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INTRODUCTION 

In [1] Stallings asks the following question.    Let 

I ■ [0,1], let   TQ   be the usual  topology on    I, and let 

T   be a topology on    I    such that   T0£T   and    U»T)    is 

connected.    Let   TL    be the topology on    I   generated by 

T   and   f[a,b)  | 0<a<b<lj   and let   TR   be the 

topology generated by   T   and   |(a,b] |  0^a<b^.lj. 

Let   L   and    R   be subsets of    I    such that    I = LL/R, 

0£L, 1 £ R, L   is T.-open, and   R   is TR-open.    Then is 

it necessarily true that   L D R / 0? 

An example of a topology on   I    in which   lf)R = 9> 

was provided by Hildebrand [2]  in 1967.    It is the pur- 

pose of this paper to exhibit, with proofs, the example 

of Hildebrand. 

In Chapter I two conditions are added to the topology 

T   which enable the author to prove that   LHRM- 

In Chapter II several examples of connected topologies 

on    I   are exhibited. 

In Chapter III Hildebrand's example is given. 

The reader is expected to have a working knowledge of 

point set topology. 
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Throughout this paper I will denote the closed unit 

interval [0,1] and TQ the subspace topology on I 

inherited from the usual topology on the reals. Also, if 

(X,T) is a topological space and AC*, the" T-C1(A) 

will denote the closure of A in (X,T). 
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CHAPTER I 

A THEOREM 

Theorem 1.    [3]   Let   T   be a connected topology for    I 

such that   T    1s finer than   TQ.    Let   T,_   be the topology 

generated by   T   and   f [a.b) \ 0 £ a< b < l}   and let   TR 

be the topology generated by   T   and   Jja.b] | 0£ a< b£ lj. 

Let   L   and    R   be subsets of    I    such that   LU"R " I» ©£.1, 

l£R< L   is T,-open, and   R   is TR-open.    Suppose that in 

addition to the above properties   T   also satisfies the fol- 

lowing two conditions: 

(1) There is a TQ-dense subset   A   of    I    such that if 

a£A   and    U   is a T-open set containing   a, then there is a 

T0-open set   V   such that   a£ VC U, and 

(2) If   p£. I   and   U    is a T-open set containing    p, 

then there is a TQ-open interval    V   containing    p   such that 

U    is Tg-dense in    V. 

Then   Lf'iR t 0. 

Proof:    Suppose   LOR = 0.    l£R   and   R    is TR-open. 

Then since   TR   is generated by   T   and 

{(a,b] \ Qia«b<l}, there is a T-open set   U   and a real 

number   r   such that   uO(rJ]    is TR-open and 

ie.ur\(r,l]C.R.    Cy condition 2, since    l£ U   and   U    is 



T-open, then there is a real  number   q    such that   U    is   TQ- 

dense in    (q,l].    Let   s = max>q,r7.    Therefore   U    is   Tg-dense 

in    ($,!].    flow   UO(s,1]C U, so the 

T0 - Cl(UD(s,l])n (s,l]C TQ - C1(U)0 (S,l].    Clearly, any 

point of   U   in    (s,l]   is a point of the 

TQ - Cl(un(s,l])0 (s,l].    Let    h    be a TQ-limit point of    U 

in    (s,l],    and let   !!   be a Tg-open set containing    h.    There 

is a TQ-open interval    J    such that   lit. JC(s,l].    Then since 

h€. JOH. iinil    is T0-open,  and    h    is a T--limit point of    U 

in    (s,l], there exists   x^JflH   such that   x£UO(s>1]< 

Hence   h    is a T -limit point of   UO (s,l].    Thus the 

T0 - C1(U)H (s,l]CT0 - Cl(ua(s,l])0 (s,l]   and therefore 

the    TQ - Cl(urj(s,l])n(s,l] = TQ - C1(U)0 (s,l].    But 

since    U    is    TQ-dense in    (s,l],  the    TQ-CI(U) D (s,l].    Thus 

the    TQ - Cl(UO(s,lJ)n(sJ] ' T0 - Cl(U)0(s,l] = (s,lj. 

Hence the    TQ - Cl(un(s,l])3 (s,l]    and therefore    UfllsJ] 

is dense in    (s,l].     But since    un(s,l]CR,  R    is    TQ-dense 

in    (s,l].  3y condition 1   there is a T -dense subset   A    of    I 

such that if    afeA    and    U    is a T-open set containing    a, then 

there is a T-open set   V   such that   a^VCU.    Since   A   is 

T0-dense in   I    and    (s,l]    is T0-open, there is a point 

a£_An(s,l].    For suppose    a'£_(s,l]    and    I'tA.    Then    a' 

is a T0-limit point of   A.    Hence the TQ-open set    (s,l] 

containing   a'    contains a point of    A.     Suppose    a£L.    Since 
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L is T, -open, there is a T-open set U' and a number t such 

that a£ U'OCi»t)C.L. By condition 1 there are numbers c 

and s' such that a£(c,s')Cu'- Hence [a,s*)CU'. If 

t'is', then [a,t)C[a,s')Cu'. Thus [a,t) = U'O [a,t)C L. 

If t>3', then [a,s')C[a»t) and since U'0[a,t)CL, 

U'0[a,s')C«" But [a,s')C.U\ so [a,s') = U'O [a,s')C L- 

Let t' = nn'r, ^t,s'7. Then [a,t')CL. Since 

a£_(s,l], Ca,t')C(s,1]. Then because R is TQ-dense in 

($,!], R is TQ-dense in [ast'). Thus there is a point of R 

in (a,f). But LOR = 0 and this is impossible. Thus 

a£R and therefore AO(s,l]C^ Suppose there exists a 

point y6LO(s,l]. Since L is TL-open, there is a 

T-open set U" and a. number b such that y6u"0[y,b}CL. 

