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INTRODUCTION 

The idea of topological equivalence, or homeomorphic, is one 

of the basic considerations in any study of topology. Mrs. Yandell [3], 

in her master's thesis, compared pairs of spaces in the plane to 

determine whether or not they were homeomorphic. Decisions as to 

whether or not a pair of spaces were homeomorphic were based on 

several topological properties, including compactness and connectedness. 

In this thesis three additional topological properties are defined and 

used for the purpose of increasing the number of decisions that could 

be made with only the topological properties discussed in [33- 

In Chapter I, locally compact is defined and general theorems 

are proved concerning this property. In addition localy compactness 

is shown to be a topological property. 

In Chapter II, locally connected is defined, general theorems are 

proved, and local connectedness is shown to be a topological property. 

In Chapter III, connected im kleinen is defined, related to 

local connectedness, and shown to be a topological property. 

In Chapter IV, examples are given to show that indeed the 

studies in [3] have been extended. 

If (X, T) is a topological space, then (X, T) is said to 

be regular provided if C is a closed subset of X and p e X - C, 

then there exist disjoint open sets U and V such that p e U 

and C c V. 

vi 



If M is a subset of the real numbers and b is a real number, 

then b is said to be an upper bound of M provided if m £ M, 

then m $ b. If h is a real number, then h is said to be the 

least upper bound of M provided h is an upper bound of M and 

if b is an upper bound of M, then h < b. 

If D is a subset of the plane, then D is said to be a disc 

provided there is a point p in the plane and a positive number r 

such that D is the set of all points x in the plane such that 

the distance from p to x is less than r. 

Vll 



CHAPTER I 

LOCALLY COMPACT SPACES 

r 

Definition 1; Let (X, T) be a topological space. Then § 

is said to be an open cover of X provided § is a collection 

of open subsets of X, and if x e X, then there exists a U <=  § 

such that x e U. 

Definition 2: If § and Z are both open covers of X, then 

Z is said to be a subcover of § provided 2 c |. 

Definition 3: The space (X, T) is said to be compact 

provided if § is an open cover of X, then there exists a finite 

subcover of §. 

Definition h'    Let  (X, T) be a topological space, and A c X. 

Then the relative topology T  for A is the collection to which 

U belongs only in case there exists V e T such that D = V fl A. 

Theorem 1: If (X, T) is a compact topological space and 

A is a closed subset of X, then (A, T.) is compact. 

Proof: Let  § be an open cover of A. For each U e §, let 

V.. be an element of T such that U ■ VI. fl A. Now A is closed. 

Then X - A is open. Let Z = (Vy | U e §j U {x - k}.    Then Z 

is an open cover of X and since X is compact, there exists a 

finite subcover I of Z . Let 0 = {M n A |M c YJ. Then 0 is 

a finite subcover of § and hence (A, TA) is ccmpact. 



Qfiflnifrion  Sj    A topological  space    (X,  T)    is said to be a 

Hausdorff Space provided if    p    and    q    are points of    X,  then there 

are open sets    U    and    V    such that    p   £ U,    q   e V    and    U   n V =   <t>. 

Theorem  ?'•    Every compact subspace of a Hausdorff space    (X,  T) 

is closed. 

PrQQif'    Let    (A,  T.)    be a compact subspace of the Hausdorff 

space    (X,  T)    and let    p  £  (X - A).    For each    x  £ A,  there exist 

sets    U      and    V      in    T    such that    x  £ U  ,    p   e V  ,  and 
xx x'    e        X 

Ux  nVx  =   *'    Let    8 »{U     | x e Aj.    Let    2 = {A n U   I U  £  Si- 

Then 2 is a cover of A by elements in T . Since (A, T.) is 
A A 

compact,   there is a finite subcover,    AflU    ,    AflU    ,   .... A ft U 
*1      x2 

of 2. Let V • . n- V .  Clearly p £ V, and V does not 
X X      X ■ 

1 

intersect    A.     To show    V H A = «,   suppose    x  6 V 0 A.    Then    x  £ A, 

n 

and    A D U 
Xl' 

A 0 U AflU covers    A.    So there is a 
n 

positive integer i sucn that x e A Q U . Therefore x £ U 
i i 

and    x £  V    ,  which implies  that    x £  V.    But this is impossible. 
1 

Hence    V ft A =    <*>.    Since no point in    X - A    is a limit point of 

A,     A    is closed. 

Definition 6;    A topological space    (X,  T)    is said to be 

locally compact provided if    p £ X,  then there is an open set    U 

such that    p  e U    and    U is compact. 

Lemma 1:    If    (X,  T)    is a topological  space and    A c X, 

C    is a closed subset of    X,  and    C c A,  then    C    is closed in    (A,   T.). 

