dispersion value being greater than  the corre- 

sponding absorption by  .01. 
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CHAPTER I 

INTRODUCTION 

Our research Is a study of the absorption and dispersion of a  sound 

wave propagating in a binary mixture of monatomic gases.    Kohler    in 

1949 studied  sound propagation in a gaseous mixture by using the single 

2 
temperature Navier - Stokes theory.     Goldman    applied  the two fluid the- 

ory to arrive at the absorption and dispersion of the  sound wave.     Bram- 

lette and Huang,    using the discrete ordinate method,   studied forced and 

free wave propagation in binary mixtures. 

We approach the problem by using Walker's    13-moment approximation 

equations for a mixture of gases consisting of Maxwell molecules.    We 

assume that  the deviations of flow velocities and temperatures are arbi- 

trary, while heat flux and stress deviations are small.    We also apply 

the dimensionless collision integrals, as derived by Williams,     to  these 

equations. 

As a second approach we develop  the two temperature Navier - Stokes 

theory, which differs  from Kohler's    approach in that his theory dealt 

only with deviations in the temperature of the mixture, while  our theory 

is based on the deviations in the temperatures of each gas. 

The absorption calculated by both theories is compared with experi- 

mental values  for the helium - argon mixture as determined by Prangsma, 

Jonkman and Beenakker.6    The dispersion for both theories is    also plot- 

ted. 

In Chapter II we develop  the dimensionless forms of the   13-moment 



and Navier -  Stokes equations,  and express them in the eigenvalue  - ei- 

genvector form.     We explain the numerical solutions  to these equations 

in Chapter III.     Chapter IV contains the plotted solutions and a discus- 

sion of the results.    In Chapter V we give a summary of the  research. 



CHAPTER II 

MATHEMATICAL F0RMU1ATI0NS 

A.     13-Moment Approximation 

, 4 
We begin with Walker's  13-moment approximation equations  for a 

binary gaseous mixture of Maxwell molecules.     These equations are a 

closed set of differential equations for the density,   flow velocity, 

temperature,   stress,  and heat flux of the mixture.    For a one dimen- 

sional problem such as  sound propagation in the x-direction,   these equa- 

tions can be written in the form: 

continuity, 

momentum, 

1 ' <5-fc       A * ox dx 

(1) 

(2) 

m iana &» +|B + fc^^Ba + ^ 3_L s _ ^ m#(u»-«0 ) 
3* 

(3) 

(4) 

energy, 

1^ a 1£g. ^rt £>= - 3«,>U fj^y V (T, -T.I ,   (e, 



stress, 

(7) 

46 +ift ♦ ^7,^;^c».0>^.(^(|-^]|= 

heat flux, 

St     w, ^A      a.™,    a* 

[KM -J ^5*fl»- (l+#■#*)** N.-)J ** 

where,   for gas  i   (1=1 and 2),  n.,   is the particle density; n± is the  flow 

velocity in the x-direction; O.   is the mass;  Pi is the viscous  stress; 

T.   is the temperature;  and ^ is  the heat flux.    Also in these equations 

m* = m1m2/(nL+ n^) is the reduced mass of the system;  k is Boltzmann's 

constant; /i- 1-3^(5)/^(5) - .9661; V- 2^(5)^(5)  = -2246  (see 

reference 7); A.(5) and A   (5) are dimensionless collision cross  sections 
1/2 

defined by Chapman and Cowling ^and^. ■ 2 A^XK^/m*)      n,   is the 

frequency of collision between type i and type j molecules, with K^ 

being the force constant in the Maxwell intermodular force  law,  F. .   - 



The right hand side of Eqs.   (3)   -   (10) are  the collision integrals 

for gases with type  1 and type 2 molecules as derived by Williams.    The 

left hand side of Eqs.   (l)   -   (10) are similar to Creech's,   except that 

we are not interested in the internal energy terms.    Also we have ten 

equations whereas he had six,   since we are working with a mixture of 

gases, while he studied a polyatomic gas. 

To facilitate the  solving of these equations by numerical methods, 

we find it helpful to write  them as 

(11) 

(12) 

3t ^X <1X o* 

* j{      9 x oX 

3. Jx o X 0x 

It      M,  ax       a»n,     ax    v    b 

nn,     9x 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

In these equations we have set "v - V^; and the  coefficients of the 



right hand side of Eqs.   (11)  -   (20) are given by: 

... j_(.E1tiY''-WM''1 . '    KM I   a   I    n( Ki, I      ' 

di= m no,  j 

L .(-jttsjV'-L f K'tV''   w b,'l  '  '    n U„ I   (», I )l > 

where m ■ nt./nu>  and n = n^/^. 

