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Hex is a tree game with several Interesting properties. 

It can be  shown that Hex can never end in a draw,  and that the 

player who moves first can win if he plays correotly.    Also 

the player who moves first can lose If he plays his first 

move  Incorrectly.    The problem is thus to determine the cor- 

rect  moves for this player to win. 

Small games of Hex are analyzed,  and the possibilities 

for the first move  investigated.    A winning strategy for 

7x7 Hex is given. 
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CHAPTER I 

Introduction 

Hex is a tree game (defined in chapter II) with several 

interesting properties. Hex never ends in a draw.  Either 

White, the player who moves first, or Black, the other player, 

can force a win.  If Black can force a win, then White can 

force a win. This leads to the conclusion that White can 

force a win.  All of this is established in chapter II. 

Although it Is known that White can force a win if he 

plays correctly, a winning strategy for the general n x n 

Hex game, where n is any positive integer, has yet to be dis- 

covered.  Chapter III investigates some basic principles of 

strategy and gives paired strategies for Hex games of sizes 

2 x 2, 3 x 3, U x 1|, and 5 x 5. 

In chapter IV some winning and losing opening moves for 

White are explored. And finally a winning strategy for 

White in a 7 x 7 Hex game is developed. 



CHAPTER     II 

The Outcome of Hex and Beck's Hex 

Definition:     A hexagon for the purposes of this paper is a 

regular hexagon as  defined  in the usual Euolidean geometry, 

together with the area enclosed by it. 

Definition:     A Hex board is a set of n    hexagons arranged in 

the form of a rhombus, where n is a positive  integer  (see 

figure  1 below).    POP the sake of this discussion the Hex 

board will be positioned with the top,  bottom,  left and 

right  edges as  shown so that an acute comer is located in 

the   lower left. 

Figure  1.    A 7 x 7 Hex Board. 

Definition:     A move consists of a player's placement of a 

marker on one of the hexagons of the Hex board, which then 

remains there for the remainder of the game. 



Definition:  A set of two or more hexagons Is said to be 

connected (or equlvalently joined or linked) provided it la 

connected aa a point set with the usual plane topology. 

That is a set of two or more hexagons is said to be con- 

nected if It is not the union of two mutually separated sets 

Definition:  A white chain is a set of connected hexagons, 

each containing a white marker. 

Definition:  A black ohaln is a set of connected hexagons, 

each containing a black marker. 

Definition:  The first rank is the row of hexagons whioh 

makes up the bottom edge of the Hex board.  The second rank 

is the row of hexagons adjacent to and immediately above 

the first rank. The third rank is the row of hexagons ad- 

jacent to and immediately above the second rank.  Similarly 

define the fourth, fifth and so on up to the n  rank, 

whioh is the row making up the top edge. 

Definition:  The first file is the row which makes up the 

left edge of the Hex board. The second file Is the row of 

hexagons adjacent to and immediately to the right of the 

first file.  The third file is the row of hexagons adjaoent 

to and immediately to the right of the second file. Similarly 

define the fourth, fifth on up to the n  file, whioh is the 

right edge of the Hex board. 



To specify a particular hexagon,   It Is only necessary 

to give the numbers of its rank and file respectively. 

Ordered pair notation will be used to give the rank and file 

numbers of any hexagons under consideration.     For example 

(3,  5)  refers to the hexagon located  In the third rank and 

fifth file of some Hex board. 

Rules  of Hex:     There are two players and they alternate 

moves  throughout the game.    The player who moves first is 

called White,  and the other player is oalled Black.    White 

starts the game by placing a white marker on any hexagon of 

the Hex board.     Black then moves a black marker to any of 

the remaining hexagons.    Then White moves;  then Black,  and 

so forth for rest of the game.    No hexagon can have more 

than one marker played on it. 

White's purpose is to construct a white  chain which 

includes one hexagon from the first rank and one hexagon 

from  the nth rank.    Black's purpose is to form a blaok chain 

which includes one hexagon from the first file and one hex- 

agon from the n      file. 

The game is over as soon as either player accomplishes 

his purpose or when there are no more vacant hexagons on 

which to play. 

Lemma 1: White and Black cannot both succeed in forming 

their respective chains. That is White and Blaok cannot 

both win. 



Proof:     The rules stipulate the game is  concluded as 

soon as either player has succeeded in forming his  chain to 

join his two edges.    Since the players alternate moves,  it 

is clear that one player must win at least one move before 

the other. 

Lemma 2:     If every hexagon on the Hex board  is covered with 

a white or black marker there is either a white chain Joining 

a hexagon in the first rank to a hexagon in  the nfch rank, or 

there  is a black chain Joining a hexagon in the first file 

with a hexagon in the nth file. 

Proof;     Suppose the Hex board is completely covered 

with white  and black markers and there Is neither a white 

chain Joining one of the hexagons of the top rank  to one of 

the hexagons of the bottom rank, nor a blaok  chain Joining 

one of the hexagons of the first file to one of the hexagons 

of the nth file. 

For the sake of argument, add another row of hexagons 

to the left side of the Hex board, to form another file, 

and place a black marker in each of these additional hex- 

agons.  Denote the Hex board together with this additional 

file of black markers as the augmented Hex board. 

Define a pair as a set of two connected hexagons, one 

of which is covered by a white marker, called the left 

hexagon, the other of which Is covered by a black marker, 

called the right hexagon. 



There are at moat two markers adjacent to both of the mem- 

bers of the pair. Using the orientation determined by the 

pair, the marker in front of the pair ia called the pre- 

ceding marker, if it exists. Denote the other marker which 

is adjacent to both of the markers of the pair as the 

following marker, if it exists. 

