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In   this   thesis,   sequences  are  shown  to be  inadequate   to define 

certain  concepts   in general  topological   spaces;   the   idea of a net   is 

introduced as   a  generalization of  a sequence,   and   this   inadequacy  is 

overcome.     Cauchy nets of   real numbers   are defined and a  Cauchy 

criterion   for   them is proved.     The  usual   theorems   for convergence of 

sequences   are  generalized   to nets  and many basic  topological  concepts 

are  defined  in   terms of  convergence of nets.      Finally,   alternative 

methods   for discussing  convergence  in  topological  spaces  are defined 

and  it   is  shown  that  convergence  in  terms of   them  is equivalent   to 

convergence   in   terms of  nets. 
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INTRODUCTION 

This  paper will  show  the inadequacy  of  sequences  to  define 

certain  concepts   in  topological  spaces  as   fundamental as   the   real 

numbers.      It  introduces  a generalization of  a sequence,   called a 

net,   and shows  that with nets it   is  possible   to overcome  this 

inadequacy.     The  idea of a  Cauchy net  in   the   real numbers     R     is 

defined,   and a Cauchy  criterion   for nets  in     R    is  proved.     Then 

it   is  shown that  subnets  exist   (corresponding to subsequences)   and 

generalizations  of  the  usual  theorems  on sequences  are  given. 

Basic   topological concepts   such  as Hausdorff  and  compact  spaces, 

continuous  functions,   and   the closure operator are   then   shown  to 

be  definable in   terms  of  convergence of nets.     Finally,   alternative 

methods  of discussing convergence  in  topological  spaces  are  given 

and  it   is  shown   that  convergence   in  terms of   them is  equivalent   to 

convergence  in   terms  of nets. 



CHAPTER I 

NETS 

It   is well  known  that  sequences  are  adequate  to  define   the 

closed sets   in all  first  countable   topological   spaces.     Since 

every metric  space   is   first  countable,  sequences  are   of great 

importance   in  analysis;   however,   there are  certain topics   in 

metric  spaces,   even one  as  fundamental as   the   real numbers,   for 

which  sequences  are  inadequate.     Perhaps   the most   significant  of 

these   topics   is   the Riemann  integral  as a  "limit" of  Riemann sums. 

If     f   :   [a,b]  + R    is  a  function  from the  closed bounded 

interval     [a,b]     to  the   reals     R,   then  to  find  the  Riemann   integral 

of     f,  we   proceed as   follows: 

A partition     P =   Ut\l0     °*     ta.bl     is  a  finite set   of 

points such   that     a =   xQ  <   xx   <  x2   <       •    •   •   <   x^  <   XR  =  b. 

If     P    and    Q    are partitions  of     [a,b],   P     is   said   to be   finer 

than     Q     if     Q c   P.     Now,   let     P =   (x^'fl    be  a partition  of 

[a,b].     We   say   that     P*      is  a marking of     P     if 

P* - P U  U±   |   i ■   1,2,-   •   -,n    and     f±  z   [x^.x.]}.     We  will 

say   that     P'      is   a marked partition, where   it will be understood 

that  we mean     P'     is  a marking of  a partition     P.     If    P#      is  a 

marked partition  of     [a,b]     and    f     is any  function on     [a.b] 
n 

then  define  the  Riemann sums  by    S(f.P')   =   fa^i} (xlT*t-Y' 



In  order to   find   the  Riemann  integral of     f    over     [a,b],   it   is 

necessary to  consider a "limit" of  a "sequence" of  an  uncountable 

number  of partitions of     [a,b]     and an  uncountable number of 

markings of  any given partition.     Because  a sequence   is a   function 

defined on   the countable  set of positive integers,   it obviously 

is   inadequate   to handle   this  limiting situation.     What is  needed 

is  a  generalized  concept  of a sequence  and  its  limit. 

A sequence has  as  its domain   the positive  integers,   Z   .     We 

want  an ordered set  which has   those properties  of     Z       actually 

necessary  to  define   the   convergence of a sequence,   along with 

additional  properties necessary   to  define  the  convergence  of a 

generalized   sequence.     Listed below are some  properties of     Z 

which may or may not be   important   in our theory of  convergence. 

(1)     Z       is  preordered by    S;   i.e., 

(i)  If  n e Z , then  n < n. 

_+ 
(ii)  If  n(),n1,n2 c Z  such that nQ < n1 and 

n1 s n.  then nQ < n^. 

(2) Z+ is partially ordered by  <; i.e., 

(1)  holds and if n^^ i; Z  such that  nQ < n1 

and  n. < nQ, then nQ ■ n^ 

(3) Z+ is well ordered by  <; i.e., each non-empty subset 

of  Z+ has a first element. 

(4) Z+ is totally ordered by <; i.e., if *0>ni  E z • 

then either nQ < nx  or n1  i  n 0" 



(5) If    n  c  Z   ,   then    n    has  an  Immediate    successor, 

n + 1. 

(6) Z       is   countable. 

(7) ^  is compositive on Z ; i.e., if n
0'
ni e z • then 

there is an n, £ Z  such that  n„ < n^     and n^^ < n2- 

Of the above seven properties of  Z , only (1) and (7) are used 

in defining the limit of a sequence.  The very important fact 

that  Z  is well ordered is of no consequence in the theory of 

sequences, as is the fundamental porperty (5) concerning immediate 

successors; and of course, the countability of  Z   is a definite 

inadequacy, as we have seen in the example above.  So, in our 

search for a generalization, we make the following definitions. 

DEFINITION 1:  A non-empty set  D is said to be directed by 

a binary relation «  iff  (D,-<)  is a preordered set and 

Va.b e D, 3c e D such that  a -< c and b «< c. 

REMARK 1;  Here and throughout the remainder of this paper, 

the symbols V and 3  will be used merely as abbreviations for 

the words "for each" and "for some" or "there exists" respectively, 

and not as logical operators. 

DEFINITION 2:  If  (D,-<)  is a directed set and X  is any 

topological space, then a net in X  is a map #I » + X, 

We must now define the concept of convergence for nets. 

Recall that a sequence  S : Z+ - X  converges to a point xQ e  X 

or has limit xQ (S - *0>  iff  V neighborhood (nbd)  U  of xQ, 

3 n  c Z+ such that  V n * nQ, S(n) t  U.  Also  S accumulates 



Ut a point x„ F X (S >• x.) iff V nbd U of x and V n i 'L , 

3 m i Z , m • n, and S (m) E U. When S ► x. it is said that S 

is eventually in each nbd of x„; when S *•*., it is said that 

S is frequently in each nbd of x_. As with sequences, we make 

the   following definitions. 

DEFINITION   3:     A net     <f :   D -*■ X    converges   to  a point    xQ  e   X 

(y-* x  )     iff     V  nbd U    of    x   , 3dQ  £   D    such   that    V d  e  D, 

d„ < d,    y(d)   E U.      If   <f ■* xQ,  we say  that    <f   is   eventually   in 

each    nbd    of    x_. 