By condition 2, since y£.U" and U" is T-open, there are 

numbers m and n such that y£(m,n) and U" is T0-dense 

in (m,n). Let d • m1n {n,b\ Thus U" is TQ-dense in 

[y,d). Not* A is T0-dsnse in I, so there is a point p£_A 

such that p£(y,d). Thus p t y. But since 

y£,(s,l], [y,d)C(s,l]- Thus p£An<s.l] and p£[y.d). 

Since AO(s,1]CJ. P€ R- Because p£R and R is TR-open, 

there is a T-ooen set V" and there is a number e such that 

p£v"P\(e,p]CR- Dy condition 1, since p£A, there are 

numbers f and f such that p£(f,f')CV"- Hence 

(f»p3Cv"- Suppose e^f. Then (e,p]C (f »PnC V" and 

thus (e,p] = V"n(e,p]CR- Suppose f > e. Then 

■ 



(f.pJO.pJ- But since V'O (e,p]C R, V'O (f ,p]CR- 

However, (f,p]CV\ so (f ,p] = V'Q (f ,p]CR. Suppose y>e 

and y>f. Then (y,p]C(e,p] and (y,p]C (f »p]« !*• <" 

addition, e icf, from above we may conclude that 

(y»p]0(e,p] C R« But ^ f >e, from above we may conclude 

that (y,p] C(f ,p]C R- Let g = max ie.f.yv. Then 

(g,p]C R- Since U" is T0-dense in [y,d) and (g,p)CL>.d), 

there is a point of U"f") [y,d) which is in (g,p) and hence 

in R. But U"n[y,d)CL and L O R = 0, so this is im- 

possible. Hence (s,l]C-R- 

Let k = g.l.b. -Tx | (x.,l3C Rj- We wish to show that 

kfcR. Suppose k£.L. Since L is TL-open, R = I - L is 

T. -closed. Since R contains its T,-limit points, then k 

is not i TL-limit point of R. Obviously, any number greater 

than k is in R. Suppose k is not a T-limit point of 

(k,l]. Then thers is a T-open set M containing k such that 

;i contains no point of (k,l]. Since TQC
T»C0.k) and 

(k,l] are T-open and thus [0,k] = [0,k)(jM is T-open. Hence 

[0,k] and (k,l] are disjoint T-open subsets of I Whose 

union 1s I. But (I,T) is connected. Therefore k is a 

T-limit point of (k,l]. Thus k is a TL-limit point of 

(k,l] and hence, since (k,l]CR» k is a T -limit point of 

R. But this is impossible. Hence kfj. Therefore 

[kJJCR- Since 0£ L, k t  0. Performing exactly the same 

procedure as in the first part of the proof, we find that there 



1s a number   k'    such that   (k\k)C"-    Thus    (k',l]0-    But 

k'< k ■ n.l.bjx   | (x,l]C " r   and this is Impossible.    Hence 



CHAPTER II 

SO'iE CONNECTED TOPOLOHES ON I 

Example 1. [3] The topology T- 1s a connected topology 

for I and TQ also satisfies the folio-'Inn two conditions: 

(1) There Is a T^-dense subset \   of I such that 1f 

a€.A and U 1s a T-.-open set containing a, then there Is a 

Tn-open set V such that »£VCU. and 

(2) If p€.I and U is a T,,-op*n set containing n, 

then there 1s a Tn-ooen Interval V containing p such that 

U 1s T«-dense In V. 

Proof: The topology TQ 1s a connectod topology for I. 

For suppose there are non-empty TQ-open sets M and N such 

that MO« ■* and I • M%|N with l£M. There Is a number 

a such that l£(a,l]CM. Let m « g.l.b.{x | (x,l]C "f • 

Suppose (m,l]<fM. Then there Is a number yCW] such 

that y£ M. Cut l/2(m+y) > n, so (l/2(m+v),l]C H and 

y£(V2(m+y),l] which 1s impossible. So (m,l]C''- Let 

(m-t ,nH-£) be a basic Vopen set about n. Now 

m+S/2£>,m+E)C(m,i:]CM an* m+£/2*m. Thus m 

Is a T0-11m1t point of M. Since N 1s TQ-open, N « I - N 

is T0-closed. Hence m£M and thus [m,l]CM. How 

0 f m since 1 is not empty. Since m£M and M 1s 

T0-open, there is a number b such that (b,m] C M. 



Therefore    (b,l]r_.1   w1tn   b<m   which is impossible.    Hence 

I    is not disconnected by   M   and   N. 

The set of rationals in    I    is a TQ-dense subset of    I. 

It is easy to see that conditions 1 and 2 are satisfied since 

the collection of open intervals of   I    form a base for   TQ. 

Corollary 1.    Let   TL   be the topology generated by   TQ 

and   f[a,b) j   0* a< b* 11>   and let   TR   be the topology 

generated by   TQ   and    ^(a,b]  I 0 &«« b < lj.    Let   L   and 

R   be subsets of    I    such that   LVJ R ■ I, 0€ I, 1 £R, L 

is T.-open, and    R    is TR-open.    Then    LOR f-f. 

Proof:    Since   Tn    satisfies all the conditions of   T 

of Theorem 1, from the same theorem it can be concluded that 

LOR t 0. 