Note that every pair has associated with it either a 

preceding marker or a following marker, or both. And every 

pair need not have associated with it both a preceding and 

a following marker. 

Suppose a given pair has associated with it a preceding 

marker. A new pair can now be formed by using the preceding 

marker and the marker of the opposite color in the given pair. 

This new pair is called the preceding pair relative to the 

given pair.  Similarly, if the given pair has associated with 

it a following marker, a following pair is determined relative 

to the given pair. 

Now consider the black markers in the top rank of the 

Hex board. There is at least one black marker whioh is join- 

ed to the left side of the augmented Hex board by a black 

chain.  Choose the right most such black marker in the top 

rank. This marker is not on the right side of the board 

since by assumption there does not exist a black chain Joining 

the left side to the right side of the Hex board. Therefore 

the marker immediately to the right of the black marker under 

consideration is a white marker. These two markers form a 



pair with a preceding marker,  but with no following marker. 

Denote this pair as  the initial pair. 

Since the initial pair has a marker preceding it,  there 

ia a pair preceding the initial pair;  denote this pair as 

the second  pair.    Note that   the black marker(s)   in the 

initial and second pairs are connected as defined above,  and 

thus form a black chain.    The white markers of the initial 

and second pairs are also connected and thus form a white 

chain.    To continue this process,  if the i     pair is defined, 

and has a marker preceding it,  the  (i + l)3    pair is defined 

as the pair preceding the 1*    pair. 

Suppose that k pairs have been defined as   indicated 

above,   where k ia  some positive  integer, with the property 

that  the  set of white markers of the k pairs form a white 

chain,  and  the set of black markers form a black chain.     If 

there  is a marker preceding the kth pair,  then the  (k + l)s 

pair is the pair preceding the kth pair, as above,  and has 

the property that the white  markers of  the  (k + 1) pairs 

form a white chain,   and the black markers of the   (k + 1)   pairs 

form a black chain. 

Suppose  the kth pair does not have a preceding  marker. 

Then the kth pair ttiat be on an edge.    The kfch pair cannot 

be on the  top edge to the  left of the initial pair,  since 

by assumption the black marker of the initial pair is joined 

to the left edge by a black chain.    Also the kth pair cannot 

be on the top edge to the right of the initial pair,  since 
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the black marker of the k  pair is connected to the black 

marker of the Initial pair with a black chain and the black 

marker of the initial pair is in turn connected to the left 

edge by a black chain, thus violating the assumption that the 

black marker of the initial pair is the right most black 

marker connected to the left edge of the augmented Hex board 

by a black chain.  The kfch pair cannot be on the left aide 

of the augmented Hex board since both markers of the k  pair 

would then have to be black contrary to the definition of a 

pair. The kth pair cannot be on the bottom edge, sinoe the 

white marker of the initial pair would then be connected to 

the white marker of the kth pair and would violate the assump- 

tion that there does not exist a white chain joining top and 

bottom edges of the Hex board. Finally, the kth pair cannot 

be on the right edge since the black marker of the kfch pair 

would then be Joined to the left edge of the augmented Hex 

board through the blaok marker of the initial pair. This 

would violate the original assumption that there does not 

exist a black ohain connecting left and right edges of the 

Hex board. Therefore, the kth pair cannot be on any edge, 

and thus must have a preceding marker. Therefore, for any 

positive integer, k, there is always a (k + l)sfc pair. 

Suppose the markers of the initial pair can be identified 

by two different integers. That is, suppose there is a positive 

integer, r, greater than one so that the markers of the ini- 

tial pair are identically the markers of the rth pair. Since 



the rfch pair is defined in terms of the (r - l)st pair, 

the rth pair muat have a following marker. But as noted 

above the initial pair does not have a following marker; 

so the markers of the initial and r* pair cannot be identi- 

cally the same. Therefore there is no such number r dif- 

ferent from one which identifies the initial pair. 

Suppose there is a pair of markers which is identified 

by the above system with two different integers, say h and 

j 30 that h ^ j. Prom the definition of pair, the hth and 

J th pairs have the same preceding and following markers. 

Therefore the   (h - l)st and the  (J  - l)3fc pairs must be 

identically the same  markers.    Let q be the greatest pos- 

itive integer so that  (h - q)  and  (j  - q)  represent the 

same pair.    The  (h - q)th and the  (j  - q)th pair does not 

have a following marker,  since if it did it would determine 

a following pair identified by  (h - q - 1)   and also by 

(j  - q - 1)   contradicting the definition of q.    Therefore 

the   (h - q)th and the   (j   - q)fch pair must be  the  initial 

pair since   it  is the  only pair with no following marker. 

But this  is  impossible since the  initial pair cannot be 

represented by two different integers.    Thus each pair can be 

included exactly once in the sequence of pairs.    Since there 

can be only a finite number of pairs on an n x n Hex board, 

there is a positive  integer,  m,  so that the mth pair is de- 

fined and exists but with no pair preceding it.    This  contra- 

dicts the  above argument that every pair has a pair preceding it. 
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Therefor© there la either a white chain Joining the 

top to the bottom of the Hex board, or there is a black 

chain joining the left aide to the right aide of the Hex 

board. 

Theorem 1;  A game of Hex never ends in a draw. 

Proof:  Since both players cannot complete their 

respective chains, and the game must continue until either 

a player has won or the board has no more vacant hexagons, 

by lemma 2 a draw is impossible. 

Definition;  A game is a tree game provided: 

1) At each turn, the number of possible moves a player 

can make is finite. 

2) There are exactly two players, and they alternate 

turns. 

3) There is a certain number of turns a game can last, 

called the order of a game, and when that number is reached 

the outcome of the game is decided. 

l±)    Each player knows the moves of the other player. 