DEFINITION  4:     A net   + I  0 ■* X    accumulates  at     xQ   e   X 

(<y>»xn)     iff    V    nbd U    of    xfi    and   V d e   D, 3d'   .   D,   d •<  d   , 

*0> 

*0'    "*    *        "     o 

(P(d')   E U.  If V *°  x0. 
we say tnat **    is frequently in each 

nbd  of  XQ. 

We  are now  in  a better position to discuss  the  Riemann   integral. 

Let     D =   {P'|     P'     is a marked  partition of     [a,b]}.     It   is  easy  to 

see   that     D     is   directed by < ,  where   if    P',   Q* e   D,   P' <   Q 

means     P'   c  Q*.     Now for     f   :   [a,b] *  R,   consider 

S  =   (S(f.P')   |   P'   c  D)     of  Riemann sums.     S     is a  net  defined  on 

the  directed  set     D    of marked partitions  of     [a,b],   and  if S -     r, 

r  E   R,   we  call     r     the  Riemann  integral  of     £    over    Ja^bl    and 

usually   denote     r    by    l\ f(x)dx.     Note   that   the  above  enables us 

to   discuss   the   integrability of     f     if we know the   limit of    S 

exists;   we might  ask if we can decide  about   the convergence  of a 

net without  knowing explicitly  the  limit.     The answer  is  to  be 

found   in  a "Cauchy criterion"   for nets. 



CHAPTER  II 

CAUCHY NETS 

Recall   that   In discussing the  net    <f l D ■+ X, we  said 

<? *  x       iff    V nbd  U    of    xQ,    3 &Q e D     such   that   V d t   D, 

d    4   d,   f (d)   e   U;   we  see that  the   convergence  of    <f    is deter- 

mined    by  the  values  it  assumes on points  of     D     following some 

point     dn e   D.     With   this  in mind we make  the   following definitions: 

DEFINITION 5:     If (D,^)     is  a directed  set,   then 

T    =  {d  E   D   I   a -< d}     is  called  the   terminal   set   determined  by_ 
a 

a  E  D. 

Now  if   T    is  a given  terminal  set   in a directed  set     D, we   let 

T=(T     |aXx}   =   {T     |   T       is  terminal   in     T }.     It   is easy  to  see 

that     T     is  directed by    »:     The  reflexive and  transitive  properties 

are  trivially  satisfied by     3,  and   if    Tx>Ty  e   T,   then     3    z e   1& 

such   that     x«z     and    y<z.     Hence    T^ => \     and    Ty =. T^.     So, 

T =   (T     I   T       is   terminal  in     T  }     is directed  by    ?. 
1   x   '     x a 

We  can now redefine  convergence of   a net  as   follows: 

DEFINITION 6:     If       V ■   D * X     is   a net   then 9 *   xQ e   X     iff     V 

nbd  U    of    xQ,    3 Ta    such  that    V (T^   -  U,  where 

4*CT ) = f rw) I d E Ta)- 

Now in a manner similar to defining a Cauchy sequence, we make 

the following definition: 



DEFINITION 7:  Let  (D,<)  be a directed set and let <P : D + R 

be a net in R.  f  is said to be a Cauchy net in R iff 

V « > 0, 3 T  such that if  d,d' e T , then  | <?(d) -<P(d')| <  e. 
3 3 

THEOREM 1;        (i)     Every convergent net   in    R     is a Cauchy 

net  in     R. 

(ii)     Every Cauchy net   in     R     converges. 

PROOF:      (i)     Let      <f :   D +  R    be  a net   in    R    which  converges 

to     r.   E   R.     If     <    >  0     is  given,   then    3   T       such   that 
0 a 

V d,d'   c  T  ,   |*(d)  - rQ |  < e/2    and     |?(d')  - rQ |   <    e/2. 

So,      |*>(d)   -    *»(d')|   =   |V(d)   -   rQ  -  V(d')   + rQ   | 

=   | ?(d)   -   rQ -   (*(d')   -   rQ)| 

< | ff(d)   -   rQ|     +   l^(d')   -   rQ| 

< e/2 + e/2 = e. 

Therefore,   | *<d)   -   <0(d')|   <   e ,   so  that     ? is a  Cauchy net   in    R. 

Now  in  order  to prove part   (ii)   of   the   theorem we  proceed as 

follows:     Let    <P    :   D - R    be  a Cauchy net   in    R.     For   fixed but 

arbitrary    t   >   0,   we  know     3   Tg    such  that    Vd.d' E   Ta« 

|  y,(d)   .     ^(d')|    <   t;   so,   we   let     *(a,«.)   =   (  VW    I   d  >    V      be 

the   image of   the   terminal set     Tg    under  V.     We  now prove   the 

following  lemmas about   the    <!>(a,<-). 

LEMMA 1:     For each    e   >  0,   *(a,e)     is  bounded. 

PROOF:     Let    e    >0     be given.     Then since    ^    is a Cauchy net 

in     R,    3 T       such  that    V d,d'   e  I ,   | f*4)   ~    *<*')\   < «• 
3 

Let    <f (d)   E   i(a,e).     Then, 



I «<»(d)|   =   | V(d)  -   ?(a)  +   *»(a)| 

s   | <fi(d)  -   ?(a)|   +   | <fi(a)\ 

< e +  | *>(a) | • 

Therefore,   4>(a,£)     is bounded.     Next we  have  Lemma 2,   which  is 

simply   stated without  proof. 

LEMMA  2:     For  each    e   >  0,   the  closure of    $(a,e),   *(a,e), 

is  bounded,   closed and hence  compact. 

LEMMA  3:      If     a,b  E   D    such   that     a<   b,   then    Ta a Tfa. 

Hence,   $(a,e )   s $(b,«2). 

PROOF: By definition,   if     a,b   e   D    such   that     a< b     then 

T     ^ T   .     By defintion of  a  function and the  closure  operator, 
a         b 

*(a,€-)  = *(b,«2). 

LEMMA 4:     I =   {*(a,e!)    |   a £   D}     is  directed by     =. 

PROOF;     The  reflexive and transitive properties  of     o     are 

trivially verified.     For  the  compositive property,   let     •Ha,^), 

+ (b,e2)   E   I     be  given.     For    a,b   e   D,   we know     3 c   >:   D    such  that 

a< c     and     b < c,   since     (D,-<)     is  directed.     So,   T&   > Tc 
and 

T      i T   .     By   Lemma   3,   tljT[)    '   He,£3)     and     Kb.c,,)    '  *(c,«3). 

Let  us   now make  the   following definition: 

DEFINITION 8:     The diameter  of a set    A    of  real numbers, 

denoted     S(A),   is   the     lub     of     (|a -  b|       a,b  e  A}. 

LEMMA_5:     6   :   I - R     is a net  in     R    which converges   to    0. 