Proof;    Let    (X,  T)    be a topological space,     A c X    and    C 

be a closed subset of    X    so that    C  c A.    Then    X  - C  £ T. 



Therefore,  (X - C) 0 A e T.. Thus A - L(X - A) f| A] is closed in 

(A, TA).  Since C = A - I (X - C) 0 A], C is closed in (A, TA). 

Lemma 2; If (X, T) is a topological space, and A and B 

are subsets of X such that A c B, then (T,,). - T,. 
* B A   A 

Proof; Let (X, T) be a topological space. Let A and B 

be subsets of X such that A c B. Let W e (Tn).. Then there is 

a V e TB such that W = V 0 A. There is a II e T such that 

V ■ B n U. Then W = V O A = (B 0 U) n A ■ (A 0 B) 0 U ■ A O U, 

and hence W e T..  Now let W £ T.. Then there is a U e T such 

that W = A n U.  But A C\ U = (A O B) 0 a = A f)  (B O U), and 

thus W e (TB)A.  Thus (TB)A = TA. 

Lemma 3'-    Let (X, T) be a topological space. Let A and B 

be subsets of X such that A c B.  If A e T  and B f  T, then 

A e T. 

Proof; Since A e TD, there is a U c T such that A = U O B. 

Since U, B £ T and T is a topology, A is in T. 

Definition 7: If (X, T) is a topological space and A and B 

are subsets of X such that A c B, then to say that A is 

closed [open] in B means that A is a closed [open] subset of 

(B, TB). 

Lemma q; Let (X, T) be a topological space. Let A and B 

be subsets of X such that A is closed [open] in B and B is 

closed [open] in X. Then A is closed [open] in X. 

Proof; By Lemma 3, if A is open in B and B is open in X, 

then A is open in X. Since the complement of an open set is closed, 

the remainder of Lemma k  follows immediately. 



Definition 8; Let (X, T) be a topological space, and let 

_T 
A c X. Then A  is the closure of A in the topological space 

(X, T). 

Theorem 3; Let (X, T) be a locally compact space, and let 

A be a closed subset of X. Then (A, T.) is locally compact. 

Proof: Let x e A.  Since (X, T) is locally compact, there 

_T 
exists a U e T such that x e U and (U , T_T) is compact. 

U 

Let V--UflA. Then V e T  which contains x. Thus it remains 

T. 
to show that  (V , TA_TA) is compact. Let C = UT 0 A. Since 

V    _T 
C is closed in X and C c U , by Lemma 1, C is a closed subset 

_T 
of (U , T ).  Thus by Theorem 1,  (C, (T „)p) is compact, 

r U1 C 

By Lemma 1, C is a closed subset of (A, T.). Since V c C, 

ss A ,.TA 
V  c C.  Thus by Theorem 1,  (V A, ((T T)r) T.) is compact. 

r c v A        T 
By Lemma 2,     ((T-)_)  T    =  (T.)  T    = T T..     Hence    (V A, T_T  )    is 

compact and hence    (A,  T )    is locally compact. 

Remark 1:    The author,  having worried about in which spaces 

the closures are being taken and having worried about the 

transitivity of subspace topologies and having discovered (see 

Theorem 3)  that these ideas do indeed work as one would expect, 

will no longer be concerned with such esoteric problems. 



Theorem W-    Let    (A,  TA)    and    (B, T  )    be locally compact 

subspaces of a locally compact space    (X,  T).    Then    APB    is 

also locally compact. 

Proof;    Let    x e A  r B.    Then there are elements      U e T.     and 

V  e Tg    such  that    x e U    and    x e  V,  and    U1^    and    V
TH

    are 

compact in    A    and in    B    respectively.    Now    U 0 V e T . 

And clearly since the intersection of compact sets is compact, 

T 
(U H V A ° B,   (TA      B)_TA      B)    is compact.    Thus    A 0 B 

is locally compact. 

Remark 2;    Since the notation for closures with respect to 

a particular subapace topology is very unwieldy,  such notation will 

be omitted in the future when it is clear in what spaces closures 

are being taken. 

Theorem £;    Let    (X,  T)    be regular and let    U e  T    and    x £ U. 

Then there is an open set    V    containing    x    such that    x e V c V c U. 

Proof:     Since    U    is open,    X  - II    is closed and does not 

contain    x.     Hence there exist open sets    W    and    V    such that 

(X  - U)  c W,     x e  V    and    W f\ V =  <*>.    Since    (X  - U) c W,  it 

follows  that     (X - W)  c U.    Since    W f) V = *,    V c  (X - W). 

Thus    x  e V c V c  (X - W) c U. 