Definition:  By the outcome of a game for a given player is 

meant upon the completion of the game, the assignment of one 

of the values: win, lose or draw to the player. 
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Definition:    Denote the player who moves first In a tree 

game as White;  denote the other player as Black. 

Definition:    The natural outcome of a game Is: 

1) "White to win" if White can force a win,  despite 

any possible moves Black can make. 

2) "Black to win" If Black can force a win,  despite 

any possible moves White can make. 

3) "draw"  if neither White nor Black can force a win, 

Lemma 3:     Every tree game has a natural outcome. 

Proof:    Every tree game of order one has a natural 

outcome,  since White alone moves and wins if possible,  and 

draws if he can't win,  and allows Black to win if he can 

neither win nor draw. 

Assume all tree games of orders 1,  2,  3#   •••# 0 ■ 1» 

have a natural outcome.    Consider a tree game of order n, 

and  suppose White  has k possible first  moves.     After White 

has chosen a first move,  say alternative j,  the remaining 

portion of the game is a tree game of order n -  1, with 

Black assuming White's role in moving first.    Therefore 

every tree game of order n has a natural outcome,  and by 

induction every tree game  must have a natural outcome. 

Lemma k'-     I" Hex»  either White or Black can force a win. 
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Proof:     Hex being a tree game has a natural outcome. 

By theorem 1 above,  a game of Hex cannot end In a draw; 

therefore either "White to win" or "Black to win" is  the 

natural outcome of Hex. 

Lemma ft:     If Black can force a win in Hex,  then White  can 

force  a win. 

Proof;     If Black has  a winning strategy, White can use 

this  strategy by simply moving anywhere and pretending he 

hasn't moved.    So now Black assumes White's role by moving 

first,  by ignoring the move White has made.    If at some point 

White needs  to move to the hexagon occupied by his first 

marker,  he merely moves anywhere else and pretends he has 

moved  to the hexagon occupied by his first marker. 

Thus if not moving first is an advantage. White can 

essentially throw away a move and put himself in Black's 

preferred position. 

Theorem 2:     The natural outcome for Hex is "White to win". 

Proof; since either White can force a win or Black can 

force  a win, and if Black can force a win then White can 

force   a win, it must be the  case that White  can always force 

a win. 

Definition:    Beck's Hex Is the game of Hex with the restrictions 
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that the n x n board have the integer n at least 2,  and 

that Black is given the choice of where White must play his 

first marker. 

Lemma 6;     If White can force a win in Beck's Hex,  then 

Black can force a win in Beck's Hex. 

Proof;     Let Black move a white marker to an acute cor- 

ner of the Hex board.    And then let Black play a black marker 

next to the white marker and on a black edge  (i.e.  either 

the right or left edge,  depending on which acute corner 

Black has  chosen to place White's marker).    Now it is nec- 

essary only to show that Black's position is at least as 

strong as White's position before the first move. 

Black now plays as  if both of the markers so far played 

are black,  and thus follows White's  supposed winning strategy 

until he thinks he has won,  still believing the marker in 

the  acute corner is black. 

If Black has  Joined the  left  side of the board  to the 

right   side with a black chain,   then Black has won.     If,  how- 

ever the White marker in question is  part of Black's winning 

chain,   it  must be  the case  that Black has  moved  a black mark- 

er into the only other hexagon adjacent to the white  marker 

in the acute corner,  or the black chain contains the black 

marker Black played next to the white marker he played for 

White's first move.    In the first case the black marker 

J 
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adjacent to the first white  marker is also adjacent to the 

black marker on  the Black edge,  so the white marker in 

question is not necessary to the black chain.     In the second 

case  the blaok chain already includes the black marker which 

Black played next to the white marker in the acute oomer, 

and thus  the white marker is still unnecessary to the black 

chain,.since Black's first  marker is  already part of Black's 

edge. 

So if White does have  a winning strategy for Beck's 

Hex,  then Black can use it  to force  a win for himself. 

BttflMM |>    White can lose  a game of n x n Hex, where n is 

2 or larger,   if he plays incorrectly on his first move. 

Proof;     This follows  directly from the previous lemma 

since White's move to an acute comer is clearly incorrect. 
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CHAPTER III 

Some Principles of Strategy and Paired Strategies 

Definition;  A paired strategy consists of a hexagon called 

the initial hexagon together with a collection of pairs of 

hexagons with the property that White wins if he plays as 

follows: 

1) White's first move is to the initial hexagon. 

2) If Black plays to one half of a pair of hexagons, 

then White plays in the other hexagon. 

3) If Black does not play in a hexagon which is paired 

with another hexagon, then White can play anywhere. 

Principle 1:  A marker in a hexagon adjacent to two vacant 

hexagons, which are on an edge of the Hex board, can be linked 

to the edge with a chain of the same color. 

Proof:  By assumption the marker is adjacent to two 

hexagons which are on the edge.  The opponent can cover at 

most one of them on a given move, leaving the other alternative 

to the other player. 

Principle 2:  Two markers of the same color bordering on the 

same two vacant hexagons can always be connected. 

Proof:  As in principle 1 there are two possible ways 
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a paired strategy for this situation. The hexagon marked 

"w" is the initial hexagon with a white marker in it. Each 

hexagon has a number in It which corresponds to another 

hexagon with the same number. 

To show that White can force a connection between w 

and the edge shown, it is necessary to demonstrate that 

Black cannot connect the left and right edges, which is the 

only way Black could prevent the connection. 