PROOF:     To show    6[*7d70]   * 0,  we  recall  that     <fi   is a 

Cauchy net   in     »    - •***   ^en     £   >   0,   U   : —   that   VJ,l'       T 

p(d) - V(d')| < «/2 

R, so that given 

Now cons ider 



!(a,< )   i    I;    V 'Kd.e')   E   I     such   that     <t>(a,e)    '  *(d,<' )     we  have 

M*(d,fi')]  - 0|   =   |6[«(d,6')]|  =   |lub{|<J»(d)  - «r(d') 

Thus,   MKd.e')]   ■+ 0. 

d,d'  e  Ta}|   < 

LEMMA 6:     aQd  *(d,e)   =   {x}. 

dcD 

PROOF:     We  first  show  this   intersection  is non-empty.     Let 

c   >   0     be  given and consider    $(a,e).     Then     ^   *(d,<:')     is   the 

deD 

intersection  of  a  family of  closed subsets of  a compact  set,   <t>(a,«-). 

By   the   finite  intersection property,   if     aQd *(d,e')   = 0,   then   there 

deD 

must   exist  a   finite number of subsets of    *(a,e),   say    * (dpy> ' 

H^T2),   •    •   •,   Hd^T)     such  that     .^ Hd±,e.)  =  0.     We will 

show  this  is  a contradiction by   the  following construction: 

(d     d     ,   .        d } c T ,  a  terminal  set of  the  directed set     (D,-<). 
,al'a2' '  n a' 

(i)     For     {d1,d2),     3d2*tD    such  that     dj <   d,,*     and 

d2 < d2*. 

(ii)     For     {d1,d2,d3},   consider     d^* ,   D.     We know 

3 d  * E  D    such   that     d2*<   d3*    and     d3«< d3*. 

Hence,   from   (i)   above  and   the  transitive  property of 

.<,   we have     dt<  d^*,   1 e   {1,2,3}. 

(iii)     For     Id1,d2,d3,d4},   consider    d^* e   D.     We  know 

3d  * f   D    such   that     d3*-<   d4*    and     d^< df. 

Hence,   from   (ii)   above and   the   transitive property 

0f «, we have     d.<   d4*.   i  c   (1,2,3,A}, 

(iv)     Clearly  then,   3 dfl* c   D    such   that     d.-<  dn*, 

i e   {1,2,3,-   •   -,n>.     Thus 



Hence T,    s T.     ,   i  £ (1.2,-   •   -.n),   so  that     ,n.   T,     => T.. 
d.          d   . i=i     d. d* 
in* in 

V(T       )   <-*<.$! Td  )   <=   ±Si ^(T
d  

)     imPlies     *<d
n*,€*)   c   i01*(di,e.), 

n* i i 

so  that      .n     <t>(d.,e.)   t 0. 

Now,   to  see   that       n     4>(d,e)     is  a single  point,   we  use  Lemma 

deD 

5   to  observe   that   the   diameters of  the     *(d,e)     are  approaching    0. 

THEOREM  1:     (ii)     Every Cauchy net  in    R    converges. 

PROOF:     Let    <f    be the  Cauchy net   under consideration  and    t   >   0 

be  given.     By Lemma 5,     3*(a,e)     such   that     V   $(d,e' )   e   I, 

*7a7e)   =  fTdT^7"),   |6[*(d,e')]|   < «•     By Lemma  6,  we  know    3 x e   R 

such   that     and ♦73T?')  =   (x}.     So,   x %   *(d,£»);   this   implies 

deD 

V   «fld')   6   HU7),   |#W)   " x   I   < e.     Therefore,  f ■>  x     and  the   proof 

is complete. 

Now  that we  have  a Cauchy  criterion   for  convergence of  a net, 

we  can   discuss   the  integrability of a   function   f     over     [a.b]     without 

specifically  knowing what  value     /^f(x)dx    has,   by making  the   follow- 

ing definition. 

DEFINITION 9=     A function     f   i   [a.b]   -  R     is said  to be  Riemann 

integrable  over     [a,b]     if and only   if   the net     S =   (S(f,P')|p'   is   a 

marked partition  of     [a,b]>     of  Riemann sums   is  a Cauchy net   in     R. 
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CHAPTER III 

NETS   IN GENERAL TOPOLOGICAL SPACES 

After  the example  given  above,  we see  that  a net  is  a  useful 

generalization of  a sequence.     In searching  for generalizations  of 

some   theorems  about   sequences  and subsequences,   we  first  need  the 

concept  of  a   subnet.     Our   initial  attempt  at defining a type of 

subnet might   be as   follows. 

DEFINITION 10:     Let     (D,-<)     be  a directed  set and     <P:   D •> X 

a net   in a  topological  space    X.     Let    D* c  D    be a subset  of     D 

which   is directed by   <     and denote   this   subdirected set  by     (D*,"<). 

Then   the map   <f* = <f\0*   :   D* * X    is a net called a  restricted 

subnet  of   <fi.     We will see   that  restricted subnets  are of  little 

use   in  our  scheme  of having nets as  generalizations  of  sequences. 

Not   even   the  basic   relationships between  sequences  and  subsequences 

are   true  for nets   and  restricted subnets,   as   shown   in   the  example 

which   follows. 

Let     (w+o>,<)     be a directed set  of   ordinals and define 

<P:   w + w ■+   R    by 
*>(x)   = 

C \       if     1  < x  <   a) 

(__l/n     if     x«co+n,   1   < n   < 

Obviously,  V»♦ 0;   but  consider a subdirected  set     (",<)     of 

(«#»,<)     and   the  restricted  subnet   if*   :   u. -  R.    <p* *  1,   since 

P*    is  constantly   defined  to be     1     on     «.     So,  we  have  a net 

converging   to one  point  of   the  space and a restricted  subnet   of     *P 
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converging  to a different point  of   the  space.     This   is an  undesirable 

property   for  subnets   to have.     J.   L.   Kelley,   in order to allow  for a 

generalization of  the  theorem which says  "If a sequence     S    converges 

to  a  point   in  a space,   then every  subsequence of     S    converges   to 

the   same  point",   initially  defined subnets as  follows. 

DEFINITION   11:     Let     (D,<)     and     (E,<)     be  directed sets.     Then 

if     <f> :   D -*   X     is  a net we  say     S   :   E ■* X    is a  subnet  of    £     iff      ^ 

a   function     f   :   E - D    such   that     (i)     S -   *f° f     and   (ii)     For each 

m e  D,   3 n   e   E    such that   if    n   <   p,   then    m ■< f (p). 

Still   a   third way of  defining a subnet   (in   fact,   this  is   the 

definition we  shall  use  in  proving the theorems which  follow)   is 

to   let   the   function     f   :   E ■* D    be a monotone  increasing function 

as   follows. 

DEFINITION  12:     Let     (D,<)     be  a directed  set and     <P:   D ■> X 

a  net   in  a   topological space     X.     If     (E,<)     is  a directed  set  and 

f   :   E -> D     is  a  function  such  that   (i)     If     e1   -  e^   then 

f(e   M  f(e2)     and   (ii)     If     d,d' «   D,   then     3 e  g   E     such   that 

d<   f(e)     and    d' <   £(«),   then   the composite    ¥>»   f   I   I   ► X     is 

said   to be   a subnet  of   the  net    £. 