Example ll    Let   X    be the plane and    T    the usual  topology 

for    X.     Let    A = f(x,y)   |    x > q}    and    B=    {(0,  C)J.    Then 

(A,  T  )     and    (B,  T  )    are locally compact spaces but    (A U B,  TA u g) 

is not locally compact. 



Proof:    Let    p  e A    and let    II    be an open set containing    p. 

Since    A    is an open subset of   X,   there exists a disc    D    such 

that    p e  D c U.     Since    (X,  T)    is regular,  there exists a disc 

E    such that    p e E c D c U.    But    E    is  closed and bounded and 

hence compact.     Hence    (A,  T.)    is locally compact.    Obviously 

(B,  T)    is locally compact.    Let    U    be an open set containing    (0,  0). 

Then there is a disc    D    such that    (0,  0)e D    and    D r A c U. 

It is clear that    D    cannot be compact because points on the y-axis 

close  to     (0,  0)    must be limit points of    D   which are not in    D. 

Thus    U    cannot be compact. 

Theorem 6:    Every compact Hausdorff space is regular. 

Proof:    Let    (X,  T)    be a compact Hausdorff space.    Let    C 

be a closed subset of   X,  and let    p  e   (X  - C).    Then for each 

x  e C,  there are open sets    U    e T    and    Vx e T    such that p e U^, 

x  e V  ,  and    U    f) V    = <*.    The collection {v    H C   [ x e  6}     is 
x' XX x 

a collection of elements of    T„    covering    C.    It follows from 

Theorem 1  that     (C,  T  N    is compact.    Hence there exists a finite 
0,' 

subcover    C 0 V    ,     C f\ V    ,   . 
*1 X2 

,    cnv        such that 

■{y      n C   |  0 ? i S n]    is a covering of    C.    Let    V- ,§,  Vx 
and 

U= ^ Ux . Then p e U,  C c V, U c T, V e T, and U O V - ■*. 

Theorem 7: Let (X, T) be locally compact and regular, and let 

A be an open subset of X. Then (A, Tfl) is locally compact. 



Proof;    Let    x e  A.    There is a    UeT    so that   x  e U    and 

U    is compact.     Since    x e U 0 A,  and    IIAA cT,  and    (X, T) 

is regular,  there is a    Ve T    so that    xeVcVcUOA.    Since 

U    is compact,    V    is compact and hence    (A,  T.)    is locally 

compact. 

Definition 9;    Let    (X,  T)    be a topological  space and let 

0   be a collection of subsets of   X.    Then    0   is a base  (or 

a neighborhood system)  for    T    if and only if    T    consists of the 

empty set and those sets that are unions of sets in    0. 

Definition 10:    Let    (X,  T)    be a topological  space.    Let    0 

be a collection of subsets of    X,  and let    ¥    be the collection of 

all sets that are intersections of finitely many sets in    0.    Then 

f    is a subbase for    T    if and only if    0   is a base for    T. 

Definition 11:    Let    R    denote the set of real numbers.    For 

each    p e  R    and    e  > 0, let    N (p)   =  (q   |  q 6  R    and    |p - q| < ej. 

Let    §  = {N  (p)   I  p €  R,     e >o}    and let    ¥    be that topology 

for R such that is a base for ¥. Then is called the 

Euclidean topology (or the usual topology)  for R. 

Definition 12:    If    fx     I o £ l]      is a collection of nonempty sets, 
  a I 

then the Cartesian product x/x     | a 6 j£)    of   fa    |  o e r}    is the set 

of all functions    x  : T - u{x     I a £ TJ    such that    x(a)  e X      for 
a I a 

each a e !• 

Definition 13: Let {x  | a e rj be a collection of nonempty 

sets. For each p e r, the  |_  projection for x(x  I o c Xj 



is the function   ft.    from   x{x     I o e Ij     onto    X.    defined by 
P s   I P 

TTpCx)  = x(p)    for each    x e x(x   | s 6 l}. 

Definition lli:    Let     fix ,  T  )   | a e l}    be a collection of 

topological  spaces.    Let    X  = XIX     I a E Tj.    For each   o £ «E 
o 

let   Tt       be the    a        projection for    X.    Let    0   be the collection 
a 

for those sets    S    such that    S = 1\ "  (U  ), where    a e T    and 
a        a 

U e X . Let T be the topology for X such that © is a 
a   a 
subbase for T. Then (X, T) is called the product space of 

{(X , T ) I a e f} and is denoted by X f(X , T ) | a  € IJ.  Also 
a  a a     a 

for each a. e  T,  the a   coordinate space of (X, T) is (X , T ). 

Theorem 8: Every finite product of locally compact spaces is 

locally compact. 