If Black can form a black chain from left to right, he 

must play a black marker to either d or g. Suppose Black 

has played a marker to hexagon d.  White responds by playing 

a white marker to e.  This forces Black to play to h. Now 

it is clear Black cannot Join the left and right sides, 

since White now moves to f which is conneoted to w through e 

and to the edge by principle 1.  Suppose Black has moved to 

g and forces White to move to c.  If Black moves to d the 

above argument holds.  If Black moves to h, White moves to f 

which Is connected to w through c and to the edge using 

principle 1. 

Principle h:     Given the situation illustrated in figure h, 

with a white (or equivalently a black) marker in the hexagon 

marked "w", White (Black) can Join the marker w to the edge 

indicated, provided White (Black) has a white (black) marker 

in one of hexagons c, d or e, and Black (White) has not moved in 

any of the ten hexagons and it is Black's (White's) first move. 
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a paired strategy for this situation. The hexagon marked 

"w" is the initial hexagon with a white marker in it. Each 

hexagon has a number in it which corresponds to another 

hexagon with the same number. 

To show that White can force a connection between w 

and the edge shown, it is necessary to demonstrate that 

Black cannot connect the left and right edges, which is the 

only way Black could prevent the connection. 

If Black can form a black chain from left to right, he 

must play a black marker to either d or g.  Suppose Black 

has played a marker to hexagon d. White responds by playing 

a white marker to e.  This forces Black to play to h. Now 

it is clear Black cannot Join the left and right sides, 

since White now moves to f which is conneoted to w through e 

and to the edge by principle 1.  Suppose Black has moved to 

g and forces White to move to c.  If Black moves to d the 

above argument holds.  If Black moves to h, White moves to f 

which is connected to w through c and to the edge using 

principle 1. 

Principle U: Given the situation illustrated in figure k, 

with a white (or equivalently a black) marker in the hexagon 

marked "w", White (Black) can Join the marker w to the edge 

indicated, provided White (Black) has a white (black) marker 

in one of hexagons c, d or e, and Black (White) has not moved in 

any of the ten hexagons and it is Black's (White's) first move. 



Figure l\.'    Principle Ij.. 
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Figure 5.    A paired strategy for Principle k- 

Proof;     If White has a marker in hexagon w and one in 

hexagon d,   then he  can connect w to the  edge with a white 

chain by using principle 2 to join w to d and principle 1 to 

link d  to  the edge. 

Suppose White has  markers at w and e   (the case for markers 

at w and  c follows symmetrically).    Figure 5 shows a paired 

strategy for this oase.    If Black can prevent White's con- 

nection,  he must form a black chain which joins one of the 

hexagons on the left side of  the diagram to either of hex- 

agons b or i.    Suppose Black has moved  to b and White moves 

to  a according to the above strategy.    Black must move to 

d to which White answers with c.    But now it is clear White 

has   won,   since  c  is  connected   to w through a,  and  to  the  edge 
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by principle  1.    Black cannot make  a connection from the 

left   side  to  hexagon i,   because White responds to   i with 

h and   the white markers  at h and  e   isolate   the black marker 

at  i.     So White can always  connect w to the   edge  provided 

he has a marker  in any of hexagons   c,  d or e. 

Black can use White's  strategy if he has a black marker 

at w and another black marker  in any of hexagons   c,   d or e. 

The   proof of  this  is  identical to  the White  version except 

for   the   substitution of   "black" for "white"   and vice versa 

everywhere   in the  above  argument. 

Strategy 1:     Figure 6 gives  a paired strategy for 2x2 Hex. 

Figure 6.     A Paired Strategy for  2x2 Hex. 

Proof:     The hexagon marked w  can be  connected  to the 

first rank by principle  1. 

Prom the diagram it is  clear   that White can win by 

moving to hexagon   (1,   2)   for his first move,   since he has 

only  to rotate  the Hex board  l80°   and use   the above  strategy. 

If White makes his first move  to an acute corner, Black 

can win as   in Beck's Hex. 
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Strategy 2:    Figure 7 gives a paired  strategy for 3x3 

ilex with White's initial hexagon in the center of the 

shorter diagonal of the Hex board,   (2,   2). 

Figure 7.    A Paired Strategy for 3 x 3 Hex. 

Proof:     White's  initial hexagon,   w,   is  connected   to 

top and bottom edges by principle 1. 

Strategy 3;    Figure 8 gives a paired  strategy for 3x3 

Hex with White's  initial hexagon in an obtuse  corner of the 

Hex board;   i.e.   either of hexagons   (3»   D   °r  (1*   3)   are 

possible   initial hexagons. 

Figure 8.    A Paired Strategy for 3 x 3 Hex. 

Proof:    Figure 8 shows the strategy for White's  initial 
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hexagon at  (3»  !)•    The strategy for White's  initial hexagon 

at  (1,   3)   is the sane as for  (3, 1)   if the Hex board is 

rotated   through l80°. 

If it is possible for Black to defeat this strategy, he 

must connect either of hexagons  (2,  1) or  (1,  1)   to the 

right edge with a black chain.    If Black moves to  (2,   1) 

White moves to  (2,  2)  and forces Black to move to  (1,  2), 

and White wins by moving to   (1, 3).     Suppose Black starts 

by moving to  (1,  1).    White  responds with (2,  3).    I* Black 

moves to   (2,  1)   the above argument holds.  So Black must move 

to  (1,  2),  and White counters with  (1,  3).    N°w ifc ia clear 

that White has won since (2,  3) ia  connected  to the bottom 

edge of the board  through (1,  3) and  to the top of the board 

by principle 1.    Black cannot connect the right edge  to 

either   (1,   1)  or   (2,   1)  of the left   edge,   and  so White must 

win. 