Since   the  net     ¥i   D   ♦ X    may be denoted     Wd)|d  *  D}   = 

{f» Id   i   D>,   the  subnet     </°  f   I   E -> X    may be denoted 
d 

W(e))|e   £   E}  =   C#f(«)   •   B  E}. 

THEOREM 2: If #1 D + 1 is a net in a topological space X 

such that <P+ x, then each subnet of *, ^ • I * X, converges to 

x. 
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PROOF:  Suppose <? *  x.  Then if  U  is a given  nbd  of  x, 

we know 3 T c D such that if  d e T , <f(.d)   t U.  Now suppose 
a a 

p.   i   E ■* X  is a subnet of <f ; by definition of a subnet, we have 

for a c T , 3 b £ E such that  a <  f(b).  Consider the terminal 

set determined by the above  b £ E, T, , and let  e E T, .  Then 
b b 

b < e, so that  f(b)-< f(e).  Thus, a ■< f(e), so f(e) e T .  There- 
a 

fore,V(f(e)) E U and p. ■*  x. 

THEOREM 3:  If X  is a Hausdorff space, then each net which 

converges in X, converges to exactly one point. 

PROOF:  Assume  X  is Hausdorff and let <f:   D ■* X be a net 

in X  such that P -*  x  and  f*y, x)ly.  Since X  is  T-, we 

know 3 nbds U of  x  and V  of  y  such that  U n V = 0.  Since 

<P->  x we know 3 T c D  such that V d E T , P(d)   e.   U; and since 
3 3 

<?->  y, we know 3 Tb c D  such that Vd' e T^i W)   c  V.  So, 

given  d,d* E D, we know 3 d* E D such that  d ^ d*  and  d < d*, 

which implies ^(d*) E U  and <P (d*) £ V, a contradiction.  There- 

fore, <p  converges to a unique point in  X, and the theorem is 

proved. 

In order to establish the converse of the above theorem, we 

need to recall the concept of the neighborhood system of  x £ X; 

that is, the family of all neighborhoods of the point  x E X, de- 

noted N   .  Note that  W  is directed by  =:  the reflexive and 
x x 

transitive properties are trivial to verify and if  A,B E N^,   then 

certainly  A n B E W  such that  A > A n B and B 3 A n B.  We 

also need to notice that given two directed sets  (D,-<)  and  (E,<), 
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we may direct the cross product  D »   E by defining a relation  < 

on D * E, where for  (d.,e ), (d2>e2) e D * E, we want 

(dj.e.) <(d2,e2)  to mean d±<   d2  and e^  < er  We now are able 

to prove the following theorem. 

THEOREM 4:  If a convergent net f2 : D ■* X converges to 

exactly one point of  X, then X  is T . 

PROOF:  Suppose  X  is not Hausdorff; then 3 x,y c X, 

x 4  y, such that if U  is a nbd of  x and V is a nbd  of  y, 

then  U n V 4  0.  Let  W  and N       be the  nbd  systems of  x and 
x       y 

y  respectively.  We have seen that Wx and Wy are directed by 

and that  (N  x N   ,<)  is a directed set when  <  is defined as 
x   y 

above.  Now define the net 1fl  U%  x Ny - X by «KU,V) c   U n V, 

and notice that V-x  and ^ ■> y, since each nbd  of  x meets 

each  nbd  of y.  Under the assumption that X  is not a Hausdorff 

space, we have exhibited a net in X which converges to two 

distinct points of  X, so the theorem is proved. 

THEOREM 5:  If f: D * X  is a net in X and *f : E ► X 

is a subnet of <P    such that *»f>»x, then <P *>  x. 

PROOF:  Let  U  be a  nbd  of x and  e e E; since <S»f>-x, 

we know 3 a < E, e< a, such that «»f(a) il.  Now  e <  a  implies 

f(e)-< f(a), so that given nbd  U of  x and  f(e) « D, we have 

f(a) r D, f(e)«< £(•). with *(f<a)) > U.  This says that «»>-x, 

and the theorem is proved. 

THEOREM 6:  A net  «» : D > X accumulates at a point  x r X 

iff there is a subnet of *, %   I I - X. «**<* converges to  x. 
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PROOF:        (i)   Suppose    3    a subnet    fL   :   E -► X    of  a net 

*P:   D ■* X    such  that    <»f   ► x.     Then    <Pf 

certainly accumulates  at    x,   so by  the   above 

theorem,   <p)ox. 

(ii) Let <P : D ■* X be a net which accumulates at a 

point  x e X.  Then we know V nbd U  of x 

and V d c D, 3 a e D, d ■< a, such that *>(a) e U. 

Let  D* = {a £ D|f»(a) e U, U a nbd  of  x}  and 

M = {U c x|U is a nbd of  x}.  Now  D*  is 
x 

directed by •< , since  D is directed by K    and 

since $>>»x; we have seen previously that  (^x»~0 

is a directed set.  Also we know that the cross 

product  D* x W  with the relation  S  on 
X 

D* x W , where  (a,U) S (b,V)  means  a-< b  and 
x 

U ^ V, is a directed set.  Let  f : D* * H% •*■  D 

be defined by  f(a,U) = a. 

The function f  satisfies properties (i) and (ii) in the definition 

of a subnet because  D  is directed and because ?*>x.  We will now 

show that <t> o   f - x.  Let  U be a nbd of  x; since *>*»x, we 

know if  d e D, 3 a e D such that  d< a and <f(,a)   ,:   0.  So, 

consider the point (a,U) > D* * N^,   if  (b,V) t   D* « Wx  is such 

that  (a,U) < (b,V), then we have  a ■< b  and U = V.  Therefore, 

*t°   f[(b,V)] = <Kb)   c V c U; that is  V ° f[(b,V)] £ U, so that 

V» f ► x. 
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This   theorem is not   true   for  sequences   in   a general   topological 

space;   R.   Arens   gives   the   following example  in which  a  sequence 

accumulates   to a point and yet has no  subsequence which   converges 

to   that  point. 

Let     X =   Z     *   Z     u   {(0,0)},  where     Z       is   the  set of positive 

integers;   let     C    =   n x  z   .     Define a   topology  on     X     as   follows: 

(i)     If     (0,0)   /A,   A  c X,   then    A    is open. 

(ii)  If  (0,0) t U, then U  is open iff 3 N c Z  such that 

V n > N, U contains all but a finite number of points 

of the n  column C . 
n 

Note that  X  is Hausdorff and that  Z  * Z  c x  is discrete. 

Now consider the diagonal sequence  f : Z  ■*• Z  x Z  defined by 

f(n) = (n,n).  It is easy to see that  f  accumulates at  (0,0). 