Proof: Let (X^ T^,  (Xg, T,,), . . ., (Xn, TR) be locally 

compact spaces. Let  (X, T) denote the product space, and let 

x e X.  Then x = (x^ x.^   .   .   ., x.^),  where x± t X±    for 1 s i « n. 

For each i there exists a U. e T± so that x± e  U±, and D^ is 

compact in X.. Let 0 ■ x{jj. | 1 « i * n|. Then x e U, and also 

U ■ xfr. | 1 « i € n\ is compact. Therefore (X, T) is locally 

compact. 

Definition lg; Let (X, S) and (Y, T) be topological spaces. 

The function f:  (X, S) - (Y, T) is continuous provided if 
-1 

U e T, then f (U) e S. 

Definition 16: Let (X, S) and (Y, T) be topological 

spaces.  The function f I (X, S) - (Y, T) is a homeomorphism 



provided f is a one-to-one, onto, and continuous function, and 

f"  is also a continuous function. 

Theorem 9: Let (X, S) and (Y, T) be topological spaces 

such that X is compact. Then if f:  (X, S) -* (Y, T) is onto and 

continuous,  (Y, T) is also compact. 

Proof; Let f: (X, S)- (Y, T) be continuous. Let § be 

an open cover of Y. Then since f(X) = Y c U IU | U e §}, it 

follows that X c f_1(f(X)) c f_1(U [u | U e §"}) ■ U f_1([u | U e§l). 

Thus I = {f (U) | U c §J is an open cover of X and hence has 

a finite subcover IL, U , . . . ,Un- So 

XL, »-l, 
Y = f(x) c fff"1^) u f"x(u2) i) . . . u f-x(un)] c ux u u2 U . . .u un. 

Thus Y is compact. 

Theorem 10: Let (X, S) and (I, T) be topological spaces. 

Let f:  (X, S) ■* (Y, T) be a homeomorphism. If (X, S) is 

locally compact, then (Y, T) is locally compact. 

Proof: Suppose (X, S) is locally compact. Let  p c Y. 

Then there is a q e X such that f(q) = p. Since (X, S) is 

locally compact, there is a 0 c T so that q e U and U is 

compact. Then by Theorem 9, f (U) is compact.  It remains to show 

that f(U) = TUT).    Let K be a closed subset of Y containing f(U). 

Then f_1(K) is a closed subset of X containing U. Hence 

Ucf_1(K).  Thus f(U) c K. Therefore f(U) c fTuT. Since U is 

closed, f(U) is closed, and clearly f(U) c f(f).  Thus 

7(U) c f(U).  So f(U) = f(U), which is compact. Thus f(U) is 

compact and hence (Y, T) is locally compact. 



10 

CHAPTER II 

LOCALLY CONNECTED SPACES 

Definition 17: Let (X, T) be a topological space. Then 

(X, T) is connected provided X is not the union of two nonempty 

disjoint open sets. 

Definition 18: Let (X, T) be a topological space, and 

let A and B be subsets of X.  Then A and  B are said to 

be mutually separated in (X, T) if and only if 1 0 B = <*> = A fl B. 

Remark 3? Clearly a topological space (X, T) is connected 

if and only if X is not the union of two nonempty mutually 

separated subsets. 

Definition 19; Let X be a nonempty set. Let 

T = [A | A c XJ. Then clearly T is a topology for X, and T 

is called the discrete topology for X. 

Example 2: Let  (X, T) be a topological space such that 

X consists of two or more elements. Let T be the discrete 

topology for X. Then  (X, T) is not connected. 

Proof; Let x e X. Then clearly the sets £ x^ and X - \x$ 

are nonempty disjoint open sets. It is also immediately evident 

that X = {x$ U (X -{x\). 
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Definition 20; A subset A of a topological space (X, T) 

is connected provided (A, T,) is connected. 

Lemma $:    Let (X, T) be a topological space such that 

X = U U V where U and V are mutually separated. If C is 

a connected subset of X, then either C c U or C c V. 

Proof; Suppose C flU / <*> and CflV/ *. Then 

C = (C 0 U) U (C 0 V) where C A U and C O V are nonempty 

mutually separated subsets of (C, T ). Thus either C c U or 

C c V. 

Theorem 11: Let (X, T) be a topological space and let A 

be a connected subset of X. Let Y be a subset of X such that 

A c Y c A.  Then Y is connected. 

Proof: Suppose  (Y, TY) is not connected. Then Y = U U V, 

where U and V are nonempty mutually separated subsets of Y. 

Since A is a connected, by Lemma 5, either A c U or A c V, say 

A c U. Since V / * , there exists a point p € V.  Thus p /  A. 

Since U and V are mutually separated, p is not a limit point 

of A in (Y, T ). Thus p is not a limit point of A in  (X, T). 