Example 2.  [3] Let X be the set of all rational 

numbers in I. Let T be the topology generated by TQ and 

•W. Then T is a connected topology for I finer than TQ 

and T also satisfies the following two conditions: 

(1) There is a TQ-dense subset A of I such that if 

afe A and U is a T-open set containing a, then there is a 

TQ-open set V such that a£.VCU,and 

(2) If Pfc.1 and U is a T-open set containing p, 

then there is a TQ-open interval V containing p such 

that U is TQ-dense in V. 

Proof: Obviously TQC T. Suppose that I • BU H 

where OtU, U and V are T-open, and BAK-f. Since 
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Ofe_X    there is a number   a   such that   0£ [3,a)f%; XC U.    Let 

y£ [0,a).    If   y£ X, then any basic T-open set about   y   is of 

the form   (y-£ ,y+r_ )C\ X.    Let   a"  ■ min   £a,y+£j .   There is a 

rational    q t y    such that   y< q< a'.    Thus 

q£(y-£,a')nxc(y-€>y+fc)^x   and sincs 

(y-g,a')OxC [0,a)ilXCU. q€ "• If y£ X, then any basic 

T-open set about y is of the form (y-£\ y+£')- Let 

a" = minfa,y+£'l. There is a rational q' t  y such that 

y<q'<a". Thus q'£ (y-£'.a")C (y-t'.y+e') and since 

q'€X and (y-£ ' ,a")D XC [0,a)O X C U, q' £ U. Hence, 

if y£ C°»a)' ar,y basic T"open set about y contains a po1nt 

of U different from y. Thus y is a T-limit point of U. 

Mow since V is T-open, U - I - V is T-closed. Hence 

y£U and therefore [0,a)Cu. Let c - l.u.b.(* ) £0.l) CUj- 

Any basic T-open set containing c is of the form 

(c-S,c+£.) if c is not rational and of the form 

(c-£,c+!L)0 X if c is rational. In either case there is 

a rational p^c such that c-£<P<c. Therefore any 

basic T-open set containing c must intersect U in a point 

different from c. Thus c is a T-limit point of U. Since 

U is T-closed, c€U. Since If f  0, C j» 1. Suppose c is 

rational. Since c £ U and U is T-open, there is a number 

b such that [cJOOXCU. Let d£[c,b). If d is 

rational, a basic T-open set about d is of the form 

(d-<: ,d+£.)H X and tnus contains a rational of [c,b) 



different from   d.    Then   d    is a T-limit point of   [c,b)Ox 

and hence   d    is a T-limit point of   U.    If   d    is not rational, 

a basic T-open set about   d   is of the form   (d-£,d+£j    and 

thus contains a rational of   [c,b)    different from   d.    Again 

d    is a T-limit point of    U.    Cut since    U    is T-closed, d£.U. 

Thus    [c,b)Cu-    Hence   [0,b)O.    B"t   b>c   and this is 

impossible.    Hence    (I,T)    is connected. 

I - X    is T -dense in    I.    Let   a   be an irrational 

and   U   be a T-open set containing   a.    Since   T   is generated 

by   TQ   and   '■> XI , there are numbers   f   and   g   such that 

a£(f,g)Cu.    Thus   T   satisfies condition 1.    Let   p(^,I 

and    U'     be a T-open set containing    p.     If    p    is irrational, 

as seen above, there is a Tg-open interval    V    such that 

p£f_V'f~U'.    Hence    U'    is T -dense in    V.     If    p    is 

rational, there are numbers    h   and   j    such that 

p£(hJ)nxC0'-    If    u'    is T0-dense in    (h,j),then 

condition 2 is met by   T.    Now    (h,j)OxC u'     implies that 

the   T0-Cl((h,j)Ox)C T0-C1(U").    Hut the   T0-Cl((h,j)O X) ■ 

(hj), SO the    T0-Cl(U'):)(!i,j)    and    U'    is T^-dense in (h,j). 

Corollary 2.    Let    X    be the set of all  rational  numbers 

in    I.     Let    T    be the topology generated by    TQ    and   ^ XJ . 

Let   TL   be the topology generated by   T   and 

f  [a,b)   i 0 < a < b £ l]     and let   TR   be the topology generated 

by   T    and   f(a,b]   |o<a<b<1^.    Let    L    and    R    be 



10 

subsets of   I   such that   HJR * I, O^L, l£R, L   Is 

T,-open, and   R   Is TR-open.   Then   LAftPf. 

Proof:   Observe that   T   satisfies all the conditions 

of the topology   T   of Theorem 1.   Thus   L f\R t 0. 

Example 3.   [3]   Let   X   be the set of all rational num- 

bers In   I.   For each   x£l, let   Ax-X(j{x].   Let   T   be 

the topology generated by   TQ   and IM. *€'•   Th«n   T   1s a 

connected topology for   I   finer than   TQ   and   T   satisfies 

the condition that 1f   p£l   and   U   Is a T-open set con- 

taining   p, then there 1s a T0-open Interval   V   containing 

p   such that   U   1s TQ-dense 1n   V.   But   T   does not satisfy 

the condition that there 1s a TQ-dense subset   A   of   I   such 

that 1f   a£ A   and   U   1sa T-open set containing   a, then 

there Is a T0-open set   V   such that   a£vCU- 

Proof: Obviously, T0CT- Let p£l and U be a 

T-open set containing p. There are numbers f,g, and h 

such that   p£(f.g)f)AnO-   Then 

(f.g) "T0-ci({f.g)nAn)CVc1(u)-   Thu$   u   1s 

T0-dense In   (f.g). 

Let   x £ I   such that   x t 0   and   x t 1.   Then 

un<o.i»u [x] - (x uW)fl t0*1) is • T-open subset 

of I containing x. Therefore x has the property that 

there Is a T-open subset of I containing x such that no 

T0-open subset of I containing x Is a subset of this 

T-open set, and this 1s true for any x£(0.1). 