Let U be any  nbd  of  (0,0)  and let  kcZ  be given.  There 

is an N E Z+ such that V n 2 N, U  contains all but a finite 

number of points of  C .  Thus there is an  n ! k  such that  U r n 

contains all but a finite number of points of  Cn  and  f(n) = 

(n,n) G U.  We make the following claim:  No sequence in Z  x Z 

converges to  (0,0). 

Let  f : Z+ ► Z+ * Z+ be a sequence.  There are two possibilities 

for the range of  f, f(Z ): 

(i)  f(Z+)  has a finite number of points from the columns 

C ; i.e., f(Z+) n C  = A  is finite, for each n e Z . 
n n   n 

(ii)  There is at least one  n c Z  for which  Cn n f(Z )  is 

infinite. 
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If   (i)   is   the case,   then  the  complement   in     X    of       u     A       is a 

nbd     of     (0,0),   call   it     U,   and    U  n   f(Z+)   =  0.      If   (ii)     is   the 

case,   then   the  complement  in    X     of     C       is  a    nbd     of     (0,0)     and 

obviously     f     is  not  eventually  in  that     nbd.     So,   in  either of  the 

cases above,   f     does not  converge   to     (0,0),   since we  have  exhibited 

nbds     of     (0,0)     with     f    not  eventually  in   those     nbds.     Therefore, 

no  sequence  converges   to     (0,0);   in particular,   no  subsequence of 

the  diagonal  sequence  can  converge   to     (0,0). 

Another example of the same type might be of interest. Let 

X = {f | f : R -*• R is a function}. Define a topology on X as 

follows. For f E X, let F be any finite subset of R and p 

any  positive   real number.     Then define     U(f,F,p) •= 

{g  e  X :(x)   -   f(x)    |   <  p, V x e  F},   and  let 

M    = {U(f,F,p) | V F c R,  and V p > 0}.  Then, for all  f e X, 

the family of  W  defines a topology for X. 

Now let A = {f E X | f(x) = 0 or  f(x) = 1, V x t R, and 

f(x) = 0  for at most countably many x E R}.  If  g : R + R 

is defined by  g(x) = 0, V x r R, it is easy to see that g e A; 

however no sequence of functions in A converges to  g.  Thus 

we have a topological space X and a subset  A  of  X, such that 

there is a point  g £ A having no sequence of points of  A converg- 

ing to it. 

The space  X above does not have the property that each of its 

points has a countable neighborhood basis.  A space with this property 

is said to be first countable, and only if a space is first countable 
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will be  able   to define   the  closed sets by using  sequences.     We will 

prove   in   the  next   theorem  that  nets are adequate   to define   the 

closed sets   in  any   topological   space. 

THEOREM  7:     Let    X    be  a  topological  space  and    A c X.     Then 

x  e   A    iff  there   is a net   in    A    which converges   to    x. 

PROOF:        (i)     Suppose     <p :   D * A    is  a net   in    A    such   that 

*P-* x.     Then   V  nbd    U    of    x,  3 d  e   D     such 

thatVd'   e   D,   d < d', V(d')   c  U.     This   implies 

Vnbd     U     of     x,U n A ^   0,   so  that     x  c   A. 

(ii)     Suppose  now  that     x z A    and  let     W       be   the 

nbd     system of     x    directed by     a.     Then  since 

x E A, V U  c  W  ,   U  n A y 0,   so define   a net 

<f:H    * A    by    <P{M)   e  U n A.     Then    <fi - x, 

since  if     U  e   W  ,   then  V V e   N       such   that 

U   a V, V(V)   cVnAcUnA,   so the   theorem 

is proved. 

Note   that   since     X     is  any  topological  space,   there  may  not 

exist   a  countable    nbd    base   or countable     nbd system of   the  points 

of    X,   so   that  a net,   rather  than  a sequence,   is  needed   to prove   the 

above   theorem. 

It   is also  possible  to  define   the continuity of  a   function 

f   :   X   -► Y     in  terms of  convergence  of nets.     First note   that   if 

<p:   D   ► X     is  a net   in    X     and     f   :   X -> Y     is  any map,   then 

f   o <p :   D   - Y     is  a net  in    Y.     We have   the   following   theorem. 
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THEOREM 8:  A function  f : X > Y  is contin uous  at     X-   i:   X 

iff     f   °  9 *  f^xn^     where     <P:   D ■*■ X    is any net which  converges 

to    xQ. 

PROOF:   (i)  Suppose  f : X * Y  is a map and <p :   D ► X  ii 

KQ    and  f o <P  > f(xQ) a net in X such that <P 

If  f  is not continuous at  x_, then 3 nbd W 

xr of     f (x.)     such  that V nbd    U    of     *.Q, 

f(U)   £ W.     But   this   is a contradiction,   since 

by assumption    V   is  eventually  in  each    nbd    of 

xn     and     f   ° V    is eventually in each    nbd    of 

f(xQ). 

(ii)     Suppose now  that     £  » X * 1     is continuous  at     xQ 

and   that     <f I   D * X     is  a net  such   that   *P - xQ 

but     f°^+f(x0).     Let     W    be  a    nbd    of     f(xQ); 

then     f     continuous at     xQ     implies   3   nbd    U    of 

xQ     such   that     f(U)   c W.     But  by  assumption      V 

is  eventually   in each    nbd     of    xQ     and     f   - V 

is  not  eventually  in  each    nbd    of     f(xQ) .  This 

is   a contradiction  to  the   fact   that     f     is 

continuous at     XQ. 

We now have   the   following corollary: 

COROLLARY 9:     A map     f   :   X - Y     is  continuous  on     X    iff 

f c f> :   D   ► Y     converges   to     f(x),   for each     x  c  X    and  for each 

net     <f:   D   ► X    which  converges   to    x. 



19 

In order to prove the next theorem, we need to recall the 

following definition concerning product spaces. 

DEFINITION 13:  Let  {X  I a  e A}  be a family of sets.  The 

cartesian product  II. X  is the set of all maps  c :A * u.  X 

having the property that  Vo £ A, c(a) c X . 

Note that  c  is a choice function, so that  n. X  is the 

set of all choice functions defined on  {X  | a e A}.  An element 

c e  n. X  is written {x }, meaning that  c(a) = x , V a.  c A, and acA    a a a 

x       is   called   the     aC       coordinate of     {x  }.     For each     S  e  A, 
a a 

the function Pg : apA Xa ■* XQ    defined by Pg({xo}) - xg is the 

proiection map of  II. X  onto the  8  factor. 

If the sets  X , a e A, happen to be topological spaces with 
a 

topologies  T , a E A, we have the following definition for a 

topology on  ^ X^. 