Therefore p £  A. But this is impossible.  Hence (Y, Ty) is 

connected. 

Definition 21: Let (X, T) be a topological space, and let 

C c X. Then C is said to be a component of X provided C is 

connected and is not properly contained in any other connected 

subset of X. 
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Theorem 12 : Let (X, T) be a topological space, and let 

C be a component of X. Then C is closed. 

Proof:  By Theorem 10 since C is connected,  C is connected. 

But C c C, and since C is the largest connected subset of X, 

C = C. Hence C is closed. 

Theorem 13; Let (X, T) be a topological space, and let 

«3. | i e Ij be a collection of connected subsets of X such 

that X = U C.  and  OC, / <t>.    Then (X, T) is connected. 

Proof;  Suppose X is not connected. Then X - U U V, 

where U and V are nonempty mutually separated subsets of 

X. Since U /$   and V / <*> , there exist i, j c I so that 

C. c U and C. c V. But since C. (1C. / *, this is impossible. 

So X is connected. 

Definition 22; Let R denote the set of real numbers. Let 

a, b e R. Then the open interval from a to b, denoted by 

(a, b), is the set of all real numbers x such that a < x < b. 

The closed interval from a to b, denoted by [a, b], is the 

set of all real numbers x such that a S x $ b.  The interval 

half-open on the left, denoted by (a, bj, is the set of all 

real numbers x such that a < x $ b. The interval half-open 

on the right, denoted by [a, b), is the set of all real numbers 

x such that a $ x < b.  The notation (a, „) denotes the set 

of all real numbers greater than a.  The notation la, „) 

denotes the set of all real numbers greater than or equal to a. 
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The notation (-«,, a) denotes the set of all real numbers less 

than a.  The notation (-„, aj  denotes the set of all real numbers 

less than or equal to a. 

Theorem lU : Any interval is connected. 

Proof: Let X be an interval, and suppose that X is not 

connected.  Than X = A U B, where A and B are open in X, 

neither A nor B is the empty set, and Af|B= 4,.    Let a e A, 

and b e B. Since A and B are disjoint, a / b. So either 

a < b or b < a.  Assume that a < b. Let 

V = (x I x £ [a, b] and [a, x) c AJ , and let v ■ lub V.  Since 

A is open, A has no largest element. Thus v = a. So a < v S b. 

Now v e A, and A is the complement in X of B. But B 

is open, so A is closed.  Thus A = A, and v e A. Now A is 

also open, so there exists a real number c > 0 such that 

(v - c, v + c) c A.  Then [a, v + c) c A, and hence v + c e V. 

But then v + c is an element of V which is greater than the 

least upper bound for V.  This is impossible. So any interval is 

connected. 

Definition 23: Let  (X, T) be a topological space.  Then 

(X, T) is locally connected at a point x € X provided, if U 

is an open set containing x, then there exists a connected open 

set V such that x c V c U. The space (X, T) is said to 

be locally connected provided it is locally connected at each point. 



lit 

Theorem 15;    A space    (X,  T)    is locally connected if and only 

if each component of each open set is open. 

Proof:    Let    (X,  T)    be a topological space.     Suppose that 

(X,  T)    is connected.    Let    U e T.    Let    C    be a component of    U 

and let    x    be a point of    C.     Since    U    is open and    X    is locally 

connected,  there is an open and connected set    V    such that 

x e V c U.    Then by Theorem 13,    CUV    is connected.    But 

C c C U V.    Thus    C  = C  U V,  and so    x e V c C.    Therefore    C 

is open. 

Suppose each component of each open set is open.    Let    x e X 

and    U e T    such that    x  e U.    Let    C    be the component of    U 

which containins    x.    Then    C    is open and connected,  and    x e C c U. 

Thus    (X,   T)    is locally connected. 

Theorem 16;    Let     (X,  S)    and    (Y,  T)    be topological spaces, 

and let    f:     (X,  S) -*  (Y,  T)    be continuous and onto.    If    (X,  S)    is 

connected,   then    (Y,  T)  is connected. 

Proof;    Let    (X,  S)    be connected.    Suppose    (Y,  T)    is not 

connected.    Then there exist disjoint nonempty open  sets    U    and    V 

,-1 -1, ,-l» .-1, so that    Y = U U V.    Then    X  = f    (Y)  = f    (U U V)   =  f    (U)  U f"  (V). 

Since    f    is continuous    f'^U),    f    (V)  e  S.    Since    f    is onto 

f_1(U) / i> / f-1(V)    and clearly    f-1(U) fl f_1(V)  =  *.    But this is 

impossible since    X    is connected.    Thus    (Y,  T)    is connected. 