In order to study the problem of sound propagation in the  gaseous 

mixture, we assume plane wave  solutions to Eqs.   (11)  -   (20) of  the form: 

*i =*«*/*-,* (21) 



Uj - Uj e. 
, iM-Yx} 

_r   T     -w A-(UJ-L-YX) 

(22) 

(23) 

(24) 

(25) 

where  j - 1 and 2 for gases one and two respectively; TQ  is  the ambient 

temperature;   n      and nQ2 are the ambient  densities;   the primed quantities 

are the deviations   from equilibrium;  and 0 - w/c  -  1*   is  the complex 

wave number,   where CO is the angular frequency, <X is  the  linear absorption 

coefficient,   and c   is the speed of  the wave. 

Upon substitution of Eqs.(21)   -  (25)  into Eqs. (11)   -   (20) and  drop- 

ping prime notation, we obtain: 

itofl, - i-Yn,»u,« °   i 
(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 



We can write Eqs.(26)   -   (35)   in dimensionless  form by  introducing 

the following variables:   /t »V/CJ, which  is the ratio of self-collision 

frequency of particles of gas one to angular sound  frequency;   c    ■ 

1/2 (5kTn/3m ff)        ,  which is   the adiabatic or  low frequency sound speed 

with m        - (■   yi' A n>,  + /-^—W;   and witn meff       ^n( + na|     i      U,*«J   2' 

V' = ^8 -.£•__ j aLfia A.   - -£r - "T - -L-iu-   • 
The resulting dimensionless equations are: 

R + Xr-XHX.a^X,- 

p, 
10 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

where    Jt   £  , fc fe > fc*^ I XM^^> >   X5 "S^C.' 

* A/*-J4K!-JE,I=    P*   r»>X ■  qa 

<^1*srrtwn','» 



and for j,   1 - 1 and 2 

Eqs.   (37)   -   (46) are a  set of ten equations which can be written 

in the general eigenvalue - eigenvector form: 

AX = ABX , (47> 

where 

rx, 
x- 

X.C 

is the eigenvector,  and A and B are the matrices whose elements are the 

coefficients of the equations.    We wish to solve Eq.   (47)  for the eigen- 

value !\ .     By Eq.   (36)   the absorption ,«c0/«,  and the dispersion,  cQ/c, 

of  the sound wave can be found once we have obtained A . 

In order to solve this set of equations we use numerical methods 

similar to  those developed by Creech.9 The IBM subroutines which he 

used to calculate  the eigenvalues cannot handle our set of equations, 

since we have zeros on the diagonal of matrix A.     In order to obtain 

equations vhich can be handled by the subroutines we follow a proce- 
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dure similar  to that used by Creech.    We eliminate variables X_, X_, X,, 

X», X-,   and X... analytically by expressing them in terms of the remain- 

ing variables.    The eliminated variables are given by the following: 

xa = xx,   , <48> 
(49) 

(50) 

(51) 

(52) 

(53) 

x,-*&«.*. -l^-i-x,]- 

By substituting Eqs.(48) - (53) into Eqs.(40), (41), (45) and (46), 

we arrive at the following set of equations: 

-iK"3U ♦£"%** -- Jff-Kk*"*.)!, * (?M«S«&«.\X 
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These equations are also of the form of a general eigenvalue equation 

where 

h 

A- 

B= 

xfc } 

e eigenvalue ,  and where A and B are cotnpL sx matrices  given I 

?y< + as **.♦»* 5    A 5     M          Jf'' 

35 &«■" O O 

3 -4            :H 1 5«L *as 5V* + 25 fc* 

O 0 9 «.* 
as   * 

a*1   —* 

O 0 

-****) *V4« 
O 

This eigenvalue problem can be  solved by use of the IBM subroutines 

because the matrices A and B do not have zeros on the diagonal.    Another 

benefit of reducing the number of equations analytically is  that com- 

puter execution time is reduced. 

B.     Navier - Stokes Theory 

in our  second approach to the problem we make use of the two tern- 
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perature  Navier - Stokes equations.    This closed  set of differential 

equations is  similar to the 13-moment approximation equations except 

for the  stress and heat flux equations.     In these we assume that  the 

change in the  flow velocities and temperatures are the  largest devia- 

tions.    Thus we neglect  the changes in viscous stress and heat  flux in 

the equations.     Upon making the same basic assumptions and  substitu- 

tions as with the  13-moment equations, we obtain the following equa- 

tions corresponding to Eqs.(17)   -   (20)  of the  13-moment approximation. 