Strategy fc    Figure 9 gives  a paired  strategy for 3 * 3 Hex 

where White's  initial hexagon is either  (2,  1)  or  (2,  3) 

which are not located on the shorter diagonal of the Hex board, 

Figure 9.    A Paired Strategy for 3 x 3 Hex. 
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Proof:    Figure 9 gives  the strategy with White's 

initial hexagon at   (2,   1).     By rotating the Hex board  l80°, 

figure 9 gives the strategy for (2,  3). 

Black cannot connect  (1,  1)  to the right edge of the 

Hex board   since White's initial hexagon at   (2,   1)   is   connected 

to the bottom by principle  1.    Thus if Black is  to prevent 

a white  chain from top to bottom of the Hex board,  he  must 

link one   of  the  three right hexagons   to  (3,   1).     Suppose 

Black moves  to   (2,   3)   and White answers with   (3,   1).     White 

has won  since   (2,   1)   is  connected to   the top   through   (3#   1) 

and to the bottom by principle 1.     If Black  started by moving 

to  (3,  3),   white's response at (3,  2)   forces Black to  (2, 3) 

and  the  above   argument holds.     If Black moves   to   (1,   3),   again 

White's  response  to  (2,  2)   forces Black to   (2,   3)   which has 

been shown  to be a losing position for Black.     Therefore 

Black cannot prevent White from winning. 

Strategy h demonstrates   that White's  initial move does 

not have   to be along either  diagonal of the Hex board for 

White  to win,   for at least one size Hex board. 

Strategy 5:     Figure 10 gives   a paired  strategy for k x Ij. Hex 

with White's   initial hexagon on the short diagonal,   in a 

hexagon nearest to the center of the board.     That is, White's 

initial hexagon may be either  (3» 2)   or  (2,   3). 
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Figure   10.     A Paired  Strategy for k x k Hex. 

Proof:    Figure  10 gives a paired strategy for White's 

initial hexagon at  (3,  2);   the case for White's initial 

hexagon at   (2,   3)   Is   the   same  as figure  10 with the Hex 

board rotated through l80°. 

White's initial marker at (3, 2) is connected to the 

top of the Hex board by principle 1, and to the bottom by 

principle 3« 

Strategy 6:    Figure  11 gives  a paired  strategy for 5x0 

Hex with White's  initial hexagon in the center of the Hex 

board,   (3,   3). 

Figure 11.    A Paired Strategy for 5x5 Hex. 

Proof;     White's  initial marker at  (3,  3)  is connected 

to  the top of the Hex board by principle 3 and likewise  to the 

bottom. 
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CHAPTER IV 

Some Winning and Losing Opening Moves for White 

Strategy 7: In k. x Ij. Hex, White can win by moving his first 

marker to an obtuse corner.  Suppose White moves to Ik, 1) 

for his initial move.  If Black moves to any of the hexagons 

with an x in it, in figure 12 below, White can move to (2, 2) 

and win, since (2, 2) can be connected to (U, 1) by pri nciple 

2 and to the bottom edge by principle 1. 

Figure  12.     Some Possibilities  for Black. 

If Black answers White's   initial move   to   (ij.,   1)  with 

any   of   (3,   1),   (2,   2)   or   (1,   2),   White  can  move  to   (2,   3) 

which can be   connected to the bottom edge by principle   1, 

and   to the  top edge   either by moving   to   (3,   2)   and   linking 

with   (l|,   1)   or by moving   to   (3,   3)   and  connecting  to   the   top 

by principle   1. 

That   leaves   two  other possibilities  for Black  to  counter 

White's   initial move   to   (h,   1)»   namely   (1,   3)   and   (3#   2). 

Suppose  Black  chooses   (1,   3)«     White  can answer by moving to 

(3,   2).     If Black does not move  to any of the five remaining 
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hexagons   to   the   left of   the   short diagonal,  White   can move 

to   (2,   1)   and win,   since   (2,   1)   can be  connected   to  the 

bottom by principle   1 and   to   (3,   2)   by principle  2 and   thus 

to  the   top.     If Black moves   to one of  the  five   vacant 

hexagons   to   the   left of  the   short diagonal, White  can  move 

to   (1,   h)•     Black must now move   to  (2,   3)   to prevent White 

from moving  there  and  completing his  chain to   the   top.     So 

White   now moves   to   (2,  U)   and wins,   since  Black  cannot block 

both   (3,   3)  which completes  White's  chain,   and   (3,   i\)  which 

can be   connected   to  the top by principle   1. 

Suppose Black decides   to move to   (3»   2)   to counter 

White's   initial move   to   (U,   1).     White  now moves   to   (2,   3). 

If  Black  makes   a move   to  the  right of  the   short  diagonal, 

White   moves to   (3,   1)   which can be connected  to   the bottom 

edge by either moving  to   (2,   1)   and using  principle  1 to 

link   to   the bottom,   or moving to   (2,   2)   and  linking  to 

(2,   3)   which can be   connected  to   the  bottom by principle   1. 

If   31ack moves   to  the  left  of the short  diagonal with the 

exception  of   (1,   3)   which is   part  of  the   principle   1 connection 

from  (2,   3)   to   the bottom edge,   White  moves  to   (3»   3)  which 

can be   connected   to  the   top by principle   1. 

Therefore White   can win by  moving  to  an obtuse corner of 

the Hex board   in a k x k game. 

Strategies  5 and 7   show that White  can win a l\ x 1+ Hex 

game  by  moving   anywhere  on   the  short diagonal for his first 
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move.  Unlike the 3*3 Hex game, a h X k  game can not be 

won by White starting from a hexagon not on the short dia- 

gonal.  Suppose White makes (3» 1) his first move in a i+ x Ij. 