I 



11 

It remains to show that    (I,T)    is connected.    Suppose that 

I = UU V   where   0£. U, U   and   V   are T-onen, and   UO V = 0. 

Then there are numbers   a   and   w   such that 

0€ [0,a)n AwC U.    But since   XC A,.(, [0,a)H XC U.    Let 

y£[0,a)    and   £>0.    Let   a' = min   £a,y+£j.   There is a 

rational    q t y   such that   y < q< a'.    Thus 

q£(y-£.a')nxC(y-£>y+6)nx-   But 

(y-S ,a')n XC [0,a)OXC U, so q£U. Thus any T-basic 

open set O£,y+£)OA  about y must intersect U. 

Therefore y is a T-limit point of U. Mow, since V is 

T-open and UO V ■ 0, yfi V. Thus y£U. Kence [0,a)C "• 

Let C • l.u.b.fz j [0,z)C u{ ■    Let B be a T-basic open 

set containing c. Then there are numbers d, e, and f such 

that B = (d,e)OAf. There is a rational r such that 

d<r<c. Thus r £. B and r£c. But since 

c = l.ti.b. (z j [0,z)Cuj , C0,r)C. U and hence BnU/0. 

Therefore any T-basic open set containing c must intersect 

U. Suppose c£V. Since V is T-open, there is a T-basic 

open set B' containing c such that B'CK. But this is 

impossible since UO V ■ 0. Thus c£U. Since V f  0, 

q f  1. There are numbers g, h, and i such that 

c fe_ (g,h). "i Ai C u- But since [c,h) C (9.h) and x C Ai. 

[c,h)OxCU. Let y'£ [c,h) end £' > 0. Let 

h' = min {h,y'+£l. There is a rational s such that 
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y'<s<h\ Thus s£(y'-£/,h')nx C (y'-£'.y'+£')H x. 

But [c,h)OXCU, so s€u. Thus any T-basic open set 

(y'-£»y, + £)n A ■ about y' must intersect U. Therefore 

y' is a T-limit point of U. flow, since V is T-open and 

uOV-3, y'£v. Thus y'£u. Hence [c,h)C.U. Thus 

[0,h)Cu. Rut since c = l.u.bXI \  [0,z)C u \ » h > c is 

impossible. Hence (I,T) is connected. 

Theorem 2. [3] Let X be the set of all rational 

numbers in I. For each x£l, let Ax = X jfx"l . Let T 

be the topology generated by TQ and jAx> , x£ I. Let TL 

be the topology on I generated by T and 

f[a,b)| 0 4a<b<l"V and let TR be the topology 

generated by T and \ (?,b] | 0 f: a < b < lj . 

R be subsets of I such that I = L L»R, O€„ L, 1 €-R, L 

is T,-open, ?.nd R is TR-open. Then LflN0- 

Proof: Suppose L^R = 0. How 1 £ P. and R is 

TD-open. So there is a number z and a T-open set U such 
R 

that (Z,1]OUCR. But since T is generated by TQ 

and (AX1 , x£ I, there is a number Z' SUCh that 

xn(z',l]CU. Let x = max[z,z'^. Then (x,l]OxCR- 

Suppose that y£(x,l] and that y£x. Let £ > 0. 

Then [y,y+6)f|\ is a basic T-open set containing v. 

There is a rational r such that y< r<y + £• Hence 

r£[y,y+E)nAy, r<T(x,l]nx, and r f y. Thus y is 

Let L and 
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a T -limit point of (x,l]n* and, since (x,l]OxCR, y 

is a T,-limit point of R. Then since L is TL-open, 

R = I - L is T -closed and thus R contains its TL-lim1t 

points. Therefore y'<£.R. Hence (x,l]CR- Let 

c ■ g.l.bim I (m,l]CR • If (c,l] (J R, then there is a 

number m£,(c,l] such that m^R. Cut l/2(c+m)> c, so 

(l/2(c+m),l]CR and m£ (l/2(c+m),l], a contradiction. 

Thus (c,l]CR- Since a basic TL-open set about c is of 

the form [cc+E)^, every basic T,_-open set about c 

contains a point of (c,l]. Thus c is a TL-limit point of 

(c,l] and since (c,1]0, c is a T^limit point of R. 

But since R is ^-closed, R contains its T,_-limit points. 

Hence c£ R and thus [C,1]CR- Since oeL,0<c. since 

C£R and R is TR-open, there is a number w <c such that 

(w,c]OAcCR- Therefore (v/,c]n*CR- Suppose 

a£(w,c] and a^X. LetE^O. Then [a,a+£)C\ *a 

is a basic TL-open set about a. There is a rational r' such 

that a<r'<a+£'. Hence r' £ [a,a+L')0 Aa. 

a^tw.cjPiX, and r' t  a. Thus a is a T^limit point of 

(v/,c]OAc and since MO \C s- a is a Vl1m1t 

point of R. But since R is TL-closed, a£ R. Hence 

(Wlc]CR and thus (w,l]CR- But v/< c = 

g.l.bfm I (m,l]CRl and this is impossible. Hence 

Lf\R M- 

I 
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CHAPTER III 

HILDEBRAMD'S TANGLED TOPOLOGY 

Theorem 3. [2] If x£ I and T is a connected topology 

for I finer than TQ, then for each £. > 0 every T-open set 

containing x must have elements in (x-£,x) for x f  0 and 

in (x,x+£) for X f  1, 

Proof: Let x£l and £>0. Let U be a T-ooen set 

containing x. Suppose x f  0. Now (x-£,x) is T-open since 

TnCT. Suppose (x-£,x) contains no point of U. Then x 

is not a T-limit point of [0,x) and if yC(x,l], y is not 

a T-limit point of [0,x) since (x,l] is T-open. Thus 

[0,x)nT-Cl([x,l))= 0. MOW Since P,x) is T-open, if 

y£[0,x) then y is not a T-limit point of [x,l]. Thus the 

T-Cl([0,x))n[x,l] ■ 9.    Hence I is the union of two 

T-mutually 8 varated subsets of I, which is impossible since 

T is a connected topology for I. Thus if X t 0. (x-£,x) 

contains a pcint of U. Similarly, if X M, <X.**£) contains 

a point of U. 