DEFINITION 14:  Let  {(X ,T ) | a g A}  be a family of 
  a  a 

topological spaces.  The cartesian product topology in ggA j^ 

is that having as basic open sets those of the form 

U  - 0   x U   x • • • x u  x JL   , . . _ , X , where  n  is 

finite and each  U   is an open set in X„ .  Denote the open set 

U by  < U  , U  , 
al  a2 

• Ua *' 
n 

THEOREM 10:  A net <P :   D -  n. XQ converges to a point 

lx } E II. X  iff p. «^- x , for each fixed 6 e A. 
ueA  a 
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PROOF:   (i)  If U c X  is open, then  p _1(U ) = 

Uo * nA   i»ix  is °Pen in  1. X , so the S  a£A-{6) a     r aeA a 

projection map p.  is continuous for each  8 i A. 
p 

Therefore  if      <fi:  D ■*■    H. X       is  a net  such   that aeA a 

<P-*  {x }, then pr o &•+ xB,   for each 8 e A, 
01 Dp 

by  the  preceeding corollary, 

(ii)     Now suppose     p0   ° *P •*■ x   ,     8 A.  If 

<P+  {x }, then 3 nbd < U  , • • -,U  >  of 
"l        n 

{x }  such that V d e D, 3d*, d ■« d* and 
a 

W[d*) i  <U  ," * *,U  >.  This means that 
1        n 

<fKd*)   t   <U  >, for some j e {1,2, 
a 

,n). 

j 
But this would imply that  p   ° ^(d*) t  U  , 

j . J 
which is a contradiction to the assumption that 

p  o *p -*  X ,VB e A.  Therefore, <P+  {xj, and 

the theorem is proved. 

In Theorem 6 above, we saw that if a net accumulates at a point, 

then there is a subnet which converges to that point.  We might ask 

whether there is a type of net in a space such that if it accumu- 

lates at a point, then it also converges to that point.  The answer 

lies in the concept of a maximal net or ultranet. 

DEFINITION 15:  Let V:   D ->  X be a net in a topological space 

X  and let  A <-   X.  Then we say that *p    is an ultranet in X  iff 

<P      is eventually in A  or is eventually in  X - A. 

One example of an ultranet is the constant net <jf ■   D * X 

defined by  «*d) = a, V d e D.  Another large family of examples can 
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|>t-   constructed  by   Letting     D    be  a directed  set with  a   last  element, 

such  as   the   set of ordinals     {1,2,-   •   •.a.Ct+l,'   •   •,ai}.     Then  any 

map     <p :   D + X     is  eventually  in  any set     A     or eventually   in    X - A, 

since   if    A c  X,  1p(u)     is either   in    A    or in    X - A.     We have   the 

following  theorem. 

THEOREM  11:     Let     <?:   D + X     be an  ultranet  in     X.     If   <pX>*, 

then    <P -* x. 

PROOF:     Suppose      p:   D * X     is an ultranet  in    X    and let     U 

be  a     nbd    of     x  e  X.     Since   {£>*» x,  we know Vd  c   D,   3d'   E  D, 

d ■< d'     and    <p(d')   e   U,  which  implies   that    *>   could not  eventually 

be   in     X -  U.      Since    <f>    is  an ultranet,   <P must  eventually be   in 

U.     Thus    <p  ► x,   and  the  theorem   is proved. 

Our examples  above have  shown  the existence  of  ultranets;   even 

more   interesting  is   the  fact  that we can   find an  "ultra-subnet"  of 

any  given net.     We use   the   following  fundamental   lemma on  subnets 

due   to  Kelley. 

LEMMA 7:     Given  a net    <f:   D -> X    and a   family     Q    of   subsets 

of     X     such   that: 

(i)     V    is   frequently  in each element  of     Q,   and 

(ii)     The   intersection of  two members  of    Q     is  a member of    Q. 

Then   there   is  a subnet  of    <f   which  is  eventually   in  each member of 

Q. 

PROOF:  Note that  (Q.-O  is a directed set, so that we may 

consider the cross product of  (D,-<)  with  (Q, •)  and have a directed 

product set, (D-Q,), where  (d.A) S (d',A')  means  d-< d' and 
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A  -> A   .      If     (d,A)   c   D  '  Q,   then  let     f   :   D * Q ■* D    be a map such 

that     f(d,A)  =   d'    where    d «   d '     and     <P°   f(d,A)   e   A.     By 

definition of   the directed  cross  product  of   two  directed  sets,   it 

is  easy   to see   that     f    satisfies   properties   (i)   and   (il)   in  the 

definition of subnet,   so  that    P°   f     is  a subnet  of   <p.     Now if 

A c   Q    and     (d,A)   e  D * Q,   then  V (p,B)   c  D  * Q,   where 

(d,A)   S   (p,B),   we have     <fi °   f(p,B)   £   B c A.     So,   V°   f(p,B)   £  A 

and we have  found a subnet  of    *P   which   is  eventually  in each 

member of     Q. 

THEOREM 12:     Each net     <P:   D ■* X    has  a  subnet which  is  an 

ultranet. 

PROOF:     Let     <P:   D + X    be   a net   in a  topological space    X. 

In  view of Lemma  7,  we will have  proved   the  theorem  if we  can show 

there  is  a  family    Q    of  subsets     of     X    with  the   following  three 

properties: 

(i)     If     A c X,   then either    AcQ    or    X-AeQ, 

(ii)     The   intersection of  a   finite number of  elements   of 

Q     is an element  of     Q,   and 

(iii)     f   is  frequently  in each  element  of     Q. 

Suppose     Q.    is   the  collection of  all   families  of  subsets of     X 

which  satisfy  properties   (ii)   and   (iii)   above.     It   is  easy   to show 

the   following about     Q.: 

(a) ft 4 0,   since    0 e   &, 

(b) 0     is  partially  ordered  by    <=,  where    Qa «   Qg    means   if 

A E Q   ,   then    A e  Qg. 
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(c)     If     {Q^   |   a   £  A}     is  any  totally ordered subset  of    £, 

then    Q    =     u.   Q       is  an  upper bound  for     {Q     |   a e A} 

and    Q       satisfies   (ii)   and   (iii)   above. 

Thus we may  apply  Zorn's Lemma and have   the  existence of a maximal 

family of    £,   call  it     Q*.     We  claim that    Q*    also satisfies   (i) 

above.     Suppose     Q* =   {B     |   B    c  X,   a £  A}     and  let     A    be any 

subset  of    X.     If     A n   B       satisfies   (iii)   above   Va  e A,   then 

A e  Q*,   since    Q*     is  maximal.     Hence  if    A i Q*,   3 8  £ A     such 

that    A n  B       does not  satisfy   (iii)  above;   i.e.,    <P is eventually 
p 

in    X -   (A n  B.).     Thus,   <P   is  frequently  in    X -   (A  n  B„),   so  that 
B p 

X -   (A fl  B)   £ Q*.     By   (i)   above,   B„  n   [X -   (A n B   )]   e Q*.     But 
S p P 

Bg  n   [X -   (A fl Bg)]   =  Bg -   (A n  Bg)     and    X - A a Bg   -   (A n  Bg). 