Theorem 17;    Let    (X,  S)    and    (Y,  T)    be topological spaces, 

and let    f:     (X,  S) ■♦  (Y,  T)    be a homeomorphism.    Then if    (X,  S)    is 

locally connected,     (Y,  T)    is locally connected. 
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Proof: Suppose (X, S) is locally connected. Let y c Y, and 

let U be an open set containing y. Then f" (y) e X and f~ (U) 

is an element of S containing f~ (y). Since X is locally 

connected, there exists a connected open subset V of X such that 

f_1(y) e Vc f-1(U).  But then y e f(V) c U. Since f is a 

homeomorphism, f(7) is open. By Theorem 16, f(V) is connected. 

Thus (Y, T) is locally connected. 

Example 3:    Let X denote the rational numbers. Let T be 

the discrete topology for X, and let T be the usual topology for 

X as a subspace of the real numbers. Let f: (X, S) ■» (X, T) be 

defined by f (x) = x for each x e X. Then (X, S) is locally 

connected,  (X, T) is not locally connected, and f is continuous. 

Proof; Let x e X. Since  x c S, and  x  is connected, 

(X, S) is locally connected. However, since no interval of 

rational numbers is connected in the usual subspace topology, 

(X, T)  is not locally connected.  Clearly f is a continuous function. 

Theorem 18: Every finite product of locally connected spaces 

is locally connected. 

Proof; Let  (X^ T^,  (X,,, Tg), . . . ,  (Xn, Tj be locally 

connected spaces. Let (X, T) denote the product space, and let 

x € X.  Then x = (x., x„, . . . , x ), where x. € X.. Let 

U e T so that x £ U. Then there exists a basic open set V so 

so that x e V c U. Now V = X £ V, | 1 « i £ nj, where each 

V e T. .  Since each T. is locally connected, there is a 
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W e T  so that W  is connected and x. e W. c V.. But then 11 * ill 

Xiwi|l?i$nj     is both open and connected,  and 

xfX{wi|lSiSn}c    X  [v.    |l?i?n]cVcU.     Thus 

X    is locally connected. 

Definition ?lt:    Let    X. , where    1 $ i < n,  denote the real 

numbers.     Let    En = X  { X.    | 1 Si ?n}.    Then    En    is called 

Euclidean n-fipaflfi,  and the topology for    E11    is the usual 

product topology. 

Theorem 1':    For each natural number    n,  En    is locally 

connected. 

Proof:     Since,  from Theorem lU,   any interval is connected, 

clearly the real numbers are locally connected.     Thus from 

Theorem 18,  E ,   for any natural number    n,  is locally connected. 

Theorem 20;    Let    (X,   T)    be a locally connected space,  and 

let    L e   T.     Then    (L,  TL)    is locally connected. 

Proof:    Let    p e L    and let    U    be an element of    T 

containing    p.     Since    L  e T,   then    U £ T.     Thus there is a 

connected element    V    of    T    such that    p  e  V c U.    Since    V c L, 

V e T  .     Since    V    is a connected subset of    X,     V    is a connected 

subset of    L.     Hence    (L,  T   )    is locally connected. 
-Li 

Example Ii: Let X be the subset of the plane defined by 

I ■ { (x, 7) I -1 * 7 < 1J  x = 6J u fix, 7) I 7 = sin(l/x), 0 < x S if . 

Let T be the relative topology for X induced by the usual 

plane topology. Then (X, T) is connected but not locally 

connected. 
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Proof : Let A= l(x, y) | -HySl, x = o} and let 

B = I (x, y) | y = sin(l/x), 0 < x 5 lj. Since A is an interval, 

A is connected.  Since the sine funtion is continuous and  (0, 1] 

is connected, B is connected. But every point of A is a 

limit point of B.  Thus X is connected. Let p e A. A basic 

open set in X containing p is of the form of a disc D 

intersected with X.  But the only connected subset of X containing 

p and contained in D is D f> A, and this set is not open in X. 

Hence (X, T) is not locally connected at p. 

Example 5; Let X = (0, l) U (2, 3) and let T be the relative 

topology for X induced by the usual topology for the reals.  Then 

(X, T) is locally connected but not connected. 

Proof; Since  (0, 1) and (2, 3)  are nonempty disjoint 

elements of T,  (X, T) is not connected. By Theorem 19, the 

reals are locally connected.  Since X is an open subset of the 

reals, by Theorem 20,  (X, T) is locally connected. 
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CHAPTER III 

CONNECTED IM KLEINEN SPACES 

Definition 25: A topological space (X, T) is said to be 

connected im kleinen at p provided if U e T and p e U, there is a 

V e T such that p e V c U and if a, b e V , there is a connected 

subset C of X such that 5 a, bf c C c tf. If (X, T) is connected 

im kleinen at each point, then it is connected im kleinen. 