Corollary 3.    If   *€ I    and   T   is a connected topology 

for   I    finer than   TQ, then no T-neighborhood    N   of   x   can 

contain a half closed interval    J    -/here the end point of    J 

is not    0   or    1    and is a positive distance from   N - J. 

J 
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Proof: Let x£l and N be a T-neighborhood of x. 

Suppose N contains a half closed interval J where the end 

point p of J is not 0 or 1. From Theorem 3, if C /°» 

then (p-£,p) contains points of N and (p,p+c) contains 

points of N. Thus p is not a positive distance from N - J. 

Theorem 4. [2] Let T be a connected topology defined 

on I which is finer than TQ and let x be an element of 

I. If the ^-neighborhoods of x do not form a local T-base 

at x, then x must have a T-neighborhood, call it N, such 

that (0,x]OCx = (xl or [x,l)n Cx = [ x^ where Cx is 

the T0-component of i) containing x. 

Proof: Assume the TQ-neighborhoods of x do not form a 

local T-base at x. Then there is a T-neighborhood N of x 

such that for every £ >0, (x-£ ,x+£) (f. N. Let Cx be the 

T0-component of il containing x. 

Suppose X J» 0 and X f 1. Then Cx is of the form [a,x] 

or [x,b] for some a, b, 0 < a < x, x < b ^ 1. If Cx = [a,x], 

then [x,l)ncx = {x} and if Cx = [x,b], then (O^HC, = 

Now suppose either x = 0 or x = 1. If x = 0, then 

Cx = [x] and hence (C,x]f\Cx = f x]. If x ■ 1, then 

Cx =   M   and thus    [x,l)r\Cx 
= \ xj- 

Theorem 5.    [2]    Let   T    be any connected topology on   I 

which is finer than   TQ, such that for every element   x   of 

I, with the exception of a set of elements   P, the ^-neighborhoods 
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of x form a local T-base at x. Let TL be the topology 

be generated by T and / [a,b) | 0 £ a < b 11 V and let T 

the topology generated by T and < (a,b] I 0 ^ a < b £ 1 V . 

Let L and R be subsets of I such that LLjR ■ l*  o£.L, 

I £" R, L is 7,-open, and R is 7R-open and suppose that 

LOR = 0. Then P contains a non-dcr.umerable number of 

elements of I. 

Proof: Let U be the 70-interior of L. It follows 

that U is the union of at r.ost a denunerable number of 

disjoint T.-open intervals. Let U' be the set of left 

end points of the intervals of U. Let U" be the set of 

right end points of the Intervals of U and U* = U'lJU". 

Let V be the 7-Interior of R. Define V*, V, and V" 

similarly for V. Observe that UO. Assume that a £_U" 

ar.d a Cp- '!ov' a €U" implies that there exists a 

II = (b,a) O for r.ome b <£. Hence, due to the connectedness 

of 7 and Theoreai 3, every T-neighborhood of a must have 

elements in W. Since 7R is generated by 7 and the left 

closed intervals of I, every 7R-ne1ghborhood of a must 

contain elements of M, hence of lid. TMl leads to the 

contradiction that R is not 7R-open since LOR = 0. 

7herefore a £ U" implies ,£L. Hence U" C L. Similarly 

V'C R. 

Let ■(£«'. Then j(£l- Observe that <?( 1s a 

70-limit point of R. Let J be the interval in U with 
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right end point o(. Now L is T,-open. Therefore there is a 

number r and a T-open set E such that [o(,r)nECL- Let 

.3 be the left end point of J. Let F = (a,o()\J (§sf,r)OE)- 

Then FC- Clearly, F -\o( \    is T-open. Now (a,r) is a 

T-open set such that «^ £ (a,r)CF. Thus F is T-open. Clearly, 

F contains no T_-neinhborhood of o{   because c^ is a Tg-limit 

point of R and FC L. 

Choose an element of I, call it y, such that 

y£l-(Ul/VUU*Uv*)' Assume y(£p. Ho.-' either y£.L or 

y£R. It shall be assumed that y£L- The proov is similar 

if it is assumed that y£R. Since y £ L and L 1s TL-open, 

there is a T-neighborhood S of y and a number c > y such 

that y£sO[y.c)CL. Since y£ P, there is an £ > 0 

such that (y-£,y+£)CS. Mence y £ {y-£.y+£>n 0.0 CL. 

Since y£ P, y£u". Therefore either there exists a TQ-open 

interval contained in L containing y or y must be the 

left end point of an open interval contained in L. However, 

this implies y£u or y t U*. a contradiction. Hence 

y£l-(UUvUUMJV*) implies y£P. Mow if U = V = 0, 

then the previous statement says if y£l then y£P, or 

equivalents, I C P- But since I is non-denumerable, if 

U = V = fc then P is non-denumerable, ending the proof. 