Hex game.  Black can win by moving to (2, 3) which is linked 

to the right edge by principle 1. Black has two ways of 

winning from this position: either by moving to (1, 2) and 

linking to the right edge by principle 1 and to (2, 3) by 

principle 2, or by moving to (l±,  1) and connecting to the 

right edge by principle 1;. White cannot stop both of these 

and so loses. 

If White's initial move is to any of the remaining 

five hexagons to the left of the shorter diagonal, Black 

can move to (3, 2) which can be connected to the left edge 

by principle 1 and to the right edge by principle 3. So 

White cannot win if his first move is to the left of the 

short diagonal, and by rotating the Hex board through 180° 

it can be seen that White cannot move anywhere to the right 

of the short diagonal for his first move and expect to win. 

Thus the only first moves for White to win are along the 

short diagonal in a k  x k  Hex game. 

This differs from the 3^3 game since strategy 1+ 

demonstrates that White can win if he plays his first marker 

to (2, 1) which is not on the short diagonal.  However (2, 1) 

and its counterpart (2, 3) are the only places which are not 

en the short diagonal from which White can win by playing 

his first move there.  The acute corners (1, 1) and (3, 3) 



27 

are losing first moves for White  as noted  in the discussion 

of Beck's Hex.    The only other possibilities for White's 

first  move are   (1,   2)   and   symmetrically   (3,   2).     If White 

moves   to  either of these  hexagons  for his first  move,   Black 

can move  to   (2,   2)  which can be   connected  to the  left and 

right   edges of the board  by principle 1,   and White  loses. 

Figure   13 below shows   the  hexagons   for White's first  move 

which guarantee White   can win if he plays   correctly from 

then on.     These  are  marked with a   "w".     If White plays first 

in any of the hexagons marked   "1",   White   loses  if Black 

plays   correctly.     A possible generalization of figure 13 

Figure 13.     Winning and Losing First  Moves for White. 

to n x n  Hex is   that White   can win  if his first  move is   to 

any hexagon along  the  short diagonal,  but   this has  not been 

proven. 
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Strategy 8:     A strategy for White  to win a?x? Hex game. 

White's  first  move   is  to   (l±,   I4.).     White would like   to 

connect   (i|,   li)   to   the top  and bottom edges,   and  certainly 

Black would  like   to prevent this.     If Black moves   to any 

hexagon   in the  first three  ranks,   or  in  the fourth rank  to 

the   left  of   (hi  h)1  White will consider Black's  move as   an 

attack against White's  link from  (I|.,   1;)   to the bottom edge; 

if Black moves to any other hexagon, White will consider  the 

move   as  an attack  against White's   link from (1;,  k)   to the 

top edge. 

Suppose Black decides to try and block White's connection 

from (ki  h)   to the bottom edge.     If Black moves anywhere in 

the first rank except for  (1, $)   and  (1,  6)  White  can move 

to   (2,  5) which can be connected  to  (ki  h) by principle 2, 

and  to  the bottom edge by principle   1.   If Black moves   to 

(1,  6),  White  can move to   (3,  3)  which can be connected to 

ill, h) by principle 2,  and to the bottom edge by principle 3. 

If Black  moves   to   (1,  5) $  White  can move   to   (3,  k)   and  con- 

nect to the bottom edge either by moving to  (2,  3)  or to 

(2,   6)   and using principles  1 and  2.     Black cannot blook both 

of  these  moves,   and  so White can   complete his  link to  the 

bottom edge.     Thus Black  cannot block White's  connection 

from   (!(.,   k)   to the bottom by moving anywhere  in the first 

rank. 

If  Black  moves anywhere  in the  second rank except for 

(2,   5),   White   can  move to   (2,  $)   and  connect to  the bottom, 

using  principles   1 and 2.     If Black moves to   (2,   $),  White 
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moves to   (3#   3)   and  connects to the bottom edge using 

principles   2 and   3.     Thus Black cannot block White's  con- 

nection to  the bottom by moving anywhere   in  the  second rank. 

If  Black moves  anywhere  in the  third rank other than 

(3,  k)   or   (3»   5).   or in  the fourth rank  to the   left of 

(if,  I4.) >   White   can   connect   (kt h)   to the bottom edge by 

moving  to   (2,   $)   and using principles   1 and 2.     If Black 

moves   to   (3,   5)»  White  can move to   (3,   3)   and   connect to the 

bottom edge using principles 2 and   3*     Therefore   if Black 

can block White's  connection to the bottom edge,   Black must 

play  to   (3, 1|).     Similarly,   at this  point  in  the game the 

only move  Black can make   to prevent White from connecting 

(4, U)  to the  top edge  is to  (5,  k)• 

Suppose Black  moves to (3,  I4.).     White now moves   to 

(2,   k)•     Black  can now connect  the black  marker at   (3, U) 

to either  the   left or right edges.     White's   strategy  is to 

permit  one   such connection and deny the other.     If Black 

moves  to  any hexagon  in the  intersection of the first  three 

files and  the first four ranks,  White  can  connect   (U»  k)   to 

the bottom edge by  moving  to   (3,   5)   and then either to  (2,   5) 

and  linking to   (2, k)   or to   (2,   6)   and using principle 1; 

Black  cannot block both of these  possibilities. 

So  suppose  Black moves to one of  the hexagons   In the 

intersection of the first   three ranks  and  the   last  three 

files,   but not  in   (1,   5).     White  must protect his  principle 

1 connection from  (2,  k)   to the bottom if Black moves  to 
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either (1, 1|) or (1, 5), by moving to the other.  If Black 

moves to either (2, 5) or (3, 5), White moves to (1;, 2); if 

Black moves to any other hexagon in this area, White moves 

to (3» 5) forcing Black to (2, 5) and then moves to (ij., 2). 