Theorem 21: Let  (X, T) be a topological space which is 

connected im kleinen.  Then (X, T) is locally connected. 

Proof; Let U be an open subset of X, and let C be a 

component of U. Let x be a point of C. Then there is an open 

set V  containing x and lying in U, such that each point y of 

V is in a connected set C   lying in U. Then C   is a 
x xy  '  6 xy 

subset of C, so V  lies in C. Thus C = u£v | x f Cj is 

open. ™«n by Theorem 15}  (X, T) is locally connected. 

Remark U: If (X, T) is locally connected at p, then (X, T) 

is connected im kleinen at p. 

Definition 26; Let (X, T) be a topological space. Let C 

be a subset of X and let p e C. Then p is said to be an 

interior point of C provided there exists an element U e T such 

that p e U c C. 

Theorem 22; Let (X, T) be a topological space, let p e X, 

and let C be the component of X containing p. If X is 

connected im kleinen at p, then p is an interior point of C. 
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Proof: Suppose X is connected im kleinen at p.  Since 

X is an open set containing p and X is connected im kleinen at 

p, there exists an open set V such that p e V c X and if a and 

b are in V, then there is a connected subset D of X containing 

a and b. Let x e 7. Then there is a connected subset D of X 

containing x and p.  Since p e D n C, and D and C are 

connected, by Theorem 13, D U C is connected.  Since C is a 

component of X, D U C c C. Thus x e C and hence V c C. Hence 

p is an interior point of C. 

Theorem 23: Let (X, S)  and (Y, T) be topological spaces. 

Let f:  (X, S) ■* (Y, T) be a homeomorphism, and let p e X.  If 

X is connected im kleinen at p, then Y is connected im kleinen 

at f(p). 

Proof: Suppose X is connected im kleinen at p.  Let U be 

an open set containing f(p).  Then since f is continuous, f (U) 

is an open set containing p.  Since X is connected im kleinen 

at p, there exists an element V of S such that p € V c f (U), 

and if a and b are in V, then there is a connected subset C 

of X such that £ a, b] e C c f-1(U). Since f"1 is continuous, 

f(V) is open. Clearly f(p) e f(V) C U. Let a and b be 

elements of f(V).  Then f_1(a) and f_1(b) are elements of V. 

Thus there exists a connected subset C of X such that 

fc_1(a), f-1(b$c C c f_1(U). Clearly {a,  b]  c f(C) c U and 

since f is continuous, by Theorem 16, f(C) is connected. 

Hence Y is connected im kleinen at f(p). 
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Example 6: For each ordered pair (i, j) of positive integers 

let I/.  .s be the subset of the plane which is the closed interval 

with end points (l/i, 0) and (l/(i+l), l/(i+j)). That is 

I,, *s'  (W) | l/(i+l) « x S l/i and y=[-(i(i+l))/(i+j)][x-(l/i)]}. 

Let X = fl/. .\ | i, j are positive integers^ U [C, 1].  [See 

Figure 1.] Let T be the relative topology for X induced by the 

usual plane topology. Then (X, T) is connected in kleinen at 

(0, 0), but (X, T) is not locally connected at (0, 0). 

I 

FIGURE 1 

Proof: Let D be the subset of the plane defined by 

D - f (x, y) | x2 + y2 < l/U] and let U - D O X. Then U £ T, 

and it is only necessary to exhibit that there is no open connected 

subset of X which contains  (0, 0) and is contained in U. 

Suppose there exists a connected element V e T such that 

(0, 0) e V c U.  Since (0, 0) is a usual plane limit point of 

£(l/n, 0) | n is a positive integer}, there exists a positive 

integer n such that  (l/n, 0) e 7. Let E be the smallest positive 

integer such that (l/K, 0)cf. Clearly K > 2, and 

(1/(K-1), 0) c V. Since (1/K, 0) is a usual plane limit point of 
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f(l/K,  l/(K+j)) |  j    is a positive integer^,  there exists a positive 

integer    L    such that    (l/K,  1/(K+L))e V.    Then 

V= &fr, L)rV) U(7-1(EJ L)>    **    r(K, L)nV   "* 

7 • I/» T \ are nonempty mutually separated subsets of X. Hence 

V is not connected. Thus  (X, T) is not locally connected at 

(0, 0). 

Let U e T so that (0, 0) e U. Then there exists a r > 0 

such that £(x, y) | x2 + y2 < r] f\ X c U. Let 

c        2   2   ~l D = i (x, y) | x + y < rj. There is a positive integer K such 

that (l/K, 0) e D. Let S = 1/(K + l)1'2, and let 

E = {(x, y) | x2 + y2 < S2J.  Then E n X e T, and (0, 0) e E O X c U. 