Therefore,   X - A £  Q*     since    <P   frequently  in    B     -   (A n  B   ) 

implies    <P   frequently   in    X - A,   and since     Q*     is  maximal.     We 

have  shown  that if    A i Q*.   then     X - A  e  Q*,   which is  property   (i) 

above.     So,   by  the  above  lemma,   there   is  a subnet   V,°   f     of       f 

which  is  eventually in each member of     Q*.     But  for each  subset     A 

of    X,   either    A £   Q*     or    X - A  £ Q*,   so  that     *P "   f     is  an 

ultranet,   and  the   theorem is  proved. 

The  very important   concept  of  compactness   can  also be  discussed 

easily  in   terms of nets.     Recall   the  following definition. 

DEFINITION  16:     A  topological  space    X     is said  to be  compact 

iff each  open  covering  has  a  finite subcovering. 

We have  the   following  characterizations  of compactness. 
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THEOREM  13:     A  topological space    X    is compact  iff   for each 

family     (F     |   o  e  A}     of closed sets   in    X     for which       n.   F    = 0, 
aeA a a 

there exists a finite subfamily  {F  ,F  , 
al    a2 

, F     }     such  that 
n 

,R.   F        =   0. 
i=l     a. 

l 

PROOF:     The  proof  is standard  and is omitted. 

THEOREM 14:     A  topological space    X    is compact  iff each net    <p 

in     X    has   an   accumulation point. 

PROOF:        (i)     Suppose     X    is  compact and  let     <p:   D ■* X    be 

any net  in    X.     For each    d e   D,   let   <P(Td>  = 

{.¥>(.&')    I  d < d'}     be  the   image of  the  terminal 

set    T.     under   <P.     Then    $ -{  <fKj&)   |   d  e  D   } 

is  a family  of  closed sets  such  that  the 

intersection of any finite number of elements 

of     *    is non-empty.     Since    X    is  compact, 

0n*O**.     Let    xo£dnD<*fp.     Then de'D rx d 

y>>oxn,   since  if     U    is any 

Vd  e  D,   U n Wd)   * 0- 

nbd    of    xQ,   then 

(ii)     Suppose     X     is  a  topological  space and let 

p =  {F     I   a e  A}     be any  family of  closed subsets 

of    X    such  that   each finite  subfamily of     F    has 

a non-empty   intersection.     Suppose  further  that 

each net  in    X    has an accumulation point,     Let 

n=   {   n     F       |F       e   F    and    n     finite}.     Note 
101    a. a± 
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that  since     F c G    and  since  each  finite 

subfamily of    G    has a non-empty  intersection, 

we will have  proved that    X     is  compact   if we 

can show  that     _nc G„  4  0.  where 
CEO    p 

G =  {G„   I   6  £  B     and    GD     is  a finite   intersection 
P P 

of elements  of   F}.     It   is easy  to  see  that     (G,)) 

is a directed  set,   since  the  intersection of any 

two elements of     G    is  an element of     G.     Let 

<fi:   G ■* X    be a  choice   function;   that   is, 

<P(GJ   e  G„,   V8   C   B.     By hypothesis    *»   has   an accu- 

mulation point,   call it x„.     If     G,,,   G„  c   0 
u P       u 

such  that     G„  a G„,   then    <fi{G  )   e G c  G  ,   so 
P U Cl d P 

that    V   is  eventually   in each  closed  set 

G„  e   G.     Thus     x_  e  G   ,Ve  £   8,   so  that 
6 up 

.n0 G„  i 9     and   the  theorem is  proved. 
BED     B 

THEOREM 15:     A  topological  space    X     is  compact   iff  each  ultranet 

in     X     converges. 

PROOF:        (i)     Suppose    X     is  a  compact   topological  space  and 

let    <P:  D ■* X    be an ultranet.    Then by Theorem 

1A,    <fi has  an accumulation point    xQ  c  X    and 

since     <P   is an  ultranet,  IF"* xQ. 

(ii)     Suppose each ultranet   in a topological space    X 

converges.     Let      <f>:   D - X    be any net  in     X. 

By Theorem 12,   there   is  a subnet     <f°   f    of      £> 

which   is an ultranet.     By hypothesis,    P°   f   * xQ, 
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for some x. c X.  Thus  x_  is an accumulation 

point of (fi,   so by Theorem 14, X is compact. 
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CHAPTER IV 

FILTERS AND FILTERBASES 

A net   is  one of  three equivalent methods of discussing 

convergence   in  general   topological spaces.     The others,   filters 

and   filterbases,   are  the  subject of what   follows.     We begin with 

the  basic  definitions. 

DEFINITION   17:     A filter     F    on a set    X     is a  family of 

non-empty  subsets  of    X    such  that: 

(i)     F 4  0 

(ii)     If     A,B E   F,   then    A n  B c   F,   and 

(iii)     If     A e   F     and    A e  B  c X,   then    B  t   F. 

DEFINITION 18:  If X  is a topological space and  F  is a 

filter on  X, then  F converges to xQ e X, (F •+ xQ)  iff V nbd 

U  of x , U c F.  The filter  F  accumulates at  xQ(F>-» xQ) iff 

V nbd  U of  xQ and V A e F, U n A 4  0. 

Given a net, it is easy to construct a filter from it, which is 

said to be generated b£ the net; conversely, given a filter, we may 

construct a net from it which is said to be based on the .filter-  "e 

will also see that these two ideas lead to an equivalent notion of 

convergence. 

Let 0'. D ■* X be a net in a topological space  X and 

V d i D, let T  be a terminal set in D.  Consider the family 

of all images of the  T.  under <f,   call it  8 = (V^) |d c D). 



28 

Then     '   =   (A       X   |V(T.)   •    A,   for  some    d  i   Dl     is a   Til LIT  on     X, 1 d 

called   the   filter  generated by  the net   <£.     The   family     8     Is   called 

the  basis   of   the   filter     F.     Because    D     is   a directed  set,   it 

follows   that   if    <f%Td), <?(.Td,)   £   8,   then  there  is  a   <»(Td„)   c   8 

{B     |   a  e  A} such that V(Td,.) - WJ r><?*Td,). Any family 8 

with the above property is a basis for the filter 

F =   {A -  X   I   B     c  A,   for  some     a £ A}. 

Conversely,   suppose     F     is  a filter on a  topological  space    X. 

It   is   trivial   to verify   that     (F,-)     is  a directed  set.     Since each 

element   of     F     is  non-empty,   there   is  a  choice   function     ":   F * X 

such  that    ^7(A)   £  A,   VA  E   F.     Then   (f    is  a net   in    X,   called  the 

net   based  on   the   filter     F. 

THEOREM 16:     Let     <p :   D - X    be a net  in  a space     X,   and   let 

F     be   the   filter  generated by   <P.     Then     F - xQ     iff     f*+ xQ. 

PROOF:        (i)     Suppose     F -* xQ;   then    V    nbd     U    of    x   ,   U e   F. 

This means    3  d t D,   such   that    PCT.)   e   L", 

which  says    ^^ xQ. 