Hence assume that Ml and observe that the proof follows 

similarly if it is assumed that V t  0. 
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Define A = UlJV. The number of "^-components in A is 

at most denumerable since A is the union of at most a denumerable 

number of disjoint Tg-open intervals. If A consists of a finite 

number of Tg-components, there exists a TQ-open interval of U 

which is closer to 1 than any other TQ-open interval of U. Let 

d be the right end point of this maximal TQ-open interval of U. 

Since d£u" and U"CL. d^L, and hence d t 1. Now either 

there is no maximal TQ-open interval of V to the right of d, 

or there is a first one. Suppose there is no maximal open in- 

terval of V to the right of d. Then (d,l] contains no 

point of AUU*UV* and thus (d,l]0 But since 

d£u-CP. £d-1]Cp-  Suppose thers is a f1rst T°"°pen interval 

of   V to the right of   d.    Call  its left end point    e.    Then 

since   e£v    and   V«£ R, «€«•    ;!ov'   <d'e)   contains no 

point of    AUU*UV*    and thus    (d.e)O    But since 

deU"CP   and   eO'Cp. E^O    Thus in either case, 

either   [d,l]Cp   W   W.elCP-    Hence either   P    is non- 

denunerable and the proof is complete or   A   must contain a 

denumerable number of TQ-components. 

If   A   consists of a denumerable number of T0-components, 

form a set   t   as follows.    Let   B}A.    Place   l£ B    *   1 

is 1n   u*   or   V*.    Place   0   in   B    if   0    is in    U*   or   V*. 

Let   qfcB.for   Q£ I. If    q    is tho end point of two distinct 

T0-components of   A.    notice that   I   is an open set under   TQ. 

It follows that    I - B   is a closed set under   TQ. 
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Now assume that z 1s an isolated point of I - B under 

TQ. The case where z£(0,l) shall be considered since the 

proof is similar if z = 0 or 1. Then there exists a T0-open 

interval, say (k,h) where k <z <h, such that 

(k,h) - (z^CB- Therefore each element of (k,h) - ^z J is 

an element of A or an end point of two distinct ^-components 

of A. Observe that since Z£B, z is not in A and is not 

an end point of two distinct ^-components of A. It follows 

that for some m, where k<m <z or z<m <h, that either 

(m,z) or (z,m) must contain a denumerable number of 

non-overlapping ^-components of A, say K(, 1 » Mi-  •• 

such that K< is closer to z that K. if 1>J.« is an 

end point of K,. and such that exactly one point is between 

K, and Ki+1, 1 = 1,2,' • •• Without loss of generality it 

may be assumed that *<&**)>  « • ».*.' ' - Not1ce that 

since U and V are the union of disjoint yopen intervals, 

the T0-components of A are elements of U or V and hence 

each is a T0-onen interval. Now for some 1 suppose that 

Kl and Ki+1 are both element, of   U. Then iq can be 

written in the form (r,s) and Ki+1 in the form (s.t). 

Therefore (s}CR since  [s}0 **»»« ™   <*•« 1s 

in the T0-inter1or of L, hence in U, and therefore a 

Vcomponent of A. Then (r,t) being a T0-component of A 

implies that R, is not a T0-component of A, which is a 

contradiction. However tyC*Cl.    before K. and 
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Ki+i    are not both elements of   U   for any   i.    Similarly 1t can 

be shown that   Ki    and   Ki+i    are not both elements of   V   for 

any    i.    Hence there exists a   j    such that   KjCu   and 

K>lCv-    Let   c   be the common end point of   K.    and   Kj+i. 

Since  (c]CU"   and   U"CL,   {c}CL   and since   (c}CV 

and   V'CR»   {c\CR-    But this contradicts the hypothesis 

that   LflRM-    It follows that   I-B   contains no Isolated 

points under   TQ. 

It now follows that   I - B   is perfect since    I - B   is 

TQ-closed and contains no isolated points under   TQ.    Since 

I-B   is a compact Hausdorff space which is perfect, either 

I - B   is the empty set or contains a non-denumerable number 

of elements.    [4, Th. 2-80, p.  88]   Since the number of 

T0-components in   A   is at most denumerable, the number of 

elements of   U'U V    is at most denumerable.    If   x£ I - B, 

then   xCl-(UUV).    tot If   x€I-(UUVUU*UV*), 

then   x€ P.    Thus every element of    I-B, with the exception 

of at most a denumerable number of elements of   U'U v"« is 

1n   P.    If    I - B   is not empty, this results 1n   P   being 

non-denumerable. 

Suppose that   I - »   1« the empty set.   Since   U r I, pick 

one ma,1mal T0-open Interval of   II.   Call Its right end point 

,.   Then   90"0   and thus   9 t ' € R.   Mow   9   ».«•*♦■ 

V    forlf 1t«ere, 9fc«   »»*•   ''O    «   •€»"    HenCe 

9£B   which implies   ,£1-6   and thus   1-6   1s not empty. 
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Therefore it follows that   P   consists of a non-denumerable 

number of elements and the proof is complete. 

Definition 1.    [2]   Remove the middle 1/3 intervals of    I 

as in the formation of the Cantor set and label them as follows: 

(a1,b1)-(l/3,2/3), 

(c1,d1)=(l/9,2/9),(c2,d2)=(7/9,8/9), 

(a2.b2)-(l/27,2/27),(a3,b3)=(7/27,8/27),(a4,b4)-(19/27,20/27), 

(a5,b5H25/27,26/27) 

Continue the above process, taking out the middle 1/3 of Intervals 

not yet labeled at the nth stage and calling them (•f.bj) if 

n is odd or (C^) ^ n is even. Define M, N, and K 

as follows: 

H » W 1^   where   I, ■ (a,,^), 

o© 
N =vrTJi   wnere   J1 = (ci»<V' and 

K.L^VCKI^-^VCI^)-^}-^}. 

r-'i 

Let   T'    be the topology for    I   which has as a subbase 

Then   T    will be called the tangled topology on    I. 