Let a and b be elements of E O X. Let 

C = \l(.      M | i 5 K, and j is a positive integer JL{0, l/K] . 

Then C is a connected subset of U which contains la, bj. 

Hence (X, T) is connected im kleinen. 
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CHAPTER IV 

EXAMPLES 

Definition 27:    Let    (X.  S)    and    (Y,  T)    be topological spaces. 

Then    (X,   S)    is  said to be homeomorphic to    (Y,  T)    provided there 

exists a homeomorphism    f:     ,X,  S) -  (Y,  T). 

Example 7:    Let    X    be  the subset of the plane defined by 

X  =    f(x,  y)   |  x > o\   and let    Y = X !. {(:,  0)|.     [See Figure 2.] 

Let    S    and    T    be the relative topologies for    X    and    Y,   respectively, 

induced by the usual plane  topology.     Then    (X,  S)    and    (Y,  T) 

are not homeomorphic. 

( c,c-> • 

FIGURE 2 

Proof:    Clearly    (X,  S)    is locally compact,   since closed discs 

are compact.    Now    (Y,  T)    is not locally compact at    (0,0)    since 

any open set containing    (0,   Z)    has the property that its closure 

has limit points in the plane not in its closure,  namely points 

en the y-axis which are close to    0.    Since     (X,  S)    is locally compact 

and    (Y,  T)    is not locally compact,  by Theorem 10,     (X,  S)    and 

(Y,  T)    are not homeomorphic. 



23 

Remark 5:    It is worth observing that in Example 7,  the use 

of the properties  of compact or connected instead of locally- 

compact would not prove that    (X,   S)    and     (Y,  T)    are not 

homeomorphic,  since both    (X,  S)    and    (Y,  T)    are connected, 

while neither is compact. 

Example 8;    Let    X    be the subset of the plane defined by 

X=  {(x,  y)   |x = 0,   -lsysl]    and let 

Y = X U   f(x,  y)   |   0 < x S 1,    y = sin(l/x)/.     [See Figure 3-]    Let 

S    and    T    be the relative topologies for    X    and    Y,  respectively, 

induced by the usual plane topology.     Then    (X,  S)    and    (Y,  T) 

are not homeomorphic. 

♦ I   1 

- \ 

FIGUHE 3 

Proof: Since open intervals are connected,  (X, S) is locally 

connected. Since basic open sets about (0, 0) in Y are discs 

intersected with Y, basic open sets about (0, 0) are not connected. 

Hence (Y, T) is not locally connected at (0, 0). Since  (X, S) 

is locally connected and (Y, T) is not locally connected, by 

Theorem 17,  (X, S) and (Y, T) are not homeomorphic. 
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Remark 6: It is worth observing in Example 8 that the use 

of the properties of compact, connected, or locally compact instead 

of locally connected would not prove that (X, S) and (Y, T) 

are not homeomorphic, for both  (X, S) and (Y, T) are compact, 

connected, and locally compact. 

Example 9: Let A be the space X in Example 6. Let 

= A - [0, l].  For each positive integer K, let 

CK = [(*» y) I [* " (/+ 1)(K) 1  + y? = |?(K A)(K)J  '   y 

Let    X = B U [  u(c„   |  K    is a positive integer J]    and let 

Y = B U [0,  1/2J  U C-.     LSee Figure 1*.]    Let    S    and    T    be the 

relative topologies for    X    and    Y,  respectively, induced by the 

usual plane topology.    Then    (X,  S)    and    (Y,  T)    are not 

homeomorphic. 

.1 

FIGURE k 

Proof:    Similarly to Example 6,  it is easily shown that    (X,  S) 

is connected im kleinen.     However    (Y,  T)    is not connected im 

kleinen at any point of    (0,  1/2).    Thus by Theorem 23,     (X,  S) 

and    (Y,  T)    are not homeomorphic. 
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Remark 7:    It is worth observing that in Example 9,   that 

using the properties of compact, connected,  locally compact,   or 

locally compact instead of connected im kleinen would not prove that 

(X,  S)    and    (Y,  T)    are not homeomorphic,  for both    (X,  S)     and 

(Y,  T)    are connected and locally compact,  but neither is compact 

or locally connected. 



: 

SOMULSX 

In conclusion,   the author has defined locally compact, locally 

bed,   and connected im kleinen,  and using these ideas, he has 

t  -inguished between certain subspaces of the plane.     En  addition, 

examples used to distinguish between pairs  of subspaces,  ben 

::' such a nature  that   the properties  of compact and connected 

Ld not  peirfonn the task. 
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