Suppose Black has moved to (3, $) and White has moved 

to (U,  2).  The white marker at (ij., 2) is connected to the 

bottom edge by principle l±.     So Black must prevent White 

from connecting (]+, 2) to the top edge. 

If Black moves to any hexagon in the first file other 

than (7» 1)> or to any hexagon in the intersection of the 

last three files and the last four ranks, White can move to 

($,   3) and win by using principles 2 and 3« 

If Black moves to either (7# 1) or (6, 2), White moves 

to (5» 3) and connects to the top by either (6, 3) and 

principle 1, or by moving to (5# 5) and using principle 2 

twice and principle 3«  Black cannot prevent both possibil- 

ities for White's connection to the top. 

If Black moves to (k,   3), White moves to {$,  2) which 

Kives Black two possibilities to prevent White from connect- 

ing (5, 2) to the top by either (7,   1) and principle 2 or 

(6, 2) and principle 1, and these are for Black to move to 

(7, 1) or (6, 2).  White now moves to (5, 3) which forces 

31ack to (6, 3).  Now White wins by moving to (5, 5) and 

connecting to (I4., U.)  with principle 2 and to the top by 

principle 3.  Therefore Black's original counter to White's 

dl, 2), (I4, 3) is a poor choice for Black. 
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If Black moves to   (7»   2),   White   moves   to   (7,   1). 

Black must move   to either   (6,   1)   or   (5>»   2)   to prevent 

White from making a principle 2  connection to   (7,   1).     If 

Black moves   to   (6,   1),   White  moves   to   {$,   3)   and  wins by 

either moving   to   (6,   2)   and connecting to   (7,   1)   or by 

moving  to   (5,   5)   and   connecting to the  top by principle   3» 

and to   (k,   k)  by principle 2.     If on  the other hand,   Black 

moves to   (5,   2),     White   moves   to   (1|,   3).     How iJlr.ck must 

prevent White from connecting   (1+,   1+)   to the  top.     By an 

argument  similar to the discussion of Black's  first  move, 

the only possibility for  Black to block White's   connection 

from  (k,  h)   to  the top  of   the Hex board   is for Black to 

move   to   (5,  k)•     White's   response   is  to   (6,   k)•     N°w if 

Black moves  to  any hexagon  in the   intersection of files 

5,   6  and 7 with ranks 5,   6 and 7,   White wins  by moving 

to  (5,  3)  and  connecting  to either  (7,   1)  or to   (6, 4). 

So  Black must  move  to one  of hexagons   (6,   2),   (6,   3)   or 

(5,   3).     White  now moves   to   (k,   6)   which is connected to 

the  top  of  the  board by principle 2|.     This forces  Black 

to   (!+,   5).     White now moves  to   (2,   7)  which forces Black to 

(1,   7).     Then White  moves   to   (2,   6)   forcing Black  to   (1,   6), 

and  finally White  moves  to   (2,  5)   and   connects  to   (2,   k) • 

If  Black had  moved  a marker to   (2,   6)   earlier,   and White 

responded by moving  to   (3,   $)  before  moving  to   (1|,   2), 

White's   marker  at   (l;,   6)   would be  connected  to   ik,  k) 

and   thus   to  the bottom,   and by principle k to the  top. 
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If  Black moves to   (7»   3)   to counter White's move to 

(l|.,   2),   White   moves  to   (6,   2)  which forces Black to   (5,   2). 

Eow White  moves   to   (U,   3)   forcing Black to   (5,   3).     White 

can now win by moving to  (£»  k)  and  either connecting to 

(6,   2)   or  moving   to   (6,  5)   and using principles  1 and 2, 

in order   to connect  to  the  top. 

If Black  moves  to   counter White's   (k»   2)   to   (7,   U)» 

White  moves  to   (6,   3)   which is connected   to  the top  edge 

by principle  1,   and  to   (k,  U)  by principle 2.     If Black 

does not  move to any of hexagons   (6,   2),   (5»   2),   (5,   3)» 

(k$   3)   or   (5,   h) 3  White  can  connect   (1+,   2)   to   (6,   3)   by 

moving  to   (5,   2)   or   (5,   3)   and using principle  2.     If 

Black moves to   (6,   2)   or   (5,   2)   White  moves   to   (h,   3)     and 

connects   to   (1+,   !+)   which in   turn is  already connected to 

the  top   through   (6,   3)   and  principles  1 and  2.     If Black 

moves   to   (k,   3),   (5#   3)   or   (5,  k),  White  moves   to   (6,   1) 

and  connects to the top  edge  through   (6,   3)   by moving  to 

(6,   2)   or moves   directly to   (7,   1).     So White would win. 

If Black moves to   (6,   3)   to  counter White's  move   to 

Ik,  2),  White   moves   to   (5,   3) which forces Black to  move 

to   (6,   2).     Now White   can win by moving to   (5,   5)   and 

using principle   2  twice and  principle  3.     And   again White 

would win. 

If Black moves to   (6,   1+)   to counter White's   (l+,   2), 

White moves  to   (6,  3)   and wins as before  if Black had 

moved to   (7i   k)• 
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If Black  counters White's move  to  (I4.,   2)  by moving  to 

(5,  2), White  moves to  (Ij.,   3).    The  only way Black can 

prevent White  from directly  connecting  (i|,   Ij.)   to  the   top of 

the board   is for Black to  move to   ($, l\.).     White  answers 

with   (6,   1+) .     Now White  can win by one of two ways.     If 

White   moves  to   (5,   3)»   then   this marker can be   connected 

to   (6,   l\.)   and   to  the  top by  principle 1,   or  to   (6,   2)   and 

use principle   1.     If White   moves  to   (ij.,  6),   he   can win by 

connecting this   marker to the top by principle 1; and   to   the 

bottom by either connecting   to   (l|f   I4.)   or by moving to   (2,  7) 

and   connecting   to   (2,  I4.)   as   before. 