These are: 

stress, 

heat  flux, 

2     r* , ^ X 

(60) 

(61) 

,  .,.        .   ....   ,, (62) 

These equations,   combined with Eqs.(ll)  -   (16)  from the  13-moment 

theory,   constitute the basic set of equations in the Navier  - Stokes 

theory.    There are two fewer terms on the  left hand side of each of 

Eqs.(59)   -   (62)   than in the corresponding 13-moment equations.     Since, 

for the case of a single component gas,   there is no appreciable differ- 

ence in the absorption and dispersion calculated for high values of A, 

we expect   the mixture of gases to behave the same way.    We believe that 

the absorption and dispersion calculated for the two theories will dif- 

fer at  low values of A,   since they differ for the single component gas. 
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In order to study the problem of sound propagation with this theo- 

ry, we  follow the  same approach as with the  13-moment equations,   i.e., 

we assume plane wave solutions and define our variables the same as be- 

fore.    We thus  obtain the following set of equations: 

f-X4* X~„X, *\*r X, > 

Again we wish to reduce  the number of variables by eliminating 

analytically variables X2> X?, X4, Xg, X5 and X1Q, where 

Xa " A.A,     , 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

as) 

(76) 
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Substituting Eqs.(73) - (78) into Eqs.(63) - (72) we arrive at 

(77) 

(78) 

these  four equations: 

K*. • *[-Mx, * (**«■ * T4
^) *> - H* 

♦ (■MA * i
,

i/
,^)x,J, (so 

?{(*K* • *#) K+ (^+ v£-' > M ■ <81) 

IWVJf(-i'"M. ♦(MA* &•&<>)% -iM« 

These equations are also of the form I 

AX=XaBX    , 
(83) 

where again 

x-- X, 

is the eigenvector, \2  is the eigenvalue, and A and B are complex matri- 

ces given by 
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A« 

5    llTS 

{•Wrflw 

r   "n 

-§**».. 

s -ir 

o 

£«u«-4 

B- 

it      ^ .       ad ' u a. m." * Mi*"      v»»,* n 

^   " 
A*i»4»^-wXn«ti 

m, * itf m,* 

3 /<,» 
5     n 

**. 

iW 

o 

o 

'■L-T.*- 
■n 

-|*f*. 
In a manner identical to the 13-moment case, we use numerical meth 

ods   to solve Eq.(83) and find the absorption and dispersion from the A 

In the following chapter the numerical method used to calculate the 

eigenvalues is explained. 
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CHAPTER III 

NUMERICAL METHODS 

We wish to calculate  the absorption and dispersion of the sound 

wave using both the  13-tnoment approximation and the Navler - Stokes 

theory.     This  Involves solving the eigenvalue - eigenvector equation, 

-* 2 ^ 2 AX = \ BX,   for the eigenvalue \ .     In order to do this, we first mul- 

tiply Eq.(58)  by the Inverse of B to obtain the reduced eigenvalue 

equation 

■*     ■« 2-* 
AjX = \'X     , 

where A    » B    A. 

We developed a PL/1 computer program to solve this equation which, 
Q 

like  the program used by Creech,  employs IBM subroutines.    The program 

has as its input parameters  the dimensions of the expanded matrix,  N; 

the mass ratio,  M;   the  fraction of particles of gas two, X2;  and the 

viscosity of the mixture,  VIS.    After the data is read in,  the program 

computes the elements of  the 4 x 4 matrices A and B in terms of the 

variable f/p.where f = <*72TC,  is  the frequency; and p Is the pressure. 

Matrix B is then passed to subroutine MATINV to form B-   , which is mul- 

tiplied by matrix A to form matrix Al.    Matrix Al then Is expanded into 

the 8 x 8 matrix which is passed to subroutine MATE. lQThls subroutine 

reduces a real,  expanded matrix to Hessenberg form, after which subrou- 

tine MEAT^calculates the eigenvalues of the Hessenberg matrix. 

We make use of the new    independent variable,  f/p,  since the exper- 

J 
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imental values  for  the absorption are given in terms of this variable. 

We thus need a relationship between the rarefaction parameter,/!,  and 

f/p. 