Let   T'    be the topology tor    i   mm* ■«« —  

?> j"> 
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Theorem 6.    [2]    If   T'    Is the tangled topology on   I, then 

(I,T")    1s connected. 

Proof:    Assume that   I    is not connected under   T\   Then 

there exist   sets   A   and   B   such that   h\}$ » I. AfiS • •• 

A   and   B   are both open and closed proper subsets of   I.   Without 

loss of generality, assume   o£B.    Therefore the set   A   must 

have a greatest lower bound, call  it   a. 

Case I.    Assume   a£A.    It is apparent, since   o£B, that 

a >0.    If every T'-subbasic open set which contains a contains 

points of    [0,a), then every T'-open set which contains   a 

contains points of   [0,a).    Let   S   be a T'-subbas1c open set 

containing   a. 

Suppose   S    is a T -open interval.    Then obviously   S 

If 
contains points of    [0,a)    and hence points of   B^ 

Suppose   S = MU[P}   where   P£K U{o]U % [b^ . 

a£M, then this situation is essentially the same as the 

previous one.    Thus assume that   ft. - *U(t)   where 

.€KU(0]uRM.    Mow   ft**    ^   a£K, there is an 

interval    <«.o,>C*   w1th   ai<b1<a"   ThUS   $   C°ntain$ 

points of    [0,a)    and hence points of   B.   _ 

Suppose   S-HU{pJ   -here   P€ {iJUH (ci j'    Again 

we may assume   a-p   without loss of generality.    Now   e f I, 

for if   . - 1. A - {l]   which is not a T'-open set.    Thus 

ecSW'    There is an interval    (c^O   with   Cj<d.<a. 

Thus^S   contains points of   [O.e)    and hence of   B. 
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Therefore   a    is a T'-I1mit point of   B   such that   aff B 

and   B    is not a T'-closed subset of   I, which contradicts the 

assumption. 

Case II.    Assume   a£B.    Either 

afcMUMU £, KW SM^iSW- 

a€ KU{o}u i?l{bi]» or   ■ "K 

If   a £ H U N U fcft«l}U ^{c.](j 8{*f j - then each 

T'-r.oighbTfhood of   a   contains an interval of the form 

[a,b)    for *OBtt   b>a.    Cut   B    is an open set of   (I.T'J 

and then must contain an interval    [a,b)   for some   b >a. 

Therefore   a   would not be, as defined, the greatest lower 

bound of   A. 

If   a£KUto}Uj3{bj] .thenslnce   a£B   and   B 

1s T'-op~n, for OCTO   £">0, 

(•,8+£)nMC(a-e.a
+£>n (^H)CB. Thus the end 

points of the intervals of N that are 1n (a.a*£) are in 

B. Let b£K end b£(a,a+£). Suppose b£A. Then 

since A UT'-open, b6(M*£)D (»^W)C*. a 

contradiction. So for any point b£K, b must be in B If 

it is in (a,a+£). Hence, if x£(a,a+£) and x^r-Cl(N), 

then x£ 3. Therefore, since a is the greatest lower bound 

of A, A must contain a science of intervals of N approaching 

a from the right. Choose one of the intervals in this se- 

ance, call it (c,d), s,ch that (c,d)C (..**/«■ ■"" 

r-neighborhood of d contains an interval of the form (e.f) 
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where   e^d / f.    Hence, from the construction of   M   and the 

fact that    (a,a+£)f)MCB, the Interval    (d,f)   contains 

points of   B   for every   f.   Therefore   d   is a T'-I1m1t point 

of   B   and, since   B   1s T'-closed, d£ B.    But 

(a,a+£)f\ NCA   and from the construction of   N, the Interval 

(d,f)    contains points of   A   for every   f.   Thus   d   1s also 

a T'-11m1t point of   A, a contradiction. 

If   a ■ 1, A « 9.    However, A   was restricted to be 

non-empty, a contradiction. 

Therefore 1t follows that   T'    leaves    I   connected. 

Theorem 7.    [2]    If   T   is a finer connected topology for 

I   than   T0, then any connected subset of    I   under   T0   will 

be a connected subset of    I   under   T. 

Proof:    Observe that from the statement of the theorem 

it follows that    I    is connected under   T; hence, 1t Is necessary 

only to consider proper subsets of    I.    Let   J   be a proper sub- 

set of   I    which is connected under   TQ, that is, J    is an 

interval contained in   I. 
Case I.   Assume   J    is a closed interval. Let 

J-Ca.b]   where   0<a<bO.    Assume   J   is not a connected 

subset of    I   under   T.    Therefore there exist A   and   B   such 

that   AU B - J, A M, B M. T-C1(A)H B - *. and 

AOT-CHB)-*.    Now either   a£A   or   a£B and either 

b£A   or   b£B. 

Assume   a£A   and   b£ B.    The proof is similar if It is 

assumed that   b£ A   and   a^B.    Define   [0.a)ljA - C   and 
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(b,1]IJB'D.    Observe that   C\J 0 ■ I, C t 0, and   DM. 

Now the   T-CKOOD - T-Cl([0,a)UA)fl ((b,l]UB),    Since 

CflD ■ 0, the   T-Cl(C)f) D » 0   unless   D   contains a T-limit 

point of   C.    But   BO T-C1(A) = 0   and since   a£A, 

BO T-Cl([0,a))= 0.    Since   (b,l]    is T-open and 

(b,l]r\(C0.a)U A) « 0. then    (b.l]nt»Cl([0.a)tJ A) - 0. 