If Black moves  to counter   (l|.,  2)  by  playing   to   (5,   3). 

White   moves  to   (5,   k)>  which is   connected  to  the   top  of the 

board by principle   3.     This   forces  Black to   (4,   3).     White 

now moves   to   (6,   1)   which is  connected to   (!(.,   2)   by principle 

2 and   forces Black   to   (7,   1).    White's next  move   is   to   (6, 2) 

which forces Black  to   (7»   2).    White's next  move  is   to   (6,   3) 

which forces  Black to   (7,   3).    White  now wins by moving   to 

(6,   f>)   and  connecting to the top by principles  1 and   2. 

Black's  only other serious   counter to White's   (1+,  2)   is 

(5,   k)•     White  responds  to   this by moving   to   (6,   k)•     If 

Black  moves  to   the   intersection of  the last four ranks and 

the   last  three files,   White   can go to   (5,   3)  which can be 

connected   to the top by moving  to   (6,  2)   and using principle 

1 or  moving  to   (6,   3)   and  connecting  to   (6,   k)  which  is   it- 

self  connected   to  the  top by principle 1.     If Black  moves  to 
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either   (7,   3)   or   (7,   k)%  White  moves   to the other to  insure 

his principle  1 connection from (6,  it)   to the top. 

If Black moves to any of  (7,  1),   (7,  2),   (6,  1)  or 

(6,   2),  White   moves to   (5,   3)   and forces Black   to  move  to 

(6,   3).     Then White  moves  to   (it,   6)   and wins by connecting 

it  to  the   top by principle  it,   and  to  the bottom by moving 

to   (it,   5)   and   connecting to   (1|,  It)   or by moving to   (2,   7) 

and connecting   to   (2,   It)   as  before. 

If Black  moves to either of   (it,   3)  or   (5,   3),   White 

moves  to   (6,   1)  which forces  Black to   (7,   1).     White   then 

moves  to   (6,   2)   which forces   Black  to   (7,   2).     Then White 

moves  to   (6,   3)  and connects  to  (6,  It) which is  in turn 

connected  to the top by principle 1 and wins. 

If Black   moves   to   (6,   3),  White   neves  to   (5,   3)   which 

forces  Black  to one of   (7,   1),   (7,   2)   or   (6,   2).     (It,   2) 

is now linked   to   (It,   It)   and   so White   can  move   to   (It,   6)   and 

win as before  by linking   (it,   6)   to the  top  by principle it 

and  to the bottom by either  connecting to   (it,   U)   or by moving 

to (2,  7)   and eventually connecting to (2, it). 

If Black moves  to   (5,   2),   White   moves  to   (it,   3)   and 

connects   to   (it,  it).     White   can win by moving  to   (5,   3)   and 

connecting to   (6,  it)   or to   (2,   6)   and  to  the   top by principle 

1,   or White   can win by moving  to   ik,   6)  as before,   and  forming 

a connection   to the   top by principle  it,  and to   the bottom by 

either connecting to   (it,   it)   or moving  to   (2,   7)   and eventually 

connecting to   (2,   it). 
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Therefore once White  has  moved  to   {l\.,   2),   Black can 

not  stop White from winning.     So suppose on his  second   move, 

Black raovoa   to one of the hexagons   in the   intersection of 

the  first   three files  and  the  first four ranks.     This  permits 

White  to move  to  (3»   5)   and  connect to the  bottom edge by 

either moving   to   (2,   6)   and connecting   to   (2,   k) which is 

connected   to   the bottom edge by principle   1,   or by moving  to 

(2,   6)   and   connecting to the bottom edge by principle  1. 

Black must try and prevent White   from connecting   (k,  k) 

to the  top,   and this  can only be possible   if Black moves  to 

(5, I+).    White responds with (6, k) •     If Black tries  to 

connect   (5,  1+)   to the  right edge,   then White  moves  to   (5,   3) 

and  wins by either moving to   (6,   3)   and connecting  to   (6,  Ij.) 

which can be   connected  to  the top by principle  1,   or by 

moving to   (6,   2)   and  connecting to the   top by principle  1. 

If Black tries to  link   (5, k)   to the   left  side of  the board, 

White  moves to   ik$   6)   which can be   connected  to the   top by 

principle k and to   (3,   5)   by principle  2. 

Therefore White wins  the   7 x 7 Hex game  if he   plays  a 

marker to   (k,   k)  for hls  opening moV«,   and  follows   this 

strategy. 
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CHAPTER  V 

Summary- 

It has been shown  that the game of Hex never  ends   in 

a draw,   and   that   the fact  that Hex is a  tree game  of order 

n2 implies   either White  or Black  can force  a win.     And if 

31ack can force   a win,   then White  can force a win.     Thus 

the natural outcome of Hex is White  to win. 

So White   can win if he plays   correctly.    The   discussion 

of Beck's  Hex shows not  only that White  can  lose,   but  that he 

can  lose  If he  makes a mistake  on his first  move.     The  strat- 

egies for  3 x 3,   k x k,   5 x 5,   and  7x7 Hex games  show that 

White has  an  advantage  if he moves  in or near the  middle  of 

the Hex board.     The  short  diagonal  of the  Hex board  seems to 

be   important  for White's   first move  as can be  seen from the 

discussion of k * U Hox»   since White can  only be   sure  of 

winning  if he   moves   to a hexagon on the   short diagonal of 

the Jj x k Hex board. 

Finally,   the  strategy for  the  7 x 7 Hex game   shows  how 

White  can win  a non-trivial Hex game. 
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