It can be shown that the self - collision frequencyV is given by 

V- c.p/u,  where p  is  the total pressure,Mis the viscosity of the mix- 

ture and 

1" fc+l)f«.i,aa>-a,>aa.)~ 

Thus   the rarefaction parameter, /<-■ "^A»»,   can be written in terms of f/p 

as: 

/Vr--£l. Ires*,    $/p 
Eight  eigenvalues are calculated from the expanded matrix of which 

only four are the eigenvalues of our original matrix Al.    To  find these 

four  eigenvalues we form the matrix A2 which has as its diagonal elements 

the diagonal elements of matrix Al minus the calculated eigenvalues. 

When the eigenvalues of the expanded matrix are equal to the eigenvalues 

of the matrix Al,   then matrix A2 is singular.    To test for singularity 

matrix A2 is passed into subroutine MATINV which is designed for doing 

this.     This step is repeated for all eight eigenvalues.    When the  singu- 

larities occur,   the program calculates the reciprocal square root of the 

eigenvalues.     By Eq. (36)  the absorption,otcQM is  the negative imagi- 

nary part of the reciprocal square root; and the dispersion,   cQ/c,   is 

the  real part. 

Of the  four values of dispersion and absorption calculated for 

each value of f/p,   only one is physically meaningful.    The others,  as 

in Creech's9 case,   represent waves that are either absorbed before  they 



18 

can be measured,   or they are amplified by the gas. 

Both the  13-moment approximation equations and the Navier - Stokes 

equations are solved by using this program.    The only changes in the 

program for these two cases are the different elements of matrices A 

and B for each theory. 

The program is designed to calculate the absorption and dispersion 

of a sound wave   traveling    in a mixture of any two monatomic gases, 

such as helium,   neon,   argon,  and xenon.    We restricted our research to 

the mixture of  helium and  argon since  the most recent experimental data 

obtained has been for this mixture.     We are thus more readily able to 

check the agreement of our theory with experiment.    The results are 

given in the following chapter. 
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CHAPTER IV 

RESULTS 

The absorption, otc./w,  and dispersion,   c./c,   of a sound wave prop- 

agating in a mixture of helium and argon have been calculated for argon 

concentrations of 5%,   10%,   25%,   50%,  and 75%.    The viscosities of the 

mixtures  for these concentrations were obtained from Thornton and Baker. 

The results  of the calculations  for both the 13-moment approximation 

and the Navier - Stokes theory for the different concentrations are pre- 

sented  in Figs.   1-5.    In each case the absorption and dispersion are 

plotted as  functions of f/p.    The f/p values vary from 10 to   10000 in 

units of MHz/atm, while the absorption and dispersion are dimensionless 

fractions.    Also experimental absorption values found by Prangsma,  Jonk- 

man    and Beenakker are plotted on each graph. 

Our first case, Fig.   1,  is  for a mixture containing 5% argon.    The 

dispersion curves  start at approximately  1  for both the  13-moment and 

Navier - Stokes  theories,  but soon begin to separate.    The  13-moment 

dispersion decreases gradually until  leveling off at approximately   .5. 

The Navier -  Stokes curve decreases steadily to a value of  .155.    For 

the absorption, both curves begin at   .024 and increase  together up to an 

f/p value of 70.    The two curves  separate with the  13-moment absorption 

curve attaining a maximum value of  .2 for an f/p value of 400.     It  then 

decreases to a value of  .017.    The Navier - Stokes curve extends to 

higher values, peaking at   .31 for f/p equal to 1000.     The Navier - Stokes 

absorption curve ends at a value of   .145,   showing a difference between 

12 
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Dispersion and absorption versus frequency / pressure for helium - argon mixture 
% argon = 5,  Viscosity = .0002 atm/Mhz 
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it and the corresponding dispersion curve of only .01. This small dif- 

ference of values for both the absorption and dispersion at high values 

of  f/p is  characteristic of the Navier - Stokes  theory. 

Comparison between absorption values calculated by the two theories 

and   those  found experimentally shows  that  the theories start at a slight- 

ly higher value,  but coincide with experiment at f/p equalling 90.     The 

Navier -  Stokes   theory remains closer  to the experimental values  for 

higher values of f/p   than does the  13-moment approximation. 

In Fig.  2  the results  of the calculations for a   10% argon mixture 

are presented.     The dispersion curves again start at a value of  1 for 

the ratio  of c./c.    The  13-moment approximation dispersion curve slowly 

decreases  until it levels off at a value of  .44.    The Navier - Stokes 

theory curve also decreases and reaches a  final value of  .145. 