Thus the   T-Cl(C)nD s T-Cl([0,a)(J A)f\ ((b,l]U B) ■ 9- 

Similarly, CO T-C1(D) * 0.   So   C   and   D   are T-mutually 

separated sets whose union is    I, a contradiction. 

Now assume   a£B   and   b£B.    The proof is similar if 

1t Is assumed that   a£ A   and   b£ A.    Define 

E a [0,a)UBU(b,l].    Observe that   EUA » I, E f 9. and 

A * 9.    Now the   T-C1(E)0 A = T-Cl([0,a)UBU(b,l])DA. 

But the   T-Cl(B)f)A ■ 0   and since   a,b£B, the 

T-Cl([0,a))n A c P   and the   T-Cl((b,l])n A - 0.    Thus the 

T-Cl(E)f\ A «= 0.    In a similar way it can be shown that 

EOT-C1(A)=0.    So   E   and   A   are T-mutually separated 

sets whose union Is    I, a contradiction. 

Hence, If   J    is a closed Interval of   I, J    1s connected 

under   T. 

Case II.    Assume   J   is a half closed interval.   Assume 

that   J   does rt contain Its right end point.    The proof is 

similar if it 1s assumed that J    does not contain its left end 

point.    Let   J - [a,b)    where   0&i4b£t«    Let    1    be the 

smallest positive integer for which   b - 1/1 > a.    Then   J   can 
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be written as ^ [a,b-l/h]. By Case I of this theorem, for 

each n, [a,b-l/n] Is connected under T. Since a 1s In 
oo 

each of the Intervals, It follows that J = ^ [a,b-l/n] 

Is a connected subset of I under T. 

Case III. Assume J 1s an open Interval, that 1s, J 

contains neither of Its end points. Let J ■ (a,b) where 

o£a<bO.   Then   J « (a.c) UCc.b)   where   a<c<b. 

It follows from Case II of this theorem that both   (a.c]   and 

[c.b)   are connected subsets of   I   under   T.   Hence, since 

they have the point   c   In common, this union is a connected 

subset of   I   under   T. 

Corollary 4.   Any connected subset of   I   under   TQ   1s 

a connected subset of   I   under the tangled topology   V. 

Proof:   Theorem 6 establishes that   V    1s a connected 

topology for   I.    Observe that 1n the definition of   V    all 

open sets of   I   under   T0   are also open sets of   I   under 

r.   Hence   T'    is a finer topology for   I   than   TQ.   There- 

fore it follows from Theorem 7 that any connected subset of 

I   under   T0   Is a connected subset of   I   under   V. 

Theorem 8.    [2]   Let   V    be the tangled topology for   I. 

Let   11 be the topology generated by   T'    and 

{ [a.b) I  0 * a < b <■ l]   and let   T*   be the topology generated 

by   V    and   {(a.b] \ 0 £ a < b£ l].   Then   T^1. U.D 

is connected, and there exist sets   L«   and   R'    such that 
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1'\JR' = I, o£L\ l£ R', L'    is T^-open. R'    is T^-open, and 

L'O R' " 9- 
Proof: Observe that Theorem 6 insures that T' is a 

connected topology for I. From the definition of T' it is 

obvious that T' is finer than TQ. Now define the following 

sets where the symbols M, N, K, bv  c,. a., d1 have the same 

meaning as in the definition of T\ 

ao 
P « MU{o5uKU^{bi] , 

Let   x£ P.    Notice that if   x€.M, then 

X£(!1U[0])O(0,1)CP   and that   M u{o]   and   (0,1)   are 

subbasic elements of   T'.    If   x - 0, then 

XC(HU(O})0 CO.DC P   and   1°>V   is a subbasic e}ement 

of   T\    If   x£K   or   xe^fKl' then 

xe(MU{x])O(0,DCP   and   NU(>]   is a subbasic element 

of   r.    Thus    P    1s an open set in    I   under   T'    and hence 

in   I    under   fj.    Now for any    t. Uf^f)    is T'-open.    Thus 

L« - PU }5{4 'PU^ {[a1.b1)*i   is TL-open. 

Let   y€Q.    If   y^N, then   y £(N ufcl$>n «U)CQ 

and   HU(li   and    (0,1)    are T'-subbasic elements.    If   y " 1. 
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then   y£(N(j{l?)O(0,1]CQ   and   (°>}1    Is a subbaslc 

element of   T\    If   y£ ^(c^, then   y£ (MU{y{)0 «U)C Q 

and   NL/(y]    is a subbaslc element of   T'.    Thus   Q   1s a 

T'-open set 1n    I    and hence a TR-open set 1n   I.   Now for any 

1, (€f«4{1    ^ T^-open.    Thus 

R- = QU^{djj - QUi
Vri/{(c1.d1]}   is Tft-open. 

Observe that   L'UR' «I,O^L',and    l£R'.    It is 

quite apparent that   L'O R' ■ 0- 
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SUMMARY 

The author has exhibited a topology   T'    which provides 

a negative answer to Stallings [1] question.   Observe that 

V    1s as uncomplicated a topology as any which answers 

Stall1 rigs'  problem.    Theorems 3 and 4, along with Corollary 3, 

tend to dascrlbe the additional open sets which were added to 

TQ   to form   V    while Theorem 5 assures that 1t Is necessary 

for    I    undor a topology satisfying StalUngs' conditions 

to have a non-deruimer*b1e mtar of points at which the 

T -neighborhood system does not form a local base. 
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