(ii)     Suppose    ^^ xQ;   then    V   nbd     P    of     xQ, 

3   d   E   D    such   that    <*(T.)   -   U.     This  says 

U  E   F    and     F - xQ. 

THEOREM 17:     Let     F     be  a  filter  on a space     X.     Then     F - xQ 

iff   each  net  based  on     F     also  converges   to    xQ. 

PROOF:        (i)     Suppose     F - xQ;   then   V    nbd     U    of    xQ,   U  t   F« 

If     V  £   F    such  that     U  3   V,   then  if     <j>:   f   • A 

is  any  net  based on     F, ^V)   •:   V   -   U,   so    <? - xQ. 
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(ii)  Now suppose that  F { x..  Then 3 nbd U of 

*0 such  that    U  I   F.     Note  that   for each    A e   F, 

A - U 4 0,   since  if    A - U  =  0,   we would have 

A c U    and by definition of a  filter,   U  t   F. 

So,   the choice  function    f?i   F   k X    defined by 

^A)   t  A - U     is  a net  based on     F    which  is 

never   in    U,   and hence  could not converge  to     x_. 

The  above   two  theorems show  that  convergence based on  nets   is 

equivalent   to  convergence  based  on filters.     All of   the previous 

theorems   in   this  paper could be   proved by  replacing nets with  filters. 

The   concept  of a  subnet of  a net has   its  analog  in  the  idea of a 

finer  filter;   i.e.   if     F     is a  filter on     X,   then     F       is   finer than 

F     iff     F c   F   .     The  concept of   ultranet   is analogous   to what  is 

known as  an   ultrafilter;   i.e.,   a filter     F    on  a set    X     is   said   to 

be  an  ultrafilter   iff  given any  filter     F       finer  than     F,   F    =     F. 

We may also  discuss  convergence   in  terms  of  filterbases  whose 

definition   is  motivated by our  above  discussion of  a basis   for a 

filter on   a space. 

DEFINITION  19:     Let     X    be   a  topological  space.     Then  a  filter- 

base   in     X     is  a   family of non-empty subsets of    X,   F =   {A^   |   a c   A), 

such   that V a,   B  f-   A,    3   A   t A     such   that     AA   c  A^  n A^. 

Analogous  to a subnet and a  finer  filter  is   the notion  of a 

subordinate   filterbase. 
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DEFINITION 20:  If  F = (Afl | a c A)  and  F' = {B  | 8 c 8} 

are two filterbases on a space  X, we say  F  is subordinate to 

F  iff V/A t F, 3B, E F' such that Bn  c A . 

Similarly, ultranets and ultrafilters have corresponding to 

them the concept of a maximal filterbase. 

DEFINITION 21:  A filterbase  F  on a space X  is said to be 

maximal iff for each filterbase  F  on X subordinate to  F, it 

is true that  F  is subordinate to  F . 

As with nets and filters, we may consider filterbases determined 

by nets and nets based on filterbases. 

First let  <^: D ■* X  be a net in a topological space  X. 

Then the family  F = {^(T^ | d E D)  of the images of all terminal 

sets of D  is a filterbase in  X, as we have seen in our discussion 

of a basis for a filter, and is called the filterbase determined by 

the net <p. 

Second, if  F = {A  I a e A}  is a filterbase in a space  X, we 

may construct a net based on f    as follows: 

Let  D = {(a ,A ) I a  e A  and A c F}.  This is possible since 
a  u  '  a    a        a 

each element of  F  is non-empty.  Then direct  D by saying 

(a ,A)-< (ag.Ag)  iff A^ 3 Ag.  The relation -< directs  D, since 

F  is a filterbase.  Now we define the map <P:   D -*■  X  by 

<^(a ,A ) = a , and we have a net based on the filterbase  F. 
a  a     a 

We need to define the convergence of a filterbase and prove 

that the concept of convergence based on nets is equivalent to that 

based on filterbases. 
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DEFINITION 22:     Let     F ■   {A     I   a £ A}    be a filterbase on a   a   ' 

space    X.     Then     F     converges  to    x.(F ■> x.)     iff for each    nbd 

U    of    x„,   there  is   an    A„   e   F     such  that    A„ c  U.     A filterbase 
OP D 

F    accumulates at     xQ(F>ox0)     iff    V   nbd    U    of    xQ     and 

V   A     c   F,   U  n A    +  0. a a 

THEOREM 18:     Let      <4>:   D * X be  a net   in a  topological   space 

X,   and  let     F =   «0(T,)    |   d  E  Dl be  the   filterbase determined by 

(f>.     Then    <p> xQ    iff    F - xQ. 

PROOF:     The  proof  is  simply Definitions 6   and 22. 

THEOREM  19:     Let   F    =   {A     | a  e  A}     be a  filterbase.     Then 

F ■* x.     iff  each net based on     F converges  to     xQ. 

PROOF:        (i)     Let     F =   {A     |   a e A}     be a   filterbase,   let 

D =   {(a   ,A )    la    e  A   ,  A    e   F},   and  let 
a     a     '     a a       a 

<f>:   D * X be a net based on  F as defined 

above.  If  F -*■ x_, then V nbd  U of  xQ, 

3 A E F such that  A c U.  Thus, 

V (a,,Ax) e D such that  (a ,A ) -< (ax,Ax), B*   6' 

we  have    ^(a^.A^  ■ a^   E A, U,   so   that 

v-v 
(ii)     Suppose     F •(► xQ.     Then   there   is a    nbd    U     of 

xQ     such  that  VAa e   F,   AQ  -  U 4  <t-     Then define 

D =   Uaa,Aa)    |   aa  E  Aa - U,   Aa c   F}     and 

<P:   D - X    by    ^a^kj   = a^.     Then    <p    is a 

net,   based on   the   filterbase     F,   which does not 

converge   to    xQ,   so  the   theorem is  proved. 
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Thus  convergence   in  general   topological  spaces may be expressed 

adequately   in  terms  of nets,   filters   or   filterbases;   the   theorems 

in  Chapter   III  of   this  paper have  parallel   statements using both 

filters and  filterbases.     However,   neither  of  the  latter  two  ideas 

is  as   natural  a generalization  of  sequences   as are nets.     In   fact, 

it   is   only   through  the  nets  based  on   filters  and  filterbases   that 

we  see   the  similarity  of   those  concepts  to   the  idea of  a sequence. 
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SUMMARY 

In   this   thesis   it was  pointed out   that  sequences are  inadequate 

to  describe   the  concept of  convergence in a  general   topological  space. 

A sequence was   then  generalized   to a net,  which was   shown  adequate  to 

formulate   the   concept of convergence  in  any   topological  space.     It 

was   shown  that   the notion of  closure  in  a general   topological space, 

and  hence  all   topological  concepts,   could be  defined using nets. 

Cauchy nets  were   introduced and a Cauchy  criterion   for nets of  real 

numbers was  proved.     Finally,   it was  shown  that convergence  in  terms 

of  nets was  equivalent   to  convergence  in  terms of   the alternative 

concepts  of  filters   and  filterbases. 
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