The absorption curves  for the two theories coincide for  low values 

of  f/p,   starting at   .029 and increasing together until f/p ~ 50.    The 

13-moment   theory increases to a maximum of   .21 for f/p approximately  180, 

and   then falls off with its  final value being .018 at  f/p = 10000.    The 

Navier -  Stokes absorption curve has higher values,  and peaks at a value 

of   .275 for f/p = 1200.     It then decreases  to a final value of  .135. 

The absorption and dispersion values  for the Navier - Stokes  theory 

again reach final values separated by only  .01. 

Again the absorption curves begin slightly above experimental 

values,  but agree more closely at f/p values near  130.     The Navier - 

Stokes theory agrees well with    experiment for even higher values of  f/p. 

The  results for a 257. argon mixture are presented in Fig.   3.     Both 

dispersion curves begin at   1 and each decreases,   the   13-moment curve 



0.01 

100 1000 10000 
Dispersion and absorption versus frequency / pressure for helium - argon mixture 

X argon =10,   Viscosity = .000207   atm/Mhz 
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leveling off at  .33 and the Navier - Stokes continually decreasing to a 

value of  .129.    The  13-moment and Navier - Stokes absorption curves both 

start at a value of   .03, with the former peaking at  .31 for f/pfc 250. 

The Navier - Stokes curve also peaks at» .31 but at f/p^ 225.     The  13- 

moment  curve decreases continually to a value of  .02,  but  the Navier - 

Stokes absorption levels off slightly and ends at   .119. 

Both absorption curves agree with experiment up to f/p ~ 250.    The 

Navier  - Stokes curve agrees with experiment until f/p~ 2000, while the 

13-moment curve falls off. 

The absorption and dispersion curves  for 50% argon are plotted on 

Fig.  4.     Both dispersion curves start at  1 and decrease together slightly 

to a value of f/p - 200.    The Navier - Stokes curve continues  to decrease 

to a final value of  .166.    The   13-moment curve dips to a value of  .76 for 

f/p = 275 and then  levels off at   .8. 

The absorption curves begin together at  .023, which agrees extreme- 

ly well with experiment.    The Navier - Stokes curve increases  to a maxi- 

mum of   .42 for f/p - 300 and then decreases to a final value of  .156. 

The 13-moment absorption increases at a constant rate until the f/p value 

equals 200.    Then it rapidly peaks at a value of .45 with f/Par290.    It 

finally drops off linearly to a value of  .018 for f/p - 10000. 

Fig.  5 is the graph representing absorption and dispersion curves 

for 75% argon.    As in each previous case the dispersion curves for both 

theories start at  1, with the final value of the 13-moment curve being 

.68.    The Navier - Stokes curve decreases to a value of .173. 

Both absorption curves start at a value of  .016 and  increase togeth- 
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Figure 3.    Dispersion and absorption versus  frequency / pressure for helium - argon mixture 

% argon =     25,  Viscosity =   .000222   atm/Mhz 
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er in close agreement with experiment  for low values of f/p.    After the 

two separate,   the  13-moment absorption curve reaches a maximum of  .28 

for f/p ^300, while  the Navier - Stokes curve peaks at   .43 near  f/p equal 

to 600.     Both curves decrease after peaking with the final value of the 

13-moment absorption being  .016, while  the Navier - Stokes curve ends at 

.163.     Note also that the Navier - Stokes absorption and dispersion 

curves differ only by .01 for f/p ■ 10000. 

In all cases the absorption curves for both the  13-moment    and Na- 

vier - Stokes theories are in close agreement with experiment  for low 

and mid-range values of f/p.    The Navier - Stokes absorption remains 

closer  to experiment for higher values of f/p.    The 50% argon mixture 

shows anomolous absorption and dispersion curves for the 13-moment ap- 

proximation, while  the Navier - Stokes  theory gives no such results. 
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Figure 5.  Dispersion and absorption versus frequency / pressure for helium - argon mixture 

% argon = 75, Viscosity = .000223 atm/Mhz 
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CHAPTER V 

SUMMARY 

We developed a theory for the study of the absorption and disper- 

sion of a sound wave propagating in a binary mixture of gases by using 

both the 13-moment approximation and the Navier - Stokes theory. This 

general theory is valid for a mixture of any two monatomic gases, how- 

ever, we  limited our study to  the mixture of helium and argon. 

After  lengthy mathematical   formulation we obtained a set of  linear 

equations  in the general eigenvalue  - eigenvector form.     Using numerical 

methods  to solve the eigenvalue  equation, we computed  the absorption and 

dispersion. 

We compared the absorption calculated by both the  13-moment approx- 

imation and the Navier - Stokes   theory with experimental data for mix- 

tures containing 5%,   10%,   25%,   50% and 75% argon.     Both theories  gave 

values which compared favorably with experiment for  low and mid-range 

values  of frequency/pressure.     The Navier - Stokes absorption values were 

consistently closer to experiment for higher values of  f/p. 

For the  50% argon mixture,  we found that the   13-moment absorption 

curve peaked sharply for  f/p X= 280.    The corresponding dispersion curve 

dipped at  the same value.     The  Navier - Stokes theory yielded neither of 

these features. 

For each of  the remaining cases,   the dispersion curves for the  13- 

moment approximation started at=:l and decreased until  leveling off. 

The Navier - Stokes dispersion curves also started at   1 but decreased 
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steadily, with the  final dispersion value being greater than the corre- 

sponding absorption by   .01. 
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APPENDIX I 

Program Listing 

//THESIS   JOB    ECS.UNCG.PYS00187,CRA\/EIM,T = ( l,30),P=50 
//   EXEC   PLC-»KtGIU«=23UK.                -     _ 
//SYSIM   DD   * 
*RLC <MflATR»IM(IXRFF.THrlF=(l liidl tPAl.iF.Sr'in)  

EIGEi^PROC   OPTIONS(rtAlN) S 
DCL(NtlNtlER)   BIN  FIXED;      __      ._ _        _    .. 
GKT  LIST(N); 

ItjmttJZl -.   -.-                 - 
BEGIN; 
()r.lU1.A?WW/>.M/?l    RTftl   Fl.flAT   T.PLXI 
DCLIA01,A02,A11,A12,A21 ,A22»B1fB2,Bll,B12fB21,b22)      BINARY? 
uCL ( ALP.HAJ. tALPHA2«BETAltBETA21   C£L_X_ JU.U   TLIAT; . 
DCL(MUlltMUl2tMU21»MU22)   CPLX   ti It-'   FLOAT; 
UCL( KriUlJjKHgi2t.BHu21,RHiJ22 fTHtTAl,THEJJJ2J    CPU   BJj\|   FLQ.ATj 
DCL(DELTAltDELTA2»SIGMAl,SIGiiA2)   CPLX   BIN   FLOAT; 
nr.i,lPHlt.PHl2> .CPLX jaJnL-fjLUAU...      
UCL(SUMtX)    CPLX   BIIMAKY; 
UC LI RfOf iu , iil S »i i2S »nl»kl21.113.. ii4*K12 tK22«fl.c TA ,.G Aia 1    BJiil  EL u/\ I; 
DCLI ( AA,tt,AlNV)(iV2,l\'/2) |EIG)CPLX   BINARY; 
UCL   Cl   Bill _FLQAT; 
UCL ( A<N,N) ,RR(N) ,KI (N) ,H(N»N ) )   Bli*ARYt 
(.IP( N>.T.-ltlij.Pi.ii.LLHARJ' IF.1&LU.... .     . 
ANA(N)    BIT(l); 
DCL(FOJZ,yiS.)    BIW   FLOAT; 
PI=3.14159; 
i.>tTA=.224<>;    GAii=,V6.6l;   .   
K12=l;   K22=l; 
oET.   LISTiMJJ. •      -■     
LLl;GET   LIST(X2,VIS); 
PUT   PAjgE   lMTA(1itX2,VISlL  
i)=l/X2-i; 
r,is=( I*'U+II/IH*(II+I )); M2S»(i"i*t)+n/(D+i);  ■ 'L=JJ.■■'+1>/^)s:v-• 3; 
n2= ( M+1)**2 ;   M3=(M+l)**3;   M4*M/<M+1) ; 
A()l=( r-jl*Kl2**.:>.?/( 11-. + 1.2 *yj.;   "l^'l^^'i.. ...  ... 
Bl- ( Ml*K12** .5*M ) / (D*I»I2 ) JB2*U*B 1: 
All = -( ( l-DETA)+(2^(n + l-BETA)=:=Nl?K12r-.?)/( M2*J2J I 5 
A12=( 2*M*BETA*Ml*K12**.5)/M2 ; 
A21= ( 2*BETA*Ml*K12**,.5*M}/(M2*p) ; 

|2*M1*K12**.5)/(H3*U))*(GAh-l l+GAM)*(M+l ) + 

A22 = -( ( ( l-BETA)*M**.5*K22**.5>)/U+(2*rtl*K12**.5*M 
«J 1 + M*j 1-BETA)) |/M2); 
Bll=-((2-GAM)/2+( 
L3*M2)/2LU, 
Bl2" ( 2*M*Ml *K 12** • i>*GAM >/M3! 
t)21 = ( 2*Ml??K12**t.5*H4**3*GAM)/ ( B*DJ 
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B2 2=-( ( ( 2-GAM)*M**.5*K22**.5)/(2#U)+(2*M1*K12**.I>*M4**3 
SlSABzl 1 tfiAM ) miAta/ 1 2*.-l4**2 LLU -— - 

"  C1=(U*(A21-A22 1+A12-A11)/((0 + 1)*(A11*A22-A12*A21) 
00   FOP=10   TO   90   BY   10.   100  TU   180   BY   20.    200   Tu 
400   TIJ   900   BY   100,    1000   TO   1800   HY   200,   2000    10 
4000   TO   .10000. BY   .1000j ._        
K=Cl/(2#PI*VIS*FGP); 
A^PHA L= U *AQI*R>  AL.PHA<!glI*A02*R8   

" BFTA1"1I*B1*R|   BETA2«1I*B2*R; 
,,i,ll = ii*A 11 *R J   ii022 = 11»A2,2*R;   tot! 1.2= LL*A 12*K ? 
RHO11= 11*B1 1 *R!   RHU22-11*B22*k; 
RHU12"1I*B12*R{   RHO21*11*B21*R j_  .   . ___ . 
THETAl-l+MUlfl   THETA2 = 1+MU22; 
0ELTA1=1+RH011;   D|LTA2gl+RH022; .. . 
S IG'TTAI = l-2*BETAl";   SIGi-iA2 = l-2#BETA2 I 
PHIl=l-ALPHAl;    PHI2=1-ALPHA2;   

AA(I,l)=3/5*(THETAl+4/5); 
AA( l,2) = 3/5*(THtTAl + 4/i>*SIGf;:Al) J _..... 
AA(1,3) = (3*MU12")'/(5*D) ; 
AA(L,4)=3/5*(MU12/D+8/5*BETAl); 
AA(2, D = (-9*MlS»/25; 
AA-(2»^) = (2"Z*i-llS)/50; 
AA( 2,3),AA(2,A)=0; 
AA(3, l)=(3*U*H021)/b; 
AA(3f2)=3/5*(D*«U21+8/5*BETA2); 
AA(3»3)=3/3*(-THcJA2*4/S)..:        -        
AA(3»4)=3/5*(THETA2+4/5*SIGMA2); 
AA(4,1).,AA(4,2)=0; 
AA(4,3)=(-9*h2S)/2b; 
AA(4».4.) = (27*i-.2S)/bO; ,,,,,.    ,u. 
B(ltl)a(THETAl*PHIl)/MlS+(ALPHA2*«U12)/{0*M2S), 

Muti'uLP^.^THhTAll/HlSH-lnUll^'H^.;^^^); 

^2;2::T9i?iG^t^TM)/io+(V*B,,tt2,KHU12,/,,^,; 

ti(2,3)=-3/b-(ALPHAl+KH0l2/D); -      ■ ; -     -- , 
B(2.4) = (9*DELTAl*BETAl)/5+(9»'RHUl2*SIGMA2)/(10*UJ , 
Q l d>, 1} = (jy.^ll/\2*Tj3J:.TA2i^i'iZS+l Pmi»ll*Hll?l ) /Hi Si.      - 
B(3,2) ,B(3,4)=05 B(3,3) = (PhI2=:=THiTA2)/n2S+(ALHHAlrUM11U21)/r1i^. 
B(4tl)"-3/5*(ALPHA2+D*RH021); i i/in 
B(4,2) = (9v.B(-TA2*UELTA2)/a + (9=.= 1)^KI-IU^l=^IG.i1Ml)/lu, 

B(4t3)»-3/5*(DELTA2+PHI2)! . 
B( 4, 4j«iaS5ienAJl*UtLlA2JOflJtLS*U*RHII21*BE fftn/?.  ■ 

CALL   MATINVtIN»B»AlNVtIER)l 
00   1 = 1   TO  JM/2; 
Uu   J=l   TO   hi/2; 
s oi-.= o.;   - - 
DO   K=l   Tu   IM/2S 
"ilirinrillni fllNVI IiKlfflftlEf-1' '■ -      —  
fciMU; 

) ; 
00   nY 
000   BY 

Oil, 

3 00, 

U21-_1L*A21*< ; 
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AK I,J) = SUM; 
ENO;      t^NUj.   . .  _ ._     
5u  1=1  Tu N;   DU J=I  TO N; 

IF   K = i«J/2&vK = !>W2 .THEN   A( I ,J)=RfcAL(AU I »J) 
IF   IX\l/2£J>N/2   THEM   A( I * J )«REAL( AK l-ii/2, 
If-    K = N/2&J>N/2   THtiM   A(.I , J)=-II-.AG.(_A1.(.I , J- 

!/2£,J< = I\I/2   THEN   At I t J) »If-lAG( AlC l-ri/2 
HUH     - -      - .     _ 
iATE( A , IM , IP) ; 

ibAT( A,l-J,Rk,RI ,AIIA) ; 
,IP(2)    EuIT(FUP)IF(5)); 
TO N; 

); 

, J)); 

)); 

IF   I>i\!/ 
ti.\iu;   bi 
CALL   M 
H=A; 
CALL   nt 
PUT SK: 

00   P=l 
A2=A15 ... 
E IG=COiil 
UU   1 = 1 
A2( I, I): 
E.VJU ; 
CALL   MA I 
IF    ItR=( 
X=1/SQR1 
PUT   SKIP   EuIT(REALlX) ,-IMAG(X ) ) ( CUL I p_!.,..2 10,^) 
END; 
tixiu; 
E;NIU; 

GQ   TU 
END; 
thJL)   fclGE 

*L)ATA 
ti 
.1001^3 
.0b,.0O0 2,.l,.OOO20 7,.2>,.0n0 2 22,_.7 51.UUU22J,.b,.uO0 22 6 

/* 
// 

iPLEX(RR(P)»RI(P)) ; 
IQ...M/2;       . .  - -. 
=AK I f I )-EIG; 

n"HMV( Ii»tA2fAINVf IER) ; 
:0   TnEi"   DUi.  . 
;T( EIG); 
IP   EuIT.(REAL(X) ,-IrtAGU ) ) ( CUL ( ?_)',.2 ( F 

• E H; 
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The matrix elements for the Navier - Stokes theory are given by: 

AA<1,l)«(3*hUU/5+4/5); 
AA( lt2)»3*MUH/3{ 
AA( 1,3)=( 3*NU12)/( t>*U); 
AA(1»4)=(3*MU12)/<3*u); 
AA(2,1)»AA(2»3),AA(2»4)»0| 
AA(2t2)=9-.!i-llS/lU;. ....    _ 
AA( 3, 1) ,AA< 3,2 ) = ( 3*U=MU21 )/p; 
AA( 3»3}=i3*iiU22/i!+'t/^.);      . ...  
AA(3t4)«3*MU22/SS 
AAI4., UuAAUu2JaJU±&*3_LaiU_.      ..._  
AA(4|4)a9*M2S/10; 
«( ltl) =(j'iiJl.l.rPHJ l/i-iLS+l'lU12*ALPri.A2/( a£5*0JJ 5       ... 
b(lt2)»B(lf4)=0; 
B( l.i)=LtlUllr.ALHIlAl/i:lS+JiU12:?Phi2/.l.nZiiiUl).l.     .    . 
Bl2,l)a-3*RH011/SS 
b( 2,2)=JJ i-SJ.tu WlrrJ<lxUll.l2JU+.l^3!j3JilAZ£l4ilLa^) /i^YJH i 
til 2*3)=-3*RHU12/< 5*0) ; 
B(2>4)a(( 9*RHtJll*BETAl)/5+<9*Ri-lLH2'K$IGl'IA2)/C 10*U) ) ; 
B( 3,1)=( hU22*ALPHA2/M2S+(D*i"lU21*PriI 1) /HIS) ; 
i)( 3»2> ,B( 3f4J=y;    .     . ___      .  
B(3, 3)=(hU22*PHI2/M2S+(D*MU21*ALPHA1)/MIS) ; 
B.( 4j 1).= -J 3J*J2*B±U*2J. J/iJ          -  
b(4,2)=( (y*i<HU22*Bi:rA2)/:> + (tJ*!!*KHl)2 1*SI(;,lMi) /lu) ; 
B{.4,3)=-3rRHU22/i3;     - .   - —-      ...     _ 
B(4. 4)=< (9*RHD22*SIGMA2)/10+<9*BETA1*D*RHU21 )/')); 




